
1. Introduction
Extreme precipitation events are expected to increase in frequency and intensity in a future climate under 
warmer conditions (IPCC, 2014). Many observational and modeling-based studies support this conclusion 
(Alexander et al., 2006; Donat et al., 2013; Fischer & Knutti, 2016; Frich et al., 2002; Gutowski et al., 2007; 
Kharin et al., 2013; Li et al., 2021; Mailhot et al., 2011; Min et al., 2011; Sun et al., 2021). Despite the in-
creasing scientific evidence, there are still many uncertainties on the magnitude and the physical processes 
conditioning these changes (Lenderink & Meijgaard, 2008; Westra et al., 2014).

The relationship between extreme precipitation and surface temperature has been studied to assess how 
extreme precipitation may change under warming conditions. Given that projections on temperature are 
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Plain Language Summary Extreme precipitation events are expected to be more intense and 
frequent in the future. The magnitude of these changes remains, however, uncertain. It is also possible to 
relate extreme precipitation changes to changes in surface temperature. The basic idea is that a warmer 
atmosphere can hold more moisture and therefore trigger more intense precipitation. Such a relationship 
can estimate future changes in extreme precipitation since simulated temperature from climate models 
is more reliable than precipitation. The response of extreme precipitation events to changes in surface air 
temperature and the surface dew-point temperature was analyzed over the Northeastern North America 
region using a large ensemble of 50 climate simulations covering the period 1956–2099. It was shown 
that more robust estimates of the temperature-precipitation relationship are obtained when using the 
surface dew-point temperature, confirming that available moisture can be a limiting factor in increasing 
extreme precipitation for some regions. Those estimates were consistent between the historical and future 
climate over a large part of the study region for the more extreme events and confirm that future extreme 
precipitation changes can be estimated from changes in dew-point temperature.
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considered to be more reliable than those for extreme precipitation (Räisänen,  2007), temperature-pre-
cipitation (T-P) relationships were analyzed to obtain more robust extreme precipitation projections (X. 
Zhang et al., 2017; W. Zhang et al., 2019). However, linking temperature fields with extreme rainfall is not 
straightforward since many factors (e.g., regional weather patterns, extreme precipitation percentile, sea-
sons, timescale, and rainfall type) may also influence this relationship (Martinkova & Kysely, 2020; Panthou 
et al., 2014; Westra et al., 2014). Many studies have investigated T-P relationship in observed (e.g., Hard-
wick Jones et al., 2010; Lenderink & Meijgaard, 2008, 2010; Lenderink et al., 2017; Panthou et al., 2014; 
Utsumi et al., 2011), and simulated data (e.g., Lenderink et al., 2021; O'Gorman, 2012; O'Gorman & Schnei-
der, 2009) to better understand the involved processes and improve our confidence in extreme precipitation 
projections (for a review of such studies in mid-latitude regions see Martinkova & Kysely, 2020).

T-P relationship is often explained through the dependence between increasing air temperature and the 
atmosphere's higher water-holding capacity as described by the Clausius-Clapeyron (CC) equation. Under 
certain assumptions (e.g., unchanged relative humidity and no significant changes in atmospheric circu-
lation; Lenderink & Meijgaard, 2008), it is expected that the changes in extreme precipitation intensities 
should follow the rate of change of the atmosphere water-holding capacity with temperature as defined by 
the CC relationship (7% /°C, hereafter called the CC scaling; Trenberth et al., 2003). These thermodynam-
ically induced changes are expected to dominate for more extreme precipitation events in the mid-to-high 
latitudes (Emori & Brown, 2005; Norris et al., 2019; Pfahl et al., 2017). In contrast, circulation changes may 
weaken extreme precipitation or, on the opposite, enhanced such events by increasing moisture supplies 
and resulting in a super CC scaling rate (defined here as temperature scaling above the CC scaling).

