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Highlights 

• Proposed an extended change detection methodology for soil moisture retrieval of 

croplands using Dual-pol Radar Vegetation Index for GRD data, DpRVIc. 

• DpRVIc outperforms NDVI for soil moisture estimation over croplands and shrublands. 
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Abstract

Soil moisture is a critical land variable that controls the energy and mass bal-

ance in land-atmosphere interactions. Spaceborne Synthetic Aperture Radar

(SAR) sensors offer an efficient way to map and monitor soil moisture be-

cause of their sensitivity towards the dielectric and geometric properties of

the target. In addition, SAR acquisitions are weather-independent, pro-

viding a significant advantage over optical imaging during periods of cloud

cover. However, vegetation cover makes these processes more complex and

influences the interaction of SAR backscatter resulting from combined soil

matrix and vegetation cover. Therefore, using SAR data, it is necessary to

compensate for vegetation contribution in total backscatter while estimating

soil moisture over the vegetated soil surface. This study presents a tech-

nique that utilizes a vegetation index derived from SAR data to generate

high-resolution soil moisture maps. It is noteworthy that this proposed soil
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moisture retrieval method uses only the dual-polarimetric Ground Range

Detected (GRD) SAR product, i.e., only backscatter intensities. Hence, the

proposed method has a high potential for operational soil moisture monitor-

ing globally. We validated over 34 soil moisture stations of the Texas Soil

Observation Network (TxSON) using time-series Sentinel-1 SAR data. The

Root Mean Square Error (RMSE) values for estimated volumetric soil mois-

ture are within the range of 0.048 m3 m−3 to 0.055 m3 m−3 with the Pearson

correlation coefficient r > 0.79.
Keywords: Soil moisture, DpRVIc, NDVI, change detection, Sentinel-1

1. Introduction1

Soil moisture is a critical land variable that controls the energy and2

mass balance in land-atmosphere interactions (Pauwels and De Lannoy, 2006;3

Seneviratne et al., 2010; Karthikeyan et al., 2017). Soil moisture has a wide4

range of applications including weather forecasting (Scipal et al., 2008), flood5

prediction (Wanders et al., 2014; Massari et al., 2018), drought monitor-6

ing (Mishra et al., 2017; Mart́ınez-Fernández et al., 2016) and crop mod-7

elling (Ines et al., 2013). Specifically to the agriculture sector, the highly8

dynamic nature (spatial and temporal) of surface soil moisture affects crop9

productivity, particularly at critical plant development stages (Champagne10

et al., 2012; Karthikeyan et al., 2020). Remote sensing techniques offer many11

advantages over conventional methods for monitoring soils and crops. In par-12

ticular, Synthetic Aperture Radar (SAR) data have been effectively used in13

estimating soil moisture at high spatio-temporal resolutions (Shi et al., 1997;14

Hornacek et al., 2012; Bauer-Marschallinger et al., 2018).15
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The sensitivity of SAR response to dielectric and geometrical properties16

of a target is observed by several investigators using ground, aircraft, and17

spaceborne platforms. For land targets, the intensity and scattering angular18

behavior of SAR responses are impacted by the volume of water in the soil,19

the micro and macro roughness of the surface roughness, and the characteris-20

tics of the vegetation cover (Ulaby, 1982; Karthikeyan et al., 2017). Typically21

for bare soil conditions, backscatter intensity is linearly related to volumetric22

soil moisture (Ulaby, 1974; Ulaby et al., 1978; Dubois et al., 1995; Baghdadi23

et al., 2006). Inversion of surface scattering models such as Integral Equa-24

tion Model (IEM) Fung et al. (1992), and empirical models developed by Oh25

et al. (1992); Dubois et al. (1995) can be utilized to estimate soil moisture26

within the validity range of each model. These models were developed for27

bare soils, and as such, the use of these models to estimate soil moisture28

under vegetated conditions yields high soil moisture uncertainties (Oh et al.,29

1992; Jagdhuber et al., 2012).30

The initial step in estimating soil moisture in the presence of vegetation31

is to separate the contributions to the SAR response from the vegetation and32

the soil. If they are separated successfully, the soil contributions can be used33

to invert scattering or empirical soil moisture models. However, the uncer-34

tainties in soil moisture estimations develop with the increasing complexity35

of the structure and dielectric properties of vegetation cover (Oh et al., 1992;36

