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ABSTRACT 

Electrochemical technologies have been known and utilized for the treatment of 

wastewater containing recalcitrant organic pollutants because conventional treatments 

such as physico-chemical or biological methods are not able to completely degrade them. 

However, to make these technologies competitive with the conventional technologies that 

are in use today (e.g., coagulation or advanced oxidation processes), proper design of 

the processes and operating conditions through process modelling and optimization are 

necessary. Electrochemical processes are complicated nonlinear processes, making it 

difficult to describe the process behaviour using phenomenological or conventional 

empirical modelling methodologies. In this work, artificial intelligence techniques, 

including artificial neural networks (ANNs), adaptive neuro-fuzzy inference systems 

(ANFIS), support vector regression (SVR), genetic algorithms (GA), and particle swarm 

optimization (PSO) have been used as alternatives for modelling and optimization of the 

electrochemical processes.  

In the first part of this thesis, the development of ANN models and multi-objective 

optimization based on a genetic algorithm was carried out for active chlorine production 

using the electrolysis process. In order to diagnose and prevent the over-fitting problem 

during the learning process of the ANN models, learning curves and the regularization 

factor were utilized. The results showed that the trained ANN models were able to 

successfully predict the active chlorine production and energy consumption of the process 

(R2=0.979 and MSE=3.826 for active chlorine production and R2=0.985 and MSE=6.952 

for energy consumption). Multi-objective optimization for maximizing active chlorine 

production and minimizing energy consumption was carried out by a non-dominated 

sorting genetic algorithm (NSGA-II) using the best derived ANN models. The Pareto front 

obtained led to multiple non-dominated optimal points, which resulted in insights 

regarding the optimal operating conditions for the process.  

In the second part of this study, the ANFIS modelling approach was applied as another 

AI technique and compared with the response surface methodology (RSM) for modelling 

and optimization of psychoactive pharmaceutical caffeine removal by electrochemical 

oxidation. Results showed that the anode type, followed by the electrolysis time are the 
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most important variables affecting caffeine degradation. While both RSM and ANFIS 

models were able to successfully predict the electrochemical process behaviour, ANFIS 

models performed slightly better (R2=0.993, RMSE=2.694, MAPE=6.582 for caffeine 

removal efficiency, and R2=0.976, RMSE=0.261, MAPE=9.221 for energy consumption). 

The optimal conditions were applied to the treatment of real municipal wastewater effluent 

with caffeine removal efficiency varying between 78.0±4.3% and 92.5±1.0% for different 

initial caffeine concentrations, showing the effectiveness of the process. Furthermore, it 

was demonstrated that toxicity generated by the electrooxidation process could be 

reduced by extending the electrolysis time or could be completely eliminated using 

granular activated carbon. 

The third part of this thesis dealt with hyperparameter optimization of AI models by 

integrating metaheuristic algorithms such as GA and PSO to predict the removal 

efficiency of phosphate from wastewaters using the electrocoagulation process. To tackle 

the relatively low number of sample data available from an experimental electrochemical 

process and increase the reliability of data-driven models, the proposed hybrid models 

were built on repeated random sub-sampling validation (10 data subsets) instead of a 

single split approach. The performance comparison of models showed that the 

effectiveness of the data-driven models depends on how the data is distributed over the 

training, validation, and test sets. The ANFIS and hybrid SVR models were more sensitive 

than the hybrid ANN models to the distribution of data points. The hybrid ANN models 

showed greater accuracy than the ANFIS and hybrid SVR models when compared using 

different performance criteria. The hybrid ANN models showed less dispersed 

performance for the different test sub-datasets. Remarkably, PSO-ANN models illustrated 

exceptional generalization performance for the 10 data subsets examined. 

Efforts made in each part of this thesis provide insight into the application and adaptation 

of AI techniques for modelling and optimization of electrochemical processes for water 

treatment. It was shown that AI models could be successfully applied to electrochemical 

processes despite the relatively low number of data points available, but the reliability and 

robustness of these models should be taken into account. 
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RÉSUMÉ 

Les technologies électrochimiques sont connues et utilisées pour le traitement des eaux 

usées contenant des polluants organiques récalcitrants car les traitements 

conventionnels tels que les méthodes physico-chimiques ou biologiques ne sont pas 

capables de les dégrader complètement. Cependant, pour rendre ces technologies 

compétitives par rapport aux technologies conventionnelles utilisées aujourd'hui (par 

exemple, la coagulation ou les procédés d'oxydation avancée), il est nécessaire de 

concevoir correctement les procédés et les conditions d'exploitation par le biais de la 

modélisation et de l'optimisation des procédés. Les processus électrochimiques sont des 

processus non linéaires compliqués, ce qui rend difficile la description du comportement 

du processus à l'aide de méthodologies de modélisation phénoménologiques ou 

empiriques conventionnelles. Dans ce travail, les techniques d'intelligence artificielle, 

incluant les réseaux de neurones artificiels (RNA), les systèmes à inférences floues à 

réseaux adaptatifs (SIFRA), la régression des vecteurs de support (RVS), les algorithmes 

génétiques (AG) et l'optimisation par essaims particulaires (OEP) ont été utilisées comme 

alternatives pour la modélisation et l'optimisation des procédés électrochimiques.  

Dans la première partie de cette thèse, le développement des modèles RNA et 

l'optimisation multi-objectifs basée sur un algorithme génétique ont été réalisés pour la 

production de chlore actif en utilisant le procédé d'électrolyse. Afin de diagnostiquer et de 

prévenir le problème de sur-ajustement pendant le processus d'apprentissage des 

modèles RNA, des courbes d'apprentissage et le facteur de régularisation ont été utilisés. 

Les résultats ont montré que les modèles RNA formés étaient capables de prédire avec 

succès la production de chlore actif et la consommation d'énergie du processus 

(R2=0,979 et MSE=3,826 pour la production de chlore actif et R2=0,985 et MSE=6,952 

pour la consommation d'énergie). L'optimisation multi-objectifs pour maximiser la 

production de chlore actif et minimiser la consommation d'énergie a été réalisée par un 

algorithme génétique de tri non dominé (NSGA-II) en utilisant les meilleurs modèles RNA 

dérivés. Le front de Pareto obtenu a conduit à de multiples points optimaux non dominés, 

qui donnent des indications sur les conditions de fonctionnement optimales du processus. 
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Dans la deuxième partie de cette étude, l'approche de modélisation SIFRA, une autre 

technique d'intelligence artificielle, a été appliquée et comparée à la méthodologie de 

surfaces de réponses (MSR) pour modéliser et optimiser le processus électrochimique 

de dégradation de la caféine. La caféine est un produit pharmaceutique psychoactif 

souvent présent dans les eaux résiduaires. Les résultats ont montré que le type d'anode, 

suivi du temps d'électrolyse sont les variables les plus importantes affectant la 

dégradation de la caféine. Les modèles MSR et SIFRA ont permis de prédire avec succès 

le comportement du processus électrochimique, mais les modèles SIFRA sont 

légèrement plus performants (R2=0,993, RMSE=2,694, MAPE=6,582 pour l'efficacité de 

dégradation de la caféine, et R2=0,976, RMSE=0,261, MAPE=9,221 pour la 

consommation d'énergie). Les conditions optimales ont été appliquées sur des effluents 

d'eaux usées municipales réelles, dans lesquelles l'efficacité de dégradation de la caféine 

a varié entre 78,0±4,3% et 92,5±1,0% pour différentes concentrations initiales de caféine, 

ce qui montre l'efficacité du processus. La toxicité générée par le procédé d'électro-

oxydation pouvait être réduite en prolongeant le temps d'électrolyse ou encore en utilisant 

du charbon actif en grains suite à l’application du traitement électrolytique. 

La troisième partie de cette thèse traitait de l'optimisation des hyperparamètres des 

modèles d’IA en intégrant des algorithmes métaheuristiques tels que l'AG et l'OEP pour 

prédire l'efficacité de l'élimination du phosphate des eaux usées en utilisant le processus 

d'électrocoagulation. Pour faire face au nombre relativement faible de données 

d'échantillons disponibles dans le processus électrochimique et augmenter la fiabilité des 

modèles basés sur les données, les modèles hybrides proposés ont été construits sur 

une ‘repeated random sub-sampling validation’ (10 sous-ensembles de données) au lieu 

d'une approche à répartition unique. La comparaison des performances des modèles a 

montré que l'efficacité des modèles pilotés par les données dépend de la manière dont 

les données sont distribuées parmi les ensembles de formation, de validation et des tests. 

Les modèles SIFRA et RVS hybrides étaient plus sensibles que les modèles RNA 

hybrides à la distribution des points de données. Les modèles RNA hybrides ont montré 

une plus grande précision que les modèles SIFRA et RVS hybrides auxquels ils ont été 

comparés en utilisant différents critères de performance. Ces modèles indiquent une 

performance moins dispersée pour les ensembles de tests pour les différents sous-
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ensembles de données. De manière remarquable, les modèles OEP-RNA ont illustré une 

performance de généralisation exceptionnelle pour les 10 sous-ensembles de données 

examinées. 

Les efforts réalisés dans chaque volet de cette thèse donnent un aperçu de l'application 

et de l'adaptation des techniques d'IA pour la modélisation et l'optimisation des processus 

électrochimiques pour le traitement de l'eau et des eaux usées. Il a été démontré que les 

modèles d'IA pouvaient être appliqués avec succès aux processus électrochimiques 

malgré le nombre relativement faible de points de données disponibles, mais la fiabilité 

et la robustesse de ces modèles doivent être prises en compte.   
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SYNOPSIS 

Introduction 

Avec la croissance rapide de la population mondiale et l'industrialisation intense du 

20ème siècle, la pollution environnementale est devenue un problème mondial avec des 

impacts négatifs sur le secteur de l'eau. La grande majorité de ces problèmes de pollution 

sont causés par des composés organiques persistants en raison de leur résistance aux 

traitements conventionnels tels que les méthodes physico-chimiques ou biologiques. Il 

en résulte la détection de polluants réfractaires tels que les pesticides, les composés 

phénoliques, les colorants synthétiques, les composés halogénés, les hydrocarbures 

aromatiques polycycliques (HAP), les polychlorobiphényles (PCB), les perturbateurs 

endocriniens (PE) et autres dans les rivières, les lacs, les océans et même les eaux 

potables du monde entier. Ils peuvent avoir des effets dangereux sur la santé des 

organismes vivants, y compris des êtres humains. Par conséquent, le traitement avancé 

de l'eau et des eaux usées est devenu une préoccupation sociale, politique et 

environnementale majeure (Drogui et al., 2007; Moreira et al., 2017; Zheng et al., 2017).  

Ces dernières années, les procédés électrochimiques ont suscité un intérêt croissant en 

tant que méthode alternative pour le traitement de l'eau et des eaux usées. Ces procédés 

sont considérés comme des technologies écologiques et vertes car le principal réactif 

impliqué, l'électron, est considéré comme un réactif propre et tire parti de la chimie de 

couplage (génération in situ d'oxydant) avec la science électronique (transfert 

d'électrons). Parmi les autres avantages intéressants, citons la polyvalence, le rendement 

énergétique élevé, la possibilité d'automatisation et la rentabilité. (Feng et al., 2016; 

Rajeshwar et al., 1997). Plusieurs publications portant sur différentes méthodes 

électrochimiques telles que l'électrooxydation, l'électrocoagulation, l'électroflottation, 

l'électro-Fenton et l'électrodialyse ont été publiées au cours de la dernière décennie pour 

améliorer les performances de traitement des eaux usées et des eaux potables (Daghrir 

et al., 2013; Martín de Vidales et al., 2012b; Olvera-Vargas et al., 2015; Zhang et al., 

2011).  
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La modélisation des processus est une exigence pour l'optimisation des processus. Les 

approches de modélisation phénoménologique et empirique sont généralement utilisées 

pour les processus de traitement de l'eau et des eaux usées. Bien que la modélisation 

phénoménologique fournisse des indications précieuses sur le comportement du 

processus et ait la capacité d'extrapoler, les phénomènes de transport de chaleur et de 

masse ainsi qu'une connaissance détaillée de la cinétique de la réaction sont 

nécessaires. Dans la modélisation empirique, la structure du modèle d'adaptation aux 

données doit être spécifiée a priori, ce qui constitue un défi car il faut choisir le modèle 

approprié parmi les nombreux modèles disponibles, en particulier pour les processus non 

linéaires (Nandi et al., 2004). Les processus électrochimiques pour le traitement de l'eau 

et des eaux usées sont des systèmes non linéaires très compliqués en raison des 

relations complexes entre les paramètres d'entrée et les sorties. Il est donc difficile 

d'utiliser des modèles phénoménologiques ou empiriques pour modéliser, simuler et 

optimiser les processus. Les techniques d'intelligence artificielle telles que les réseaux 

neuronaux artificiels (RNA), le système d'inférence neuro-floue adaptatif (SIFRA), la 

régression par vecteur de support (RVS) ainsi que les algorithmes génétiques (AG) et les 

méthodes d'optimisation par essaim de particules (OEP) sont apparues comme des 

approches alternatives attrayantes pour la modélisation et l'optimisation de ces 

processus non linéaires lorsque les modèles de régression phénoménologiques ou 

conventionnels ne sont pas pratiques (Curteanu et al., 2014).  

Dans ce travail, les applications des techniques d'intelligence artificielle axées sur leur 

fiabilité et leur validation pour la modélisation des processus électrochimiques pour les 

procédés de traitement de l'eau et des eaux usées seront discutées. À ce sujet, une 

comparaison sera faite entre les modèles d'IA et les approches de modélisation 

conventionnelles (par exemple, la méthode des surfaces de réponses (MSR)). En outre, 

les algorithmes métaheuristiques seront liés aux modèles d'intelligence artificielle, soit à 

des fins d'optimisation multi-objectifs, soit pour optimiser les hyperparamètres des 

modèles d'intelligence artificielle afin d'accroître leurs performances. 
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Problématique 

Les procédés électrochimiques ont suscité un intérêt croissant en tant que méthode 

alternative pour le traitement des eaux polluées. Cependant, pour rendre ces 

technologies compétitives par rapport aux technologies conventionnelles utilisées 

aujourd'hui, une conception adéquate des procédés et des conditions de fonctionnement 

est nécessaire. Les améliorations nécessaires des performances et du fonctionnement 

des procédés électrochimiques nécessitent une meilleure modélisation en vue de la 

conception et de l'optimisation. La modélisation des procédés est importante pour aider 

à améliorer la conception et à réduire les coûts d'équipements et d'exploitation. Elle peut 

fournir des solutions aux défis de traitement électrochimique des eaux, et ainsi permettre 

de prédire les performances des procédés dans une large gamme de conditions de 

fonctionnement. La modélisation des processus est une condition préalable à leur 

optimisation. Les approches de modélisation phénoménologique et empirique sont 

généralement utilisées dans les processus de traitement des eaux. La modélisation 

phénoménologique fournit des informations précieuses sur le comportement du 

processus et permet l'extrapolation. D'autre part, les phénomènes de transport de chaleur 

et de masse ainsi qu'une connaissance détaillée de la cinétique de la réaction sont 

nécessaires pour les modèles phénoménologiques des procédés électrochimiques. La 

collecte de ces données est une tâche difficile à obtenir pour un système multi-variable, 

en particulier lorsqu'une connaissance limitée de celui-ci est disponible. De plus, le 

comportement non linéaire des procédés électrochimiques donne lieu à des modèles non 

linéaires complexes qui, dans la plupart des cas, ne se prêtent pas à des solutions 

analytiques ; leur résolution nécessite donc des méthodes numériques à forte intensité 

de calcul. 

La modélisation empirique (régression) est l'une des approches de modélisation 

alternatives à la modélisation phénoménologique. Dans la plupart des cas, un modèle de 

régression linéaire quadratique sera choisi, mais il n'est souvent pas adéquat pour décrire 

les non-linéarités des systèmes.  

Les processus électrochimiques dans le traitement des eaux sont des systèmes non 

linéaires très compliqués en raison des relations complexes entre les paramètres d'entrée 
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et les sorties. Par conséquent, l'utilisation de modèles phénoménologiques ou empiriques 

classiques pour modéliser, simuler et optimiser les processus n'est pas toujours la 

meilleure option. Dans ces situations, les techniques d'intelligence artificielle basées par 

exemple sur des réseaux neuronaux artificiels, constituent une méthode alternative 

intéressante. Ils pourraient surmonter les difficultés de modélisation classiques, grâce 

aux avantages suivants : la possibilité de les appliquer même à des processus non 

linéaires complexes à entrées et sorties multiples, la capacité de les construire 

uniquement à partir de données historiques d'entrées et de sorties de processus 

(ensemble de données expérimentales), et une excellente capacité de généralisation 

lorsqu'ils sont correctement formés. D'autre part, les inconvénients pourraient portés sur 

l'obtention d'un modèle fiable et robuste avec un nombre limité de données 

expérimentales disponibles. Par conséquent, l'objectif de cette étude est d'appliquer les 

techniques d'intelligence artificielle en mettant l'accent sur leur fiabilité et leur robustesse, 

pour modéliser et optimiser les processus électrochimiques pour le traitement des eaux 

résiduaires. Cela comprend la comparaison des modèles d'IA avec les approches de 

modélisation conventionnelles (par exemple, le MSR), l'association d'algorithmes 

métaheuristiques aux modèles d'IA pour les processus multi-objectifs, et l'optimisation 

des hyperparamètres des modèles d'IA pour augmenter leurs performances. 

Hypothèses 

Selon l'énoncé de la problématique, la présente étude comprend les hypothèses 

suivantes: 

Hypothèse 1: Les RNA sont l'une des méthodes d'intelligence artificielle qui pourraient 

être utilisées efficacement pour modéliser les processus électrochimiques pour le 

traitement des eaux usées.  

Les réseaux neuronaux artificiels présentent des avantages considérables par rapport 

aux autres méthodes empiriques, ce qui les rend pratiques pour la modélisation des 

processus électrochimiques. Tout d'abord, les RNA ont des connexions parallèles 

massives entre les nœuds. Chaque nœud fonctionne indépendamment des autres et a 

un léger effet sur le modèle d'entrée-sortie. Cette caractéristique de parallélisme permet 

aux ANN d'obtenir de meilleures performances que les modèles empiriques, en particulier 
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dans les processus électrochimiques non linéaires et complexes. En outre, les RNA 

peuvent être entraînés plusieurs fois, ce qui signifie que lorsque les performances du 

réseau sont insuffisantes en raison d'un changement des conditions, les RNA peuvent 

être entraînés à nouveau avec de nouvelles conditions pour améliorer leurs 

performances. Cette caractéristique adaptative n'est pas courante dans les modèles 

empiriques. La caractéristique MIMO (entrées et sorties multiples) des RNA est un autre 

aspect qui en fait une option appropriée pour la modélisation des processus 

électrochimiques. Les RNA peuvent mettre en correspondance de nombreuses variables 

indépendantes avec autant de variables dépendantes que nécessaire, ce qui constitue 

une caractéristique unique par rapport aux autres modèles empiriques. En outre, 

contrairement à la MSR, la conception expérimentale et la sélection a priori de la structure 

du modèle d'adaptation aux données ne sont pas une condition préalable pour les RNA. 

Cela est bénéfique, en particulier pour les processus non linéaires où le choix d'un 

modèle approprié parmi les nombreux modèles disponibles constitue un défi. 

 

Hypothèse 2: Les algorithmes évolutionnaires liés à des modèles d'intelligence artificielle 

sont plus performants que d'autres approches (par exemple, la MSR) pour l'optimisation 

multi-objectifs. 

Les algorithmes évolutionnaires liés à des modèles d'intelligence artificielle constituent 

une approche utile pour les processus non linéaires complexes à entrées multiples et à 

sorties multiples. Il n'existe pas de solution unique à un problème d'optimisation multi 

objectifs, mais un ensemble de solutions mathématiquement aussi bonnes, connues sous 

le nom de solutions optimales non dominées (ou Pareto). À cet égard, des algorithmes 

évolutionnaires très robustes comme les AG peuvent être associés à des modèles d'IA 

pour les problèmes d'optimisation multi-objectifs. Les AG peuvent surpasser les 

méthodes d'optimisation conventionnelles car ils n'ont pas besoin que la fonction 

"objectif" soit continue et/ou différentiable, ils ne nécessitent pas une formulation 

approfondie du problème et ils ne sont pas sensibles au point de départ. 

 

Hypothèse 3: L'optimisation des hyperparamètres des modèles d'IA permettra 
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d'améliorer les performances de modélisation des processus électrochimiques pour le 

traitement des eaux. 

Les performances des modèles d'intelligence artificielle dépendent en grande partie de 

l'optimisation des hyperparamètres intégrés qui contrôlent le processus d'apprentissage. 

Par exemple, dans le cas des modèles RNA, ces hyperparamètres comprennent le taux 

d'apprentissage, le nombre d'époques, l'échec de validation maximum, le facteur de 

régularisation, le nombre de couches cachées et de neurones cachés, et les fonctions de 

transfert.   

Objectifs 

L'objectif global de cette étude est d'appliquer et d'optimiser les modèles d'intelligence 

artificielle pour la modélisation et l'optimisation des processus électrochimiques pour le 

traitement des eaux. En d'autres termes, cette recherche vise à démontrer et à comparer 

la capacité et la performance des modèles d'IA optimisés avec d'autres types d'approches 

conventionnelles de modélisation et d'optimisation utilisées dans les procédés 

électrochimiques. Les objectifs spécifiques de cette étude sont les suivants : 

Objectif 1: Comparaison des modèles d'IA avec d'autres approches de modélisation 

conventionnelles, telles que le MSR, utilisées pour la modélisation et l'optimisation des 

systèmes électrochimiques.  

La méthodologie de la surface de réponse a été largement utilisée pour étudier l'effet des 

différentes variables sur la réponse. Elle permet de minimiser le nombre d'expériences 

tout en obtenant une réponse optimale à l'aide d'expériences bien conçues. Malgré les 

avantages du MSR, il arrive que l'impact de divers paramètres opérationnels dans des 

processus électrochimiques non linéaires complexes ne puisse pas être entièrement 

défini par une simple corrélation linéaire multivariée. Pour cette raison, l'un des principaux 

objectifs de cette étude est de comparer les performances des approches de 

modélisation IA et MSR.   

De même, les algorithmes évolutionnaires tels que l'AG seront utilisés dans cette étude 

pour l'optimisation multi-objectifs des procédés électrochimiques pour le traitement des 

eaux usées. Pour les problèmes d'optimisation multi-objectifs, il n'y a pas de solution 
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unique, ce qui est typiquement obtenu par la MSR. Au lieu de cela, un ensemble de 

solutions mathématiquement aussi bonnes, connues sous le nom de solutions optimales 

de Pareto, sont obtenues. Dans cette étude, les algorithmes d'optimisation évolutionnaire 

seront liés aux modèles RNA afin d'améliorer les conditions opérationnelles puisque les 

procédés électrochimiques nécessitent l'introduction d'énergie et un temps 

d'expérimentation minimum pour atteindre une bonne efficacité du procédé. Cette 

approche peut optimiser les conditions expérimentales en améliorant les efficacités 

d'élimination/production et en réduisant les coûts énergétiques. 

 

Objectif 2: Modélisation et optimisation de la dégradation de la caféine par oxydation 

électrochimique.   

La SIFRA, une autre technique de modélisation de l'IA, est utilisée dans cette partie de 

la thèse pour la dégradation de la caféine par oxydation électrochimique. La caféine est 

choisie comme polluant modèle pharmaceutique psychoactif pour le processus 

d'oxydation électrochimique. La dégradation de la caféine par oxydation électrochimique 

sera étudiée en considérant l'effet de l'intensité du courant, de la concentration initiale de 

caféine, du temps d'électrolyse et du type d'anode. Le BDD et l'IrO2 ont été sélectionnés 

comme anodes non actives et actives à cette fin. Un plan factoriel (FD) a été utilisé pour 

étudier les effets principaux et les interactions des différents facteurs sur l'efficacité de 

l'élimination de la caféine. Par la suite, un plan central composite (CCD) utilisant des 

modèles polynomiaux quadratiques a été appliqué pour déterminer les conditions 

optimales pour la dégradation de la caféine. En outre, les résultats fournis par le CCD ont 

été comparés aux valeurs prédites par la SIFRA. 

 

Objectif 3: Optimiser les hyperparamètres des modèles d'intelligence artificielle pour 

trouver les modèles les mieux adaptés et accroître la fiabilité et la robustesse des 

modèles d'intelligence artificielle développés. 

En raison de l'investissement important en temps et en argent dans le travail 

expérimental, un nombre limité d'échantillons dans les ensembles de données est 

disponible pour les modèles basés sur les données. Les modèles d'IA comprennent des 
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hyperparamètres intégrés qui doivent être réglés avec précision pour que le modèle 

puisse résoudre le problème d'apprentissage automatique à son plein potentiel. Le 

processus d'apprentissage est contrôlé par ces hyperparamètres, qui ont un impact direct 

sur les performances du modèle. Dans le cas des modèles RNA, ces hyperparamètres 

comprennent le taux d'apprentissage, le nombre d'époques, l'échec maximal de 

validation, le nombre de couches cachées et de neurones cachés, et les fonctions de 

transfert. Pour les modèles RVS, le facteur de pénalité, la marge de tolérance aux erreurs, 

le type de fonction noyau et les paramètres du noyau doivent être sélectionnés de 

manière optimale. Les fonctions d'appartenance et le nombre de clusters affectent les 

performances des modèles SIFRA. D'après la revue de la littérature, la sélection des 

hyperparamètres des modèles RNA n'a pas fait l'objet d'une étude approfondie et 

implique généralement une approche par essais et erreurs, qui consomme du temps et 

des ressources informatiques. Il est donc hautement souhaitable de disposer d'une 

méthode permettant de rechercher automatiquement et efficacement les 

hyperparamètres optimaux. Dans cette étude, une investigation approfondie des 

hyperparamètres des modèles d'IA sera menée pour démontrer les effets de ces 

paramètres sur la performance du modèle. 

Originalité 

Les techniques d'intelligence artificielle, principalement les RNA, ont souvent été utilisées 

pour la modélisation et l'optimisation des procédés électrochimiques pour le traitement 

des eaux. Malgré la variété des applications, la fiabilité et la robustesse des modèles IA, 

en raison du nombre limité de données expérimentales disponibles, n'ont pas été 

étudiées en profondeur dans ce domaine. Par conséquent, dans cette étude, un effort 

intensif a été fait sur la validation des modèles d’IA et l'optimisation de leurs 

hyperparamètres inhérents. La méthode habituelle d'optimisation des hyperparamètres 

est la méthode d'essai et d'erreur. Dans ce travail, cela sera fait en appliquant différents 

algorithmes métaheuristiques liés aux modèles d’IA pour optimiser leurs 

hyperparamètres. Une autre partie de l'originalité de cette étude est due à l'application 

de techniques d'IA à des données qui ont déjà été utilisées pour d'autres approches de 

modélisation (par exemple, le MSR) afin de comparer leurs performances par rapport à 
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ces techniques. Dans ce domaine, des données issues de travaux antérieurs de notre 

groupe de recherche et de la littérature seront utilisées.   

Enfin, une étude comparative entre MSR et SIFRA pour la modélisation et l'optimisation 

de l'élimination de la caféine, un produit pharmaceutique psychoactif, par oxydation 

électrochimique à l'aide de deux anodes actives et non actives dans des eaux usées 

synthétiques et réelles qui n'ont pas été étudiées auparavant sera discutée.  

Méthodologie générale   

Alors que de nombreux modèles dans le domaine des processus électrochimiques sont 

des modèles empiriques (MSR), nous prévoyons développer des modèles prédictifs 

basés sur des données expérimentales. Cette démarche était motivée par leur grande 

capacité à décrire les relations non linéaires entrée-sortie liées aux processus 

électrochimiques utilisés pour le traitement des eaux.  

Des données issues d’expériences antérieures et celles issues de la littérature ont été 

utilisées. Pour le premier objectif, les données issues d'une étude antérieure de notre 

groupe de recherche portant sur “Statistical optimization of active chlorine production 

from a synthetic saline effluent by electrolysis (Zaviska et al., 2012b)” ont été exploitées. 

La conception expérimentale du procédé d'électrochloration a été réalisée en utilisant 

successivement la méthodologie du plan factoriel (FD) et du plan central composite 

(CCD). Les expériences consistaient en 16 expériences pour le FD et 14 expériences 

supplémentaires pour le CCD, soit un total de 30 expériences.  

Pour le second objectif, dans lequel la SIFRA est utilisée comme technique d'IA, les 

données expérimentales obtenues à partir de l'élimination de la caféine, un produit 

pharmaceutique psychoactif, par un processus d'oxydation électrochimique ont été 

utilisées à des fins de modélisation et d'optimisation. Sur la base du plan expérimental, 

un plan factoriel a été développé pour étudier les effets principaux et les interactions des 

différents facteurs sur l'efficacité de l'élimination de la caféine. Des modèles polynomiaux 

quadratiques utilisant le CCD ont été utilisés pour déterminer les conditions 

expérimentales optimales pour la dégradation de la caféine et la consommation 

d'énergie. Enfin, pour le troisième objectif portant sur l'optimisation des hyperparamètres 

des modèles IA à l'aide d'algorithmes métaheuristiques, des données issues de la 
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littérature ont été utilisées. (Ano et al., 2019). Un nombre total de 62 données 

expérimentales pour l'élimination du phosphate des eaux usées synthétiques en utilisant 

le procédé d'électrocoagulation a été rassemblé. Dans leur étude, le plan factoriel et le 

plan composite central comme méthodologie de surface de réponse ont été utilisés pour 

étudier l'effet de l'intensité du courant, la concentration initiale de phosphate, le pH initial, 

le temps de traitement et le type d'électrode. 

Après la collecte initiale des données, un prétraitement des données a été nécessaire 

afin de les manipuler dans un format utilisable pour l'ingestion par les modèles IA. La 

normalisation des caractéristiques renvoie une version normalisée de la caractéristique 

(entrée) X où la valeur moyenne de chaque caractéristique est égale à 0 et l'écart type à 

1. La normalisation est utile car elle garantit que l'apprentissage du réseau prend en 

compte toutes les caractéristiques d'entrée dans une mesure similaire et qu'aucune 

variable unique n'oriente les performances du modèle dans une direction donnée 

simplement parce qu'elle est plus nombreuse. Les réseaux neuronaux MLP à action 

directe avec une couche d'entrée, une couche cachée et une couche de sortie sont 

utilisés dans ce travail pour mettre en correspondance les entrées et les sorties. La 

descente de gradient, la régularisation bayésienne et Levenberg-Marquardt ont été 

utilisés comme algorithme d'apprentissage pour former le réseau neuronal.  

Afin de diagnostiquer et de prévenir le problème de surajustement pendant le processus 

d'apprentissage, des courbes d'apprentissage et le facteur de régularisation ont été 

utilisés. Les courbes d'apprentissage des performances du modèle sur les ensembles de 

données d'apprentissage et de validation peuvent être utilisées pour diagnostiquer un 

modèle sous-ajusté (biais élevé), surajusté (variance élevée) ou bien ajusté. Une courbe 

d'apprentissage montre comment l'erreur varie avec l'augmentation de la taille de 

l'ensemble d'apprentissage et indique si l'on a besoin ou non d'un modèle plus complexe 

pour les prédictions. Dans ce travail, les courbes d'apprentissage seront tracées pour les 

échantillons d'entraînement. Le paramètre de régularisation est une entrée du modèle 

RNA pour réduire le surajustement, ce qui réduit la variance des paramètres de 

régression estimés. En d'autres termes, cette technique décourage l'apprentissage d'un 

modèle plus complexe ou plus souple pour éviter le risque de surajustement. Elle est 

définie comme un terme ajouté à la fonction de coût du modèle. 
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Malgré la nature de boîte noire des RNA, il est possible d'effectuer une analyse de 

sensibilité sur les réseaux neuronaux pour indiquer l'influence de différentes variables 

d'entrée sur les résultats du modèle. Le niveau de participation de chaque variable 

d'entrée dans la simulation de la sortie souhaitée peut être obtenu par le biais de la 

matrice de poids des neurones. L'équation de Garson (Garson, 1991) basée sur le 

partitionnement des poids de connexion est appliquée à cette fin. 

Les hyperparamètres d'un modèle RNA, qui définissent sa topologie et ses options 

d'apprentissage, influencent la précision et l'efficacité du modèle entraîné. Le nombre de 

couches cachées et de neurones dans chaque couche cachée, le taux d'apprentissage, 

le paramètre de régularisation, l'algorithme d'apprentissage et l'échec maximal de 

validation sont considérés comme des hyperparamètres de la RNA. Des algorithmes 

métaheuristiques seront utilisés pour trouver les réseaux optimaux. 

La performance du modèle RVS dépend fortement de la sélection précise de ses 

hyperparamètres. Ceux-ci comprennent la contrainte de boîte (C), l'epsilon (ε), le type de 

fonction noyau et le paramètre du noyau. La contrainte de boîte (C) est un compromis 

entre la complexité du modèle et la capacité de généralisation. L'hyperparamètre ε 

influence le nombre de vecteurs de support et donc la performance du RVS en 

déterminant la taille de la zone insensible à ε. La fonction noyau et son paramètre 

pertinent transposent les données d'entrée non linéaires dans l'espace des 

caractéristiques de dimension supérieure pour aider le RVS à traiter les problèmes non 

linéaires. Dans cette étude, les algorithmes métaheuristiques sont appliqués pour trouver 

les valeurs optimales de ces hyperparamètres.  

Les modèles SIFRA ont été construits sur la base des ensembles de données disponibles 

en utilisant la méthode de regroupement Fuzzy C-Means. La méthode FCM intégrée à la 

SIFRA permet d'obtenir un nombre relativement faible de règles, ce qui empêche le 

modèle d'être trop complexe et minimise le problème de surajustement. La méthode de 

clustering FCM divise les données d'entrée en différents clusters et est utilisée pour 

identifier les fonctions d'appartenance floues et la base de règles floues pour le modèle 

SIFRA. Dans cette étude, la méthode FCM a été utilisée pour le modèle SIFRA, et le 
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nombre de clusters sera sélectionné manuellement pour obtenir les meilleures 

performances de généralisation. 

L'AG et l'OEP, des algorithmes métaheuristiques, ont été utilisés à des fins d'optimisation. 

Pour le premier objectif, l'algorithme génétique de tri non dominé (NSGA-II) a été utilisé 

pour l'optimisation multi-objectifs, qui consiste à trouver un ensemble de solutions (front 

de Pareto) qui correspondent aux conditions expérimentales en ce qui concerne la 

maximisation de la production de chlore actif et la minimisation de la consommation 

d'énergie. Pour le troisième objectif, les algorithmes métaheuristiques ont été utilisées 

pour trouver les hyperparamètres optimaux des modèles IA pour prévoir l'efficacité de 

l'élimination du phosphate des eaux usées en utilisant le processus d'électrocoagulation. 

Afin de générer les résultats les plus valables pour les modèles et dans le but de 

comparer ces modèles avec d'autres, nous avions besoin de résultats à la fois précis et 

interprétables. Dans ce cas, nous avons utilisé des mesures de performance telles que 

le coefficient de détermination (R2), l'erreur quadratique moyenne (MSE), l'erreur 

quadratique moyenne (RMSE) et le pourcentage d'erreur absolu moyen (MAPE).   

MATLAB (version R2019a) a été utilisé dans notre étude pour développer et appliquer 

différents aspects des techniques d'intelligence artificielle. MATLAB est couramment 

utilisé pour mettre en œuvre des algorithmes pilotés par les données et des algorithmes 

évolutifs dans notre champ d'étude et convient à la recherche et au développement. À 

cet égard, tous les scripts et fonctions des techniques d'IA ont été écrits dans 

l'environnement MATLAB dans cette étude.  

Organisation de la thèse 

Cette thèse est divisée en six parties, qui correspondent à une introduction générale 

(chapitre 1), une analyse documentaire approfondie sous forme d'article de synthèse 

(chapitre 2), trois articles de revues de recherche (chapitres 3, 4 et 5), et une conclusion 

générale et des perspectives (chapitre 6). Les chapitres 3 et 4 sont déjà publiés dans la 

Canadian Journal of Chemical Engineering et dans Separation and Purification 

Technology, respectivement. Le chapitre 2 est en cours de révision dans le Journal of 

Environmental Health Science & Engineering, tandis que le chapitre 5 est soumis à la 
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revue Digital Chemical Engineering. Des efforts ont été faits pour réduire les répétitions, 

mais comme chaque article doit fonctionner indépendamment, certaines sections, 

comme la description des algorithmes IA, sont légèrement répétitives d'un chapitre à 

l'autre. 

Le chapitre 1 couvre le contexte, l'énoncé du problème, les objectifs et la méthodologie 

générale utilisée dans cette thèse. Une analyse documentaire approfondie est fournie 

sous forme d'un article de synthèse dans le chapitre 2. Le chapitre 3 correspond au 

premier objectif de cette thèse : comparer les modèles RNA avec d'autres approches de 

modélisation conventionnelles telles que la MSR et l'utilisation de l'optimisation multi-

objectifs à l'aide d'algorithmes évolutionnaires pour la modélisation et l'optimisation de 

systèmes électrochimiques. Ensuite, le chapitre 4 couvre l'application de la SIFRA 

comme autre approche IA pour la modélisation et l'optimisation de la dégradation de la 

caféine par oxydation électrochimique liée au deuxième objectif de ce travail. L'objectif 

des chapitres 3 et 4 était de fournir des modèles d'IA fiables avec la moindre chance de 

tomber dans le problème du surajustement. L'optimisation des hyperparamètres des 

modèles IA afin de trouver les modèles les mieux adaptés et d'augmenter la fiabilité et la 

robustesse des modèles IA développés, le dernier objectif de cette thèse, a été abordé 

dans le chapitre 5. Enfin, le chapitre 6 résume les conclusions et discute des implications 

du présent travail sur l'application des modèles IA à la modélisation et à l'optimisation des 

systèmes électrochimiques utilisés pour le traitement de l'eau et des eaux usées.  

Conclusions générales et perspectives 

Dans ce travail, les applications des techniques d'intelligence artificielle dans la 

modélisation des processus électrochimiques pour le traitement de l'eau et des eaux 

usées ont été évaluées. Les techniques d'IA ont été développées sur la base des 

données obtenues à partir d'études antérieures et d'expériences en laboratoire. En raison 

du peu de données disponibles dans le domaine des processus électrochimiques pour le 

traitement de l'eau et des eaux usées pour les techniques d'IA, des efforts ont été faits 

sur la fiabilité et la robustesse des modèles développés. 

La première partie de la thèse a porté sur le développement d'une méthodologie RNA-

AG pour la production de chlore actif par le procédé d'électrolyse. Les résultats ont 
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également été comparés à l'approche de modélisation classique du MSR. La MSR a été 

largement appliquée pour la modélisation et l'optimisation des processus 

électrochimiques en raison de ses caractéristiques permettant de minimiser le nombre 

d'expériences tout en obtenant une réponse optimale en utilisant des expériences bien 

conçues. D'autre part, les modèles d'intelligence artificielle tels que les RNA sont apparus 

comme des approches alternatives pour la modélisation et l'optimisation des processus 

électrochimiques non linéaires. Par conséquent, cette partie de la thèse visait à comparer 

la performance de l'approche de modélisation conventionnelle MSR avec une technique 

IA pour la modélisation et l'optimisation d'un processus d'électrolyse. L'originalité de cette 

partie a été d'utiliser les courbes d'apprentissage et le facteur de régularisation des 

modèles RNA pour mettre en lumière la formation et la validation de ces modèles boîte 

noire pilotés par les données. Ces techniques peuvent donner un aperçu du processus 

de modélisation des RNA et peuvent être utilisées à la place ou en même temps qu'une 

procédure d'essai et d'erreur pendant l'entraînement des réseaux neuronaux. Elles 

permettent d'obtenir des modèles RNA fiables, sans risque de surajustement malgré le 

nombre limité de données disponibles. Les modèles RNA ont réussi à décrire le 

comportement du processus expérimental (R2=0,979 et MSE=3,826 pour la production 

de chlore actif et R2=0,985 et MSE=6,952 pour la consommation d'énergie). En outre, le 

front de Pareto dérivé par l'algorithme NSGA-II pour l'optimisation multi-objectifs a conduit 

à la génération de points optimaux non dominés (conditions de fonctionnement) pour une 

production maximale de chlore actif avec une consommation d'énergie minimale. Il a été 

constaté que l'approche RNA-AG proposée permet d'obtenir des conditions plus 

économiques pour une production de chlore actif plus élevée que les conditions optimales 

suggérées par l'ancien MSR. La méthodologie RNA-AG proposée peut donner un aperçu 

de la manière de choisir efficacement les paramètres de fonctionnement du processus 

(variables de décision) pour atteindre les objectifs souhaités. Cette approche peut être 

adaptée à d'autres procédés si les données expérimentales existent déjà.   

La deuxième partie de la thèse portait sur l'application de l'approche de modélisation 

SIFRA comme autre technique d'IA et la comparaison avec le MSR pour la modélisation 

et l'optimisation de l'élimination de la caféine, un produit pharmaceutique psychoactif, par 

le processus d'oxydation électrochimique. Les variables d'entrée ont été considérées 
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comme le temps d'électrolyse, l'intensité du courant, la concentration initiale de caféine 

et le type d'anode. Les résultats ont montré que le type d'anode suivi du temps 

d'électrolyse sont les variables les plus importantes affectant la dégradation de la caféine. 