Different statistical approaches have been used to investigated T-P relationship, the most common one be-
ing the binning approach or binning technique (Ali et al., 2018; Lenderink & Meijgaard, 2008; Martinkova 
& Kysely, 2020). According to this approach, rainfall records are partitioned into temperature bins and the 
precipitation intensities corresponding to specific percentiles within each bin are estimated (e.g., 95th, 99th 
or 99.9th). These bins can be defined using fixed-width (Lenderink & Meijgaard, 2008), with an overlap 
(Lenderink et al., 2011) or using a given number of bins with the same number of samples within each 
bin (Bao et al., 2017; Hardwick Jones et al., 2010). Quantile regression was also proposed (Wasko & Shar-
ma, 2014), which is not affected by assumptions about the sample size. No significant difference between 
quantile regression and binning approach was observed for large samples (Wasko & Sharma, 2014).

The binning approach has been, however, subject to some criticism. Bao et al. (2017) found that this method 
was not appropriate to link warming to changes in extreme precipitation. These authors found that dur-
ing precipitation events in Darwin (Australia), fast cooling of surface air temperature (SAT) was observed, 
therefore influencing the scaling (negative scaling rate) by shifting many events to cooler temperature bins. 
X. Zhang et al. (2017) also argued that seasonal variations affect extreme precipitations as well as tempera-
ture. Therefore, the expected evolution of extreme rainfall events in a warming climate cannot be projected 
from the binning scaling because seasonality influences both variables (temperature and rainfall) and ex-
cludes a causal relationship between them. Furthermore, X. Zhang et al. (2017) argued that most of these 
extremes are not annual rainfall extremes because the precipitation values are conditional on observed 
temperature, calling these “conditional quantiles.” The binning approach was also applied to a convec-
tion-permitting simulation by Prein et al. (2017) over the United States. A shift of the binning curves along 
the CC scaling in future climate was observed. Sun et al. (2020) using a large ensemble from the Canadian 
regional climate model (CanRCM4) also found that the binning scaling did not provide reliable projections 
of extreme precipitation.

X. Zhang et al. (2017) proposed an approach where hourly maximum precipitation events for each summer 
(June-July-August) are extracted over a specific period, and then normalized by the summer median val-
ues. These normalized data were then adjusted to the generalized extreme value (GEV) distribution using 
seasonal temperature anomalies (e.g., summer temperature) as a covariate for the GEV location parameter 
or both, the GEV location and scale parameters. Finally, the temperature-precipitation scaling rate (TPSR) 
was estimated as the changes in the 50th percentile return level (2-year event). Such procedure is intend-
ed to condition extreme precipitation on seasonal temperature rather than daily mean temperature. Ali 
et al. (2018) compared the X. Zhang et al. (2017)'s method to binning and quantile regression methods using 
worldwide observational records. These authors fitted a GEV distribution to the normalized daily maximum 
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precipitation events over the four months with the highest precipitation 
(site-dependant), using surface air and dew-point temperatures anoma-
lies as covariates for the GEV location parameter. They concluded that 
more robust estimates of the scaling rates were obtained when using the 
X. Zhang et al. (2017)'s method.

Another key factor in the extreme precipitation generation process is 
the atmospheric moisture availability (Trenberth et  al.,  2003). Berg 
et  al.  (2009) found that it was the limiting factor for summer rainfall 
intensity at a daily time scale in Europe. Furthermore, Hardwick Jones 
et al. (2010) observed a decrease in the relative humidity at higher tem-
peratures over Australia. Lenderink and Meijgaard (2010) therefore pro-
posed to use dew-point temperatures instead of surface temperature to 
account for the available moisture in the atmosphere, thus eliminating 
the assumption that relative humidity remained unchanged with temper-
ature (Lenderink & Attema, 2015). These authors showed that dew-point 
temperature is a better indicator of changes in extreme precipitation 
events (Lenderink et al., 2017; Roderick et al., 2020). In Canada, Panthou 
et al. (2014) found that the relative humidity was a limiting factor for in-
land regions while it was not for coastal regions. Limited moisture availa-
bility at higher temperatures was also observed by Molnar et al. (2015) in 
Switzerland, Park and Min (2017) in South Korea, and Peleg et al. (2018) 
in the eastern Mediterranean. Finally, it should be mentioned that, con-
trary to previous studies, Visser et al.  (2020) argued that dry-bulb tem-
perature can adequately describe short-duration extreme precipitation if 
sub-daily atmospheric conditions before the storm events are taken into 
consideration.

