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Abstract: Feature selection to reduce redundancies for efficient classification is necessary but usually
time consuming and challenging. This paper proposed a comprehensive analysis for optimum feature
selection and the most efficient classifier for accurate urban area mapping. To this end, 136 multiscale
textural features alongside a panchromatic band were initially extracted from WorldView-2, GeoEye-3,
and QuickBird satellite images. The wrapper-based and filter-based feature selection were imple-
mented to optimally select the best ten percent of the primary features from the initial feature set.
Then, machine leaning algorithms such as artificial neural network (ANN), support vector machine
(SVM), and random forest (RF) classifiers were utilized to evaluate the efficiency of these selected
features and select the most efficient classifier. The achieved optimum feature set was validated using
two other images of WorldView-3 and Pleiades. The experiments revealed that RF, particle swarm
optimization (PSO), and neighborhood component analysis (NCA) resulted in the most efficient
classifier and wrapper-based and filter-based methods, respectively. While ANN and SVM’s process
time depended on the number of input features, RF was significantly resistant to the criterion. Dis-
similarity, contrast, and correlation features played the greatest contributing role in the classification
performance among the textural features used in this study. These trials showed that the feature
number could be reduced optimally to 14 from 137; these optimally selected features, alongside
the RF classifier, can produce an F1-measure of about 0.90 for different images from five very high
resolution satellite sensors for various urban geographical landscapes. These results successfully
achieve our goal of assisting users by eliminating the task of optimal feature selection and classifier,
thereby increasing the efficiency of urban land use/cover classification from very high resolution
images. This optimal feature selection can also significantly reduce the high computational load of
the feature-engineering phase in the machine and deep learning approaches.

Keywords: optimization; very high resolution satellite imagery; filter-based and wrapper-based
feature selection; multiscale texture; urban land use/cover classification

1. Introduction

Higher spatial resolution increases intraclass variances, resulting in high interclass
spectral confusion in satellite image classification [1]. The issue is naturally associated with
the sensor resolution, and it cannot be addressed by increasing the number of spectral bands
to enhance the superclass abilities. Thus, an alternative can be the use of spatial information
such as textural features [2]. Statistical approaches based on the gray-level co-occurrence
matrix (GLCM) were reported as the most beneficial textural analysis [3,4] among four main
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types of procedures for textual analysis recognized by [5]. This information is helpful for
various applications, such as distinguishing crops [6,7] and classifying tree species [8–10]
and urban mapping [4,11–14]. However, using high-dimensional spatial feature sets can
result in redundancy among the features; overfitting of the classifiers [15–18]; building
complex models; making model interpretation challenging; and requiring additional com-
putational time, storage, and processing compared to a more optimal input dataset [19,20].

As a solution to the issues mentioned above, researchers have paid lots of attention to
feature selection (FS) as an approach to selecting the most relevant features for predefined
classes [21,22]. The FS methods are categorized into three categories, including filter, wrap-
per, and hybrid algorithms. Filter approaches utilize statistical properties independent
of the classification performance to eliminate less-significant input in feature sets [23–25].
They are computationally inexpensive and fast [26,27]. On the other hand, wrapper meth-
ods consider the relation between learning algorithms and training data [28,29]. This is
why they outperform filter models in terms of accuracy [30–32]. However, they are slower
and computationally more expensive [27,30]. The hybrid method uses two algorithms
by various evaluation standards in the different search stages [26]. Naeini, et al. [33] in-
vestigated several wrapper-based algorithms, such as particle swarm optimization (PSO),
genetic algorithm (GA), artificial bee colony (ABC), and honey-bee mating (HBM), to select
the best spectral and textural parameters for very high spatial resolution data classification.
Then, the selected features were input to various classifiers resulting in better performance
for the PSO-selected feature dataset. Hamedianfar, et al. [34] carried out feature selection
through consolidation of PSO and artificial neural network (ANN) applied to WorldView-2
data for land use/cover mapping with extreme gradient boosting (XGBoost). They reached
an overall accuracy of above 89%. Concerning the filter models surveys, Wu, et al. [35] con-
ducted comparative analyses on four filter-based FS methods, including maximal–minimal
associated index (MMAI), maximum relevance minimum redundancy (MRMR), relief-F,
and correlation-based FS (CFS). They applied these methods to hyperspectral band selec-
tion and showed that MMAI led to the best performance. In another comparative analysis,
Malan, et al. [36] showed that neighborhood component analysis (NCA) outperformed GA,
principal component analysis (PCA), and relief-F in terms of the kappa coefficient for signal
analysis. Ren, et al. [37] implemented an improved version of the relief-F method called
partitioned relief-F and compared it with PCA and the original relief-F via classification
outputs. The experiments showed a slight increase of up to 4% for the improved method
compared to the classical ones. Despite the merits of FS methods, they are intensive because
no self-evident and consistent guidelines have been suggested for this process yet.

