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Abstract: This paper presents experimental and numerical studies on the erosion of a horizontal
granular bed by a two-dimensional plane vertical impinging jet to predict the eroded craters’ size
scaling (depth and width). The simulations help understand the microscopic processes that govern
erosion in this complex flow. A modified jet-bed distance, accounting for the plane jet virtual origin, is
successfully used to obtain a unique relationship between the crater size and a local Shields parameter.
This work develops a two-phase flow numerical model to reproduce the experimental results. The
numerical techniques are based on a finite volume formulation to approximate spatial derivatives,
a projection technique to calculate the pressure and velocity for each phase, and a staggered grid
to avoid spurious oscillations. Different options for the sediment’s solid-to-liquid transition during
erosion are proposed, tested, and discussed. One model is based on unified equations of continuum
mechanics, others on modified closure equations for viscosity or momentum transfer. A good
agreement between the numerical solutions and the experimental measurements is obtained.

Keywords: jet erosion test; sediment transport; numerical modeling; two-phase flow model;
experiments; water injection dredging

1. Introduction

Vertical jet-induced scour erosion of soil has been studied for many industrial ap-
plications, such as aerospace or hydraulic engineering [1–6]. As reported by Metzger
et al. [1,2], in aerospace engineering, soil erosion and crater formation could generate
problems for launching and landing spacecraft. In hydraulic engineering, we have sev-
eral examples, such as the work of Rouse [3] for testing criteria on erosion, the study of
Hanson and Cook [4] assessing in situ the erodibility of soil material, and the research
developed by Hanson and Hunt [5] in the so-called jet erosion test (JET). We also have the
work of Perng and Capart [6] for water injection dredging (WID) and trenching in harbors
by jet translation and possible jet inclination.

Experimental investigations of the jet normal impingement on plane surfaces have
been conducted in various conditions. Although the jet nozzle section is circular in most
cases [4,7–14], it can also be rectangular [15–18]. The circular and rectangular cases are
called quasi-three-dimensional (3D) axisymmetric and two-dimensional (2D) plane jets,
respectively. The jet can be either gas [1,2] or liquid [4,6] within unsubmerged [1,2] or
submerged [8,9,11–18] conditions. Finally, the soil can be either cohesive [11] or non-
cohesive [13,16].

Water 2022, 14, 3290. https://doi.org/10.3390/w14203290 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14203290
https://doi.org/10.3390/w14203290
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0001-8693-0310
https://orcid.org/0000-0002-7184-9429
https://orcid.org/0000-0003-0010-1920
https://orcid.org/0000-0002-5497-966X
https://doi.org/10.3390/w14203290
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14203290?type=check_update&version=1


Water 2022, 14, 3290 2 of 19

Based on experiments of 3D axisymmetric jets impinging on a smooth non-erodible
wall, Rajaratnam and Beltaos [8] and Phares et al. [18] divided the flow into three zones:

• The free jet region. There is no influence of the boundary. It can be described by
self-similar solutions [19,20].

• The impinging region. It is characterized by a stagnation point on the jet axis at the wall
with a deflexion of flow streamlines [21].

• The wall jet region. It is close to the wall but away from the impinging zone where the
flow is mainly parallel to the wall [22–24].

Based on pressure and shear stress measurements on the bed, Rajaratnam and Beltaos [8]
reported that the most extreme hydrodynamic action is located in the impinging region
with maximum pressure at the stagnation point and maximum shear stress just away
from it.

On erodible beds, two main crater shapes have been identified [1,2,7–10,15]. The first
one consists of wide and shallow craters for high impingement heights L (distance from the
jet nozzle to the initial flatbed). Here, the flow streamlines weakly deflect in the impinging
region, and a smooth crater shape remains stable after the jet flow stop, see Figure 1a. For
the second shape, narrower and deeper craters are obtained for small L and large flow rates.
Here, the flow streamlines strongly deflect, and the crater shape changes after the jet stop
with granular avalanches lowering the steep slopes, see Figure 1b.

(a)
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HL
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D

D

(b)

Figure 1. Geometrical parameters of the eroded sediment bed for a flow (a) weakly and (b) strongly
deflected. Here, H and D are the crater depth and width, respectively, and L is the distance above the
granular bed.

Aderibigbe and Rajaratnam [9] state that these two crater regimes depend on the value
of an adimensional erosion parameter. This parameter is defined for quasi-3D axisymmetric
jets as

E = UJ
b
L

(
1

(s − 1)gd

)1/2
, (1)

where UJ is the mean velocity at the nozzle outlet, b is the nozzle diameter, L is the
impingement height, d is the sediment grain size, and s = ρp/ρ f is the particle/fluid
density ratio. This parameter is sometimes called a densimetric Froude number [17] and
roughly corresponds to the Rouse number [3].

