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ABSTRACT 

Although pesticides are intensively employed in the Pampa region of Argentina, the 

possibility to perform environmental risk assessment (ERA) remains limited due to 

the absence of readily available databases to run pesticide fate models and the lack of 

standardized realistic worst case scenarios. The aim of the current study was to further 
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advance capacities for performing probabilistic ERA in the Pampa region by dividing 

and parameterizing the region into functional soil-climate mapping units (SCU) and 

defining statistically-based worst-case soil-climate exposure scenarios. Results 

obtained demonstrate that the SCU selected for a specific modeling exercise should 

depend on the dissociation constant (Kd) of the pesticide evaluated and whether short-

term or long-term pesticide fate modeling and risk assessment is needed. Four 

regionally representative SCUs were specifically identified for modeling the fate of 

pesticides with low, high and intermediate values of Kd. Fate modeling of pesticides 

with an intermediate Kd requires the use of a different SCU for short-term versus 

long-term pesticide modeling, whereas this distinction is not necessary in the case of 

pesticides with both low and high Kd. The current definition of realistic worst-case 

soil-climate scenarios represents a crucial step towards better pesticide fate modeling 

and exposure assessment in the Pampa region of Argentina.  

Key Points 

Four soil-climate units were identified as exposure scenarios for the Pampa region The scenario 

depends on the dissociation constant of the pesticide. The scenario depends on the duration 

over which the mean concentration is averaged The availability of scenarios should impulse 

pesticide risk and exposure assessment in the region  

KEYWORDS 

Agriculture – Pesticide - Exposure Scenarios – Risk Assessment – Water 

Contamination 

INTRODUCTION 

Agriculture is a predominant economic activity in Argentina, with grain and 

feed representing 48.7% of national exports in 2021 (INDEC, 2021). In Argentina, 

most of the grain production takes place in the Pampa region, a 500.000 km
2
 area 

located in the center-west of the country, which is characterized by temperate climate 

and deep fertile soils (Moscatelli, 1991). Argentina is the third largest soybean 
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producer worldwide and one of the top ten producers of maize, sunflower and 

sorghum (FAO, 2021). The widespread adoption of genetically modified crops (GM 

crops) in the nineties was linked to an intensification of agriculture and an increase in 

pesticide use (Satorre, 2011). Nowadays, pesticide use per hectare (ha) of cropland is 

greater in Argentina than in Brazil or than any other countries from the Organization 

for Economic Cooperation and Development (OECD, 2019). 

Considering the large extensions of rural areas that are treated with pesticides 

each year in the Pampa region, it is crucial to effectively and accurately evaluate the 

risk these pesticides pose to water quality and aquatic ecosystem health. In most 

countries, the regulation and management of pesticide products relies on a 

methodology referred to as “Ecological Risk Assessment” or ERA (Spadotto and 

Mingoti, 2019). The goal of ERA is to assess the likelihood that adverse ecological 

effects may occur by comparing the predicted environmental concentrations (PECs) 

of the pesticide to the concentration below which unacceptable effects will most likely 

not occur, i.e. the predicted no effect concentrations (PNECs) (Schäfer et al., 2019).  

Pesticide authorization procedures generally follow a tiered approach where 

PECs and potential toxic effects are evaluated in a number of sequential steps. These 

normally begin with single species laboratory-based toxicity values and worst-case 

exposure assumptions (first tier) and move on to more complex scenarios (higher 

tiers) that integrate processes and characteristics occurring in natural ecosystems, such 

as multi-species and semi-field test systems, as well as more realistic and complex 

exposure scenarios (Brock et al., 2010; Tiktak et al., 2013 Shäfer et al., 2019). The 

“exposure assessment” is the process through which PECs are defined. Exposure 

assessments can be performed based on environmental monitoring surveys (Perez et 

al., 2021; Rico et al., 2021) but mathematical models are increasingly used to predict 
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the transport and fate of pesticides in the environment and estimate PECs (Tiktak et 

al., 2013; Teklu et al., 2015; Xie et al. 2018: Zhang et al., 2020). 

In ERA, mathematical models are typically employed in a limited number of 

standard scenarios, which are combinations of soil, climate and crop parameters to be 

used in modeling (Tiktak et al., 2013; Teklu et al., 2015; Bach et al., 2017). The use 

of standardized scenarios helps to harmonize risk assessment calculations and their 

interpretations (EFSA, 2014). When defining standardized scenarios, the full range of 

soil-climate conditions existing in a specific area of interest should first be identified. 