The non-parametric machine learning methods such as artificial neural networks
(ANNs), support vector machine (SVM), and random forest (RF) have significantly captured
remote sensing experts’ attention in the classification of heterogeneous surfaces and big
data analysis throughout the recent decades [38–40]. These algorithms were developed
for land use/cover mapping [41–43] and were compared based on their classification
performance by Rogan, et al. [44] and Camargo, et al. [45]. Concerning these surveys,
Xie, et al. [39] exploited vegetation indices and textural and topographical data from bi-
temporal ZiYuan-3 multispectral and stereo images to detect tree, forest, and land use
classes. They utilized six classifiers comprising maximum-likelihood classifier (MLC),
k-nearest neighbor (KNN), decision tree (DT), ANN, SVM, and RF, of which SVM’s overall
accuracy was greater than that of the rest with 89.2%. Vohra, et al. [46] mapped urban areas
using textural and morphological features and vegetation indices. These features were
extracted from long-wave bands in hyperspectral and multispectral information belonging
to very high resolution (VHR) images and classified by ANN and SVM algorithms, in
which SVM outperformed. Sentinel-1 urban GLCM features were used by [47]. They
evaluated MLC and SVM and showed that the latter surpassed the former with a kappa
of 0.72 compared to 0.61. Whereas ANN might be followed by over-fitting, SVM and RF
comply with rules solving these problems in expansive feature spaces [39,48,49]. In general,
SVM and RF are considered the best land use/cover mapping methods compared to other
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machine learning procedures [32,45,50–52]. However, the performance of a classification
technique is determined by the sensor properties and data attributes akin to spatial and
temporal features, software and hardware capabilities, etc. [53]. Conclusively, the need
for an efficient and constant classification algorithm used for the VHR image dataset has
remained unfulfilled.

An optimized and consistent feature set alongside a more efficient classifier that can
be employed for a wide range of VHR images from various satellites in urban phenom-
ena classification is necessary for the classification operation. Accordingly, providing a
generalizable set consisting of the most efficient features and classifier for accurate urban
landcover mapping is the main objective of this research, which has not been applied in
previous studies.

Selecting appropriate input features from VHR imagery and the most efficient classifier
is usually time consuming and challenging. To overcome the abovementioned issues, this
study aims

• To evaluate various texture feature selection algorithms and classification procedures;
• To provide a full-scale and optimum feature set and classifier for more efficient and

accurate urban land use/cover mapping;
• To help users provide the optimum feature set, significantly reducing the time and

effort required for feature selection in the classification process.

To realize the objectives, we

1. Assessed VHR multispectral and panchromatic image data for extracting various
urban land use/covers;

2. Extracted and collected multiscale textural features from VHR image data;
3. Implemented the wrapper-based and filter-based feature selection approaches;
4. Evaluated each feature set with classification performance to obtain the most

efficient one;
5. Demonstrated the generalized characteristics of selected features for the efficient

classification of new images.
6. Investigated individual features’ role in the classification performance.

2. Proposed Methodology

Figure 1 presents an overview of the proposed optimum feature selection and land
use/cover classification framework. Accordingly, 136 multiscale textural features were
extracted from each test image. Then, these features and the panchromatic band were
utilized in an AI-based selection process. Firstly, PSO and GA were employed to optimize
the feature set. Subsequently, filter-based FS methods optimally reduced the selected
features by ten percent of the initial features. Furthermore, each dataset’s performance was
evaluated using SVM, RF, and ANN results. Finally, the productivity of the optimal feature
dataset was assessed by new images compared to those in the preliminary experiments.
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Figure 1. Workflow of optimum textural features selection for urban land use/cover classification.

2.1. Image Data

One of the objectives of this research was to test a generalized optimum feature
selection process that can be employed for various image data with different spectral,
spatial, and urban landscape characteristics. Therefore, this research used VHR images
capturing a wide range of urban landscapes (shown in Figure 2) from five satellite sensors,
each with a panchromatic band of sub-meter spatial resolution. The characteristics of
the images used in this work are listed in Table A1. Although the acquisition locations
and coverages of these images are different, there are similarities in the urban context.
In addition, there are typical urban land covers and land uses, such as buildings, roads,
parking lots, trees, short vegetation, highways, sidewalk, and railways in the images. These
similarities help attain a rigorous and generalizable dataset for testing and validation.
Within the dataset, three images, i.e., the images of Tehran (A), Hobart (E), and Denver (C),
were randomly employed for feature selection processing to obtain the optimum feature
set. The other two images, i.e., those of Rio (B) and Melbourne (D), were used for validation
and demonstrating the generalized and universal characteristics of the selected features.
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Figure 2. The study areas included Tehran (A), Rio de Janeiro (B), Denver (C), Melbourne (D), and
Hobart (E).

Another objective of this study was to achieve a generalizable feature set for urban
land cover mapping. To this end, several test images with different spectral and geometric
characteristics, such as off-nadir angles and multispectral and panchromatic bands, and
spatial resolution, were selected. For example, the predominance of large and small
buildings with concrete roofs in Tehran, commercial and residential buildings with wood
and metal roofs in Hobart and Denver, the combination of these objects in Melbourne and
Rio, sports facilities in Hobart and Tehran, the railroad in Melbourne and other dominant
phenomena such as different types of vegetation and asphalt structures could be really
interesting in evaluating the effectiveness of the proposed approach.

The VHR images have a sub-meter spatial resolution (0.31, 0.5 and 0.6 m, respectively)
in the panchromatic band; there are sufficient pure pixels for each urban land class listed
in Tables A2–A6. The training and test samples were generated for various land classes,
including road, highway, parking, low-rise building, high-rise building, sidewalk, lawn,
tree, and shrub (Tables A2–A6). The number of pixels used for training affects the final
classification accuracy. It has been recommended [2,54] that about 5% and 10% of the total
pixels should be used as the training samples. Accordingly, an average of 8% of the samples
was used for training, and the rest (92%) was used as test data.