Millard and Richardson, 2018). The methods of estimating soil moisture un-37

der vegetation cover can be primarily categorized into five groups: coupling38

the surface scattering models with vegetation models (Baghdadi et al., 2015;39

Bao et al., 2018; El Hajj et al., 2017; Attarzadeh et al., 2018; Ma et al., 2020)40

3



(also called synergetic approaches), scattering power decomposition (Hajnsek41

et al., 2009; Jagdhuber et al., 2012), change detection approaches (Wagner42

et al., 1999; Ouellette et al., 2017; Bauer-Marschallinger et al., 2018), physi-43

cal model-based data driven methods like artificial neural networks (Paloscia44

et al., 2013) and data cube approaches (Kim et al., 2013).45

Change detection-based approaches of soil moisture estimation are one46

of the popular techniques to generate global high-resolution soil moisture47

products (Bauer-Marschallinger et al., 2018; Balenzano et al., 2021). (Wag-48

ner et al., 1999) introduced the change detection technique to estimate soil49

moisture from scatterometer data. Later Zribi et al. (2008) used NDVI to50

correct the vegetation effect on soil backscatter. Balenzano et al. (2010)51

introduced another change detection approach using backscatter ratios of52

consecutive acquisitions from dense temporal multi-frequency airborne SAR53

data. Recently, the change detection approach proposed by Wagner et al.54

(1999) has been modified according to Sentinel-1 SAR data characteristics55

by Bauer-Marschallinger et al. (2018). Further, Gao et al. (2017) adapted56

the change detection approach for Sentinel-1 data and utilized NDVI from57

Sentinel-2 data for vegetation correction while estimating soil moisture over58

vegetation-covered soils.59

Although optical remote sensing-derived products show significant promise60

in estimating soil moisture, these data collections are limited to cloud-free61

conditions. The interference of clouds in image acquisitions is particularly62

problematic for operational retrievals, implemented at regional scales. No-63

tably, crop development is very dynamic during the monsoon period when64

the likelihood of clouds is high. These cloudy conditions impose a challenge65
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in collecting spectral signatures for major crops, such as rice and sugarcane.66

Hence, during critical periods of crop development, SAR-derived vegetation67

descriptors could be a valuable alternative to optical remote sensing-derived68

products.69

Other major limitations of optical derived indices include the saturation70

of spectral signatures for dense crop foliage (Asrar et al., 1984; Hatfield et al.,71

1985; Sellers, 1985). For example, NDVI becomes insensitive to high values72

of leaf area index (Hobbs, 1995; Asner et al., 2003; Chen et al., 2006). These73

multi-spectral indices respond to plant chlorophyll content, parenchyma tis-74

sue arrangements, and photosynthetic potentials of vegetation. After a cer-75

tain period of crop phenological development, the changes in these vegetation76

components become negligible. Consequently, optical vegetation indices also77

become insensitive to future vegetation development, even though significant78

differences in crop geometry and biomass continue. One could exploit SAR79

responses to capture the continued growth of the canopy, considering the80

sensitivity of backscatter to crop structure and biophysical characteristics.81

In this regard, SAR derived descriptors have been successfully utilized in82

vegetation monitoring (Dey et al., 2020a,c, 2021a,b) and soil moisture stud-83

ies (Bhogapurapu et al., 2020a,b, 2021b). Several vegetation descriptors such84

as the Radar Vegetation Index (RVI) for dual-pol (Trudel et al., 2012), Dual-85

Pol SAR Vegetation Index (DPSVI) (Periasamy, 2018), and Dual-pol Radar86

Vegetation Index (DpRVI) (Mandal et al., 2020; Bhogapurapu et al., 2022)87

have been developed for crop growth monitoring and biophysical parameter88

retrieval (Dey et al., 2020b). It is evident from these studies that SAR-89

derived vegetation descriptors are an effective way to monitor and quantify90
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vegetation at the different phenological windows. However, previous studies91