These soil-climate conditions should then be classified into a manageable number of 

unique soil-climate combinations or scenarios for calculating PECs (Bach et al., 

2017). The selected scenarios should represent a realistic worst-case situation (EFSA, 

2014), which is often defined as the 90
th

 percentile of the modeled exposure 

concentrations or PECs in the intended area of use (EFSA, 2010; 2013; USEPA 

2019). 

Identifying the realistic worst-case scenario involves calculating the basic 

population of potential pesticide concentrations for the entire soil–climate 

combinations in a given regulatory area of interest and for a long weather time series. 

This produces a population of PEC values which can be organized into three different 

cumulative distribution functions (CDF): a temporal CDF based on the variability of 

the PECs over the time series, a spatial CDF based on the variability of the PECs 

amongst the different soil-climate combinations and finally, an overall spatio-

temporal CDF which corresponds to the grouping and classification of all the PEC 

values obtained. The realistic worst-case scenario corresponds to the soil-climate 

combination whose PEC represents the 90th percentile of the overall spatio-temporal 
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CDF (Bach et al., 2017; Boesten et al. 2018; Scorza Junior et al., 2018; Oh et al., 

2021). 

The development of local and regional standardized scenarios is especially 

needed in Latin America to impulse pesticide fate modeling and probabilistic risk 

assessment (Casallanovo et al., 2021). Indeed, despite the widespread and intensive 

use of pesticides in the Pampa region of Argentina, the possibility to perform 

prospective pesticide ERA remains limited due to the lack of regionally tested 

pesticide fate models, the absence of readily available databases to run such models, 

and the lack of standardized realistic worst case scenarios. In a recent study, the 

possibility to employ the pesticide fate model “Pesticide in Water Calculator” (PWC) 

in the Pampa region of Argentina was successfully examined, and a sensitivity 

analysis of the model under regional conditions was performed (D’Andrea et al., 

2020). PWC is a field-scale model that allows to simulate pesticide fate into user-

defined waterbodies through the selection of different parameters related to pesticide 

applications, soil, climate, hydrology, and phenology (Young, 2016). PWC is 

currently used for pesticide registration by the United States of America (USA) and 

Canada (Health Canada, 2018; 2020; Young, 2019). 

The aim of the current study was to further advance capacities for performing 

probabilistic ERA in the Pampa region of Argentina by pursuing two specific 

objectives: 1) to divide and parameterize the Pampa region into functional soil-

climate mapping units (SCU) for aquatic pesticide fate-modeling with PWC, and 2) to 

define statistically-based worst-case soil-climate exposure scenarios for ERA 

exposure assessment. 
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METHODS 

Study area 

The Pampa region is a flat plain of about 500,000 km
2
 that is characterized by 

flat or slightly undulated landscapes. The climate of the Pampa region of Argentina is 

temperate humid, without a dry season and with a very hot summer (Barros et al., 

2015). The average annual temperature increases gradually from 14 to 19 
o
C from 

south to north, while the average annual rainfall gradually decreases from 1200 mm to 

600 mm from east to west (Rubi Blanchi and Cravero, 2012). Shallow temporary 

lakes and ponds of fresh or brackish waters are scattered throughout the territory due 

to the impoverished drainage network and the few slopes (Benzaquen et al., 2017). 

The biodiversity of these environments is highly specific and dependent on these 

habitats (Benzaquen et al., 2017).  

PWC Model 

PWC is a graphic user interface that links the output of two sub-models: the 

"Pesticide Root Zone Model version 5 (PRZM 5)" and the "Variable Volume Water 

Body Model (VVWM)”. PRZM 5 is a one-dimensional and dynamic compartmental 

model that is used to simulate the movement of chemicals in unsaturated soil systems 

through infiltration, runoff and water erosion within and immediately below the plant 

root zone. For its part, VVWM is designed to model the fate of chemical substances 

in a waterbody. It contains a set of mathematical modules that relate the fundamental 

chemical properties of the pesticide to the limnological parameters responsible for the 

kinetics of transport of chemical substances in aquatic ecosystems. Additional 

background information on PWC can be obtained from Young (2016).  

 

 



[Título del documento] 

 

This article is protected by copyright. All rights reserved. 

A
c

c
e

p
te

d
 A

r
ti

c
le

 
Parametrization of soil-climate units for the Pampa region 

 As stated in the introduction, to define standardized soil-climate scenarios, it is 

first necessary to identify the full range of soil-climate conditions existing in the area 

of interest, and classify them into a manageable number of unique SCUs. In this case, 

the soil and climate parameters that must be classified are those which need to be 

entered in PWC in order to simulate the environmental fate of a pesticide. The 

following sections describe the origin and the nature of the soil and climate data that 

were employed, as well as the division of the territory that was made, in order to 

define functional soil-climate mapping units (SCU).  

