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Abstract: Vanillin-based lactoside derivatives were synthetized using phase-transfer catalyzed re-
actions from per-O-acetylated lactosyl bromide. The aldehyde group of the vanillin moiety was
then modified to generate a series of related analogs having variable functionalities in the para-
position of the aromatic residue. The corresponding unprotected lactosides, obtained by Zemplén
transesterification, were regioselectively 3’-O-sulfated using tin chemistry activation followed by
treatment with sulfur trioxide-trimethylamine complex (Men3N-SO3). Additional derivatives were
also prepared from the vanillin’s aldehyde using a Knoevenagel reaction to provide extended α,
β-unsaturated carboxylic acid which was next reduced to the saturated counterpart.

Keywords: lactosides; galectins; vanillin; cancer; sulfation; phase transfer catalysis; Knoevenagel-
Doebner reaction

1. Introduction

Cellular communications are frequently governed by molecular interactions involving
cell surface glycoconjugates overlay expressed as glycosaminoglycans (GAGs), glycopro-
teins, and glycolipids. Of particular interest are the family of S-type lectins represented by
galectins (Gal) that are characterized by their carbohydrate recognition domains (CRDs)
having affinity for glycoconjugates with exposed β-D-galactopyranoside residues in com-
mon [1–3]. So far, 15 family members have been identified in mammals. In spite of their
similar characteristic sugar binding recognition patterns, they are distinctly divided into
three categories depending on their molecular architectures. They are classified as: (a)
Prototype dimers (Gal-1, -2, -5, -7, -10, -11, -13, -14, -15); (b) tandem repeat (Gal-4, -6, -8, -9,
-12); and (c) monomeric chimera type capable of oligomerization (Gal-3) [4]. Given that
they are expressed intracellularly together with being present extracellularly by secretion
and that they are critically implicated in a plethora of physiological functions, including
cancer, inflammation, and immune responses, discovery of specific inhibitors has become
of keen therapeutic interest, albeit a major challenge in medicinal chemistry [4–9].

Consequently, the design of highly selective sugar-based inhibitors against each of
the galectins has been the subject of intense research activities. The field is however only
dominated by a few research groups [4–9] amongst which the team of Leffler/Nilsson being
clearly dominating with a number of successful glycomimetics, some of which reaching
clinical phases (thiodigalactosides, TD139, GB1107) [10–13]. Essentially based on β-D-
galactopyranoside/lactoside/N-acetyllactosamine lead scaffolds [14], the incorporation of
pharmacophores have provided the most successful candidates when appended at either
the anomeric position [9,15–22] or on position -3 of the galactopyranosides [10–13] residue
or O-3’ in the case of lactosides [4,23]. Appealingly, introduction of a negative sulfate
group at O-3/O-3’ has also afforded potent ligands owing to the presence of charged amino
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acids within the CRD [15,23–27]. In addition to the above chemical modifications, an
additional and quite successful synthetic strategy has been the discovery that multivalent
galactosides/lactosides in the form of glycodendrimers [28–34], glycopolymers [35,36],
liposomes/dendrimersomes [37–40], and protein conjugate with appended TD139 [41]
could similarly provide gains in both affinity and selectivity. This was predominantly
observed for the chimeric galectin-3 that can oligomerize upon binding to multivalent
receptors due to its collagenous peptide tail [29].

In this paper, we aimed to combine both modifications to a lactopyranoside scaffold by
incorporating aromatic aglycons simultaneously to an O-3’ sulfate group (Figure 1). This
combined choice was dictated by the fact that a few galectin members have been shown
to bind preferentially to sulfated glycans. This was particularly through for Gal-1 [23,24],
-3 [15], -4 [25,26], and -8 [27]. In the latter case, recent modeling and X-ray experiments
demonstrated that the beneficial interactions were due to favorable electrostatic interac-
tions with arginine residues (Arg-45 and Arg-59) [4,27]. Furthermore, even though several
hydrophobic aglycons have been advantageous in the binding events using affinity mea-
surements by ITC, we choose the natural vanillin as aglycon because of its well-established
lack of toxicity, the presence of a large amount of vanillin glucoside (glucovanillin) in
foodstuffs [42], and the well-known antioxidant properties of phenolic glycosides.
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Figure 1. Top panel: Synthetic strategy for simultaneous modifications of lactose at the anomeric position with aromatic
vanillin aglycon together with incorporating an anionic sulfate group at O-3’. Lower panel: Left panel: Predicted Connelly
surface of the Gal-8 N-terminal (PDB 3AP6) with docked compound 12 that was superimposed to the original O-3’-sulfated
lactose. Right panel: Schematic representation of Gal-8 N-terminal illustrating the beta strands and Arg45 and Arg59
(S4 section) are clearly in electrostatic contact with the sulfate group [4,27].
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2. Results and Discussion

Over the years, Phase Transfer Catalysis (PTC) has emerged as an efficient and practical
methodology for stereoselective glycosidation [43,44] and related anomeric substitutions.
Under our previously optimized conditions for phenolic glycosides (TBAHS, EtOAc, 1M
Na2CO3), we treated peracetylated lactosyl bromide 1 [43] with vanillin derivatives 2, 3,
and 4 to afford lactosides 5, 7, and 8 in 80, 66, and 58% yields, respectively (Scheme 1).
The major by-product of the reactions was the usual 2-acetoxy-lactal (1H-NMR of H1 at δ
6.61 ppm) resulting from the HBr SN2 elimination process [43,44]. The disappearance of
the anomeric doublet of the bromide 1 at δ 6.52 ppm with a J1,2 coupling constant of 4.0 Hz
was replaced by a new doublet at δ 5.10 ppm with a distinctive trans coupling constant of
J1,2 of 7.4 Hz in compound 5. The same held for methyl ester 7 (H1: δ 5.05, J1,2 = 7.4 Hz)
and tert-butyl ester 8 (H1: δ 5.03, J1,2 = 7.5 Hz). As previously demonstrated [42–44], these
PTC conditions afforded complete stereoselectivity in favor of anomeric inversion from the
α-bromide 1 to β-glycosides 5, 7, and 8 exclusively. Since we also wanted to explore the role
played by the carboxylic function in the para-position of the vanillin residue, coupled to the
fact that we could not hydrolyze the acetate protecting groups in derivative 7 and 8 without
losing the esters (vide infra), we opted for the oxidation of the native vanillin’s aldehyde in 5
using permanganate treatment (KMnO4, H2O, 80 ◦C, 20 min) which afforded acid 6 in 52%
yield, showing disappearance of the aldehyde proton at δ 9.91 ppm. All compounds were
fully characterized by NMR spectroscopy (1H, 13C), mass spectrometry, and the datasets
agreed with literature data when known (see experimental section).
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Scheme 1. Phase Transfer Catalysis (PTC)-catalyzed synthetic steps leading to vanillin-based lactosides 5–8 using peracety-
lated lactosyl bromide 1 and vanillin derivatives 2–4.