2.2. Class Separability Analysis

In order to investigate the contribution of each multispectral band to the extraction
of the classes, firstly, the multispectral bands were incorporated into panchromatic data
by Gram–Schmidt pan sharpening. Afterward, for testing the class separabilities, Jeffries–
Matusita analysis was applied to all pairs of the land use/cover classes sampled from
the images of Denver, Tehran, and Hobart. The analysis indicated that 60% of the class
pairs in Denver, 81% in Tehran, and 53% in Hobart had weak discrimination owing to a
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Jeffries–Matusita distance of less than 1.7, which is indicative of weak separability [55],
i.e., the classes in a pair with short Jeffries–Matusita distance have similar spectral proper-
ties. The pair classes that indicate short Jeffries–Matusita distance are not distinguishable
when relying only on spectral information in the classification process. Consequently,
supplementary information, namely textural features, is needed to extract the intended
classes accurately.

2.3. Feature Extraction

First-order statistics are directly derived from the digital number levels, and second-
order ones are calculated based on GLCM record occurrences of pixel pairs in varied
directions [4,11–14,29]. For the first-order features, we employed mean and variance,
and for the second-order features, we used angular second moment, entropy, contrast,
correlation, dissimilarity, and homogeneity [4,56,57].

2.4. Feature Selection (FS)

FS approaches are conducted to remove the redundant and irrelevant features in the
input dataset, which cause more computational complexity and longer processing time
in classification.

2.4.1. Filter-Based Feature Selection

The filtering primarily calculates the feature properties based on three criteria, includ-
ing information about dependency, consistency, and distance, independent of the data
mining procedures [58–60]. Three tools described below were used in the filter-based
feature selection.

Maximum relevance minimum redundancy (MRMR) can be considered as an esti-
mation of the majority dependence made by conditional entropy between the common
diffusion of the eligible features and the classification output [35].

Relief-F [61] is designed based on instance-based learning to distinguish those sta-
tistically identical features via assessing the role of a feature in distinguishing between
instances near each other considering the Euclidean distance.

Neighborhood component analysis (NCA) calculates the weight of each feature and
then ranks them to extract the premier subset by maximizing a target function that assesses
the average leave-one-out classification performance over the training input [36,62].

2.4.2. Wrapper-Based Feature Selection

The wrapper approach employs learning algorithms with iteration mechanisms and
the accuracy of the classification error rate as a standard of feature impact, which includes
the two elements described below.

Genetic algorithm (GA) as a population-based FS scheme commences with a primary
population of chromosomes and assesses the fitness function based on the overall accuracy
of the K-NN classifier with an iteration mechanism [63–65].

Particle swarm optimization (PSO) is based on the movement of birds as
particles [66,67]. The particles’ velocity is modified in an n-dimensional space until the
stopping criteria are satisfied [68,69]. The best solution is achieved by each particle search-
ing throughout its flight in the defined space and adjusting its motion based on its own
flight experience and that of the group [68,69].

2.5. Classification Algorithms

Three different machine learning classifiers were used in this work to test the efficiency
of optimal textural features and achieve the most efficient classifier.

Artificial neural network (ANN) is a feed-forward formation black-box model, trained
by MLP, based on a back-propagation algorithm [38,70]. The underlying properties of ANN
are the learning rate, training momentum, learning RMSE (root mean square error), stop
criteria, and the number of learning iterations [39].
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Support vector machine (SVM) discriminates input samples related to varied classes
by tracking the optimum margin hyperplanes in a feature set. One of the algorithm’s
most indispensable and prominent parameters is the kernel function that helps apply the
hyperplanes to materialize the minimum classification error appropriately [71,72].

Random forest (RF) represents a collection of tree-based algorithms [73]. The final
classification result is determined by a voting process of all the trees. There are two
requisite parameters for tuning the RF mechanism, including the number of trees, usually
represented by ‘n-tree’, and the number of predictors at each decision tree node split,
which can be elaborated by ‘m-try’. Typically, the out-of-bag (OOB) error, applied for inner
cross-validation to assess the classification performance of RFs, declines with the increase
of n-tree [49,74]. The plot of OOB error versus n-tree is usually drawn, representing how
many trees are adequate in the mature forest [49]. Concerning m-try, while a low m-try
offers an enfeebled forecast capability for every tree, this indicates a slight correlation
amongst varied trees, depleting the generalization error. The m-try equals one-third of the
square root of the input features [49,75].

3. Results and Discussion
3.1. Multiscale Textural Feature Extraction

Identifying appropriate textural features is challenging since an efficient texture feature
is a set of parameters such as texture measure, window size, spectral band, direction,
and cell shift [12]. The influence of a textural feature in the classification increases with
increasing spatial resolution or window size [76,77]. However, the solitary optimal window
size for the exploitation of texture would not be adequate for images of urban scenes
covering land use/cover classes with similar spectral behaviors. Therefore the multiscale
texture analysis is appropriate for urban scenes [2,13]. In this study, five different window
sizes (e.g., 5 × 5, 9 × 9, 17 × 17, 31 × 31, and 51 × 51); three directions of horizontal (0◦),
diagonal (45◦), and vertical (90◦); and four cell shifts of 3, 7, 15, and 30 pixels were tuned
to implement the technique. All these configurations resulted in 136 features. It should
be noted that the various directions and cell shifts are only restricted to the second-order
textural parameters. For more information about how these cell shifts, directions, and
window sizes were selected, see [13].