Les modèles SIFRA ont été construits sur la base de l'ensemble des données obtenues 

à partir de la conception MSR en utilisant la méthode de regroupement Fuzzy C-Means 

(FCM) plutôt que la méthode de partitionnement de la grille. La méthode FCM intégrée à 

la SIFRA permet d'obtenir un nombre relativement faible de règles, ce qui empêche le 

modèle d'être trop complexe et minimise le problème de surajustement. Les résultats des 

modélisations MSR et SIFRA ont montré que toutes deux sont capables de prédire avec 

succès le comportement du processus électrochimique, les modèles SIFRA étant 

légèrement plus performants (R2=0,993, RMSE=2,694, MAPE=6,582 pour l'efficacité 

d'élimination de la caféine, et R2=0,976, RMSE=0,261, MAPE=9,221 pour la 

consommation d'énergie). Cependant, les modèles MSR ont pu prédire le processus 

d'OE en utilisant beaucoup moins de paramètres de modèle que les modèles SIFRA, ce 

qui pourrait réduire les incertitudes du modèle étant donné le faible nombre de données 

disponibles. D'un point de vue expérimental, les résultats ont montré que même si 

l'oxydation directe était le mécanisme dominant pendant le processus d'OE pour 

l'élimination de la caféine, le mécanisme d'oxydation pour la dégradation de la caféine 

dans cette étude semblait similaire à d'autres processus d'oxydation avancée. L'efficacité 

de l'élimination de la caféine dans des conditions optimales à partir d'effluents d'eaux 

usées municipales réelles a varié de 78,0±4,3 % à 92,5±1,0 % à différentes 

concentrations initiales de caféine, ce qui montre l'efficacité du processus en présence 

d'autres polluants. Enfin, la toxicité des eaux usées réelles a augmenté après l'OE dans 

des conditions optimales, ce qui pourrait être réduit en prolongeant le temps d'électrolyse 

ou pourrait être éliminé entièrement en utilisant la colonne CAG comme post-traitement.  

La troisième partie de la recherche s'est concentrée sur la comparaison de modèles 

d'intelligence artificielle pour prédire l'efficacité de l'élimination des phosphates des eaux 

usées en utilisant le processus d'électrocoagulation. L'objectif de cette partie de la thèse 

était d'étudier l'optimisation des hyperparamètres des modèles d'IA en utilisant des 

algorithmes métaheuristiques pour trouver des modèles optimaux. Ceci a été fait en 

considérant la fiabilité et la robustesse des modèles IA développés pour les procédés 
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électrochimiques pour le traitement de l'eau et des eaux usées où une quantité limitée de 

données est disponible. À cet égard, les modèles hybrides proposés ont été construits 

sur une validation par ‘repeated random sub-sampling validation’ (10 sous-ensembles de 

données) au lieu d'une approche à répartition unique. Les résultats ont montré que la 

performance des modèles IA dépend de la façon dont les données sont distribuées dans 

les ensembles d'apprentissage, de validation et de test. Les modèles SIFRA et SVS 

hybride étaient plus vulnérables à la distribution des points d'échantillonnage des 

données que les modèles RNA hybride. Les modèles RNA hybrides ont surpassé les 

modèles SIFRA et SVS hybrides et ont montré des performances moins dispersées pour 

les ensembles de test des différents sous-ensembles de données. Il a été constaté que 

les modèles RNA de l'OEP ont une performance de généralisation exceptionnelle pour 

les 10 sous-ensembles de données examinés. Les valeurs moyennes de MSE, R2 et 

MAPE des 10 sous-ensembles de test pour l'OEP-RNA ont été déterminées comme étant 

de 7,201, 0,981 et 2,022, respectivement. On peut conclure que l'approche de 

modélisation RNA est plus polyvalente et robuste pour le processus d'électrocoagulation 

étudié. Ce travail fournit une méthode pour trouver des modèles optimaux basés sur les 

données des processus électrochimiques pour le traitement de l'eau et des eaux usées 

lorsqu'un nombre limité de données est disponible. 

L'adaptation et l'application de modèles IA dans les processus électrochimiques pour le 

traitement de l'eau et des eaux usées ont été abordées dans cette thèse. Alors que 

l'utilisation de modèles IA est de plus en plus répandue dans plusieurs disciplines 

scientifiques, y compris les processus électrochimiques, la fiabilité des modèles 

développés est critique en raison des données limitées disponibles. Lorsqu'il n'y a pas 

assez de données pour entraîner les paramètres des modèles IA, il en résulte un 

surajustement, ce qui signifie que la généralisation du modèle est inexacte. Davantage 

de données sont nécessaires pour résoudre ce problème ; cependant, dans les 

applications pratiques, la collecte de données supplémentaires est parfois difficile en 

raison de facteurs tels que les contraintes de temps et de coût des expériences. Certaines 

études récentes ont suggéré d'utiliser des techniques d'augmentation des données telles 

que l'interpolation pour résoudre ce problème. Bien que les approches d'augmentation 

des données aient été utilisées dans l'apprentissage automatique dans diverses 
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disciplines, en particulier le traitement des images et la reconnaissance vocale, elles 

doivent être utilisées avec prudence pour la régression des travaux expérimentaux avec 

des données limitées. Cela est dû au fait que le comportement des sorties dans les 

études expérimentales peut être beaucoup plus complexe que leur description à l'aide de 

fonctions d'interpolation prédéterminées, ce qui permettrait clairement au modèle IA 

d'anticiper facilement le comportement des nouvelles données interpolées. Une autre 

approche pour améliorer la fiabilité des modèles IA développés est de développer le 

modèle le moins complexe possible pour éviter le surajustement. Cela a été fait dans 

cette thèse en utilisant des courbes d'apprentissage et une régularisation pour les 

modèles RNA. Dans le cas de la SIFRA, la SIFRA initiale a été générée sur la base de la 

méthode de clustering FCM plutôt que d'autres alternatives telles que le partitionnement 

de grille. Le clustering FCM permet d'avoir moins de règles et donc moins de paramètres 

pour le modèle développé plutôt que le partitionnement de grille. Même si les résultats 

obtenus par le partitionnement en grille peuvent être plus satisfaisants, l'incertitude 

augmente avec des modèles plus complexes et de petits ensembles de données. 

D'autres techniques d'apprentissage automatique telles que les arbres de décision (par 

exemple, la forêt aléatoire), qui sont bien connues pour des tâches plus simples, peuvent 

être utilisées et évaluées. 

Notre recherche a montré que la performance des modèles IA avec de petits ensembles 

de données dépend fortement de la distribution des données en ensembles de formation, 

de validation et de test. Pour surmonter ce problème, différentes techniques de validation, 

“hold-out”, “k-fold cross-validation”, et “repeated random sub-sampling validation”, ont été 

appliquées. Une technique de validation croisée stratifiée peut être une autre alternative 

pour améliorer la fiabilité des modèles. Bien que cette technique soit généralement 

utilisée pour la classification, elle peut être adaptée aux problèmes de régression. La 

distribution des valeurs cibles est garantie comme étant à peu près la même dans toutes 

les partitions de la validation croisée k-fold utilisant la stratification. Cela permet de 

s'assurer que les performances de validation et de test reflètent les performances 

attendues du modèle avec moins de biais et de variance. Enfin, les recherches futures 

peuvent utiliser des approches de modélisation d'ensemble, qui construisent plusieurs 

modèles et les combinent ensuite pour obtenir de meilleurs résultats. Les approches 
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d'ensemble donnent souvent des résultats plus précis qu'un modèle unique. Pour ce faire, 

on peut utiliser différents modèles dans le même ensemble de données d'entraînement, 

le même modèle avec différentes divisions de l'ensemble de données d'entraînement, ou 

toute autre méthode. Cette technique réduit souvent le surajustement et produit un 

modèle de régression plus lisse. 

 

  



 

xxvii 

 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ............................................................................................................................ III 

ABSTRACT.................................................................................................................................................. IV 

RÉSUMÉ ...................................................................................................................................................... VI 

SYNOPSIS ................................................................................................................................................... IX 

TABLE OF CONTENTS ........................................................................................................................ XXVII 

LIST OF FIGURES ................................................................................................................................. XXXI 

LIST OF TABLES ................................................................................................................................ XXXIV 

LIST OF ABBREVIATIONS................................................................................................................. XXXVI 

GLOSSARY OF THE TECHNICAL TERMS ....................................................................................... XXXIX 

1. SYNTHESIS ................................................................................................................................ 1 

1.1. INTRODUCTION ........................................................................................................................................... 1 

1.2. ELECTROCHEMICAL PROCESSES .................................................................................................................. 3 

1.2.1 Electrooxidation .................................................................................................................................... 3 

1.2.2 Electrocoagulation................................................................................................................................. 4 

1.2.3 Electro-Fenton ....................................................................................................................................... 5 

1.2.4 Electrodialysis ....................................................................................................................................... 5 

1.3. AI TECHNIQUES .......................................................................................................................................... 6 

1.3.1 Artificial neural networks ...................................................................................................................... 6 

1.3.2 Support vector regression .................................................................................................................... 14 

1.3.3 Adaptive neuro-fuzzy inference system ................................................................................................ 17 

1.3.4 Metaheuristic algorithms for optimization .......................................................................................... 20 

1.4. PROBLEM STATEMENT, HYPOTHESIS, OBJECTIVES AND ORIGINALITY ....................................................... 22 

1.4.1 Problem statement ............................................................................................................................... 22 

1.4.2 Hypothesis............................................................................................................................................ 24 

1.4.3 Objectives ............................................................................................................................................ 26 

1.4.4 Originality............................................................................................................................................ 28 

1.5. GENERAL METHODOLOGY ........................................................................................................................ 28 

1.5.1 Data-driven approach.......................................................................................................................... 28 

1.5.2 Data collection ..................................................................................................................................... 29 

1.5.3 Data analysis ....................................................................................................................................... 31 

1.5.4 Assessment ........................................................................................................................................... 34 

1.5.5 Programming language and software ................................................................................................. 35 



 

xxviii 

 

1.5.6 Analytical Details ................................................................................................................................ 35 

1.6. THESIS ORGANIZATION ............................................................................................................................. 36 

2. REVIEW OF ARTIFICIAL INTELLIGENCE TECHNIQUES IN MODELLING OF 

ELECTROCHEMICAL PROCESSES FOR WATER AND WASTEWATER TREATMENT ...................... 38 

2.1. INTRODUCTION ................................................................................................................................... 40 

2.2. DATA SETS ............................................................................................................................................ 42 

2.2.1 Electrochemical processes ................................................................................................................... 42 

2.2.2 Size of data sets .................................................................................................................................... 58 

2.2.3 Data preprocessing .............................................................................................................................. 59 

2.3. PERFORMANCE EVALUATION ................................................................................................................... 61 

2.4. AI TECHNIQUES ................................................................................................................................... 62 

2.4.1 ANNs .................................................................................................................................................... 62 

2.4.2 SVR ...................................................................................................................................................... 66 

2.4.3 ANFIS .................................................................................................................................................. 67 

2.4.4 Evolutionary algorithms ...................................................................................................................... 68 

2.5. INSIDE THE BLACK-BOX MODELS ................................................................................................... 71 

2.5.1 Tuning AI model parameters ............................................................................................................... 71 

2.5.2 Regularization techniques to prevent overfitting ................................................................................. 76 

2.5.3 Sensitivity analysis ............................................................................................................................... 77 

2.6. CONCLUSIONS AND FUTURE PERSPECTIVES ............................................................................... 79 

3. ARTIFICIAL NEURAL NETWORKS AND GENETIC ALGORITHMS: AN EFFICIENT 

MODELLING AND OPTIMIZATION METHODOLOGY FOR ACTIVE CHLORINE PRODUCTION USING 

THE ELECTROLYSIS PROCESS .............................................................................................................. 82 

3.1. INTRODUCTION ......................................................................................................................................... 84 

3.2. EXPERIMENTAL PROCEDURE ..................................................................................................................... 87 

3.3. PROCESS MODELLING AND OPTIMIZATION ................................................................................................ 88 

3.3.1 ANNs modelling ................................................................................................................................... 88 

3.3.2 Learning curves ................................................................................................................................... 90 

3.3.3 Regularization factor ........................................................................................................................... 91 

3.3.4 Relative importance of input variables ................................................................................................ 92 

3.3.5 Genetic algorithm and multi-objective optimization ............................................................................ 92 

3.4. RESULTS AND DISCUSSION ........................................................................................................................ 95 

3.4.1 ANN modelling ..................................................................................................................................... 95 

3.4.2 Multi-objective optimisation with GA ................................................................................................ 104 

3.5. CONCLUSIONS......................................................................................................................................... 107 

ACKNOWLEDGEMENTS ........................................................................................................................................ 108 



 

xxix 

 

4. MODELLING AND OPTIMIZATION OF PSYCHOACTIVE PHARMACEUTICAL CAFFEINE 

REMOVAL BY ELECTROCHEMICAL OXIDATION PROCESS: A COMPARATIVE STUDY BETWEEN 

RESPONSE SURFACE METHODOLOGY (RSM) AND ADAPTIVE NEURO FUZZY INFERENCE 

SYSTEM (ANFIS) ..................................................................................................................................... 109 

4.1. INTRODUCTION ....................................................................................................................................... 111 

4.2. MATERIALS AND METHODS ..................................................................................................................... 115 

4.2.1 Preparation of the synthetic solution ................................................................................................. 115 

4.2.2 Real municipal wastewater treatment effluent ................................................................................... 115 

4.2.3 Electrolytic reactor setup ................................................................................................................... 115 

4.2.4 Analytical details ............................................................................................................................... 116 

4.2.5 Toxicity assessment ............................................................................................................................ 117 

4.2.6 Experimental design .......................................................................................................................... 118 

4.2.7 ANFIS modelling ............................................................................................................................... 119 

4.3. RESULTS AND DISCUSSION ...................................................................................................................... 121 

4.3.1 RSM modelling ................................................................................................................................... 121 

4.3.2 ANFIS modelling ............................................................................................................................... 129 

4.3.3 Contribution of direct-indirect oxidation in the removal of caffeine ................................................. 134 

4.3.4 Identification of caffeine by-products ................................................................................................ 137 

4.3.5 Application of electro-oxidation on real municipal wastewater effluent ........................................... 138 

4.3.6 Toxicity evaluation ............................................................................................................................. 141 

4.4. CONCLUSION .......................................................................................................................................... 143 

ACKNOWLEDGEMENTS ........................................................................................................................................ 144 

5. A COMPARISON OF ARTIFICIAL INTELLIGENCE MODELS FOR PREDICTING 

PHOSPHATE REMOVAL EFFICIENCY FROM WASTEWATER USING THE ELECTROCOAGULATION 

PROCESS. ................................................................................................................................................ 145 

5.1. INTRODUCTION ....................................................................................................................................... 147 

5.2. DEVELOPMENT OF THE AI MODELS ......................................................................................................... 149 

5.2.1 Data acquisition ................................................................................................................................. 149 

5.2.2 Adaptive neuro fuzzy inference system............................................................................................... 151 

5.2.3 Support vector regression .................................................................................................................. 151 

5.2.4 Artificial neural networks .................................................................................................................. 153 

5.2.5 Genetic algorithm .............................................................................................................................. 154 

5.2.6 Particle swarm optimization .............................................................................................................. 155 

5.3. RESULTS ................................................................................................................................................. 158 

5.3.1 ANFIS model ...................................................................................................................................... 158 

5.3.2 PSO-SVR and GA-SVR ...................................................................................................................... 159 



 

xxx 

 

5.3.3 GA-ANN and PSO-ANN ..................................................................................................................... 160 

5.3.4 Performance comparison of the proposed models ............................................................................. 161 

5.4. CONCLUSION .......................................................................................................................................... 165 

ACKNOWLEDGEMENTS ........................................................................................................................................ 166 

6. CONCLUSIONS AND PERSPECTIVES ................................................................................ 167 

APPENDIX I. SUPPLEMENTARY MATERIAL FOR CHAPTER 4 .......................................................... 170 

REFERENCES .......................................................................................................................................... 175 

 

  



 

xxxi 

 

LIST OF FIGURES 

Figure 1.1 Representation of an artificial neuron ............................................................. 7 

Figure 1.2 Schematic of the multi-layer feedforward ANN structure ................................ 9 

Figure 1.3 Loss function of SVM ................................................................................... 16 

Figure 1.4 The ANFIS structure .................................................................................... 18 

Figure 2.1 Frequencies of articles in literature regarding the size of the data sets ........ 58 

Figure 2.2 Frequencies of different independent variables used as AI model inputs in 

literature ................................................................................................................. 60 

Figure 2.3 Scheme of stacked neural networks as an ensemble machine learning 

technique ............................................................................................................... 64 

Figure 2.4 ANN-EA approaches for: i) finding optimal process conditions, ii) optimization 

of hyperparameters of ANN models ....................................................................... 69 

Figure 2.5 Hyperparameters of an ANN model ............................................................. 72 

Figure 3.1 Schematic of the MLP neural network used for the modelling and 

optimization of the active chlorine production ........................................................ 90 

Figure 3.2 Flowchart of ANN-GA methodology used for multi-objective optimization ... 94 

Figure 3.3 Mean learning curves for different numbers of training examples (Error bars 

are generated with 50 time training for each training set) ...................................... 96 

Figure 3.4 Impact of regularization factor on model performance ................................. 98 

Figure 3.5 Parity plots of predicted versus experimental values of active chlorine 

production and energy consumption for ANN and RSM models ............................ 99 

Figure 3.6 Importance (%) of the input variables on the electrochemical active chlorine 

production ............................................................................................................ 102 

Figure 3.7 Response surface graph of active chlorine production versus electrolysis 

time and current intensity, (A) ANN, (B) RSM ...................................................... 103 

Figure 3.8 Pareto fronts for multi-objective optimization of active chlorine production and 

energy consumption ............................................................................................. 105 

Figure 4.1 Schematic of the ANFIS structure (explanation in text) .............................. 120 

Figure 4.2 Contributions of different factors on caffeine removal ................................ 122 



 

xxxii 

 

Figure 4.3 Surface plots of the CCD models as a function of electrolysis time and 

current intensity at an initial caffeine concentration of 30 mg/L for the two anodes; 

(a) caffeine removal efficiency (%), and (b) energy consumption (Wh/mg) .......... 128 

Figure 4.4 Main effect plot of each independent variable on caffeine removal efficiency 

and energy consumption ...................................................................................... 129 

Figure 4.5 Surface plots of the ANFIS models as a function of electrolysis time and 

current intensity at the initial caffeine concentration of 30 mg/L for the two anodes; 

(a) caffeine removal efficiency (%), and (b) energy consumption (Wh/mg) .......... 133 

Figure 4.6 Parity plots of the experimental and predicted values for ANFIS and CCD 

models, (i) caffeine removal efficiency (%), and (ii) energy consumption (Wh/mg)

 ............................................................................................................................. 134 

Figure 4.7 Oxidation capacity measurement of  two supporting electrolytes versus time 

(current intensity=0.7 A; Electrolyte conc.= 7 mmol/L; anode= BDD) .................. 135 

Figure 4.8 Contribution of direct oxidation, indirect oxidation, and their combination in 

the removal of caffeine ......................................................................................... 136 

Figure 4.9 Proposed reaction pathways for the EO degradation of caffeine ............... 138 

Figure 4.10 Caffeine and TOC removal efficiency at: [initial caffeine]=47 ppm, current 

intensity= 0.7 A, and BDD anode ......................................................................... 138 

Figure 4.11 Caffeine and TOC removal efficiencies by an EO process under optimal 

conditions using real municipal wastewater effluent and a synthetic solution ...... 141 

Figure 4.12 Evaluation of mortality rate of Daphnia magna for the EO process .......... 143 

Figure 5.1 Flowchart of the proposed hybrid models .................................................. 158 

Figure 5.2 Performance evaluation of the developed AI models on the test sets of the 10 

subsets; (a) MSE, (b) R2, (c) MAPE ..................................................................... 164 

Figure 5.3 Boxplot comparison of the performance of the different AI models for the test 

sets using three performance criteria ................................................................... 165 

Figure AI. 1 Schematic diagram of the electrooxidation reactor for caffeine degradation

 ............................................................................................................................. 171 

Figure AI. 2 UV absorption spectra of caffeine during the EO process using BDD and Ti-

IrO2 electrodes (I=1.5 A, Na2SO4=1 g/L). ............................................................. 172 



 

xxxiii 

 

Figure AI. 3 Caffeine and TOC removal efficiency at optimal conditions: [initial 

caffeine]=13 ppm, current intensity= 0.7 A, and BDD anode ............................... 172 

Figure AI. 4 Schematic of the ANFIS model structure ................................................. 173 

Figure AI. 5 Effect of supporting electrolyte on caffeine degradation in synthetic solution 

at I=0.7 A, and [CAF]0=13 ppm ............................................................................ 173 

Figure AI. 6 Oxidation capacity measurement for different supporting electrolytes versus 

electrolysis time (current intensity=0.7 A; Electrolyte conc.= 7 mmol/L; anode= 

BDD) .................................................................................................................... 174 

Figure AI. 7 Evaluation of the immobility rate of Daphnia magna for the EO process . 174 

 

  



 

xxxiv 

 

LIST OF TABLES 

Table 1.1 Description of the dataset used for the first objective of this work from Zaviska 

et al. (2009) ............................................................................................................ 29 

Table 1.2 Description of the dataset used for the second objective of this work ........... 30 

Table 1.3 Description of the dataset used for the third objective of this work (Ano et al., 

2019) ...................................................................................................................... 31 

Table 2.1 Application of AI modelling of electrochemical oxidation for water and 

wastewater treatment processes............................................................................ 44 

Table 2.2 Application of ANNs for modelling of wastewater treatment by 

electrocoagulation .................................................................................................. 49 

Table 2.3 Applications of ANNs for the water and wastewater treatment using the EF 

process .................................................................................................................. 54 

Table 2.4 Applications of ANNs for water and wastewater treatment with ED process . 57 

Table 2.5 Performance evaluation criteria mostly used in the literature ........................ 61 

Table 3.1 Experimental operating conditions range ...................................................... 88 

Table 3.2 Feedforward backpropagation networks ....................................................... 97 

Table 3.3 Actual and predicted values of central composite designed experiments. .. 101 

Table 3.4 Decision variables of the electrolysis process corresponding to each of the 

Pareto front solutions presented in Figure 8. ....................................................... 106 

Table 4.1 The CCD matrix with observed and predicted responses ........................... 124 

Table 4.2 Optimal values of the process parameters for the maximum caffeine removal 

efficiency (%)........................................................................................................ 125 

Table 4.3 ANOVA results of the quadratic models for caffeine removal efficiency and 

energy consumption ............................................................................................. 127 

Table 4.4 The ANFIS model characteristics ................................................................ 131 

Table 4.5 Error analysis for the ANFIS models ........................................................... 131 

Table 4.6 Error analysis as function of the number of clusters for the FCM method ... 131 

Table 4.7 Performance Comparison between CCD and ANFIS models ..................... 133 

Table 4.8 Application of EO process for the removal of caffeine in municipal wastewater 

effluent ................................................................................................................. 140 



 

xxxv 

 

Table 4.9 Summary of the toxicity assessment results of the samples ....................... 143 

Table 5.1 Description of the dataset from Ano et al. (2019) used in this study ............ 150 

Table 5.2 Error analysis as a function of the number of clusters in ANFIS .................. 159 

Table 5.3 Effect of the kernel function on the SVR performance ................................. 160 

Table 5.4 Optimal hyperparameters and prediction accuracy results for the hybrid GA 

and PSO models .................................................................................................. 161 

Table 5.5 Performance evaluation of the developed AI models .................................. 162 

Table AI. 1 Characteristics of caffeine ......................................................................... 170 

Table AI. 2 Characteristics of the Quebec City municipal wastewater treatment effluent

 ............................................................................................................................. 170 

Table AI. 3 Experimental ranges and levels of the independent variables .................. 170 

  



 

xxxvi 

 

LIST OF ABBREVIATIONS 

AARE  : Average Absolute Relative Error 

AI   : Artificial Intelligence  

ANFIS  : Adaptive Neuro-Fuzzy Inference System  

ANN  : Artificial Neural Networks  

APC-ECF : Alternating Pulse Current Electrocoagulation-Flotation 

BDD  : Boron-Doped Diamond 

BOD  : Biological Oxygen Demand 

BP  : Back-Propagation Algorithm 

CCD  : Central Composite Design 

CCRD  : Central Composite Rotatable Design 

COD  : Chemical Oxygen Demand 

DB86  : Direct Blue 86  

DO  : Dissolved Oxygen 

EA   : Evolutionary Algorithms  

EC  : Electrocoagulation  

ED  : Electrodialysis 

EDCs   : Endocrine Disrupting Chemicals  

EF   : Electro-Fenton 

EO  : Electrooxidation  

FC   : Fecal Coliform 

FCM  : Fuzzy C-mean Clustering 

FD  : Factorial Design 

FFA   : Fire Fly optimization Algorithm 



 

xxxvii 

 

GA   : Genetic Algorithm 

GRNN  : Generalized Regression Neural Network 

HA  : Humid Acid 

LM   : Levenberg-Marquardt  Algorithm 

LM-BP  : Levenberg-Marquardt Back-Propagation  

MAPE  : Mean Absolute Percentage Error 

MLP  : Multilayer Perceptrons  

MSE  : Mean Squared Error 

MWWTP : Municipal Wastewater Treatment Plants 

NSGA  : Non-dominated Sorting Genetic Algorithm 

ORP  : Oxidation Reduction Potential 

OTC  : Oxytetracycline 

PAHs  : Polycyclic Aromatic Hydrocarbons 

PCBs  : Polychlorinated Biphenyls  

PSO   : Particle Swarm Optimization  

R2  : Coefficient of Determination 

RBF   : Radial Basis Function 

RMSE  : Root Mean Squared Error 

RSM   : Response Surface Methodology  

RY145 : Reactive Yellow 145  

SVM   : Support Vector Machine 

SVR  : Support Vector Regression  

TC   : Total Coliform 

TDS  : Total Dissolved Solids  



 

xxxviii 

 

TS  : Total Solids  

TSS  : Total Suspended Solids 

  



 

xxxix 

 

GLOSSARY OF THE TECHNICAL TERMS 

Term Definition 

Artificial intelligence Advanced analysis and logic-based techniques, including machine 

learning, to interpret events, support and automate decisions, and take 

actions. 

Machine learning The field of study that gives computers the ability to learn without 

explicitly being programmed. 

Artificial neural networks  Computing systems inspired by the biological neural networks that 

constitute animal brains. 

Back-Propagation Algorithm Widely used algorithm for training feedforward neural networks. 

Training algorithm A step-by-step procedure for adjusting the connection weights of an 

artificial neural network. 

Hyperparameters In machine learning, a hyperparameter is a parameter whose value is 

used to control the learning process. 

Underfitting When a data model is unable to capture the relationship between the 

input and output variables accurately, generating a high error rate on 

both the training set and unseen data. 

Overfitting When a model learns the detail and noise in the training data to the 

extent that it negatively impacts the performance of the model on new 

unseen data. 

Training set A data set of examples used during the training process and is used to 

fit the parameters (e.g., weights). 

Validation set A data set of examples, separate from the training set, that is used to 

validate our model performance during training. 

Test set A secondary (or tertiary)  data set of examples used to test a machine 

learning model after it has been trained on an initial training data set. 

Metaheuristic algorithms A class of stochastic algorithms using a combination of randomization 

and local search. 

Genetic algorithm A metaheuristic inspired by the process of natural selection that belongs 

to the larger class of evolutionary algorithms. 

Particle swarm optimization A population based stochastic optimization technique developed inspired 

by the social behavior of birds or schools of fish. 
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1. SYNTHESIS 

1.1. Introduction 

With the world’s rapid population growth and intense industrialization in the 20th century, 

environmental pollution has become a global problem with adverse impacts on the water 

sector. The vast majority of these pollution issues are caused by persistent organic 

compounds because of their resistance to conventional treatments such as physico-

chemical or biological methods. This results in the detection of refractory pollutants such 

as pesticides, phenolic compounds, synthetic dyes, halogenated compounds, polycyclic 

aromatic hydrocarbon (PAHs), polychlorinated biphenyls (PCBs), endocrine disrupting 

chemicals (EDCs), and others in rivers, lakes, oceans and even drinking waters all over 

the world. They can cause hazardous health effects on living organisms, including human 

beings. Therefore, advanced water and wastewater treatment have become a primary 

social, political, and environmental concern (Drogui et al., 2007; Moreira et al., 2017; 

Zheng et al., 2017).  

In recent years, electrochemical processes have been gaining attention as an alternative 

method for water and wastewater treatment. This is due to their high capability to remove 

persistent organic pollutants. For instance, it has been shown that electrochemical 

advanced oxidation processes are much more efficient than biological methods in the 

case of pharmaceutical pollutants (Tiwari et al., 2017). The removal efficiency using 

conventional activated sludge for Metoprolol and Ketoprofen were reported as 0% and 

50%, respectively. However, removal efficiency for Metoprolol using electro-Fenton and 

Ketoprofen using anodic oxidation are presented as 66% and 100%, respectively 

(Ganzenko et al., 2014; Jelic et al., 2011). 

 Electrochemical processes are considered eco-friendly and green technologies since the 

leading reagent involved, the electron, is regarded as a clean reagent and takes 

advantage of coupling chemistry (in situ generation of oxidant) with electronic science 

(electron transfer). Other attractive benefits include versatility, high energy efficiency, 

amenability to automation, reduced demand for chemicals, less sludge production in case 
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of electrocoagulation, and cost-effectiveness (Feng et al., 2016; Rajeshwar et al., 1997). 

On the other hand, disadvantages include production of toxic intermediate by-products in 

some cases, electrode fouling due to oxidation of pollutants on the electrode surfaces, 

and necessity of the wastewater to be conductive. Several publications focusing on 

different electrochemical methods such as electrooxidation, electrocoagulation, 

electroflotation, electro-Fenton, and electrodialysis have been published within the last 

decade for improving the treatment performance of wastewaters and drinking waters 

(Daghrir et al., 2013; Martín de Vidales et al., 2012b; Olvera-Vargas et al., 2015; Zhang 

et al., 2011).  

Process modelling is a requirement for process optimization. Phenomenological and 

empirical modelling approaches are generally used for water treatment processes. 

Although phenomenological modelling provides valuable insights into the behaviour of 

the process and has the ability of extrapolation, heat and mass transport phenomena 

along with detailed knowledge of the reaction kinetics are required. In empirical modelling, 

the structure of the data-fitting model should be specified a priori which makes it 

challenging as one needs to choose the suitable model from the numerous available 

ones, especially for nonlinear processes (Nandi et al., 2004).  Electrochemical processes 

for water treatment are highly complicated nonlinear systems due to the complex 

relationships between input parameters and outputs. It is thus difficult to use 

phenomenological or empirical models to model, simulate, and optimize the processes. 

Artificial intelligence techniques such as artificial neural networks (ANNs), adaptive neuro-

fuzzy inference system (ANFIS), support vector regression (SVR) along with genetic 

algorithms (GA) and particle swarm optimization (PSO) methods have emerged as 

attractive alternative approaches for modelling and optimization of these nonlinear 

processes in case phenomenological or conventional regression models are not practical 

(Curteanu et al., 2014).  

In this work, applications of artificial intelligence techniques focusing on their reliability 

and validation for the modelling of electrochemical processes for water treatment 

processes will be discussed.  On this matter, a comparison will be made between AI 

models and conventional modelling approaches (e.g., response surface methodology 

(RSM)). Furthermore, metaheuristic algorithms will be linked to AI models either for multi-
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objective optimization purposes or to optimize the hyperparameters of the AI models to 

increase their performances. 

1.2. Electrochemical processes 

Electrochemical methods, which take advantage of coupling chemistry (in situ generation 

of oxidant) with electronic science (electron transfer), have widely proved to be a clean, 

flexible and powerful tool for the development of new methods for wastewater treatment. 

Likewise, electrochemical treatment is generally characterized by simple equipment, easy 

operation, short retention time and negligible equipment for adding chemicals (Drogui et 

al., 2007). In the scope of modelling and optimization of these processes, four most 

applied electrochemical processes are briefly described here.     

1.2.1 Electrooxidation 

Municipal wastewater treatment plants (MWWTP) are not able to completely remove 

persistent organic pollutants, pesticides, and pharmaceuticals. Therefore, the persistence 

of these pollutants in the effluent is of particular importance because it can increase the 

risk of long-term exposure, which could be responsible for chronic toxicity and subtle 

effects on animals, plants and the aquatic environment (El-Hanafi et al., 2014). 

Electrochemical oxidation is a promising advanced oxidation technique for treating 

various wastewaters polluted by organic compounds (Aquino et al., 2014; Guitaya et al., 

2017; Martín de Vidales et al., 2012a; Senghor et al., 2015; Zaviska et al., 2012a; Zaviska 

et al., 2013). Since it combines chemistry (generation of in situ  oxidants) and electricity 

(electron transfer), it makes it an environmentally friendly technology (Jardak et al., 2016). 

Electrochemical oxidation occurs based on two different mechanisms: (i) direct oxidation: 

hydroxyl radicals (E°(OH°/H2O) = 2.80 V vs. SHE) are produced at the electrode surface 

by the oxidation of water molecules (Eq. (1.1)), and organic compounds can be 

completely mineralized or degraded by reacting with absorbed OH° radicals (Eq. (1.2)). 

(ii) indirect oxidation: Other radical systems can be promoted by the generation of 

different oxidant mediators in the bulk solution, such as H2O2, HClO and S2O8
2− (Daghrir et 

al., 2014; Tran et al., 2013).   
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M+ H2O → M(OH°) + H+ + e− (1.1) 

M(OH°) + Organics → M+ Oxidized products (1.2) 

1.2.2 Electrocoagulation 

Electrocoagulation (EC), which originates from chemical coagulation, produces in-situ 

coagulant agents (Fe2+/Fe3+ or Al3+) to effectively remove pollutants by deposition on the 

cathode electrode or by flotation caused by the generation of hydrogen gas at the cathode 

(Asselin et al., 2008a). The following equations describe the main reactions occurring in 

an EC cell: 

At the anode:  𝑀(𝑠) → 𝑀(𝑎𝑞)
𝑛+ + 𝑛𝑒− (1.3) 

At the cathode: 2𝐻2𝑂 + 2𝑒
− → 2𝑂𝐻− + 𝐻2 (1.4) 

In the bulk solution: 𝑀(𝑎𝑞)
𝑛+ + 𝑛𝑂𝐻− → 𝑀(𝑂𝐻)𝑛(𝑠) (1.5) 

where 𝑀(𝑠) is the metal, M(aq)
n+ refers to the metallic ion (iron or aluminum ion), M(OH)n(s) 

shows metallic hydroxide, and ne− is the number of electrons transferred in the reaction 

at the electrode. It is worth mentioning that Eq. (1.5) describes a simple case of metallic 

hydroxide formation. In fact, depending on the pH level and the type of metal involved, 

the formation of different metallic complex species is possible (Dia et al., 2017).  

EC has several advantages over chemical coagulation, such as easy automation, low 

salinity of the effluent after treatment, low footprint, and reduced production of solid 

residuals (Drogui et al., 2007). EC process has been widely studied for environmental 

applications to treat drinking water, urban wastewater, textile wastewater, restaurant 

wastewater, refractory oily wastewater, and heavy metal-containing wastewaters (Al-

Shannag et al., 2015; Asselin et al., 2008b; Daghrir et al., 2012; Elazzouzi et al., 2017; 

Kobya et al., 2014; Mólgora et al., 2013). 
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1.2.3 Electro-Fenton 

The Electro-Fenton (EF) process is an indirect electrochemical advanced oxidation 

process since hydroxyl radicals are not generated directly from charge transfer at the 

electrode level but in the solution from the well-known Fenton reaction. The electro-

Fenton process has been developed to overcome the drawbacks of the classical Fenton 

process and to increase the efficiency of pollutant degradation and removal (Ganzenko 

et al., 2014). In the Fenton process, homogeneous hydroxyl radicals (˙OH) are generated 

from Fenton's reagent, a mixture of H2O2 and Fe2+, added externally to the solution to be 

treated (Tran et al., 2010). In contrast, for the EF process, Fenton’s reagent is 

electrochemically produced at the cathode (Eq. (1.6)). The process is based on the 

continuous generation of hydrogen peroxide (H2O2) in an acidic medium through the 

electrochemical reduction of O2 at the cathode (Eq. (1.7)). Also, ferric cations (Fe3+) are 

reduced, and Fe2+ is formed (Eq. (1.8)). At the anode, by the oxidation of water, oxygen 

is produced (Eq. (1.9)) (Mansour et al., 2015; Monteil et al., 2018).    

Fe2+ + H2O2 → Fe3+ + ˙OH + OH− (1.6) 

O2 + 2H
+ + 2e− → H2O2 (1.7) 

Fe3+ + e− → Fe2+ (1.8) 

2H2O → O2 + 4H
+ + 4e− (1.9) 

EF has been widely applied to the treatment of organic pollutants in water. These studies 

include pharmaceuticals (Isarain-Chávez et al., 2010; Loaiza-Ambuludi et al., 2013; 

Panizza et al., 2014), dyes and textile wastewaters (Ghanbari et al., 2015; Kaur et al., 

2019), endocrine disrupting compounds (Rosales et al., 2018), pesticides (Abdessalem 

et al., 2010), polycyclic aromatic hydrocarbons (Yap et al., 2011), surfactants (Panizza et 

al., 2013) and landfill leachates (Atmaca, 2009).  

1.2.4 Electrodialysis 

Electrodialysis offers an electrochemical technique that removes ionic pollutants from an 

aqueous solution with the aid of an electrical potential difference used as a driving force, 
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producing two new solutions: one concentrate of ions and another consisting of almost 

pure water. The first solution can be reintroduced to an industrial process, and the water 

can be reused. In general, the ion separation efficiency in electrodialysis varies depending 

on the inherent characteristics of the ion exchange membrane, operating conditions, and 

physicochemical properties of the metal ions (de Barros Machado et al., 2014; Min et al., 

2019a). This process has been widely used for the treatment of industrial wastewaters, 

production of drinking and processed water from brackish water and seawater, recovery 

of valuable materials from effluents and salt production because of its high chemical 

stability, flexibility and high ionic conductivity due to its strong ionic characteristics (Shahi 

et al., 2002; Wu et al., 2019). 

1.3. AI techniques 

Fundamentals of AI techniques used in this thesis to model and optimize electrochemical 

processes for water treatment processes are reviewed in this section. These include 

ANN, SVM, ANFIS and metaheuristic algorithms. 

1.3.1 Artificial neural networks 

As the name implies itself, artificial neural networks, commonly referred to as “neural 

networks”, imitate the essential characteristics of the human brain, which itself is a highly 

nonlinear, complex, and parallel computer, such as self-adaptability, self-organization, 

and error-tolerant (Haykin, 1998; Singh et al., 2009).  

Aleksander et al. (Aleksander et al., 1990) have one of the famous descriptions of the 

neural networks: 

 “A neural network is a massively parallel distributed processor made up of simple 

processing units, which has a natural propensity for storing experiential knowledge and 

making it available for use. It resembles the brain in two respects: 

1. Knowledge is acquired by the network from its environment through a learning process. 

2. Interneuron connection strengths, known as synaptic weights, are used to store the 

acquired knowledge.” 
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ANNs, a form of machine learning (ML) model, are now competitive with traditional 

regression and statistical models in terms of utility (Abiodun et al., 2018). By the 

mentioned definition, ANNs can explore many competing hypotheses simultaneously 

using a massively parallel network composed of non-linear, relatively computational 

elements (neurons or nodes) interconnected by links with variable weights. This 

mentioned interconnected set of weights contains the knowledge generated by the ANN 

(Adya et al., 1998). Each neuron, at certain times, examines its inputs and computes an 

output called an activation. The new activation then is passed along those connections to 

other neurons. The mathematical model of an artificial neuron is represented in Figure 

1.1. The weights can have the + or – sign and thus may influence the receiving element 

to produce a similar or a different activation. The size of the weight determines the 

magnitude of the influence of a sending neuron’s activation upon the receiving neuron. 

These connections and weights are vital parameters in the ANN model since they 

determine the behaviour of the model (Abiodun et al., 2019; Gallant, 1993).  

 

Figure 1.1 Representation of an artificial neuron 

Generally, neural networks consist of independent variables (input layer), possible hidden 

layers, and an output layer.  

- The input layer receives information from the outside world to the network for processing.    

- As the name describes itself, the hidden layer has no connection with the outside world 

and computes the information received from the input layer and transfers it to the output 

layer. 
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- The output layer is responsible for receiving the processed information and sending it to 

the outside world.   

Artificial neural networks have been utilized in many different areas, including pattern 

classification, prediction and optimization, signal processing, process forecasting, 

modelling, and adaptive control (Baughman et al., 1995). ANNs have been used to 

anticipate the success or failure of banks and stock market estimates. Additionally, it is 

widely utilised in weather and climate forecasting, which aids in human safety and the 

security of assets including buildings, the environment, installations, homes, and 

transportation. Additionally, ANNs have been effectively used in a variety of agricultural 

fields such remote sensing, notably in the classification of crops and the calculation of 

crop yield (Abiodun et al., 2018). The main architectures of the artificial neural networks, 

considering how the different neurons are dispositioned and connected to each other as 

well as the composition of layers, can be divided as follows: (i) single-layer feedforward 

networks, (ii) multilayer feedforward networks, and (iii) recurrent networks. 

With the development of neural networks in recent years, other types of ANNs including 

the wavelet neural network, radial basis function, and the Elman neural network have 

been introduced (Elsheikh et al., 2019).  

Single-layer feedforward networks 

This type of artificial neural network has just one input layer that projects onto an output 

layer of neurons; in other words, the information always flows in a single direction from 

the input layer to the output layer, and not vice versa. These networks are usually applied 

to linear filtering and pattern classification problems (Da Silva et al., 2017).   

Multilayer feedforward networks 

The second type of artificial neural network is different from the single-layer feedforward 

networks in that one or more hidden layers with multiple neurons are present. Figure 1.2 

represents a typical multilayer feedforward artificial neural network. These networks are 

usually applied to diverse problems, including function approximation, pattern 

classification, system identification, process control, process optimization, and so on 

(Carvalho et al., 2011; Da Silva et al., 2017). The nature and complexity of the problem 
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in addition to the desired accuracy and the available data, would determine the number 

of the hidden layers and the corresponding number of neurons in each hidden layer.  