The peracetylated intermediates 5, 7, 8 were next de-O-acetylated under the classical
Zemplén conditions (NaOMe, MeOH) in essentially quantitative yields in all cases to give
free lactosides 9, 13, and 15 (Scheme 2). Following sequential treatment of the unprotected
lactosides with dibutyltin oxide (Bu2SnO, DMF, PhMe, 90◦ C, 6h) and regioselective sul-
fation [45] using sulfur trioxide-trimethylamine complex (Me3N.SO3), the 3’-O-sulfated
lactosides 10, 14, 16 (Scheme 2) were obtained in good to excellent yields (81%-quantitative).
The regioselectivity of this transformation is well-known and has been explained through
the formation of a cyclic stannylene complex at the unique cis-3’,4’-dihydroxyl groups of
the galactoside moiety [46,47]. The aldehyde functions of vanillin lactoside 9 and 3’-O-
sulfated lactoside 10 were reduced using NaBH4 in MeOH (rt, 3h) to give vanillin lactoside
analogs 11 and 12 in excellent 95% and 88% yields, respectively. The position of the sulfate
groups were readily confirmed on the basis of the H-3’ downfield shift from ~3.66 ppm to
~4.28 ppm (SI) together with the characteristic 13C-NMR chemical shift displacement of the
3’-carbon, which usually appears ~7 ppm downfield (~δ 80 ppm) from the unsubstituted
precursors at ~δ 73 ppm [47]. Dept 135 13C-NMR analysis was required to ensure that
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the regioselective sulfation was unequivocally performed at the C-3’ position in order
to show the absence of signals attributed to C-6 and C-6’s modifications (usually at δ
59–62 ppm [47]. NMR COSY and HSQC experiments were also used to unambiguously
correlate the sulfation process and regioselectivity.
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Scheme 2. Tin acetal catalyzed regioselective 3’-O-sulfation of vanillin derivatives 5–8.

A Knoevenagel-Doebner condensation was also used (malonic acid, C5H5N, Piperi-
dine, 95◦ C, 3h) for the synthesis of two carbons homologated vanillin lactosides 17–20
(Scheme 3), analogously used before for a galactoside derivative [48]. Thus, aldehyde 5
provided peracetylated α, β-unsaturated analog 17 in 65% yield, which upon catalytic
hydrogenation (H2, Pd-C, THF-MeOH, rt, 5 h) gave the expected α, β-saturated lactoside
19 essentially quantitatively.
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Scheme 3. Knoevenagel–Doebner condensation reaction for the synthesis of α, β-unsaturated lactosides 17–20.

The 1H-NMR spectra of 17 clearly showed the two trans proton signals corresponding
to the unsaturated protons H-14 and H-13 at δ 6.33 and 7.68 ppm with a typical coupling
constant J13-14 of 15.9 Hz. The palladium-catalyzed reduction leading to 19 showed the
disappearance of these two proton signals and the appearance of new H-14 and H-13
protons at 2.62 and 2.89 ppm, respectively (see SI). Zemplén deprotection was used to
afford the de-O-acetylated lactosides 18 and 20 (Scheme 3).

3. Materials and Methods
3.1. General Synthetic Methods

All reactions in organic medium were performed in standard oven dried glassware
under an inert atmosphere of nitrogen using freshly distilled solvents. Solvents and



Molecules 2021, 26, 115 5 of 12

reagents were deoxygenated, when necessary by purging with nitrogen. All reagents
were used as supplied without prior purification unless otherwise stated, and obtained
from Sigma-Aldrich Chemical Co. Ltd.(St. Louis, MO, USA) Reactions were monitored
by analytical thin-layer chromatography (TLC) using silica gel 60 F254 precoated plates
(E. Merck (Darmstadt, Germany)) and compounds were visualized with a 254 nm UV lamp,
a mixture of iodine/silica gel and/or mixture of ceric ammonium molybdate solution
(100 mL H2SO4, 900 mL H2O, 25 g (NH4)6Mo7O24H2O, 10 g Ce(SO4)2), and subsequent
spots development by gentle warming with a heat-gun. Purifications were performed by
silica gel flash column chromatography using Silica (60 Å, 40–63 µm) with the indicated
eluent. NMR spectroscopy was used to record 1H-NMR and 13C-NMR spectra at 300 or
600 MHz and at 75 or 150 MHz, respectively, on Bruker (300 MHz) and Bruker Avance
III HD 600 MHz spectrometers (Billerica, MA, USA). Proton and carbon chemical shifts
(δ) are reported in ppm relative to the chemical shift of residual CHCl3, which was set at
7.26 ppm (1H) and 77.16 ppm (13C). Coupling constants (J) are reported in Hertz (Hz), and
the following abbreviations are used for peak multiplicities: Singlet (s), doublet (d), doublet
of doublets (dd), doublet of doublet with equal coupling constants (tap), triplet (t), multiplet
(m). Analysis and assignments were made using COSY (Correlated SpectroscopY) and
HSQC (Heteronuclear Single Quantum Coherence) experiments. High-resolution mass
spectrometry (HRMS) data were measured with a LC-MS-TOF (Liquid Chromatography-
Mass Spectrometry-Time of Flight; Agilent Technologies) in positive and/or negative
electrospray mode(s) at the analytical platform of UQAM.