Soil data  The soil data required by PWC and included in the scenario definition 

encompass basic soil characteristics such as the density and the proportion of organic 

carbon, clay and sand of the soil layers, together with water holding capacity 

properties (wilting point and field capacity) and parameters corresponding to the 

curve number and the Universal Soil Loss Equation, which are used to calculate 

runoff and erosion (USDA, 1986). 

A regional soil database specifically designed for application in PWC was 

constructed based on a 1:2.500.000 national soil database first described by 

Godagnone and De La Fuente (2014) and adapted for hydrological models by 

Espíndola et al. (2014). This national database was elaborated using the methodology 

established by the Global and Nation Soils and Terrain Digital Databases (SOTER), 

in which the territory is divided into polygons presenting a unique combination of soil 

and land characteristics including lithology, surface form, slope and parent material 

(Van Engelen and Wen, 1995). The data corresponding to 77 soil polygons, ranging in 

surface between 2000 and 20000 km
2
, and representing a total of 503.068 km

2
 of land 

from the Pampa region were taken from the georreferenciated national database as a 
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starting point to generate the Pampa region PWC soil database. The data provided by 

this database included: 

The hydrological group, max root depth and albedo of the soil, as well as the number 

of soil layers and, for each layer, depth, humidity, hydraulic conductivity, erodibility, 

and content of clay, silt, sand and organic carbon (Godagnone and De La Fuente; 

2014; Espíndola et al., 2014).  

For each soil horizon, the proportion of soil organic matter was obtained by 

multiplying the proportion of organic carbon by the van Bemmelen equation factor 

(1,724) (Eyherabide et al., 2014). Wilting point and field capacity in each soil horizon 

were calculated using the "Soil Water Characteristics" program (Saxton and Rawls, 

2006). The topographic factor (LS), the coverage management factor (C), and the soil 

conservation practice factor (P) of the USLE were calculated using the USLE-RUSLE 

software (Gvozdenovich et al., 2015). The curve number values were assigned to 

fallow and row crop based on the soil hydrological group and according to tables 

available in the USDA Technical Release 55 (TR-55) (USDA, 1986). Manning’s 

roughness coefficient was defined from values recommended in PRZM-5 user manual 

(Young & Fry, 2014). Figure 1 illustrates the hydrological group of the 77 SCUs 

considered in the analysis, and maps the proportion of sand and organic matter of the 

first soil horizon. 

Climate data The climate data required by PWC and included in the scenario 

definition are: 1) maximum temperature, 2) minimum temperature, 3) wind speed at 

10 m, 4) relative humidity and 5) precipitation. The climate database was built using 

information from 30 weather stations from the Pampa region for which 30 years of 

daily data were available for the 1984-2014 period. The study by D'Andrea et al. 
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(2019) provides the location and detailed information of these 30 weather stations and 

describes how climate data were thoroughly checked for quality and consistency. 

A spatial interpolation was performed on the data from the 30 weather stations 

in order to generate one climate dataset corresponding to the centroid of each of the 

soil polygons above described (Figure 2). To achieve this, the centroids of each of the 

77 SCU were first determined using the "sf" package version 0.6.3 of the statistical 

software R. For each of the centroids, a spatial interpolation was then carried out 

through ordinary kriging using the "variogram" and "variogramfit" routines of the 

MATLAB software (Mathworks, Natick, MA, USA). An interpolation was performed 

for all daily values of all variables considered for each of the 30 years comprised 

within the 1984-2014 period. In total 56,615 interpolations were executed; one per 

variable and day. Global radiation data series were calculated from interpolated 

sunshine hours using the Amstrong equation (Penman, 1948). Figure 3 maps the mean 

annual temperature and total rainfall for each of the 77 SCU considered in the analysis 

in the 30 years studied. 

Pesticide simulation runs 

In order to estimate the overall distribution of potential pesticide PECs for the 

region, simulation runs were performed for 45 different dummy pesticide molecules 

for a period of 30 consecutive years in the 77 above-described SCUs. Dummy 

pesticides were selected to illustrate a wide range of degradation and sorption 

properties to compare the behavior of chemically diverse pesticide molecules amongst 

SCUs. The physicochemical characteristics of modeled dummy pesticides are 

presented in Table 1 of Supplementary Materials. Half-life in soil (i.e. DT50) varied 

from 0.05 to 3000 days, half-life in the water column ranged from 0.2 to 365 days, 

whereas the pesticide soil-water distribution coefficient (Kd) ranged between 0.07 and 
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200 490 L/kg. The ranges and combination of physicochemical properties assigned to 

the dummy pesticides were based on the properties of real pesticides typically 

employed in grain crops and were obtained from Lewis et al. (2016). It is important to 

highlight that the goal of the simulations was to compare the PECs obtained in the 77 

SCUs following identical applications of a variety of pesticide molecules. The 

simulations did not aim at modeling real-life pesticide exposures, even though the 

pesticide pulverizations modeled are based on procedures commonly performed in the 

Pampa region. 