 

Figure 1.2 Schematic of the multi-layer feedforward ANN structure 

Recurrent networks 

The recurrent architecture consists of some neurons in a layer whose output signal would 

be used as an input signal for other neurons. This feedback feature results in a nonlinear 

dynamical behaviour which can be applied to time-variant systems, like time series 

prediction, system optimization, and process control (Jain et al., 1999). This presence of 

feedback structure has a significant impact on the learning capability of the network, 

hence producing current outputs with taking into consideration of the previous outputs. 

1.3.1.1 Learning process 

The process in which the connection weights of the network are adjusted and learned by 

using examples so that the ANN can perform a particular task is called learning (training). 

The objective of the learning process is to minimize an error function by searching for a 
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set of connection strengths to produce outputs that are close to the desired targets (output 

of any given input) (Hamed et al., 2004).  

The learning process is basically divided into three categories, supervised learning, 

unsupervised learning, and reinforcement learning. In supervised learning, an external 

teacher is involved who compares the actual output of the neural network with the desired 

target. In unsupervised learning, mainly used for pattern recognition or clustering, there 

is no performance evaluation of the system by a supervisor or any predetermined correct 

or incorrect answer. Thus, there is no need for additional input information or knowledge 

of the targets, and the neural network organizes itself with the correlations among input 

data to identify groups of similar input patterns. Reinforcement learning, one form of 

supervised learning, is the type of learning that only requires the fact that the result is 

good (correct) or bad (incorrect) and thus, requires less information  (Baughman et al., 

1995; Hammerstrom, 1993). 

1.3.1.2 Multilayer perceptrons and their training process  

Multilayer perceptrons (MLP) neural networks, which can be used to imitate human brain 

activities, consist of the input layer of source nodes, one or more hidden layers of 

computation nodes and an output layer that can include multiple nodes (Assefi et al., 

2014; Feng et al., 2008; Ridha et al., 2008). Between these layers, just the hidden and 

output layers are the processing layers. Usually, the dimensions of the first and last layers 

are defined by the studied problem, but there is no specified rule for determining the size 

of the hidden layer. Although there are some indications for the hidden layer dimension, 

in practice, a trial-and-error procedure is usually done (Padovese, 2002). The standard 

learning algorithm for MLP neural networks for any pattern recognition or function fitting 

process is known to be the back-propagation algorithm (BP) (Carvalho et al., 2011). The 

back-propagation algorithm can be viewed as a generalization form of the least mean 

square procedure (Haykin, 1998) that can be used to train multilayer neural networks. In 

the BP algorithm, data enters the network via the input layer, which merely transfers the 

data value to the hidden layer over-weighted connections. The hidden and output neurons 

process their inputs by multiplying each input by its weight, adding the product to a total 

amount, and passing through a function (transfer or activation function) to generate its 
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result. Each neuron is linked to all neurons in the next layer and the relationship between 

its inputs and output can be described as follows: 

𝑥𝑗 = 𝑓 (∑𝑦𝑖
𝑖

𝑤𝑗𝑖) (1.10) 

Where 𝑥𝑗 is the output of the neuron 𝑗, 𝑦𝑖 is the outputs of the neurons that are connected 

to 𝑗 and are considered as inputs to neuron 𝑗, 𝑤𝑗𝑖 are the weights of these connections, 

and 𝑓 is the linear or non-linear transfer (activation) function. The whole aim of the back-

propagation algorithm is to change the values of all the network weights in response to 

the minimum error between the predicted output and actual targets. During the BP 

algorithm, first, in the forward direction, the information is passed through the network, 

and a response is generated at each output node. Then an error is found based on the 

subtraction of the predicted response and the actual output target. In the backward 

process, the derivatives of the output errors are passed through the network to the hidden 

layer using the former values of the connection weights. BP algorithm redistributes the 

errors to each hidden node, and weights are adjusted accordingly. To minimize the sum 

of the network’s squared errors, the equation that changes the weights is as follows: 

∆𝑤𝑗𝑖(𝑚) = −𝜂 ×
𝜕𝐸

𝜕𝑤𝑗𝑖
+ 𝛼 × ∆𝑤𝑗𝑖(𝑚 − 1) (1.11) 

where 𝐸 is the error function being minimized, 𝜂 is the learning rate or step size parameter 

(related to changing the correction each time), 𝛼 is the momentum factor (related to 

oscillation and convergence), 𝑤𝑗𝑖 is a generic weight in the network, and m and 𝑚 − 1 are 

the two successive iterations (Ghaedi et al., 2017; Pendashteh et al., 2011). 

The error surface can resemble a bowl shape in which the goal is to find the bottom of 

the bowl- that is, the best set of weights. BP is programmed to achieve the set of weights 

whose sum of square errors is the smallest by calculating the instantaneous slope of the 

error surface with respect to the current weights. By incrementally changing the weights 

in the direction which is the locally steepest path toward the goal (bottom of the bowl), the 

training process will be accomplished. This process is called gradient descent which, by 



 

12 

 

aggregating the corrections during training, improves the overall accuracy of the network 

(Hammerstrom, 1993).  

Different transfer functions can be used as the neuron activation function to the sum of 

weighted inputs and biases. Generally, three transfer functions have been used mainly 

for MLP neural networks as homogeneous (all transfer functions are the same at the 

hidden and output layers) or heterogeneous (different combinations of transfer functions 

are used at the hidden and output layers) configurations. Log-sigmoid transfer function, 

which generates the outputs between 0 and 1 as the neuron's net input goes from 

negative to positive infinity, is often utilized and is as follows: 

𝑙𝑜𝑔𝑠𝑖𝑔(𝑛) =
1

(1 + exp (−𝑛))
 (1.12) 

Alternatively, the tan-sigmoid transfer function can be used as another sigmoid activation 

function which is often used for pattern recognition problems: 

𝑡𝑎𝑛𝑠𝑖𝑔(𝑛) =
2

(1 + exp (−2 ∗ 𝑛))
− 1 (1.13) 

 

Also, Purelin linear transfer function is used for function fitting problems: 

𝑝𝑢𝑟𝑒𝑙𝑖𝑛(𝑥) = 𝑥 (1.14) 

While these are the most commonly used transfer functions for MLP neural networks, 

other differentiable transfer functions can be created and used if desired (Ghaedi et al., 

2017; Khataee et al., 2010).  

Since the traditional BP uses a gradient descent algorithm to determine the network 

weights, it usually slows down near minima and computes rather slowly due to linear 

convergence. Hence, Levenberg-Marquardt (LM) algorithm, which is the blend of the 

simple gradient descent and the Gauss-Newton method and is much faster due to 

adopting the method of the approximate second derivative, is often utilized for MLP neural 
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networks (Singh et al., 2010). The following equation shows the algorithm for parameter 

updating: 

Δ𝑤 = −[𝐽𝑇𝐽 + 𝜇𝐼]−1𝐽𝑇𝐸 (1.15) 

where 𝐸 = [𝑒1  𝑒2 … 𝑒𝑝]
𝑇
is the vector of network errors, μ is learning rate (positive 

constant), I is the identity matrix, and J is the Jacobian matrix as follows: 

𝐽 =

[
 
 
 
 
 
 
 
𝜕𝑒1
𝜕𝑤1

   
𝜕𝑒1
𝜕𝑤2

  …   
𝜕𝑒1
𝜕𝑤𝑁

𝜕𝑒2
𝜕𝑤1

   
𝜕𝑒2
𝜕𝑤2

  …   
𝜕𝑒2
𝜕𝑤𝑁 .        .        …     .    

.        .        …     .  
𝜕𝑒𝑝

𝜕𝑤1
   
𝜕𝑒𝑝

𝜕𝑤2
  …   

𝜕𝑒𝑝

𝜕𝑤𝑁]
 
 
 
 
 
 
 

 (1.16) 

The learning rate μ is increased or decreased during training by a scale at weight updates. 

When μ is zero, it would be just Newton’s method, and when μ is large, it will become a 

gradient descent method with a small step size (Singh et al., 2009). LM is found to have 

the fastest convergence for training moderate-sized neural networks, where the training 

rate is 10 to 100 times faster than the usual gradient descent BP method (Pendashteh et 

al., 2011). 

Therefore, the process of modelling with ANNs can be explained in terms of the following 

steps: 

1. Data set collection, which includes analysis and pre-processing of the data. Usually, 

the data will be normalized due to very large or small weights to avoid numerical 

overflows.  

2. Constructing and training the neural network includes choosing the network 

architecture, training algorithm, activation functions, and network parameters. 

3. Test the trained and optimized network to evaluate the network performance based on 

performance criteria. 

4. Utilization of the best-trained network for simulation and prediction. 
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1.3.1.3 Over-fitting problem 

The selection of an appropriate number of neurons at the hidden layer is a crucial task in 

the MLP neural networks since too many neurons can cause a problem, so-called over 

fitting. In this case, the error on the training set is very low due to the very well learning 

process, but the error on the new data presented to the network is very high. The network 

has memorized the training data but has not learned the generalization ability (Valente et 

al., 2014). Regularly for obtaining network generalization, the method uses such a 

network which is large enough to provide an appropriate fit. Although it is difficult to have 

the perspective to know how large should be a network in each case, three generalization 

learning methods of cross-validation (early stopping), regularization, and pruning can be 

applied. Regularization is conducted by adding a penalty function to the training objective 

to minimize the complexity of the model and the prediction error simultaneously. Pruning 

physically omits some excessive neurons to generate the least size network. For the 

cross-validation (early stopping) method, the data set will be split into three non-

overlapping subsets. The training dataset, which is utilized for learning the network 

parameters; the validation dataset, which is used for monitoring the training process and 

for approximating the generalization error; and the test dataset which is an unseen set of 

data by the model during training, utilized for examining the unbiased generalization error 

of the trained network. In the early-stopping method, when the validation error rises over 

a number of iterations (due to over-fitting), the training algorithm stops, and the values of 

the weights and biases are returned to the point where the validation error was minimum 

(Chan et al., 2006; Zhang et al., 2003). 

1.3.2 Support vector regression 

Support vector machines (SVM), first presented by Boser et al. (Boser et al., 1992), with 

the basis of modern statistical machine learning techniques, have been widely applied to 

the classification and regression problems due to their promising generalization 

performance (Saradhi et al., 2007). In a simple binary classification problem, the basic 

idea of an SVM is to find a hyperplane having the maximum distance (margin) from both 

sides of the hyperplane. SVM can be adopted for regression problems, and the technique 
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will be called support vector regression (SVR). To reach the aim of estimating the 

predictor function (f), a loss function (L), which assesses the quality of a prediction (f(x)), 

is introduced by L(x, y, f(x)). There are different popular loss functions utilized for 

regression problems, such as ε-insensitive loss, Huber’s loss, logistic loss, and pinball 

loss (Van Messem et al., 2010).  

In SVR, the main goal is to obtain a predictor function (𝑓(𝑥)) that describes the 

relationship between inputs and output data with an error value less than 𝜀 deviation for 

all the training data. At the same time, the function 𝑓(𝑥) is required to be as flat as 

possible, meaning that the errors are not significant as long as they are less than 𝜀, but 

any deviation larger than this amount is not tolerated. This function can be written as: 

𝑓(𝑥) = 𝑤.𝜙(𝑥) + 𝑏 (1.17) 

where w is a weight vector, 𝜙(𝑥) is a mapping function in the feature space, and b is a 

bias. The coefficients of 𝑤 and b are determined by minimizing the following optimization 

problem: 

𝑀𝑖𝑛   
1

2
‖𝑤‖2 (1.18) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {
𝑦𝑖 − 𝑤.𝜙(𝑥𝑖) − 𝑏 ≤ 𝜀

𝑤.𝜙(𝑥𝑖) + 𝑏 − 𝑦𝑖 ≤ 𝜀
 (1.19) 

In real conditions, some data may not lie inside the 𝜀-insensitive zone or 𝜀-tube and to 

permit deviations for training data outside the 𝜀-tube, slack variables 𝜉, 𝜉∗ are introduced 

to the problem. Slack variables represent the difference between actual values and the 

corresponding boundary values of 𝜀-tube.  

Hence, the optimization problem can be rewritten as: 

𝑀𝑖𝑛   𝑅(𝑤, 𝜉, 𝜉∗) =  
1

2
‖𝑤‖2 + 𝐶∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑛

𝑖=1

 (1.20) 
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𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {

𝑦𝑖 − 𝑤.𝜙(𝑥𝑖) − 𝑏 ≤ 𝜀 + 𝜉𝑖
𝑤.𝜙(𝑥𝑖) + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖

∗

𝜉𝑖, 𝜉𝑖
∗ ≥ 0, 𝑖 = 1,2, … , 𝑛

 (1.21) 

where 𝑅 is the regression risk, and box constraint or penalty parameter 𝐶 is a positive 

value that determines the trade-off between the training error and generalization ability.  

The 𝜀-insensitive loss function can be defined as: 

𝐿(𝑒𝑖) = {
0                 𝑖𝑓 𝑒𝑖 ≤ 𝜀

|𝑒𝑖| − 𝜀       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
 (1.22) 

As Figure 1.3 shows, the points outside 𝜀-tube will be penalized in a linear fashion.         

 

Figure 1.3 Loss function of SVM 

To solve the quadratic convex optimization problem, the Lagrangian multipliers are 

introduced to obtain the dual Lagrangian form: 

𝑀𝑖𝑛    
1

2
∑(𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)𝐾(𝑥𝑖, 𝑥𝑗) + 𝜀∑(𝛼𝑖 + 𝛼𝑖

∗)

𝑛

𝑖=1

−∑𝑦𝑖(𝛼𝑖 − 𝛼𝑖
∗)

𝑛

𝑖=1

𝑛

𝑖,𝑗=1

 (1.23) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {
∑(𝛼𝑖

∗ − 𝛼𝑖)

𝑛

𝑖=1

= 0,       𝑖 = 1,2, … , 𝑛

0 ≤ 𝛼𝑖 ,   𝛼𝑖
∗ ≤ 𝐶, 𝑖 = 1,2, … , 𝑛

 (1.24) 
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Then the regression function can be given as:    

𝑓(𝑥) =∑(𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝑥𝑖, 𝑥) + 𝑏

𝑛

𝑖=1

 (1.25) 

where 𝛼𝑖 and 𝛼𝑖
∗ are the non-zero Lagrange coefficients, and 𝐾(𝑥𝑖, 𝑥) is the kernel function 

that transforms nonlinear inputs into higher-dimensional feature space. There are several 

kernel functions used in SVR, such as Linear, Polynomial, and Gaussian or Radial Basis 

Function (RBF):  

Linear: 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖𝑥𝑗  (1.26) 

Polynomial: 𝐾(𝑥𝑖, 𝑥𝑗) = (1 + 𝑥𝑖𝑥𝑗)
𝑞 (1.27) 

Gaussian or RBF: 𝐾(𝑥𝑖 , 𝑥𝑗) = exp (
−‖𝑥𝑖−𝑥𝑗‖

2

2𝜎2
) (1.28) 

where 𝑞 is the polynomial order and 𝜎 is the RBF kernel parameter. While all these kernel 

functions can be opted, the selection of suitable kernel functions and their parameters is 

essential for the SVR performance. 

1.3.3 Adaptive neuro-fuzzy inference system 

ANFIS was introduced by Jang (Jang, 1993), as a hybrid technique of artificial intelligence 

that combines a Sugeno-type Fuzzy Inference System (FIS) and an artificial neural 

network. Fuzzy Logic is utilized in ANFIS to produce fuzzy rules and map the inputs to an 

output based on a given input-output data set. ANFIS applies the neural network learning 

process to learn from a given set of training data (like an ANN model), the rules and 

membership functions for tuning the FIS parameters. Likewise, the solution mapped out 

into the fuzzy model is explained in linguistic terms based on IF-THEN fuzzy logic rules 

(Abdulshahed et al., 2015). 

Figure 1.4 shows the schematic of an ANFIS structure with two inputs, two rules and one 

output. As can be seen, the ANFIS structure includes five layers. Similar to ANN learning, 

ANFIS training comprises a forward pass and a backward pass. Output values are the 

results of the forward pass through the net. In the backward pass, the error is calculated 



 

18 

 

and is propagated back to the earlier layers in a similar manner as the backpropagation 

learning algorithm (Hussein, 2016).  

 

Figure 1.4 The ANFIS structure 

In a simple ANFIS architecture with two inputs and one output, the following steps will be 

carried out: 

Input layer: In the Input layer, inputs are introduced to the ANFIS network.  

Layer 1: The first layer is called the fuzzification layer which generates membership 

functions (MF) for each of the inputs. The nodes in this layer are adaptive nodes which 

have adjustable premises parameters related to input membership functions.  

𝑂1,𝑖 = 𝜇𝐴𝑖(𝑋1),    𝑓𝑜𝑟 𝑖 = 1,2 (1.29) 

𝑂1,𝑖 = 𝜇𝐵𝑖−2(𝑋2),   𝑓𝑜𝑟 𝑖 = 3,4 (1.30) 

where 𝑋1and 𝑋2 are the inputs to node 𝑖, 𝐴𝑖 and 𝐵𝑖 are the linguistic labels associated 

with this node, 𝜇(𝑋1) and 𝜇(𝑋2) are the membership functions. Fuzzy membership values 

can be computed by various membership functions. For instance 
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Gaussian: (𝑥; 𝜎, 𝑐) = 𝑒
−(𝑥−𝑐)2

2𝜎2  ;  where 𝜎 is the standard deviation, and c is the mean. 

Generalized bell-shaped: (𝑥; 𝑎, 𝑏, 𝑐) =
1

1+|
𝑥−𝑐

𝑎
|
2𝑏 ; where 𝑎, 𝑏, and 𝑐 are the parameters.  

Triangular: 𝑓(𝑥; 𝑎, 𝑏, 𝑐) =

{
 
 

 
 
0,                𝑥 ≤ 𝑎
𝑥−𝑎

𝑏−𝑎
,   𝑎 ≤ 𝑥 ≤ 𝑏

𝑐−𝑥

𝑐−𝑏
,   𝑏 ≤ 𝑥 ≤ 𝑐

0,                𝑐 ≤ 𝑥}
 
 

 
 

; where 𝑎, 𝑏, and 𝑐 are the parameters. 

Layer 2: In this layer, the so-called rule layer, the firing strength of each rule is calculated. 

The nodes are fixed nodes. Fuzzy operators (e.g., AND) are involved in this layer.  

𝑂2,𝑖 = 𝑤𝑖 = 𝜇𝐴𝑖(𝑋1). 𝜇𝐵𝑖(𝑋2),   𝑓𝑜𝑟 𝑖 = 1,2 (1.31) 

where 𝑂2,𝑖 is the output of layer 2, and 𝑤𝑖 represents the firing strength of the rule. 

Layer 3: This layer is called the normalization layer, and it computes the normalized value 

of the firing strength of each rule with respect to the firing strength of all rules. Every node 

in this layer is a fixed node. 

𝑂3,𝑖 = �̅�𝑖 =
𝑤𝑖

𝑤1 + 𝑤2
,   𝑓𝑜𝑟 𝑖 = 1,2 (1.32) 

Layer 4: The fourth layer or defuzzification layer is an adaptive layer which calculates the 

values of the consequences of the rules. Consequent parameters in a p-th order 

polynomial function of the input signals (used in the Sugeno model) are adaptive 

parameters in this layer that must be adjusted. The output of a first-order polynomial 

function is calculated as follows 

𝑂4,𝑖 = �̅�𝑖𝑓𝑖 = �̅�𝑖(𝑝𝑖𝑋1 + 𝑞𝑖𝑋2 + 𝑟𝑖),   𝑓𝑜𝑟 𝑖 = 1,2 (1.33) 

where �̅�𝑖 is the output of layer 3, and 𝑝𝑖, 𝑞𝑖, and 𝑟𝑖 are the consequent parameters. 

Layer 5: In the final layer or the sum layer, the final output is calculated by summation of 

all incoming signals. 
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𝑂5,𝑖 =∑�̅�𝑖𝑓𝑖
𝑖

=
∑ 𝑤𝑖𝑓𝑖𝑖

∑ 𝑤𝑖𝑖
 (1.34) 

The two IF-THEN rules for the ANFIS architecture described above would be represented 

as: 

Rule 1: IF 𝑋1 is 𝐴1 AND 𝑋2 is 𝐵1, THEN 𝑓1 = 𝑝1𝑋1 + 𝑞1𝑋2 + 𝑟1. 

Rule 2: IF 𝑋1 is 𝐴2 AND 𝑋2 is 𝐵2, THEN 𝑓2 = 𝑝2𝑋1 + 𝑞2𝑋2 + 𝑟2. 

1.3.4 Metaheuristic algorithms for optimization 

Metaheuristic algorithms have received growing attention in recent years among 

optimization techniques. Population based algorithms (e.g., genetic algorithms and 

particle swarm optimization) are effective metaheuristic search methods that try to 

capture global solutions to complex optimization problems while maintaining robustness 

and flexibility. These algorithms do not need any type of fitness gradient information to 

operate, and they can get out of local minima where deterministic optimization 

approaches could fail or are not applicable (Ryan, 2003). These optimization algorithms 

have been coupled with AI models in two ways. First, they have been applied in 

optimization procedures where the objective is to determine the optimum conditions for 

the best value of the system output. Secondly, they have been used in the training 

process of the AI models as an alternative optimization algorithm (besides general 

training algorithms such as back-propagation) or to find optimal hyperparameters of the 

AI models. Between various metaheuristic algorithms, genetic algorithms and particle 

swarm optimization have been widely used in literature (Alam et al., 2020; Kulkarni et al., 

2015).    

1.3.4.1 Genetic algorithms 

GAs with good global searching ability and flexibility, ease of operation and without the 

need for gradient information of the objective (fitness) functions have become powerful 

techniques for optimization problems (Curteanu et al., 2007; Ding et al., 2011b). In GA, a 

chromosome (also sometimes called a genotype) is a set of parameters which define a 
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proposed solution to the problem that the GA is trying to solve by searching through the 

space of possible chromosome values. The major steps of a GA are as follows: 

1. Initial population and chromosome representation: GA starts with the generation of a 

set of individuals (population) whose chromosomes are stochastically chosen. All the 

individuals in the initial population are evaluated by the fitness (loss) function and 

submitted to the genetic operators defined below. 

2. Fitness/ cost function: The fitness or cost function evaluates how an individual is 

adapted to its environment. Any performance criteria (e.g., mean squared error) can be 

used as a fitness or cost function. 

3. Genetic Operators: 

i) Selection: Three selection operators are employed to select the most fitted individuals 

as the first and second parent based on their fitness evaluations to go through the 

crossover, namely Roulette wheel, Tournament, and Random selection (Zhong et al. 

2005). 

 ii) Crossover: In the crossover process, genes of the two individuals (parents) selected 

are exchanged to form offsprings with mixed characteristics.  

iii) Mutation: Just like a biological phenomenon to keep genetic diversity, the mutation is 

introduced in GA too. Mutation randomly changes the information in a gene as a 

stochastic factor to create another individual hoping that it has a better fitness evaluation.  

The generation of new populations and calculation of the fitness value for each population 

is repeated over and over in an iterative method. When a specific termination criterion is 

met, e.g., when there is no more change in the population from one iteration to the next 

or when a satisfactory fitness value is identified, this process ends (Ansari et al., 2014; 

Niculescu, 2003; Ridha et al., 2008).   

1.3.4.2 Particle swarm optimization  

The particle swarm optimization algorithm, first introduced by Kennedy and Eberhart 

(Kennedy et al., 1995), is based on social behaviour simulation of a flock of birds called 

‘swarm’, searching for food. PSO is also a stochastic population-based optimization 
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approach in which particles, a swarm of potential solutions, fly in the problem space to 

find better regions and, finally, the optimal solution while cooperating and competing with 

other ones (Chen et al., 2010). In PSO, a particle is analogous to a chromosome 

(population member) in GA and represents a candidate solution to the problem being 

studied (Eberhart et al., 1998). Each particle’s condition is changed by the impact of three 

factors: (1) its own inertia; (2) the personal most optimal position; and (3) the swarm’s 

most optimal position (Juneja et al., 2016). In the d-dimensional search space of the 

problem, particle i of the swarm can be represented by 𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑑). The velocity 

of this particle and the best previous position, which is the position giving the best fitness 

value, are represented as 𝑉𝑖 = (𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝑑), 𝑃𝑖 = (𝑝𝑖1, 𝑝𝑖2, … , 𝑝𝑖𝑑). Also, the global best 

position, the position of the best individual, is noted as 𝐺 = (𝑔1, 𝑔2, … , 𝑔𝑑) (Talebi et al., 

2010). The velocity and position of the particles are updated as follow: 

𝑉𝑖
𝑗+1

= 𝜔 ∗ 𝑉𝑖
𝑗
+ 𝑐1 ∗ 𝑟𝑎𝑛𝑑1 ∗ (𝑃𝑖

𝑗
− 𝑋𝑖

𝑗
) + 𝑐2 ∗ 𝑟𝑎𝑛𝑑2 ∗ (𝐺𝑖

𝑗
− 𝑋𝑖

𝑗
) (1.35) 

𝑋𝑖
𝑗+1

= 𝑋𝑖
𝑗
+ 𝑉𝑖

𝑗+1
 (1.36) 

where 𝑉𝑖
𝑗+1

 and 𝑋𝑖
𝑗+1

 are the updated velocity and position vector of particle i, 𝜔  is the 

momentum or inertia weight factor, 𝑐1 and 𝑐2 are the learning factors, and 𝑟𝑎𝑛𝑑1 and 

𝑟𝑎𝑛𝑑2 are random numbers between (0,1) (Moghaddam et al., 2012). Detailed 

information about GA and PSO algorithms can be found in the literature (Juneja et al., 

2016; Whitley, 1994).     

1.4. Problem statement, hypothesis, objectives and originality 

1.4.1 Problem statement 

Electrochemical processes have gained increasing interest as an alternative method for 

the treatment of polluted waters. These processes are considered eco-friendly and green 

technologies since the leading reagent involved, the electron, is regarded as a clean 

reagent and takes advantage of coupling chemistry (in situ generation of oxidant) with 

electronic science (electron transfer). Electrochemical systems offer several advantages 

over other approaches, such as versatility, operation at ambient temperature and 
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pressure, amenability to automation, and capability to adjust to variations in influent 

composition and flow rate. Several publications focusing on different electrochemical 

methods such as electrooxidation, electrocoagulation, electroflotation, electro-Fenton, 

and electrodialysis have been published within the last decade for improving the 

treatment performance of wastewaters and drinking waters.  

The necessary improvements in electrochemical process performances and operation 

require better modelling in view of design and optimization. Process modelling is 

important to help improve the design and reduce both equipment and operating costs. It 

can provide robust and accurate solutions to electrochemical challenges and thus enable 

to predict process performances under a wide range of operating conditions. 

Process modelling is a prerequisite for process optimization. Phenomenological and 

empirical modelling approaches are generally used for water treatment processes. 

Phenomenological modelling provides valuable insights into the behaviour of the process 

and has the ability of extrapolation. On the other hand, heat and mass transport 

phenomena, along with detailed knowledge of the reaction kinetics, are required for 

phenomenological models based on an electrochemical process. Collecting this is a 

difficult task for a multivariate system, especially when limited knowledge is available. 

Moreover, the nonlinear behaviour of electrochemical processes results in complex 

nonlinear models, which in most cases are not flexible to analytical solutions; they thus 

require computationally intensive numerical methods to solve. 

Empirical (regression) modelling is one of the alternative modelling approaches for 

phenomenological modelling. In most cases, a quadratic linear regression model will be 

selected that is often not adequate to describe the nonlinearities of the systems.  

Electrochemical processes for water treatment are highly complicated nonlinear systems 

due to the complex relationships between input parameters and outputs. This is due to 

the fact that several mechanisms usually happen at the same time in an electrochemical 

system. For instance, In the electrocoagulation process detailed mechanisms of charge 

transport, electrochemical kinetics, thermodynamics, adsorption isotherms and kinetic 

models, flocculation, flotation, settling, and complexation should be known. Also, in 

electrooxidation, the concentration of every compound in an electrochemical cell depends 
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on time and space, that is, their distance from the electrode surface. Describing the profile 

of compounds under such conditions involves a number of partial differential equations, 

which are often difficult to solve and involve many model parameters. The complexity of 

these models depends on the number of species included in the model. In a multivariable 

model, all the significant species in an electrochemical cell are included. This however 

requires further knowledge on reaction pathways to account for subsequent formations 

and transformations. 

Therefore, it is not always the best option to use phenomenological or conventional 

empirical models to model, simulate, and optimize the processes. In these situations, 

artificial intelligence techniques based on data-driven models such as artificial neural 

networks are an attractive alternative method. They could overcome the classical 

modelling difficulties, having the following advantages: the possibility to apply them even 

on multiple input–multiple output complex nonlinear processes, the ability to be 

constructed solely from historic process input-output data (experimental dataset), and 

excellent generalization ability when adequately trained. On the other hand, the 

disadvantages seem to be obtaining a reliable and robust model with a limited number of 

experimental data available. Therefore, this study aims to apply artificial intelligence 

techniques focusing on their reliability and robustness to model and optimize 

electrochemical processes for water treatment. This includes comparing AI models over 

conventional modelling approaches (e.g. RSM), linking metaheuristic algorithms to AI 

models for multi-objective processes, and optimizing the hyperparameters of the AI 

models to increase their performance.  

1.4.2 Hypothesis 

According to the problem statement, the present study includes the following hypotheses: 

 

Hypothesis 1: ANNs are one of the artificial intelligence methods that could be effectively 

used to model electrochemical processes for wastewater treatment.  

Artificial neural networks have some considerable advantages over other empirical 

methods that make them practical for the modelling of electrochemical processes. First 

of all, ANNs have massive parallel connections between the nodes. Each node operates 
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independently from the other ones and has a slight effect on the input-output pattern. This 

parallelism feature helps ANNs have better performance than empirical models, 

especially in complex electrochemical nonlinear processes. Furthermore, ANNs are 

adaptive to be trained multiple times, meaning that whenever the network performance is 

inadequate due to any change in the conditions, ANNs can be trained further with new 

conditions to enhance their performance. This adaptive feature is not common with 

empirical models. Multiple-input and multiple-output (MIMO) characteristic of ANNs is 

another aspect that makes them a suitable option for modelling electrochemical 

processes. ANNs can map many independent variables to as many dependent variables 

as needed, which is a unique feature compared to other empirical models. Also, unlike 

RSM, experimental design and selecting the structure of the data-fitting model a priori is 

not a prerequisite for ANNs. This is beneficial, especially for nonlinear processes where 

choosing a suitable model from the numerous available ones makes it challenging. 

 

Hypothesis 2: Evolutionary algorithms linked to AI models outperform other approaches 

(e.g. RSM) for multi-objective optimization. 

Evolutionary algorithms linked to AI models are helpful for multiple input–multiple output 

complex nonlinear processes. There is no unique solution to a multi-objective optimization 

problem but a set of mathematically equally good solutions known as nondominated or 

Pareto optimal solutions. In this regard, highly robust metaheuristic evolutionary 

algorithms like GAs can be linked to AI models for multi-objective optimization problems. 

GAs can outperform conventional optimization methods because they do not require the 

objective function to be continuous and/or differentiable, they do not require extensive 

problem formulation, and they are not sensitive to starting point. 

 

Hypothesis 3: Optimizing the hyperparameters of AI models will lead to a better 

modelling performance of electrochemical processes for water treatment. 

The performance of AI models very much depends on the optimization of built-in 

hyperparameters which control the learning process. For instance, in the case of ANN 

models, these hyperparameters include learning rate, number of epochs, maximum 
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validation failure, regularization factor, number of hidden layers and hidden neurons, and 

transfer functions.  

1.4.3 Objectives 

The overall objective of this study is to apply and optimize artificial intelligence models for 

modelling and optimization of electrochemical processes for water treatment. In other 

words, this research aims to demonstrate and compare the capability and performance 

of optimized AI models with other conventional types of modelling and optimization 

approaches used in electrochemical processes for water treatment. The specific 

objectives of this study are as follows: 

1.4.3.1 Specific Objectives 

Objective 1: Comparing AI models with other conventional modelling approaches 

such as RSM used for modelling and optimization of electrochemical systems 

The response surface methodology has been widely used to study the effect of different 

variables on the response for modelling and optimization of electrochemical systems. It 

helps to minimize the number of experiments while obtaining an optimal response using 

well-designed experiments. Despite the RSM benefits, sometimes, the impact of various 

operational parameters in complex nonlinear electrochemical processes cannot fully be 

defined by a simple linear multivariate correlation. Because of this, one of the main 

objectives of this study is to compare the performance of AI and RSM modelling 

approaches.   

Also, evolutionary algorithms such as GA will be used in this study for multi-objective 

optimization of electrochemical processes for wastewater treatment. For multi-objective 

optimization problems, there is no unique solution which is what is typically obtained by 

RSM. Instead, a set of mathematically equally good solutions, known as Pareto optimal 

solutions, are obtained. In this study, evolutionary optimization algorithms will be linked 

to ANN models to improve operational conditions since electrochemical processes 

require introducing energy and minimum experimental time to achieve good process 
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efficiencies. This approach can optimize experimental conditions by enhancing 

removal/production efficiencies and reducing energy costs. 

 

Objective 2: Modelling and optimization of caffeine degradation by electrochemical 

oxidation   

ANFIS, as another AI modelling technique, is used in this part of the thesis for caffeine 

degradation by electrochemical oxidation. Caffeine is selected as a psychoactive 

pharmaceutical model pollutant for the electrochemical oxidation process. The 

degradation of caffeine by electrochemical oxidation will be studied by considering the 

effect of the current intensity, initial concentration of caffeine, electrolysis time, and anode 

type. The BDD and IrO2 have been selected as non-active and active anodes for this 

purpose. Based on the experimental design, a factorial design (FD) followed was 

developed to investigate the main and interaction effects of different factors on caffeine 

removal efficiency. Quadratic polynomial models using CCD determined the optimal 

experimental conditions for caffeine degradation and energy consumption. Furthermore, 

the results provided by CCD were compared with the ANFIS predicted values. 

 

Objective 3: Optimizing hyperparameters of AI models to find the optimally tuned 

models and increase the reliability and robustness of the developed AI models 

With the significant investment of time and money in experimental work, a limited number 

of samples in datasets are available for data-driven models. AI models include built-in 

hyperparameters that should be fine-tuned so that the model can solve the machine 

learning problem to its full potential. These hyperparameters control the learning process, 

which directly impacts the model performance. In the case of ANN models, these 

hyperparameters include learning rate, number of epochs, maximum validation failure, 

number of hidden layers and hidden neurons, and transfer functions. For SVR models, 

the penalty factor, margin of error tolerance, and the type of kernel function and the kernel 

parameters should be optimally selected. Membership functions and the number of 

clusters affect the performance of ANFIS models. Based on the literature review, 

hyperparameter selection of the ANNs models has not been studied thoroughly and 
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usually involves a trial-and-error approach, which consumes time and computing 

resources. It is thus highly desirable to have a method to automatically search for the 

optimal hyperparameters efficiently. In this study, a deep investigation of AI models’ 

hyperparameters will be conducted to demonstrate the effects of these parameters on 

model performance.   

1.4.4 Originality 

Artificial intelligence techniques, mainly ANNs, have often been utilized for modelling and 

optimization of electrochemical processes for water treatment. Despite the variety of 

applications, the reliability and robustness of AI models due to a limited number of 

experimental data available have not been thoroughly considered in the field. Therefore, 

in this study, an intensive effort has been made on AI models’ validation and optimizing 

their inherent hyperparameters. The usual way for hyperparameter optimization is the 

trial-and-error method. In this work, this will be done by applying different metaheuristic 

algorithms linked to AI models for optimizing their hyperparameters.  

Another part of the originality of this study is due to applying AI techniques to data that 

already have been used for other modelling approaches (e.g. RSM) to compare their 

performance over these techniques. Data from previous works in our research group and 

literature will be used in this domain.   

Finally, a comparative study between RSM and ANFIS for modelling and optimization of 

psychoactive pharmaceutical caffeine removal by electrochemical oxidation by two active 

and non-active anodes in synthetic and real wastewater that have not been studied before 

will be discussed.  

1.5. General methodology  

A brief explanation of the general methodology used in this work will be explained in this 

section. 

1.5.1 Data-driven approach 

While many models in the field of electrochemical processes are conventional empirical 

(RSM), we attempted to develop data-driven predictive models. This was driven by their 
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high capability to describe the nonlinear input-output relationships related to the 

electrochemical processes used for water treatment.  

1.5.2 Data collection 

In this thesis, data from previous experiments and from the literature were used. For the 

first objective, the data was derived from a study in our group with the title “Statistical 

optimization of active chlorine production from a synthetic saline effluent by electrolysis 

(Zaviska et al., 2012b)”. Experimental design of the electrochlorination process was 

carried out using successively factorial design (FD) and central composite design (CCD) 

methodology. The experiments consisted of 16 experiments for FD and extra 14 

experiments for CCD, a total of 30 experiments. Table 1.1 shows the description and 

statistical parameters of the dataset used in this study. 

Table 1.1 Description of the dataset used for the first objective of this work from Zaviska et al. (2009) 

Statistical 

parameters 

 
Independent variables/Inputs 

 Dependent 

variables/Outputs 

 
Electrolysis 

time (min) 

Current 

intensity 

(A) 

[H3O+] 

(M) 

[NaCl] 

(M) 
 

HClO 
production 

(mg/l) 

Energy 

consumption 

(kWh/m3) 

Number of 

samples 

 
30 30 30 30  30 30 

Range  15-35 0.8-1.6 0.05-0.11 0.3-0.8  0.1-46.6 0.083-0.820 

Average  25 1.2 0.08 0.55  14.15 0.362 

Standard 

deviation 

 
9 0.4 0.03 0.23  13.78 0.217 

The assays were carried out in a batch electrolytic reactor with 400 ml of capacity made 

in PVC material with a dimension of 135 mm (L)×35 mm (l)×140 mm (h). The electrolytic 

cell comprised a rectangular anode of Ti/IrO2 in the form of expanded metal and 

rectangular stainless steel (SS) plate used as a cathode electrode. 
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For the second objective, in which ANFIS is utilized as an AI technique, the experimental 

data obtained from the psychoactive pharmaceutical caffeine removal by electrochemical 

oxidation (EO) process was utilized for modelling and optimization purposes. The 

description and statistical parameters of the dataset are represented in Table 1.2.  

Table 1.2 Description of the dataset used for the second objective of this work  

Statistical 

parameters 

 
Independent variables/Inputs 

 Dependent 

variables/Outputs 

 
Electrolysis 

time (min) 

Current 

intensity 

(A) 

[Caffeine]0 

(M) 

Anode 

type 
 

Removal 
efficiency 

(%) 

Energy 

consumption 

(Wh/mg) 

Number of 

samples 

 
40 40 40 40  40 40 

Range  13-47 0.7-2.3 13-47 BDD/IrO2  5.11-100 0.27-6.78 

Average  30 1.5 30 -  50.72 2.32 

Standard 

deviation 

 
8.4 0.41 8.4 -  32.62 1.71 

Based on the experimental design, a factorial design (FD) followed was developed to 

investigate the main and interaction effects of different factors on caffeine removal 

efficiency. Quadratic polynomial models using CCD determined the optimal experimental 

conditions for caffeine degradation and energy consumption. The electrolytic cell used 

was made of Plexiglas material with a dimension of 17.1 cm (depth) × 3.3 cm (width) × 

11.4 cm (length). It was comprised of one anode and one cathode with an interelectrode 

gap of 1 cm. Lab-scale electrolysis of 460 cm3 of caffeine solutions was carried out under 

galvanostatic conditions with current intensity ranging from 0.7 to 2.3 A (10.3 to 33.8 mA 

cm-2) according to FD and CCD matrices. 

Finally, for the third objective dealing with hyperparameter optimization of AI models with 

metaheuristic algorithms, data from literature was used (Ano et al., 2019). Table 1.3 

shows the description and statistical parameters of the dataset used for this part of the 
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study. A total number of 62 experimental data for phosphate removal from synthetic 

wastewaters using the electrocoagulation process was gathered. In their study, factorial 

design (FD) and central composite design (CCD) as response surface methodology were 

used to investigate the effect of current intensity, initial phosphate concentration, initial 

solution pH, treatment time, and electrode type. 

Table 1.3 Description of the dataset used for the third objective of this work (Ano et al., 2019)  

Statistical 

parameters 

 
Independent variables/Inputs 

 Dependent 

variable/Output 

 Current 
Intensity 

(A) 

[Phosphate]0 

(mg/L) 
pH 

Treatment 
time 
(min) 

Electrode 

type 
 

Removal 
efficiency 

(%) 

Number of 

samples 

 
62 62 62 62 62  62 

Range  0.25-1.25 15-75 2-10 10-90 Al/Fe  29.17-100 

Average  0.75 45 6 50 -  74.02 

Standard 

deviation 

 
0.22 13.3 1.77 17.74 -  20.59 

1.5.3 Data analysis 

1.5.3.1 Data preprocessing  

After initial data collection, data preprocessing was necessary to manipulate the data into 

a usable format for ingestion by the AI models. Feature standardization has been selected 

as the Eq. (1.37) and returns a standardized version of feature (input) X where the mean 

value of each feature is 0, and the standard deviation is 1.  

y =
Xi − μi
Si

 (1.37) 

where y is the standardized value of Xi. The μi and the Si are the mean and standard 

deviation values of Xi, respectively. 
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Standardization helps because it ensures that the network’s learning regards all input 

features to a similar extent, and no single variable directs model performance in one 

direction just because they are greater numbers.  

1.5.3.2 ANN 

Feedforward MLP neural networks with one input layer, one hidden layer, and one output 

layer are used in this work to map the inputs to the outputs. Gradient descent and 

Levenberg-Marquardt have been used as the learning algorithm for training the neural 

network.  

Learning curves 

Learning curves of model performance on the training and validation datasets can 

diagnose an underfit (high bias), overfit (high variance), or well-fit model. A learning curve 

demonstrates how the error varies with an increase in the training set size and shows if 

one needs a more complex model for the predictions or not. In this work, learning curves 

will be plotted for the training samples.  