did not explore using change detection-based methods to utilize SAR-derived92

vegetation descriptors for soil moisture estimation.93

This study utilizes a SAR-derived vegetation index (DpRVIc) that ex-94

ploits the available polarimetric information in dual-pol GRD SAR data.95

The formalism of the index jointly uses the co-pol purity parameter and nor-96

malized co-pol intensity parameter. The co-pol purity parameter infers the97

mix of two polarization intensities within a pixel. The proportion of this mix98

relates to the amount of randomness in the scattering, relating it to vegeta-99

tion quantity. Besides, the normalized co-pol intensity parameter represents100

the dominant pseudo probability for dual-pol SAR data. We use this index101

in a change detection-based approach to estimate surface soil moisture over102

croplands and shrublands.103

The manuscript unveils as follows. Section 2 details the study area and104

dataset used in this study. This is followed by a methodology section (Sec-105

tion 3) about the proposed adaption of the soil moisture retrieval algorithm106

for SAR-based vegetation indices. Subsequently, results from an evaluation107

of the obtained 100 m×100 m Sentinel-1 soil moisture data over Texas in the108

United States are presented and discussed in Section 4. The conclusions em-109

phasize the research aspects and provide impressions of the possible future110

scope of the proposed algorithm.111

2. Study area and datasets112

We used the ground truth soil moisture data from the Texas Soil Obser-113

vation Network (TxSON) in this study. The TxSON area is an intensively114
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monitored area (1300 km2) located near Fredericksburg, Texas. This dense115

network consists of 40 in-situ locations nested at 36, 9, and 3 km within the116

Equal-Area Scalable Earth Grid and serves as a Core Calibration and Vali-117

dation Site for NASA’s Soil Moisture Active Passive mission (Caldwell et al.,118

2019). Soil moisture measurements from the top 0 cm to 5 cm are used in this119

study. Soil texture across the stations varies from sand to silty loam. Ma-120

jor land cover classes present in the network are shrublands, croplands, and121

evergreen forests. In this study, we have used in-situ data acquired majorly122

over croplands and shrublands. Croplands majorly consists of viticulture and123

pastures, whereas vegetation in the shrublands includes woody plants (Ashe124

juniper and honey mesquite) and a mixture of short and mid-height grasses125

(grama, switchgrass, bluestem, curlymesquite) (Caldwell et al., 2019).126

Soil moisture data from 34 stations, including 27 stations from shrublands127

and seven stations from croplands, is processed and used in this study. A128

map representing the extent of the study area and locations of the TxSON129

stations is shown in Figure 1. Further details on the TxSON study site can130

be found in Caldwell et al. (2019).131

Sentinel-1 (S1) dual polarimetric SAR data acquired from March 2015132

to August 2019, a total of 90 scenes are used in this study. The S1 data133

is acquired in Interferometric Wide Swath mode (IW) with an incidence134

angle range of 33.67◦ to 36.19◦ across the study area. The S1 GRD data135

is despeckled using a 5 × 5 boxcar filter and further resampled to 100 m.136

Subsequently, the Dual-pol Radar Vegetation Index for GRD SAR data was137

generated using PolSAR tools plugin (Bhogapurapu et al., 2021c). We have138

used NDVI derived from Moderate Resolution Imaging Spectroradiometer139
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Texas

TxSON stations Network Extent

Figure 1: Map of study area showing the locations of the soil moisture stations of Texas
Soil Observation Network.

(MODIS) Terra Surface Reflectance 8-Day Global 250 m (MOD09Q1.006)140

available in Google Earth Engine (GEE).141

3. Methodology142

This section proposes a modified change detection approach to estimate143

soil moisture using dual polarimetric SAR data. We extend the method144

proposed by Zribi et al. (2008) to estimate soil moisture. We utilize the veg-145

etation index derived from dual-pol SAR datasets to correct the vegetation146
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effect on soil backscatter. Furthermore, we also use NDVI derived from op-147

tical data to compensate for vegetation attenuation on soil backscatter for a148

comparative study.149

3.1. Vegetation Indices150

NDVI has been widely used to retrieve crop biophysical parameters such

as LAI (Liu et al., 2012) and biomass (Mutanga and Skidmore, 2004). Be-

sides, it has been used to compensate for vegetation effects on soil backscat-

ter when retrieving soil moisture (Bao et al., 2018; Li and Wang, 2018).

From Rousel et al. (1973), NDVI can be derived from optical remote sensing

data, as shown in Eq. (1).

NDVI = ρNIR − ρR

ρNIR + ρR

(1)

where, ρNIR is spectral reflectance in the near-infrared wavelength region151

(band-1 of MODIS (620-670 nm)) and ρR is spectral reflectance in red wave-152

length region (band-2 of MODIS (841-876 nm)).153

In dual cross-polarimetric GRD SAR data product, we obtain backscatter154

response either in (σ◦
VV, σ◦

VH)dB or (σ◦
HH, σ◦

HV)dB
1 modes. In general, for a155

mono-static antenna configuration and a natural scene, we assume σ◦
XY ≤ σ◦

XX156

(where X and Y are H or V polarizations respectively) (Cloude, 2009). Using157

this assumption, we consider a ratio parameter, 0 ≤ q = σ◦
XY

σ◦
XX

≤ 1, in158

the linear scale. This parameter has been widely used in the literature as159

1Here, H and V are the horizontal and vertical transmit and received polarization
components. The subscript dB represents the GRD SAR data products in decibel (dB)
scale.
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a descriptor for several crop monitoring applications (Della Vecchia et al.,160

