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1 INTRODUCTION

The present report summarizes various aspects of the development and calibration of a
multivariate PARMA model for the Ottawa River system, or, more precisely, for five
regions in that system. The overall objective of the study is to develop a generator of daily
simultaneous flows at 30 sites. The generation of a large number of multi-site flow
sequences for input to current management models permits to study the reliability of the
system, both in terms of hydropower production and in terms of adequacy of the hydraulic
installations. The main interest in the current project is the reliability assessment of existing
constructions such as dams, spillways, dikes, etc., vis-a-vis extreme floods. Floods occur
over a relatively short period of time, in Quebec usually in the spring as a result of snow
melt. This is why it is necessary to consider time-steps as small as one day. Since the
PARMA type model is unsuitable for generating daily flows and also is practically limited by
the number of sites that can be handled, it has to be combined with various disaggregation
models. In the present report, only one component of the flow generator is considered,
namely a 5-region, weekly PARMA model. Generated weekly regional flows will be
disaggregated spatially to each site in the region and to a daily time step, but that part of the
generator is not described here. The delineation of 27 gauged sites in the Ottawa River
system into five regions has been carefully done with the emphasis on maximizing the
statistically similarity of sites within regions. This work is described in Mathier et al. (1995).
Although no particular attention was paid to the geographical location of the sites, the five
regions turned out to be geographically contiguous. They will in the following be referred to
as North West (NW), North East (NE), East (E), Central (C), and South (S) regions.

The distributions of aggregated weekly flows in the five regions have been carefully
examined and transformed to normality (J. Grygier, personal communication). The results
presented in the following deal only with the transformed data space. Although a good
model performance in the transformed data space does not guarantee an equally good
performance in real space, it is generally acknowledged that for a model to perform well in
real space, it must do well in the transformed space. Hence, the objective of this part of the
project will be to identify the most adequate model for the transformed data.

The models considered here are the class of multivariate PARMA(p,q) models (periodic
autoregressive moving average). The data are assumed normalized and standardized to zero
mean and unit variance, but even after removal of the periodic mean and variance, the data
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series may still exhibit periodicity in the week-to-week correlations. Therefore it is
necessary to consider a model with time-varying parameters, such as the multivariate
PARMA models, whose general form is:

P q
Z q)i,txv,t—i + €y Z Gjﬁev,f—j (1)
i=1 =l

The model relates the present flows at n sites (elements of vector x) to the p previous flows
and to the q previous innovations. The model and its special cases will be described in detail
later. In its general form, the parameter matrices ®,. and ®,  are allowed to be full. A
substantial simplification can be obtained by assuming that these matrices are diagonal
(Salas et al., 1980). This uncouples the equations and permits to model each (aggregated)
site independently. The spatial dependence is introduced by generating innovation vectors
with correlated elements. This type of model, commonly denoted contemporaneous, permits
in principle to preserve explicitly the spatial correlation of flows at lag 0, whereas there is
no explicit provision for preserving correlations at higher lags. However, contemporaneous
models have been used in several studies and are generally found to yield good results.

The periodicity of the parameters and statistics related to them introduces some difficulties
in identifying the appropriate model order. Classical identification techniques for stationary
Box-Jenkins ARMA models are not directly applicable to seasonal models. The
autocorrelation function and the partial autocorrelation function, which are the usual tools
for identifying the orders of stationary models, are meaningless when seasonality in the
model parameters is present. One can gain some insight by looking at the correlations
between periods, but in the case of weekly flows, an exhaustive analysis would be very
tedious. Moreover, one cannot expect to arrive at a unique conclusion as to which values of
p and q should be used, since generally the correlation pattern depend on the period. The
approach taken here is the trial-and-error method. Some a priori chosen models are fitted to
the observed data and their performances are evaluated and compared. With the limited data
available for the Ottawa River, it is suggested that models beyond PARMA(2,2) should not
be considered. The PARMA(2,2) model defines a class consisting of PARMA(p,q) models
with max{p,q} <2. This class comprises among others the popular PARMA(1,0) and
PARMA(1,1) models, as well as the PARMA(2,1) model. The PARMA(1,1) model is
generally found to perform better than the PARMA(2,0) model which is the reason why the
latter is not used in this study. PARMA(2,1) models are generally preferable to
PARMAC(1,2) model, and only the former is considered here. Hence, four PARMA models
constitute the group of candidates to be examined in this study.
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The first part of this report describes properties of the univariate model. Chapter 2 presents
the criteria on which we based the model selection. Chapter 3 describes the three different
estimation methods that were considered in this study and a comparison between them.
Chapter 4 contains a brief description of the program CSUS5 which eventually was used to
calibrate the PARMA models. In Chapter 5, we present the results of the calibration of the
univariate models.