Regularization factor 

The regularization parameter (lambda) is an input to the ANNs model to reduce 

overfitting, which reduces the variance of the estimated regression parameters. In other 

words, this technique discourages learning a more complex or flexible model so as to 

avoid the risk of overfitting. It is defined as a term added to the cost function of the model 

(Eq. (1.38)).  

J(θ) =
1

2m
[∑(hθ(x

(i)) − y(i))
2
+ λ∑θj

2

n

j=1

m

i=1

] (1.38) 

where J(θ) is the cost function (error), m is the number of the data points, x is the input 

neuron, hθ(x
(i)) is the predicted value of sample i, y(i) is the actual value of sample i, λ 

regularization parameter, and θ is the network parameters. The regularization parameter 

𝜆 is a control of the fitting parameters.  

Relative importance 
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Despite the black-box nature of ANNs, It is possible to carry out sensitivity analysis on 

the neural networks to indicate the influence of different input variables on the model’s 

results. The level of participation of each input variable in the simulation of the desired 

output can be obtained through the neural weight matrix. Garson’s equation based on the 

partitioning of connection weights can be applied: 

Ij =
∑ ((|Wjm

jh
| / ∑ |Wkm

ih |
Ni
k=1 ) × |Wmn

ho |)
m=Nh
m=1

∑ [∑ (|Wkm
ih |/∑ |Wkm

ih |
Ni
k=1 )

m=Nh
m=1 × |Wmn

ho |]
k=Ni
k=1

 (1.39) 

where Ij is the relative importance of the jth input variable on the output variable, Ni and 

Nh are the numbers of input and hidden neurons, respectively; the Ws are connection 

weights, the superscripts i, h and o refer to input, hidden, and output layers, respectively. 

Also, the subscripts k, m and n refer to input, hidden and output neurons, respectively. 

1.5.3.3 Hyperparameter optimization 

The hyperparameters of an ANN model, which define its topology and learning options, 

influence the accuracy and effectiveness of the trained model. The numbers of hidden 

layers and neurons in each hidden layer, learning rate, regularization parameter, learning 

algorithm, and maximum validation failure are considered ANN hyperparameters. 

Metaheuristic algorithms will be utilized to find the optimal networks. 

The performance of the SVR model highly depends on the accurate selection of its 

hyperparameters. These include the box constraint (C), the epsilon (𝜀), the type of kernel 

function, and the kernel parameter. The box constraint C is a trade-off between model 

complexity and generalization ability. The 𝜀 hyperparameter influences the number of 

support vectors and hence the performance of the SVR by determining the size of the 𝜀-

insensitive zone. The kernel function and its relevant parameter map nonlinear input data 

into the higher dimensional feature space to help SVR handle nonlinear problems. In this 

study, metaheuristic algorithms are applied to find the optimal values of these 

hyperparameters.  
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ANFIS models were constructed based on the available datasets using the Fuzzy C-

Means clustering method. FCM integrated with ANFIS helps obtain a relatively small 

number of rules which prevents the model from being too complex and minimizes the 

overfitting issue. The FCM clustering method partitions the input data into different 

clusters and is used to identify the fuzzy membership functions and fuzzy rule base for 

the ANFIS model. In this study, FCM has been used for the ANFIS model, and the number 

of clusters will be manually selected for the best generalization performance. 

1.5.3.4 Metaheuristic algorithms 

GA and PSO as population based metaheuristic algorithms have been utilized for 

optimization purposes. For the first objective, the non-dominated sorting genetic algorithm 

(NSGA-II) has been used for multi-objective optimization, which is finding a set of 

solutions (Pareto front) that are the experimental conditions with respect to maximization 

of active chlorine production and minimization of energy consumption. For the third 

objective, these algorithms have been used to find optimal hyperparameters of the AI 

models to forecast the removal efficiency of phosphate from wastewaters using the 

electrocoagulation process. 

1.5.4 Assessment 

To generate the most valuable results for the models and to compare these models with 

other ones, we needed both accurate and interpretable results. In this case, performance 

metrics such as the coefficient of determination (R2), mean squared error (MSE), root 

mean squared error (RMSE), and mean absolute percentage error (MAPE) were utilized.   

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)2
𝑛
𝑖=1

 (1.40) 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

 (1.41) 
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𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)2
𝑛

𝑖=1

     (1.42) 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑|

𝑦𝑖 − 𝑦�̂�
𝑦𝑖

|

𝑛

𝑖=1

 (1.43) 

1.5.5 Programming language and software 

MATLAB (version R2019a) has been used in our study to develop and apply different 

aspects of artificial intelligence techniques. MATLAB is commonly used for implementing 

data-driven and metaheuristic algorithms in our scope of research and is suitable for 

research and development. In this regard, all the AI techniques’ scripts and functions were 

written in the MATLAB environment in this study.  

1.5.6 Analytical Details 

The analytical details related to the experimental part of this work regarding the 

electrochemical degradation of caffeine in synthetic solution and real municipal 

wastewater effluent by the EO process are briefly mentioned in this section.  

Progress of the electrochemical degradation of caffeine in solution was monitored and 

quantified by absorbance measurements (absorption peaks previously determined) using 

a Varian Cary 100 ultraviolet (UV) spectrophotometer. The absorption peak measured at 

the wavelength of 273 nm was chosen to evaluate the residual caffeine concentration. 

The concentrations of caffeine in real wastewater and identification of intermediates were 

monitored and quantified by LC/MS/MS (Thermo TSQ Quantum Access). 

Chromatographic separation was achieved using a Hypersil Gold C18 column (Thermo 

Hypersil Ltd., Runcorn, UK) with a particle size of 3.0 mm and a 100 mm length × 2.1mm 

inner diameter. Total organic carbon (TOC) was measured by the high-temperature 

catalytic combustion method and infrared detection using a Shimadzu TOC VCPH 

analyzer (Shimadzu Scientific Instruments, Kyoto, Japan). The sample was acidified to 

remove inorganic carbon. Anionic species (Cl
-
, NO3

-
, SO4

2-
) were measured by ion 
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chromatography using a Thermo Integrion High-Pressure Ion Chromatography (HPIC). 

The ammonia concentration was determined according to the analytical method proposed 

by LACHAT Instrument (QuikChem® Method 10-107-06-2-B). To study the indirect effect 

of electrochemical process, the oxidant production was evaluated by absorbance 

measurements at λ=353 nm using a UV-spectrophotometer based on the reaction of 

electro-generated oxidants with iodide to form triiodide. To evaluate the acute toxicity of 

the untreated and treated real municipal wastewater effluent, a daphnia (Daphnia magna) 

test was used. 

1.6. Thesis organization 

This thesis is divided into six parts, which correspond to a general introduction (Chapter 

1), an extensive literature review as a review article (Chapter 2), three research journal 

articles (Chapters 3, 4, and 5), and a general conclusion and perspectives (Chapter 6). 

Chapters 3 and 4 are already published in The Canadian Journal of Chemical Engineering 

and Separation and Purification Technology, respectively. Chapter 2 is under review in 

the Journal of Environmental Health Science & Engineering, whereas chapter 5 is 

submitted to the journal of Digital Chemical Engineering. Efforts were taken to reduce 

duplication, but because each journal article must function independently, certain 

sections, such as the description of the AI algorithms, are slightly repetitive across 

chapters. 

Chapter 1 covers the background, problem statement, objectives, and general 

methodology used in this thesis. An extensive literature review is provided as a review 

article in Chapter 2. Chapter 3 corresponds to the first objective of this thesis to compare 

ANN models with other conventional modelling approaches such as RSM and the use of 

multi-objective optimization utilizing evolutionary algorithms for modelling and 

optimization of electrochemical systems. Then, Chapter 4 covers the application of ANFIS 

as another AI approach for modelling and optimization of caffeine degradation by 

electrochemical oxidation related to the second objective of this work. Chapters 3 and 4 

focus on providing reliable AI models with the slightest chance of getting trapped into the 

overfitting issue. Optimizing hyperparameters of AI models to find the optimally tuned 

models and increasing the reliability and robustness of the developed AI models as the 



 

37 

 

last objective of this thesis has been discussed in Chapter 5. Finally, Chapter 6 

summarizes the conclusions and discusses the implications of the present work on the 

application of AI models to the modelling and optimization of electrochemical systems 

used for water treatment. Also, perspectives for the future work are provided in this 

chapter. 
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Abstract 

Artificial intelligence techniques have been useful alternatives for modelling and 

optimization of electrochemical processes when phenomenological models cannot be 

applied to these multivariate systems. In this work, artificial intelligence techniques such 

as artificial neural networks (ANNs), support vector machines (SVM), adaptive neuro-

fuzzy inference system (ANFIS), genetic algorithms (GA), and particle swarm optimization 

(PSO), used in water and wastewater treatment processes, are reviewed. ANN and SVM 

are two popular machine learning approaches for supervised learning and appear to be 

good alternatives for modelling complex nonlinear processes. GA and PSO algorithms 

have been utilized for either optimizing the output (outputs) or as a tool for estimating 

ANN parameters during the training process. This paper describes applications of the 

mentioned artificial intelligence techniques for the modelling and optimization of 

electrochemical processes for water and wastewater treatment processes. Most research 

in the mentioned scope of study consists of electrooxidation, electrocoagulation, electro-

Fenton, and electrodialysis.     

 

Keywords: Artificial neural networks (ANNs), Electrocoagulation, Electrooxidation, 

Genetic algorithms (GA), Mathematical modelling, Process optimization 
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2.1. INTRODUCTION 

With the world’s rapid population growth and intense industrialization in the 20th century, 

environmental pollution has become a global problem with adverse impacts on the water 

sector. The vast majority of the remaining pollution issues is caused by heavy metals and 

persistent organic compounds because of their resistance to conventional treatments 

such as physico-chemical or biological methods. This results in detection of refractory 

pollutants such as pesticides, phenolic compounds, synthetic dyes, halogenated 

compounds, polycyclic aromatic hydrocarbon (PAHs), polychlorinated biphenyls (PCBs), 

endocrine disrupting chemicals (EDCs), and others in rivers, lakes, oceans and even 

drinking waters all over the world. They can cause hazardous health effects on living 

organisms including human beings. Therefore, advanced water and wastewater 

treatment have become a primary social, political, and environmental concern (Drogui et 

al., 2007; Moreira et al., 2017; Zheng et al., 2017).  

In recent years, electrochemical processes have been gaining attention as an alternative 

method for water and wastewater treatment. These processes are considered as eco-

friendly and green technologies since the leading reagent involved, the electron, is 

considered a clean reagent and takes advantage of coupling chemistry (in situ generation 

of oxidant) with electronic science (electron transfer). Other attractive advantages include: 

versatility, high energy efficiency, amenability to automation, and cost-effectiveness 

(Feng et al., 2016; Rajeshwar et al., 1997). Several publications focusing on different 

electrochemical methods such as electrooxidation, electrocoagulation, electroflotation, 

electro-Fenton, and electrodialysis have been published within the last decade for 

improving the treatment performance of wastewaters and drinking waters (Daghrir et al., 

2013; Martín de Vidales et al., 2012b; Olvera-Vargas et al., 2015; Zhang et al., 2011).  

Process modelling is a requirement for process optimization. Phenomenological and 

empirical modelling approaches are generally used for water and wastewater treatment 

processes (Cañizares et al., 2004a; Cañizares et al., 2004b; Zaviska et al., 2013). 

Although phenomenological modelling provides valuable insights on the behavior of the 

process and has the ability of extrapolation, heat and mass transport phenomena along 

with detailed knowledge of the reaction kinetics are required. In empirical modelling the 
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structure of the data-fitting model should be specified a priori which makes it challenging 

as one needs to choose the suitable model from the numerous available ones, especially 

for nonlinear processes (Nandi et al., 2004).  Electrochemical processes for water and 

wastewater treatment are highly complicated nonlinear systems due to the complex 

relationships between input parameters and outputs. It is thus difficult to use 

phenomenological or empirical models to model, simulate, and optimize the processes. 

Artificial intelligence methods such as artificial neural networks (ANNs) and support vector 

machines (SVM) along with genetic algorithms (GA) and particle swarm optimization 

(PSO) methods have emerged as attractive alternative approaches for modelling and 

optimization of these nonlinear processes in case phenomenological or conventional 

regression models are not practical (Curteanu et al., 2014).  

Evolutionary algorithms (EA), and in particular genetic algorithms (GA) and particle 

swarm optimization (PSO), have received growing attention in recent years among 

available optimization techniques. EA, with good global searching ability and flexibility, 

ease of operation and without the need for gradient information of the objective (fitness) 

functions, have become powerful techniques for optimization problems (Curteanu et al., 

2007; Ding et al., 2011b). EA have been utilized in two ways with ANNs. First, they have 

been applied in optimization studies where the objective is to determine the optimum 

conditions for the best value of the system output. The trained neural network is used 

here as the objective (fitness) function of the EA. Secondly, whereas the BP is the most 

widely used training algorithm, it can get trapped in suboptimal solutions (local optima) 

for systems containing complex nonlinear relationships. In these cases, EA can be used 

in the training process for hyperparameter optimization of neural networks to avoid local 

optima by searching in several regions simultaneously. Detailed information about GA 

and PSO algorithms can be found in the literature (Juneja et al., 2016; Whitley, 1994). 

In this work, applications of artificial intelligence techniques in modelling of 

electrochemical processes for water and wastewater treatment processes are discussed. 

To make AI modelling approach performance competitive to other conventional modelling 

approaches usually used (e.g., response surface methodology), it is important to build 

robust and reliable AI models. While the trend to use AI models is increasing in different 

fields of science, including electrochemical processes, the lack of attention to reliability 
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and robustness of these models can have a negative impact on the progression of this 

field. This has been the main motivation of the authors for this paper since, to the 

knowledge of the authors, there is no specific review for this particular subject.  Therefore, 

the purpose of this review paper is to provide an overview of the current knowledge and 

to present future perspectives in this field.  

2.2. DATA SETS 

2.2.1 Electrochemical processes 

Most of the data sets in published articles derive from four electrochemical processes: 

electrooxidation, electrocoagulation, electro-Fenton, and electrodialysis. In this section, a 

brief explanation of these electrochemical processes along with their AI modelling 

applications for water and wastewater treatment processes has been reviewed. 

2.2.1.1 Electrooxidation 

Municipal wastewater treatment plants (MWWTP) are not able to completely remove 

persistent organic pollutants, pesticides, and pharmaceuticals. Hence, their persistence 

in the effluent is of particular importance because it can increase the risk of long-term 

exposure, responsible for chronic toxicity and subtle effects in animals, plants and the 

aquatic environment (El-Hanafi et al., 2014; Särkkä et al., 2015). 

Electrochemical oxidation is a promising advanced oxidation technique for treating 

various wastewaters polluted by persistent organic compounds (Aquino et al., 2014; 

Martín de Vidales et al., 2012a; Polcaro et al., 2004; Senghor et al., 2015; Zaviska et al., 

2012a; Zaviska et al., 2013). Since it combines chemistry (generation of in situ  oxidants) 

and electricity (electron transfer), it is an environmentally friendly technology (Jardak et 

al., 2016). Electrochemical oxidation occurs based on two different mechanisms:  

(i) direct oxidation: hydroxyl radicals (E°(OH°/H2O) = 2.80 V vs. SHE) are produced at the 

electrode surface by the oxidation of water molecules (Eq. (2.1)), and organic compounds 

can be completely mineralized (electrochemical combustion) or degraded 
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(electrochemical conversion) by reacting with absorbed OH° radicals (Grimm et al., 1998) 

(Eq. (2.2)).  

M+ H2O → M(OH°) + H+ + e− (2.1) 

M(OH°) + Organics → M+ Oxidized products (2.2) 

(ii) indirect oxidation: other radical systems can be promoted by the generation of different 

oxidant mediators in the bulk solution, such as H2O2, HClO and S2O8
2− (Anglada et al., 

2009; Daghrir et al., 2014).   

Table 2.1 summarizes the application of artificial intelligence (AI) modelling approaches 

of electrochemical oxidation for water and wastewater treatment processes. 
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Table 2.1 Application of AI modelling of electrochemical oxidation for water and wastewater treatment processes 

Type of pollutant to treat / 

process 

Input variables Output variables Modelling 

approach 

Performance 
Ref. 

COD, specialty chemical 

manufacturer effluent 

Current density, time, salt 

concentration 

COD Removal, energy 

Consumption 

ANN; 3:7:1; 

One hidden layer 

R=0.9977 (Ahmed 

Basha et al., 

2010) 

Malachite green dye Current density, time, salt 

concentration 

Dye removal ANN; 3:9:1; 

One hidden layer 

R=0.9987 (Soloman et 

al., 2010) 

CBSOL LE red wool dye pH, current, reaction time Dye degradation, color 

removal, energy 

consumption 

ANN; 3:8:3; 

One hidden layer 

R=0.995 
(Sangal et al., 

2015) 

Oxytetracycline Nature and concentration of 

the supporting electrolyte, 

initial pH, current intensity, 

reaction time 

Removal efficiency ANN; 5:14:1; 

One hidden layer 

R=0.99 

(Belkacem et 

al., 2017) 
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2-Chlorophenol Current density, pH,  

electrolysis time, supporting 

electrolyte concentration, 

oxidation–reduction 

potential 

COD removal efficiency 

and total energy 

consumption 

ANN; 5:10:2; 

One hidden layer 

MSECOD removal= 

0.0015526 

MSEEnergy consumption=0.0

023456 

RCOD removal
2

= 0.9900  

REnergy consumption
2

=0.994

4 

(Mei et al., 

2019) 

Rhodamine-B dye Current density, electrolyte 

concentration, initial pH, 

electrolysis time 

Decolorization and 

energy consumption 

ANN; 4:12:2; 

One hidden layer 

R=0.9865 
(Kothari et al., 

2020) 

Synthetic saline effluent Electrolysis time, current 

intensity, hydrochloric acid 

concentration, chloride ion 

concentration 

Active chlorine 

production and energy 

consumption  

ANN; 4:5:1 and 

4 :4:1; 

One hidden layer 

MSEChlorine production= 

3.826 

MSEEnergy consumption=6.9

52 

RChlorine production
2

= 0.979  

REnergy consumption
2

=0.985 

(Gholami 

Shirkoohi et 

al., 2021) 
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COD, distillery effluent Flow rate, current density, 

supporting electrolyte 

concentration 

COD removal ANN; 3:3:3:1; 

Two hidden layers 

R=0.9987 
(Manokaran et 

al., 2014) 

Sulfate wastewaters with 

Bromophenol blue dye 

Electrolysis time, flow, 

current density, pH, and 

initial dye concentration 

Discoloration efficiency ANN; 5:5:3:1; 

Two hidden layers 

RMSE= 10.73 

MAPE=8.81 

R=0.946 

(Picos-Benitez 

et al., 2020) 

Phenolic compounds Pollutant concentration, pH, 

temperature, current 

density, current charge 

COD ANN; Stacked 

neural networks 

Average relative error of 

4.92%  

 

(Piuleac et al., 

2010) 

Phenol compounds Temperature, initial COD, 

pH, current density, charge, 

type of chlorine phenol 

compounds, type of 

nitrophenol compounds 

COD Hybrid and stacked 

neural networks 

R2=0.998 

(Piuleac et al., 

2012) 

Substituted phenols Quantum chemical 

descriptors of the phenols 

Degradation of 

substituted phenols 

SVM RMSE=0.202 

R2=0.892 

(Yuan et al., 

2006) 
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Organic compounds and the 

available micro-organisms in 

activated sludge of the 

sewage 

Current density, time, 

electrode type, pH, COD, 

TC, FC, EC, TDS 

COD, total coli form 

(TC), fical coli form (FC), 

electroconductivity (EC), 

total dissolved solids 

(TDS) 

Multiple ANN 

topologies and 

SVM 

R2>0.977 

(Curteanu et 

al., 2014) 

Ciprofloxacin Current density, electrolyte 

concentration, pH, 

electrolysis time 

Removal efficiency ANN, SVM, ANFIS Multiple performance 

criteria 
(Farzin et al., 

2020) 
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2.2.1.2 Electrocoagulation 

Electrocoagulation (EC), developed from chemical coagulation, produces coagulant 

agents (Fe2+/Fe3+ or Al3+) in-situ to effectively remove pollutants by deposition on the 

cathode or by floatation caused by the generation of hydrogen gas at the cathode (Asselin 

et al., 2008a). The following equations describe the main reactions occurring in an EC 

cell: 

At the anode:  𝑀(𝑠) → 𝑀(𝑎𝑞)
𝑛+ + 𝑛𝑒−  (2.3) 

At the cathode: 2𝐻2𝑂 + 2𝑒
− → 2𝑂𝐻− + 𝐻2  (2.4) 

In the bulk solution: 𝑀(𝑎𝑞)
𝑛+ + 𝑛𝑂𝐻− → 𝑀(𝑂𝐻)𝑛(𝑠) (2.5) 

where M(s) is the metal, M(aq)
n+ refers to the metallic ion (iron or aluminum ion), M(OH)n(s) 

represents the metallic hydroxide, and ne− is the number of electrons transferred in the 

reaction at the electrode. It is worth mentioning that Eq. (2.5) describes a simple case of 

metallic hydroxide formation. In fact, depending on the pH and the type of metal involved, 

the formation of different metallic complex species is possible (Dia et al., 2017).  

EC has several advantages over chemical coagulation, such as easy automation, low 

salinity of the effluent after treatment, low footprint, and reduced production of solid 

residuals (Drogui et al., 2007). The EC process has been widely studied for environmental 

applications to treat drinking water, urban wastewater, textile wastewater, restaurant 

wastewater, refractory oily wastewater, and heavy metal containing wastewaters (Al-

Shannag et al., 2015; Asselin et al., 2008b; Daghrir et al., 2012; Elazzouzi et al., 2017; 

Kobya et al., 2014; Mólgora et al., 2013). 

There are a number of studies regarding the application of artificial neural networks for 

modelling of wastewater treatment by electrocoagulation processes (see Table 2.2). 
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Table 2.2 Application of ANNs for modelling of wastewater treatment by electrocoagulation  

Type of pollutant to treat / 

process 

Input variables Output variables ANN architecture Performance Ref. 

Color removal, textile dye 

solution 

Current intensity, 

electrolysis time, initial pH, 

initial dye solution, 

conductivity, retention time 

of sludge, distance 

between electrodes 

Color removal 

percentage 

7:10:1;  One hidden 

layer 

R=0.974 (Daneshvar et 

al., 2006) 

COD, dairy industry 

effluent 

Total Solids, Total 

Suspends Solids, Total 

Dissolved Solids, turbidity 

and initial COD, initial pH, 

electrolysis time, distance 

between electrodes and 

current density 

Final COD 9:10:1; One hidden 

layer 

MSE=0.00406  

R2=0.9560 

(Valente et al., 

2014) 

Cr(VI) Current density, time of 

electrolysis, initial 

Residual Cr(VI) 

concentration 

4:10:1;  One hidden 

layer 

R2=0.976 (Aber et al., 

2009) 



 

50 

 

concentration of Cr(VI) and 

salt concentration  

Cr(VI) Voltage and time of 

electrolysis 

Cr(VI) removal 

efficiency and 

energy consumption 

2:4:2;  One hidden 

layer 

MSE=0.0242 

RCr(VI)removal
2

=0.975  

REnergy consumption
2

=0.99 

(Bhatti et al., 

2011b) 

Direct Blue 86 (DB86) and 

Reactive Yellow 145 

(RY145) 

Current density, time of 

electrolysis, initial dye 

concentration, conductivity 

and pH  

Removal efficiency 

of dyes 

5:20:3; One hidden 

layer 

R2=0.976 (Keskin et al., 

2011) 

Reactive Black 5 dye Time, current, conductivity 

and flocculant dosage  

Percentage of dye 

removal and the 

operating cost 

4:10:2; One hidden 

layer 

R2= 0.9764 (Nourouzi et 

al., 2011) 

Endosulfan Current density, time of 

electrolysis, initial dye 

concentration, conductivity 

and pH 

Removal of 

Endosulfan 

5:8:1; One hidden 

layer 

R2=0.976 (Mirsoleimani-

Azizi et al., 

2015) 
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Sunfix Red S3B dye Initial concentration of dye, 

initial pH, agitation speed, 

gum dosage and 

electrolysis time 

Color and COD 

removal 

5:7:2; One hidden 

layer 

R2=0.836 

RMSE=9.844%  

MAPE=13.776%. 

(Bui, 2016) 

Grey water Current density, electrolysis 

time, and gap between 

electrodes 

Removal efficiency 

of turbidity 

3:6:1; One hidden 

layer 

R=0.89 (Nasr et al., 

2016) 

Boron, mining 

wastewater 

Current intensity, pH, and 

treatment time  

Percentage of boron 

removal 

3:10:1; One hidden 

layer 

R2=0.973  

SSE=0.616 

(da Silva 

Ribeiro et al., 

2019) 

Distillery spent wash Current intensity, pH, 

mixing speed, 

electrolysis time, and the 

inter-electrode space  

Colour 

removal efciency 

5:10:1; One hidden 

layer 

R2=0.987 (David et al., 

2020) 

Acid Blue 113 textile 

effluent 

Effluent concentration, 

electrolyte pH, current 

density, electrolysis time 

Percentage of COD 

removal 

Multiple ANN 

topologies 

R2=0.983  

 

(Murugan et 

al., 2009) 
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Humic acid Initial humic acid (HA) 

concentration, initial pH, 

electrical conductivity, 

current density and number 

of pulses  

HA removal Multiple ANN 

topologies 

R2=0.999  

MSE=0.00006 

(Hasani et al., 

2018) 

Chlorophyll, final effluent 

of aerated lagoons 

Electric power, 

temperature, time, 

electrode distance, 

electrode type and initial 

concentrations of    

chlorophyll a, TSS, COD 

Final concentrations 

of chlorophyll a, 

TSS, and COD 

Stacked neural 

networks 

Relative errors (Er): 

Er, TSS=5.89%,  

Er, chlorophyll a=14.86%  

Er, COD=9.55% 

(Curteanu et 

al., 2011) 
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2.2.1.3 Electro-Fenton 

The Electro-Fenton (EF) process is an indirect electrochemical advanced oxidation 

process since hydroxyl radicals are not generated directly from charge transfer at the 

electrode level but in the solution from the well-known Fenton reaction. The electro-

Fenton process has been developed to overcome the drawbacks of the classical Fenton 

process and to increase the efficiency of pollutant degradation and removal (Ganzenko 

et al., 2014). In the Fenton process, homogeneous hydroxyl radicals (˙OH) are generated 

from Fenton's reagent, a mixture of H2O2 and Fe2+, added externally to the solution to be 

treated (Tran et al., 2010). In contrast, for the EF process, Fenton’s reagent is 

electrochemically produced in situ at the cathode (Eq. (2.6)). The process is based on the 

continuous generation of hydrogen peroxide (H2O2) in an acidic medium through the 

electrochemical reduction of O2 at the cathode (Eq. (2.7)). Also, ferric cations (Fe3+) are 

reduced, and Fe2+ is formed (Eq. (2.8)). At the anode, by the oxidation of water, oxygen 

is produced (Eq. (2.9)) (Mansour et al., 2015; Monteil et al., 2018).    

Fe2+ + H2O2 → Fe3+ + ˙OH + OH− (2.6) 

O2 + 2H
+ + 2e− → H2O2 (2.7) 

Fe3+ + e− → Fe2+ (2.8) 

2H2O → O2 + 4H
+ + 4e− (2.9) 

EF has been widely applied to the treatment of organic pollutants in water and 

wastewater. These studies include pharmaceuticals (Isarain-Chávez et al., 2010; Loaiza-

Ambuludi et al., 2013; Panizza et al., 2014), dyes and textile wastewaters (Ghanbari et 

al., 2015; Kaur et al., 2019), endocrine disrupting compounds (Rosales et al., 2018), 

pesticides (Abdessalem et al., 2010), polycyclic aromatic hydrocarbons (Yap et al., 2011), 

surfactants (Panizza et al., 2013) and landfill leachates (Atmaca, 2009).  

Applications of ANNs for water and wastewater treatment using the EF process are 

presented in Table 2.3. 
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Table 2.3 Applications of ANNs for the water and wastewater treatment using the EF process 

Type of pollutant to treat / 

process 

Input variables Output variables ANN architecture Performance Ref. 

Decolorization, BR46 dye Time, initial pollutant 

concentration, applied 

current, Fe2+/3+, pH 

Percentage of dye 

removal 

5:16:1;  One hidden 

layer 

R2=0.986 (Zarei et al., 

2010) 

Naphtol Blue Black Initial Fe3+ concentration, 

initial pH, concentration of 

Na2SO4, temperature, 

applied current, and initial 

dye concentration  

Degradation efficiency 

and the rate constant 

6:32:2; One hidden layer MSE=10-5  

R2>0.99 

(Bouasla et 

al., 2014) 

Phenolic wastewater Time, initial pollutant 

concentration, applied 

current, Fe2+/3+ 

Phenol degradation 

efficiency 

4:20:1; One hidden layer R2=0.9742 (Radwan et 

al., 2018) 

Composting 

plant leachate 

Time, pH, TDS, current 

density, H2O2 concentration 

Removal efficiency 5:8:1; One hidden layer R2=0.9907 (Alavi et al., 

2019) 
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MSE=8.77 

Textile wastewater Dissolved oxygen and 

oxidation reduction potential 

related inputs 

Fe2+ dose and COD 

removal efficiency 

4:8:1 and 4:12:1;  One 

hidden layer 

R
ANN, Fe

2+
2

=0.9944 

RANN, COD
2

=0.9952 

(Yu et al., 

2013) 
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2.2.1.4 Electrodialysis 

Electrodialysis offers an electrochemical technique that removes ionic pollutants from an 

aqueous solution with the aid of an electrical potential difference used as a driving force, 

producing two new solutions: one concentrate of ions and another consisting of almost 

pure water. The first solution can be reintroduced to an industrial process, and the water 

can be reused. In general, the ion separation efficiency in electrodialysis varies depending 

on the inherent characteristics of the ion exchange membrane, operating conditions, and 

physicochemical properties of the metal ions (de Barros Machado et al., 2014; Min et al., 

2019b). This process has been widely used for the treatment of industrial wastewaters, 

production of drinking and processed water from brackish water and seawater, recovery 

of useful materials from effluents and salt production because of its high chemical 

stability, flexibility and high ionic conductivity due to its strong ionic characteristics (Lu et 

al., 2016; Mohammadi et al., 2004; Sadrzadeh et al., 2007b; Shahi et al., 2002; Wu et al., 

2019).  

Table 2.4 summarizes the applications of ANNs for water and wastewater treatment with 

the ED process. 
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Table 2.4 Applications of ANNs for water and wastewater treatment with ED process 

Type of pollutant to 

treat / process 

Input variables Output variables ANN architecture Performance Ref. 

Lead ions Lead ions concentration, flow rate, 

temperature and cell voltage 

Separation percent 

of lead ions 

4:5:4:1; two hidden 

layers 

Mean absolute 

error below 1% 

(Sadrzadeh 

et al., 

2007a) 

Lead ions Lead ions concentration, flow rate, 

temperature and cell voltage 

Separation percent 

of lead ions 

4:5:4:1; two hidden 

layers 

MSE=0.102 

R2=0.999 

(Sadrzadeh 

et al., 

2008) 

Lead ions Lead ions concentration, flow rate, 

temperature and cell voltage 

Separation percent 

of lead ions 

4:6:2:1; two hidden 

layers 

Standard 

deviation not 

more than 1% 

(Sadrzadeh 

et al., 

2009) 

Saline wastewater Time, concentrations of NaCl, Fe2+, 

and H2O2 

TOC/TOC0 Multiple ANN 

topologies 

R2=0.960 (Borges et 

al., 2009) 

NaCl separation Feed concentration, flow rate, 

temperature and cell voltage 

Separation percent Multiple ANN 

topologies 

MSE<0.3  

R2=0.99 

(Jing et al., 

2012) 
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2.2.2 Size of data sets 

Data-driven AI techniques highly depend on the quantity and quality of the data sets fed 

into them. In other words, it is required to have enough reliable data to reasonably capture 

the relationships both between input variables and between input and output variables. It 

should be mentioned that the size of data sets required for machine learning approaches 

depends on the complexity of the problem and complexity of the learning algorithm, and 

there are no advanced certainties about the amount of data required for these 

approaches. Since data used for modelling and optimization of electrochemical processes 

for water and wastewater treatment processes are derived mainly from experimental 

studies, acquiring sufficient large data sets requires a huge amount of time and resources. 

Figure 2.1 shows the distribution of the number of samples in data sets used in the field 

in literature. As can be seen, most of the studies have implemented AI techniques with a 

relatively low number of samples (<150) in data sets. Hence, it can be concluded that 

considering the amount of data available, most of the effort should be focused on the 

reliability and robustness of the AI models derived from these data sets.   

 

Figure 2.1 Frequencies of articles in literature regarding the size of the data sets 

However, to overcome the limitation of a low number of data in AI modelling based on the 

experimental results, some authors have proposed using data augmentation techniques 
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such as interpolation (Farzin et al., 2020). When insufficient data sets are not enough to 

learn many of the parameters of learning algorithms, it would cause overfitting meaning 

that the generalization of the model is unreliable. In order to solve this problem, more data 

needs to be collected, but in actual applications, additional data collection is often difficult 

for various reasons such as time and cost limitations. Data augmentation is a solution to 

address this (Oh et al., 2020). Although data augmentation techniques have been applied 

to machine learning in different fields in literature, especially image processing and 

speech recognition (Abayomi-Alli et al., 2020; Li et al., 2020c; Qian et al., 2019), one 

should be cautious about using these techniques for the goal of regression of 

experimental work with limited data. This is because the behaviour of outputs in 

experimental studies can be much more complicated than describing them with 

predefined interpolation functions, which obviously would not be too hard for AI model to 

predict the behavior of the new interpolated data.    

2.2.3 Data preprocessing 

Experimental data obtained in electrochemical processes are used by AI models as inputs 

and outputs. Those independent and dependent experimental variables will be used as 

inputs and outputs, respectively. While various independent variables have been used in 

electrochemical processes, Figure 2.2 shows the most common ones specified as inputs. 

As can be seen, electrolysis time and applied current have been the most frequent input 

variables for AI modelling of electrochemical processes. Other independent variables with 

a low number of frequencies used as inputs were feed flowrate, temperature, mixing 

speed, nature of the electrolyte and type of the pollutant.   
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Figure 2.2 Frequencies of different independent variables used as AI model inputs in literature 

Feature scaling has often been used to scale the variables in the dataset. If the input and 

output variables are not of the same order of magnitude, some variables may appear to 

have more significance than they actually do. The training algorithm has to compensate 

for order-of-magnitude differences by adjusting the network weights which is not very 

effective in many of the training algorithms (i.e., the backpropagation algorithm in ANN) 

(Baughman et al., 1995).  

Normalization and standardization have been utilized as feature scaling techniques in the 

reviewed studies. In the common normalization technique, so-called Min-Max scaling, 

values are shifted and rescaled so that they end up ranging between 0 and 1 (Ghaedi et 

al., 2017). In standardization, values will be centred around the mean with a unit standard 

deviation meaning that the mean of the feature becomes zero while the resultant 

distribution has a unit standard deviation (Gholami Shirkoohi et al., 2021). 
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2.3. Performance Evaluation 

To evaluate the performance of the ANNs, there are different prediction accuracy criteria 

used in the literature. The most utilized criteria in the publications studied in this review 

for the performance evaluation of the networks are listed in Table 2.5. 

Table 2.5 Performance evaluation criteria mostly used in the literature 

Performance evaluation criterion Equation 

R (coefficient of correlation) 
∑ (𝑃𝑖 − 𝑃𝑚)(𝐸𝑖 − 𝐸𝑚)
𝑁
𝑖=1

√∑ (𝑃𝑖 − 𝑃𝑚)
2𝑁

𝑖=1 √∑ (𝐸𝑖 − 𝐸𝑚)
2𝑁

𝑖=1

 

R2 (coefficient of determination)  1 −
∑ (𝐸𝑖 − 𝑃𝑖)

2𝑁
𝑖=1

∑ (𝐸𝑖 − 𝐸𝑚)
2𝑁

𝑖=1

 

MSE (mean squared error) 
∑ (𝑃𝑖 − 𝐸𝑖)

2𝑁
𝑖=1

𝑁
 

RMSE (root mean squared error) √
∑ (𝑃𝑖 − 𝐸𝑖)

2𝑁
𝑖=1

𝑁
 

SSE (sum of squared errors) ∑(𝐸𝑖 − 𝑃𝑖)
2

𝑁

𝑖=1

 

MAPE (mean absolute percentage error) 
100

𝑁
∑|

(𝐸𝑖 − 𝑃𝑖)

𝐸𝑖
|

𝑁

𝑖=1

 

AARE (average absolute relative error) 
1

𝑁
∑|

(𝐸𝑖 − 𝑃𝑖)

𝐸𝑖
|

𝑁

𝑖=1

 

Relative error 
𝐸𝑖 − 𝑃𝑖
𝐸𝑖

. 100 
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Ei is the ith experimental value, and Pi is the ith predicted value obtained from the neural network model, 

Em is the mean value of all experimental values, Pm is the mean value of all predicted values, and N is 

the number of data samples.  

2.4. AI TECHNIQUES 

AI techniques in literature applied to electrochemical processes for water and wastewater 

treatment processes are reviewed in this section. These include ANNs, SVM, ANFIS and 

evolutionary algorithms.  

2.4.1 ANNs 

As the name itself implies, artificial neural networks, commonly referred to as “neural 

networks”, imitate the essential characteristics of the human brain, which itself is a highly 

nonlinear, complex, and parallel computer, such as self-adaptability, self-organization, 

and error tolerance (Haykin, 1998; Singh et al., 2009). Multilayer perceptrons (MLP) 

feedforward neural networks are the type of ANNs that have been utilized frequently for 

modelling electrochemical processes. These networks that can imitate human brain 

activities consist of an input layer of source nodes, one or more hidden layers of 

computation nodes and an output layer that can include multiple nodes (Assefi et al., 

2014; Elsheikh et al., 2019; Feng et al., 2008).  These networks are usually applied to 

diverse problems, including function approximation, pattern classification, system 

identification, process control, process optimization, and so on (Carvalho et al., 2011; Da 

Silva et al., 2017; Zarra et al., 2019).  

The nature and complexity of the problem in addition to the desired accuracy and the 

available data, determine the number of hidden layers and the corresponding number of 

neurons in each hidden layer. The selection of an appropriate number of neurons in the 

hidden layer is a crucial task for MLP neural networks since too many neurons can cause 

the so-called over-fitting problem (Madhiarasan et al., 2017). In this case, the network 

has memorized the training data but has not exploited its generalization ability (Valente 
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et al., 2014). Although there are some indications for the hidden layer dimension, in 

practice, a trial-and-error procedure is usually applied (Padovese, 2002). 

Single hidden layer MLP networks have been considered sufficient enough to correlate 

inputs to outputs in most of the electrochemical processes studied for water and 

wastewater treatment (e.g., (Alavi et al., 2019; David et al., 2020; Gholami Shirkoohi et 

al., 2021; Mei et al., 2019; Sangal et al., 2015; Valente et al., 2014). Soloman et al. (2010) 

developed an ANN model to predict the electro-oxidation of malachite green, a triphenyl 

methane dye, based on experimental data collected in a batch electrochemical reactor. 

A three layer back-propagation network with a 3:9:1 configuration of was found adequate 

to predict the COD removal efficiency with R=0.9987, and RMSE=1.1428 (mean 

experimental value=61.25).  Daneshvar et al. (2006) investigated the use of artificial 

neural networks for modelling the colour removal from a textile dye solution containing C. 

I. BY28 by the electrocoagulation method. Comparison between experimental results and 

three layer 7:10:1 neural network model predicted outputs showed a correlation 

coefficient of 0.974, which proved that an ANN model can successfully describe the 

behaviour of such an electrocoagulation system containing complex reactions.   

Multiple hidden layers instead of a single hidden layer were also considered for correlating 

inputs to outputs (Manokaran et al., 2014; Picos-Benitez et al., 2020; Sadrzadeh et al., 

2008; Sadrzadeh et al., 2009). Manokaran et al. (2014) also used a feedforward back-

propagation ANN model to predict the degradation of a distillery effluent by electro-

oxidation. In total, 200 data sets were used for training (150 samples), validation (30), 

and testing (20) using the scaled conjugate gradient (trainscg) algorithm for training. The 

performance of four different configurations of three layer networks (1 hidden layer) and 

four different configurations of four layer networks (2 hidden layers) were compared. They 

showed that the four layer 3:3:3:1 BP neural network had the best performance for COD 

removal: RMSE=0.8633, AARE=3.4613, R=0.9987. Comparing regression and ANN 

models, Radwan et al. (2018) showed that ANN model performs slightly better 

(Rregression
2 =0.9525, RANN

2 =0.9742) for modelling an EF process for the treatment of 

phenolic wastewater. 
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While the previous studies examined a single optimum network for predicting the process 

outputs, some authors suggested using multiple networks or so-called stacked neural 

networks. Stacked neural networks as an ensemble machine learning technique that have 

been used in other supervised methods such as SVM, k-nearest neighbours algorithm or 

decision trees (Wolpert, 1992), are based on the premise that the use of multiple 

networks, instead of simply just one single network, can be an optimal network and 

improved predictions can be obtained (Torres-Sospedra et al., 2006). Thus, combining 

the outputs of different neural network models which each capture certain aspects of the 

process and aggregating their information, can provide more accurate predictions (Figure 

2.3). 