2008; Vreugdenhil et al., 2018; Homayouni et al., 2019). On the other hand,161

vegetation indices in the form of the ratio of backscatter intensities have162

proven to be effective to characterize vegetation morphology.163

Using the backscatter intensity ratio q, we define the co-pol purity pa-164

rameter mc given in Eq. (2). The co-pol return will be high in low vegetation165

conditions, where the cross-pol return is negligible (q → 0). From Eq. (2),166

one can immediately observe that mc is high for bare field conditions, while167

it gradually decreases with an increase in vegetation density.168

mc = 1 − q

1 + q
, 0 ≤ mc ≤ 1 (2)

Therefore, one can conclude that the mc parameter infers the mix of two169

polarization intensities in a pixel and thus indicates the purity of the co-170

pol component within the same pixel. It can be noted that for q = 1,171

mc = 0, and for q = 0, mc = 1. In between these two extreme cases,172

1 > q > 0, 0 < mc < 1. Besides, we also define the normalized co-pol173

intensity parameter (βc) as,174

βc = 1
1 + q

, 0.5 ≤ βc ≤ 1 (3)

The co-pol purity parameter mc is multiplied with the normalized co-175

pol intensity parameter βc, representing the dominant pseudo probability for176

dual-pol SAR data. The product of mc and βc then characterizes the overall177

purity of the co-pol component. We then obtain a measure of scattering178

randomness by subtracting the product of mc and βc from unity, as given in179
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Eq. (4). The variation in the measure of this scattering randomness could be180

attributed to vegetation canopy development at different phenology stages.181

For example, in the case of sparse vegetation conditions, the scattering182

from the soil surface is usually dominant. However, as the density of vege-183

tation increases, multiple scattering from the canopy and soil is more appar-184

ent. Hence, one can expect mc to decrease with the increase in vegetation185

canopy density. A similar sensitivity of the co-pol purity parameter is also186

highlighted with increasing target morphological complexity (Mandal et al.,187

2020; Bhogapurapu et al., 2021a, 2022).188

DpRVIc = 1 − mcβc

= q(q + 3)
(q + 1)2 , 0 ≤ DpRVIc ≤ 1

(4)

Therefore, from Eq. 4, it is clear that DpRVIc essentially indicate the189

impure fraction of the co-pol component in the scattered wave. For example,190

in the case of pure or point target scattering with a dominant scattering191

probability, βc = 1 and mc = 1. This state corresponds to DpRVIc = 0.192

Theoretically, for a smooth bare surface (i.e., Bragg scattering), σ◦
XX ≫ σ◦

XY,193

with a high value of mc. In the case of completely random scattering, mc =194

0 and βc = 0.5. This suggests that σ◦
XY = σ◦

XX for which DpRVIc = 1. For195

natural targets like fully developed vegetation canopies, mc ≈ 0 and βc ≈ 0.5,196

leading to higher DpRVIc, i.e., DpRVIc ≈ 1.197

3.2. Soil moisture Estimation198

We use a change detection approach accompanied by vegetation correc-199

tion to estimate soil moisture over shrublands and croplands. This approach200
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was initially proposed by (Zribi et al., 2008) for scatterometer data while us-201

ing NDVI to correct for vegetation influence. In this study, we adapted this202

approach for Sentinel-1 observations. The inversion algorithm is optimized203

to take advantage of the dense temporal data. The total backscatter from204

the surface can be expressed as the sum of the contributions from soil and205

vegetation, attenuated by it as,206

σ◦
total = σ◦

veg + δ2(ϕ) σ◦
soil (5)

where δ2(ϕ) = exp [−2τ/ cos ϕ] is the two-way attenuation factor, ϕ is the207

incidence angle, and τ is the optical thickness parameter that depends on208

the vegetation water content and geometry of the vegetation canopy.209

One can potentially monitor any temporal evolution of the soil moisture210

by detecting changes in the backscattered signal. If we consider radar signals211

scattered from the same cell, one could eliminate roughness effects and certain212

vegetation effects by computing the difference between the data recorded at213

different dates. This approach assumes that the change in backscattered214

signal is only due to local variations in soil moisture.215

First we calculate the historical minimum backscatter value (σ◦
dry) exclud-216

ing 2 % on either sides of historical data distribution for a given pixel. Now,217