3.2. General Synthetic Procedure A: Phase-Transfer Catalysis (PTC) Reaction

PTC reactions were performed following the previously established protocols [42–46] or
under the slightly modified procedure as follows: To a solution of peracetylated lactosyl
bromide 1 [49] (1 equiv.) in ethyl acetate (6 mL) was added the corresponding aromatic
alcohol (2.5 equiv.), tetrabutylammonium hydrogen sulfate (TBAHS, 1.1 equiv.) and 1M
Na2CO3 (1.3 equiv.). The mixture was stirred at room temperature for 2h30 min and then
washed successively with water and brine. The organic layer was dried over Na2SO4
and concentrated under reduced pressure. Purification by silica gel column chromatogra-
phy (Hex/AcOEt) afforded the corresponding compounds 5, 7, and 8 as white powders
(yield 58–80%).

3.3. General Synthetic Procedure B: Zemplén Transesterification Reaction

To a solution of lactosides 5, 6, 7, 8, 17 and 19 in dry methanol was added a solution
of sodium methoxide (1 M in MeOH, 0.1 equiv.). After stirring at room temperature for
1–2 h, the reaction was completed and then neutralized by addition of ion-exchange resin
(Amberlite IR 120 H+). The solution was filtered and evaporated in vacuo to afford the
de-O-acetylated lactosides as white powders (yield 95%-quant.)

3.4. General Synthetic Procedure C: Preparation of 3’-O-sulfated Lactosides

A mixture of deacetylated lactosides (1 equiv.) and dibutyltin oxide (Bu2SnO, 1.15 equiv.)
in DMF/toluene (6 mL/3 mL) was stirred at 90 ◦C for 6 h. The solution was then concen-
trated and sulfur trioxide-trimethylamine complex (Me3N.SO3) (1.3 equiv.) and dry DMF
(6 mL) were added. After stirring at room temperature for 17 h, the reaction was quenched
with water and evaporated under vacuum. The residue was purified through a column of
DOWEX Marathon C (Na+) and eluted with H2O to obtain the pure 3’-O-sulfated lactosides
as white powder after lyophilization (yields 82%-quantitative).

3.5. 2,3,4,6-Tetra-O-acetyl-β-D-galactopyranosyl-(1-4)-2,3,6-tri-O-acetyl-α-D-glucopyranosyl
bromide (1) (Acetobromolactose)

To a solution of per-O-acetylated lactose [49] (14.2 g, 21 mmoL) in anhydrous CH2Cl2
(63 mL) was added hydrobromic acid (33% in AcOH, 47.9 mL). The reaction mixture was
stirred at room temperature for 1 h, then neutralized with saturated aqueous NaHCO3
and washed with brine. The organic layer was dried over Na2SO4 and concentrated under
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reduced pressure to give lactosyl bromide 1 (13.6 g, 93%) as a white solid. Its spectroscopic
data agreed well with those of the literature [49].

3.6. 3-Methoxy-4-(2,3,6,2’,3’,4’,6’-hepta-O-acetyl-β-D-lactopyranosyloxy)benzaldehyde (5)
(4-formyl-2-methoxyphenyl 2,3,6,2’,3’,4’,6’-hepta-O-acetyl-β-D-lactopyranoside)

Following the general procedure A, compound 5 was obtained as a white powder;
yield: 176 mg (80%). 1H-NMR (300 MHz, CDCl3): δ (ppm) 9.91 (s, 1H, CHO), 7.38–7.46
(m, 2H, Harom), 7.19 (d, 1H, J = 8.0 Hz,Harom), 5.38 (d,1H, J = 2.8 Hz, H-4’), 5.28 (dd, 2H,
J = 13.9,J = 8.0 Hz, H-3 et H-2), 5.17 (dd, 1H, J = 14.7, J = 6.9 Hz, H-2’), 5.10 (d, 1H, J = 7.4
Hz, H-1), 4.99 (dd,1H,J = 10.4, J = 3.4 Hz, H-3’), 4.52–4.57 (m, 2H, H-1’, H-6a), 4.04–4.24
(m, 3H, H-6b, H-6’ab), 3.91–3.96 (m, 2H, H-4 et H-5’), 3.90 (s, 3H, OMe), 3.76–3.81 (m, 1H,
H-5), 1.94–2.22 (21H, 7OAc). 13C-NMR (75 MHz, CDCl3): (75 MHz, CDCl3): δ (ppm) 190.9
(CHO), 170.3, 170.2, 170.1, 170.0, 169.7, 169.5, 169.0 (CO), 151.1, 150.8, 132.6, 125.3, 117.7,
110.6 (Carom), 101.1 (C-1’), 99.3 (C-1), 76.0 (C-4), 72.9 (C-5), 72.4 (C-3), 71.2 (C-2), 70.9 (C-3’),
70.7 (C-5’), 69.0 (C-2’), 66.5 (C-4’), 61.8 (C-6’), 60.8 (C-6), 56.0 (OMe), 20.8, 20.7, 20.6, 20.5.