For the 3D axisymmetric experimental data [9], the erosion parameter E is ranged
up to 5. This parameter was used by Sutherland and Dalziel [14] to investigate the crater
formation dynamics in granular beds by a 3D water jet. In the 2D turbulent plane jet case,
the erosion threshold is well governed by E, as shown in [17]. Recently, Badr et al. [15]
proposed that the modified Shields can control the erosion threshold for both turbulent
and laminar regimes. However, we should consider the correct decay law of self-similar
regimes and the precise position of the corresponding virtual origin. Moreover, in the
2D plane jet test case of Badr et al. [15], the critical value of the local Shields number for
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erosion is a constant Shc ≈ 1 independently of the jet flow regime and the grain diameter
of the bed.

On the other hand, several numerical studies have been proposed to study the crater
formation by an incident jet. We can clearly identify two types of numerical modeling
frameworks. In the first type, numerical models apply computational fluid dynamics
(CFD) software for computing the fluid motion only above the bed [1,25–27]. The second
modeling framework is based on two-phase approaches, in which the motion equations
solve both solid and fluid phases [28–35].

The common point of models based on CFD software is that the sediment bed is
considered an impermeable wall (no-slip conditions). However, their modeling approaches
mainly differ in treating the two-phase interaction between the fluid and the sediment bed.
For example, Metzger et al. [1] use CFD++ software to study the steady-state flow above
different stationary boundary conditions (or crater geometries) but calculate the porous
flow inside the sediment bed by Darcy’s law and pressure values. Weidner et al. [25] and
Mercier et al. [26] use FLUENT to dynamically adapt the computational grid into the bed’s
evolving geometry; however, they do not consider the sediment below the bed interface.

For the two-phase formulation, the Eulerian approach usually models the fluid phase,
but Eulerian or Lagrangian techniques can be used for the solid phase. A Lagrangian model
for the solid phase enables a microscopic description of the particle motion. The flowing
(eroded) and jammed (non-eroded) regions in the sediment bed are directly simulated,
grain by grain. However, this framework suffers from high computational costs due to
the number of solid particles. For examples of this formulation, we refer the work of
Kuang et al. [28], and more recently the studies of Benseghier et al. [29,30].

On the other hand, in the Eulerian–Eulerian framework, clear fluid and solid par-
ticles are treated as two interpenetrating fluids. The fluid–particle and particle–particle
interactions are described at the scale of the continuum media [32–35]. However, if only
a liquid-like behavior of solid particles is modeled to handle the motion of the granular
phase for the jet problem, the sediment motion becomes unrealistic, particularly in the
jammed region [32,33].

Therefore, solid-like and liquid-like behaviors of sediment are essential and need to
be considered for more accurate models. In recent years, few efforts have been performed
to include this property in the Eulerian approach; for example, Yuan et al. [33] applied an
incipient motion theory in their numerical simulations, Uh Zapata et al. [34] proposed a
modified inter-phase momentum transfer formulation, and Wang et al. [35] used a model
for the solid–fluid mixture combined with a viscoplastic description of soil. Consequently,
this paper proposes a unified formulation for continuum mechanics to simulate vertical-jet-
induced erosion with a unique local parameter governing the solid/liquid transition for
the sediment. This model is based on a technique initially developed by Greenshields and
Weller [36] to handle fluid–structure interactions of flexible and impermeable tubes under
fluid flows.

This paper’s originality relies on the experimental results and new numerical model
for submerged vertical plane jet-induced craters on horizontal non-cohesive sediment. The
remaining document organization is as follows. Section 2 presents the experimental setup to
generate craters, measuring their sizes for different impingement distances and jet velocities.
The presentation of the two-phase model, using the two-phase Euler–Euler approach, is
proposed in Section 3. We give a complete description of the model improvements, which
produce both solid-like and liquid-like behaviors of the sediment. Next, Section 4 shows
that the correct local Shields number choice for this governing parameter leads to very close
agreement with the experimental results. Finally, we present the discussion, conclusions,
and future work.

2. Laboratory Experiments

In this section, the experimental results for the crater depth and width are analyzed
following Badr et al. [15] in terms of the self-similar jet model. We pay particular attention
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to the corresponding virtual origin. Simple scaling for the crater sizes is found in terms of a
local erosion parameter.

2.1. Experimental Setup

The experimental set-up consists of a vertical plane water jet impinging a horizontal
granular bed immersed in water, as sketched in Figure 2. The grains are monodisperse glass
beads with diameter d = 350 µm with the density ρp = 2.5 × 103 kg/m3. The granular bed
is 10 cm in height (about 300-grain diameters) with a solid volume fraction of about 0.6. It
lies on the bottom of a 3D rectangular container of dimensions 50 × 20 × 3.2 cm3 filled with
water (density ρ f = 103 kg/m3 and kinematic viscosity ν f = 10−6 m2/s); see Figure 2a.
The container walls are in polymethyl methacrylate (PMMA), allowing visualization.
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Figure 2. Sketch of the device to study the erosion of a granular bed by a water jet: (a) hydraulic
circuit, and (b) water jet injector dimensions.