In order to adequately name each feature, the ‘ZX-A-B’ code was defined and used,
where Z, X, A, and B are feature type, window size, cell shift, and direction or angle of the
measuring filter, respectively. Table A7 presents all these 137 features used in this work,
where the feature type ASM is for angular second moment, Cont is for contrast, Cor is
for correlation, Dis is for dissimilarity, Ent is for entropy, Homo is for homogeneity, Var
is for variance, Mean is for mean, and Pan is for panchromatic. For example, Cont9-7-45
represents a feature calculated using a contrast filter with a 9 × 9 window size and a 7-pixel
cell shift in a diagonal direction.

3.2. Classification of Extracted Features

All the extracted features were input to the considered machine learning classifiers.
Then the wrapper-based and filter-based optimization algorithms were applied to obtain
the desired feature set. Scaled conjugate gradient (SCG) and the tangent sigmoid transfer,
adaptable to GPU, were used as a network training method and transfer function. For
the SVM classifier, we utilized radial basis function (RBF) kernel and grid search with
10-fold cross-validation to set the parameters of C and γ. Since RF is computationally
productive and resistant to overfitting, n-tree can be chosen as large as possible [74,78]. In
this study, the OOB error against the number of trees was used with 120 n-tree to reach the
best approximation of n-tree for each image (Figure 3). This figure shows a slight difference
between the out-of-bag classification error with 120 trees and the other cases with different
tree numbers. Consequently, fewer trees were chosen for RF classification to decrease
computational time and burden.
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Figure 3. The OOB classification error against the number of trees with 120 n-tree to estimate the
proper trees for the RF process for three images.

The 137 features were input to three classifiers, i.e., ANN, SVM, and RF, for three im-
ages (Tehran, Hobart, and Denver). The outputs were analyzed based on F1-measure [79–85]
and processing time (Figure 4); the results indicated that SVM and ANN had the best and
weakest F1-measure values. On the other hand, the slowest was SVM, while RF experi-
enced the fastest performance. In addition, RF illustrated the most efficient consequences
regarding classification accuracy and time since its F1-measure was approximately near
that of SVM and it was also the most rapid one.
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Figure 4. F1-measure values and classification time for classification of 137 feature datasets from
images Tehran, Denver, and Hobart.
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Though high-dimensional feature input may offer more information, the irrelevant,
wasteful, and redundant ones decrease the processing speed and classification accuracy.
Hence, the optimal feature dataset should be provided by eliminating the repetitious
and irrational information to solve this problem. In the first step, GA and PSO were
implemented as the wrapper-based feature selection methods to pursue the aim. Given that
the wrapper-based process is highly time intensive, we employed parallel programming
in the MATLAB environment to accelerate the performance. The GA and PSO parameter
values shown in Tables A8 and A9 were used in this study.

The number of features selected via the methods can be seen in Table 1. It should be
noted that the time elapsed for the GA process in the three images, on average, was 4 h in
comparison to 3 h for the PSO process.

Table 1. The number of features selected with PSO and GA.

Tehran Denver Hobart

GA 46 51 53

PSO 74 63 75

Subsequently, these selected features were employed in the classifiers used in this
study, and their results were investigated based on the classification time and accuracy
(Figure 5). These results show that similar performance, in terms of accuracy and efficiency,
can be achieved using only the optimally selected features. For all images, better classifica-
tion F1-measure and faster processing time were achieved when using the input of selected
features than using the original 137 input dataset. In addition, classification F1-measure
values with PSO-selected features as inputs were higher than those with GA-selected fea-
tures, but classifications with PSO-selected features required a longer processing time in all
the trials.

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 23 
 

 

Though high-dimensional feature input may offer more information, the irrelevant, 

wasteful, and redundant ones decrease the processing speed and classification accuracy. 

Hence, the optimal feature dataset should be provided by eliminating the repetitious and 

irrational information to solve this problem. In the first step, GA and PSO were imple-

mented as the wrapper-based feature selection methods to pursue the aim. Given that the 

wrapper-based process is highly time intensive, we employed parallel programming in 

the MATLAB environment to accelerate the performance. The GA and PSO parameter 

values shown in Tables A8 and A9 were used in this study. 

The number of features selected via the methods can be seen in Table 1. It should be 

noted that the time elapsed for the GA process in the three images, on average, was 4 h in 

comparison to 3 h for the PSO process. 

Table 1. The number of features selected with PSO and GA. 

 Tehran Denver Hobart 

GA 46 51 53 

PSO 74 63 75 

Subsequently, these selected features were employed in the classifiers used in this 

study, and their results were investigated based on the classification time and accuracy 

(Figure 5). These results show that similar performance, in terms of accuracy and effi-

ciency, can be achieved using only the optimally selected features. For all images, better 

classification F1-measure and faster processing time were achieved when using the input 

of selected features than using the original 137 input dataset. In addition, classification F1-

measure values with PSO-selected features as inputs were higher than those with GA-

selected features, but classifications with PSO-selected features required a longer pro-

cessing time in all the trials.  