3.7. 3-Methoxy-4-(2,3,6,2’,3’,4’,6’-hepta-O-acetyl-β-D-lactopyranosyloxy)benzoic Acid (6)

A solution of compound 5 (50 mg, 0.063 mmol) in 1 mL of water and in the presence
of KMnO4 (12.04 mg, 0.076 mmol), which was added drip under agitation and refluxed of
70–80 ◦C for about 20 min. The residue is washed with hot water, filtered, concentrated,
and then acidified to give the compound 6 was obtained as a white powder; yield: 26.5
mg (52%), 1H-NMR (300 MHz, CDCl3): δ (ppm) 7.67 (d, 1H, J = 8.4 Hz, Harom), 7.61 (s, 1H,
Harom), 7.19 (d, 1H, J = 8.0 Hz, Harom), 5.36 (d, 1H, J = 2.8 Hz, H-4’), 5.26 (ddd,2H, J = 13.9,
J = 8.0 Hz, H-3 et H-2), 5.12 (dd, 1H, J = 10.3, J = 7.9 Hz, H-2’), 5.05 (d, 1H, J = 7.3 Hz, H-1),
4.97 (dd,1H,J = 10.4, J = 3.4 Hz, H-3’), 4.50–4.54 (m, 2H, H-1’,H-6a), 4.03–4.21 (m, 3H, H-6b,
H-6’ab), 3.89–3.91 (m, 2H, H-4 et H-5’), 3.87 (s, 3H, OMe), 3.69–3.81 (m, 1H, H-5), 1.81–2.34
(21H, 7OAc). 13C-NMR (75 MHz, CDCl3): (75 MHz, CDCl3): 170.4, 170.3, 170.1, 170.1,
169.8, 169.6 (CO), 169.1 (COOH), 150.5, 150.0, 125.3, 123.7, 117.7, 113.8 (Carom), 101.1 (C-1’),
99.4 (C-1), 76.1 (C-4), 72.9 (C-5), 72.4 (C-3), 71.3 (C-2), 70.9 (C-3’), 70.7(C-5’), 69.1(C-2’), 66.6
(C-4’), 61.8 (C-6’), 60.8 (C-6), 56.1 (OMe), 20.8, 20.6, 20.5.

3.8. Methyl 3-methoxy-4-(2,3,6,2’,3’,4’,6’-hepta-O-acetyl-β-D-lactopyranosyloxy)benzoate (7)

Following the general procedure A, compound 7 was obtained as a white powder;
yield: 573 mg (66 %): m.p. 85–90 ◦C; [α] 20

D
= −33.0 (c 0.25, DCM). 1H-NMR (300 MHz,

CDCl3): δ ppm 7.76–7.50 (m, 2H, Ar), 7.10 (d, 1H, J = 8.3 Hz, Ar), 5.38–5.37 (m, 1H, H-
4’), 5.37–5.28 (m, 1H, H-3), 5.25–5.20 (m, 1H, H-2), 5.17–5.12 (m, 1H, H-2’), 5.05 (d, 1H,
J = 7.4 Hz, H-1), 4.99–4.96 (m, 1H, H-3’), 4.52–4.51 (m, 2H, H-1’, 6a), 4.20–4.08 (m, 3H, H-6b,
6’ab), 3.94–3.88 (m, 2H, H-4, 5’), 3.92 (s, 3H, CO2Me), 3.88 (s, 3H, OMe), 3.80–3.75 (m, 1H,
H-5), 2.18 (s, 3H), 2.18–1.99 (21H, 7OAc). 13C-NMR (75 MHz, CDCl3): δ (ppm) 170.3, 170.2,
170.1, 170.0, 169.7, 169.5, 169.1, 166.5, 150.0, 149.8, 126.0, 122.9, 117.9, 113.4, 101.1 (C-1’), 99.6
(C-1), 76.1 (C-4), 72.9 (C-5), 72.4 (C-3), 71.3 (C-2), 70.9 (C-3’), 70.7 (C-5’), 69.0 (C-2’), 66.6
(C-4’), 61.9 (C-6), 60.8 (C-6’), 56.1 (OMe), 52.2 (CO2Me), 20.8, 20.6, 20.5. ESI-HRMS: m/z
calcd for C35H44O21, 800.2375; found 818.2675 [M + NH4]+.

3.9. Tert-butyl 3-methoxy-4-(2,3,6,2’,3’,4’,6’-hepta-O-acetyl-β-D-lactopyranosyloxy)benzoate (8)

Following the general procedure A, compound 8 was obtained as a white powder;
yield: 771 mg (58%): m.p. 98 ◦C; [α] 20

D
= −21.5 (c 0.25, DCM). 1H-NMR (300 MHz,

CDCl3): 7.59–7.51 (m, 2H, Harom), 7.19 (d, 1H, J = 8.0 Hz,Harom),5.38 (d, 1H, J = 2.7 Hz,
H-4’), 5.31 (dd, 1H, J = 9.0Hz, H-3), 5.22 (dd, 1H, J = 10.4, J =7.8 Hz, H-2), 5.15 (dd, 1H,
J = 10.4, J = 7.8 Hz, H-2’), 5.03 (d, 1H, J = 7.5 Hz, H-1), 4.99 (dd, 1H,J = 10.4, J = 3.4 Hz,
H-3’), 4.50–4.54 (m, 2H, H-1’,H-6a),4.24–4.05 (m, 3H, H-6b, H-6’ab), 3.88–3.94 (m, 2H, H-4 et
H-5’), 3.87 (s, 3H, OMe), 3.81–3.69 (m, 1H, H-5), 2.21–1.94 (21H, 7OAc), 1.60 (s, 9H, 3CH3).
13C-NMR (75 MHz, CDCl3): δ (ppm) 170. 170.2, 170.1, 170.0, 169.7, 169.5, 169.0, 165.2, 149.9,
149.4, 128.0, 122.6, 118.0, 113.4, 101.1 (C-1’), 99.8 (C-1), 81.1 (C-CH3), 76.1 (C-4), 72.9 (C-5),
72.5 (C-3), 71.3 (C-2), 70.9 (C-3’), 70.7 (C-5’), 69.0 (C-2’), 66.6 (C-4’), 61.8 (C-6), 60.8 (C-6’),
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56.0 (OMe), 28.1 (3CH3), 20.7, 20.6, 20.5. ESI-HRMS: m/z calcd for C38H50O21: 842.2845;
found 865.2652 [M + Na+].