A vertical plane water jet is generated at the exit of an injector with an inner rectangular
cross-section of dimensions b × wJ = 0.4× 2.6 cm2. The outside cross-section of the injector
is 1 × 3.2 cm2 to fit within the container gap. The injector is at a distance L above the
granular bed, see Figure 2b.

The mean velocity of the jet is given by UJ = Q/(bwJ). A gear pump controls the
steady water flow Q with very low negligible fluctuations in a closed circuit. Here, water
is sucked through the bed from the porous bottom of the container and re-injected by the
pump through the injector.

In this paper, the jet Reynolds number is defined as

Re =
UJb
ν f

. (2)

Although Re is not much relevant to describe the erosion phenomena, the jet Reynolds
number is essential to characterize the jet regime among laminar, oscillating laminar,
oscillating turbulent, and fully turbulent, as detailed by Badr et al. [15] and Tritton [19].
The injector is long enough (20 cm) to ensure a laminar regime inside the injector. It also
has a parabolic Poiseuille velocity profile across the thickness b at the nozzle in the range of
jet Reynolds numbers Re < 2 × 103.
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2.2. Measure of the Crater Dimensions

The erosion process is observed until the resulting crater reaches a quasi-stationary
state in a few seconds. The size of the jet-induced scour hole is characterized by the two
measured parameters: crater depth and width, as shown in Figure 1. The depth, H, is
defined as the distance from the bottom of the crater to the initial bed surface. The width,
D, is also determined at the level of the initial bed surface and not at the level of the
crater crests.

The measurements are extracted from the images taken by a camera placed in front of
the container with backlighting. When the crater stops evolving, we measure the results
from the difference between the quasi-stationary image and the initial flatbed image. This
procedure allows an easy and accurate determination of H and D. It is important to remark
that the measured crater has dynamical sizes, which result from the dynamical crater
equilibrium sustained by the steady jet flow. In that case, the dynamic angle may be larger
than the avalanche angle.

2.3. Experimental Results

The crater size measurements are shown in Table 1 and Figure 3. We use six different
jet velocities in the range of 0.16 < UJ < 0.47 m/s (630 < Re < 1900) and different jet-bed
distances (2 ≤ L/b ≤ 40). Figure 3 shows the crater depth H and width D normalized by
the jet thickness b.

Table 1. Experimental results using different experimental parameters of UJ , L and jet thickness
b = 0.004 m.

Mean
Velocity

Reynolds
Number

Impingement
Distance

Crater
Width

Crater
Depth

Mean
Velocity

Reynolds
Number

Impingement
Distance

Crater
Width

Crater
Depth

UJ (m/s) Re L (m) D (m) H (m) UJ (m/s) Re L (m) D (m) H (m)

0.471 1885 0.145 0.015 0.091 0.314 1256 0.111 0.007 0.044
0.471 1885 0.130 0.020 0.095 0.314 1256 0.103 0.008 0.042
0.471 1885 0.084 0.022 0.067 0.314 1256 0.088 0.011 0.040
0.471 1885 0.059 0.025 0.057 0.314 1256 0.075 0.013 0.043
0.471 1885 0.036 0.025 0.034 0.314 1256 0.062 0.017 0.040
0.471 1885 0.108 0.025 0.090 0.314 1256 0.051 0.015 0.045
0.431 1726 0.159 0.005 0.087 0.314 1256 0.041 0.021 0.050
0.431 1726 0.125 0.012 0.086 0.235 942 0.068 0.002 0.025
0.431 1726 0.079 0.020 0.069 0.235 942 0.064 0.005 0.028
0.431 1726 0.063 0.020 0.047 0.235 942 0.052 0.008 0.027
0.431 1726 0.042 0.025 0.050 0.235 942 0.039 0.011 0.024
0.392 1570 0.106 0.014 0.078 0.235 942 0.032 0.011 0.019
0.392 1570 0.101 0.023 0.071 0.235 942 0.020 0.012 0.012
0.392 1570 0.076 0.021 0.061 0.235 942 0.009 0.020 0.019
0.392 1570 0.056 0.021 0.049 0.157 628 0.053 0.004 0.018
0.392 1570 0.034 0.022 0.032 0.157 628 0.041 0.006 0.016
0.392 1570 0.020 0.024 0.035 0.157 628 0.029 0.007 0.016
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Figure 3. Experimental results of the crater (a) depth and (b) width normalized by the jet width b as
function of the normalized jet-bed distance L/b for different jet Reynolds numbers.

Figure 3a shows that for a given mean jet velocity UJ , the crater is deeper at lower
L values. As one would expect, H decreases toward zero as L increases. Above a critical
distance, Lc, there is no erosion and thus no crater formation is seen anymore. Note that the
critical distance Lc also increases with UJ . For a given value of L (see for instance L/b = 10),
H increases with the jet velocity UJ . At low enough UJ , here, UJ < 0.1 m/s, no erosion can
be seen, whatever the value of the jet-bed distance. On the other hand, Figure 3b shows
that the crater width D increases with L and UJ from a non-zero value, D0, close to the
erosion threshold.