 

 

0
.9

7
2

0
.9

7
0

0
.9

6
1

0
.9

5
0

0
.9

8
8

0
.9

8
0

0
.9

5
3

0
.9

5
0

0
.9

0
0

0
.8

9
9

0
.9

6
3

0
.9

6
0

0
.8

5

0
.8

8
6

0
.8

4
0

0
.7

8
3 0

.9
5

2

0
.9

5
0

T E H R A N _ P S O T E H R A N _ G A D E N V E R _ P S O D E N V E R _ G A H O B A R T _ P S O H O B A R T _ G A

F
1

-M
E

A
S

U
R

E

SVM RF ANN

5
0

.6
6

5
0

.3
0

2
1

.6
2

1
6

.5
8 2
2

.6
0

1
4

.3
2

2
.2

2

2
.0

8

1
.5

4

1
.4

4

0
.9

5

0
.9

0

1
5

.5
1

1
3

.2
6

6
.6

5

3
.9

5

6
.6

1

4
.8

5

T E H R A N _ P S O T E H R A N _ G A D E N V E R _ P S O D E N V E R _ G A H O B A R T _ P S O H O B A R T _ G A

C
L

A
S

S
IF

IC
A

T
IO

N
 T

IM
E

SVM RF ANN

Figure 5. Comparison of F1-measure values and process time (min.) for classification with features
selected by PSO and GA for Tehran, Denver, and Hobart.
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In the second step, three filter-based feature selection approaches, namely NCA, relief-
F, and MRMR, were conducted with wrapper-based selected features to select the best
10% (approximately 14 features) from the whole dataset (i.e., 137 features). The results are
presented in Table A10. Then, the 14 optimally selected features were used to classify the
three images. Table 2 presents the results from classification, including F1-measure values
and overall processing time. It should be noted that the overall processing time was the
summation of classification and filter-based processing time.

Table 2. F1-measure values and overall time (the sum of classification and filter-based process time)
for classifying 14 qualified features in Tehran, Denver, and Hobart images.

Input Dataset and Classifier
Tehran Hobart Denver

F1-Measure Overall Time (min.) F1-Measure Overall Time (min.) F1-Measure Overall Time (min.)

GA_MRMR_ANN 0.770 17.24 0.889 3.48 0.718 4.44
GA_MRMR_RF 0.892 2.49 0.926 1.14 0.839 1.09
GA_MRMR_SVM 0.874 30.31 0.953 6.32 0.761 11.18
GA_NCA_ANN 0.788 29.80 0.934 13.83 0.852 16.94
GA_NCA_RF 0.935 14.96 0.963 8.50 0.909 8.82
GA_NCA_SVM 0.959 37.76 0.979 13.59 0.946 18.25
GA_ReliefF_ANN 0.830 61.10 0.940 26.26 0.820 0.00
GA_ReliefF_RF 0.930 44.27 0.960 20.54 0.900 16.80
GA_ReliefF_SVM 0.934 70.71 0.968 25.41 0.920 26.60
PSO_MRMR_ANN 0.715 15.29 0.874 7.09 0.747 9.53
PSO_MRMR_RF 0.862 2.55 0.911 1.15 0.819 1.14
PSO_MRMR_SVM 0.842 33.22 0.959 6.41 0.736 12.11
PSO_NCA_ANN 0.810 29.73 0.939 16.86 0.861 15.45
PSO_NCA_RF 0.941 16.98 0.964 12.28 0.921 11.47
PSO_NCA_SVM 0.971 40.87 0.984 17.67 0.947 22.17
PSO_ReliefF_ANN 0.754 77.26 0.925 30.38 0.807 34.58
PSO_ReliefF_RF 0.931 65.03 0.957 26.12 0.900 23.24
PSO_ReliefF_SVM 0.962 90.25 0.981 31.67 0.935 35.00

According to Table 2, the 14 optimal features provided by PSO_NCA and classified
by SVM were the best combination for obtaining the highest classification accuracy in all
intended images. While SVM was the most accurate classifier, RF was the most rapid. In
addition, the combination PSO_NCA_RF (the qualified features produced by PSO and then
minimized by NCA with classifying in RF) offered the most efficient overall time and F1-
measure value in all three images. PSO, NCA, and SVM outperformed their counterparts
for three images in terms of accuracy. Nonetheless, MRMR and RF indicated the best
performance compared to their peer methods for these images in terms of processing speed.
Meanwhile, as stated above, PSO was generally faster than GA.

In order to compare the classification accuracy and time per the input dataset, Figure 6
demonstrates the best output of each classifier and feature set for individual images. In all
experiments, the F1-measure value increased with a decrease in input features from 137 to
wrapper-based selected features. Moreover, this led to variations such as a slight decline
or even a rise (in Denver for RF classifier) in wrapper-based results using the optimal
feature datasets. The classification time, in all trials, was reduced with the optimum
inputs. Although SVM and ANN’s process time depended on the input dataset, RF had
a significantly minor sensitivity to the change in input. Overall, the most productive
combination of dataset and classifier was the set of 14 optimal features and RF.
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Figure 6. Comparison of the classification accuracy and time (minutes) based on input dataset
variation by the best output of each classifier in each image and feature set.