3.10. 3-Methoxy-4-(β-D-lactopyranosyloxy)benzaldehyde (9), (4-Formyl-2-methoxyphenyl
β-D-lactopyranoside)

Following the general procedure B, compound 9 was obtained as a white powder;
yield: (232 mg, 92 %); m.p. 215–220 ◦C. 1H-NMR (300 MHz, D2O): δ (ppm) 9.73 (s, 1H,
CHO), 7.55 (d, 1H, J = 6.7 Hz, Harom), 7.50 (s, 1H, Harom), 7.26 (d, 1H, J = 8.3 Hz, Harom),
5.25 (d,1H, J = 7.5 Hz, H-1), 4.44 (d, 1H, J = 7.6 Hz, H-1’), 3.92–3.96(m, 1H, H-4’), 3.89 (s, 3H,
OMe), 3.62–2.84 (m, 9H, H-5’, H-5, H-2, H-3, H-6ab, H-6’ab et H-4), 3.61 (d, 1H, J = 3.1 Hz,
H-3’), 3.47 (dd, 1H, J = 9.0 Hz, H-2’). 13C-NMR (75 MHz, DMSO-d6): δ(ppm) 192.0 (CHO),
152.0, 149.7, 131.0, 125.8, 114.8, 110.8 (Carom), 104.3 (C-1’), 99.2 (C-1), 80.4 (C-4), 76.0 (C-5),
75.4 (C-5’), 75.4 (C-2’), 73.7 (C-3’), 73.2 (C-3), 71.0 (C-2), 68.6 (C-4’), 60.9 (C-6’), 60.4 (C-6),
56.0 (OMe).

3.11. Methyl-3-methoxy-4-(3’-O-sulfo-β-D-lactopyranosyloxy)benzaldehyde, Sodium Salt (10)

Following the general procedure C, compound 10 was obtained as a white powder;
yield: (132 mg, quant.): m.p. 218–232 ◦C; [α]20

D
= −60.2 (c 0.25, MeOH). 1H-NMR (300 MHz,

D2O): δ (ppm) 9.66 (s, 1H, CHO), 7.47 (d, 2H, J = 8.4 Hz, Harom), 7.40 (t, 1H, J = 5.4 Hz,
Harom), 7.19 (d, 1H, J = 8.7 Hz, Harom), 5.19 (d, 1H, J = 7.9 Hz, H-1’), 4.51 (d, 1H, J = 7.9 Hz,
H-1’) 4.26 (d, 2H, J = 18.4, 8.4, 3.2 Hz, H-3’et H-4’), 3.89–3.98 (m, 2H, H-6), 3.80–3.85 (m, 4H,
OMe, H-6’), 3.68–3.78 (m, 5H, H-2’,H-4, H-3 et H-5, H-5’), 3.58–3.68 (m, 1H, H-2). 13C-NMR
(75 MHz, DMSO-d6): δ (ppm) 194.7 (CHO), 151.0, 148.8, 130.9, 126.7, 114.7, 111.2 (Carom),
102.5 (C-1’), 99.3 (C-1), 79.9 (C-3’), 77.6 (C-4), 75.0, 74.9 et 74.0 (C-3,5,5’), 72.3 (C-2), 66.7
(C-2’), 69.0 (C-4’), 60.9 (C-6’), 59.7 (C-6), 55.7 (OMe). ESI-HRMS: m/z calcd for C20H28O16S:
556.1093; found 579.0985 [M + Na+].

3.12. 3-Methoxy-4-(β-D-lactopyranosyloxy)benzylic alcohol (11)
(4-hydroxymethyl-2-methoxyphenyl β-D-lactopyranoside)

The reduction of compound 9 by NaBH4 (1.2 equiv.) in methanol by agitation at room
temperature; compound 11 was obtained as a white powder (46 mg, 95%): m.p. 202 ◦C;
[α]20

D = −71.5 (c 0.25, MeOH). 1H-NMR (300 MHz, D2O): δ (ppm) 7.04 (d, 1H, J = 8.0 Hz,
Harom), 6.98 (s, 1H, Harom), 6.86 (d, 1H, J = 8.2 Hz, Harom), 5.03 (d, 1H, J = 7.5 Hz, H-1), 4.47
(s, 2H, CH2OH), 4.37(d, 1H, J = 7.6 Hz, H-1’), 3.82–3.87 (m, 1H, H-5 et H-2), 3.77 (s, 3H,
OMe), 3.75–3.57 (m, 8H, H-5’, H-4’, H-2’, H-3, H-6ab, H-6’ab et), 3.55 (d, 1H, J = 2.6 Hz,
H-3’), 3.47 (dd, 1H, J = 9.0 Hz, H-4). 13C-NMR (75 MHz, D2O): δ (ppm) 152.0, 148.6, 144.7,
135.8, 120.2, 116.0, 112.0 (Carom), 102.9 (C-1’), 100.2 (C-1), 77.9 (C-4), 75.3 (C-5), 74.8 (C-5’),
74.1 (C-3’), 72.4 (C-3 et C-2’), 70.9 (C-2), 68.5 (CH2), 63.4 (C-4’), 61.0 (C-6’), 59.7 (C-6), 55.7
(OMe). ESI-HRMS: m/z calcd for C20H30O13: 478.1686; found 501.1562 [M + Na+].

3.13. Methyl-3-methoxy-4-(3’-O-sulfo-β-D-lactopyranosyloxy)benzylic Alcohol, Sodium Salt (12)

The reduction of compound 10 by NaBH4 (1.2 equiv.) in methanol gave the compound
12 after 3 h of agitation at room temperature; compound 12 was obtained as a white powder
(48 mg, 88%): m.p. 264 ◦C. 1H-NMR (300 MHz, D2O): δ (ppm) 7.09 (d, 2H, J = 8.2 Hz,
Harom), 7.02 (s, 1H, Harom), 6.91 (d, 1H, J = 8.2 Hz, Harom), 5.07(d, 1H, J = 7.3 Hz, H-1’),4.51(s,
2H, CH2-OH), 4.42 (d, 1H, J = 7.9 Hz, H-1’) 4.15 (d, 1H, J = 5.6 Hz, H-3’), 3.86–3.92 (m, 2H,
H-6ab, et H-6’b), 3.81 (sl, 4H, OMe, H-6’a), 3.49–3.74 (m, 8H, H-2’,H-4, H-4’,H-3 et H-5,
H-5’, H-2). ESI-HRMS: m/z calcd for C20H30O16S: 558.1255; found 557.1196 [M−H]-.