Previous behavior can be understood when considering the jet spatial evolution
downstream of the injector nozzle. As the jet Reynolds number is larger than 200, the jet
regime is turbulent with a local velocity u0 at the jet axis. This velocity decreases according
to the distance L with a law that can be approximated by the following self-similar model
for free jets [37]:

u0

UJ
=

1
K
√

L/b − λ/b
, (3)

where K ≈ 1/2 is the decay rate and λ is the distance of the virtual origin of the jet from the
nozzle exit. Here λ > 0 for a virtual origin downstream of the jet nozzle. In the proposed
experimental conditions, λ is equal to 10b. From jet momentum conservation, the jet width
δ increases in the meantime with L by the following law:

δ

b
= K2(L/b − λ/b), (4)

where K2 ≈ 1/4 corresponds to the jet opening angle θ = tan−1(K2) ≈ 15◦. We remark
that the jet velocity spatial profile (3) and (4) is only valid downstream the potential core.
By contrast, in the injector, the jet velocity u0 remains constant and equal to u0 = (3/2)UJ
for a laminar parabolic Poiseuille profile.

In such a self-similar model, the reduced jet-bed distance, L − λ, appears as the
pertinent length scale that may govern the crater size. Thus, taking into account the virtual
origin of the jet, a relevant dimensionless parameter for the jet erosion strength is the
local erosion parameter E or Rouse number. In the present inertial regime of high particle
Reynolds number, this parameter is given by

E = UJ

(
b

L − λ

)1/2( 1
(s − 1)gd

)1/2
, (5)

which corresponds to the ratio of the local jet velocity to the grain settling velocity.
Equation (5) is similar to expression (1) proposed in [9]. Note that if UJ goes with

√
b

in the numerator of Equation (5), then non-dimensionalization will need a
√

L factor in the
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denominator. It is all a direct consequence of the jet being characterized by its momentum
flux. Thus, besides considering the effective jet-sediment distance, the model differs in
the exponent −1/2 (instead of −1) for the L scaling. This exponent is coming from the
self-similar free jet models for a 2D plane (instead of 3D axisymmetric) flow geometry.

Figure 4 shows the crater size data normalized by the reduced distance L − λ as a
function of the dimensionless erosion parameter E given by Equation (5). We compute E
using s − 1 = 1.5, g = 9.8 m/s2 and d = 350 µm. Note that the different curves collapse
into a master curve of simple trend. The dimensionless crater depth H/(L − λ) increases
linearly with E above a critical value Ec corresponding to erosion threshold, as follows:

H/(L − λ) = mH(E − Ec), (6)

where mH = 0.7± 0.05 and Ec = 1± 0.1. Similarly, the dimensionless crater size D/(L − λ)
increases linearly with E above the critical value Ec; however, it has a non-zero value D0 at
the threshold. Thus, we obtain

D/(L − λ) = mD(E − Ec) + D∗
0 , (7)

where mD = 1.4 ± 0.1 and D∗
0 = D0/(L − λ) = 0.55 ± 0.05.

Figure 4. Experimental results of the crater (a) depth and (b) width normalized by the reduced jet-bed
distance L − λ as a function of E for different jet Reynolds numbers. The solid line corresponds to the
linear fit model through the data.

The critical value Ec ≈ 1 found here for the erosion threshold at vanishing crater depth
agrees very well with the critical value one reported by Badr et al. [15] with just a visual
criterion of the few first moving grains in a similar setup. It is worth noting that taking into
account the distance λ of the virtual origin of the jet from the nozzle exit is crucial to obtain
a good rescaling of the data and such simple scaling laws. Indeed, the critical value Ec ≈ 1
at the threshold is very satisfying, meaning that E is a pertinent parameter for describing
vertical jet-induced erosion.

Finally, considering the evolution of crater sizes H and D with the jet flow action,
the shape of the crater evolves with a typical slope H/(D/2) that tends toward the value
2mH/mD ≈ 1 at large erosive strength E (E ≫ 1). This value corresponds to a global slope
angle of about 45◦, thus much larger than the usual critical avalanche angle 25◦ without any
jet flow [38]. This shows that at large E, the crater slope is enhanced by an upward-back
flow of the jet, as happens in homogeneous parallel shear flow [39].

3. Mathematical Model

The present two-phase flow model comes from a strict application of the mathematical
formulation of Drew and Lahey [40], using a Eulerian–Eulerian description for the fluid–
particle system. In this section, the governing equations for the two phases corresponding
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to clear fluid (water) and disperse medium (sediment particles in a fluid) are briefly recalled
with special closure laws.