3.3. Analysis of Generalization

In order to investigate the generalization of the PSO_NCA feature set in other VHR
satellite images classification, two images from Pléiades and WorldView-3 sensors over
Melbourne and Rio de Janeiro were classified by the same classifiers (Table 3). Similar
to the previous trials, while SVM provided the highest accuracy and process time, ANN
led to the lowest F1-measure value and average processing time. On the other hand, RF,
indicated as the fastest classifier with a satisfying F1-measure value of above 0.9, was
regarded as the most productive method. The PSO_NCA feature set represented acceptable
performance for the new images, the same as the former three data, indicating the high
generalization capability.

Table 3. F1-measure value and process time for classification of PSO_NCA feature dataset in Mel-
bourne and Rio.

Classifiers
Melbourne Rio

F1-Measure OA% Time (min.) F1-Measure OA% Time (min.)

SVM 0.96 96.29 23.36 0.94 94.31 46
RF 0.93 94.11 1.40 0.90 92.15 1.03

ANN 0.82 86.94 12.94 0.76 86.6 32.06
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While several studies [30–32] indicated that the wrapper-based methods outperformed
filter-based algorithms, this study utilized both to achieve the dataset with proper size and
good performance. Our results showed that the feature dataset selected by wrapper-based
algorithms was still extensive and subsequently accompanied by high computational time.
Therefore, the filter-based methods were employed to minimize the dataset achieved by
wrapper-based algorithms by up to ten percent of the primary dataset. The results indicated
that the wrapper features selected outperformed the original set (137 features) and the
set of 14 features in classification accuracy. However, 14 features provided the fastest
classification process and high classification accuracy in all experimented images.

On the other hand, while SVM and ANN experienced considerable fluctuations in per-
formance with the change of feature input size, RF revealed slight declines in computational
burden and classification performance. According to [2,13], the textural features utilized
in this study can be effective in the shadowed area and for vertical objects’ (buildings
and trees) extraction without the use of elevation features such as the digital elevation
model (DEM) and the shadow effects. Therefore, the proposed methodologies can be used
efficiently to extract buildings and trees with an average user accuracy of around 94% and
89% achieved with the PSO_NCA_RF dataset.

3.4. Feature Assessment

To investigate the role of the extracted features (Table A7) in the classification, five first-
order feature datasets (the last column of Table A7) and 21 second-order feature datasets
(columns 1–6 of Table A7), as well as the panchromatic band for Tehran, Hobart, and
Denver’s images, were individually input to SVM. Then, the average user accuracies of
three major classes, i.e., vegetation (tree, shrub, and lawn), asphalt (road, highway, and
parking), and building (high-rise, low-rise, and commercial building), were calculated
(Figure 7). The results presented that dissimilarity, contrast, and correlation played the
most crucial role in the more-accurate extraction of the major classes in all experiments. The
results were consistent with the final 14 optimal feature cases since these textural parameters
constitute at least half of the selected features for GA_Relief-F, PSO_Relief-F, GA_NCA,
and PSO_NCA datasets (Table A10). However, dissimilarity, contrast, and correlation
had fewer shares in the cases of the feature sets selected by GA_MRMR and PSO_MRMR
(Table A10), which induced weaker classification performance (Table 2). On the other
hand, the feature sets of GA_Relief-F, PSO_Relief-F, and GA_NCA (Table A10) comprised
features with small window sizes (5 × 5 and 9 × 9). As the bigger the window size of
textural features is, the better the classification performance [2,13,76,77] is; the PSO_NCA
dataset (Table A10) involving only the biggest window sizes (31 × 31 and 51 × 51) was
accompanied by the most efficient classification performance (Table 2). Furthermore, the
panchromatic band presented an acceptable performance as a single input compared to
first- and second-order textural features in classification as a feature dataset (Figure 7).
Accordingly, the panchromatic image had the potential to be involved in PSO_NCA as the
most efficient feature dataset (Table A10).

The results showed that PSO outperformed GA in classification accuracy and compu-
tational time, similar to the case in previous works [33,86–90]. On the other hand, NCA
was superior to its counterparts, the same as in [11,85], while MRMR provided the fastest
process. Compared to a previous study [13] with identical study areas, input dataset
(137 feature set), and classifier (ANN), the number of training samples was decreased by
41%, 43%, and 36% for Tehran, Hobart, and Denver images, respectively. This study dataset
calculated the kappa value to compare the change extent, presenting a decrease in kappa by
0.07 for Tehran, 0.06 for Hobart, and 0.14 for Denver. This fact indicates the high sensitivity
of ANN to training samples compared to SVM and RF, which is consistent with the results
of previous works by [44,49,91,92].
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Moreover, RF and ANN were the most and the least efficient methods among AI-
based classifiers, as reported in the literature [39,43,72,93–95]. RF had the most rapid
classification process. Additionally, although SVM and ANN’s process time depended on
the number of input features, RF had a significantly minor sensitivity to the number of
input features. Accordingly, RF was the most robust classifier, consistent with [95]. Several
studies based on GLCM textural features reported entropy, angular second moment, and
contrast as the most valuable features in classification [2,13,96–100]. However, in this
study, dissimilarity, contrast, and correlation showed the most contributing role in the
classification performance based on feature evaluation in the classification and comparing
its results with the optimal features selected by optimization approaches.

The results indicated the validity of the optimum feature input by presenting the F1-
measure value of larger than 0.9 for the classification process. Furthermore, data processing
time and burden were considerably reduced in the classification process, which is one of
the merits of the proposed method compared to the previous works [2,13,72,101]. On the
other hand, providing a generalizable dataset for classification can be considered the most
significant achievement of this research, which has not been applied in previous studies.