An application rate of 1 kg/ha was fixed for all the simulations to ensure that 

the same importance was given to all pesticides. In all the simulations, the pesticide 

was applied before sowing a 29 ha field with a soybean crop. Soybean phenology, i.e. 

sowing, emergence and harvest dates were defined for the centroid of each SCU based 

on the phenological calendar corresponding to the region within which the 

coordinates of the centroid are located. Soybean phenological calendars used for the 

different subregions of the Pampa are those defined by the Ministry of Agriculture of 

Argentina (Oficina de Riesgo Agropecuario, 2018). During the simulation, when a 

soybean crop was considered present on the land (i.e. after the emergence date), 

canopy interception was set at 0.05 cm, root length at 100 cm and crop height at 80 

cm. 

To ensure that annual application dates presented similar characteristics 

amongst years and SCUs, the application date was defined, for each year of the 

simulation, as the day immediately before the largest rainfall observed in the period 

ranging from forty to ten days before the sowing date. Accumulated daily 

precipitation needed to be greater than 3 mm for a specific day to be considered a day 

with rainfall. Input data used in the section “Watershed and waterbody dimensions” of 
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PWC were set constant for all runs: (i) area of treated field, 290000 m

2 
(29 ha); (ii) 

fraction of the field cropped, 1; (iii) surface area of waterbody, 8000 m
2 

(0.8 ha); and 

(iv) initial and final depths, 1.5 m. These values were chosen based on an unpublished 

preliminary study in which the surface area of ponds present over the whole study 

area was measured on satellital images. The selection of a low, 1.5m depth, was based 

on the literature (Benzaquen et al., 2017). Values used for both water column and 

benthic parameters are given in D’Andrea et al. (2020). For their part, water columns 

and benthic parameters were set according to values found in the literature for 

Pampean lakes and ponds. Spray efficiency and drift were arbitrarily set at 0.99 and 

0.01 in all simulations. 

The simulation of the fate of each of the 45 pesticides in the 77 SCUs was 

performed with the software PWC version 1.52, but repeated model runs were 

automatized with the software SENSAN, a tool that is included in the PEST software 

package for parameter estimation and uncertainty analysis of complex environmental 

computer models (Doherty, 1994). In order to illustrate acute and chronic toxicity 

scenarios, PWC output data retained for worst-case scenario definition consisted of 

upper 90
th
 ranked 4-day (4dPEC) and 60-day (60dPEC) annual average pesticide 

water concentrations.  

Percentile-based selection of soil–climate scenarios for multiple pesticides 

In accordance with most modern exposure assessment studies (Bach et al., 

2017; Boesten, 2018; Scorza Junior et al., 2018), soil-climate scenarios were selected 

based on the 90
th

 percentile of all 4dPEC and 60dPEC values simulated for the Pampa 

region. In a spatio-temporal CDF, the overall 90th percentile of a target variable 

represents a combination of the spatial component and the temporal component of the 

overall distribution (EFSA 2013, Boesten, 2018, Bach et al., 2017). The risk of 
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exceedance of a given threshold concentration in time and space was considered to be 

of equal importance in the present study and was set to 20% for both dimensions, in 

agreement with previous studies (Bach et al., 2017; Scorza Junior et al., 2018; 

Dowling et al., 2019). 

Therefore, the first step of the analysis consisted in building, for every dummy 

pesticide evaluated, the overall, as well as the spatial and temporal CDFs of all annual 

4dPEC and 60dPEC values to determine the percentile corresponding to every annual 

value obtained over the 30-year simulation period. Then, for each modeled pesticide, 

the SCUs which PECs corresponded to the 89 and 90
th

 overall percentiles were 

selected. The 89
th

 percentile was considered together with the 90th percentile, so as to 

obtain enough SCUs to choose from in the next step, and to ensure that the resulting 

scenario was conservative enough. Once this initial set of SCUs was selected, the 

number of potential scenarios was further reduced by restricting the selection to SCUs 

presenting both a spatial and a temporal percentile ranging between the 75
th
 and 85

th
 

position. Again, the range of selection was slightly extended on both sides of the 80
th

 

percentile criteria, to obtain enough adequate SCUs to select from in the next step. 