In this paper, we study how sub-daily extreme precipitation will change 
under global warming by using a unique large ensemble of regional cli-

mate simulations. Robustly constrained scaling relationships between precipitation extremes and SAT or 
surface dew-point temperature (SDPT) are investigated and compared over historical and future climate. 
The scaling relationships in historical climate to assess future changes in extreme precipitation are also 
evaluated. Hence, the objective of this study is two-fold. First, it investigates how daily and sub-daily ex-
treme precipitation responds to changes in SAT and SDPT over the Northeastern North America region in 
current and future climates using a 50-members regional climate model large ensemble. The robustness of 
the scaling rates estimated using SDPT and SAT is compared. Second, the possibility to use scaling rates in 
the historical period to estimate future changes in precipitation extremes is analyzed.

2. Data Sets and Methods
2.1. Regional Climate Model Ensemble

A 50-members ensemble simulation from the fifth version of the Canadian Regional Climate Model-Large 
Ensemble (CRCM5-LE) (Martynov et al., 2013; Separović et al., 2013) over the period 1956–2099 was used 
(Leduc et al., 2019). The CRCM5-LE has a spatial resolution of 0.11° (around 12 km) and covers the North-
eastern North America (NNA) region (Figure 1). This data set is a dynamically downscaled version of the 
50-member Canadian Earth System Model version 2-Large Ensemble (CanESM2-LE) (Arora et al., 2011; 
Fyfe et al., 2017) with ∼310 km of spatial resolution using observed greenhouse gases emissions up to the 
year 2005 and forcing scenario RCP8.5 (Representative Concentration Pathways) from 2006 to 2099 (Leduc 
et al., 2019). The simulations started in 1950, but the first 6-year period was discarded as a spin-up peri-
od. Each simulation (member) is assumed to be an independent realization of the climate system (Leduc 
et al., 2019). An advantage of this large ensemble is the possibility to study rare and more extreme events. It 
should also be mentioned that convective processes are parameterized in CRCM5-LE.
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Figure 1. Map of the study region (Northeastern North America [NNA]). 
Colors represent the altitude (in meters), and the red lines delineate the 
Canadian Regional Climate Model-Large Ensemble simulation domain.
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The performance of this data set in simulating the spatio-temporal structure of extreme precipitation over 
the NNA domain was investigated by Innocenti, Mailhot, Frigon, et al. (2019) as well as the response of daily 
and sub-daily precipitation extremes to future warming conditions (Innocenti, Mailhot, Leduc, et al., 2019). 
Martel et al. (2020) also evaluated the future changes in the frequency and intensities of extreme precipita-
tions using this ensemble. Overall, this data set provides an improved representation of local extreme pre-
cipitation events and temperature variability when compared to global climate models (Leduc et al., 2019).

2.2. Temperature-Precipitation Scaling Rate Estimation

Three variables from the CRCM5-LE simulations were used: (a) 1-h total precipitation, (b) 3-h SAT, and (c) 
3-h Surface Relative Humidity. The 3-h SDPT series were estimated using the equation proposed by Aldu-
chov and Eskridge (1996) and Lawrence (2005) (see Equation S1).

TPSRs were estimated using the approach proposed by X. Zhang et al. (2017). The five months (May-June-Ju-
ly-August-September) with the highest probability of occurrence of hourly annual maximum precipitation 
over the study domain were considered. May to September 6, 12, and 24 h annual maxima precipitation 
series were therefore extracted from simulated hourly precipitation. Seasonal (May–September) mean tem-
peratures (SAT or SDPT) for each year were estimated from the simulated 3-h series.

Two 75-year periods were defined, one in historical/current climate (1956–2030) (hereafter referred as his-
torical climate or period) and one for the future period (2025–2099) with a 5-year overlapping period (2025–
2030). Each grid point was analyzed by pooling the nine neighboring grid points in a configuration of 3 × 
3 around the central analysis grid point. The spatial pooling was applied to reduce the uncertainties due to 
sampling when estimating the GEV parameters (Li, Zwiers, Zhang, & Li, 2019).