While the approach in this study has significantly decreased the computational time
and burden and represented a robust and fast method to classify different landscapes in
VHR imagery for urban areas, the extraction of training samples has remained challenging
and time consuming. The sampling issue can be regarded as the drawback of this study,
which is necessary for machine learning supervised classification algorithms. Nevertheless,
the downside can be addressed by convolutional neural networks (CNNs) independent of
training samples’ exploitation.

4. Conclusions

Feature selection to reduce redundancies for efficient classification is necessary but
usually time consuming and challenging. This study offered proper guidelines for se-
lecting textual features for more accurate land use/cover classification. Accordingly,
136 multiscale textural features were generated from each test image. These features, plus
the panchromatic band, were used in an AI-based selection process. Firstly, the feature
set was optimized by PSO and GA as per the wrapper-based feature selection algorithms.
The selected features were then optimally reduced by ten percent of the initial features
extracted by filter-based FS methods, including NCA, relief-F, and MRMR.
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Moreover, the performance of each feature set was investigated with results using
SVM, RF, and ANN classifiers. Finally, the efficiency of the optimum feature set was
analyzed by using new images and compared to those in the preliminary trials. The
experiments showed that RF, PSO, and NCA were superior to their counterparts in terms
of productivity. In the classification performance, dissimilarity, contrast, and correlation
features outperformed other GLCM textural features and panchromatic bands. Contrary to
SVM and ANN, RF indicated a minor sensitivity to the number of input features in term
of implementation time. To conclude, the set of 14 optimal features (including 13 textural
features and the panchromatic band) and RF classifier performed as the most optimum
combination for classifying VHR images of urban areas. In the future, the role of this feature
dataset in the performance of deep learning approaches can be further investigated.
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Appendix A

Table A1. Characteristics of satellite images utilized in this study.

Image Information

Satellite Dimension (Pixels) Location (Based on Figure 2) Spatial res. for
Panchromatic

Spatial res. for
Multispectral

Acquisition Date
and Time

Center Point
Coordinates

Worldview-2 1040 × 695 Tehran (Iran) (A) 0.5 m 2 m 4 December 2010
7:15

35◦44′46.85′′N
51◦15′38.92′′E

GeoEye-1 901 × 588 Hobart (Australia) (E) 0.5 m 2 m 5 March 2013
13:25

42◦47′79′′S
147◦14′53.7′′E

QuickBird 679 × 646 Denver (USA) (C) 0.6 m 2.4 m 4 July 2005
18:01

40◦01′20.04′′N
105◦17′29.5′′W

Pléiades 1119 × 634 Melbourne (Australia) (D) 0.5 m 2 m 25 February 2012
14:52

37◦49′50.33′′S
144◦57′50.94′′E

WorldView-3 1290 × 664 Rio de Janeiro (Brazil) (B) 0.31 m 1.24 m 2 May 2016
13:12

22◦57′22.89′′S
43◦10′42.20′′W

Appendix B

Table A2. Training and test samples for each class in the Tehran image.

Worldview-2 Classes Training Samples (Pixel) Test Samples (Pixel)

Bare soil 1128 12,974
Lawn 3431 39,459
Highway 5900 67,851
Parking 3246 37,539
Low-rise building 3241 37,271
Road 5966 68,604
Sports facility 1648 18,949
High-rise building 2673 30,737
Tree 3759 43,225
Sidewalk 1361 15,648
Shrub 4910 56,471

Total ROIs 37,263 428,728

www.maxar.com
www.basir-rsi.ir
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Table A3. Training and test samples for each class in the Denver image.

QuickBird Classes Training Samples (Pixel) Test Samples (Pixel)

Lawn 3697 42,515
Highway 1224 14,078
Parking 3208 34,826
Low-rise building 1907 22,661
Road 2477 28,489
Commercial building 2649 30,467
Tree 7680 88,323

Total ROIs 22,752 261,359

Table A4. Training and test samples for each class in the Hobart image.

GeoEye-1 Classes Training Samples (Pixel) Test Samples (Pixel)

Bare soil 6166 70,912
Lawn 1553 17,863
Highway 1671 19,219
Parking 1016 11,681
Low-rise building 2509 28,856
Road 3115 35,820
Sports facility 611 7023
Commercial building 2590 29,788
Tree 3117 35,846

Total ROIs 22,348 257,008

Table A5. Training and test samples for each class in the Melbourne image.

Pléiades Classes Training Samples (Pixel) Test Samples (Pixel)

Lawn 1949 22,409
Highway 3176 36,527
Parking 1623 18,670
Low-rise building 11,319 130,164
Road 8505 97,808
Sports facility 303 3480
High-rise building 5108 30,737
Tree 3533 40,626
Railway 1949 22,418

Total ROIs 37,465 402,839

Table A6. Training and test samples for each class in the Rio image.

WorldView-3 Classes Train Samples (Pixel) Test Samples (Pixel)

Bare soil 1418 16,306
Lawn 511 5876
Highway 1860 21,390
Parking 1625 18,691
Low-rise building 7680 88,321
Road 3774 43,398
High-rise building 4273 49,136
Tree 4660 53,585
Shrub 87 1000

Total ROIs 25,888 297,703
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Appendix C

Table A7. All the textural features, as well as the panchromatic band, were coded based on the
proposed protocol used in the classification (137 features).