In the second part of the report, the spatial dimension of the multivariate model is
considered. The method of moments was used to estimate the cross-covariance matrices of
residuals. This new method for calibrating higher-order contemporaneous models is
described in detail in Chapter 6. In Chapter 7, we present the results of the spatial
estimation. A few concluding remarks are given in Chapter 8.
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2 MODEL SELECTION CRITERIA

In the following, we consider the case of univariate PARMA models and the problem of
determining the appropriate model order. As mentioned in the introduction, most of the
classical methods for model identification do not apply to periodic models, so one usually
has to base the choice of model order on a trial-and-error search. The parameters of each
considered model is estimated, and one may compute various statistical properties of
interest and perform a global comparison of the involved models using the historical data
series as reference. Some of the properties that one would usually examine are the periodic
means, variances, and period-to-period correlations (periodic autocorrelation). In the
transformed data space, the periodic means can usually be reproduced exactly (identical to
the historical)!, whereas the periodic variances and autocorrelation may be more or less
close to the historical values used to calibrate the model. Commonly, model properties are
obtained by generating long series of flow data. Especially if data have been re-transformed
to real space, this is the most straightforward method for deriving the statistical properties
of the model. However, for model development, in particular the selection of model order,
it may suffice to examine the statistical properties in the transformed data space. Generally,
one cannot expect a model to perform well in real space, if it fails to perform well in the
transformed space (Stedinger, 1981). In this study, an analytical technique, based on the
periodic Yule-Walker equations, are used to compute the periodic variance and
autocorrelation in the transformed data space. This technique is described below.

The univariate PARMA(2,2) model relates the present flow to preceding flows and
innovations by the following functional relationship

2 2
Xoa ™ Z ¢i,tx v,1-i +€ vt Z eiﬂs v.i-) (2)
]

i=1
where x, . represents the normalized and standardized flow in year v, period t, ¢, are
autoregressive parameters depending on the specific period of the year, and 6, are moving
. average parameters, also depending on the period. It is assumed that there are © periods in
the year. Due to the normalization of the flows, the innovations, €, ., are normally
distributed. Moreover, since the data are assumed standardized to zero mean and unit
variance, the innovations also have zero mean. The variance of the innovations is denoted

Here the term "reproduced exactly" does not imply that each generated series has the same mean as the
historical series, but rather that the expected value of the mean is identical to the historical mean. Same
comment applies to the variance and correlations.
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g. and generally depends on the period. Due to the limited amount of data available for
calibration, it may be appropriate to consider also models of lower order. Popular sub-
models are the PARMA(1,0) and PARMA(1,1), which in many cases provide a satisfactory
description of the correlation structure of observed flows. However, when the considered
time scale is very short (as for example in the case of weekly flows), the seasonal
autocorrelation structure may exhibit irregularities which cannot be adequately captured by
low-order PARMA models. This is why we adopt the PARMA(2,2) as a general class of
models that comprises itself and any submodel, i.e. any PARMA(p,q) model with

max{p,q} <2.

The values of the parameters of a PARMA(p,q) model uniquely define the covariance
structure of the model through the so-called periodic Yule-Walker equations which for the
PARMA(2,2) model read (Appendix A):

m,(0) = ¢, m (1) +,.m, (2)+g, -6, g ,[¢,.-6,.]