 

Figure 2.3 Scheme of stacked neural networks as an ensemble machine learning technique 

Piuleac et al. (2010) applied stacked neural network modelling to the electrolysis of 

wastes polluted with phenolic compounds, including phenol, 4-chlorophenol, 2,4-

dichlorophenol, 2,4,6-trichlorophenol, 4-nitrophenol, and 2,4-dinitrophenol. In their work, 

various ANN types of artificial neural networks were aggregated in a stack whose output 

response was a weighted sum of the individual networks. A comparison between the 

tested methodologies indicated that utilizing stacked neural networks or the assembly of 

neural networks could obtain smaller validation errors of 5.8% and 4%, respectively, 

rather than a single optimal MLP neural network. Curteanu et al. (2011) studied the idea 

of stacked neural network modelling for the removal of chlorophyll a from the final effluent 

of aerated lagoons by an electrolysis process which consisted of both mechanisms of 
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electro-flotation and electro-coagulation. Three different approaches were studied, 

including: using a single neural network for the whole data set, three separate neural 

networks for different sets of data for each output, and a stacked neural network 

combining the outputs of three selected individual networks. The best result among the 

three approaches was attributed to the stacked neural network with relative errors for 

each of the three outputs: Er,TSS = 5.89%,  Er,chlorophyll a = 14.86% and Er,COD = 9.55%. 

With their good results, they concluded that their modelling methodology could be 

adapted and applied for other treatment processes and systems. 

The response surface methodology (RSM) and ANN models were compared in terms of 

their performance in modelling of electrocoagulation processes (Bhatti et al., 2011a; 

Gholami Shirkoohi et al., 2021; Nourouzi et al., 2011). Nourouzi et al. (2011) employed a 

three layer ANN model to predict the removal of Reactive Black 5 dye by a sequential 

electrocoagulation-flocculation process. The results obtained using the ANN model were 

compared with the RSM and showed that both models are able to predict the process, 

the ANN having a slightly better performance than the RSM model  (R2= 0.9764 and 

0.9446, respectively). 

Within the scope of process optimization, by process control, Pinto et al. (2018) applied 

an ANN feedforward controller to a hybrid system of electrocoagulation and organic 

coagulation for removing Reactive Blue 5G dye from textile effluent. Their ANN was 

trained by the LM method using data sets created by the central composite rotatable 

design (CCRD) model. The ANN based controller could manipulate the current intensity 

and organic coagulant dosage to act upon a disturbance in the influent dye load. Although 

the controller was not able to keep the controlled variable perfectly at the set point, its 

action was positive based on the experimental data, which demonstrated the controller to 

be able to either reduce the oscillation or keep the controlled variable in regions closer to 

the set point, when comparing to the system without the controller. 

In the domain of controlling electro-Fenton processes using artificial neural networks, Yu 

et al. (2013) studied textile wastewater treatment using on-line monitoring of dissolved 

oxygen (DO) and oxidation-reduction potential (ORP). Their research was in line with their 

previous efforts on using artificial neural networks to control the Fenton process, both in 
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batch and continuous operation mode, for textile wastewater treatment (Yu et al., 2009; 

Yu et al., 2010). In their study, two feedforward back-propagation ANNs were used to 

predict the Fe2+ dosage requirement and COD removal efficiency. One ANN predicted 

the Fe2+ dose based on the following inputs: reaction time to reach the ORP valley (min), 

the time for DO rising point (min), the ORP value at the ORP valley (mV), and the desired 

COD removal efficiency (%), with a 4:8:1 configuration. Their efforts to demonstrate the 

ANN’s capability for EF process control was a step forward in the application of ANNs in 

wastewater treatment. 

In the scope of utilizing artificial neural networks for process integration, Borges et al. 

(2009) used the ANN approach to model an integrated electrodialysis and photochemical 

process for saline wastewater treatment. Two three layer feedforward artificial neural 

networks were put in series to model the photo-Fenton process. The first (4:4:1) neural 

network was responsible for modelling the output values of TOC/TOC0 as a function of 

the input parameters time, concentrations of NaCl, Fe2+, and H2O2. The output value of 

the first ANN was sent to the second neural network to calculate the reaction rate with 

input parameters TOC/TOC0, concentrations of NaCl, Fe2+, and H2O2. This model was 

used to design a plug flow reactor and to determine its volume (V), for different process 

conditions and TOC reaction rates. Their work using neural networks showed an essential 

step in understanding the behaviour of the integrated process. 

2.4.2 SVR 

Support vector machines (SVM), first presented by Vapnik (1963), based on modern 

statistical machine learning techniques, have been widely applied to classification and 

regression problems thanks to their promising generalization performance (Saradhi et al., 

2007). In a simple binary classification problem, the basic idea of an SVM is to find a 

hyperplane that has the maximum distance (margin) from both sides of the hyperplane. 

SVM can be adopted for regression problems, thus called support vector regression 

(SVR). To reach the aim of estimating the predictor function (f), a loss function (L), which 

assesses the quality of a prediction (f(x)), is introduced as L(x, y, f(x)). There are different 

popular loss functions utilized for regression problems, such as ε-insensitive loss, Huber’s 

loss, logistic loss, and pinball loss (Van Messem et al., 2010). In SVR, the goal is to obtain 
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a function that has the maximum ε (difference) among all targets and at the same time is 

as flat as possible, meaning that the errors are not significant as long as they are less 

than ε, but any deviation larger than this amount is not accepted (Smola et al., 2004). A 

detailed description of the SVM algorithm and its parameters can be found in the literature 

(Çevik et al., 2015; Ding et al., 2011a).  

Curteanu et al. (2014) applied two machine learning techniques (artificial neural networks 

and support vector machines) for the prediction of the performance of an electro-oxidation 

method to decrease the organic compounds and remove micro-organisms from activated 

sludge effluent. Although very good results were obtained by different combinations of 

ANNs, a minimum R2 of 0.90 and a maximum MSE of 0.04 in the testing phase, the SVM 

obtained more accurate results after many trial and error examinations. It was reported 

that overall, the SVM outperformed the ANN models when comparing correlation 

coefficients.  

Farzin et al. (2020) applied different approaches to data mining, including least square 

support vector machine (LSSVM) used for electrochemical removal of Ciprofloxacin (CIP) 

as a model pollutant. LSSVM needs to solve quadratic programming with only equality 

constraints, or equivalently a linear system of equations, which makes it simpler and 

faster than SVM (Tian et al., 2012). They showed that their tuned LSSVM model has 

superiority over other investigated algorithms for their problem. SVM was also used by 

Yuan et al. (2006) for predicting the electrochemical degradation of substituted phenols 

by developing a quantitative structure-property relationship model. Their SVM model had 

a good predictive ability for the quantitative relationship between rate constants and the 

structure of substituted phenols with a performance of RMSE=0.202 and R2=0.892.  

2.4.3 ANFIS 

Adaptive neuro-fuzzy inference system (ANFIS) (Jang, 1993) combines advantages of 

both ANN (e.g., learning, self-adapt, optimization and connectionist structures) and fuzzy 

logic (e.g., humanlike “if–then” rules thinking, reasoning, and incorporating expert 

knowledge). ANFIS is a kind of feed-forward artificial neural network that each layer is a 

neuro-fuzzy system component based on a fuzzy inference system. By employing a 
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hybrid-learning method, the ANFIS architecture can build an input-output model based 

on constructing a set of fuzzy if-then rules with appropriate membership functions 

(according to human knowledge) to produce the conditional input-output pairs (Ghaedi et 

al., 2017). Details of the ANFIS can be found in the literature (Jang, 1993; Jang et al., 

1993).  

ANFIS and RSM models were applied for optimization of Reactive Blue 19 removal using 

a combined electrocoagulation/coagulation process. The effects of five independent 

parameters, including applied current, reaction time, initial dye concentration, initial pH 

and dosage of Poly Aluminum Chloride, were studied by RSM. According to the results, 

all the independent parameters were equally important in dye removal efficiency. In 

addition, ANFIS was applied for dye removal efficiency and operating costs modelling. 

High R2 values (85%) indicate that the predictions of RSM and ANFIS models are 

acceptable for both responses. 

A comparison of ANFIS and other AI techniques was carried out by Farzin et al. (2020) 

for the modelling of Ciprofloxacin electrochemical removal from wastewater. While the 

interpolation method was used for increasing the number of data, ANFIS performed better 

than ANN for in interpolated data which was in accordance with some other studies 

(Sahoo et al., 2020; Souza et al., 2018). ANFIS, along with ANN, has also been studied 

for the treatment of greywater using electrocoagulation by Nasr et al. (Nasr et al., 2016). 

Their three layer (3:6:1) ANN model successfully simulated the experimental results with 

R-values of 0.99 (training), 0.84 (validation) and 0.89 (testing) to predict the removal 

efficiency of turbidity. Their ANFIS application performed an exhaustive search within the 

available inputs to determine the most influential input attribute in predicting the turbidity 

removal. It was indicated that current density is the most influential input on turbidity 

removal. 

2.4.4 Evolutionary algorithms 

Evolutionary algorithms, mainly GA and PSO, have been utilized for the optimization of 

electrochemical processes for water and wastewater treatment. However, recently other 

nature-inspired algorithms like the fire fly optimization algorithm (FFA) have been utilized 



 

69 

 

by researchers (Farzin et al., 2020). EA as optimization techniques have been applied for 

process output optimization and hyperparameter selection of AI models, especially in the 

case of ANN. Figure 2.4 represents ANN-EA approaches for finding optimal process 

conditions and optimization of hyperparameters of ANN models. 

 

 

Figure 2.4 ANN-EA approaches for: i) finding optimal process conditions, ii) optimization of 
hyperparameters of ANN models  

The ANN-GA approach for electrooxidation process output optimization to find optimal 

conditions has been applied by some authors (Maleki et al., 2015; Picos-Benitez et al., 

2020; Picos et al., 2018). Picos et al. (2018) used this approach for the prediction of 

discoloration of a dye by an electro-oxidation process in a press type reactor. A total of 

52 experiments (70% for the training and 30% for the testing) were used for the ANN 

i) 

ii) 
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modelling with a Levenberg-Marquardt back-propagation (LM-BP) algorithm resulting in 

an ANN configuration of 4:9:5:1 and sigmoid transfer functions (logsig at the hidden layer 

and tansig at the output layer). The ANN with performance MAPE=8.3868% and 

RMSE=7.5537% values was linked to GA optimization to find the best operational 

conditions, where the EO can reach a maximum discoloration at the lowest current 

density, flow rate, experimental time and at the highest dye concentration. They 

experimentally validated the ANN-GA result that about 95% discoloration can be obtained 

in an experimental time of 110 min, a flowrate of 12 Lps, a current density of 27.34 mA/cm2 

and a dye concentration of about 230 mg/L. The Same group studied the ANN-GA 

approach for the prediction of discoloration of Bromophenol blue dye for an electro-

oxidation process (Picos-Benitez et al., 2020). Mean discoloration efficiency of 88.8 %, 

compared to 95.5 % predicted by the model, could be obtained at the optimal conditions. 

Similar discoloration efficiencies were obtained, which proved that this AI model could be 

used as a helpful tool in the design, control and operation of similar EO processes to 

wastewaters with similar dyes. 

In the scope of electrocoagulation process optimization, Taheri et al. (2015) used ANN 

modelling and a GA algorithm to improve the Taguchi design optimization for the 

degradation of three different dyes, including Acid Orange 7, Acid Brown 14, and Acid 

Red 18 azo dyes by electrocoagulation. In their study, a multilayer feedforward back-

propagation ANN with 10 neurons in the hidden layer and using tansig and purelin transfer 

functions at hidden and output layers, was used. A total of 241 data sets were utilized for 

ANN modelling, and the model showed excellent reliability to predict the EC system with 

R2=0.9804. A GA was used for techno-economical optimization of the Taguchi design for 

dye removal. Their GA used the ANN model to search for the best conditions for removal 

efficiencies between the minimum and maximum levels of the Taguchi design. The 

operating cost for the optimal conditions was calculated by the regression of the Taguchi 

method. Their GA optimization results showed removal efficiencies of 96.79% and 

76.74% for Acid Orange 7 and Acid Red 18, respectively, at nearly the same operating 

conditions. At a lower operating cost, a 98.12% removal efficiency was reported for Acid 

Brown 14. Their work illustrated the ANN and GA approach to be a powerful tool for 

techno-economical optimization of selected dye removal using the EC process.  
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When there are multiple responses to consider, the problem shifts to a multi-objective 

optimization problem. There is no unique solution to a multi-objective optimization 

problem but a set of mathematically equally good solutions known as nondominated or 

Pareto optimal solutions. Bhatti et al. (2011a) used multi-objective optimization by genetic 

algorithms for electrocoagulation of copper from simulated wastewater. Their system was 

modelled by both RSM and ANN modelling approaches. Despite the limited experimental 

data, the 4:5:2 ANN model performed as well as the RSM (R2=0.993 for copper removal 

efficiency and R2=0.870 for energy consumption) to describe the nonlinearities of the 

electrocoagulation process, with MSE=0.571 and combined regression coefficient of 

0.982 for copper removal efficiency and energy consumption. A genetic algorithm linked 

to the ANN model was utilized to derive the Pareto front, which defined a set of optimum 

operating points with respect to removal efficiency and energy consumption. Their multi-

objective optimization linked to the ANN model resulted in an insight into the optimal 

operating conditions of the process. Maleki et al. (2014) also developed a combination of 

ANN models and multi-objective genetic algorithm optimization for the electrocoagulation 

of orange 25 dye (DO25) in a batch process. Based on their results, the optimum value 

for initial dye concentration in the Pareto front was almost the minimum value since higher 

values of initial dye concentration would contribute to lower colour removal and also 

higher energy consumption.  

Multi-objective PSO algorithm has also been used for techno-economical optimization of 

combined electrocoagulation/coagulation’s performance in the removal of RB 19 from 

simulated wastewater using the ANFIS model (Taheri et al., 2013). Minimum and 

maximum values of 58.27% and 99.67% for RB 19 removal efficiencies were reported by 

the selected ANFIS model, respectively. The difference between the minimum and 

maximum dye removal efficiency levels for operating costs was 0.39 US$/m3. 

2.5. INSIDE THE BLACK-BOX MODELS  

2.5.1 Tuning AI model parameters 

AI models have inherent hyperparameters that should be tuned so that the model can 

optimally solve the machine learning problem. These hyperparameters control the 
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learning process and have a direct effect on the model performance. As most of the 

studies have focused on ANN modelling approach, Figure 2.5 shows the 

hyperparameters of an ANN model. 

 

Figure 2.5 Hyperparameters of an ANN model 

The network configuration, i.e. the number of hidden layers and hidden neurons, has 

received the most attention (Aber et al., 2009; Bui, 2016; da Silva Ribeiro et al., 2019; 

Hasani et al., 2018; Keskin et al., 2011; Mirsoleimani-Azizi et al., 2015; Nourouzi et al., 

2011; Valente et al., 2014). In most of the studies, the coefficient of determination and 

MSE were chosen as criteria for network performance. 

Valente et al. (2014) studied the prediction of COD concentration in dairy industry effluent 

treated by electrocoagulation using artificial neural networks. In order to select an 

appropriate number of neurons in the hidden layer to prevent overfitting and loss of the 

network’s generalization ability, several ANN architectures were evaluated using MSE 

and correlation coefficient as performance parameters. A neural network with 9:10:1 

configuration was selected with MSE=0.00406 and R2=0.9560 for the test set. According 

to their results based on ANN simulation, the efficiency of the COD removal can be 

described as a function of time, pH, current density and distance between electrodes. 

Single hidden layer networks with a trial and error procedure on the network configuration 

were utilized for correlating inputs to outputs (Ahmed Basha et al., 2010; Soloman et al., 

2010). Ahmed Basha et al. (2010) used ANNs for modelling of the electro-oxidation 

process applied to an effluent of a specialty chemical manufacturer, which was highly 

loaded with organic matter (COD: 48,000 mgL-1 and BOD5: 1100 mgL-1). In their work, a 
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single hidden layer network with 3:7:1 configuration led to a reasonable prediction of the 

COD removal efficiency, with R=0.9977, and RMSE=0.8378 (mean experimental 

value=53.59). It was shown that an increase in number of hidden neurons can enhance 

the performance of the three layered network but can have an adverse effect on the 

performance of the four layered network. The importance of the number of hidden layers 

and hidden neurons were also investigated in other studies (Soloman et al., 2010).  

The trial and error procedure was also applied by other authors to determine the optimum 

number of hidden layer neurons based on different error functions (Belkacem et al., 2017; 

Kothari et al., 2020; Manokaran et al., 2014; Sangal et al., 2015). Sangal et al. (2015) 

developed a three-layer ANN model to predict the removal of CBSOL LE red wool dye 

from wastewater by electro-oxidation. The optimal 3:8:3 ANN architecture could estimate 

the outputs with a correlation coefficient of 0.995, 0.996, 0.992, and 0.995 for training, 

validation, testing, and all data sets, respectively. It was reported that the proposed ANN 

could accurately simulate the outputs from given inputs. 

Other than the number of hidden layers and hidden neurons in each layer which have 

been widely considered in ANN modelling, the initial weights are another important factor 

that affects the performance of the network. Choosing an improper set of initial weights 

can lead to local minima, which results in bad performance of the network. This effect has 

been rarely considered in ANN modelling studies for water and wastewater treatment 

using electrochemical processes. In their two studies, Sadrzadeh et al. (2008; 2009) took 

this point into account by performing 20 runs using different random values of initial 

weights for each of their different structured networks based on hidden layer and hidden 

neuron numbers. This approach can lead to reducing the uncertainties related to the 

neural networks.    

They also studied the effect of different transfer functions of hidden and output layers on 

the performance of the network. Transfer functions used as the neuron activation function 

to the sum of weighted inputs and biases are one of the neural network hyperparameters 

that can affect the network performance. Generally, three transfer functions have been 

used for MLP neural networks: log-sigmoid, tan-sigmoid, and purelin (equations 4-6) 



 

74 

 

𝑙𝑜𝑔𝑠𝑖𝑔(𝑛) =
1

(1 + exp (−𝑛))
 (2.10) 

𝑡𝑎𝑛𝑠𝑖𝑔(𝑛) =
2

(1 + exp (−2 ∗ 𝑛))
− 1 (2.11) 

𝑝𝑢𝑟𝑒𝑙𝑖𝑛(𝑛) = 𝑛 (2.12) 

Piuleac et al. (2010) illustrated that a transfer function combination for hidden and output 

layers performed better than the single transfer function for all layers. Their optimal 

network was then tested with a real wastewater of a fine-chemicals plant and showed an 

average error around 4.92% between experimental and predicted COD concentrations, 

which gave a very good illustration of using neural networks in the case of wastewater 

treatment.   

The effect of transfer functions in hidden layers on the neural network performance was 

investigated again by the same team for the electrolysis treatment of wastewater polluted 

by phenol compounds (Piuleac et al., 2012). Based on trial and error, different 

configurations and architectures of neural networks were examined and based on 

validation stage results, the MLP (7:25:20:1) with tansig transfer function for all hidden 

and output layers, obtained the best relative error of about 8.93% and a correlation value 

of 0.998. 

Still aiming to find optimal ANN structures da Silva Ribeiro et al. (2019) studied an artificial 

neural network for the prediction of boron removal from mining wastewaters by 

electrocoagulation. Different types of transfer functions and network structures were 

examined in their study to observe their performance. The 3:10:1 network with a logsig 

transfer function in the hidden layer and a purelin transfer function in the output layer, 

showed the best performance based on the correlation coefficient (R2) and the sum of 

squared error (SSE) with values of 0.973 and 0.616, respectively. 

One of the most thorough studies on the effect of various network architectures and 

parameters on the modelling performance was performed by Hasani et al. (2018) for the 

modelling of alternating pulse current electrocoagulation-flotation (APC-ECF) for humic 

acid (HA) removal. Their study focused on the effect of various network architectures and 
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parameters (e.g., two different ANN architectures as MLP and generalized feedforward-

GFF, number of hidden neurons, transfer functions, and learning parameters) on the 

modelling performance. Their extensive comparisons between different networks 

revealed that the single hidden-layer GFF NN (5:6:1), using sigmoid transfer function at 

both hidden and output layers and LM training algorithm, had the best performance with 

R2=0.999 and MSE=0.00006. Their computational analysis proved that ANN-based 

modelling can effectively simulate the experimental data and predict the optimum 

conditions of the electrocoagulation/flotation process for the removal of HA from aqueous 

solutions.  

As mentioned before, EA optimization techniques can be utilized to find the optimal 

configured network by searching in the hyperparameter space of the neural network 

(Farzin et al., 2020; Mei et al., 2019; Viana et al., 2018). Viana et al. (2018) presented 

artificial neural networks and statistical analysis to predict and optimize the 

electrochemical degradation of the textile dye Reactive Black 5 using a Ti/(RuO2)0.8 −

(Sb2O3)0.2 in a batch treatment system. By using the PSO algorithm, they optimized their 

neural network model parameters, including hidden neuron number, transfer function, and 

learning rate. Their 4:8:3 neural network could successfully predict colour removal, COD 

removal, and energy consumption for the textile dye Reactive Black 5 degradation with 

the performance of Rtest
2 =0.982, MSEtest=0.0146.  

In the scope of EA, it is worth noting that different values of the GA control parameters 

can have significant impacts on the optimal results obtained. Piuleac et al. (2013) studied 

an ANN-based optimization methodology in detail, including the impacts of the genetic 

algorithm parameters, to optimize an electro-coagulation process involving three different 

pollutants of: kaolin, Eriochrome Black T solutions, and an oil/water emulsion. Time, 

current density and initial pH were considered as decision variables for the GA 

optimization alongside the size of the initial population, the number of generations, 

crossover rate, and mutation rate as GA control parameters. To observe the impacts of 

these GA control parameters, they conducted different series of optimizations with 

different values for these control parameters. Various scenarios with different sets of GA 

control parameters were developed in order to select the most convenient working 
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conditions regarding the decision variables. The ANN-GA approach was found to be an 

efficient optimization method for their EC process and could predict the optimal conditions 

for maximum removal efficiency of the three pollutants with a maximum relative error of 

11.46% and an average relative error of 6.61%.  

2.5.2 Regularization techniques to prevent overfitting 

The selection of an appropriate number of neurons in the hidden layer is a crucial task for 

MLP neural networks since too many neurons can cause the so-called overfitting 

problem. In this case, the fitting error on the training set will be very low due to the very 

successful learning process, but the error on new data presented to the network is very 

high. The network has memorized the training data but has not exploited its generalization 

ability (Valente et al., 2014). Regularly, to obtain good network generalization, the method 

is to propose a network which is large enough to provide an appropriate fit. Although it is 

difficult to have the perspective to know how large a network should be in each case, 

three generalization learning methods of cross-validation (early stopping), regularization, 

and pruning can be applied. Regularization is conducted by adding a penalty function to 

the training objective to minimize the complexity of the model and the prediction error at 

the same time; while pruning physically omits some excessive neurons to generate the 

least size network. For the cross-validation (early stopping) method, the data set will be 

split into three non-overlapping subsets. The training dataset is utilized for learning the 

network parameters, the validation dataset is utilized for monitoring the training process 

and for approximating the generalization error, and the test dataset, a set of data not seen 

by the model during training, is utilized for examining the unbiased generalization error of 

the trained network. In the early-stopping method, when the validation error rises over a 

number of iterations (due to over-fitting), the training algorithm stops, and the values of 

the weights and biases are returned to the point where the validation error was minimal 

(Chan et al., 2006; Zhang et al., 2003). 

While early-stopping method has been used in most of the studies in the domain, recently 

Gholami Shirkoohi et al. (2021) applied regularization method to their problem of  

modelling and optimization methodology for active chlorine production using the 

electrolysis process. Learning curves were used to diagnose whether there is a high bias 
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(underfit) problem or a high variance (overfit) issue. In the presence of a high variance 

problem, using the regularization factor can help. Regularization makes slight 

modifications to the learning algorithm such that the model generalizes better and the 

model’s performance on unseen data is improved. They showed that utilizing learning 

curves along with regularization factor analysis can help to obtain reliable ANN models to 

predict the production of active chlorine and energy consumption using an electrolysis 

process.  

2.5.3 Sensitivity analysis 

The weights obtained from ANN training are coefficients between artificial neurons that 

are analogous to synaptic strengths between the axon and dendrites in a biological 

neuron in the brain. As in real life, the proportion of the incoming signal to be transmitted 

to the neuron’s body is decided by these weights (Khataee et al., 2010). Despite the black-

box nature of ANNs, to estimate the influence of different independent variables on the 

output, it is possible to conduct a sensitivity analysis on the ANNs. The relative importance 

of each input independent variable on the desired output can be obtained through the 

neural connection weight matrix. First, Garson (Garson, 1991) and then Goh (Goh, 1995) 

proposed a procedure for partitioning the connection weights to determine the relative 

importance of the various inputs. This method basically involves partitioning the hidden-

output connection weights of each hidden neuron into components associated with each 

input neuron (Gevrey et al., 2003).  

Belkacem et al. (2017) reported that neural network modelling can effectively forecast the 

electro-oxidation of oxytetracycline (OTC) in a batch process using a platinized titanium 

anode. A 5:14:1 neural network was selected as the best network with performance 

MSE=0.0002 and R=0.99. Furthermore, they studied the effect of input parameters based 

on the Garson algorithm. They showed that the reaction time has the most influence on 

the process output with a relative importance of 50.70% followed by the current intensity 

and the nature of the electrolyte, 15.24%, and 14%, respectively. 

For an electrocoagulation process, Aber et al. (2009) modelled the removal of Cr(VI) from 

polluted solutions using artificial neural networks. With a coefficient of determination 
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R2=0.976, their 4:10:1 neural network could successfully predict the present system. Also, 

the Garson algorithm was employed to evaluate the relative importance of the input 

variables and the results showed that all input variables have significant effects on the 

removal of Cr(VI). In further work, Bui (2016), applied artificial neural networks to predict 

dye removal efficiency (colour and COD) of electrocoagulation for a Sunfix Red S3B 

aqueous solution. The proposed 5-7-2 ANN model optimized by the Bayesian regulation 

algorithm (trainbr) could successfully predict the electrocoagulation process with a 

correlation coefficient of R2=0.836, RMSE=9.844% and MAPE=13.776%. A sensitivity 

analysis showed that the efficiency of the EC process is highly dependent on current 

density, electrolysis time and initial pH for colour removal whereas it is highly dependent 

on initial dye concentration, sulphate concentration, and electrolysis time combined with 

the initial pH for COD removal. 

For EF processes, one study showed that while all of the independent variables have a 

strong influence on the output, the initial pH is slightly more influential for the PEF/TiO2 

process (Zarei et al., 2010). Conversely, time and current intensity were the two most 

important parameters for phenol removal using the EF process (Radwan et al., 2018). 

These two parameters were also shown to be the most influential factors in an EF process 

for the treatment of composting plant leachate (Alavi et al., 2019).  

The relative importance of each input independent variable on the desired output obtained 

by the Garson algorithm can help ANN modelling approach to provide meaningful insights 

from the process, usually driven by a well-known RSM approach for experimental studies. 

Gholami Shirkoohi et al. (2021) showed that electrolysis time and current intensity have 

about 81.5% influence on active chlorine production compared to an 82.8% influence in 

the factorial design analysis using RSM. The H3O+ and NaCl concentration represented 

the remaining 18.5% of the investigated response. They reported that their findings are 

similar to the RSM outcomes showing the compatibility and reliability results of the ANN 

model. 
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2.6. CONCLUSIONS AND FUTURE PERSPECTIVES 

Based on the extensive literature reviewed, it can be observed that artificial intelligence 

techniques have demonstrated their potential for modelling, performance prediction and 

optimization of electrochemical processes used for water and wastewater treatment 

processes. With the limitation of the number of samples in data sets regarding the 

requirement of huge investment in time and resources, most of the effort should be 

focused on the reliability and robustness of the AI models derived from these data sets. 

Although some attempts have been made to use interpolation techniques to solve the 

data set’s limitation problem, cautions should be considered about using these techniques 

for the goal of regression of experimental work with limited data. This is because the 

behaviour of outputs in experimental studies can be much more complicated than 

describing them with predefined interpolation functions. Therefore, it seems tuning AI 

model hyperparameters and use of regularization techniques to prevent overfitting 

problem would be the principal part to focus.    

The most utilized modelling approach has been the artificial neural networks, thanks to 

their strong ability to simulate complex, nonlinear input-output systems. Multilayer 

feedforward neural networks with back-propagation training were widely used in 

treatment applications. Of course, one of the major objectives of process modelling is to 

pursue process optimization. GA and PSO were linked mostly to ANNs for optimizing the 

ANN outputs and have been proved as useful hybrid approaches. Though AI techniques 

are indicated to be a promising alternative to traditional linear and parametric, and 

phenomenological methods for modelling and optimization of the electrochemical 

processes used in water and wastewater treatment processes, there are still some areas 

requiring further research: 

(1) Tuning AI model parameters which control the learning process and have a direct 

effect on the model performance is a crucial aspect. In the case of ANNs, the selection of 

optimum network parameters such as number of hidden layers, number of neurons in 

hidden layers, learning rate, momentum factor, transfer functions, and learning algorithms 

are still major tasks in ANN modelling and the usual way to overcome these difficulties is 
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the trial and error method. There have just been a few studies so far to use optimization 

algorithms such as PSO to optimize the ANN model structure and parameters.  

(2) Most of the studies reviewed considered single neural networks for modelling and 

predicting the performance of their systems. The downside of this approach is that as 

neural networks are sensitive to the training data, they would find different sets of weights 

each time they are trained. This will lead to different predictions each time and to high 

variance. Ensemble modelling, which consists in training multiple models instead of a 

single model and combining them to find the predictions, is one of the proposed 

approaches to overcome this challenge. It can be conducted by: 

- single learning algorithm, different data sets; 

- single learning algorithm, different configurations options; 

- different algorithms.  

In the reviewed papers, only a few studies applied ensemble modelling approaches like 

stacked neural networks, but they showed promises.  

(3) So far, most of the relevant studies have been performed by a conventional 

feedforward ANN with the BP algorithm. However, with the advances in machine learning, 

the BP-MLP NN with regular activation functions and long training time are not the best 

option. Further research is still required to apply different machine learning algorithms 

(e.g., SVM) or neural networks (e.g., GRNN, ANFIS) for the modelling and optimization 

of electrochemical processes used in water and wastewater treatment processes. 
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Abstract 

This study evaluates the effectiveness of a modelling and optimization methodology 

based on artificial neural networks and genetic algorithms in the prediction of the 

behaviour of an electrolysis process of active chlorine production from a synthetic saline 

effluent. Multilayer perceptrons feedforward neural networks were developed for the 

active chlorine production and energy consumption based on the following inputs: 

electrolysis time, current intensity, hydrochloric acid concentration and chloride ion 

concentration. In order to diagnose and prevent the over-fitting problem during the 

learning process, learning curves and the regularization factor were utilized. The trained 

ANN models were able to successfully predict the active chlorine production and energy 

consumption of the process (R2=0.979 and MSE=3.826 for active chlorine production and 

R2=0.985 and MSE=6.952 for energy consumption). Multi-objective optimization for 

maximizing active chlorine production and minimizing energy consumption was carried 

out by a genetic algorithm using the best derived ANN models. The Pareto front obtained 

led to multiple non-dominated optimal points, which result in insights regarding the optimal 

operating conditions for the process.   

 

 

 

Keywords: ANN-GA, Electrochemical processes, Learning curves, Multi-objective 

optimization, Response surface methodology 
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3.1. Introduction 

In recent years, electrochemical processes have been gaining attention as an alternative 

method for water and wastewater treatment. These processes are considered as eco-

friendly and green technologies since the leading reagent involved, the electron, is 

considered a clean reagent and takes advantage of coupling chemistry (in situ generation 

of oxidant) with electronic science (electron transfer). Other attractive advantages include: 

versatility, high energy efficiency, amenability to automation, and cost-effectiveness 

(Feng et al., 2016; Rajeshwar et al., 1997). Several studies focusing on the use of 

electrolysis with different electrochemical methods such as electrooxidation, 

electrocoagulation, electroflotation, electro-Fenton reaction, and electrodialysis have 

been published over the last decade for improving the treatment performance of 

wastewaters and drinking waters (Daghrir et al., 2012; Martín de Vidales et al., 2012b; 

Olvera-Vargas et al., 2015; Zhang et al., 2011).  

In literature, phenomenological and empirical modelling approaches are generally used 

for mathematical modelling of electrochemical water and wastewater treatment 

processes. Although phenomenological (white-box) modelling provides valuable insights 

into the behaviour of the process and has the ability of extrapolation, heat and mass 

transport phenomena along with detailed knowledge of the reaction kinetics are required. 

First principles related to the underlying science and engineering laws lead to governing 

equations that ultimately arrange these models (Zendehboudi et al., 2018). In empirical 

modelling the structure of the data-fitting model should be specified a priori which makes 

it challenging as one needs to choose a suitable model structure among the many 

available ones, especially for non-linear processes (Nandi et al., 2004). Electrochemical 

processes for water and wastewater treatment are generally complicated non-linear 

systems and dependent on many factors such as the influent concentration of 

contaminants (Jardak et al., 2017), the applied current density and electrical potential 

(Tran et al., 2015a), the types of electrodes (Dia et al., 2017), the electrolyte type and 

concentration (Jardak et al., 2016), and chemical interactions between contaminants 

(Giwa et al., 2016; Moreno-Casillas et al., 2007). It is thus difficult to use 

phenomenological or empirical models to model, simulate, and optimize the processes.  
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In this context, artificial intelligence methods such as artificial neural networks (ANNs) 

along with genetic algorithms (GAs) have emerged as attractive alternative approaches 

for modelling and optimization of these non-linear processes in case phenomenological 

or conventional regression models are not practical (Curteanu et al., 2014). These black-

box (data-driven) models are based on empirical data and relationships among input and 

output variables of the process. Artificial intelligence methods, such as ANNs, have the 

role of discovering relationships in which patterns of input data can be linked to the 

associated output data. These data-driven tools model the system behavior solely from 

mapping the input-output data rather than from process knowledge. As the complexity of 

engineering problems increases, the development of faster computers along with more 

advanced computational algorithms and availability of cost-efficient sensors results in a 

noticeable paradigm shift from white-box to black-box modelling (Kamari et al., 2014; 

Nejatian et al., 2014; Zendehboudi et al., 2018). Various types of problems in science can 

be cast in the form of such pattern-matching, and among the methods within the machine 

learning tools, ANNs are one of the most effective methods(Boucheikhchoukh et al., 

2020; Karimi et al., 2014; Piuleac et al., 2013). Some recent publications illustrate 

successful application ANN models in various electrochemical processes (Chindapan et 

al., 2013; da Silva Ribeiro et al., 2019; Radwan et al., 2018; Sangal et al., 2015; Wang et 

al., 2016). 

Genetic algorithms (GAs) belong to the category of evolutionary algorithms that are used 

for the optimization of objective (fitness) functions by means of parameter space coding. 

Through the algorithm, a GA can obtain acceptable results by using three stochastic 

operators; selection, crossover, and mutation (Ghaedi et al., 2014). Detailed information 

about the theory of GAs and the combination of ANNs with GAs can be found in the 

literature (Schaffer et al., 1992; Whitley, 1994). 

The present study is focused on investigation and analyses of the effectiveness of AI 

methods for modelling and optimization of an electrolysis process. The database used in 

this paper was taken from a series of experiments for active chlorine production from a 

synthetic saline effluent by electrolysis, from the authors’ lab and previously published in 

the literature (Zaviska et al., 2012b). Chlorine is one of the most commonly synthetically 

produced chemicals worldwide and due to its oxidizing power, has been used as a 
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disinfectant for potable water, wastewater, and swimming pools (Elmas et al., 2016). 

Other uses of chlorine products by electrolysis have been reported for the treatment of 

dye-containing effluents (Zaviska et al., 2009), and as electrolyzed oxidizing water in the 

food industry (Huang et al., 2008). It is worth mentioning that studies are still being 

conducted about the production of undesirable active chlorine species during electrolysis 

(Brito et al., 2015).  

While the production of chlorine is commercially dependent on the electrolysis of highly 

concentrated solutions of sodium chloride (NaCl) (Khouzam, 2008; Oliveira et al., 2007), 

other alternative approaches are being introduced. These approaches include seawater 

(Hsu et al., 2015a) and deep ocean water electrolysis (Hsu et al., 2015b; Hsu et al., 2016). 

In addition, desalination plants produce brine effluents, which are highly concentrated in 

salts. One of the techniques for managing this saline concentrate can be to use it as a 

saline resource for chlorine production. This would lead to a reduction in chemical costs 

for the process of chlorine production (Abdul-Wahab et al., 2009; Pillai et al., 2009).  

The ANN-GA approach for modelling and optimization of electrochemical processes has 

been applied before.  Picos and Peralta-Hernández (Picos et al., 2018) utilized ANN 

models to predict the behavior of an electro-oxidation pilot press-type reactor, which 

treats synthetic wastewater prepared with a synthetic Violet 54-B dye. Single-objective 

GA optimization was linked to their ANN model to find the best operational conditions for 

discoloration efficiency. Tuning ANN models, falling into the domain of hyperparameter 

(e.g., number of hidden neurons) optimization, is a crucial task to obtain neural networks 

with the best performance possible and a strong ability of generalization. In this regard, 

usually, a trial and error procedure is used to derive the best configured network (Ghiasi 

et al., 2014).  

In this work, modelling and optimization of active chlorine production by combining 

artificial neural networks and genetic algorithms will be studied. This method includes 

feedforward neural networks and considers the impacts of learning curves and the 

regularization factor to improve the training process. It is followed by a multi-objective 

genetic algorithm for the optimization process regarding active chlorine production and 

energy consumption. Learning curves help to acquire an insight throughout the modelling 
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problem in order to diagnose the problem as high-variance or high-bias, which can then 

help to optimally select the most suitable configuration of the network. Regularization is 

also utilized to prevent over-fitting which can occur with a too complex model. These 

techniques can give an insight into the ANN modelling process and can be used instead 

of or along with a trial and error procedure during training of neural networks. To the best 

of our knowledge, learning curves and the impact of the regularization factor in the cost 

function of ANNs have not been studied before for modelling of electrochemical 

processes. Further, Pareto optimal solutions obtained by multi-objective optimization 

using a genetic algorithm can help to identify optimal operating conditions regarding the 

production of active chlorine and energy consumption of the process.  

3.2. Experimental procedure 

The database used in our work was acquired from the experiments of a published study 

of our group entitled “Statistical optimization of active chlorine production from a synthetic 

saline effluent by electrolysis” (Zaviska et al., 2012b). To prepare the synthetic saline 

effluent (SSE) used in these experiments, sodium chloride (NaCl, Fisher Scientific, ACS 

reagent) was added to distilled water to produce solutions at different concentrations from 

0.05 mol/L to 0.105 mol/L. It was observed that produced chlorine gas could be converted 

to hypochlorous acid (HClO) and hypochlorite ion (ClO−) after a value of pH = 2.0. 

Therefore, the initial pH of solution was adjusted by hydrochloric acid (from 0.02 mol/L to 

0.14 mol/L) in the range of 0.9 to 1.3. A batch electrolytic cell was designed for conducting 

the assays using a power supply, an air diffuser, a 4-liter glass tank and a peristaltic 

pump. An expanded metal Ti/IrO2 anode and a stainless steel cathode in the form of 

plates were utilized as electrodes. A 400 ml (135 mm ×35 mm ×140 mm) PVC electrolytic 

reactor was used to carry out the experiments.  

The Wessler reaction was used to estimate the hypochlorous acid production which is 

based on the oxidation of iodide ions (I− ) to iodine (I2 ) in the presence of active chlorine. 

Then tri-iodide (I3
−) can be formed by the reaction of surplus iodide ions with iodine 

(Entezari et al., 1994). A Carry UV 50 spectrophotometer (Varian, Canada) was used to 
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analyze the tri-iodide ion by measuring the absorbance at 353 nm. The electrical intensity 

and voltage were applied via an Enduro 250 V power supply.  

Response surface methodology approach was utilized to design the experimental assays 

using a factorial design (FD) followed by a central composite design (CCD). The 

experiments consisted of 16 experiments for FD and an extra 14 experiments for CCD, a 

total of 30 experiments. Table 3.1 represents the experimental region for gas chlorine 

production. 

 

Table 3.1 Experimental operating conditions range 

Parameter Min. value Max. value 

Electrolysis time (min) 15 35 

Current intensity (A) 0.8 1.6 

[H3O+] (mol/L) 0.05 0.11 

[NaCl] (mol/L) 0.3 0.8 

 

3.3. Process modelling and optimization 

3.3.1 ANNs modelling 

As the name implies, artificial neural networks, commonly referred to as “neural 

networks”, imitate the essential characteristics of the human brain, which itself is a highly 

non-linear, complex, and parallel computer, such as self-adaptability, self-organization, 

and error tolerant (Haykin, 1998; Singh et al., 2009). ANNs can explore many competing 

hypotheses simultaneously using a massively parallel network composed of non-linear 

computational elements (neurons or nodes) that are interconnected by links with variable 

weights. The mentioned interconnected set of weights contains the knowledge generated 

by the network (Adya et al., 1998). Each neuron at certain times examines its inputs and 

computes an output called an activation. The new activation is then passed along those 

connections to other neurons. 
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One of the most common architectures of artificial neural networks, considering how the 

different neurons are positioned and connected to each other as well as the composition 

of layers, is the multilayer percepterons (MLP) feedforward network. These networks are 

usually applied to diverse problems, including function approximation, pattern 

classification, system identification, process control, process optimization, and so on 

(Carvalho et al., 2011; Da Silva et al., 2017). The nature and complexity of the problem 

in addition to the desired accuracy and the available data determine the number of hidden 

layers and the corresponding number of neurons in each hidden layer. In addition, the 

configuration of the MLP network including the number of hidden layers and hidden 

neurons, can be derived by a trial and error procedure (Ghiasi et al., 2015). 

The standard learning algorithm for MLP neural networks for any pattern recognition or 

function fitting process is known as the back-propagation algorithm (BP) (Carvalho et al., 

2011). The back-propagation algorithm can be viewed as a generalization of the least 

mean square procedure that can be used for the training of multilayer neural networks. In 

the BP algorithm data enters the network via the input layer which merely transfers the 

data value to the hidden layer over weighted connections. The hidden and output neurons 

process their inputs by multiplying each input by its weight, adding the product to a total 

amount, and then passing it through a (transfer or activation) function to generate its 

result. The whole aim of the back-propagation algorithm is to change the values of the 

network weights to achieve the minimum error between the predicted output and actual 

targets. 