3.14. Methyl 3-methoxy-4-(β-D-lactopyranosyloxy)benzoate (13)

Following the general procedure B, compound 13 was obtained as a white powder;
yield: 283 mg (quant.): m.p. 85–90 ◦C; Rf 0.26 (CH2Cl2/MeOH: 75/25). 1H-NMR (300 MHz,
D2O+DMSO-d6): δ 7.76–7.74 (m, 2H, Ar), 7.31 (d, 1H, J = 9.2 Hz, Ar), 5.32 (d, 1H, J = 7.7 Hz,
H-1), 4.53 (d, 1H, J = 7.4 Hz, H-1’), 4.07–3.90 (m, 9H, H-4’,6’,OMe and CO2Me), 3.90–3.69
(m, 6H, H-3,4,5,5’,6), 3.66 (m, 2H, H-2,3’), 3.55 (m, 1H, H-2’). 13C-NMR (75 MHz, D2O +
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DMSO-d6): δ 157.3 (Cq Ar), 150.2 (Cq Ar), 148.5 (Cq Ar), 123.7, 114.8, 112.8, 103.4 (C-1’),
99.3 (C-1), 78.8, 75.6, 75.1, and 74.5 (C-3,4,5,5’), 72.9 (C-3’), 72.7 (C-2), 70.9 (C-2’), 68.5 (C-4’),
61.0 (C-6’), 60.0 (C-6), 56.1 (OMe), 52.7 (CO2Me). ESI-HRMS: m/z calcd for C21H30O14,
506.1636; found 529.1521 [M + Na]+.

3.15. Methyl 3-methoxy-4-(3’-O-sulfo-β-D-lactopyranosyloxy)benzoate, Sodium Salt (14)

Following the general procedure C, compound 14 was obtained as a white powder;
yield: 45 mg (81%): m.p. 244–252 ◦C; [α]D-58.8 (c 0.25, MeOH); Rf 0.12 (CH2Cl2/MeOH:
75/25). 1H-NMR (300 MHz, MeOD): δ 7.65 (m, 2H, Ar), 7.26 (d, 1H, Ar), 5.13 (d, 1H,
J = 7.7 Hz, H-1), 4.56 (d, 1H, J = 7.8 Hz, H-1’), 4.37–4.18 (m, 2H, H-3’,4’), 3.98–3.87 (m, 8H,
H-6, OMe and CO2Me), 3.85–3.77 (m, 2H, H-6’), 3.75 (m, 1H, H-2’), 3.73–3.71 (m, 1H, H-4),
3.70–3.61 (m, 3H, H-3,5,5’), 3.61–3.57 (m, 1H, H-2). 13C-NMR (75 MHz, MeOD): δ 156.8
(Cq Ar), 150.6 (Cq Ar), 149.1 (Cq Ar), 123.1, 115.0, 112.7, 103.5 (C-1’), 100.2 (C-1), 80.3 (C-3’),
79.0 (C-4), 75.4, and 75.3 and 74.7 (C-3,5,5’), 73.0 (C-2), 69.5 (C-2’), 67.1 (C-4’), 61.0 (C-6’),
60.1 (C-6), 55.3 (OMe), 51.2 (CO2Me). ESI-HRMS: m/z calcd for C21H30O17S, 586.1204;
found 585.1152 [M − H]-.

3.16. Tert-butyl 3-methoxy-4-(β-D-lactopyranosyloxy)benzoate (15)

Following the general procedure B, compound 15 was obtained as a white powder;
yield: 122 mg (92 %): m.p. 206.3 ◦C; [α]20

D
= −66.0 (c 0.25, MeOH). 1H-NMR (300 MHz,

CD3OD-d4): δ (ppm) 7.52–7.62 (m, 2H, HArom), 7.19 (d, 1H, J = 8.3 Hz,HArom), 5.09 (d, 1H,
J = 7.2 Hz, H-1), 4.42 (d, 1H, J = 7.4 Hz, H-1’), 3.90 (sl, 4H, H-3’, et OMe), 3.49–3.85 (m, 11H,
H-2, 2’, 3, 4, 4’, 5, 5’,6, 6’), 1.60 (s, 9H, 3CH3); 13C-NMR (75 MHz, CD3OD-d4): δ (ppm)
166.0( CO-C(CH3), 150.1, 148.7, 125.8, 123.1, 114.7, 112.5, 103.4 (C-1’), 100.1 (C-1), 81.3
(C-CH3), 78.4, 75.6, 75.2, 74.6 (C-3,4,5,5’), 73.2 (C-3’), 72.8 (C-2), 71.1 (C-2’), 68.8 (C-4’), 61.1
(C-6’), 60.0 (C-6), 55.4 (OMe), 27.1 (CH3); ESI-HRMS: m/z calcd for C24H36O14: 548.2105;
found 571.1992 [M + Na+].