The present two-phase flow model is initially based on the two-fluid model presented
in Barbry et al. [41] and Nguyen et al. [42,43]. This model only assumes a liquid-like
behavior for the disperse phase (solid grains). We refer to this formulation as the standard
or classical model. However, it cannot account for a possible solid-like behavior of the
granular bed. In the present study on scouring erosion, we propose an improved model
considering mobile and immobile parts of the granular media by a simple switch from fluid
mechanics to soil mechanics equations. The benefit of this new treatment for the sediment
particles is illustrated and justified in the numerical results when the method is compared
with the initial two-fluid model.

3.1. Governing Equations

Before specifying the novel feature introduced to the model in the present paper, let us
first recall the initial two-fluid model. For a constant width-integrated 2D x/z two-phase
flow model, the governing equations in a Eulerian formulation for the k-phase read as

∂(αkρk)

∂t
+∇ · (αkρkuk) = 0, (8)

∂(αkρkuk)

∂t
+∇ · (αkρkukuk) = ∇ · (αk ¯̄σk) + αkρkg +Mk, (9)

where k = f stands for the clear fluid (water) and k = s for the solid particles, respectively.
The volume fraction is represented by values αk with α f + αs = 1. Here, ρk is the density,
uk = (uk, wk) is the velocity vector, and g stands for gravity. The symbol Mk refers to the
inter-phase momentum transfer, and ¯̄σk is the total stress tensor of phase k. In this paper,
the double bar over a symbol means a tensor of order two.

The total stress tensor of phase k is given by

¯̄σk =
(
−pk

¯̄I + ¯̄τk + ¯̄τRe
k

)
. (10)

where ¯̄I is the identity tensor. Equation (10) is the sum of three contributions: the pres-
sure (pk) of phase k, the deviatoric viscous ( ¯̄τk), and Reynolds stresses ( ¯̄τRe

k ). Following
Lundgren [44] for the slow motion of two-fluids, the non-turbulent stresses are expressed by

α f ¯̄σf = −α f p f
¯̄I + 2µ f

(
αs

¯̄Ds + α f
¯̄D f

)
, (11)

αs ¯̄σs = −αs ps
¯̄I + 2µ f αsβ

(
αs

¯̄Ds + α f
¯̄D f

)
, (12)

where ¯̄Dk =
1
2
(
∇uk +∇uT

k
)

is the shear rate tensor of phase k. In Equations (11) and (12),
the parameter µ f is the dynamic viscosity of the clear fluid (water) and β is an increas-
ing function of the solid volume fraction of grains, for which we use the expression of
Graham [45]. We refer to Nguyen et al. [42,43] for more details.

To compute the Reynolds stresses ¯̄τRe
k for the two-phase model, the standard k f − ϵ f

model is used for the fluid phase. For the turbulent model of the solid phase, we use
the closure equations ks − k f s (turbulent kinetic energy of particulate phase, ks, with
covariance of fluid and solid velocity fluctuations, k f p). This model is considered a two-
way coupling because it can evaluate the effects of solid particles on fluid turbulence and
vice versa [42,46].

The momentum exchange between phases, Mk, is decomposed into jump conditions
(pki and ¯̄τki) and different forces (M∗

k ) acting on phase k, as follows

M f =
[

p f i
¯̄I − ¯̄τf i

]
∇α f +M∗

f , (13)

Ms =
[

psi
¯̄I − ¯̄τsi

]
∇αs +M∗

s . (14)
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Here, the subscript i specifies the solid/fluid interface. As the interfacial tension is
zero, there is no discontinuity of the pressure (psi = p f i = p f − ρ f ||u f −us||2/4, where ∥ · ∥
means the Euclidean norm) and the shear stress ( ¯̄τsi = ¯̄τf i = β ¯̄τf ) across the fluid/sediment
interface (Drew and Lahey [40]).

In Equations (13) and (14), the momentum exchanged between phases (M∗
f = −M∗

s )
is the sum of the drag and lift forces exerted on the solid particles, the added mass effect,
the Faxén correction and the Basset historical term. In the present formulation, we only
retain the drag force as it is dominant, as follows:

M∗
s = FDur, FD = αsρs/τf s, (15)

where ur = u f − us − ud is the relative velocity of fluid-particles. Here, ud is the drift
velocity which represents the correlation between the fluctuating velocity of the fluid and
the instantaneous spatial distribution of particles. The drag force is also expressed as a
function of the solid concentration (αs) and the particle relaxation time τf s given by

τf s = 4dρs/
(

3ρ f CD||ur||
)

, CD =
24

Rep
f (Rep). (16)

For turbulent two-phase flows, the drift velocity and particle relaxation time are very
important, as discussed in Nguyen et al. [42]. For the present study, the drag coefficient
(CD) is computed from the formula of Haider and Levenspiel [47], where Rep is the particle
Reynolds number.

3.2. A Unified Momentum Equation for the Solid Phase

The set of Equations (8)–(16) roughly describes the fluid–sediment system as a two-
fluid system. In particular, Equations (11) and (12) for the viscous stress correspond to a
rheological law for complex fluids. Such a model is only valid below the packing fraction
when the granular material has a liquid-like suspension behavior. However, we expect a
solid-like behavior for the particulate phase close to the packing fraction at the bed surface
or deeper in bulk.