May to September 1, 6, 12, and 24 h annual maximum precipitation at each grid point were then extracted 
and normalized by the median value over each period. Normalized precipitation series were then fitted to a 
GEV distribution (see Section S2) using seasonal temperature anomalies as covariates for the GEV parame-
ters. More specifically, grid-point May to September mean SAT or SDPT anomalies from each member over 
the two periods were considered as temperature covariates (T ) for the local GEV location () and log scale 
(log )  parameters. No dependence to covariate was assumed for the shape ( )  parameter. Temperature co-
variate, either SAT or SDPT anomalies, is, therefore, local and more closely relates to the seasonal tempera-
ture anomalies driving local changes in extreme precipitation. This approach differs from Li, Zwiers, Zhang, 
and Li (2019), where the global annual mean temperature was used as temperature covariate.

Three models were considered relating GEV parameters to temperature: (a) 0M : stationary ( ( )T  ;  
( )T  ; ( )T  ); (b) 1M : location parameter linearly dependent on temperature covariate  

( 0 1( )T T    ; ( )T  ; ( )T  ); and (c) 2M : location and log of the scale parameters linearly de-
pendent on temperature covariate ( 0 1( )T T    ; 0 1log ( )T T    ; ( )T  ). The GEV parameters 
were estimated using Maximum Likelihood Estimation (MLE) and the likelihood ratio test was used (5% 
significance level) to compare the three models (Coles, 2001). The rate of change in return levels for differ-
ent percentiles (e.g., 50th or 2-year event and 99th or 100-year event) was estimated for each member and 
each grid-point. The following expression which relates (in this case) changes in return levels from 1P  to 2P  
to changes in temperature anomalies from 1T  to 2T  was used to estimate the scaling rate   (Hardwick Jones 
et al., 2010):

( )2 1
2 1(1 0.01 ) T TP P    (1)

Grid-point TPSR corresponds to the ensemble mean of the estimated   over the 50-member ensemble.

2.3. Temperature-Precipitation Scaling Rate Uncertainty

The robustness of TPSR estimates was assessed using the classification proposed by Li, Zwiers, Zhang, and 
Li (2019) based on the scaling rate per standard error (SRSE), which is estimated by dividing the TPSR by the 
standard deviation of i  (i = 1, …, 50) scaled by 1 / 50 . These authors classified the TPSR as unconstrainable 
when the 2SRSE  , constrainable when 2 5SRSE   and robustly constrained when 5SRSE  . Robustly 
constrained TPSR means that a significant response of extreme precipitation to temperature can be detected 
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through the scaling rate and that the corresponding TPSR can be tightly estimated. In contrast, an uncon-
strainable TPSR means that natural variability prevents the detection of any robust response of extreme 
precipitation to temperature changes. Various pooling strategies have been shown to improve the statistical 
significance of the TPSR estimates (Li, Zwiers, Zhang, & Li, 2019). Two pooling strategies were considered 
(3 × 3 and 5 × 5) but only results based on the 3 × 3 pooling strategy are presented in the following.

2.4. Projecting Future Extreme Precipitation Using Temperature-Precipitation Scaling Rate

To see if future extreme precipitation can be projected from TPSR estimated in historical period, TPSR 
values over historical and future periods were compared. Similar grid-point TPSR values over both periods 
were interpreted as indicative that projected extreme precipitation in future periods can be estimated from 
grid-point TPSR values in historical climate. Therefore, non-stationary models using dew-point temper-
ature covariate can be used to assess projected changes in extreme precipitation. Mean grid-point TPSR 
values over each period were compared and the statistical significance (at a 95% confidence level) of these 
differences was assessed using the bootstrap approach (Efron & Tibshirani, 1993) (see Section S3).

3. Results and Discussion
3.1. Selected Non-Stationary GEV Distributions

The three GEV models were compared and the percentages of grid points where each model was selected 
were estimated for each simulation. The analysis was carried out for each duration (1, 6, 12, and 24 h), both 
periods and each temperature covariate (SAT or SDPT). Results show that non-stationary 1M  and 2M  models 
were selected at almost all grid points for both SAT and SDPT covariates, each period and all durations (see 
Figure S1). Stationary model 0M  was selected for less than 2% of the land grid-points. Since models 0M  and 

1M  are particular cases of 2M , model 2M  was therefore considered in the following.