The above described analysis was performed in parallel for 4dPEC and 60dPEC 

values, so that a pool of candidate soil-climate scenarios was obtained for both 

endpoints. 

All above described analyses were performed separately for each dummy 

pesticide because the spatial pattern of the predicted exposure concentrations is likely 

to differ amongst pesticides given that the relation between soil parameters, substance 

fate parameters and predicted environmental concentrations is non-linear (Tiktak et 

al., 2013). In the final step of the analysis, the SCUs selected for all dummy pesticides 

were compared, and those with the largest selection frequency were considered as 
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candidate scenarios. As stated above, this analysis was performed separately for 

4dPEC and 60dPEC values to examine whether selected scenarios were similar in 

terms of acute and chronic periods. 

RESULTS 

To estimate the overall distribution of potential pesticide PECs in the Pampa 

region, the upper 90th ranked 4-days and 60-days annual average pesticide water 

concentrations were determined for 30 consecutive years and 45 dummy pesticides in 

77 SCUs of the Pampa region. In total, 103,950 simulations were carried out using the 

PWC model (45 pesticides * 30 years * 77 SCUs). Figure 4 illustrates the relative 

proportion of applied pesticide which enters the waterbody through either erosion, 

runoff or spray drift, according to the model for each dummy pesticide. This figure 

clearly shows that molecules with a high Kd reach surface waters mainly through 

erosion, whether molecules with a low Kd enter the water through runoff. 

SCUs producing PEC values equivalent to the 90
th 

percentile of all PECs were 

identified using the percentile-based selection protocol described above (see 

methods). 41 (4dPEC) and 34 (60dPEC) of the 77 examined SCUs were selected for 

at least one dummy pesticide, when applying this selection protocol. However, of 

these SCUs, about half were selected in the case of only four pesticides or less, 

meaning that their potential to illustrate various chemical classes in a region-wide 

exposure assessment was limited. Overall, when considering all tested dummy 

pesticides, the cartographic units presenting the largest frequency of selection were 

only selected in the cases of 33-36% of the dummy pesticides, i.e. for 15 (4dPEC) and 

16 (60dPEC) of the 45 pesticides tested. 

In an attempt to identify SCUs representative of different chemical groups, 

dummy pesticides were gathered according to either their soil half-life, their water 
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half-life, or their Kd, and the representativeness of selected SCUs was assessed for 

each group of pesticide (data not shown). The largest level of representativeness was 

obtained when dummy pesticides were grouped according to their Kd, with some 

SCUs presenting selection frequencies as high as 78 - 88% for some categories (Table 

1). Indeed, if only mobile pesticides with a Kd lower than 2.5 are considered, it is 

possible to identify an SCU (A300_140) with 4dPEC values that is representative of 

the 90
th

 percentile of all PECs for 78% of the 14 dummy pesticides in this category. 

When considering 60dPECs for the same group of pesticides, four SCUs are equally 

representative with a range of selection frequencies corresponding to 42 - 57% of the 

pesticides (Table 1). Nevertheless, as one of these four SCUs is the SCU number 

A300_140 that was identified as the most representative in the case of 4dPECs, it is 

recommendable, for greater practicality, that SCU A300_140 is selected as the 

pampean scenario to be employed for both short term (4dPEC) and long term 

(60dPEC) pesticide fate modeling and exposure assessment of low Kd pesticides (Kd 

< 2.5). The SCU A300_140 is located in the northeast of the Pampa region (Fig. 5) 

and its main soil type is typic hapludert (vertisol), which is classified as hydrological 

group D (Table 1). 

In the case of pesticides with an intermediate soil binding affinity (3 < Kd < 

15), the most frequently selected SCUs differed whether 4dPECs or 60dPECs were 

considered, and no single SCUs could be identified that was representative of both 

time averages. For this reason, the SCU A373_72 was selected as the most 

representative in the case of short term concentrations (4dPECs) with a selection 

frequency of 72.7%, whereas, the SCU A318_525 was selected for long term 

concentrations (60dPEC) with a selection frequency of 72.8% (Table 1). The SCU 

A373_72 is located in the center south of the Pampa region (Fig. 5), its main soil type 
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is typic natraquoll (mollisol), which is classified as hydrological group D (Table 1). 

For its part, SCU A318_525 is located in the north east of the region (Fig. 5), its main 

soil type is vertic argiudoll (mollisol) and it also belongs to hydrological group D 

(Table 1). 