The numerical solution given by Equations (8)–(16) are unphysical and erroneous in
high solid fraction regions: the sediment’s liquid-like behavior is clearly visualized by wavy
iso-contour lines in the sediment bed; see Section 4.1. We remark that similar results are
obtained using the Eulerian model proposed by Qian et al. [32] and Yuan et al. [33] for this
problem. To overcome this issue, this paper adapts a unified formulation, mainly inspired
by Greenshields and Weller [36], to describe both the liquid-like and solid-like behavior of
the sediment phase.

Solid-Like Model

For the solid-like model, we assume a Hookean material that undergoes small defor-
mations. In this case, a linear elastic, isotropic model is used. Thus, the strain tensor (¯̄εs)
corresponds to the time integration of the strain rate tensor ( ¯̄Ds) as follows:

σs = −ps
¯̄I + dev( ¯̄σs) = −ps

¯̄I +
∫ tn

t0

dev( ˙̄̄σs)dt + dev( ¯̄σ0), (17)

where the deviatoric component of ¯̄σ is defined as dev( ¯̄σ) ≡ ¯̄σ − 1
3 tr( ¯̄σ) ¯̄I, and dev( ¯̄σ0)

is the deviatoric solid stress at the initial time. Equation (17) can be approximated by a
quadrature formula for the integral, as follows:

∫ tn

t0

dev(σs)dt = ωndev(σ̇s)n +
n−1

∑
i=1

ωidev(σ̇s)i, (18)
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where ωi represents the quadrature weighting functions. Here, (·)n indicates the current
time (tn). Note that the sum is taken over previous stages ti (i = 1, . . . , n − 1).

Next, we can substitute (18) into (17). Now, using the relationship between εs and Ds,
we obtain

¯̄σs = −ps
¯̄I + 2Gωndev( ¯̄Ds) + Σ, (19)

where the shear modulus is given in terms of the elastic Young modulus (E) and the
Poisson’s ratio (ν) by G = E/2(1 + ν). In Equation (19), Σ is given by

Σ =
n−1

∑
i=1

ωidev( ˙̄̄σs)i + dev( ¯̄σ0), (20)

representing the accumulation of elastic stress from the beginning of the loading. Thus, the
solid-like behavior of the granular phase can be modeled as

αs ¯̄σs = −αs ps
¯̄I + αs2Gωndev( ¯̄Ds) + αsΣ. (21)

Finally, we obtain a unified momentum equation for the sediment incorporating (21)
into the two-phase flow model (8)–(15). Thus, to unify liquid-like model (12) and solid-like
model (21), we introduce a smooth transition function (F), as follows:

αs ¯̄σs = (1 − F)
[
− αs ps

¯̄I + αsβµ
(

αs
¯̄Ds + α f

¯̄D f

)]
(22)

+F
[
− αs ps

¯̄I + αs2Gωndev( ¯̄Ds) + αsΣ
]
,

where 0 ≤ F ≤ 1. We remark that if F = 1 then Equation (22) reduces to the solid-like
model (21). If F = 0 then a liquid-like motion is obtained by Equation (12). In other terms,
the improvement proposed in this paper has a non-intrusive character since the original
two-fluid model is recovered. For the fluid phase, the equations remain unchanged.

3.3. Solid-Liquid Transition of the Granular Phase

In the original development of Greenshields and Weller [36], F is a step function that
takes either the value 0 or 1 according to the fluid or solid regions, respectively, since there
is no interpenetration between them. In our modeling, F varies continuously from 1 to 0
using a smooth solid–liquid transition for the sediment.

From a physical viewpoint, function F encodes the erosion or fluidization criterion
because it determines at any point of the computational domain if the disperse phase
is flowing (eroded/fluidized bed for F = 0) or not (static bed for F = 1). Therefore,
this function’s formulation is as complex as the physics of the erosion threshold. From a
numerical point of view, function F should be monotone and sufficiently smooth with a
continuous first derivative to avoid any numerical instability.

This paper considers for F an S-shape function with the following analytical expres-
sion:

F =
1
2
(1 − erf(ξ)), (23)

where erf is the Gaussian error function. We remark that Equation (23) has a unique
parameter ξ governing the liquid–solid transition. In the numerical simulations, we select

ξ = Sh − Shc, with Sh = (u2
f + w2

f )/(s − 1)gd, (24)

corresponding to the deviation of the local Shields number Sh from its critical value for
erosion Shc ≈ 1. This choice is consistent with the erosion criteria of Badr et al. [15] for the
plane jet impinging into granular beds. This selection also agrees with the dimensionless
crater depth and width formulas given in the experimental results, as presented in the
following section.
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3.4. Numerical Technique

To solve the system of Equations (8)–(17), we use the techniques initially developed by
Guillou and Barbry [41,48] and later improved by Uh Zapata et al. [34,49]. This in-house
program is currently written in Fortran 90, displaying the results in Paraview software.