Temperature dependence (SAT or SDPT) on both GEV location and scaling parameters means that TPSR 
rates depend on precipitation percentiles as well as on temperature. This would not be the case if only the 
GEV location parameter was temperature dependant (e.g., Ali et al., 2018) where the TPSR would be the 
same for all extreme precipitation percentiles. However, as shown by Li, Zwiers, Zhang, and Li (2019), the 
sensitivity of TPSR to temperature is small when scale and/or shape parameters are temperature dependent.

3.2. Estimated Temperature-Precipitation Scaling Rates

Figure 2 displays the maps of the grid-point TPSR values for the 1 and 24 h 99th percentile precipitation over 
the domain for the historical period as well as the changes between the future and historical periods for SAT 
and SDPT covariates (Figure S2 presents the corresponding results for the 50th percentile precipitation). 
Strictly positive TPSR values are obtained for SDPT over the entire domain for both durations and periods. 
In contrast, lower TPSR values are observed for SAT and some regions even display negative values, espe-
cially in the southern part of the domain. These differences are even larger for the 50th percentile extreme 
precipitation (see Figure S2). Large increases in future TPSR values are observed for SAT, especially in the 
south-west part of the domain, while changes are smaller and randomly distributed for SDPT. The 24 h 
TPSR estimates using SAT are smaller than 1 h TPSR over the entire domain. Similar results were obtained 
for 6 and 12 h (see Figures S3 and S4 for 50th and 99th percentile precipitation, respectively).

Figure 3 presents the corresponding longitudinal distribution of 1 and 24 h TPSR for SAT and SDPT in his-
torical and future periods for the 50th and 99th percentile precipitation. It clearly shows that the differences 
between TPSR using SAT or SDPT increase moving southward. Similar results can also be observed for the 
24 h TPSR as well as for 6 and 12 h TPSR (see Figure S5). TPSR for 1 h precipitation using SDPT changes 
moving southward from values around the CC scaling to values above the CC scaling for both percentiles. 
A similar response is observed for 24 h precipitation with smaller TPSR values (below the CC scaling) in 
the northern and central parts of the domain. The estimated scaling rates using SAT are smaller than the 
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CC scaling over the vast majority of the domain and decrease as moving southward, even reaching negative 
TPSR for the southernmost part of the domain.

These differences in TPSR using SAT or SDPT clearly show that the available humidity is a limiting factor 
in the southern part of the domain and can even result in negative TPSR when SAT is considered. These 
results support the previously reported conclusion that SDPT is a better covariate to assess possible changes 
in daily and sub-daily extreme precipitation (e.g., Ali et al., 2018; Barbero et al., 2018; Wasko et al., 2018; W. 
Zhang et al., 2019). It also shows that negative scaling rates in the southern part of the domain are related 
to moisture availability and atmospheric circulation limiting the transport of moisture in these regions. 
Although negative scaling was not observed by Pall et al. (2007), these authors linked lower scaling rates in 
inland regions to the ability of the atmosphere to transport moisture to these regions. These results show 
that changes in relative humidity are an essential driver of TPSR (Barbero et al., 2018).