Figure 3.1 shows the MLP neural network used for the modelling and optimization of the 

active chlorine production from a synthetic saline effluent by electrolysis. In continuation 

of the work of Zaviska et al. (2012), current intensity, electrolysis time, chloride ion 

concentration and hydrochloric acid concentration were selected as the input neurons, 

whereas the output layer contains the active chlorine production or the energy 

consumption. 
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Figure 3.1 Schematic of the MLP neural network used for the modelling and optimization of the active 
chlorine production  

The gradient descent algorithm has been selected as the learning algorithm for training 

the neural network with ‘tansig’ and ‘purelin’ transfer function in the hidden and output 

layer, respectively.  

3.3.2 Learning curves 

Learning curves of model performance on the training and validation datasets can be 

used to diagnose an underfit (high bias), overfit (high variance), or well-fit model. 

At first, the data was split into two sets: training and validation. One single example from 

the training set was taken and used to fit a model. The error related to the model on the 

validation set and that single training example were measured. The error related to this 

training instance would be 0, since it is not too overwhelming to fit a single data point 

perfectly. Since the model is built around a single instance, the error related to the 

validation set will be quite large. This is due to the lack of generalization ability to the data 

that it has not seen before. Then the number of training samples is gradually increased 

until the entire training set is used. As the training set changes, the error values will vary 

more or less. Thus, two error values have to be monitored: one for the validation set, and 
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one for the training set. If the evolution of the two error values is plotted as the training 

sample sets change, two curves (so-called learning curves) are obtained. In brief, a 

learning curve demonstrates how the error varies with an increase in the training set size 

and demonstrates if one needs a more complex model for the predictions or not.  

In this work, learning curves will be plotted for the training samples. To avoid the 

uncertainty related to the selection of the training sample, each training sample selection 

was replicated 50 times and the overall mean value has been calculated for that training 

sample batch.  

3.3.3 Regularization factor 

The regularization parameter (lambda) is an input to the objective function to reduce 

overfitting. This reduces the variance of the estimated regression parameters. In other 

words, this technique discourages learning a more complex or flexible model, so as to 

avoid the risk of overfitting. It is defined as a term added to the cost function of the model 

(Eq. (3.1)).  

J(θ) =
1

2m
[∑(hθ(x

(i)) − y(i))
2
+ λ∑θj

2

n

j=1

m

i=1

] (3.1) 

where J(θ) is the cost function (error), m is the number of data points used for training, x 

are the input neurons, hθ(x
(i)) is the predicted value of sample i, y(i) is the actual value 

of sample i, λ is the regularization parameter, and θ are the network parameters (weights). 

In fact, to have control of the fitting parameters, regularization parameter is used. With 

any increase in the mgnitudes of the network parameters, an increasing penalty will be 

applied on the cost function. As can be seen, this penalty is relevant on the magnitude of 

lamda and the squares of the weights. Any increase in lambda can be advantageous up 

to a certain point, since it reduces the variance which avoids overfitting. But after this 

point, important properties of the model starts to be lost introducing more bias into the 

model (underfitting problem). This implies the importance of the selection of the lambda 

value. In this study, different lambda values have been tested each time to obtain the best 

training and cross-validation errors and to present these errors vs. the lambda value. The 
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optimum lambda value was selected from this graph by considering the cross-validation 

and training errors.  

3.3.4 Relative importance of input variables 

The weights obtained from ANN training are coefficients between artificial neurons that 

are analogous to synaptic strengths between the axon and dendrites in a biological 

neuron in the brain. As in real life, the proportion of the incoming signal to be transmitted 

to the neuron’s body is decided by these weights (Khataee et al., 2010). Despite the black-

box nature of ANNs, to estimate the influence of different independent variables on the 

output, it is possible to conduct a sensitivity analysis on the ANNs. The relative importance 

of each input independent variable on the desired output can be obtained through the 

neural connection weight matrix. First, Garson (Garson, 1991) and then Goh (Goh, 1995) 

proposed a procedure for partitioning the connection weights to determine the relative 

importance of the various inputs. This method basically involves partitioning the hidden-

output connection weights of each hidden neuron into components associated with each 

input neuron (Gevrey et al., 2003). 

 Garson’s equation based on the partitioning of connection weights can be applied: 

𝑅j =
∑ ((|Wjm

jh
| / ∑ |Wkm

ih |
Ui
k=1 ) × |Wmn

ho |)
m=Uh
m=1

∑ [∑ (|Wkm
ih |/∑ |Wkm

ih |
Ui
k=1 )

m=Uh
m=1 × |Wmn

ho |]
k=Ui
k=1

 (3.2) 

where 𝑅j is the relative importance of the jth independent variable on the output variable, 

Ui and Uh denote the number of input and hidden neurons, respectively; the W is the 

connection weight value, the superscripts i, h and o refer to input, hidden and output 

layers, respectively. Also, the subscripts k, m and n refer to input, hidden and output 

neurons, respectively. 

3.3.5 Genetic algorithm and multi-objective optimization 

In recent years, evolutionary algorithms, and in particular genetic algorithms, have 

received growing attention among optimization techniques. GAs with their good global 

searching ability and flexibility, ease of operation and without the need for gradient 
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information on the objective (fitness) functions, have become powerful techniques for 

optimization problems (Curteanu et al., 2007; Ding et al., 2011b). A GA starts with a 

primary population of candidate solutions and a fitness value is calculated for each 

solution. Through the algorithm, three stochastic operators are applied to each population 

which are analogous to chromosomes in a biological context. Selection is choosing the 

solutions with the highest fitness value to create an intermediate population. The next 

population is the result of crossover or mutation. By crossover, the selected members are 

mated in pairs and recombined through genetic manipulation of chromosomes to 

generate two new solutions (offsprings). Mutation acts as an assurance against lost 

genetic material and consists of replacing some of the chromosome’s genes with new 

genes. The generation of new populations and calculation of the fitness value for each 

population is repeated over and over in an iterative method. When a specific termination 

criterion is met, e.g., when there is no more change in the population from one iteration 

to the next or when a satisfactory fitness value is achieved, this process ends (Ansari et 

al., 2014; Niculescu, 2003; Ridha et al., 2008).   

When multiple objectives are specified to a problem, selecting a single solution with 

specific decision variables could not satisfy all the objectives in a single manner. In fact, 

objective functions could have non-linear and opposite behaviour to each other. 

Therefore, a trade-off between all these conflicting objective functions should be made to 

find the decision variables. This trade-off can be illustrated as Pareto front, which is based 

on the domination concept. Best solutions in the problem space will be represented in this 

front which are the solutions for which there would be no other solution having better 

values regarding the objective functions. Having Pareto front helps obtain a clear insight 

throughout the trade-off between different objective function. This would help to find and 

focus on promising solutions from a possibly large population of solutions and choose the 

decision variables suitable regarding the objective functions (Hu et al., 2014).   

In this regard, the well-known non-dominated sorting genetic algorithm (NSGA-II) (Deb et 

al., 2002) has been utilized for multi-objective optimization, leading to a set of solutions 

(Pareto front), that are the experimental conditions, with respect to maximization of active 

chlorine production and minimization of energy consumption. The flowchart of the 

adopted ANN-GA approach in this study is shown in Figure 3.2. 
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Figure 3.2 Flowchart of ANN-GA methodology used for multi-objective optimization 
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3.4. Results and discussion 

3.4.1 ANN modelling 

After initial data collection, data preprocessing was necessary to manipulate the data into 

a usable format for processing by the artificial neural networks. Feature normalization 

(Eq. (3.3)) has been selected and returns a normalized version of feature (input) X where 

the mean value of each feature is 0 and the standard deviation is 1.  

y=
Xi-μi
Si

 (3.3) 

where y is the normalized value of Xi. The μi and the Si are the mean and standard 

deviation values of Xi, respectively. Normalization helps because it ensures (i) that the 

network’s learning regards all input features to a similar extent and (ii) that there are both 

positive and negative values used as inputs for the next layer, which makes learning more 

flexible.  

At the first step of the ANN modelling, a three layer network was configured with the 16 

FD experiments. The ANN model was constructed with 5 neurons in the hidden layer with 

‘tansig’ and ‘purelin’ transfer functions in the hidden and output layer, respectively, and 

trained by the gradient descent algorithm. While the coefficient of determination for the 

FD was reported as R2=0.982, this value increased to R2=0.999 with the ANN model.    

Finding optimal conditions to produce active chlorine is a multi-objective optimization by 

taking into account of energy consumption of the process.This has been done by 

conducting 14 more experiments using a Central Composite Design (CCD) (Zaviska et 

al., 2012b). Total 30 experimental data points have been used for ANN modelling for the 

purpose of training and validation, including sets of 24 and six samples for each, 

respectively.  

3.4.1.1 Learning curves and impact of regularization  

For an ANN model, it is necessary to have an overview of the state of the model in order 

to check whether there is a high bias (underfit) problem or high variance (overfit) issue. 
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This helps decide whether a more complex model (with more hidden layers and neurons) 

is required or not. Figure 3.3 shows the mean learning curve obtained for different 

numbers of training examples. As explained in section 3.2, learning curves show how the 

error changes as the training set size increases and demonstrate whether one needs a 

more complex model for the predictions or not. 

 

Figure 3.3 Mean learning curves for different numbers of training examples (Error bars are generated with 
50 time training for each training set) 

In this figure, the training and cross-validation error have been plotted versus the number 

of training examples in the training set. This figure helps to have an overview of the type 

of problem dealt with. In case of a high bias model (underfit), there would be high errors 

for both training and cross validation data sets. For a high variance model (overfit), the 

training error would be low and the cross validation error would be much higher. Also, in 

case of a high variance problem, having more data along with not having a more complex 

model (e.g. adding more hidden layers or hidden neurons) would help the modelling 

process. As Figure 3.3 shows, there is a gap between the training and cross-validation 
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error, with a very small error for the training set and a much higher error for the cross-

validation set. Also, as the number of samples in the training set increases the cross-

validation error decreases, which proves that increasing the number of samples is a good 

solution for a high variance problems as diagnosed for this case. The ANN model for each 

point in the learning curve has been trained 50 times with random sampling from the 

available data and the mean, minimum and maximum error values have been 

represented. Decision making based on the mean value of 50 times iterations for each 

training with random sampling helps to decrease the risk of uncertainty related to 

stochastic behaviour of ANN modelling. 

Figure 3.3 shows the mean learning curve for the validation samples with the minimum 

and maximum values obtained for the 50 iterations of training. As said before, for a high 

variance problem, having a more complex model does not help. This is shown in Table 

3.2 where three different neural network configurations are presented with their 

correlation coefficients for the training, validation, and all data sets. It can be concluded 

that for this high variance problem there is no need for a more complex model that 

inherently would increase the overfitting issue.  

Table 3.2 Feedforward backpropagation networks 

Configuration R2 training R2 validation R2 All 

# Samples 24 6 30 

5 hidden neurons 0.9803 0.9701 0.9791 

6 hidden neurons 0.9404 0.9592 0.9453 

7 hidden neurons 0.9445 0.9562 0.9481 

In the presence of the high variance problem, using the regularization factor can help. 

Regularization makes slight modifications to the learning algorithm such that the model 

generalizes better and improves the model’s performance on unseen data. Therefore, a 

graph of Error vs regularization factor (lambda) helps to optimally select the best lambda 

value. In our case, the best lambda value is 3 (Figure 3.4). 
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Figure 3.4 Impact of regularization factor on model performance 

Thus, a 3-layer feedforward back-propagation network with 5 hidden neurons and a 

regularization factor value of 3 is selected for the optimization. 

The selected network for active chlorine production has a coefficient of determination 

R2=0.979 while this value for the RSM with the central composite design was reported as 

R2=0.964.  

Also, for the multi-objective optimization, the selected neural network for predicting the 

energy consumption is configured with 4 hidden layers and a sigmoid transfer function at 

the hidden layer. This network has a performance of Rtrain
2

=0.997, Rvalidation
2

=0.951, 

RAll
2

=0.985 which compares favorably to the RSM regression performance R2=0.990. 

Parity plots for ANN and RSM models regarding active chlorine production and energy 

consumption are represented in Figure 3.5.  
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Figure 3.5 Parity plots of predicted versus experimental values of active chlorine production and energy 
consumption for ANN and RSM models 

It should be mentioned that in RSM, all available data was used for the linear regression 

method for curve fitting. In ANN modelling, however the data is divided into training and 

validation sets. Table 3 represents the CCD experimental plan, actual and predicted 

values of the ANN and RSM models for active chlorine production and energy 

consumption. Also, performance criteria (R2 and Mean Squared Error (MSE)) for each 

model and dependent variable are reported in Table 3.3. As can be seen, the ANN 
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method performs slightly better than RSM for predicting active chlorine prediction and 

energy consumption of the electrolysis process.  
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Table 3.3 Actual and predicted values of central composite designed experiments. 

Experimental assays Chlorine production (mg/l) Energy consumption (kWh/m3) 

Time 
(min) 

Current 
(A) 

[H3O+] 
(mol/L) 

[Cl-] 
(mol/L) 

Actual 
ANN   

predicted 
RSM 

predicted 
Actual 

ANN 
predicted 

RSM 
predicted 

15 1.6 0.05 0.3 5.04 5.34 4.57 0.250 0.280 0.279 

25 1.2 0.08 0.55 10.7 10.28 10.7 0.312 0.322 0.330 

15 1.6 0.11 0.3 5.32 6.84 9.09 0.300 0.302 0.297 

15 0.8 0.05 0.3 1.6 1.52 2.71 0.120 0.122 0.111 

25 1.2 0.08 0.55 9 10.28 10.7 0.310 0.322 0.330 

35 1.6 0.11 0.8 46 42.23 44.33 0.760 0.747 0.783 

25 2 0.08 0.55 46.6 42.39 41.24 0.708 0.706 0.726 

15 1.6 0.11 0.8 6.94 7.96 13.35 0.280 0.281 0.311 

15 0.8 0.11 0.8 0.56 1.57 0.61 0.120 0.114 0.143 

25 1.2 0.08 0.55 13.8 10.28 10.7 0.330 0.322 0.330 

25 1.2 0.08 0.55 13.76 10.28 10.7 0.323 0.322 0.330 

25 1.2 0.08 0.55 10.2 10.28 10.7 0.314 0.322 0.330 

15 0.8 0.05 0.8 1.54 1.52 0.61 0.120 0.115 0.125 

35 0.8 0.11 0.8 7.26 10.67 8.63 0.300 0.295 0.311 

25 1.2 0.08 0.05 13 11.88 9.62 0.375 0.342 0.316 

35 1.6 0.11 0.3 36.5 36.96 40.07 0.770 0.770 0.769 

25 1.2 0.08 0.55 9.4 10.28 10.7 0.318 0.322 0.330 

15 1.6 0.05 0.8 8.96 8.75 8.83 0.300 0.288 0.293 

25 1.2 0.08 1.05 13.4 13.28 11.78 0.308 0.315 0.344 

25 0.4 0.08 0.55 1.68 3.06 3.68 0.083 0.085 0.086 

25 1.2 0.02 0.55 4 5.77 8.44 0.375 0.363 0.312 

35 0.8 0.11 0.3 9.52 11.09 10.73 0.310 0.326 0.297 

5 1.2 0.08 0.55 0.1 1.52 -3.12 0.125 0.120 0.098 

35 1.6 0.05 0.8 37.2 38.01 39.81 0.780 0.785 0.765 

45 1.2 0.08 0.55 36 34.34 35.88 0.688 0.795 0.738 

25 1.2 0.14 0.55 16.4 11.90 12.96 0.300 0.313 0.348 

35 1.6 0.05 0.3 34.4 34.39 35.55 0.820 0.794 0.751 

35 0.8 0.05 0.8 10.3 11.17 8.63 0.310 0.364 0.293 

15 0.8 0.11 0.3 1.74 1.62 2.71 0.120 0.145 0.129 

35 0.8 0.05 0.3 13.5 11.46 10.73 0.330 0.368 0.279 

          

R-squared (R2) - 0.979 0.964 - 0.985 0.990 

Mean squared error (MSE) - 3.826 6.952 - 6.903e-04 9.043e-04 
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3.4.1.2 Relative importance of input variables 

Using the factorial design method, the influence of four main experimental factors was 

investigated. Based on the sensitivity analysis results, electrolysis time and current 

intensity with 82.8% contribution on the active chlorine production were the two most 

influential factors. In order to assess the relative importance of the input variables for the 

ANN model, the neural net weight matrix can be used. The relative importance of the 

various variables, calculated by Eq. (3.2), is shown in Figure 3.6.  

 

Figure 3.6 Importance (%) of the input variables on the electrochemical active chlorine production 

Like the FD method, ANN weight analysis derived by Garson’s algorithm described in 

section 3.4 illustrates that electrolysis time and current intensity are the most important 

factors for predicting the production of active chlorine. Garson’s algorithm investigation 

on neural network weights shows about 81.5% influence on active chlorine production for 

these two main independent variables (compared to an 82.8% influence in the FD 

analysis). The H3O+ and NaCl concentration represent the remaining 18.5% of the 

investigated response (active chlorine production). Figure 6 shows the compatible and 

reliable results of the ANN model, similar to the RSM outcomes. 

3.4.1.3 Response surfaces of the RSM and ANN 

The effect of electrolysis time and current intensity on the production of active chlorine is 

illustrated in Figure 3.7. Note that the concentrations of acid and chloride are kept 
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constant at the center of the investigated experimental ranges (0.08 mol/L and 0.55 mol/L, 

respectively). In these conditions, by increasing the electrolysis time, the active chlorine 

concentration rises for all current intensities studied. As can be seen, the RSM response 

surface is a quadratic model that has to fit the predicted values on this surface, whereas 

the ANN model with its high ability for nonlinearity can fit the data in a much finer way. It 

can be concluded that active chlorine can be produced up to more than 33 mg/L at 

electrolysis times longer than 30 min and for current intensities at the higher values of 1.4 

A. 

 

 

Figure 3.7 Response surface graph of active chlorine production versus electrolysis time and current 
intensity, (A) ANN, (B) RSM 
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3.4.2 Multi-objective optimisation with GA 

Simultaneous optimization of hypochlorous acid production and the energy consumption 

is defined in the category of multi-objective optimization. No unique solution can be 

derived for a multi-objective optimization problem, except for Pareto front solutions which 

are inherently non-dominated. A MATLAB script using two ANN models developed for the 

hypochlorous acid production and energy consumption was written to create a cost 

(fitness) function. The multi-objective optimization is conducted by aiming for both 

maximizations of the hypochlorous acid production and minimization of energy 

consumption. The bounds of the four independent variables were chosen by the ranges 

of the experiments. The following NSGA-II algorithm options were set: 

Population size: 50 

Maximum number of iterations: 150 

Selection function: Tournament selection 

Crossover strength: 0.7 

Mutation strength: 0.3 

Distance measure function: distance crowding 

The maximum number of iterations was used as stopping criterion. For the purpose of 

comparison, Pareto fronts have also been generated using RSM models with the same 

NSGA-II algorithm. After 150 iterations the Pareto front of Figure 3.8 is obtained. The 

decision variables of the electrolysis process corresponding to each of the ANN-GA 

Pareto front solutions are tabulated in Table 3.4. 
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Figure 3.8 Pareto fronts for multi-objective optimization of active chlorine production and energy 
consumption 

The general method used for RSM optimization is single optimization with multiple 

responses using desirability functions and weighting factors representing the importance 

of each response. In this approach, usually, just a single optimal point is reported based 

on the desirability value. No Pareto front will be provided. Since the RSM models are 

generated by linear regression method, the Pareto front provided by NSGA-II for this 

approach is linear. Each point on the Pareto front indicates that there is no other process 

decision variables that can have the same active chlorine production with lower cost or, 

in other words, with the same cost there are no other process decision variables that can 

produce higher active chlorine.  As reported in the paper on RSM (Zaviska et al., 2012b), 

the optimal conditions for the electrolytic reactor were obtained by 27 min of electrolysis 

time with the concentrations of hydrochloric acid and chloride sodium of 0.11 and 0.8 

mol/L, respectively. Under these conditions, it was mentioned that production of 30.60 

mg/l of active chlorine could be possible with 0.54 kWh/m3 energy consumption.   
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Table 3.4 Decision variables of the electrolysis process corresponding to each of the Pareto front solutions 
presented in Figure 8. 

S. No. 
Time 
(min) 

Current 
(A) 

[H3O+] 
(mol/L) 

[Cl-] 
(mol/L) 

HClO production 
(mg/l) 

Energy consumption 
(kWh/m3) 

1 35.00 1.60 0.11 0.80 42.23 0.75 
2 15.00 0.80 0.08 0.80 1.53 0.11 
3 22.75 1.57 0.11 0.80 25.45 0.42 
4 20.70 1.45 0.11 0.80 13.69 0.33 
5 17.92 0.80 0.11 0.80 1.87 0.12 
6 18.81 0.80 0.11 0.80 2.16 0.13 
7 21.43 1.36 0.11 0.80 11.40 0.30 
8 33.27 1.60 0.11 0.80 41.49 0.70 
9 24.13 0.80 0.11 0.80 7.33 0.16 
10 20.33 1.53 0.11 0.80 16.89 0.35 
11 33.48 1.53 0.11 0.80 40.13 0.67 
12 27.36 1.05 0.11 0.80 10.62 0.28 
13 20.38 1.59 0.11 0.80 21.11 0.37 
14 25.29 0.80 0.11 0.80 8.34 0.17 
15 23.04 0.80 0.11 0.80 6.03 0.15 
16 23.81 1.59 0.11 0.80 28.84 0.45 
17 21.47 0.80 0.11 0.80 4.08 0.14 
18 26.53 0.96 0.11 0.80 9.72 0.24 
19 28.25 0.81 0.11 0.80 9.60 0.20 
20 28.75 1.59 0.11 0.80 37.21 0.57 
21 29.71 1.59 0.11 0.80 38.50 0.60 
22 28.56 0.93 0.11 0.80 10.12 0.25 
23 27.03 0.81 0.11 0.80 9.26 0.19 
24 19.61 0.80 0.11 0.80 2.48 0.13 
25 20.12 0.80 0.11 0.80 2.84 0.13 
26 20.64 0.80 0.11 0.80 3.13 0.14 
27 19.92 0.80 0.11 0.80 2.71 0.13 
28 26.19 1.59 0.11 0.80 33.72 0.51 
29 21.90 0.80 0.11 0.80 4.52 0.14 
30 25.41 1.59 0.11 0.80 32.03 0.49 
31 21.12 0.81 0.11 0.80 3.71 0.14 
32 28.41 1.56 0.11 0.80 35.47 0.55 
33 30.77 1.60 0.11 0.80 39.76 0.63 
34 24.65 1.59 0.11 0.80 30.47 0.47 
35 20.97 1.55 0.11 0.80 19.53 0.37 
36 27.16 1.59 0.11 0.80 34.92 0.53 
37 22.15 0.80 0.11 0.80 4.82 0.15 
38 20.95 0.80 0.11 0.80 3.51 0.14 
39 17.36 0.80 0.11 0.80 1.77 0.12 
40 15.78 0.80 0.11 0.80 1.60 0.12 
41 20.80 0.80 0.11 0.80 3.27 0.14 
42 22.46 0.80 0.11 0.80 5.28 0.15 
43 19.31 0.80 0.11 0.80 2.29 0.13 
44 30.55 1.59 0.11 0.80 39.47 0.63 
45 22.57 0.81 0.11 0.80 5.50 0.15 
46 16.98 0.80 0.11 0.80 1.71 0.12 
47 16.45 0.80 0.11 0.80 1.65 0.12 
48 19.31 0.80 0.11 0.80 2.35 0.13 

Conversely, in the ANN-GA approach of this paper, one of the solutions implies that with 

0.53 kWh/m3 of energy consumption 34.92 mg/l of active chlorine can be produced under 

different operating conditions. Also, production of 30.47 mg/l of active chlorine is 

achievable with 0.47 kWh/m3 energy consumption. These imply more economic 
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conditions for higher active chlorine production. Unfortunately, our results could not be 

verified by the experiments since the experimental set up was no longer available. 

However, by comparing Table 3 and 4, at least one Pareto optimal point appears similar 

to an experimental assay (Solution number 1: Time=35 min, Current=1.6 A, [H3O+]=0.11 

mol/L and [Cl-]=0.8 mol/L). Under these conditions, 42.23 mg/l of active chlorine can be 

produced with 0.75 kWh/m3 energy consumption compared to experimental values of 46 

mg/l and 0.76 kWh/m3 for active chlorine and energy consumption, respectively. The 

relative error for this optimal point is 0.082 and 0.013 for active chlorine production and 

energy consumption, respectively.   

The ANN-GA approach introduced in this study provides optimal operational conditions 

based on active chlorine production and energy cost. The advantage of having a Pareto 

front for industrial process designers and operators is that different operational conditions 

(decision variables) can be selected based on preference for each objective. This gives 

an insight on the trade-off between the different objective functions involved in this 

industrial process. 

Although some effort has been made in this study to obtain the best possible ANN models 

for describing the process, there remain some ANN hyperparameters that can be 

optimized in further studies. These hyperparameters, including transfer functions and 

learning rate, may have direct impact on the ANN modelling performance. 

3.5. Conclusions 

The artificial neural network-genetic algorithm (ANN-GA) methodology was successfully 

applied to an electrolysis process for active chlorine production. MLP feedforward neural 

networks were developed for actives chlorine production and energy consumption. To 

diagnose whether there is a danger for high-variance or high-bias error and to prevent 

over-fitting of the model, learning curves along with regularization factor analysis were 

utilized during the training of the neural network models. Figure 3.7 indicated that the 

ANN model was able to describe the nonlinearities related to the experimental process 

better than the previously proposed RSM model with a coefficient of determination of 

0.979 and 0.985 for production of active chlorine and energy consumption, respectively. 
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Analysis of the relative importance of the variables indicated that electrolysis time and 

current intensity are the two most influential parameters with a total effect of 81.5% on 

active chlorine production.  

To obtain a clear insight throughout the trade-off between different objective functions 

involved in the electrolysis process, the NSGA-II algorithm was used for multi-objective 

optimization of the process regarding active chlorine production and energy consumption. 

The Pareto front derived by GA led to the generation of non-dominated optimal points 

(operating conditions) for maximum active chlorine production at minimum energy 

consumption. The proposed ANN-GA methodology can give insight in how to efficiently 

choose the process operation parameters (decision variables) for the desired objectives. 

This approach can be adapted to other processes if the experimental data already exist.   
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Abstract 

In this study, the modelling and optimization of psychoactive pharmaceutical caffeine 

removal in synthetic solution and real municipal wastewater effluent by electrochemical 

oxidation (EO) process was investigated using central composite design (CCD) based on 

response surface methodology (RSM) and adaptive neuro fuzzy inference system 

(ANFIS). The influence of independent variables including electrolysis time, current 

intensity, initial concentration of caffeine, and type of anode were studied. Results showed 

that anode type followed by electrolysis time are the most important variables affecting 

caffeine degradation. Both CCD and ANFIS models were able to successfully predict the 

electrochemical process behaviour, while ANFIS models performed slightly better 

(R2=0.993, RMSE=2.694 for caffeine removal efficiency, and R2=0.976, RMSE=0.261 for 

energy consumption). Identification of intermediates by liquid chromatography-tandem 

mass spectrometry (LC-MS/MS) suggests that the degradation of caffeine by the EO 

process follows an oxidation pathway similar to the mechanism proposed for other 

advanced oxidation processes. The optimal conditions determined using CCD were 

applied on real municipal wastewater effluent in which caffeine removal efficiency varied 

between 78.0±4.3% and 92.5±1.0% for different initial caffeine concentrations showing 

the effectiveness of the process. Finally, toxicity assessment with Daphnia magna 

showed that the EO of real municipal wastewater effluent in optimal conditions may 

increase the toxicity levels of the samples. Toxicity could be reduced by extending the 

electrolysis time or could be completely eliminated using granular activated carbon.  

 

Keywords:  

Artificial intelligence, Electrooxidation, Endocrine disruptor, Toxicity, Central composite 

design  
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4.1. Introduction 

With the world’s rapid population growth and intense industrialization in the 20th century, 

environmental pollution has become a global problem with adverse impacts on the water 

sector. The vast majority of these pollution issues is caused by persistent organic 

compounds because of their resistance to conventional treatments such as physico-

chemical or biological methods. This results in detection of refractory pollutants such as 

pesticides, pharmaceutically active compounds (PhAC), phenolic compounds, synthetic 

dyes, halogenated compounds, polycyclic aromatic hydrocarbon (PAHs), polychlorinated 

biphenyls (PCBs), endocrine disrupting chemicals (EDCs), and others in rivers, lakes, 

oceans and even drinking waters all over the world. They can cause hazardous health 

effects on living organisms including human beings. Therefore, advanced water and 

wastewater treatment have become a primary social, political, and environmental concern 

(Drogui et al., 2007; Rahman et al., 2009; Zheng et al., 2017).  

Caffeine, an alkaloid compound of the methylxanthine family, is a psychoactive drug 

widely used legally in foods, personal care products, beverages and medicines. Caffeine 

is considered safe at usual moderate intakes and is consumed for its benefits such as 

improved physical endurance, weight loss, cognitive alertness, and reduction of perceived 

fatigue (Beauchamp et al., 2017; Nardi et al., 2009). However, in excessive doses 

caffeine may exacerbate underlying psychiatric disorders, increase the risk of significant 

toxicity, cardiotoxicity resulting in arrhythmia, anxiety and panic disorders (Elhalil et al., 

2018; Wikoff et al., 2017). Caffeine is commonly used as a key ingredient in tea, coffee, 

soft drinks, and chocolates. Based on global population and average consumption of 70 

mg caffeine/person/day, about 460 tons of caffeine are being consumed each day by 

humans (Buerge et al., 2003). An unidentified amount of this consumption is introduced 

into the wastewater treatment plants globally, mainly as the excretory residues of 

consumed caffeine, disposal of unconsumed caffeinated drinks, pharmaceutical 

products, manufacturing plant wastes, hospital wastes, etc (Li et al., 2020a). Caffeine has 

been detected in wastewater treatment plant influents and effluents in concentrations 

ranging from ng/L to mg/L (Kahl et al., 2017; Tran et al., 2014). The highest concentrations 

of caffeine in influents and effluents of wastewater treatment plants have been reported 
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as 3.6 mg/L in Singapore and 66 µg/L in Spain, respectively (Li et al., 2020b). Once 

discharged to the aquatic environment, caffeine is extremely stable due its high solubility 

in water (37.5 ± 1.0 g/L) and reported half-life of 100-240 days (Hillebrand et al., 2012; 

Sriamornsak et al., 2007). This has resulted in considering caffeine as one of the most 

abundant PhAC contaminants frequently detected in aquatic environments gaining 

attention for its adverse impacts in aquatic biota. Recent studies have demonstrated that 

caffeine residues can lead to multiple detrimental effects on aquatic organisms and 

terrestrial insects such as lethality, decreasing general stress, inducing oxidative stress 

and lipid peroxidation, affecting energy reserves and metabolic activity, neurotoxic 

effects, affecting reproduction and development, etc (Bruton et al., 2010; Li et al., 2020a).     

Since municipal wastewater treatment plants cannot efficiently remove caffeine, 

alternative methods such as advanced oxidation processes (AOPs) have been applied 

for the degradation of caffeine (Arfanis et al., 2017; Elhalil et al., 2018; Ganzenko et al., 

2015; Rosal et al., 2009; Trovó et al., 2013). AOPs have emerged as a potent technique 

for degradation of various pollutants (Carabin et al., 2016; Ferre-Aracil et al., 2016; Tran 

et al., 2010). In recent years, new AOPs based on electrochemical technology, the so-

called electrochemical advanced oxidation processes (EAOPs), have been developed for 

the treatment of various wastewaters containing refractory contaminants (Daghrir et al., 

2014; Komtchou et al., 2017; Olvera-Vargas et al., 2015; Tran et al., 2015b). 

Electrochemical oxidation (EO) as one of the promising EAOPs has gained attention for 

its great performance regarding the degradation of non-biodegradable pollutants (Garcia-

Segura et al., 2018; Martínez-Huitle et al., 2018; Moreira et al., 2017; Yang, 2020). 

Electrochemical oxidation can be carried out based on two different mechanisms of direct 

oxidation and indirect oxidation. In direct oxidation hydroxyl radicals are produced at the 

electrode surface by the oxidation of water molecules whereas in indirect oxidation 

different oxidant mediators in the bulk solution such as H2O2, HClO and S2O8
2-

 are 

generated (Panizza, 2010). The nature of the anode material affects the nature and 

quantity of the hydroxyl radical generated. In non-active anodes such as lead (IV) oxide 

(PbO2), tin (IV) oxide (SnO2), and boron doped diamond (BDD) the electro-generated 

hydroxyl radicals remain physisorbed on the anode surface. The BDD anode, having a 

high oxygen evolution overpotential, generally produces greater quantities of highly 
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reactive and weakly adsorbed hydroxyl radicals to mineralize organic pollutants. Because 

of its characteristics, the BDD anode has become the state-of-the-art EAOP catalyst. 

However, recent studies have developed novel non-active anodes such as Graphdiyne 

(GDY) to overcome the challenges related to the BDD including its inherent high cost and 

manageability (Liu et al., 2021). In the case of active anodes such as iridium (IV) oxide 

(IrO2), ruthenium (IV) oxide (RuO2), and other mixtures of metal oxides, there is a strong 

electrode-hydroxyl radical interaction forming higher metal oxides which can convert 

organic substrates to more oxidized intermediates (Durán et al., 2018).  

To study the effect of different independent variables on the process and calculating the 

response variables, response surface methodology (RSM) based on design of 

experiments (DoE) is often used instead of the classical approach in which one is 

changing one factor at a time while keeping all other factors fixed at a specified condition 

method. RSM helps identifying the single and combined effects (interactions) of process 

variables, find the optimal response of the process using a limited number of experiments 

saving time and cost by reducing the number of trials (Hakizimana et al., 2017). RSM has 

been successfully applied to EO processes for degradation of various organic pollutants 

in wastewaters (Jardak et al., 2017; Karimifard et al., 2018; Zaviska et al., 2012a).  

Artificial intelligence (AI) methods have become an interesting alternative option in 

modelling and optimization of electrochemical processes in case phenomenological or 

conventional regression models (e.g., RSM) are not practical (Curteanu et al., 2014). 

These data-driven tools model the system behaviour solely from mapping the input-output 

data rather than from process knowledge. Various types of problems in science can be 

cast in the form of such pattern-matching, and among the AI techniques, artificial neural 

networks (ANN) are one of the most effective methods (Gholami Shirkoohi et al., 2021; 

Shirkoohi et al., 2021). Hyperparameters of the ANN model such as the number of hidden 

layers and hidden neurons in each layer should be tuned for an efficient proposed model. 

This requires a black-box trial-and-error process. The adaptive neuro fuzzy inference 

system (ANFIS) combining the well-established learning technique of ANN and the 

linguistic characteristics of fuzzy logic theory has become a powerful and attractive AI 

modelling approach. The parameters of the Tagaki-Sugeno-Kang (TSK) inference model 

are updated from training data by employing the learning algorithm of ANN. In this 
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manner, the hidden layers and hidden neurons are determined accurately by a FIS in the 

ANFIS network. Hence, the difficulty of determining the ANN model configuration is 

eliminated (Abdulshahed et al., 2015; Naghibi et al., 2021). Taheri et al. (Taheri et al., 

2013) utilized ANFIS and RSM models for the optimization of Reactive Blue 19 removal 

using a combined electrocoagulation/coagulation process. High R2 values (≥85%) 

indicated that the predictions of RSM and ANFIS models are acceptable for both 

responses. A comparison of ANFIS and other AI techniques was carried out by Farzin et 

al. (Farzin et al., 2020) for the modelling of Ciprofloxacin removal from wastewater by 

electrochemical oxidation. While the interpolation method was used for increasing 

number of data, ANFIS performed better than ANN for in interpolated data which was in 

accordance with some other studies (Sahoo et al., 2020; Souza et al., 2018). 

To the best of the authors’ knowledge, this is the first comparative study between central 

composite design (CCD) based on RSM and ANFIS for modelling and optimization of 

psychoactive pharmaceutical caffeine removal by electrochemical oxidation by two active 

and non-active anodes. The main objective of this study was investigation of caffeine 

degradation in synthetic and real municipal wastewater effluents by an EO process in 

different experimental conditions. Based on experimental design, a factorial design (FD) 

followed was developed to investigate the main and interaction effects of different factors 

on caffeine removal efficiency. Quadratic polynomial models using CCD were used to 

determine the optimal experimental conditions for caffeine degradation and energy 

consumption. Furthermore, the results provided by CCD were compared with the ANFIS 

predicted values. Contribution of direct versus indirect effects while oxidizing caffeine 

using the electrooxidation process were also investigated. Another objective of this study 

was to determine the oxidation mechanism of the EO process. Finally, real municipal 

wastewater effluent was used to test the effectiveness of the optimal EO process for 

caffeine degradation in the presence of other pollutants. Toxicity was evaluated before 

and after treatment. 
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4.2. Materials and methods 

4.2.1 Preparation of the synthetic solution 

Caffeine (1,3,7-Trimethylpurine-2,6-dione, C8H10N4O2) was supplied by Thermo Fisher 

Scientific (≥99.7%). Some important characteristics of caffeine are shown in Table AI. 1.  

Anhydrous sodium sulphate used as supporting electrolyte was analytical grade 

purchased from Thermo Fisher Scientific. The solution of caffeine was prepared in a 

volumetric flask containing 1 L of distilled water at room temperature in which different 

concentrations of caffeine were mixed with 1 g of electrolyte to increase electrical 

conductivity. Conditioning was carried out with a magnetic stirrer at high speed (700 rpm) 

for a 40-min period.  

4.2.2 Real municipal wastewater treatment effluent  

The municipal wastewater effluent used throughout this study was sampled from the 

Quebec Urban Community (CUQ) wastewater treatment plant (WTP, Beauport, Quebec 

City, Quebec, Canada). It is a conventional WTP with a short sludge age having a 

physicochemical pre-treatment followed by a bio-filtration process. Characteristics of the 

effluent samples are represented in Table AI. 2. These samples were used to test the 

electrooxidation removal of caffeine in the presence of other types of pollutants and to 

perform toxicity assessment. The EO treatment of municipal wastewater contaminated by 

caffeine was conducted without the addition of Na2SO4. This was because the effluent 

was conductive enough and Na2SO4 had no indirect effect on caffeine removal (as will be 

explained in section 3.3). 

4.2.3 Electrolytic reactor setup 

The electrolytic cell used was made of Plexiglas material with a dimension of 17.1 cm 

(depth) × 3.3 cm (width) × 11.4 cm (length). It was comprised of one anode and one 

cathode with an interelectrode gap of 1 cm. BDD and IrO2 were selected as anodes 

because of their relatively high overvoltage for oxygen evolution. The utilized rectangular 

anode electrodes (10 cm × 11 cm of 0.1 cm thick) had a solid surface area of 68 cm2 and 
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a void surface area of 45 cm2. The cathode was a stainless steel grid having a surface 

area of 110 cm2 (solid surface area of 55 cm2 and a void surface area of 55 cm2). The 

electrodes were vertically installed on a perforated Plexiglas plate at 1.8 cm from the 

bottom of the cell. All experiments were carried out in a batch reactor as shown in Figure 

AI. 1. The current intensity was delivered by means of an EXTECH 382275 DC power 

supply (1-30 V, 0-20 A). 

4.2.4 Analytical details  

Progress of the electrochemical degradation of caffeine in solution was monitored and 

quantified by absorbance measurements (absorption peaks previously determined) using 

a Varian Cary 100 ultraviolet (UV) spectrophotometer. The absorption peak measured at 

the wavelength of 273 nm was chosen to evaluate the residual caffeine concentration. 

The spectrum is characterized by a main peak located in the ultraviolet region at 273 nm. 

Calibration curves (absorbance versus concentration) were created to calculate the 

residual caffeine concentration in the solution. Figure AI. 2 represents examples of UV 

absorbance spectra for the two utilized anodes at different time intervals. The 

concentrations of caffeine in real wastewater and identification of intermediates were 

monitored and quantified by LC/MS/MS (Thermo TSQ Quantum Access). 

Chromatographic separation was achieved using a Hypersil Gold C18 column (Thermo 

Hypersil Ltd., Runcorn, UK) with a particle size of 3.0 mm and a 100 mm length × 2.1mm 

inner diameter. Total organic carbon (TOC) was measured by the high temperature 

catalytic combustion method and infrared detection using a Shimadzu TOC VCPH 

analyzer (Shimadzu Scientific Instruments, Kyoto, Japan). The sample was acidified to 

remove inorganic carbon.  

Anionic species (Cl
-
, NO3

-
, SO4

2-
) were measured by ion chromatography using a Thermo 

Integrion High-Pressure Ion Chromatography (HPIC). The ammonia concentration was 

determined according to the analytical method proposed by LACHAT Instrument 

(QuikChem® Method 10-107-06-2-B). 
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4.2.5 Toxicity assessment 

In order to evaluate the acute toxicity of the untreated and treated real municipal 

wastewater effluent, a daphnia (Daphnia magna) test is used. Daphnia is a freshwater 

microcrustacean of the order of cladocerans and has been used for the determination of 

toxicity in different studies (Gimeno et al., 2016; Gireli et al., 2019; Ouarda et al., 2018). 