considering that σ◦
dry corresponds to the driest soil state for the given pixel,218

we calculate the change in backscatter ∆σ as,219

∆σ = σ◦
dB − σ◦

dry = f(veg, Θ) (6)

where, ∆σ is a function of vegetation and soil moisture Θ. One can conceptu-220
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ally realize the relation between ∆σ, soil moisture, and vegetation as shown221

in Figure 2. The X-axis depicts the vegetation index, and the Y-axis indi-222

cates the change in backscatter, ∆σ. The red line is the dry reference. The223

upper bound is the wet reference (represented with a blue dashed line). The224

shaded region is the observed ∆σ values for various vegetation conditions.

Bare Soil

Full Cover

Partial Cover

C
h
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ge

 i
n
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ac

k
sc

at
te

r 
(

)

Vegetation Index

Wilting Point Dry reference

Field capacity

Figure 2: Conceptual diagram of change in backscatter (∆σ◦
XX) and vegetation index

space.

225

We can observe that the overall dynamic range of ∆σ decreases with an226

increase in vegetation cover/density. This decrease in the dynamic range227

indicates a decreased sensitivity of ∆σ to the change in soil moisture, which228

is also reported in previous studies (Zribi et al., 2008; Gao et al., 2017).229

However, the slope and shape of the upper bound (i.e., the wet reference) is230

a function of the vegetation index. In this regard, Zribi et al. (2008) used a231

quadratic function of NDVI, whereas Gao et al. (2017) used a linear function232

of NDVI to represent the wet reference.233

Now, from Figure 2, we write ∆σ◦
max(veg) corresponding to the upper-234
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bound as,235

∆σ◦
max(veg) = f(veg) + ∆σ◦

max (bare) (7)

where ∆σ◦
max (bare) is the maximum change in backscatter for bare soil surface236

and f(veg) is a function of vegetation index, can be linear or non-linear as237

mentioned previously.238

From the observed data (Figure 3a), we have fitted a nonlinear wet-239

reference for NDVI as,240

∆σ◦
max(NDVI) = −6.15 × NDVI2 + 0.44 × NDVI + 7.92 (8)

In the case of DpRVIc (Figure 3b) we obtain the expression of ∆σmax(veg)241

as presented in Eq. (9),242

∆σ◦
max(DpRVIc) = −5.27 × DpRVIc

2 − 4.80 × DpRVIc + 9.35 (9)

According to Wagner et al. (1999) and Zribi et al. (2008), the surface soil243

moisture from change detection approach can be expressed as,244

Θ = ∆σ

σwet − σdry
= ∆σ

∆σ◦
max(veg) . (10)

Subsequently, the absolute soil moisture Θ(i,j;t:veg) can be calculated for each245

pixel (i, j) for a given time t and vegetation condition as,246

Θ(i,j;t:veg) = ∆σ(i,j;t)

∆σ◦
max(veg)(Mvmax − Mvmin) + Mvmin (11)

where, ∆σ(i,j;t) represents the change in backscatter (as shown in Figure 3)247
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(a)

(b)

Figure 3: Change in co-pol backscatter (VV), ∆σ(dB) as a function of (a) NDVI and (b)
DpRVIc over entire study area (TxSON) during March 2015 to August 2019. The solid line
corresponds the regression line of upper 2 % of ∆σ (red points) for each value of vegetation
index.

of pixel indexed by (i, j) at time t. ∆σ◦
max(veg) can be calculated from248

Eq. (8) and Eq. (9) for NDVI and DpRVIc respectively. Mvmax , Mvmin are249

soil moisture values corresponding to field capacity and wilting point for that250

specific pixel. A detailed workflow of the proposed methodology is shown in251

15



Figure 4.252

S1
GRD	time-series	
data	stack Calibration	for	corrected	

dry	and	wet	references

Soil	Moisture	Estimation	

Validation	and	accuracy	
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Masked	&	speckle	
filtered	data	stack	
(𝜎°!!,	DpRVIc)

A

Preprocessing	&		
Masking	invalid	pixels

Data	preparation

Speckle	Filter
-boxcar	(5x5)

Field	Data
• In-situ	soil	
moisture

• Wilting	point	and	
saturation	limit

• Landcover	type

Soil	Moisture	Estimation

Field-scale	soil	
moisture	maps

A

Generating	
DpRVIc

Figure 4: The schematic workflow of the proposed methodology for field-scale soil moisture
estimation.