The σ-transformation is applied to the vertical coordinates to fit the computing mesh
to the free surface evolution. A finite volume formulation approximates spatial derivatives.
A projection technique [50] is applied to calculate the pressure and velocity for each
phase. We use a staggered grid to avoid the spurious oscillations induced by the projection
technique [51]. Advection terms in Equation (9) are handled by a total variation diminishing
(TVD) scheme. The time scheme is implicit in both vertical and horizontal directions.

A successive order relaxation (SOR) iterative solver is used for the resulting linear
equation system. Furthermore, the code was fully parallelized through a message passing
interface (MPI) and graphics processing unit (GPU), which significantly optimize the
performance of the two-phase flow program.

4. Numerical Results

In this section, the numerical results are obtained using a 2D rectangular domain with
0.25 m of height and 0.2 m of width. We impose a Poiseuille profile of velocity at the nozzle
outlet of thickness b, which is fixed at a distance L from the bed.

In the simulations, we consider a rectangular mesh grid. The highest resolution is
given by a uniform mesh of 401 points along the horizontal and 501 points in the vertical
direction. Thus, the spatial steps are given by ∆x = ∆z = 0.5 mm. This choice corresponds
to a grid resolution close to one-grain diameter. It would not be pertinent to consider finer
meshes as we can not have grid resolutions more refined than the sediment diameter for
the Euler–Euler two-phase flow formulation. For this fine space resolution, small time
steps are reduced to ∆t = 2 × 10−6 s to have stable simulations. In agreement with the
experiments, each run lasts a few seconds of simulated time.

4.1. Original and Unified Model

To illustrate the benefit of the proposed treatment for the solid–liquid transition,
Figure 5 presents the numerical results using the original two-phase flow model (transition
function F = 0). For these simulations, we use a coarse grid (∆x = 1 mm, ∆z = 2 mm), and
parameters b = 4 mm, UJ = 0.4 m/s, and L = 2 cm). The initial flatbed interface is located
at z = −0.15 m. Although we have a crater at the early stages, the bed shows unrealistic
wavy modulation of the bed.
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Figure 5. Numerical simulations at different stages for the standard two-phase flow model: the solid
concentration with fluid field (top), and velocity magnitude of the fluid (bottom).

On the other hand, Figure 6 shows the numerical results using the proposed unified
two-phase Euler–Euler model. For these simulations, we use the same parameters as
the standard model. Note that the qualitative behavior is now close to the experimental
observations: the bed does not present a wavy behavior but a localized crater. Furthermore,
zero particle velocity is predicted within the sediment bed. In other words, our numer-
ical treatment for the solid–liquid transition in the model mainly corrects the identified
numerical inaccuracies associated with the original two-fluid formulation.
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Figure 6. Solid concentration (top) and fluid velocity magnitude (bottom) for the proposed two-phase
flow model using a solid–liquid transition model of the sediment phase at different stages.
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As previously pointed out, the profile function plays an essential role in modeling
correctly the solid phase. Figure 7 shows the profiles for F given by Equation (23) and
the numerical results of previous simulations. Note how this function correctly varies
continuously from 1 to 0 dividing the computational domain into liquid-like and solid-like
regions. We remark the correlation between the scour dimensions and the values of F.

x
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Figure 7. Numerical results of the liquid–solid transition function F at different stages. The fluid
velocity field is also plotted as a reference.

Although previous results shows the correct implementation of the model, the mesh
resolution does not allow to fully observe the complex structure of the water jet and crater
formation. Figures 8 and 9 present the velocity field and solid volume fraction results at
t = 1.5 seconds using b = 8 mm, UJ = 0.323 m/s, and L = 4.6 cm. In these simulations, we
use a fine (∆x = ∆z = 0.5 mm), a medium (∆x = ∆z = 1 mm), and a coarse (∆x = ∆z = 2
mm) grid resolutions. As illustrated in Figure 8, the plane jet flow shows a complex
structure with some fluctuation and vortices along the jet. However, the jet flow structure is
out of the scope of the present paper, so we only focus on the cratering. Note that the region
of solid-like behavior of the sediment is characterized by low fluid velocity, in contrast to
the high velocity just above this region.

The abrupt variation in the velocity magnitude indicates that a continuous interface
line can model the solid–liquid transition zone. This interface cane be verified in Figure 9
showing 100 contour lines of the solid volume fraction distributed uniformly in the interval
[0, 0.55]. Note that the transition zone between the sediment bed and the liquid is less
diffusive as the mesh resolution increases, as expected. This interface is used to measure
the crater size (H, D).
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Figure 8. Numerical results of the fluid velocity (a) field, and (b) magnitude with streamlines at
t = 1.5 s using b = 8 mm, UJ = 0.323 m/s, and L = 4.6 cm for different grid resolutions.
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Figure 9. Solid volume fraction at t = 1.5 s using b = 8 mm, UJ = 0.323 m/s, and L = 4.6 cm for
different grid resolutions.