3
- ez,tgr—z [¢],‘!¢l,‘!—l - d’l,tel,‘t—l + ¢2,‘t - 62,'!: ( a)
m.(1) = ¢,.m._,(0)+ ¢2,1mt—l - 0,.8..1— ez,‘tgt—Z [¢1,1-x -0, ] (3b)
m, (2) = ¢l,tmt-l(l) + ¢2,tm1—2(0) - 62,‘!g1~2 (3 C)
mt(k) = ¢1,1’mt—l (k - 1) + ¢2,tmt—2 (k - 2) k>2 (3d)

where the periodic autocovariance function is defined as m, (i) = E[X, X,_;]. The above
equations are valid for any submodel of the PARMA(2,2) by setting particular parameters
equal to zero. For instance, the periodic Yule-Walker equations corresponding to a
PARMA(2,1) are obtained by setting 0,, equal to zero. The periodic Yule-Walker
equations serve an important purpose by allowing a fast and straightforward calculation of
the periodic variance and the periodic autocorrelation corresponding to a given estimated
model. Equation (3¢) can be used to remove m_(2) from (3a). After some manipulations,
the first two periodic Yule-Walker equations can be written

=$3.m, ,(0)+m,(0)~,.$,,m,_, (D) - ,.m, (1)
= g‘t - él,tét—l [a;l,t - él,: ] - é2,t§r-2 [$1,r$1,r-1 - &;l.rél,t—l + 2&;2,: - éz,r]

—&;I.Tmt—l (O) - $Z,Tmt—l (l) + m, (1) = —él,‘rét-'l - éz.rgr-Z [&;l.‘r—l - él,t—l ] (4b)

where """ is used to designate particular estimates. It is seen that the above equations

(4a)

constitute a linear system of 2o equations with 2& unknowns, namely m_(0) and m_(1) for
1=12,..,0. The system is readily solved for m_(0) and m_(1), and the complete periodic
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autocorrelation function can then be constructed from (3¢c-d). It is useful to emphasize that
the implementation of (4a-b) also permits to evaluate the properties of any submodel of
PARMAC(2,2) by equating particular parameters to zero.

The above procedure provides an effective means to compare different model options and
to guide in the selection of the most adequate. For example, one may wish to compare a
PARMA(1,1), a PARMA(2,1), and a PARMA(2,2) for modeling weekly data at a given
location. The first step is to obtain parameter estimates for each model considered, for
example by one of the methods described in the next section. Then the periodic variances
and autocovariances are computed from (4a-b) and plotted along with the corresponding
historical values and a graphical comparison can be made.

The above procedure constitutes the main basis for our model selection. There are other
properties that could be examined as well, including stationarity conditions and whiteness of
the residual series.
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3 ESTIMATION METHODS

3.1 Introduction

Prior to undertaking the task of estimating and identifying the appropriate models for the
five regions in the Ottawa River, a preliminary analysis of different estimation techniques
was made. This analysis led to the conclusion that the method of least squares, as
implemented in the software CSUS5 developed by the research group of J. Salas at Colorado
State University, provided results that were acceptable to all participants in the project, and
the CSUS5S was consequently selected and used for model calibration. However, for
completeness, the three estimation alternatives we examined are briefly described here.

3.2 Estimation by the method of least squares
The LS estimators are the set of parameters that minimizes the sum of squared residuals, i.e.
(assuming a PARMA(p,q)-model)

N o 2
{9,+,0;.} for which > Z [xv't - Zp: b;Xyoi + i 0,y j:l is minimum
i=1 j=1

v=l ==1
The estimate of the residual variance, g_, is obtained directly from the series of residuals.
Usually one omits the first p data from the summation, because the p preceding values are
unknown (Box and Jenkins' back forecast method does not apply to periodic series). The
first q innovations are commonly set to zero. The LS method is fairly straightforward, but
very computer intensive. The LS method as implemented in CSUS5 is described in more
detail in the next section.

3.3 Estimation by the method of moments

The moment estimators of the parameters of a PARMA(p,q) model are the solution to the
first p+q+1 periodic Yule-Walker equations in which the periodic autocovariance function
is computed from the data. Hence, if a moment solution exists, the corresponding model
preserves exactly the variance plus the lagged correlations up to order p +q. For low-order
PARMA-models, a moment solution is fairly straightforward (Salas et al., 1982), but if the
order of the moving average component of the model exceeds one, then an analytical
solution is not available, and even with numerical means, it seems impossible to obtain a
solution (Bartolini and Salas, 1993). Therefore, in our study moment solutions were
restricted to PARMA(1,0), PARMA(1,1), and PARMA(2,1) models. Unfortunately, in the
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case of PARMA(1,1) and PARMA(2,1) models a moment solution may not exist. When
calibrating the models, some of the residual variances may turn out negative, indicating that
there is no feasible solution to the periodic Yule-Walker equations. When applying the
method of moments to the Ottawa River data, it was found necessary to smooth the
periodic autocorrelation in order to obtain feasible solutions. A Fourier analysis showed that
two harmonics were generally enough to describe adequately the periodic autocorrelations,
except for the spring flood period. Hence, in our approach we first replaced the data during
the flood period with typical values prior to and after the flood period. The coefficients of
the first two harmonics were determined. Then the irregular correlations in the flood season -
were inserted in the smoothed periodic autocorrelation function, and the resulting function
was used to calibrate the PARMA-model.