This species is sensitive to a wide range of contaminants and is relatively easy to store 

in the laboratory. The neonate stage of the microcrustacean Daphnia magna Strauss (≤ 

24 h) is used for testing. This toxicity test consists of determining the concentration of the 

sample which causes 50% mortality after 48 hours of exposure (48 hour LC50) in a static 

system and under controlled conditions. The photoperiod is 16h of light and 8h of dark 

cycle with a light intensity of 500 to 1000 lux. The sample is homogenized before the start 

of the test and kept at 20.0 ± 2.0 °C. Also, temperature, pH, dissolved oxygen, conductivity 

and hardness are measured and noted. If the hardness is less than 50 mg/l, it is adjusted 

to 50 mg/l with a concentrated solution of calcium chloride and magnesium chloride. If, 

and only if, the dissolved oxygen concentration is less than 40% or greater than 100% 

saturation, the sample is pre-aerated for a period not exceeding 30 minutes at a rate of 

25 to 50 mL/min.L. No other changes are made to the sample. However, if the pH is 

extreme, an additional test can be performed with a pH-adjusted sample. 

To determine the 48-hour LC50, a series of sample dilutions is performed and the 

percentage mortality is determined for each of the concentrations after 48 hours of 

exposure. The dilution water can be dechlorinated, ground or bottled water. This water 

must have a hardness between 160 and 180 mg/L, a pH between 6.5 and 8.5 

(recommended between 7.0 and 8.0) and a dissolved oxygen content between 90 and 

100% saturation. A dilution factor of 0.5 to 0.7 is generally appropriate (USEPA, 2002). 

Five concentrations of 6.25, 12.5, 25, 50, 100 (% v/v) plus a control (0 % v/v, dilution 

water only) have been used in this study. Four replicates for each concentration 

containing five neonates in 10 mL of each sample were subject to a photo period of 48 

hours. The test results are acceptable if the percentage of mortality in the control groups 

is equal to or less than 5%. The concentration of the sample that causes 50% mortality in 

the population tested (LC50) will be calculated. Mortality is determined as the lack of 
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movement of the antennae, appendages, and the absence of a heartbeat as observed 

through a dissecting microscope. 

4.2.6 Experimental design  

The experimental design of the electrooxidation process for caffeine degradation was 

carried out using the response surface methodology. RSM is a collection of mathematical 

and statistical techniques for modelling, optimization and analysis of processes when 

several variables influence the response (Anderson et al., 2016). In this study, an FD and 

a CCD were used successively for modelling and optimization of caffeine degradation by 

the electrochemical oxidation process. The FD was employed to investigate the main and 

interaction effects of the different factors on caffeine degradation and energy 

consumption. Subsequently, CCD was used to optimize the electrochemical oxidation 

process in terms of caffeine degradation and energy consumption. Four independent 

variables including electrolysis time (X1), current intensity (X2), initial concentration of 

caffeine (X3) and anode type (X4) were selected to model the electrooxidation process. 

The caffeine removal efficiency (Y1) and energy consumption (Y2) were considered as 

dependent factors (responses) and calculated using Eq. (4.1) and (4.2): 

Removal efficiency (%)=
[CAF]0-[CAF]

[CAF]0
×100 (4.1) 

Energy consumption (Wh/mg)=
VI∆T

∆[CAF]
 (4.2) 

where [CAF]0 is the initial concentration of caffeine (mg/L), [CAF] is concentration of 

caffeine after different treatment times (mg/L); V is the applied voltage in volt (V), I is the 

current in Ampere (A), ∆T is the electrolysis time in hours and ∆[CAF] is the amount of 

caffeine removed in mg. 

It should be noted that process variables and their ranges were determined by conducting 

preliminary experiments. Table AI. 3 shows the experimental independent factors, their 

ranges and coded values. Lab-scale electrolysis of 460 cm3 of caffeine solutions were 
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carried out under galvanostatic conditions with current intensity ranging from 0.7 to 2.3 A 

(10.3 to 33.8 mA cm-2) according to FD and CCD matrices. 

4.2.7 ANFIS modelling 

ANFIS introduced by Jang (Jang, 1993), a hybrid technique of artificial intelligence, 

combines a Sugeno type Fuzzy Inference System (FIS) and an artificial neural network 

(ANN). Fuzzy Logic is utilized in ANFIS to produce fuzzy rules and map the inputs to an 

output based on a given input-output data set. ANFIS applies the neural network learning 

process to learn from a given set of training data (like an ANN model), the rules and 

membership functions for tuning the FIS parameters. Likewise, the solution mapped out 

into the fuzzy model is explained in linguistic terms based on if-then fuzzy logic rules 

(Abdulshahed et al., 2015). 

Figure 4.1 shows the schematic of an ANFIS structure with two inputs, two rules and one 

output. As can be seen, the ANFIS structure includes five layers. Similar to ANN learning, 

ANFIS training comprises of a forward pass and a backward pass. Output values are the 

results of the forward pass through the net. In the backward pass, the error is calculated 

and is propagated back to the earlier layers in a similar manner as the backpropagation 

learning algorithm (Hussein, 2016). In the Input layer, inputs are introduced to the ANFIS 

network. Layer 1 is called the fuzzification layer that generates membership functions 

(MF) for each of the inputs. The nodes in this layer are adaptive nodes which have 

adjustable premises parameters related to input membership functions. In layer 2 or rule 

layer, the firing strength of each rule is calculated. Layer 3 or the normalisation layer 

computes the normalized value of the firing strength of each rule with respect to the firing 

strength of all rules. The fourth layer or defuzzification layer is an adaptive layer which 

calculates the values of the consequences of the rules. Consequent parameters in a p-th 

order polynomial function of the input signals (used in the Sugeno model) are adaptive 

parameters in this layer that must be adjusted. In layer 5 or the sum layer, the final output 

is calculated by summation of all incoming signals. 
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Figure 4.1 Schematic of the ANFIS structure (explanation in text) 

In this study, ANFIS models were built in MATLAB ver. R2019a with the experimental 

data collected according the DoE. For each of the responses (removal efficiency and 

energy consumption) one model with four inputs and one output was developed.  

To evaluate the performance of the CCD and ANFIS models, the correlation coefficient 

(R2), the root-mean-square error (RMSE), and the mean absolute percentage error 

(MAPE) were used as comparison criteria. To train the ANFIS models RMSE was used 

as the error function. These functions were calculated as: 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)2
𝑛
𝑖=1

     (4.3) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)2
𝑛

𝑖=1

 (4.4) 
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𝑀𝐴𝑃𝐸 =
100

𝑛
∑|

𝑦𝑖 − 𝑦�̂�
𝑦𝑖

| 

𝑛

𝑖=1

 (4.5) 

where 𝑦𝑖 is the experimental value, 𝑦�̂� is the predicted value, and �̅� is the average value 

of the experimental data. 

4.3. Results and discussion 

4.3.1 RSM modelling 

4.3.1.1 Factorial design 

A factorial design matrix (2k) with k variables was used to investigate the influence of four 

main factors- electrolysis time (X1), current intensity (X2), initial concentration of caffeine 

(X3), and type of anode (X4)- on the efficiency of caffeine degradation and energy 

consumption. In this design, each factor is fixed to two levels normalized as -1 and +1, 

respectively. The experimental response associated to the 24 factorial design (four 

factors) could be represented by a linear polynomial model with interaction as follows: 

Y=+50.79+10.85 X1+4.66 X2-3.97 X3-28.47 X4-2.93 X1X4+4.14 X3X4   (4.6) 

The percentage contribution of each factor and their interactions on the response can be 

calculated by Pareto analysis (Carabin et al., 2016): 

𝑃𝑖 = (
𝑏𝑖
2

∑ 𝑏𝑖
2𝑘

𝑖=1

) × 100 , (𝑖 ≠ 0) (4.7) 

where bi represents the estimation of the principal effects on the factor i and k is the 

number of factors. The percentage contribution of each of the factors is illustrated in 

Figure 4.2. It can be seen that caffeine degradation is mainly influenced by the anode 

type followed by electrolysis time; their effects are 81.0% (for anode type) and 11.8% (for 

electrolysis time) on the response. The current intensity, initial concentration and other 

interaction effects represent only 8% on the caffeine degradation. The anode electrode 

material is a major factor that influenced the rate of caffeine oxidation. In particular, 

“active” electrodes, such as IrO2, are considered as a suitable catalyst for oxygen 
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evolution reactions that allow only partial oxidation of the organic compounds 

(electrochemical conversion). On the other hand, “non-active” electrodes, such as BDD, 

having high oxygen evolution potential, can lead to complete mineralization of organic 

pollutants (electrochemical combustion) which makes them more efficient as EO process 

(Durán et al., 2018; Jardak et al., 2016). As suggested by Comninellis (Comninellis, 

1994), considering the very low oxygen overpotential of IrO2 (E° = 0.25 V) secondary 

reactions may take place which decreases the degradation efficiency of organic 

pollutants. A BDD anode has shown its good performance for electrochemical caffeine 

degradation in other studies (Cotillas et al., 2016; Indermuhle et al., 2013; Martin de 

Vidales et al., 2015). Moreover, different types of anodes such as graphite, graphite-PVC, 

Pt, and PbO2 anodes, have also been used for electrooxidation of caffeine (Al-Qaim et 

al., 2015; Chen, 2015; Periyasamy et al., 2018). Chen et al. (Chen, 2015) utilized BDD, 

PbO2, and Pt anodes for EO of caffeine under different operating conditions, and it was 

found that the performance of the tested anodes in terms of caffeine degradation 

efficiency and TOC reduction was in the order BDD > PbO2 > Pt.    

 

Figure 4.2 Contributions of different factors on caffeine removal  

4.3.1.2 Central composite design 

A CCD methodology based on RSM was employed to obtain a mathematical model for 

prediction of the behaviour of the electrochemical process and to find the optimal 

conditions for caffeine removal efficiency and energy consumption. The CCD matrix is 
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comprised of three sets of experiments: a factorial matrix at cubic points (16 assays), a 

star matrix at axial points at α=1.68 (12 assays), and a set of points at the center of the 

experimental region at α=0 (12 assays). The 4-factors five-level CCD matrix, and a 

comparison of experimental and predicted values of caffeine removal efficiency and 

energy consumption are listed in Table 1. The predicted responses are calculated based 

on the second-order quadratic polynomial equation given below: 

𝑌 = 𝑏0 +∑𝑏𝑖 × 𝑋𝑖 +∑𝑏𝑖𝑖 × 𝑋𝑖
2 +∑∑𝑏𝑖𝑗 × 𝑋𝑖𝑋𝑗 + 𝑒𝑖

𝑘

𝑖=1

𝑘

𝑖=1

 (4.8) 

where 𝑌 is the response, 𝑋𝑖 and 𝑋𝑗 are the independent variables, 𝑏0 corresponds to the 

average value of the responses, and 𝑏𝑖, 𝑏𝑖𝑖, and 𝑏𝑖𝑗 are the linear, quadratic, and 

interaction effects between factors 𝑖 and 𝑗 for response 𝑌, and 𝑒𝑖 represents the random 

error on the response 𝑌 from the observed results. The coefficients of this model are 

calculated using the least-squares method: 

𝐵 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 (4.9) 

where 𝐵 is the vector of estimates of the coefficients; 𝑋 represents the model matrix; and 

𝑌 corresponds to the vector of experiment results. The coded variables (𝑋𝑖) were 

calculated by the following equation: 

𝑋𝑖 =
𝑈𝑖 − 𝑈𝑖,0
∆𝑈𝑖

 (4.10) 

where 𝑈𝑖,0 =
(𝑈𝑖,𝑚𝑎𝑥+𝑈𝑖,𝑚𝑖𝑛)

2
 represents the value of 𝑈𝑖 at the center of the experimental 

range; and ∆𝑈𝑖 =
(𝑈𝑖,𝑚𝑎𝑥−𝑈𝑖,𝑚𝑖𝑛)

2
 represents the step of variation; and 𝑈𝑖,𝑚𝑎𝑥 𝑈𝑖,𝑚𝑖𝑛 are 

maximum and minimum values of the effective variable 𝑈𝑖, respectively. 



 

124 

 

Table 4.1 The CCD matrix with observed and predicted responses 

Assay 
U1 U2 U3 U4 

 Removal 
(%) 

 Energy Consumption  
(Wh/mg) 

(min) (A) (mg/L) 
 Observed Predicted  Observed Predicted 

   CCD ANFIS  CCD ANFIS 

1 30 0.7 30 BDD  78.00 74.08 78.00  0.27 0.11 0.27 

2 47 1.5 30 BDD  99.69 99.59 99.69  1.11 1.63 1.11 

3 30 1.5 30 BDD  80.64 80.87 83.90  0.86 0.87 0.87 

4 40 1 40 IrO2  19.35 22.54 19.35  1.82 1.60 1.71 

5 30 1.5 30 IrO2  20.14 20.66 17.24  3.35 3.54 3.94 

6 30 1.5 30 BDD  86.95 80.87 83.90  0.88 0.87 0.87 

7 40 2 40 IrO2  38.79 31.02 38.79  2.77 2.99 2.77 

8 30 0.7 30 IrO2  12.46 13.87 12.46  1.56 1.99 1.56 

9 40 1 20 IrO2  23.78 24.79 23.78  3.00 3.13 3.00 

10 30 1.5 47 IrO2  24.15 24.11 24.15  1.84 1.78 1.84 

11 40 2 20 IrO2  39.01 33.27 39.01  5.41 5.61 5.41 

12 13 1.5 30 IrO2  5.11 2.73 5.11  5.83 4.70 5.83 

13 20 1 40 IrO2  11.26 7.94 11.26  1.59 2.37 1.59 

14 30 1.5 30 IrO2  16.73 20.66 17.24  3.88 3.54 3.94 

15 40 2 20 BDD  100.00 105.04 100.00  2.35 2.25 2.35 

16 20 2 40 IrO2  20.56 16.42 20.56  2.73 3.76 2.73 

17 20 2 40 BDD  58.88 65.08 58.88  1.05 0.77 1.05 

18 47 1.5 30 IrO2  26.73 27.56 26.73  3.84 3.39 3.89 

19 30 1.5 30 BDD  85.93 80.87 83.90  0.83 0.87 0.87 

20 30 1.5 30 BDD  81.29 80.87 83.90  0.91 0.87 0.87 

21 30 1.5 13 IrO2  34.11 27.93 34.11  4.28 5.31 4.28 

22 13 1.5 30 BDD  49.50 51.12 49.50  0.65 1.10 0.60 

23 30 1.5 30 IrO2  17.69 20.66 17.24  3.93 3.54 3.94 

24 20 1 20 BDD  71.63 68.04 71.63  0.53 0.45 1.03 

25 20 2 20 BDD  79.06 76.52 79.06  1.54 1.94 1.54 

26 40 1 40 BDD  82.36 85.11 82.36  0.46 0.69 0.46 

27 20 1 40 BDD  52.33 56.59 52.33  0.37 0.38 0.25 

28 30 1.5 30 IrO2  15.94 20.66 17.24  4.14 3.54 3.94 

29 30 1.5 30 IrO2  15.71 20.66 17.24  4.24 3.54 3.94 

30 30 1.5 30 BDD  84.70 80.87 83.90  0.85 0.87 0.87 

31 30 1.5 30 BDD  81.90 80.87 83.90  0.86 0.87 0.87 

32 30 1.5 47 BDD  78.72 76.50 77.01  0.58 0.34 0.58 

33 40 2 40 BDD  91.06 93.59 97.63  1.27 1.08 1.27 

34 30 2.3 30 IrO2  26.40 27.44 26.94  4.99 5.09 4.99 

35 30 1.5 13 BDD  86.63 95.96 93.59  1.86 1.39 1.86 

36 30 1.5 30 IrO2  18.76 20.66 17.24  3.46 3.54 3.94 

37 30 2.3 30 BDD  88.60 87.65 88.75  1.68 1.62 1.68 

38 20 1 20 IrO2  9.53 10.19 14.70  3.82 3.90 3.82 
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39 40 1 20 BDD  98.78 96.56 97.98  0.76 0.76 0.76 

40 20 2 20 IrO2  16.24 18.67 18.50  6.78 6.39 7.37 

 

 

Table 4.2 Optimal values of the process parameters for the maximum caffeine removal efficiency (%) 

Solution 
U1 U2 U3 U4 

 Removal 
(%) 

 Energy Consumption  
(Wh/mg) 

(min) (A) (mg/L) - 
Observed Predicted  Observed Predicted 

  CCD ANFIS  CCD ANFIS 

 39 0.7 13 BDD  93.82±0.80 100.46 95.24  0.70±0.02 0.26 0.91 
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Based on the experimental results, quadratic polynomial equations between the 

independent variables (current intensity, electrolysis time, initial concentration of caffeine, 

and type of anode) and responses (caffeine removal efficiency and energy consumption) 

in coded forms were obtained using the Design-Expert® Program: 

Y1= 50.76+10.78X1+4.24X2-3.42X3-30.10X4-3.48X1X4+2.30X3X4-1.91X1
2+1.86X3

2
 (4.11) 

Y2= 2.21-0.12X1+0.72X2-0.67X3+1.34X4-0.27X1X4-0.27X2X3+0.25X2X4 

-0.37X3X4+0.17X1
2
 

(4.12) 

According to Table 4.1, it can be observed that there is good agreement between 

experimental and CCD predicted values for caffeine removal efficiency and energy 

consumption. An analysis of variance (ANOVA) was applied to evaluate the fitted models 

(Table 4.3). The F-values of the developed models were calculated as 277.72 (removal 

efficiency) and 52.02 (energy consumption), indicating that there is only a 0.01% chance 

that a "Model F-Value" this large could occur due to noise. The low p-value of the models 

(< 0.0001) demonstrates that the models are statistically significant. In the case of 

caffeine removal efficiency, the model terms X1, X2, X3, X4, X1X4, X3X4, X1
2
, X3

2
 were found 

to be significant while in case of energy consumption the model terms X1, X2, X3, X4, X1X4, 

X2X3, X2X4, X3X4, X1
2
 were. Model terms with p-values larger than 0.10 were considered 

insignificant (Kumari et al., 2019) and eliminated from the developed quadratic models. 

Surface plots of the CCD models as function of electrolysis time and current intensity at 

the center point of the initial caffeine concentration for the two anodes are illustrated in 

Figure 4.3.  The main effects of each variable on the caffeine removal efficiency and 

energy consumption are represented in Figure 4.4. As can be seen, the caffeine removal 

efficiency is improved by increasing electrolysis time, and current intensity and is 

decreased by an increase in initial caffeine concentration. For the energy consumption, it 

can be said that the BDD anode is more energy efficient than the IrO2 one in caffeine 

removal since the BDD curves are below the IrO2 curves in all plots. Also, the energy 

consumption rises by increasing current intensity and initial caffeine concentration. These 

findings for the behaviour of the caffeine removal efficiency and energy consumption are 
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compatible with other studies in literature for electrochemical oxidation of caffeine in 

aqueous solutions (Al-Qaim et al., 2015; Periyasamy et al., 2018).      

Table 4.3 ANOVA results of the quadratic models for caffeine removal efficiency and energy consumption  

 Removal efficiency  Energy consumption 

 Coefficient F-value p-value  Coefficient F-value p-value 

Model - 277.72 < 0.0001  - 52.02 < 0.0001 

Intercept 50.76 - -  2.21 - - 

X1 10.78 172.22 < 0.0001  -0.12 1.59 0.2175 

X2 4.24 26.66 < 0.0001  0.72 61.38 < 0.0001 

X3 -3.42 17.38 0.0002  -0.67 53.72 < 0.0001 

X4 -30.1 1967.43 < 0.0001  1.34 310.72 < 0.0001 

X1X4 -3.48 17.93 0.0002  -0.27 8.64 0.0063 

X2X3 - - -  -0.27 5.20 0.0299 

X2X4 - - -  0.25 7.30 0.0112 

X3X4 2.3 7.84 0.0087  -0.37 15.85 0.0004 

X1
2
 -1.91 5.74 0.0228  0.17 3.82 0.0602 

X3
2
 1.86 5.45 0.0263  - - - 

Optimal conditions were obtained by Design-Expert 7.0 regarding maximum removal 

efficiency (5/5 weighting factor) and minimum energy consumption (3/5 weighting factor) 

(Table 4.2). Experiments showed that with an electrolysis time of 39 min, an imposed 

current intensity of 0.7 A, an initial caffeine concentration of 13 mg/L, and a BDD anode, 

93.82±0.80% caffeine removal efficiency can be achieved with energy consumption of 

0.70±0.02 Wh/mg. Under these conditions, as Figure AI. 3 shows, a TOC removal 

efficiency of 50.1±0.1% was measured. At least, half of the organic carbon was 

mineralized (transformed into carbon dioxide and water). The remaining may be 

transformed to smaller molecules and by-products. 
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Figure 4.3 Surface plots of the CCD models as a function of electrolysis time and current intensity at an 
initial caffeine concentration of 30 mg/L for the two anodes; (a) caffeine removal efficiency 
(%), and (b) energy consumption (Wh/mg) 

 

(a) 

(b) 
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Figure 4.4 Main effect plot of each independent variable on caffeine removal efficiency and energy 
consumption 

4.3.2 ANFIS modelling 

The experimental data of the CCD design for caffeine removal efficiency and energy 

consumption (each consisting of 40 experiments) were divided into training (75%), 

validation (12.5%), and testing (12.5%) data sets. The training data set was used to train 

the ANFIS, whereas the validation data set was used to prevent overfitting and improve 

the generalization performance of the trained model. The optimal model was then applied 

on the test data set in order to evaluate the ANFIS model on the unseen data.  

ANFIS models were constructed based on the obtained dataset from the CCD design 

using the Fuzzy C-Means (FCM) clustering method. FCM integrated with ANFIS helps to 

obtain a relatively small number of rules which prevents the model to be too complex and 

to minimize the overfitting issue. The FCM clustering method partitions the input data into 

different clusters and is used to identify the fuzzy membership functions and fuzzy rule 

base for the ANFIS model (Abdulshahed et al., 2015).  
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The architecture of the optimal ANFIS models obtained after tuning the parameters used 

for caffeine removal efficiency and energy consumption are given in Table 4.4 and the 

schematic of the model structure is represented in Figure AI. 4. The prediction error 

analysis for ANFIS models in training, validation, and testing phases for caffeine removal 

efficiency and energy consumption are presented in Table 4.5. It is common to see that 

better solutions are obtained in the training and validation stages as compared to the 

testing stage where unseen data is presented to the models (Khude et al., 2020; Manu et 

al., 2017). The number of clusters is one of the key parameters of the FCM-ANFIS model. 

It plays an important role in the architecture of the network and simplicity or complexity of 

the trained model and has been considered as hyperparameter for ANFIS model tuning 

(Naghibi et al., 2021). Table 4.6 shows the impact of increasing the number of clusters 

on the architecture and performance of the trained models in training, validation and test. 

As can be seen, setting a higher number of clusters for ANFIS models results in having 

more model parameters which make the model more complex and may lead to overfitting. 

The overall performance of the two models for removal efficiency and energy 

consumption increases for the training samples (lower RMSE values) but the 

performance drops for the validation and test sets (higher RMSE values) as the number 

of clusters builds up. For both models, the training RMSE reaches a minimum value after 

setting the number of clusters to 4 or higher but the RMSE increases for validation and 

test sets which defines that models have probably memorized the training set and noise 

but lost their ability to generalize well to new data. Hence, the number of clusters has 

been set to two for caffeine removal efficiency and energy consumption. The ANFIS 

predicted outputs are tabulated along with the CCD predicted outputs and the 

experimental values in Table 4.1.  
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Table 4.4 The ANFIS model characteristics 

Parameters Value/description 

Fuzzy structure Takagi-Sugeno  

Initial FIS generated Fuzzy C-Means clustering 

Input membership function type Gaussian (‘gaussmf’)  

Output membership function type Linear 

No. of clusters 2 

Optimization method 
Hybrid (least-squares and backpropagation gradient 
descent method) 

Number of linear parameters 10 

Number of nonlinear parameters 16 

Total number of parameters 26 

No. of fuzzy rules 2 

No. of maximum epoch 30 

Number of inputs 4 

Number of outputs 1 

Table 4.5 Error analysis for the ANFIS models 

Parameters 
Caffeine removal efficiency Energy consumption 

Train Validation Test Train Validation Test 

R2 0.996 0.997 0.954 0.986 0.949 0.917 

RMSE 1.996 1.727 5.584 0.203 0.082 0.540 

MAPE 5.853 5.891 11.647 9.959 5.226 8.788 

Table 4.6 Error analysis as function of the number of clusters for the FCM method  

No. of 
clusters 

No. of 
fuzzy rules 

Total no. of 
parameters  

Caffeine removal efficiency  Energy consumption 

Train Validation Test Train Validation Test 

2 2 26 1.996 1.727 5.584  0.203 0.082 0.540 

3 3 39 1.834 1.619 8.570  0.284 0.195 0.431 

4 4 52 1.125 4.056 14.542  0.188 0.122 1.046 

5 5 65 1.122 4.972 18.087  0.147 0.264 1.224 

6 6 78 1.122 5.123 23.358  0.147 0.782 1.854 

7 7 91 1.122 5.675 25.245  0.147 1.391 2.442 

The obtained ANFIS and CCD models for caffeine removal efficiency and energy 

consumption were also compared and performance results are presented in Table 4.7. 

As can be seen, while both models could successfully predict the electrochemical system 

behaviour, ANFIS models performed slightly better. The calculated R2 of the CCD models 
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were 0.986 and 0.939 for caffeine removal efficiency and energy consumption, 

respectively. The corresponding R2 values of the ANFIS models were obtained as 0.993 

and 0.976 for caffeine removal efficiency and energy consumption, respectively. Surface 

plots of the ANFIS models as a function of electrolysis time and current intensity at the 

center point of the initial caffeine concentration for the two anodes are illustrated in Figure 

4.5. Also, the ANFIS models show smaller deviations compared to the CCD models 

illustrating their ability to be better fitted to experimental data especially for the case of 

energy consumption. The superiority of ANFIS over RSM models is in accordance with 

studies of Noorani Khomeyrani et al. (Noorani Khomeyrani et al., 2021) and Lenin Sundar 

et al. (Lenin Sundar et al., 2021). However, it should be mentioned that with the limited 

number of data available, the difference in number of parameters for the two modelling 

approaches should be an important criterion. Indeed, CCD models are able to fit the 

available data with a lower number of parameters compared to ANFIS models. Figure 4.6 

illustrates the comparative parity plot of the CCD and ANFIS models for the two 

responses. The blue dashed line in the two plots represents the line of equation y=x. 

Ideally, points on this line mean that the predicted value is equal to the experimental 

value. For a good fit, points should be close to the dashed line. As can be seen, both 

models perform well for the caffeine removal efficiency. For the energy consumption, 

points are more scattered from the dashed line and the CCD models show larger 

deviations than the ANFIS models.  
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Table 4.7 Performance Comparison between CCD and ANFIS models 

Parameters 
Caffeine removal efficiency Energy consumption 

CCD ANFIS CCD ANFIS 

R2 0.986 0.993 0.939 0.976 

RMSE 3.778 2.694 0.418 0.261 

MAPE 10.173 6.582 16.690 9.221 

Total number of 
parameters 

9 26 10 26 

 

 

Figure 4.5 Surface plots of the ANFIS models as a function of electrolysis time and current intensity at the 
initial caffeine concentration of 30 mg/L for the two anodes; (a) caffeine removal efficiency 
(%), and (b) energy consumption (Wh/mg) 

(a) 

(b) 
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Figure 4.6 Parity plots of the experimental and predicted values for ANFIS and CCD models, (i) caffeine 
removal efficiency (%), and (ii) energy consumption (Wh/mg)  

4.3.3 Contribution of direct-indirect oxidation in the removal of caffeine 

There are two types of reaction in EO: the direct and indirect EO reaction. In direct EO, 

electron exchange happens at the anode surface without the contribution of other 

species. In this way, hydroxyl radicals (E
°
(OH

°
/H2O) = 2.80 V vs. SHE) are produced at 

the electrode surface by the oxidation of water molecules, and organic compounds can 

be degraded by reacting with absorbed OH
°
 radicals. In indirect EO, other oxidant species 

can be promoted by the generation of different oxidant mediators in the bulk solution such 

as H2O2, HClO and S2O8
2-

 (Tran et al., 2013).  

The objective of this part of study was to examine whether electrochemical oxidation of 

caffeine is obtained from direct electrochemical oxidation or indirect electrochemical 

oxidation. Upon utilization of sodium sulfate as electrolyte, powerful oxidants such as 

persulfate (S2O8
2-

) can be produced in the bulk solution capable of oxidizing organic 

structures (Jardak et al., 2016) based on the following equation: 

2SO4
2-

→S2O8
2-

+2e
-
 (4.13) 
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To understand the mechanism behind caffeine removal, additional experiments were 

carried out to firstly evaluate the production of oxidants by the electrolytic cell and 

secondly, whether these oxidants contribute to the caffeine degradation or not. For the 

measurement of the oxidants produced, a synthetic solution containing 1 g/L of sodium 

sulfate in distilled water was electrolysed for 60 minutes with a current intensity of 0.7 A. 

At each time step a volume of 10 mL of sample was taken from the electrolytic cell and 

added to a beaker with 500 mg of potassium iodide. The mixture was then agitated for 15 

min to let the electro-generated oxidant react with iodide and form triiodide. Then the 

oxidant production was evaluated by absorbance measurements at λ=353 nm using a 

UV-spectrophotometer.   

The absorbance measurements with the sodium sulfate solution showed a constant 

increase up to 40 min after which it remained almost constant up to 60 min (Figure 4.7). 

It is assumed that this increase of absorbance is due to the persulfate production at the 

BDD anode. To evaluate the direct effect of the electrooxidation of caffeine, sodium nitrate 

(with the same molarity as sodium sulfate (7.04 mM)) was used as supporting electrolyte 

since no oxidant agent can be produced with this type of electrolyte. The conductivity of 

the solutions with sodium sulfate and sodium nitrate electrolytes were measured as 

1501±5 and 837±6 µS/cm, respectively. The absorbance measurement for NaNO3 in 

Figure 4.7 illustrates this.  

 

Figure 4.7 Oxidation capacity measurement of  two supporting electrolytes versus time (current 
intensity=0.7 A; Electrolyte conc.= 7 mmol/L; anode= BDD) 
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While it was shown that the electrolytic reactor used in this study was capable of 

producing strong oxidants, additional experiments were conducted to evaluate whether 

the oxidant produced can oxidize caffeine by indirect electrochemical oxidation or not. 

Samples were taken at each time step during electrolysis of a synthetic solution of sodium 

sulfate and then contaminated artificially with 13 mg/L of caffeine and agitated for 30 min. 

Also, for comparison, another experiment was conducted with sodium nitrate as 

electrolyte to study direct electrochemical oxidation and one other experiment with 

sodium sulfate to evaluate the combination of direct and indirect electrochemical 

oxidation. In these two experiments, an initial caffeine concentration of 13 mg/L and a 

current intensity of 0.7 A were used in the electrolysis process. As Figure 4.8 shows 

indirect oxidation with persulfate has no contribution to caffeine removal during 

electrolysis. The absence of significant indirect oxidation is also represented in Figure 4.8 

by the contribution of direct oxidation with sodium nitrate as electrolyte. As can be seen, 

the direct oxidation with sodium nitrate shows a similar behaviour as electrolysis using 

sodium sulfate meaning that the caffeine removal in the electrolytic reactor was mainly 

due to direct oxidation. Indirect oxidation was negligible. 

 

Figure 4.8 Contribution of direct oxidation, indirect oxidation, and their combination in the removal of 
caffeine 
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4.3.4 Identification of caffeine by-products  

The objective of the work reported in this section was to monitor by-products formed by 

electrooxidation of caffeine in synthetic solution and in this way know more about the 

progress of the oxidation. The electrolytic cell was operated at the optimal conditions 

defined above but with a higher initial caffeine concentration of 47 mg/L instead of 13 

mg/L to be able to analyze the intermediates easier using LC-MS/MS. Under this 

experimental condition, known by-products of caffeine oxidation were identified, namely 

dimethylparabanic acid (P1, C5H6N2O3, Mw 142), di(hydroxymethyl) parabanic acid (P2, 

C5H7N2O5, Mw 174). The oxidation of caffeine starts by a fast attack of hydroxyl radicals 

to the C=C double bond. Dalmázio et al. (Dalmázio et al., 2005) reported that after 

successive hydroxylations and oxidations in different advanced oxidation processes such 

as UV/TiO2, H2O2/UV and Fenton, dimethylparabanic acid and di(hydroxymethyl) 

parabanic acid can be formed where di(hydroxymethyl) parabanic acid is slowly 

mineralized to CO2, NH3, and CH3NH2. The same by-products were also characterized in 

other advanced oxidation processes with caffeine (Chuang et al., 2011; Kolonko et al., 

1979; Li et al., 2021). Similar to other studies 1,3,7-trimethyluric acid (P3, C8H10N4O3, Mw 

210), 1,3-dimethyluric acid (P4, C7H8N4O3, Mw 196) and theophylline (P5, C7H8N4O2, Mw 

180) were identified as intermediates (P. Telo et al., 1997; Stadler et al., 1996). This 

shows that electrochemical oxidation of caffeine with the BDD anode may follow the 

similar reaction pathways to other advanced oxidation processes. In the present study, 

analysis of the EO of caffeine suggests similar multistep and interlinked pathways 

(Dalmázio et al., 2005; Kolonko et al., 1979) as presented in Figure 4.9.   

Furthermore, TOC removal analysis under the same operating conditions was carried out 

and showed that caffeine was partially mineralized and oxidized into water and carbon 

dioxide. After 47 min of electrolysis the maximum TOC removal reached 54% (Figure 

4.10). It should be mentioned that at the end of the experiment, more than 95% of the 

caffeine had been removed. This indicates that about 46% of the TOC that remained in 

the solution originates from caffeine by-products showing formation of smaller molecules 

in the electrolytic cell.  
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Figure 4.9 Proposed reaction pathways for the EO degradation of caffeine 

 

Figure 4.10 Caffeine and TOC removal efficiency at: [initial caffeine]=47 ppm, current intensity= 0.7 A, and 
BDD anode 

4.3.5 Application of electro-oxidation on real municipal wastewater effluent 

The optimal conditions obtained by the CCD methodology (current intensity of 0.7 A, 

electrolysis time of 39 min, and BDD electrode) without the addition of electrolyte 

(Na2SO4) was used to determine the effectiveness of the EO process for caffeine 
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degradation of real wastewater effluent and effluent contaminated by caffeine. The 

objective was to evaluate the effectiveness of the electrolytic cell as a tertiary treatment 

to remove emerging pollutants such as caffeine in the presence of other types of 

pollutants such as inorganic, organic, and microbial contaminants. In order to have 

reproducible results, experiments were conducted in replicates to provide reliable 

outcomes of the electrochemical process for treating municipal wastewater treatment 

effluent contaminated by caffeine. The liquid chromatography of the municipal wastewater 

treatment effluent showed an initial caffeine concentration of 20 µg/L. In addition to the 

caffeine present in municipal wastewater treatment effluent, the effluent was artificially 

contaminated with caffeine to reach 100 µg/L and 13 mg/L. It should be mentioned that 

the municipal wastewater effluent contained 116±12.7 mg/L of chloride ions that help the 

conductivity of the solution for electrical current passage. The formation of hypochlorous 

acid (HClO) as indirect electrochemical oxidation with the real wastewater effluents has 

been reported in other studies for degradation of refractory pollutants such as bisphenol-

A and ibuprofen (Tran et al., 2015b; Zaviska et al., 2012a). Moreover, studies have shown 

that the presence of Cl- accelerates the caffeine degradation in different AOPs (Martín de 

Vidales et al., 2015; Rao et al., 2021). This was confirmed by our findings for the EO of 

caffeine with different types of electrolyte in synthetic solutions (Figure AI. 5). However, 

as Indermuhle et al. (Indermuhle et al., 2013) reported, more reaction intermediates such 

as organo-chlorinated compounds are formed in the electrooxidation of caffeine in the 

presence of NaCl as a supporting electrolyte compared to Na2SO4. These compounds 

can cause toxicity to the EO-treated solution. Since the municipal wastewater effluent 

considered in this study contains chloride ions, the toxicity evaluation will be studied. 

The LC-MS/MS analysis showed that the caffeine removal efficiency varied between 

78.0±4.3% and 92.5±1.0% for real municipal wastewater effluent compared to the 

removal efficiency of 93.8% recorded in the synthetic effluent (Table 4.8). These results 

confirm the ability of the EO process to remove caffeine even in the presence of other 

organic contaminants. The initial TOC concentration of the samples was 8.7±0.9 mg/L, 

9.5±0.4 mg/L, and 16.2±0.4 mg/L for raw effluent, contaminated effluent of 100 µg/L, and 

contaminated effluent of 13 mg/L, respectively. The residual concentrations of TOC after 

electrolysis for the three samples were measured in the range between 6.2±0.6 and 
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8.4±0.1. The TOC removal efficiency of the samples was obtained as 21.3±5.3%, 

34.4±3.5%, 48.1±0.5% for raw effluent ([CAF]=20 µg/L), contaminated effluent 

([CAF]=100 µg/L), and contaminated effluent ([CAF]=13 mg/L), respectively (Figure 4.11). 

The TOC removal of the real wastewater effluent especially in the low to medium 

concentrations shows lower efficiencies compared to the TOC removal efficiency of 

50.1±0.1% in the optimal condition of synthetic solution. The presence of other organic 

contaminants than caffeine in the real effluent makes the TOC removal a competitive 

process. Also, the low efficiency of TOC removal in real wastewater effluent reflects that 

only a small fraction of organic compounds consisted of caffeine and other refractory 

organic matters are mineralized (transformed into carbon dioxide and water), and the 

remaining may be transformed into the by-products. These by-products may be equally 

or even more toxic than the parent compounds and their formation can cause toxicity to 

the treated effluent. In order to investigate the toxicity of the raw and treated municipal 

wastewater effluent, toxicity was assessed.   

Table 4.8 Application of EO process for the removal of caffeine in municipal wastewater effluent 

  
Raw effluent  

(20 µg/L) 
 

Contaminated 

(100 µg/L) 
 

Contaminated 

(13 mg/L) 

  Initial Residual  Initial Residual  Initial Residual 

CAF (µg/L)  19.0±1.4 4.2±1.1  95.5±3.5 7.1±1.2  12100±283 1350±212 

CAF Removal rate (%)  78.0±4.3  92.5±1.0  88.9±1.5 

TOC (mg/L)  8.7±0.9 6.9±0.7  9.5±0.4 6.2±0.6  16.2±0.4 8.4±0.1 

TOC Removal rate (%)  21.3±5.3  34.4±3.5  48.1±0.5 
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Figure 4.11 Caffeine and TOC removal efficiencies by an EO process under optimal conditions using real 
municipal wastewater effluent and a synthetic solution 

4.3.6 Toxicity evaluation 

Toxicity tests were carried out to evaluate the toxicity of a real municipal wastewater 

effluent before and after electrochemical oxidation treatment for caffeine degradation.  

Real municipal wastewater treatment effluent with initial caffeine concentration of 20 µg/L 

was used for the electrochemical oxidation in optimal conditions (current intensity of 0.7 

A, electrolysis time of 39 min, and BDD anode). Two samples of wastewater before and 

after EO treatment for 39 min were evaluated for toxicity with Daphnia magna. Also, two 

complementary tests were conducted including one with extended electrolysis time of 2 

hours and one using a granular activated carbon column after 39 min of electrolysis. 

Figure 4.12 shows the result of the toxicity evaluation as mortality percentage of Daphnia 

magna neonates versus concentration before and after EO. As can be seen, no significant 

toxicity was measured for the raw effluent (LC50 > 100% v/v). On the other hand, after 

EO for 39 min (EO-39 min) the sample shows toxicity even at low concentrations 

(LC50<6.25% v/v). Several studies have suggested that by-product formation during 

oxidation treatment can increase the toxicity of the samples toward Daphnia magna and 

Vibrio fischeri (Ganzenko et al., 2020; Ouarda et al., 2018; Starling et al., 2019). 
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Ganzenko et al. (Ganzenko et al., 2020) reported that Vibrio Fisheri luminescence 

inhibition increased to 100% after 30 min of treatment of a pharmaceutical mixture 

(including caffeine) during the electro-Fenton process. Furthermore, luminescence 

inhibition started to decrease from 4 h of treatment onwards till the end of a 6 h treatment 

owing to degradation of toxic by-products into harmless by-products. In this regard, a 

toxicity test with an extended electrolysis time of 2 h (EO-2hrs) was carried out. Toxicity 

results show that increasing the electrolysis time decreased the toxicity and improved the 

LC50 from 6.25% v/v to 33% v/v. Still, acute toxicity remained. Residual reactive chemical 

oxidants such as chlorine produced during electrolysis could also cause the toxicity of the 

samples (Ouarda et al., 2018). Zeng (Zeng et al., 2012) suggested that residual chlorine 

concentration higher than 0.32 mg/L in water would significantly affect the behavioural 

responses of Daphnia magna. Since the electrolytic reactor used in this study was able 

to generate different oxidants in the presence of Br
-
, Cl

-
, SO4

2-
 ions (Figure AI. 6), the 

increased toxicity could be related to the mentioned issue. A granular activated carbon 

(GAC) column which is well known for its capability to remove chlorine and its by-products 

(Gonce et al., 1994; Sorlini et al., 2005; Suidan et al., 1977) was used as post treatment 

after the EO process. As Figure 4.12 shows, the treated effluent with combination of EO 

for 39 min and GAC (EO-GAC) has nearly the same behaviour as the raw untreated 

effluent (LC50 > 100% v/v) which proves that the GAC column had successfully 

eliminated the toxic compounds generated after 39 min of electrolysis substantially 

reducing the mortality rate of Daphnia magna. The immobility rate of Daphnia magna 

neonates versus concentration also showed this (Figure AI. 7). 
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Figure 4.12 Evaluation of mortality rate of Daphnia magna for the EO process 

Table 4.9 summarizes the toxicity of the different samples studied. It can be concluded 

that the EO process under optimal conditions for caffeine degradation in municipal 

wastewater treatment effluent can lead to generation of toxic compounds which could be 

removed by using a GAC column. Toxic unit comparison of the different samples shows 

that the toxicity level of the samples can be ordered as: EO-39 min > EO-2hrs > raw 

effluent and EO-GAC where EO-GAC treated sample demonstrates no acute toxicity as 

the raw municipal wastewater effluent. 