3.17. Tert-butyl 3-methoxy-4-(3’-O-sulfo-β-D-lactopyranosyloxy)benzoate, Sodium Salt (16)

Following the general procedure C, compound 16 was obtained as a white powder;
yield: 50 mg (84%): m.p. 218 ◦C; [α]20

D = −104.8 (c 0.25, MeOH). 1H-NMR (300 MHz,
D2O): δ (ppm) 7.34 (d, 1H, J = 9.0 Hz, Harom), 7.19 (s, 1H, Harom), 6.94 (d, 1H,J = 8.8 Hz,
Harom), 5.00 (d, 1H, J = 7.6 Hz, H-1’), 4.54 (d, 1H, J = 7.7 Hz, H-1’) 4.28 (ddd, 2H, J = 22.6,
14.7, 4.7 Hz,H-3’et H-4’), 3.78–4.02 (m, 3H, H-6 et H-5), 3.68–3.78 (m, 7H, OMe, H-6’, H-
2’,H-4), 3.54–3.68 (m, 3H, H-2, H-3 et H-5’), 1.44 (s, 9H, 3CH3). 13C-NMR (75 MHz, D2O):
δ (ppm) 166.7 (COO(CH3)3), 149.3, 147.9, 125.8, 123.4, 114.5, 112.5 (Carom), 102.6 (C-1’),
99.9 (C-1), 80.1 (C-3’), 78.0 (C-4), 74.1, 74.9, 74.1 (C-3, 5, 5’), 72.41 (C-2), 66.87 (C-2’), 69.13
(C-4’),60.96 (C-6’), 59.96 (C-6), 49.15 (C-(CH3)3), 27.49 (CH3). ESI-HRMS (neg.): m/z calcd
for C24H36O17S: 628.1673; found 627.1611 [M − H]-.

3.18. 4-E-[(2-Carboxy)ethenyl]-2-methoxyphenyl
2,3,6,2’,3’,4’,6’-hepta-O-acetyl-β-D-lactopyranoside (17)

A solution of 2 (50 mg, 0.063 mmol), malonic acid (40 mg, 0.381 mmol) in mixture
of pyridine (0.2 mL) and piperidine (0.01mL) was stirred at 95 ◦C. After 3 h, the reaction
was completed and the mixture was cooled and acidified to PH 1–2 by slow addition of
6M aqueous HCl. The organic phase was extracted twice with dichloromethane, then
washed with water to neutralised pH 7 and dried with sodium sulfate. The residue was
purified by silica gel column chromatography (MeOH/DCM: 1/9) afforded the corre-
sponding compound 17 as pale-yellow powder, yield: 256 mg (65%): m.p. 120–125 ◦C;
[α]20

D = −20.7 (c 0.25, DCM). 1H-NMR (300 MHz, CDCl3): δ (ppm) 7.68 (d, 1H, J = 15.9 Hz,
Ha), 7.06 (s, 3H, 3Harom), 6.33 (d, 1H, J = 15.9 Hz,Hb), 5.34 (d,1H, J = 3.0 Hz, H-4’), 5.19–5.30
(m,2H, H-3 et H-2), 5.08–5.15 (m, 1H, H-2’), 4.90–5.01 (m, 2H, H-1et H-3’), 4.49–4.52 (m,
2H, H-1’,H-6a), 4.00–4.21 (m, 3H, H-6b, H-6’ab), 3.85–3.91 (m, 2H, H-4 et H-5’), 3.83 (s, 3H,
OMe), 3.65–3.77 (m, 1H, H-5), 1.90–2.20 (21H, 7OAc). 13C-NMR (75 MHz, CDCl3): δ (ppm)
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171.7 (COOH), 170.4, 170.3, 170.1, 170.1, 169.8, 169.6, 169.1 (CO), 150.6, 148.1, 130.4, 122.0,
119.0, 111.4 (Carom), 146.2 (C-Ha), 116.5 (C-Hb), 101.1 (C-1’), 99.8 (C-1), 76.1 (C-4), 72.9 (C-5),
72.5(C-3), 71.3 (C-2), 70.9 (C-3’), 70.7 (C-5’), 69.0 (C-2’), 66.6 (C-4’), 61.8 (C-6’), 60.8 (C-6),
56.0 (OMe), 20.8, 20.6, 20.5. ESI-HRMS: m/z calcd for C36H44O21: 812.2375; found 835.2267
[M + Na+].

3.19. 4-E-[(2-Carboxy)ethenyl]-2-methoxyphenyl β-D-lactopyranoside (18)

Following the general procedure B, compound 18 was obtained as a white powder;
yield: 95 mg (quant.): m.p. 190–206 ◦C; [α]20

D = −201.5 (c 0.25, MeOH); 1H-NMR (300 MHz,
D2O): δ (ppm) 7.22 (d, 1H, J = 16.2 Hz, Ha), 7.18 (s, 1H, Harom), 7.06 (dd, 2H, J = 16.8,
J = 8.5 Hz, 2Harom), 6.34 (d, 1H, J = 16.0 Hz,Hb), 5.03 (d, 1H, J = 7.5 Hz, H-1), 4.37 (d, 1H,
J = 7.5 Hz, H-1’), 3.80–3.88 (m, 5H, H-5, H-2, OMe), 3.78–3.53 (m, 9H, H-5’, H-4’, H-3, H-6ab,
H-6’ab, H-2’et H-3’), 3.46 (dd, 1H, J = 9.0 Hz, H-4). 13C-NMR (75 MHz, D2O): δ (ppm)
175.70 (COOH), 148.6, 146.3, 130.6, 123.2, 121.6, 111.2 (Carom), 140.2 (C-Ha), 115.6 (C-Hb)
102.9(C-1’), 99.9 (C-1), 77.8 (C-4), 75.3 (C-5), 74.9 (C-3), 74.0 (C-2), 72.4 (C-3’ et C-2’), 70.9
(C-5’), 68.5 (C-4’), 61.0 (C-6’), 59.8 (C-6), 56.8 (OMe), 20.8, 20.6, 20.5. ESI-HRMS: m/z calcd
for C22H30O14: 518.1636; found 541.1522 [M + Na+].