The above approach was applied to the data from the five regions in the Ottawa River.
Results from fitting a PARMA(1,1) to the Central region is shown in Figure 3.1. The
variance, and the lags 1 and 2 of the transformed data are reproduced exactly (i.e.b identical
to the historical, transformed series.) It is particularly interesting to study the performance
of higher order lags which are not explicitly preserved. It is seen that up to at least lag 10,
the PARMA(1,1)-model provides an excellent description of the correlation structure.

One obvious advantage of smoothing the periodic autocorrelation functions is that the
number of independent parameters can be substantially reduced. For example, a
PARMA(1,1)-model contains 3m-parameters, which, in the case of weekly data, means 156
parameters. Since the fitting of parameters to smoothed periodic autocorrelations functions
results in smoothed parameters, one can reduce the number of "independent" parameters to
two times the number of harmonics considered plus the number of original correlations used
during the flood period (in addition to the means, variances, and transformation
parameters).

3.4 Estimation using the MATLAB/ARMAX function

A third method for estimating the parameters of PARMA(2,2) models was suggested and
developed by Mrs. L. Fagherazzi, Hydro-Quebec. It is based on the ARMAX subroutine in
MATLAB's System Identification Toolbox. The key idea of this approach is to estimate the
parameters of each season independently of the other seasons, ignoring the functional
relationship between the moving average parameters of adjacent periods, but allowing for a
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fast and simple estimation. The first step is to sequentially extract one column from the data
matrix given by:

Xn Xp X3 vt Xy

Xa Xpn Xy X200

X

nl xn2 xn3 o xnm

The two preceding columns are used as exogenous input series (some adjustment is needed
for the first two periods), and the series of flows in a particular period, with length equal to
the number of years available for the study, is modeled by a moving average process of
order 2. The estimation is based on the method of least squares.

It was found that the estimates of the autoregressive parameters is equivalent to those one
would obtain by fitting a traditional PAR(2) model with either the method of moments or
the method of least squares (autoregressive parameters generally do not pose any estimation
problems). The meaning of the moving average parameters is somewhat obscure, since they
do not relate directly to the original time series, but rather to the series of one period's flow
over n years in which there is no significant autocorrelation

3.5 Comparison of estimation methods

In order to choose the most satisfactory estimation method, a simulation study was carried
out, in which the three methods described above were used to calibrate the data series for
the South region. The performance of each method was evaluated by generating, for each of
the three estimation methods and for various model orders, 1000 series of 23 years of
weekly data (corresponding to the length of the historical series) and by computing various
statistics in the real data space. These statistics comprised periodic means, variances, lag 1
week-to-week correlations, annual mean, annual maximum, and the distribution of the
annual maximum. It was found that in certain periods, the re-transformation had a
significant impact on the preservation of statistics. It is well-known that a good preservation
of correlations in the transformed data space does not guarantee a good preservation of
correlations in real space. However, in principle it should be possible to preserve the
periodic real means exactly, but some departure was observed in the beginning of the year.
This can only be ascribed to the transformation. Also the standard deviation was in some
cases way off (Figure 3.2). Figure 3.3 shows the average lag 1 week-to-week correlation
for a PARMA(1,1)/LS, a PARMA(1,1)/MOM, and a PARMA(2,2)/MATLAB model. Not
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Figure 3.2 Periodic standard deviation of simulated flows for the South region.
(dotted lines represent simulated values)

surprisingly, it is seen that the MATLAB-method results in a poor preservation of the
correlation structure. Because of the smoothing of correlations in the case of estimation by
the method of moments, the generated mean correlations are also fairly smooth as opposed
to the model based on LS-estimation, in which the periodic real correlations fluctuate,
sometimes very close to, but other times quite away from the historical value. The choice
between the LS-method and the MOM-method is not evident. After a careful study of the
different statistical characteristics of series generated with the three methods, it was decided
to adopt the LS-method for estimating the parameters of the five regional series in the
Ottawa River.
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4 DESCRIPTION OF CSUS

CSUS5 is a computer software developed at Colorado State University by J. Salas and others
for calibration of PARMA models. The program permits to estimate the parameters of
several types of periodic models, including the PARMA(p,q). The program was originally
written for application to monthly flows, so the code had to be revised for the current
project, in which weekly data are used.