Input Features

ASM5_3_0 Cont5_3_0 Cor5_3_0 Dis5_3_0 Ent5_3_0 Homo5_3_0 Mean5
ASM5_3_45 Cont5_3_45 Cor5_3_45 Dis5_3_45 Ent5_3_45 Homo5_3_45 Mean9
ASM5_3_90 Cont5_3_90 Cor5_3_90 Dis5_3_90 Ent5_3_90 Homo5_3_90 Mean17
ASM9_7_0 Cont9_7_0 Cor9_7_0 Dis9_7_0 Ent9_7_0 Homo9_7_0 Mean31
ASM9_7_45 Cont9_7_45 Cor9_7_45 Dis9_7_45 Ent9_7_45 Homo9_7_45 Mean51
ASM9_7_90 Cont9_7_90 Cor9_7_90 Dis9_7_90 Ent9_7_90 Homo9_7_90 Var5
ASM17_15_0 Cont17_15_0 Cor17_15_0 Dis17_15_0 Ent17_15_0 Homo17_15_0 Var9
ASM17_15_45 Cont17_15_45 Cor17_15_45 Dis17_15_45 Ent17_15_45 Homo17_15_45 Var17
ASM17_15_90 Cont17_15_90 Cor17_15_90 Dis17_15_90 Ent17_15_90 Homo17_15_90 Var31
ASM31_15_0 Cont31_15_0 Cor31_15_0 Dis31_15_0 Ent31_15_0 Homo31_15_0 Var51
ASM31_15_45 Cont31_15_45 Cor31_15_45 Dis31_15_45 Ent31_15_45 Homo31_15_45 Pan
ASM31_15_90 Cont31_15_90 Cor31_15_90 Dis31_15_90 Ent31_15_90 Homo31_15_90
ASM31_30_0 Cont31_30_0 Cor31_30_0 Dis31_30_0 Ent31_30_0 Homo31_30_0
ASM31_30_45 Cont31_30_45 Cor31_30_45 Dis31_30_45 Ent31_30_45 Homo31_30_45
ASM31_30_90 Cont31_30_90 Cor31_30_90 Dis31_30_90 Ent31_30_90 Homo31_30_90
ASM51_15_0 Cont51_15_0 Cor51_15_0 Dis51_15_0 Ent51_15_0 Homo51_15_0
ASM51_15_45 Cont51_15_45 Cor51_15_45 Dis51_15_45 Ent51_15_45 Homo51_15_45
ASM51_15_90 Cont51_15_90 Cor51_15_90 Dis51_15_90 Ent51_15_90 Homo51_15_90
ASM51_30_0 Cont51_30_0 Cor51_30_0 Dis51_30_0 Ent51_30_0 Homo51_30_0
ASM51_30_45 Cont51_30_45 Cor51_30_45 Dis51_30_45 Ent51_30_45 Homo51_30_45
ASM51_30_90 Cont51_30_90 Cor51_30_90 Dis51_30_90 Ent51_30_90 Homo51_30_90

Appendix D

Table A8. Parameters used in GA for selecting optimum features.

GA Parameter Value

Population size 60
Elite count 2
Fitness function KNN-based classification accuracy
Number of generations 30
Mutation probability 0.1
Crossover probability 0.8
Crossover type Unique

Table A9. Parameters used in PSO for selecting optimum features.

PSO Parameter Value

Population size 60
Fitness function KNN-based classification accuracy
Maximum iteration 30
C1 2
C2 2

Appendix E

Table A10. Filter-based methods from wrapper-based results identified the last 14 optimal features.

Name of Selection Methods Content of Optimal Features

GA_Relief-F Mean31, Mean51, Mean9, Cor51_30_0, Cor51_15_90, Cor51_30_90, Cor31_15_45, Cor31_30_90, Dis51_30_45, Dis51_15_90,
Cont51_15_90, Ent51_15_0, Ent31_15_45, Homo51_15_90,

PSO_Relief-F Mean51, Mean31, Mean5, Mean9, Cor51_15_90, Cor51_30_0, Cor51_15_0, Cor31_15_45, Cor51_30_90, Cor31_15_0,
Cont51_15_90, Cont51_15_0, Dis51_15_90, Dis51_30_45

GA_NCA Mean51, Mean31, Mean5, Cor51_30_0, Cor51_15_90, Cor51_15_0, Cor31_15_45, Homo51_15_45, Homo31_15_90, Dis51_30_45,
Dis31_15_45, Dis51_15_45, Var31, Ent31_15_45

PSO_NCA Mean51, Mean31, Cor51_15_90, Cor51_15_0, Cor51_30_0, Cor51_30_90, Cor31_15_0, Cor31_15_45, Var31, Dis51_30_45,
Cont51_15_0, Cont51_15_45, Homo51_15_90, Pan

GA_MRMR Mean9, Mean31, Mean5, Cor51_30_0, Cor51_15_45, Asm9_7_0, Asm51_15_45, Asm17_15_90, Cont31_30_0, Cont9_7_90,
Dis51_15_90, Dis51_30_90, Var31, Var9

PSO_MRMR Mean9, Mean5, Mean31, Mean17, Cor31_15_0, Cor51_15_90, Cor5_3_0, Cor31_15_45, Asm9_7_0, Cont51_15_90, Var31,
Ent51_30_45, Var31, Pan
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