Finally, in the case of pesticides that tightly bind to the soil (Kd > 50), the 

SCU A240_582 came out as highly representative of this group of pesticides, being 

selected for 77.8 and 88.9% of the 18 pesticides present in the group, in the case of 

4dPECs or 60dPECs, respectively (Table 1). It is interesting to note that SCU 

A311_231 is equally representative as A240_582 in the case of 4dPECs, but as 

A240_582 is also widely selected for 60dPECS, it is more convenient to use this SCU, 

as it can be employed for both short term and long term pesticide modeling. The SCU 

A240_582 is located in the center west of the Pampa region (Fig. 5) and its main soil 

type is entic haplustoll, which is classified as hydrological group B (Table 1). 

DISCUSSION 

The present study identified twelve different SCUs as potential candidates for 

realistic worst case scenarios modeling of PECs in the Pampa region of Argentina. 

Results obtained demonstrated that scenarios reached a larger representativeness of 

the whole region when selected scenarios were based on both the Kd of the pesticide 

and the duration of the time averaged PECs considered. Based on these criteria, a final 

set of four SCUs were selected as representatives of the Pampa Region and are 

recommended for pesticide fate modeling at the regional level. This is the first time to 

our knowledge that statistically-based standardized worst case scenarios are 

developed for the Pampa region. The availability of such scenarios is critical to 

impulse pesticide fate modeling and probabilistic risk assessment in the region. 
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The pesticide fate model PWC was employed in the current study. Recently, 

the possibility to employ this model in the Pampa region was examined by performing 

a sensitivity analysis of PWC using regional conditions (D’Andrea et al., 2020). 

Consistent with the observations made in the present study, the sensitivity analysis 

highlighted the fact that PWC is highly sensitive to the soil adsorption coefficient 

(Kd) of the modelled pesticide (D’Andrea et al., 2020). Based on the evidence 

gathered, we propose the use of four distinct SCUs for worst case scenarios modeling 

of PECs in the Pampa region of Argentina. The SCU selected for a specific modeling 

exercise should depend on the Kd of the pesticide evaluated and whether short term or 

long term pesticide fate modeling and exposure assessment is required: 1) SCU 

A300_140 for both short and long term modeling of pesticides with a Kd inferior to 

2.5. 2) SCU A373_72 for short term modeling and SCU A318_525 for long term 

modeling of pesticides with a Kd between 3 and 15, and 3) SCU A240_582 for both 

short and long term modeling of pesticides with a Kd superior to 50. 

The pesticide fluxes generated within an agrosystem are largely governed by 

the movement of water and the hydrologic and hydraulic characteristics of the 

catchment (Payraudeau and Gregoire, 2012). Surface runoff and soil erosion from 

treated fields that occur soon after pesticide application have been identified as the 

main processes resulting in fast and intense contamination peaks in surface waters 

(Peyrard et al., 2016). Surface runoff occurs whenever the rate of water inflowing on 

the ground surface exceeds the rate of infiltration and the surface storage capacity is 

exceeded (Holvoet et al., 2007). It usually starts as a laminar sheet flow that 

channelizes into a concentrated turbulent flow after a certain travel length. For its 

part, soil erosion by water is the detachment of soil particles from the soil surface and 

their subsequent transport into runoff water (Reichenberger et al., 2007). Sorbing 
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pesticides (high Kd) reach surface waters mainly through erosion, whether non-

sorbing molecules (low Kd) enter the waterbody in solution in runoff water (Fig. 4). 

This is because a pesticide with a large Kd will be tightly bound to eroded soil 

particles and move together with it, whereas a pesticide molecule with a low Kd will 

remain in solution and follow the water movement (Boyd et al., 2003; Holvoet et al., 

2007; Duus Børgesen et al., 2015). 

The hydrologic soil group (HSG) refers to the classification of soils based on 

their runoff producing characteristics. In the present study, all SCUs selected for low 

Kd pesticides had soils belonging to group D, which includes clay soils with very low 

infiltration rates and is the HSG presenting the highest runoff potential (USDA, 

2009). It is logical for SCUs with group D soils to represent worst case scenarios for 

low Kd molecules considering that non-sorbing pesticides remain dissolved in water 

and reach the waterbody almost entirely though surface runoff. The large majority of 

SCUs identified as candidate worst-case scenarios for pesticide with a Kd lower than 

2.5 were located in the northeast of the Pampa region, where average annual 

temperatures are highest. They either presented relatively flat soils with a rich content 

of clay (slope < 2 %) or soils with a thin argillic horizon (aquic arguidolls) and a 

steeper slope (between 2 and 5 %). They also presented an elevated content of silt, a 

factor which makes them prone to structural degradation by compaction and, thereby, 

surface runoff (Reichenberger et al., 2007).  