4.2. Crater Size Predictions

As discussed in Section 3.3, we use the local parameter ξ = Sh − Shc for governing the
sediment solid–liquid transition, where Sh is the local Shields number Sh and Shc stands
for its critical value. Notice that this formulation considers the total fluid velocity instead
of only its tangential component. Indeed, we systematically obtain a zero value of the
local Shields parameter at the stagnation point in front of the jet by considering only the
horizontal component of the fluid velocity. As a result, the scour hole geometry would
present a non-eroded zone at the jet axis with a whiskers-like shape.

Numerical results have shown to have an excellent agreement with experimental data
using Shc = 0.9. This value also agrees with the critical Shields number near one reported
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by Badr et al. [15]. Figure 10 presents the fluid velocity field for b = 4 mm with different
values of the impingement distance (L) and mean jet velocity (UJ) using the same Shc = 0.9.
Results demonstrate that the crater is wider and shallower as L increases, as expected. We
also notice that the velocity field for the fluid phase presents more oscillations for higher jet
velocities. Experiments also show these jet oscillations. Moreover, the proposed two-phase
model generates both strongly and weakly deflected cases with recirculation zones inside
or outside the crater, respectively (see Figure 10c,d).
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Figure 10. Velocity field and crater shapes for different jet configurations using b = 4 mm and fine
mesh (∆x = ∆z = 0.5 mm).

To verify the assumptions made for the velocity based on the Shield parameter and
its critical value, we test a series of three numerical simulations for different jet widths b
equal to 4 mm, 6 mm, and 8 mm (Table 2). The critical value Shc = 0.9 is kept constant for
all numerical simulations. Numerical results confirm that D is larger and H is smaller as L
increases. We note that the crater dimensions also increases as the mean jet velocity UJ is
larger, as expected.
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Table 2. Numerical results of the crater dimensions using different parameters (UJ , L, b) and λ = 8.75.

Mean
Velocity

Impingement
Distance Jet Width Jet-Bed

Distance
Reynolds
Number

Erosion
Parameter Crater Width Crater Depth

UJ (m/s) L (mm) b (mm) L/b Re E D (mm) H (mm)

0.18 40 4 10 720 2.24 12 3
0.18 50 4 12.5 720 1.29 15 5
0.28 50 4 12.5 1120 2.01 32 10
0.28 60 4 15 1120 1.56 35 6
0.30 40 4 10 1200 3.74 23 10
0.30 60 4 15 1200 1.67 40 10
0.37 46 4 11.5 1480 3.11 40 15
0.37 80 4 20 1480 1.54 50 10
0.28 70 6 11.66 1680 2.28 38 15
0.28 80 6 13.33 1680 1.82 42 13
0.18 80 8 10 1440 2.24 25 10
0.18 90 8 11.25 1440 1.58 30 10

Finally, Figure 11 compares the numerical and experimental results of the crater di-
mensions D and H. The experimental data are the same as those presented in Figure 4. The
straight lines correspond to the linear models from experimental data given by Equations (6)
and (7). The numerical results are made according to the information given in Table 2. The
comparison shows a very good agreement for all values. These findings show the ability of
the proposed two-phase model to reproduce complex flows with sediment.

Figure 11. Comparison between experiments and numerical results for (a) the crater depth and (b)
width normalized by the reduced jet-bed distance (L − λ). Solid lines correspond to linear laws given
by Equations (6) and (7).

5. Discussion and Conclusions

In this paper, we study experimentally and numerically the crater sizes generated on
horizontal non-cohesive sediment by a submerged vertical 2D plane jet. We showed that
the crater depth and width, measured under various impinging distances and jet velocities
conditions, are governed by the effective impinging distance L − λ corrected from the
virtual jet origin, and by a dimensionless erosion parameter E. This erosion parameter,
inspired by the one proposed by Aderibigbe and Rajaratnam [9], also accounts for the
virtual origin of the jet, as proposed by Badr et al. [15] and Sutherland and Dalziel [14].
The dimensionless crater sizes evolve approximately linearly with respect to E above the
critical value Ec ≈ 1 corresponding to the erosion threshold. In contrast to the crater depth,
the crater width is non-zero at the threshold, as already found in [10,14].

A two-phase numerical model was used successfully to simulate the crater formation.
We suppress numerical inaccuracies from a standard two-fluid model by considering a new
formulation for the sediment. It consists of a unified equation for the solid phase, which
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employs a smooth function governing the transition between the liquid-like and solid-like
regimes. This function is based on the deviation of a local Shields number from a critical
value Shc ≈ 1. Numerical results agree accurately with the experimental data for all the
proposed tests. Further studies will focus on testing the proposed approach with different
configurations. For instance, we are interested in scour holes generated by inclined or even
horizontal jet flows.
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