4. Results and discussion253

In this section, we analyze the performance of the proposed approach254

with NDVI and DpRVIc over croplands and shrublands. We assessed the255

agreement between the estimated and in-situ soil moisture values quantita-256

16



tively using the Root Mean Square Error (RMSE) (Eq. (12)) and Pearson257

correlation coefficient r (Eq. (13)). Results from individual sample stations258

are presented in Appendix A.259

RMSE =
√√√√ n∑

i=1

(xi − yi)2

n
(12)

where, x1, x2, ..., xn are in-situ soil moisture values, y1, y2, ..., yn are esti-260

mated soil moisture values, and n is the number of observations.261

r =
∑n

i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2

√∑n
i=1(yi − y)2

(13)

where, x1, x2, ..., xn are in-situ soil moisture values, x is the mean in-situ262

soil moisture, y1, y2, ..., yn are estimated soil moisture values, y is the mean263

estimated soil moisture, and n is the number of observations.264

4.1. Croplands265

We have considered seven soil moisture stations in the croplands for the266

analysis. The results obtained from NDVI and DpRVIc with Sentinel-1 data267

are presented in Figure 5. The accuracy metrics r and RMSE for NDVI are268

0.814 and 0.076 m3 m−3 respectively, whereas for DpRVIc we get r = 0.851269

and RMSE = 0.055 m3 m−3. We observe a better accuracy of estimated270

soil moisture using DpRVIc than NDVI. Further, one can observe from the271

scatter plots that in the case of NDVI, a majority of the estimates are below272

the 1:1 line. This underestimation of soil moisture might be because of273

saturation of NDVI for denser canopies (Asrar et al., 1984; Hatfield et al.,274

1985; Sellers, 1985). In contrast, the penetration capabilities of SAR can be275
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helpful in such scenarios to quantify the vegetation content. Moreover, as276

shown in previous studies (Bhogapurapu et al., 2021a), the sensitivity of the277

co-pol purity parameter, mc towards vegetation growth could be a possible278

explanation for the better accuracy with DpRVIc.279

Temporal evolution of measured and estimated soil moisture from NDVI280

and DpRVIc is presented in Figure 6. The temporal analysis revealed an un-281

derestimation when using NDVI during the high soil moisture condition. For282

example, the mean in-situ soil moisture during March 2015 is 0.223 m3 m−3
283

(corresponds to the mean value from seven in-situ stations), and the esti-284

mated value with NDVI is 0.164 m3 m−3. Whereas, in the case of DpRVIc,285

the estimated mean value is 0.225 m3 m−3. We observed similar results for286

April 2016, June 2017, and January 2018. However, most of the crop fields287

are at early crop growth during dry periods. As a result, we observe an over-288

estimation of soil moisture with DpRVIc compared to NDVI. This might be289

due to the surface roughness effect on DpRVIc during the early crop growth290

stages. Nevertheless, the estimated soil moisture values for all seven stations291

are in good agreement with in-situ measurements with an overall RMSE of292

0.055 m3 m−3 in case of DpRVIc.293

4.2. Shrubland294

The analysis for shrublands consists of data from 27 stations. Vegetation295

in these shrublands includes woody plants (Ashe juniper and honey mesquite)296

and a mixture of short and mid-height grasses (grama, switchgrass, bluestem,297

curlymesquite) (Caldwell et al., 2019).298

Figure 7 shows the correlation plots between measured and estimated soil299

moisture for 27 stations in shrublands. We obtain an RMSE of 0.066 m3 m−3
300
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(a) (b)

Figure 5: Correlation plots between observed and retrieved soil moisture for cropland (a)
using NDVI (b) using DpRVIc.
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Figure 6: Temporal evolution of observed and retrieved soil moisture over croplands (a)
using NDVI (b) using DpRVIc for seven stations, where, Θ: mean observed soil moisture,
σΘ : standard deviation of observed soil moisture, Θ̂: mean retrieved soil moisture, σ

Θ̂
:

standard deviation of retrieved soil moisture.

with NDVI and 0.048 m3 m−3 with DpRVIc with a high Pearson correlation301

r ≥ 0.64. We observe a better accuracy of soil moisture estimates with302
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DpRVIc than NDVI. Similar to the results of croplands, we witness a high303

underestimation of soil moisture with NDVI. This underestimation of soil304

moisture might be because of the saturation of NDVI for denser vegetation305

canopies and the nature of logarithmic relation between soil moisture and306

SAR signal (Zribi et al., 2020). Therefore, the penetration capabilities of307

SAR can be an advantage over optical data in such scenarios to quantify the308

vegetation content. Moreover, as shown in previous studies (Bhogapurapu309

et al., 2021a), the sensitivity of co-pol purity parameter mc towards vege-310

tation growth could be a possible explanation for the better accuracy with311

DpRVIc.