3.20. 4-(2-Carboxyethyl)-2-methoxyphenyl 2, 3, 6, 2’,3’,4’,6’-hepta-O-acetyl-β-D-lactopyranoside (19)

To a solution of 17 (200 mg, 0.246 mmol) in THF/MeOH (4/2mL), Pd/C (50 mg)
was added under hydrogen atmosphere and stirred for 5 h. The catalyst was removed
by filtration through celite and the solvent evaporated under reduced to afford a pale-
yellow powder; yield: 200 mg (99%): m.p. 101 ◦C; [α]20

D = −18.1 (c 0.25, DCM); 1H-NMR
(300 MHz, CDCl3): δ (ppm) 6.99 (d, 1H, J = 8.1 Hz, Harom), 6.74 (d, 1H, J = 1.6 Hz,Harom),
6.69 (dd, 1H, J = 8.2, J = 1.7 Hz,Harom), 5.35 (d, 1H, J = 2.9 Hz, H-4’), 5.27 (t, 1H, H-3),
5.04–5.21 (m, 2H, H-2 et H-2’), 4.97 (dd, 1H, J = 10.4, J = 3.4 Hz, H-1), 4.89 (d, 1H, J = 7.7 Hz,
H-3’), 4.47–4.53 (m, 2H, H-1’,H-6a), 4.00–4.21 (m, 3H, H-6b, H-6’ab), 3.83–3.95 (m, 2H, H-4,
H-5’), 3.77 (s, 3H, OMe), 3.61–3.72 (m, 1H, H-5), 2.90 (t, 2H, J = 7.6 Hz, CH2a), 2.64 (t, 2H, J =
7.7 Hz, CH2b), 1.90–2.20 (21H, 7OAc). 13C-NMR (75 MHz, CDCl3): δ (ppm) 177.8 (COOH),
170.4, 170.1, 170.0, 169.8, 169.7, 169.1 (CO), 150.5, 144.5, 137.1, 120.2, 120.0, 112.9 (Carom),
101.0 (C-1’), 100.5 (C-1), 76.2 (C-4), 72.7 (C-5), 72.6 (C-3), 71.5 (C-2), 70.9 (C-3’), 70.7 (C-5’),
69.1 (C-2’), 66.6 (C-4’), 61.9 (C-6’), 60.8 (C-6), 56.0 (OMe), 30.6 (C-Ha), 36.0 (C-Hb), 20.8, 20.6,
20.6, 20.5. ESI-HRMS: m/z calcd for C36H46O21: 814.2532; found 837.2382 [M + Na+].

3.21. 4-(2-Carboxyethyl)-2-methoxyphenyl β-D-lactopyranoside (20)

Following the general procedure B, compound 19 was obtained as a white powder;
yield: 51 mg (94%): m.p. 190–222 ◦C; [α]20

D = −55.8 (c 0.25, methanol); 1H-NMR (300 MHz,
D2O): δ (ppm) 6.96 (d, 1H, J = 8.3, Harom), 6.86 (s, 1H, Harom), 6.72 (d, 1H, J =8.3 Hz, Harom),
4.94 (d, 1H, J = 7.6 Hz, H-1), 4.36 (d, 1H, J = 7.6 Hz, H-1’), 3.81 (d, 2H, H-5, H-2), 3.73 (sl,
2H,OMe, H-5’), 3.60–3.72 (m, 5H, H-3, H-6ab, H-6’ab), 3.60–3.50 (m, 3H, H-4’, H-2’, H-3’),
3.40–3.50 (m, 1H, H-4), 2.73 (t, 1H, J = 7.4 Hz, Ha), 2.40 (t, 1H, J = 7.4 Hz,Hb); 13C-NMR
(75 MHz, D2O): δ (ppm) 175.7 (COOH), 148.6, 146.3, 130.6, 123.2, 121.6, 111.2 (Carom), 140.2
(C-Ha), 115.6 (C-Hb), 102.9 (C-1’), 99.9 (C-1), 77.8 (C-4), 75.3 (C-5), 74.9 (C-3), 74.0 (C-2),
72.4 (C-3’, C-2’), 70.9 (C-5’), 68.5 (C-4’), 61.0 (C-6’), 59.8 (C-6), 56.8 (OMe), 20.8, 20.6, 20.5.
ESI-HRMS: m/z calcd for C22H32O14: 520.1792; found 543.1674 [M + Na+].

3.22. Docking Manipulation for Providing Figure 1

DS Biovia Discovery Studio 2020 (https://www.3ds.com) was used for the docking
experiments. Galectin-8 N-terminal crystallographic data were obtained from the Protein
Data Bank as PDB 3AP6 in which lactose 3’-O-sulfate had been co-crystallized. The crystal-
lographic data of p-nitrophenyl lactoside were next obtained from https://pubchem.ncbi.
nlm.nih.gov/ as accession no CID 11812612. The two sugar derivatives were superimposed
using the tool of the DS software by the tether method and the aglycon (PNP) was next
modified into vanillin.

https://www.3ds.com
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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4. Conclusions

A series of extended aromatic lactosides harboring vanillin pharmacophores at the
anomeric position together with their corresponding O-3’-sulfated analogs were effi-
ciently prepared using PTC and tin acetal-catalyzed stereo-(β-anomer) and regioselective
(O-3’-position) transformations, respectively. The para-position of the aromatic moiety
was further adjusted to afford additional modifications, which would allow evaluating
the detailed role of this area upon binding to various galectin family members, especially
those (Gal-1, -3, and -8) shown to be particularly sensitive to the presence of sulfation.
As previously seen in the case of E. coli FimH inhibitors, the design of glycomimetics
with optimized aglycons permitted to generate drug-like mannosides of real therapeutic
interests [50]. In the present case, the numerous challenges raised for the identification
of potent and selective galectin ligands of therapeutic interest are even more exacerbated
by the 15 family members having their own physiological function and subtle structural
differences. Moreover, the fact that galectins possess extended and shallow binding sites
capable of accommodating longer oligosaccharides offers several opportunities in the
design of improved ligands. When the actual double modification strategy will be coupled
to the third one involving multivalent presentation, further improvement in affinity and
selectivity would be achievable, as recently seen when the TD139 clinical phase 2 candi-
date [10–13] was coupled to a multivalent protein scaffold [41]. Preliminary data with Gal-3
have been obtained for compounds 13 and 14, which clearly indicated their potential [15].
Analogous modifications using the N-acetyllactosamine scaffold are in preparation and
await comparative studies.

Supplementary Materials: The following are available online. 1H-NMR and 13C-NMR of com-
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