Parameters are estimated by the LS method, briefly described in the preceding chapter. A
method of moment solution is used as starting point in the search for a minimum. Initially,
the program attempts to estimate a PARMA(1,1)-model by the method of moments. If a
solution does not exist, a PARMA(1,0) moment solution is used as starting values. With an
initial estimation of the parameters, the Powell method of direct search is invoked to find
the set of parameters that minimizes the sum of squared residuals. The p flows and q
innovations preceding the first data (year 1, period 1) is set to zero, and the objective
function to be minimized is therefore a sum of no terms, where n is the number of years.
The search terminates when a user-specified accuracy has been attained. The variance of the
residual series is used as estimator of g_.

The program provides a variety of outputs such as periodic means and variances of the
input series and of the residual series, periodic autocorrelation structure, and statistics of the
aggregated annual flows. The program also tests for whiteness of residuals and for
stationarity of the solution. The program, however, does not provide output of the periodic
autocovariance function corresponding to the solution. Using MATLAB, we implemented a
routine for calculating this important property following the procedure described in Chapter
2.

When estimating the parameters of PARMA(2,2)-models, the program turned out to be
quite sensitive to the particular computer on which it was run, and also to the Fortran
compiler used to compile the source code. A series of test runs based on the same monthly
data set were made on different computers and with different compilers in order to examine
the differences in the solutions. Although the estimated parameters differed substantially,
the periodic autocovariance structures of the estimated models were quite similar, and it
was consequently found impossible to conclude that any particular computer/compiler
combination was significantly superior to the others. Since no particular preference could be
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attributed to a specific computer, it was decided to use a PC, on which the manipulation of
data is more tractable than on a mainframe. The instability in the solution can be explained
by the high dimensions of the PARMA(2,2)-model. In fact, the objective function
supposedly is very flat around the minimum, indicating that a large number of solutions may
yield virtually identical results in terms of periodic autocovariance structure. The use of
high-order models represents one particular point of view in modeling, namely that the large
number of parameters and the corresponding instability in the solution is unimportant as
long as the covariance structure of the model reasonably well describes the observed

historical correlations.



5 RESULTS OF SINGLE-SITE ESTIMATION

5.1 Introduction
As mentioned in the introduction, our approach to estimating the parameters of the

univariate PARMA-models is the trial-and-error method. Four models, namely the
PARMA(1,0), PARMA(1,1), PARMA(2,1), and PARMA(2,2), were considered. The main
emphasis was put on finding the model whose temporal covariance structure was closest to
the historical (transformed data). Figure 5.1 shows the observed lag 1 to 4 week-to-week
correlation of weekly flows at the Central in the Ottawa River system. Note that around the
spring flood period, there is a significant drop in the correlation. The same drop is seen in
the lag 2, 3, and 4 week-to-week correlation and can easily be explained. In Quebec, there
is usually one big spring flood each year occurring around April-May and extending over a
period of a few days. The fact that the spring flood extends over a périod of the same order
of magnitude as the time scale of the considered flows (weekly) and that the flood season
(i.e. the period in which the spring flood is likely to occur) on the other hand extends over
4-5 weeks give rises to the negative lagged correlations. If the flood does not occur in the
first half of the flood season, then it will occur in the second half, and vice-versa. Hence, -
there will be a tendency that in the flood season of anyone year, one week has a large flow
while the others have small flows compared to their means, i.e. a negative correlation.

100
0.75 -
0.50 -}
0.25
0.00

0.25 -
0.50 -
0.75 -

Figure 5.1 Observed lag 1 to 4 week-to-week correlation in the Central region.
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As the emphasis of the present study is on the generation of extreme flows, particular
attention was paid to a fair modeling of correlations during the flood season. In fact, the
negative correlations appearing in the first lagged week-to-week correlations should be
reasonably well reproduced in order to generate realistic flood scenarios. This may imply
severe requirements to the flow generation model. For example, the PARMA(1,0) was
found unable to reproduce the observed correlations in a satisfactory way, and results for
that model are not presented.