(a) (b)

Figure 7: Correlation plots between observed and retrieved soil moisture for shrubland (a)
using NDVI (b) using DpRVIc.

312

Figure 8 presents the temporal evolution of measured and estimated soil313

moisture from NDVI and DpRVIc over shrublands. The analysis of temporal314

dynamics revealed an underestimation during high soil moisture scenarios315

with NDVI. For example, mean in-situ soil moisture during March 2015 is316

0.217 m3 m−3 (corresponds to the mean value from twenty-seven in-situ sta-317
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tions), and the estimated value with NDVI is 0.161 m3 m−3. In contrast,318

the estimates using DpRVIc are in good agreement with the in-situ measure-319

ments. However, during dry periods, soil moisture estimates from DpRVIc320

are marginally overestimated. This overestimation might be due to the sur-321

face roughness effect on DpRVIc because of sparse vegetation conditions and322

relatively drier canopy. Nevertheless, the estimated soil moisture values for323

all twenty-seven stations are in good agreement with in-situ measurements324

with overall RMSE of 0.048 m3 m−3 in case of DpRVIc.
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Figure 8: Temporal evolution of observed and retrieved soil moisture over shrub land for
27 stations (a) with NDVI (b) DpRVIc, where, Θ: mean observed soil moisture, σΘ : stan-
dard deviation of observed soil moisture, Θ̂: mean retrieved soil moisture, σ

Θ̂
: standard

deviation of retrieved soil moisture.

325

We presented the spatiotemporal soil moisture maps derived using the326

DpRVIc in Figure 9. The maps correspond to each year’s dry and wet pe-327

riods from 2016 to 2019. From the observed in-situ data, the dry periods328

corresponds to late April and early May month of the corresponding year.329
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Figure 9: Soil moisture maps derived using DpRVIc from Sentinel-1 GRD SAR data over
the test site. The dry and wet periods of each year (2016-2019) are shown in rows one and
two.
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According to the Texas Water Development board Reports TWDB (2012),330

rainfall events occur from late May to early June and early September. There-331

fore, from Figure 9 we observe high soil moisture values over the entire study332

area during these periods. Further, these dry and wet trends are also sup-333

ported by the in-situ soil moisture stations (Figures 6 and 8).334

Pedernales River basin spans the study area from east to west at 30.2◦N335

latitude. Croplands dominate either side of the river, and further, due to the336

elevation profile of the terrain, we observe relatively higher soil moisture in337

this area. In contrast, we witness lower soil moisture values in the area at338

higher elevations and slopes (e.g., at 30.3◦N latitude). These observations339

are in good agreement with the in-situ station data. Further, the temporal340

dynamics of estimated soil moisture agree well with precipitation data. The341

correlation and temporal analysis demonstrated that SAR-derived vegetation342

indices could correct vegetation effects when estimating soil moisture. There343

is a good agreement between the in-situ measured and the estimated soil344

moisture for various vegetation conditions.345

5. Conclusion346

This paper proposes removing the vegetation effect to estimate soil mois-347

ture using a change detection approach. The proposed method uses a SAR-348

derived vegetation index (DpRVIc) for Dual-pol Ground Range Detected349

(GRD) SAR data. Furthermore, this study presented a comparative analysis350

with the often-used Normalized Difference Vegetation Index (NDVI). With351

this proposed approach, ancillary sources for vegetation data, such as the352

optical-based NDVI, are not required to estimate soil moisture for vegetated353
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soils. Optical-based methods are also prone to data gaps due to cloud cover354

and saturation of the signal at peak biomass. One should note that as the355

GRD dual-pol modes do not retain the phase information, one cannot utilize356

scattering decomposition techniques to separate the influence of vegetation357

on soil backscatter.358

We evaluated the performance of the proposed technique in estimat-359

ing soil moisture for shrubland and croplands using over four years of data360

from the Texas Soil Observation Network in the United States. The SAR-361

derived DpRVIc achieved a good agreement between station measured and362

estimated soil moisture using Sentinel-1 GRD SAR data. The RMSE val-363

ues are 0.048 m3 m−3 and 0.055 m3 m−3 for shrub and croplands, respectively,364

along with a high Pearson correlation coefficient r ≥ 0.79.365

However, the vegetation structure and water content impact the backscat-366

ter coefficient, which NDVI does not capture. Therefore additional informa-367

tion regarding the structure may improve the soil moisture estimates using368

SAR-derived vegetation indices. Besides, one can enhance the results with369

the availability of high temporal datasets. These results provide new insights370