In the case of low Kd pesticides, the two SCUs that were selected as potential 

scenarios for 4dPECs also came out as possible scenarios for 60dPECs, together with 

two other SCUs that were equally representative in terms of their selection 

frequencies (Table 1). This means that, in the case of low Kd molecules, the same 

SCU can be used as worst case scenarios for both short term and long term average 
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concentrations. This observation is likely due to the fact that pesticide movements 

based on fast transport mechanisms such as surface runoff are characterized by fast 

and intense contamination peaks triggered by rainfall events (Peyrard et al., 2016; 

Belles et al., 2019). Whereas most part of the pesticide transfer to the waterbody 

occurs through fast-flow events, fast transport mechanisms also cause the build-up of 

a transient pesticide pool in the saturated zone, which sustains low level pesticide 

concentrations by leaching over considerable periods of time (Leu et al, 2004; Belles 

et al., 2019). In this context, 4dPECs will mostly be dependent on fast-flow associated 

peak concentrations, whereas residual slow water movements may affect 60dPEC. 

The fact that the same SCUs were selected as worst-case scenarios for both 4dPEC 

and 60dPEC, either indicates that both components of the pesticide flux are 

influenced in a similar manner by land and climate variables or that the large peak 

values override any other influences on PECs. 

  In the case of pesticides with a high Kd (>50), all selected SCUs are located to 

the west of the Pampa region and have soils belonging to HSG group B. They also 

exhibit elevated sand contents, high values of soil erodibility (USLE factor K), and 

they present a slope of 2-5%, which is somewhat elevated for the Pampa plain. 

Because strongly binding pesticides (high Kd) are essentially mobilized through water 

erosion and reach the waterbody bonded to eroded soil particles, soil erodibility was 

clearly an important factor in the selection of worst-case SCUs for these molecules. 

For this category of pesticides, two SCUs were equally representative as potential 

scenarios for 4dPECs with selection frequencies of 77.8%. One of these, SCU 

A240_582, also was selected for 60dPEC values for the large majority of high Kd 

pesticides, with a selection frequency of 88.9%. As was the case for low Kd 

pesticides, the fact that the same SCU was selected as worst-case scenarios for both 
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4dPEC and 60dPEC either indicates that short-term and long-term pesticide transfer 

to the waterbody are similarly influenced by land and climate variables, or that 

rainfall associated acute events override low-level chronic discharge of pesticides into 

the waterbody. 

As opposed to what was observed for both low and high Kd pesticides, it was 

not possible to identify an SCU that could be used for both 4dPEC and 60dPEC in the 

case of pesticide with a Kd value between 3 and 15. Indeed, none of the SCU selected 

for 4dPEC and 60dPEC coincided, suggesting that short-term and long term pesticide 

transfer to the waterbody are either governed by different processes or that land and 

climate variables affect the leading transfer route in different manners. It is logical 

that pesticide flux and fate is more complex for this category of pesticides, as the 

molecules it includes reach water bodies by both erosion (i.e. bonded to soil particles) 

and runoff (i.e.in solution in water). In runoff water, although both the dissolved and 

particle-bound pesticides are considered as mobile fractions, they each travel through 

different transport pathways (Wu et al., 2004). For vertical transport, the water-

soluble pesticides are assumed to be most mobile, while for lateral transport, 

pesticides bound to particles of different sizes differ in their settling velocity and 

therefore their transport distances and deposition patterns (Krein and Schorer, 2000; 

Wu et al., 2004; Walker, 2001). As for all pesticide Kd categories, further complexity 

may also be introduced by the initial moisture content of soil, the interactions between 

soil properties and climate, temporal variations in weather conditions and rainfall 

characteristics (Le Bissonais et al., 1995; Sandin et al., 2018). 

Because the amount of eroded soil lost from a field is usually small compared 

with the runoff volume, pesticides loss via surface runoff is normally considered more 

important than losses via soil erosion, (Duus Børgesen et al., 2015). The dominance 
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of runoff pathways over erosion is highlighted by the fact that SCUs selected for 

intermediate Kd pesticides share more similarities with the SCUs selected for low Kd 

pesticides rather than high Kd pesticides, in terms of soil characteristics such as HSG, 

erodibility factor, and clay, silt and sand contents. 