Smaller TPSR values for 24 h precipitation compared to 1 h precipitation in the northern part for both SAT 
and SDPT may also be due to changes in large-scale circulation (Magan et al., 2020) that might be respon-
sible for moving the atmospheric moisture sources and changed the 24 h precipitation response in these 
regions. Further analysis would be needed to confirm this hypothesis. Super CC scaling is also observed for 
both 1 and 24 h extreme precipitation in the southern part of the domain for SDPT where it reaches values 
close to 12% /C. In these regions, the extremes of precipitation may be less related to the increase in atmos-
pheric moisture content (thermodynamic component) and more associated with changes in atmospheric 
motion and increases in vertical velocities (dynamic component). Therefore, super CC scaling may result 
from the dynamic nature of the temperature-moisture interaction related to feedback between precipitation 
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Figure 2. Temperature-precipitation scaling rate (TPSR) (%/oC) for the 99th percentile precipitation using surface air temperature (first two columns) and 
surface dew-point temperature (last two columns) as covariate over the period 1956–2030 (first row) and changes in TPSR (%/oC) between future (2025–2099) 
and historical period (1956–2030) (second row) for 1 h precipitation (first and third columns) and 24 h precipitation (second and fourth columns).
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formation involving latent heat release and low-level moisture convergence (e.g., Trenberth et al., 2003; 
Westra et al., 2014). These results suggest that the response of extreme precipitation to changes in SDPT is 
dominantly thermodynamic over the central and northern regions of the domain and dominantly dynamic 
for the southern regions. Further studies are needed to assess the impact of dynamic circulation on extreme 
precipitation events and confirm this hypothesis.

3.3. Temperature-Precipitation Scaling Rate Dependence on Duration and Percentiles

The dependence of TPSR on precipitation duration and intensity was investigated. Figure 4 presents the 
distributions of TPSR values over the domain for the 99th percentile precipitation as a function of dura-
tion (similar results are obtained for the 50th percentile precipitation; see Figure S6). It demonstrates that 
temperature scaling is higher for shorter precipitation events with very similar distributions in future and 
historical periods. As previously mentioned, for SDPT, super CC scaling is observed over a majority of grid 
points for 1 h precipitation. It decreases as duration increase to a median TPSR value slightly below the CC 
scaling for 24 h precipitation. Therefore, shorter events will be more impacted by climate change, a result al-
ready reported in previous studies (e.g., Cannon & Innocenti, 2019; Innocenti, Mailhot, Leduc, et al., 2019; 
Li, Zwiers, Zhang, Chen, et al., 2019; Prein et al., 2017).

The dependence of TPSR on precipitation percentiles was analyzed by taking the difference between the 
TPSR values of various precipitation percentiles and the corresponding 50th percentile values at each grid 
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Figure 3. Longitudinal distribution of temperature-precipitation scaling rate values (%/oC) for the 50th percentile (first row) and the 99th percentile 
precipitation (second row) using surface air temperature (blue) or surface dew-point temperature (red) in historical (columns 1 and 3) and future periods 
(columns 2 and 4) for 1 h (columns 1 and 2) and 24 h (columns 3 and 4). Solid blue and red lines represent the median value, and the shaded regions represent 
the 5th95th percentile intervals. The vertical black line corresponds to 0, and the dashed vertical black line to the CC scaling (7%/oC). Latitude bins are 1° wide 
and are overlapping over 0.5°.
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point. The distributions of these differences are shown in Figure 5 for 1 h precipitation (Figure S7 shows 
corresponding figures for 24 h precipitation). Minimal increases in TPSR are observed for SDPT for more 
extreme precipitation over historical and future periods, while SAT increases are more pronounced. Cor-
responding maps displaying the grid point differences between 99th and 50th percentiles are showed in 
Figure 6. The SAT and SDPT display contrasting patterns in terms of expected TPSR changes across percen-
tiles. For SAT, changes are positive on almost all the domain with higher values in the southern part. The 
patterns are very similar in historical and future periods and for both 1 and 24 h. The situation is radically 
different for SDPT, where the domain is divided in two, the northern part with positive changes and the 
southern part with negative changes. The coastal region in the southern part of the domain also displays 
positive changes between 99th and 50th percentiles, suggesting increasing scaling rates on coastal areas for 
more extreme precipitation.