into using dual-pol GRD SAR data to retrieve soil moisture for vegetated371

soils, an important finding for future missions like NISAR and ROSE-L.372

However, weather events such as rainfall can affect the proposed SAR-based373

vegetation descriptor at the time of image acquisition. The approach de-374

veloped using these C-band data can be transferred and tested for other375

frequency bands, although saturation at high biomass might be expected376

for higher frequencies. In the L-band sensors, such as the one proposed for377

the upcoming NISAR and ROSE-L missions, one could utilize longer wave-378
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lengths to characterize scattering as canopy biomass accumulates. Finally,379

the results could be more robust if a multi-frequency approach is considered,380

such as exploiting high-frequency SAR for vegetation parameter estimation381

and low-frequencies for soil moisture estimation.382

Appendix A. Estimated soil moisture from individual stations383

This appendix presents details of individual sample stations over cropland384

and shrubland using DpRVIc.385

(a) (b)

(c)

Figure A.10: Details of a sample station over cropland (2 12) (a) station location overlaid
on an optical image with a buffer polygon with side length of 250 m (b) scatter plot of
measured and estimated soil moisture (c) temporal variation of measured and estimated
soil moisture
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(a) (b)

(c)

Figure A.11: Details of a sample station over shrubland (2 18) (a) station location overlaid
on an optical image with a buffer polygon with side length of 250 m (b) scatter plot of
measured and estimated soil moisture (c) temporal variation of measured and estimated
soil moisture

Disclosures386

No potential conflict of interest was reported by the authors.387

Acknowledgment388

The authors are grateful to the TxSON science team for providing ground389

truth information. The authors would like to thank the Google Earth Engine390

team for providing the free SAR data processing platform. Authors also ac-391

knowledge the GEO-AWS Earth Observation Cloud Credits Program, which392

supported the computation with Sentinel-1 on AWS cloud platform through393

26



the project: “AWS4AgriSAR-Crop inventory mapping from SAR data on a394

cloud computing platform”, and formed the testbed for processing pipelines.395

Narayanarao Bhogapurapu, and Subhadip Dey would like to acknowledge396

the support of MHRD, Govt. of India, towards their doctoral research. The397

authors are thankful for the overleaf (https://overleaf.com/) team for398

providing the free online latex editing platform.399

References400

Asner, G. P., Scurlock, J. M., A. Hicke, J., 2003. Global synthesis of leaf area401

index observations: implications for ecological and remote sensing studies.402

Global Ecology and Biogeography 12 (3), 191–205.403

Asrar, G., Fuchs, M., Kanemasu, E., Hatfield, J., 1984. Estimating absorbed404

photosynthetic radiation and leaf area index from spectral reflectance in405

wheat 1. Agronomy journal 76 (2), 300–306.406

Attarzadeh, R., Amini, J., Notarnicola, C., Greifeneder, F., 2018. Synergetic407

use of Sentinel-1 and Sentinel-2 data for soil moisture mapping at plot408

scale. Remote Sensing 10 (8), 1285.409

Baghdadi, N., Holah, N., Zribi, M., 2006. Soil moisture estimation using410

multi-incidence and multi-polarization ASAR data. International Journal411

of Remote Sensing 27 (10), 1907–1920.412

Baghdadi, N. N., El Hajj, M., Zribi, M., Fayad, I., 2015. Coupling SAR C-413

band and optical data for soil moisture and leaf area index retrieval over414

irrigated grasslands. IEEE Journal of Selected Topics in Applied Earth415

Observations and Remote Sensing 9 (3), 1229–1243.416

27

https://overleaf.com/


Balenzano, A., Mattia, F., Satalino, G., Davidson, M. W., 2010. Dense tem-417

poral series of C-and L-band SAR data for soil moisture retrieval over418

agricultural crops. IEEE Journal of Selected Topics in Applied Earth Ob-419

servations and Remote Sensing 4 (2), 439–450.420

Balenzano, A., Mattia, F., Satalino, G., Lovergine, F. P., Palmisano, D.,421

Peng, J., Marzahn, P., Wegmüller, U., Cartus, O., Dabrowska-Zielińska,422
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