Some general remarks on the results from the CSUS program are appropriate here. It was
generally impossible to obtain a feasible PARMA(1,1) moment solution as starting point for
the least square search algorithm, so a PARMA(1,0) was used instead. Estimation of
PARMA(2,1) and PARMA(2,2) parameters on a PC typically took two to three hours
depending on the number of years available for the site. The hypothesis of normality of
residuals was always rejected. This must be ascribed to the data transformations which do
not always result in normally distributed input data. Likewise, the Anderson tests of
uncorrelated residuals were also rejected. There is no exact test for whiteness when the
correlations structure of the data is periodic, and when applied to weekly data, the
Anderson test is too powerful for practical application (Tao and Delleur, 1976, p. 1548).
We decided to ignore the problem of some autocorrelation in the residual series, and also
the problem of non-normality. The latter issue might be of some concern, but as it is related
to the transformation of flows, it falls outside the scope of the present work.

The number of years available for the analysis is shown in Table 5.1. The fact that the series
are relatively short explains much of the fluctuations in the observed periodic statistics.

Table 5.1 Length of data series

NO 1960-1989 30 years
NE 1961-1989 29 years
E 1968-1989 22 years
C 1965-1991 27 years
S 1967-1989 23 years
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Results of the fitting of three PARMA-models, PARMA(1,1), PARMA(2,1), and
PARMA(2,2) with the method of least squares (program CSUS) are presented in Appendix
C. The periodic autocorrelation structure of each model has been computed according to
the algorithm described in Chapter 2 (the MATLAB code is presented in Appendix B). A
series of figures were prepared, each corresponding to a given lagged periodic week-to-
week correlation. More specifically, we considered the variance, and the lagged correlations
of order 1, 2, 3, 4, 5, and 10. When comparing the three PARMA models most attention
was given to the variance, followed by the lag 1 week-to-week correlation, followed by the
lag 2, and so forth. Furthermore, we paid special attention to the statistical properties
during the flood season, since badly represented statistics during this period may result in
flood scenarios that deviate significantly from the historical (in an average sense).

5.2 North East region

From the figures in Appendix C1, it is seen that the PARMA(1,1) preserves the variance of
the transformed, standardized flows very well. In the first few periods it deviates from 1,
probably due to the initialization of the first residual in the LS-estimation algorithm. The
variance of both PARMA(2,1) and PARMA(2,2) deviates significantly from 1. Deviations
of 20-25% are observed in some periods. In the critical flood season (week 26-35) the
PARMA(2,2) seems to deviate more than the PARMA(2,1) from 1. For correlations up to
lag 4, PARMA(2,1) and PARMA(2,2) do well, whereas the PARMA(1,1) does not
satisfactorily described the critical correlations during the flood season. The PARMA(2,1)
seems to do slightly better than the PARMA(2,2) in describing the lagged correlation. The
PARMA(2,1)-model was therefore selected as the most adequate model for the North East
region.

5.3 North West region

For the North West region, the variance is best reproduced by the PARMA(1,1)-model.
The PARMA(2,2) generally does a better job than the PARMA(2,1) in reproducing the
periodic variance, and notably in the critical flood season. As for the lagged correlations, the
PARMA(1,1) fails to reproduce satisfactorily the correlations during the flood periods,
whereas the other two models essentially do equally well. In the light of these observations,
it was decided to choose the PARMA(2,2)-model for the North West region.
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5.4 East region

Again the PARMA(],1) preserves the variance almost exactly. The PARMA(2,1) and
PARMA(2,2) fluctuates quite much and seem to be equally good (or bad). The same thing
can be said about the lagged correlations, where there is little difference between the two.
The PARMA(1,1) also here fails to reproduce the negative correlations during the flood
season. Since the two higher order models yield quite similar results, the PARMA(2,1)-
model is selected in accordance with the principle of parameter parsimony.

5.5 Central region

For the Central region, the variance of the PARMA(2,2) deviates up to 70% from the
historical, transformed variance during several weeks around and following the flood
season, and it was therefore excluded. Both PARMA(1,1) and PARMA(2,1) do a good job
in describing the variance and the lagged correlations, although for the last property, the
PARMA(2,1) seems slightly superior. It is therefore selected as the appropriate model.