How can these differences between SAT and SDPT be interpreted? Li, Zwiers, Zhang, Chen, et al. (2019), 
analyzing the relative contribution of dynamic and thermodynamic to the total scaling rate, using global 
surface temperature anomalies as covariate, concluded that the thermodynamic scaling rates remain almost 
unchanged with precipitation intensity and that circulation changes module the thermodynamic influence 
on extreme precipitation. Their results and those of Li, Zwiers, Zhang, and Li (2019) are similar to those 
obtained in this study and show increasing TPSR when SAT is considered, either at a local or global scale. 
The fact that more consistent results are obtained when using SDPT as covariate suggests that it partly cap-
tures the impacts of atmospheric circulation on moisture content and its effects on extreme precipitation 
events of different intensities (Barbero et al., 2018; Li, Zwiers, Zhang, & Li, 2019). Regions displaying pos-
itive changes in Figure 6, therefore, correspond to regions where moisture availability enables an increase 
in extreme precipitation events of different intensities while negative changes correspond to regions where 
atmospheric circulation weakens the thermodynamic response.
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Figure 4. Distribution of temperature-precipitation scaling rate values (%/oC) for the 99th percentile precipitation 
using surface air temperature (blue) or surface dew-point temperature (red) in historical (top row) and future periods 
(bottom row) as a function of duration. The dashed horizontal line corresponds to the CC scaling (7%/oC).
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3.4. Robustness of Estimated Temperature-Precipitation Scaling Rates

Figure 7 shows the percentages of robustly constrained ( 5SRSE  ) grid points for each covariate, period, 
and duration for 50th and 99th percentiles. The fraction of robustly constrained TPSR is close to 100% for 
SDPT but much smaller for SAT and decreases in both cases as duration increases. It is also larger for the 
future period. These results indicate that the link between extreme precipitation and temperature changes 
is stronger for short-duration precipitation events and for the future period where the signal-to-noise ratio 
is larger. This link is also much stronger when SDPT is used as a covariate. It is interesting to note that this 
result is obtained using a local temperature covariate. It is also interesting to mention that dominantly ro-
bustly constrained TPSR are also obtained when using an at-site analysis (not shown here) instead of a 3 × 
3 regional pooling.

3.5. Comparison of Temperature-Precipitation Scaling Rates in Future and Historical Periods

Figure 8 shows maps of land grid-points with significant and non-significant changes (95% confidence lev-
el) of the 1 h TPSR values between future and historical periods for 50th and 99th percentile precipitation 
for SAT and SDPT (Figure S8 presents the corresponding maps for 24 h extreme precipitation). It shows that 
TPSR values are similar in future and historical periods for nearly 87% of the grid points for the 99th percen-
tile precipitation when using SDPT as covariate (these percentages remain almost unchanged across dura-
tions for a given precipitation percentile; see Figure S9). Smaller percentages (around 63%) are obtained for 
the 2-year event. Again, corresponding values for SAT are much smaller, suggesting that the scaling is more 
consistent and relevant when an estimate of humidity, as in SDPT, is introduced into the covariate (Barbero 
et al., 2018; Roderick et al., 2020; Wasko et al., 2018). Although TPSR is different from the CC scaling, results 
show consistent TPSR based on local seasonal SDPT anomalies between the historical and future period 
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Figure 5. Distribution of the grid point difference between the temperature-precipitation scaling rate values for 
various precipitation percentiles and the 50th percentile values ([Xth percentile–50th percentile] in %/oC) for the 1 h 
precipitation using surface air temperature (blue) or surface dew-point temperature (red) in historical (top row) and 
future periods (bottom row) as a function of percentiles.
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over a large part of the domain. Therefore, historical TPSR for a specific duration and percentiles can be 
used to assess projected changes of corresponding extreme precipitation.

Results are not very sensitive to the duration for a given precipitation intensity (see Figure S9). However, 
large increases in percentages of land grid points with non-significant TPSR changes between future and 
historical periods are observed as more extreme precipitation is considered (see Figure  S9). Again, they 
reflect the dominant role of temperature and moisture availability, embedded in SDPT, as explanatory vari-
ables of the projected changes for the most extreme precipitation.

4. Conclusions
Extreme precipitation response to changes in SAT and SDPT over the 
Northeastern North America region has been investigated using the 
50-member ensemble from the fifth version of the CRCM5-LE based on 
RCP8.5. The simulated 1, 6, 12, and 24 h May–September maximum pre-
cipitation were used in combination with the May–September local mean 
temperature (SAT and SDPT) anomalies for each year of the 1956–2030 
and 2025–2099 periods to estimate the TPSRs. A non-stationary GEV 
model with a linear dependence to covariate (SAT and SDPT) for both 
location and the log of the scale parameters was considered. Grid-point 
TPSRs were estimated for each CRCM5 simulation and averaged over the 
50 members. A 3 × 3 pooling strategy was used to improve the sampling.
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Figure 6. Maps of the differences between the 99th and 50th precipitation percentiles temperature-precipitation scaling rate values in %/oC using surface 
air temperature (first two columns) and surface dew-point temperature (last two columns) as covariate over the period 1956–2030 (first row) and 2025–2099 
(second row) for 1 h precipitation (first and third columns) and 24 h precipitation (second and fourth columns).