CONCLUSION 

In conclusion, a statistically-based approach was employed to identify SCUs 

that may be used as realistic worst-case scenarios for the modeling of pesticide PECs 

in the Pampa region of Argentina. Results obtained demonstrated that the SCU 

selected for a specific modeling exercise should depend on the Kd of the pesticide 

evaluated and whether short term or long term pesticide fate modeling and exposure 

assessment is required. Four of the most regionally representative SCUs were 

specifically identified for modeling the fate of pesticides with low, high and 

intermediate values of Kd. Fate modeling of pesticides with an intermediate Kd 

requires the use of a different SCU for short-term versus long-term pesticide 

modeling, whereas this distinction is not necessary in the case of pesticides with both 

low and high Kd. The current definition of realistic worst-case soil-climate scenarios 

represents a crucial step towards better pesticide fate modeling and risk assessment in 

the highly agricultural in the Pampa region of Argentina. 
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Figure Captions: 

 

Figure 1. Percent a) sand b) silt and c) organic carbon of the first soil horizon, d) 

hydrological group, e) erodibility factor (K) and f) topographic factor (LS) of the 

Universal Soil Loss Equation for the 77 SCUs considered in the study. 
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Figure 2. Location in the Pampa region of the 77 cartographic units considered in the 

current study. The red dots indicate the position of the centroids for which a spatial 

interpolation of climate data was performed.  
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Figure 3. a) Accumulated precipitation in 30 years for the months of August to October 

in 30 years (cm) and b) mean annual temperature in 30 years (
o
C) of the 77 SCUs 

considered in the study. 
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Figure 4. The ratio of total pesticide applied that reaches the water body by surface 

runoff, water erosion, and drift. The 45 dummy pesticides are ordered by decreasing 

Kd, with dummies higher on the y-axis having a larger Kd. 
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Figure 5. SCUs selected for worst case scenarios modeling of PECs in the Pampa 

region of Argentina. The SCU selected for a specific modeling exercise should 

depend on the Kd of the pesticide evaluated and whether short term or long term 

pesticide fate modeling and risk assessment is required.  
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Table Captions: 

Table 1. SCUs with highest selection frequency based on the Kd of the dummy 

pesticide. K is the soil erodibility factor of the Universal Soil Loss Equation (USLE). 

HSG = Hydrologic Soil Group. SCUs in bold correspond to those selected as regional 

scenarios for each category. 

Soil-Climate 
Units 

Location 
Soil Type 

 

Organic 
Carbon 

(%) 

Clay 
(%) 

Silt 
(%) 

Sand 
(%) 

HSG 
USLE 

K 
Slope 

(%) 

Selection 
Frequency 

(%) 

4d PEC           

Kd < 2.5           

A300_140 North East 
Typic 
Hapludert 

2.72 33.6 60.5 5.9 D 0.33 0 - 2 78.6 

A329_577 North East Aquic Argiudol 1.55 27.6 67.9 4.5 D 0.46 2 - 5 64.2 

           

3 < Kd < 15           

A373_72 Center South 
Typic 
Natraquoll 

3.76 25.2 41.9 32.9 D 0.33 0 - 2 72.7  

A269_50 Center North Typic Argiudol 1.42 27.9 70.2 1.2 C 0.46 0 - 2 63.6 

           

Kd > 50           

A240_582 Center West Entic Haplustoll 0.9 9.4 22.2 68.4 B 0.70 2 - 5 77.8 

A311_231 South West 
Typic 
Ustorthents 

0.52 8.87 15.51 75.62 B 0.73 2 - 5 77.8 

60d PEC           

Kd < 2.5           

A329_49 North East Aquic Argiudol 1.55 27.6 67.9 4.5 D 0.46 2 - 5 57.1 

A371_492 Center East 
Typic 
Natraqualfs 

1.92 23.7 29.9 46.4 D 0.50 0 - 2 50 

A329_577 North East Aquic Argiudol 1.55 27.6 67.9 4.5 D 0.46 2 - 5 42.9 

A300_140 North East 
Typic 
Hapludert 

2.72 33.6 60.5 5.9 D 0.33 0 - 2 42.9 

           

3 < Kd < 15           

A318_525 North East Vertic Argiudol 3.07 25.5 69.9 4.9 D 0.38 0 - 2 72.8 

A371_492 Center East 
Typic 
Natraqualfs 

1.92 23.7 29.9 46.4 D 0.50 0 - 2 63.6 

A354_360 Center Typic Arguidol 1.7 20.1 33.1 46.8 D 0.55 0 - 2 63.6 

           

Kd > 50           

A240_582 Center West Entic Haplustoll 0.9 9.4 22.2 68.4 B 0.70 2 - 5 88.9 

A293_584 South West Entic Haplustoll 1.68 11.2 21.3 67.68 B 0.60 2 - 5 50 

 

 