5.6 South region

Historical statistics for the South region are characterized by large fluctuations. The
PARMA(2,2) yields a relatively poor representation of the variance of the transformed
process, the PARMA(1,1) does excellently, and the PARMA(2,1) is somewhere in between.
As for the lagged correlations, the PARMA(2,2) seems worst, the PARMA(1,1) seems
better, and the PARMA(2,1) seems best, although the difference between PARMAC(1,1) and
PARMA(2,1) is small. As a whole, it seems that the PARMA(1,1) provides a reasonable
description of the data for the South region. .

5.7 Summary of results
The estimated model parameters for the five sites are listed in Table 5.2
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Table 5.2 Estimated PARMA(p,q)-parameters for the five regions in the Ottawa River.

North East Region North West Region
T ¢l,‘t ¢2,‘t el,‘! gt ¢l.‘: ¢2,t 6],1: 92,1 gt
1 12740  -0.1320 06600 03540 | 18640 09000 15360  -0.1810 02256
2 1995 09790 10100 01475 | 03230 05210  -0.4530  0.4190  0.3457
3 0.16830 06240  -08470 02520 | 12140 02940 0409  0.1570 03238
4 1.8280  -0.7440 13200 01739 | 0.0940 06710  -0.6090  -0.1640 01781
5 0.6260 02450  0.1710 02256 | 14960  -0.6230 07760 00500  0.3588
6 -1.8100 22770 2798 02043 | 04040 02170  -05730 03430 03047
7 12780 04300 02020 01568 | 07360  0.1790  -0.2830 02680 02025
8 10630  -0.1330 00420 01204 | 06230 02120 05130 03210  0.1714
9 1.0300  -0.1830 04010 03341 | 03000 06150 03790 04140  0.2266
10 12480  -0.2840 04730 02611 | 16960  -0.7430 12070  -0.5270 02218
1 15960  -0.5560 08130 01665 | 16550  -0.7700 13580  -0.3450  0.4020
12 13440 03430 06890 01467 | 04470 04970 03800 04110  0.1289
13 0.6070  0.1860  0.1190 03994 | 02540 06530  -06570 02800  0.2581
14 22870  -1.0200 14860 01592 | 24320 -1.3050 17710  0.1060 03192
15 14650  -0.5870 10900 03588 | 1.6670 06260 12890 0158 03058
16 07100  0.1780 0229 03636 | 05130 04510 04100  0.1180 03636
17 12230 03680 02030 03422 | 21960  -15610  2.1810  -17820  0.515S
18 12420  -0.4630 06290 05055 | 18700 06370 17940  -0.8600 03869
19 | 04920 08380 -12470 04610 | 0.8890 00260 10620  -0.1400 04225
20 | 075%0 09730  -15340 04706 | 07130  0.1930 06660 02180  0.4900
21 28560  -1.5760 25200 04369 | 03020 03960 08130 03670  0.6241
22 11670  -02220 09310 03516 | 0.480  0.5640  -0.0820  0.7760  0.5329
23 10630  -0.0630 10440 04147 | 10400  0.1030 06300 03080  0.5213
24 04550 01310  0.1100 07430 | 03100 00390  -03790  -0.1180  0.6889
25 | 20930 14150 24260 06806 | -0.0930 05700  -0.6070  -0.0730  0.5184
26 03690 01930  -0.1720 06675 | -12690 19660  -19950 12490 04277
27 16820  0.4610  0.8050 02034 | 09060 00010 00460 01750 03192
28 02730  0.5430  -07460 01576 | -0.0100  0.5310 09370 03710 02228
29 21870  -1.2460 11980 02520 | 10970  -03210 03110  0.1510  0.5155
30 | -1.8380  1.9690  -2.8480 04556 | 0.8900  -0.6260  0.0850 03740 07090
31 03810  -0.4470  -0.5960 04665 | -1.9970  -0.8520 25590 26720  0.3624
R 07640  -0.4980  -0.1420 03770 | 09630  -02540  -02170  0.1880  0.1673
33 06940  0.0970 02920 02430 | 10860  -0.1770  -0.1860 02800 02510
34 21950  -11550 13220 02162 | 05920 01520  -0.4960 00220  0.2905