Figure 7. Percentages of land grid points with robustly constrained  
(| | 5SRSE  ) temperature-precipitation scaling rate as a function of 
durations for both periods, 50th and 99th percentile precipitation, surface 
air temperature (left panel), and surface dew-point temperature (right 
panel).
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Very different results were obtained for TPSR based on SAT or SDPT. If TPSR is close or slightly smaller 
than CC scaling in the northern part of the domain, contrasting responses for SAT and SDPT are observed 
moving southward for all durations and precipitation intensities. Thus, if TPSR based on SDPT progressive-
ly increases to reach super CC scaling in the southernmost part of the domain, TPSR based on SAT decrease 
and display negative values over the southern regions. Available humidity is clearly a limiting factor in 
these regions as atmospheric circulation limits moisture transport, explaining these contrasting responses 
between SAT and SDPT scaling rates.

Scaling rates are also generally lower for longer durations compared to 1 h precipitation, especially in the 
northern part of the domain, and may be related to the plausibly more dominant role of atmospheric circu-
lation for longer duration extreme precipitation. Shorter extreme precipitation is, therefore, more impacted 
by climate change. Super CC scaling observed in the southern part of the domain for SDPT may be related 
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Figure 8. Land grid points with significant and non significant changes in 1 h temperature-precipitation scaling 
rate between future and historical periods for the 50th (top row) and 99th percentile (bottom row) precipitation using 
surface air temperature (left column) and surface dew-point temperature (right column). The numbers in the map 
correspond to the percentage of land grid points of each category.
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to the dynamic of convective events over these regions (latent heat release intensifying the updrafts on con-
vective clouds) (Lenderink & Meijgaard, 2009, 2010; Trenberth et al., 2003).

Changes in TPSR with precipitation intensities were also investigated and reveals the regional differences 
in moisture availability and its role in the T-P relationship for more extreme precipitation. It suggests that 
the TPSR estimated with SDPT somewhat captures, even partly, the influence of atmospheric circulation 
on humidity and its impact on precipitation events at different intensities over the durations considered.

The robustness of the TPSR estimates was evaluated over the entire domain. The TPSR estimated using 
SDPT was more robustly constrained (above 90% of grid points for all the cases) regardless of the percentile, 
duration, or study period compared to TPSR based on SAT. Thus, the link between extreme precipitation 
and SDPT changes is stronger and less affected by internal variability for short-duration precipitation events 
and for the future period where the signal-to-noise ratio is highest.

Comparison of TPSR in historical and future periods shows that the TPSR remains unchanged (at the 95% 
confidence level) in future climate for more extreme precipitation over large parts of the domain. It is es-
pecially for SDPT, where around 87% of TPSR land grid point values remain unchanged for the 100-year 1 
h extreme precipitation. The percentages of unchanged values increase for more extreme precipitation but 
remain almost similar over durations.

These results confirm the importance of using the SDPT over the SAT in TPSR estimation. Estimated scal-
ing rates based on SDPT take into consideration dynamical effects related to moisture availability. It results 
in more robustly constrained TPSR values, scaling rates closer to the CC scaling, and more consistent values 
in historical and future climate over a larger part of the simulation domain. Therefore, historical TPSR 
based on SDPT can assess the projected changes in extreme precipitation more robustly. These results are 
important as they can help provide guidelines to the engineering community to project future design values 
related to extreme precipitation more reliably. Future work intends to further investigate how the scaling 
changes when only the convective precipitation component is considered.

Data Availability Statement
The CRCM5-LE data set can be obtained online (https://www.climex-project.org/en/data-access).
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