Table 4.9 Summary of the toxicity assessment results of the samples 

 Raw effluent EO-39 min EO-2hrs EO-GAC 

LC50-48h (%) >100 <6.25 33.0 >100 

Toxic unit <1.0  >16 3.0 <1.0 

Acute toxicity No Yes Yes No 

 

4.4. Conclusion 

The capability of caffeine removal in synthetic solution and real municipal wastewater 

effluent by the EO process in a batch electrolytic reactor was investigated using CCD and 
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ANFIS. The results of CCD and ANFIS modelling showed that both are able to 

successfully predict the electrochemical process behaviour, ANFIS models performing 

slightly better (R2=0.993, RMSE=2.694, MAPE=6.582 for caffeine removal efficiency, and 

R2=0.976, RMSE=0.261, MAPE=9.221 for energy consumption). However, CCD models 

could predict the EO process using much fewer model parameters compared to the 

ANFIS models which could lower the uncertainties of the model given the low number of 

data available. Between the selected independent variables (type of anode, electrolysis 

time, current intensity, and initial concentration of caffeine), type of anode and electrolysis 

time were the most influential factors on caffeine removal efficiency. While direct oxidation 

was the dominant mechanism during the EO process for caffeine removal, the oxidation 

mechanism for caffeine degradation in this study seemed similar to other advanced 

oxidation processes based on results obtained from the identification of intermediates by 

LC-MS/MS. 

The caffeine removal efficiency in optimal conditions from real municipal wastewater 

effluent varied from 78.0±4.3% to 92.5±1.0% at different initial caffeine concentrations 

showing the effectiveness of the process in the presence of other pollutants. However, 

TOC removal efficiency was found to be lower due to the presence of other organic 

contaminants than caffeine in the effluent which makes the TOC removal a competitive 

process in the municipal wastewater effluent.  

Toxicity assessment with Daphnia magna showed that the EO process in optimal 

conditions for caffeine degradation in municipal wastewater treatment effluent can lead 

to generation of toxic compounds but using a GAC column as post treatment can 

eliminate the toxicity of the EO treated effluent.  
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Abstract 

In this study, artificial intelligence (AI) models including adaptive neuro-fuzzy inference 

systems (ANFIS), artificial neural networks (ANN), and support vector regression (SVR)  

were applied to predict the removal efficiency of phosphate from wastewaters using the 

electrocoagulation process. The five input variables used in this study were current 

intensity, initial phosphate concentration, initial pH, treatment time, and electrode type. 

The optimal hyperparameters of the ANN and SVR models were found by integrating 

evolutionary algorithms such as genetic algorithms (GA) and particle swarm optimization 

(PSO) to these models. To increase the reliability and robustness of the developed AI 

models, a search for optimal hyperparameters was conducted based on repeated random 

sub-sampling validation instead of a single split approach. ANFIS models with two 

clusters were selected based on their generalization capability. The performance of the 

AI models was compared using statistical analyses based on the ten sub-datasets and 

the results demonstrated that the effectiveness of the data-driven model depends on how 

the data is distributed to the training, validation, and test sets. However, hybrid ANN 

models outperformed other models and PSO-ANN models showed exceptional 

generalization performance for the different sub-datasets. The average MSE, R2, and 

MAPE values of the 10 test subsets for PSO-ANN were determined as 7.201, 0.981, and 

2.022, respectively. 
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Data-driven model, Electrochemical process, Hyperparameters, Metaheuristic 
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5.1. Introduction 

Human activities have significantly increased the soluble forms of phosphorus 

compounds in aquatic environments over the last 50 years, owing to the widespread use 

of detergents and chemical fertilizers, animal manure, wastewater effluents, and plant 

residues. Environmental concerns such as eutrophication can be caused by soluble forms 

of phosphorus in water, compromising the quality and sustainability of water bodies. This 

phenomenon can deplete oxygen levels in water due to algae breakdown, which can 

harm fish and other aquatic life, resulting in decreased biodiversity (Ano et al., 2019; Li et 

al., 2022; Tran et al., 2012). Chemical precipitation (Lavanya et al., 2021), adsorption 

(Gizaw et al., 2021), ion exchange (Bektaş et al., 2021), and biological processes (Zhang 

et al., 2022) have all been developed to lower phosphate levels in wastewater before it is 

released into the environment. An alternative method for removing phosphates is 

electrochemical treatment, such as electrocoagulation (EC) (Kobya et al., 2021). The 

main advantages of the (EC) process are the ease of use of the equipment, the ease of 

automation, and the process efficiency in the treatment of a wide range of pollutants. 

Furthermore, because this process does not necessitate the use of chemicals, treatment 

costs are reduced. Metal cations are released in situ by electrodissolution of an Al or Fe 

anode immersed in the effluent, as opposed to chemical precipitation (Jing et al., 2021). 

Modelling and optimization of the electrochemical process are seen as a key part of the 

study in order to examine the efficacy of the process. The concentration of pollutants, the 

applied current density and electrical potential, the types of electrodes, the electrolyte 

type and concentration, and chemical interactions between contaminants are all important 

aspects in electrochemical processes for water and wastewater treatment (Drogui et al., 

2007). Given the diversity of aspects, modelling, simulation, and optimization of these 

processes are challenging. Artificial intelligence methods such as artificial neural 

networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), support vector 

regression (SVR), and evolutionary algorithms such as genetic algorithms (GA) and 

particle swarm optimization (PSO) have emerged as appealing approaches for modelling 

and optimizing these nonlinear processes. These data-driven models are based on 

empirical data and linkages between process input and output variables rather than 
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process knowledge. Some recent studies have shown the application of AI models in 

electrochemical processes for water and wastewater treatment with reasonable accuracy 

(Farzin et al., 2020; Gholami Shirkoohi et al., 2021; Taheri et al., 2013).  

AI models include built-in hyperparameters that should be fine-tuned so that the model 

can solve the machine learning problem to its full potential. The learning process is 

controlled by these hyperparameters, which directly impact the model performance. In 

the case of ANN models, these hyperparameters include training algorithms, number of 

epochs, maximum validation failure, number of hidden layers and hidden neurons, and 

transfer functions (Viana et al., 2018). For SVR models, the penalty factor, margin of 

tolerance for errors, and the type of kernel function and the kernel parameters should be 

optimally selected (Rui et al., 2019). Membership functions and the number of clusters 

affect the performance of ANFIS models (Abdulshahed et al., 2015). Grid search and 

random search are often used to search for the optimal values within the space of 

hyperparameters of the AI models. In the case of a large space to investigate, grid search 

would be too computationally intensive and slow, and with random search, there is a 

chance not to be able to find the optimal hyperparameters (Menapace et al., 2021). 

Recently, metaheuristic algorithms such as genetic algorithm (Gu et al., 2011), particle 

swarm optimization (Huang et al., 2021), firefly algorithm (FA) (Zhang et al., 2019), ant 

colony optimization algorithm (ACO) (Jiang et al., 2020), and bat algorithm (BA) (Hafezi 

et al., 2015) have been used to efficiently tune and optimize the AI models’ parameters. 

For instance, Viana et al. (2018) used the PSO algorithm to optimize neural network 

model hyperparameters, including the hidden neuron number, the transfer function, and 

the learning rate.  

With the significant investment of time and money in experimental work, only a limited 

number of samples is available in datasets for data-driven models. As the use of data-

driven models in the field of electrochemical processes for water and wastewater 

treatment expands, model reliability and robustness become increasingly important. 

Apart from hyperparameters, the allocation of the data to training and testing sets 

influences the performance of the AI model generated with relatively small sample sizes. 

The use of single split training and test sets methodologies is a standard research 
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technique, but it is problematic given the limited sample sizes of experimental datasets 

accessible from electrochemical processes (Singh et al., 2021). However, the reliability 

of AI models used in electrochemical processes for water and wastewater treatment in 

the context of the mentioned issue has not been considered thoroughly in the literature.  

In this paper, different AI models including ANFIS, ANN, and SVR are developed to 

predict the removal efficiency of phosphate from wastewaters using the 

electrocoagulation process. To optimize the hyperparameters of the SVR and ANN 

models, GA and PSO have been integrated as the proposed approach. To increase the 

robustness of the AI models with the optimal hyperparameters with respect to the division 

of the data between training and testing sets, repeated random sub-sampling validation 

has been utilized for the hybrid models. In order to illustrate the predicting performance 

of the proposed models, results were compared based on statistical indices. 

5.2. Development of the AI models 

5.2.1 Data acquisition 

To develop the AI models, a total number of 62 experimental data for the removal of 

phosphate from synthetic wastewaters using an electrocoagulation process was gathered 

from Ano et al. (2019). In their study, factorial design (FD) and central composite design 

(CCD) were used as response surface methodology (RSM) to investigate the effect of 

current intensity, initial phosphate concentration, initial pH, treatment time, and electrode 

type. Table 5.1 shows the description and statistical parameters of the dataset used in 

this study.  
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Table 5.1 Description of the dataset from Ano et al. (2019) used in this study 

Statistical parameters 

 
Independent variables/Inputs 

 
Dependent variable/Output 

 
Current Intensity 

 (A) 

Initial phosphate 
concentration 

(mg/L) 
pH 

Treatment time 
(min) 

Electrode 
type 

Removal efficiency 
(%) 

Number of samples 
 

62 62 62 62 62  62 

Range 
 

0.25-1.25 15-75 2-10 10-90 Al/Fe  29.2-100 

Average 
 

0.75 45 6 50 -  74.0 

Standard deviation 
 

0.22 13.3 1.77 17.7 -  20.6 
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5.2.2 Adaptive neuro fuzzy inference system 

ANFIS, introduced by Jang (Jang, 1993) is a hybrid technique of artificial intelligence in 

which a Sugeno-type Fuzzy Inference System (FIS) and an artificial neural network (ANN) 

are combined. Fuzzy Logic produces fuzzy rules that map the inputs to an output based 

on a given input-output data set. Using the ANFIS hybrid approach, an initial fuzzy model 

based on fuzzy logic from the input-output data of the system is derived. Then, the neural 

network learning process is utilized to fine-tune the rules of the initial fuzzy model to 

generate the optimal ANFIS model of the system. Therefore, ANFIS benefits from the 

advantages of Fuzzy Logic and neural networks in a single integrated system 

(Buragohain, 2009). 

The FIS structure can be generated by different strategies, including grid partitioning, 

Fuzzy C-mean clustering (FCM) and the subtractive clustering method (SCM). FCM 

integrated with ANFIS helps obtaining a relatively small number of rules which prevents 

the model from being too complex and reduces the risk of overfitting. The FCM clustering 

method partitions the input data into different clusters and is used to identify the fuzzy 

membership functions and fuzzy rule base for the ANFIS model (Melin et al., 2014). In 

this study, FCM has been used for the ANFIS model and the number of clusters will be 

manually selected for the best generalization performance.  

5.2.3 Support vector regression 

Support vector regression (SVR) is an extension of support vector machines (SVM), first 

presented by Vapnik (1963), used for prediction and regression problems. Due to its 

promising generalization performance, SVR has been widely applied to regression 

prediction problems (Saradhi et al., 2007). In SVR, the main goal is to obtain a predictor 

function 𝑓(𝑥) that describes the relationship between input and output data with an error 

value less than 𝜀 for all the training data. At the same time, the function 𝑓(𝑥) is required 

to be as flat as possible, meaning that the errors are not significant as long as they are 

less than 𝜀, but any deviation larger than this amount is not tolerated. This function can 

be written as: 
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𝑓(𝑥) = 𝑤.𝜙(𝑥) + 𝑏 (5.1) 

where w is a weight vector, 𝜙(𝑥) is a mapping function in the feature space, and b is a 

bias. The coefficients 𝑤 and b are determined by minimizing the following optimization 

problem: 

𝑀𝑖𝑛   
1

2
‖𝑤‖2 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {
𝑦𝑖 − 𝑤.𝜙(𝑥𝑖) − 𝑏 ≤ 𝜀

𝑤.𝜙(𝑥𝑖) + 𝑏 − 𝑦𝑖 ≤ 𝜀
 

(5.2) 

In real conditions, to permit some deviations for training data outside the 𝜀-insensitive 

zone, slack variables 𝜉, 𝜉∗ are introduced to the problem. Hence, the optimization problem 

can be rewritten as: 

𝑀𝑖𝑛   𝑅(𝑤, 𝜉, 𝜉∗) =  
1

2
‖𝑤‖2 + 𝐶∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑛

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {

𝑦𝑖 − 𝑤.𝜙(𝑥𝑖) − 𝑏 ≤ 𝜀 + 𝜉𝑖
𝑤.𝜙(𝑥𝑖) + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖

∗

𝜉𝑖, 𝜉𝑖
∗ ≥ 0, 𝑖 = 1,2, … , 𝑛

     

(5.3) 

where 𝑅 is the regression risk, and the box constraint or penalty parameter 𝐶 is a positive 

value that determines the trade-off between the training error and generalization ability. 

To solve this quadratic optimization problem, the dual Lagrangian is used to obtain the 

regression function as follows:     

𝑓(𝑥) =∑(𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝑥𝑖, 𝑥) + 𝑏

𝑛

𝑖=1

 (5.4) 

where 𝛼𝑖 and 𝛼𝑖
∗ are the non-zero Lagrange coefficients, and 𝐾(𝑥𝑖, 𝑥) is the kernel function 

that transforms the nonlinear inputs into a higher-dimensional feature space. There are 

several kernel functions used in SVR such as Linear, Polynomial, and Gaussian or Radial 

Basis Function (RBF):  

Linear: 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖𝑥𝑗 
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Polynomial: 𝐾(𝑥𝑖, 𝑥𝑗) = (1 + 𝑥𝑖𝑥𝑗)
𝑞 

Gaussian or RBF: 𝐾(𝑥𝑖 , 𝑥𝑗) = exp (
−‖𝑥𝑖−𝑥𝑗‖

2

2𝜎2
) 

where 𝑞 is the polynomial order and 𝜎 is the RBF kernel parameter. While all these kernel 

functions can be applied, the selection of suitable kernel function and its parameters is 

essential for the SVR performance. In this study, all three kernel functions were evaluated 

for the best SVR performance. 

SVR parameters optimization 

The performance of the SVR model highly depends on the accurate selection of its 

hyperparameters. These include the box constraint (C), the acceptable error epsilon (𝜀), 

the type of kernel function, and the kernel parameter. The box constraint C is a trade-off 

between model complexity and generalization ability. The magnitude of the penalty for 

samples with losses greater than 𝜀 is determined by the C-value. With too small C-values, 

the model will be simpler (less complex), but the training error will increase. On the other 

hand, when C is too large, the empirical risk (the second term in the regression risk 𝑅) 

will be the dominant term for the minimization objective, which results in the overfitting 

issue (Rui et al., 2019). The 𝜀 hyperparameter influences the number of support vectors 

and, hence, the performance of the SVR by determining the size of the 𝜀-insensitive zone. 

The kernel function and its relevant parameter maps nonlinear input data into the higher 

dimensional feature space to help SVR handle nonlinear problems (Alade et al., 2019).  

Therefore, the three hyperparameters of C, 𝜀, and kernel parameter (𝜎 for RBF and 𝑞 for 

polynomial kernel function) should be selected carefully in view of the effectiveness of the 

SVR model. In this study, PSO and GA are applied to find the optimal values of these 

hyperparameters. It should be noted that in the case of a linear kernel function, only C 

and 𝜀 will be optimized by the optimization algorithms.  

5.2.4 Artificial neural networks  

An ANN imitates the essential characteristics of the human brain (which itself is a highly 

nonlinear, complex, and parallel computer), such as self-adaptability, self-organization, 
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and error tolerance (Haykin, 1998). A massive parallel network composed of nonlinear 

computational elements (neurons) helps ANNs to explore many competing hypotheses 

simultaneously. Considering how the different neurons are positioned and connected to 

each other as well as the composition of layers, various ANN architectures can be 

generated. The multilayer perceptrons (MLP) feedforward network is one of the most 

common ANN architectures. These networks are applied to diverse problems, including 

function approximation, pattern classification, system identification, process control, 

process optimization, and so on (Gholami Shirkoohi et al., 2021). The weights of the 

connections between the neurons are adjusted in the training process. Multiple 

optimization algorithms can be used for the training process, such as gradient descent, 

Levenberg–Marquardt, and Bayesian Regularization backpropagation.  

ANN parameters optimization 

The hyperparameters of an ANN model, which define its topology and learning options, 

influence the accuracy and effectiveness of the trained model. The numbers of hidden 

layers and neurons in each hidden layer, training algorithm, transfer functions, the 

regularization parameter, the learning algorithm, and the maximum validation failure are 

considered as ANN hyperparameters (Shirkoohi et al., 2021; Sinha et al., 2021; Valencia 

et al., 2021; Viana et al., 2018). In this study, the selection of the number of hidden 

neurons, the training algorithm, the type of transfer function in the hidden layer, and the 

number of maximum validation failures are considered for tuning with PSO and GA. As 

training algorithms Gradient descent with momentum and adaptive learning rate 

backpropagation (traingdx), Levenberg-Marquardt backpropagation (trainlm), and 

Bayesian Regularization backpropagation (trainbr) have been selected for the 

optimization process. Also, transfer functions including Log-sigmoid (logsig), hyperbolic 

tangent sigmoid (tansig), and positive linear (poslin) were chosen as options. 

5.2.5 Genetic algorithm 

Genetic Algorithms, first proposed by Holland (Holland, 1992) are evolutionary search 

and optimization algorithms based on natural selection. GAs, thanks with good global 

searching ability, flexibility, no need for gradient information of the objective (fitness) 
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functions, and ease of operation, have been a powerful technique for optimization 

problems (Curteanu et al., 2007; Ding et al., 2011b). GAs start with a primary population 

of candidate solutions and a fitness value is calculated for each solution. The algorithm 

applies three stochastic operators to each population, which are analogous to 

chromosomes in a biological connotation. Selection is choosing the solutions with the 

highest fitness value to create an intermediate population. The next population is the 

result of crossover or mutation. By crossover, the selected members are mated in pairs 

and recombined through genetic manipulation of chromosomes to generate two new 

solutions (offsprings). Mutation acts as an assurance against lost genetic material and 

consists of replacing some of the chromosome’s genes with new genes. Generation of 

new populations and calculation of fitness value for each population repeat over and over 

in an iterative method. When a specific termination criterion is met, e.g., when there is no 

change in the population from one iteration to the next or when a satisfactory fitness value 

is identified, this process ends (Whitley, 1994).  

5.2.6 Particle swarm optimization 

PSO, first introduced by Kennedy et al. (1995), is based on the social behaviour 

simulation of a flock of birds, called ‘swarm’, searching for food. PSO is a stochastic 

population-based optimization approach in which particles, a swarm of potential solutions, 

fly in the problem space to find better regions and finally the optimal solution, while 

cooperating and competing with other ones (Chen et al., 2010). In PSO, a particle is 

analogous to a chromosome (population member) in GA and represents a candidate 

solution to the problem being studied (Eberhart et al., 1998). Each particle’s condition is 

changed by the impact of three factors: (1) its own inertia; (2) its most optimal position; 

(3) the swarm’s most optimal position. In the d-dimensional search space of the problem, 

particle i of the swarm can be represented by 𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑑). The velocity of this 

particle and the best previous position, which is the position giving the best fitness value, 

are represented as 𝑉𝑖 = (𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝑑), 𝑃𝑖 = (𝑝𝑖1, 𝑝𝑖2, … , 𝑝𝑖𝑑). Also, the global best 

position, the position of the best individual, is noted as 𝐺 = (𝑔1, 𝑔2, … , 𝑔𝑑). The velocity 

and position of the particles are updated as follows: 
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𝑉𝑖
𝑗+1

= 𝜔 ∗ 𝑉𝑖
𝑗
+ 𝑐1 ∗ 𝑟𝑎𝑛𝑑1 ∗ (𝑃𝑖

𝑗
− 𝑋𝑖

𝑗
) + 𝑐2 ∗ 𝑟𝑎𝑛𝑑2 ∗ (𝐺𝑖

𝑗
− 𝑋𝑖

𝑗
) (5.5) 

𝑋𝑖
𝑗+1

= 𝑋𝑖
𝑗
+ 𝑉𝑖

𝑗+1
 (5.6) 

where 𝑉𝑖
𝑗+1

 and 𝑋𝑖
𝑗+1

 are the updated velocity and position vector of particle i, 𝜔 is the 

momentum or inertia weight factor, 𝑐1 and 𝑐2 are the acceleration coefficients, and 𝑟𝑎𝑛𝑑1 

and 𝑟𝑎𝑛𝑑2 are random numbers between (0,1) (Juneja et al., 2016).  

In general, in population-based optimization approaches, significant diversity is required 

during the early phase of the search to cover the whole search space. However, during 

the latter phase of the search, when the algorithm is converging to the optimal solution, 

fine-tuning of the solutions is required to effectively locate the global optimum. Thus, time-

varying inertia weights and acceleration factors have been introduced and widely used 

with the PSO algorithm as follows:  

𝜔 = (
𝐼𝑡𝑚𝑎𝑥 − 𝐼𝑡

𝐼𝑡𝑚𝑎𝑥
) ∗ (𝜔𝑖 − 𝜔𝑓) + 𝜔𝑓 (5.7) 

𝑐1 = (
𝐼𝑡

𝐼𝑡𝑚𝑎𝑥
) ∗ (𝑐1𝑓 − 𝑐1𝑖) + 𝑐1𝑖 (5.8) 

𝑐2 = (
𝐼𝑡

𝐼𝑡𝑚𝑎𝑥
) ∗ (𝑐2𝑓 − 𝑐2𝑖) + 𝑐2𝑖 (5.9) 

where 𝜔𝑖 and 𝜔𝑓 are the initial and final values of the inertia weights, 𝑐1𝑖, 𝑐1𝑓, 𝑐2𝑖, and 𝑐2𝑓 

are constants, 𝐼𝑡 is the current iteration number and 𝐼𝑡𝑚𝑎𝑥 is the maximum number of 

iterations. The best reported results have been achieved in literature when 𝜔𝑖 = 0.9, 𝜔𝑓 =

0.4, 𝑐1𝑖 = 𝑐2𝑓 = 2.5, and 𝑐1𝑓 = 𝑐2𝑖 = 0.5 (Ratnaweera et al., 2004; Shi et al., 1999). These 

settings enable particles to travel across the whole search space rather than gravitating 

toward the population’s best in the early stages. The time-varying parameters allow the 

particles to converge into the global optimum in the latter stages.  

As mentioned before, GA and PSO will be used in this study to search for optimal 

hyperparameters of the developed SVR and ANN models. Figure 5.1 shows the flowchart 

of the integrated GA and PSO to find the optimal hyperparameters of the models. 
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Repeated random sub-sampling validation or Monte Carlo cross-validation (Picard et al., 

1984) is used in this study as applied before in literature (Altaf et al., 2016; Cao et al., 

2020; Severeyn et al., 2019). To have an equal distribution of data for the different AI 

models, at first, 10 sub-datasets are generated randomly, each containing 62 data points. 

From these 10 sub-datasets, 42 data points will be selected for training, 10 data points 

for validation, and 10 data points for testing. The search for the optimal hyperparameters 

will be conducted using all 10 sub-datasets. This helps to find hyperparameters that result 

in the best performance available for the 10 sub-datasets and to overcome the uncertainty 

related to the use of single split training, validation and test sets method with limited data 

points available.  

To evaluate the performance of the AI models, the mean square error (MSE), the 

correlation coefficient (R2), and the mean absolute percentage error (MAPE) were used 

as comparison criteria. To train and validate the hybrid models, MSE was used as the 

error function. These functions were calculated as: 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

 (5.10) 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)2
𝑛
𝑖=1

 (5.11) 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑|

𝑦𝑖 − 𝑦�̂�
𝑦𝑖

|

𝑛

𝑖=1

 (5.12) 

where 𝑦𝑖 is the experimental value, 𝑦�̂� is the predicted value, and �̅� is the average value 

of the experimental data. 
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Figure 5.1 Flowchart of the proposed hybrid models 

5.3. Results 

5.3.1 ANFIS model 

The number of clusters in FCM-FIS generation affects the performance of the ANFIS 

model. Table 5.2 shows the impact of increasing the number of clusters on the 

performance of trained ANFIS models in training, validation, and test. As can be seen, 

setting a higher number of clusters for an ANFIS model results in having better 

performance on the training set by making the model more complex. However, this 

causes the model to lose generalization capability and to risk overfitting. This is evident 

from the performance of the models on the validation and test sets when higher number 

of clusters are adopted. Although both models with two and three clusters perform well 

on the validation and test stage, the model with two clusters would have a lower total 

number of parameters than a model with three clusters (38 parameters compared to 57) 

and hence leads to a simpler model. Therefore, ANFIS models with two clusters were 

selected. 
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Table 5.2 Error analysis as a function of the number of clusters in ANFIS 

No. of 
clusters 

MSE  R2  MAPE 

Train Validation Test  Train Validation Test  Train Validation Test 

2 31.642 68.733 60.763  0.924     0.794     0.835  6.550 9.322 9.275 

3 17.647 58.422 96.994  0.958     0.832     0.757  5.066 8.176 10.823 

4 16.695 103.391 120.240  0.961     0.709     0.676  4.506 11.294 12.706 

5 8.306 151.575 179.181  0.981     0.557    0.504  2.690 12.961 14.650 

6 1.558 932.835 1030.522  0.996   -0.986 -2.050  0.757 19.982 22.588 

 

5.3.2 PSO-SVR and GA-SVR 

As mentioned before, the selection of kernel function and its inherent parameter influence 

the performance of the SVR model. Therefore, it was necessary to select the kernel 

function of the SVR model before fine-tuning the hyperparameters. For this purpose, the 

three kernel functions (linear, polynomial, and RBF) were tested on the data using the 5-

fold cross-validation method. This method applies the training process on 4 folds of 

observations and (each time) leaves one fold of observations out to calculate the 

generalization error of the models. Table 5.3 shows the results for the different kernel 

functions used. The generalization error calculated is the out-of-sample MSE. It should 

be mentioned that the MSE obtained in Table 5.3 is based on the default values of the 

hyperparameters and the optimal hyperparameters of the SVR models with the three 

different kernel functions on the validation sets. As can be seen, the polynomial function 

leads to the best results on the 5-fold cross-validation method with the default 

hyperparameters. The kernel parameter, C, and 𝜀 should be optimally selected by the 

hyperparameter optimization algorithm. The three kernel functions were also tested for 

hyperparameter optimization by PSO-SVR and GA-SVR on the 10 data subsets. It can 

be seen that optimal SVR models with polynomial kernel function obtain the lowest MSE 

on the validation sets of PSO and GA algorithms with a population size of 50. 
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Table 5.3 Effect of the kernel function on the SVR performance 

Kernel functions 

MSE 

Default 
hyperparameters 

 PSO and GA optimal 
hyperparameters 

Linear function 119.96 
 

72.89 

Polynomial function 105.48 
 

65.43 

RBF 361.61 
 

66.09 

5.3.3 GA-ANN and PSO-ANN 

GA and PSO were used to find the optimal hyperparameters of the ANN models. A 

population size of 50 has been considered for the algorithms. Although population size is 

problem-dependent and no universal value can be proposed, there are studies 

suggesting that population sizes between 20 and 50 would be appropriate for solving 

optimization problems (Lobo et al., 2007; Poli et al., 2007; Wang et al., 2018; Zhang et 

al., 2005). Other control parameters of the GA and PSO are the same as suggested in 

the literature as described in section 5.2.5. The number of maximum iterations was set to 

200 and 100 for GA and PSO, respectively, to have an equal number of function calls for 

both algorithms, allowing for an unbiased comparison. Indeed, an equal number of 

iterations for each test, and not an equal number of function calls, may result in a better 

performance of the optimization algorithm that is attributed to a larger number of function 

calls (Piotrowski et al., 2020).  

Table 5.4 represents the optimal hyperparameters of the ANN models found by GA and 

PSO. The prediction accuracy of the hybrid models is given as the average MSE based 

on the 10 validation sets. It can be seen that both GA and PSO perform reasonably on 

the validation subsets. The best performances, in terms of average MSE over 10 

validation sets, are calculated as 7.686 and 7.830 for GA and PSO, respectively. 

However, their performance will be evaluated in the next section for the test subsets as 

well. The Levenberg-Marquardt training algorithm and log-sigmoid transfer function were 

found to be optimal for both GA and PSO techniques. The Levenberg-Marquardt method 

has shown its good performance including its ability to converge 10–100 times faster than 
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the conventional gradient descent backpropagation algorithm (Da Silva et al., 2017; 

Kamosi et al., 2010). 

Table 5.4 Optimal hyperparameters and prediction accuracy results for the hybrid GA and PSO models 

Technique 
 Hyperparameters  

MSE 
 

No. of hidden 
neurons 

Training 
algorithm 

Transfer 
function 

No. of maximum 
validation failures 

 

GA-ANN  7 trainlm logsig 5  7.686 

PSO-ANN  9 trainlm logsig 7  7.830 

 

5.3.4 Performance comparison of the proposed models 

The objective of the proposed AI models including ANFIS, PSO-SVR, GA-SVR, PSO-

ANN, GA-ANN was to predict the removal efficiency of phosphate from wastewaters using 

the electrocoagulation process. The performance of each data-driven model was 

evaluated by its correspondence with experimental data on training, validation, and test 

sets. According to the mentioned analyses, it can be concluded that the proposed hybrid 

ANN models have great performance in the prediction of the removal efficiency of 

phosphate using the electrocoagulation process. The results confirmed that PSO-ANN 

models have exceptional generalization performance for the different data subsets.     

Table 5.5 represents the statistical analyses of the proposed models with the optimal 

parameters. Results are provided for training, validation, and test sets as the average of 

the 10 sub-datasets.   

The results in According to the mentioned analyses, it can be concluded that the proposed 

hybrid ANN models have great performance in the prediction of the removal efficiency of 

phosphate using the electrocoagulation process. The results confirmed that PSO-ANN 

models have exceptional generalization performance for the different data subsets.     

Table 5.5 show that hybrid ANN models perform better than ANFIS and hybrid SVR 

models in all training, validation, and test stages. Both PSO-SVR and GA-SVR models 

showed similar performance results on the datasets. This comes from the fact that both 

evolutionary algorithms found the same SVR parameters as the optimal parameters. The 



 

162 

 

optimal parameters (C, q, 𝜀) of PSO-SVR and GA-SVR were identified as (1, 3, 3.171). 

While the ANFIS models performed better in terms of generalization for test sets, it was 

outperformed by PSO-SVR and GA-SVR in the training and validation steps. The best 

performance both in training and generalization was obtained by the PSO-ANN models, 

while the GA-ANN models also showed their effectiveness. The average MSE, R2, and 

MAPE values of the 10 sub-datasets for PSO-ANN are determined as 7.201, 0.981, and 

2.022 for the test sets, respectively. 

Figure 5.2 shows the performance comparison of the AI models on the test sets of each 

of the 10 data subsets. As can be observed, the effectiveness of the data-driven model 

depends on how the data is distributed over the training, validation, and test sets. For 

instance, the hybrid SVR models have low MSE, MAPE, and high R2 for sub-dataset 1. 

Their performance is comparable to the hybrid ANN models. However, the hybrid ANN 

models outperform ANFIS and hybrid SVR models for the test sets of other data subsets. 

Figure 5.3 presents the box plots of the performance indices of the AI models for the test 

sets of 10 data subsets. It shows that there is a greater variability for the hybrid SVR 

models than for the hybrid ANN models. It can be concluded that generally, hybrid SVR 

models are more sensitive than hybrid ANN models to the distribution of the data points 

among the training, validation, and test sets. Nevertheless, hybrid ANN models show less 

dispersed performance for the test sets of the different data subsets. 

According to the mentioned analyses, it can be concluded that the proposed hybrid ANN 

models have great performance in the prediction of the removal efficiency of phosphate 

using the electrocoagulation process. The results confirmed that PSO-ANN models have 

exceptional generalization performance for the different data subsets.     

Table 5.5 Performance evaluation of the developed AI models 

Model 
MSE  R2  MAPE 

Train Validation Test  Train Validation Test  Train Validation Test 

ANFIS 31.642 68.732 60.763  0.924 0.793 0.835  6.550 9.322 9.275 

PSO-SVR 9.374 65.433 75.893  0.978 0.808 0.800  4.377 8.998 10.779 

GA-SVR 9.374 65.433 75.894  0.978 0.808 0.800  4.377 8.998 10.779 

PSO-ANN 7.259 7.830 7.201  0.983 0.978 0.981  1.958 2.286 2.022 

GA-ANN 8.765 7.686 9.759  0.979 0.978 0.970  2.520 2.747 2.774 
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(a) 

(b) 
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Figure 5.2 Performance evaluation of the developed AI models on the test sets of the 10 subsets; (a) MSE, 
(b) R2, (c) MAPE  

(c) 
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Figure 5.3 Boxplot comparison of the performance of the different AI models for the test sets using three 
performance criteria 

5.4. Conclusion  

In this study, GA and PSO algorithms were used to optimize the hyperparameters of the 

SVR and ANN models to forecast the removal efficiency of phosphate from wastewaters 

using the electrocoagulation process. The current intensity, initial phosphate 

concentration, initial pH, treatment time, and electrode type were considered as models’ 

inputs. To tackle the relatively low number of sample data available from the experimental 

electrochemical process and increase the reliability of data-driven models, the proposed 

hybrid models were built on repeated random sub-sampling validation (10 data subsets) 

instead of a single split approach. The performance criteria (MSE, R2, MAPE) comparison 

of models showed that the effectiveness of the data-driven models depends on how the 
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data is distributed to the training, validation, and test sets. The ANFIS and hybrid SVR 

models were more sensitive than hybrid ANN models to the distribution of data points. 

The hybrid ANN models showed greater accuracy than the ANFIS and hybrid SVR 

models that they were compared to using different performance criteria and indicated less 

dispersed performance for the test sets of the different sub-datasets. Remarkably, PSO-

ANN models illustrated exceptional generalization performance for the 10 data subsets 

examined. Further research in the application of hybrid evolutionary algorithms and AI 

models may be carried out in electrochemical processes for water and wastewater 

treatment with respect to the reliability and robustness of the models. 
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6. CONCLUSIONS AND PERSPECTIVES 

In this work, different types of artificial intelligence techniques including ANNs, SVR, 

ANFIS, GA, and PSO were applied on different electrochemical processes for wastewater 

treatment. The first part of the thesis focused on developing an ANN-GA methodology for 

production of active chlorine by electrolysis for disinfection. The second part of the thesis 

involved the application of the ANFIS modelling approach and a comparison with the RSM 

approach for modelling and optimization of electrochemical oxidation of caffeine as an 

emerging organic pollutant. And the final part focused on the removal of phosphates as 

an inorganic pollutant from wastewater. The third part of the research focused on 

comparing different artificial intelligence models to predict the phosphate (as an inorganic 

pollutant) removal efficiency from wastewater using the electrocoagulation process.  

Efforts were made in this study to obtain not only models with good prediction 

performance but also with high reliability. This was done in the first part of study by using 

learning curves and the regularization technique. These techniques were shown to give 

an insight into the ANN modelling process and can be used instead of or along with a trial 

and error procedure during the training of neural networks. This results in obtaining 

reliable ANN models and prevents from overfitting even with a limited number of data 

available. The ANN models were successful in describing the behaviour of the 

experimental process as well as the conventional RSM modelling approach, showing their 

capability to be adapted on an electrolysis process while being well-trained.    

In the case of ANFIS, the initial FIS was generated based on the FCM clustering method 

rather than other alternatives such as grid partitioning. FCM clustering helps to have fewer 

rules and thus fewer parameters for the developed model than grid partitioning would lead 

to and minimizes the overfitting issue. Even though the results obtained by grid 

partitioning could be more satisfying, the uncertainty on model outputs increases with 

more complex models developed with small datasets 

Also, the Pareto front derived by the NSGA-II algorithm for multi-objective optimization 

allowed identifying non-dominated optimal points (operating conditions) for maximum 

active chlorine production at minimum energy consumption. The proposed ANN-GA 
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methodology in the first part of the study can give insight into how to efficiently choose 

the process operation parameters (decision variables) for the desired objectives. This 

approach can be adapted to other processes if the experimental data already exist.   

The hyperparameters of the AI models affect the overall performance of the developed 

models. Searching for the optimal hyperparameters of AI models utilizing metaheuristic 

algorithms were studied in the third part of this work. This optimization was done 

considering both reliability and robustness of the AI models developed for electrochemical 

processes for water treatment in case only a limited amount of data is available. In this 

regard, the proposed hybrid models were built on repeated random sub-sampling 

validation (10 data subsets) instead of a single split approach. The results demonstrated 

that the performance of the AI models depends on how the data is distributed over 

training, validation, and test sets. The ANFIS and hybrid SVR models were more 

vulnerable to the particular distribution of sample points of data than the hybrid ANN 

models. The hybrid ANN models outperformed the ANFIS and hybrid SVR models and 

showed less scattered performance for the prediction of the phosphate removal 

efficiencies of different test subsets. It was found that PSO-ANN models have exceptional 

generalization performance for the 10 data subsets examined. This part of the work 

provides a method for finding optimal data-driven models of electrochemical processes 

for wastewater treatment where a limited number of data is available.    

The adaptation and application of AI models in electrochemical processes for water 

treatment were discussed in this thesis. While the usage of AI models is becoming more 

prevalent in several scientific disciplines, including electrochemical processes, the 

reliability of the developed models is still critical owing to the limited data available. When 

there is insufficient data to train the parameters of AI models, it results in overfitting, which 

means that the model's generalization is problematic. More data is required to address 

this problem; however, in practical applications, additional data gathering is sometimes 

difficult due to factors such as time and cost constraints of the experiments. Some recent 

studies suggested to use data augmentation techniques such as interpolation to address 

this issue. Although data augmentation approaches have been used in machine learning 

in various disciplines, particularly image processing and speech recognition, they should 
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be used with caution for the purpose of regression of experimental work with limited data. 

This is due to the fact that the behaviour of outputs in experimental studies might be far 

more complex than describing them using predetermined interpolation functions, which 

would clearly make it easy for the AI model to anticipate the behaviour of the new 

interpolated data. Another approach to improve the reliability of the developed AI models 

and avoid overfitting is to develop the least complex model possible. This was done in 

this thesis by using learning curves and regularization for the ANN models. In the case of 

ANFIS, the initial FIS was generated based on the FCM clustering method rather than 

other alternatives such as grid partitioning. Other machine learning techniques such as 

decision trees (e.g., random forest), which are well-known for simpler tasks, can be 

utilized and evaluated.  

It was shown in our research that the performance of the AI models with small datasets 

is highly dependent on the distribution of the data into training, validation, and test sets. 

To overcome this issue, different validation techniques, including hold-out, k-fold cross-

validation, and repeated random sub-sampling validation, were applied. A stratified cross-

validation technique can be another alternative for improving the reliability of the models. 

Although this technique is typically used for classification, it can be adapted for regression 

problems. The distribution of target values is guaranteed to be about the same across all 

partitions of the k-fold cross-validation using stratification. This is helpful in ensuring that 

validation and test performance portray the expected performance of the model with less 

bias and variance. Finally, future research can employ ensemble modelling approaches, 

which construct multiple models and then combine them to provide better findings. 

Ensemble approaches often yield more accurate results than a single model. This can be 

done using various models in the same training dataset, the same model with different 

training dataset splits, or any other method. This technique often reduces overfitting and 

produces a smoother regression model. 
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APPENDIX I. SUPPLEMENTARY MATERIAL FOR CHAPTER 4 

Table AI. 1 Characteristics of caffeine 

Parameters Unit Caffeine 

Formula - C8H10N4O2 

Molecular weight (g/mol) 194.19 

Density (g/ml) 1.23 

Solubility in water (mg/ml) 20 

 

 

Table AI. 2 Characteristics of the Quebec City municipal wastewater treatment effluent 

Parameter  Value 

Cl
-
 (mg/L) 116.0±12.7 

NO3
-
 (mg/L) 2.8±1.5 

SO4
2-

 (mg/L) 64.9±8.4 

NH4
+
 (mg N/L) 20.4±6.9 

Turbidity (NTU) 3.5±0.2 

TSS (mg/L) 7.1±1.4 

TOC (mg C/L) 8.7±0.9 

COD (mg O2/L) <80 

Conductivity (µS/cm) 962±9 

pH 7.5±0.3 

 

 

Table AI. 3 Experimental ranges and levels of the independent variables 

Independent variable 
 

Factor code 
 

Range and level 

 
 

 
 

-1.68 -1 0 +1 +1.68 

Electrolysis time 
 

X1 
 

13 20 30 40 47 

Current intensity 
 

X2 
 

0.7 1 1.5 2 2.3 

Initial concentration of caffeine 
 

X3 
 

13 20 30 40 47 

Anode type 
 

X4 
 

- BDD - IrO2 - 
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Figure AI. 1 Schematic diagram of the electrooxidation reactor for caffeine degradation 
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Figure AI. 2 UV absorption spectra of caffeine during the EO process using BDD and Ti-IrO2 electrodes 
(I=1.5 A, Na2SO4=1 g/L). 

 

Figure AI. 3 Caffeine and TOC removal efficiency at optimal conditions: [initial caffeine]=13 ppm, current 
intensity= 0.7 A, and BDD anode 
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Figure AI. 4 Schematic of the ANFIS model structure  

 

Figure AI. 5 Effect of supporting electrolyte on caffeine degradation in synthetic solution at I=0.7 A, and 
[CAF]0=13 ppm 
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Figure AI. 6 Oxidation capacity measurement for different supporting electrolytes versus electrolysis time 
(current intensity=0.7 A; Electrolyte conc.= 7 mmol/L; anode= BDD) 

 

Figure AI. 7 Evaluation of the immobility rate of Daphnia magna for the EO process 
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