35 | 06910 13030 16810 02714 | 15970  -0.7490  0.5740 00820 03446
36 12670  -0.4220 04230 03295 | -0.7490 08250  -L7700  -0.5980  0.4160
37 | 07520 12650 -1.5910 03147 | 19560  -0.6290 11510 06210 03036
38 18850  -1.1360 03410 03697 | 00830 05060  -0.8270  -0.2840 02777
39 07310 00320  -02360 02852 | 13710 04650 05900  0.1760 03648
40 11720 0.4980  0.1110 04290 | 20230  -0.7540 12370 05340  0.1122
4 10850  -0.1440 04610 03672 | 1.8880  -1.0070 16320  -0.1790 02200
0 03940 03680  -0.5310 02323 | 04730 04100 03850 08870 02510
43 17550  -0.8370 13040 04369 | 07280 00600 00760  -0.0370  0.4134
44 0.5250  0.1870  -0.3840 03080 | 10320 -00530 01650 08060 02256
45 | -13910  1.6280 27000 02228 | 10290  -0.1620 02980 02390  0.4638
46 10560 02510 00720 02116 | 18290  -0.7480 09720 0509 02938
47 17610 07590 09110 02162 | 1079  -02000  0.8310  -02370 03025
48 23950  -1.3500 13790 01640 | 11760  -0.5610 00630  -0.8810  0.2460
49 | 05270 12410  -1.6940 01901 | -0.5920 11760  -0.8060 03160 03576
50 03700  0.4400 05780 02570 | 07830  0.0980 04830 02980  0.4761
51 11310 03880 02340 04382 | 07210 12550  -14660 09920  0.4747
52 | 0630 07810 -1.4610 05476 | 20580 07120 13170 03370 02209
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Table 5.2.(cont.)
East Region Central Region
T ¢1.1: ¢2,1: el,‘t g‘t d)].r ¢2,‘! e It g‘l.’
1 |-19750 21270 30740 01163 05000 03470 01400  0.4330
2 06650 01160  -03930 02107 24540  -13140 15630  0.1260
3 |44630 28420 36180 00918 01610  0.6950  -0.5550  0.2247
4 | 14070 04400 17340  0.0900 05520 03590 02150  0.1665
s [04990 03200 12600 00497 15160  -06310 07850 03283
6 |02780 05660 24530  0.0488 04430 03390  -0.4900 02209
7 |os8710 00540 07700  0.0876 07420 00120  -0.4020  0.2652
8 |1L1740 03240 02140  0.1731 09490  -0.0670  -0.0950  0.2470
9 |0880 0030 03750  0.2581 05130 11300 -11950  0.4970
10 |[21450  -1.0870 11580  0.1849 205800 10500  -14370 02294
11 | 14560 05140 07030  0.2007 02920 04990 07190  0.1927
12 | 14490 04320 07050  0.1764 23620  -1.2790  1.5980  0.0986
13 [29620 17580 26810  0.1714 18950  -09100 12010  0.1414
14 | 06360 02970  -0.5390  0.1267 02170 10850  -13180  0.0784
15 | 09410 00440 05470  0.0955 15110  -0.5660 10970  0.1858
16 |20060 -1.0040 11750  0.0930 11940  -0.1670 14140  0.1011
17 | 01870 0580  -06000  0.1376 0.6060 02870 05810 03192
18 | 14540 05150 06250  0.1884 0.6860 02420 06030  0.3600
19 | 11300 0225 03060  0.1731 03130 05170  -0.0010  0.4147
20 |23280 12420 16000 02343 0.6000 04590 05030  0.2088
21 |27280 15640 19080 02652 0.6390  -0.0530  -0.4200  0.4886
22 | 21520 -1.1630 11570  0.2052 0.8200 01330 00910 02218
23 |-04440 11570  -14780  0.1945 02370  0.4630 03670  0.4610
24 [02740 05120 _ -0.7550  0.2480 26180  -13040 22120  0.5155
25 [-03830 10740  -14400  0.2079 20.0680 0538  -0.7070  0.5402
26 {-19280 21240 30710  0.4045 09360 02790 02250  0.5730
27 04590 01020  -0.6940 02642 0.0680  0.5430  -0.8320  0.4122
28 |o01910 05810 08370  0.1498 00420  0.6060 09570 03318
29 |-02730 07260  -1.6330  0.5685 08650  1.1980  -1.8200  0.4343
30 [-04810 00940  -15310 02162 16920  -1.6320  1.0990 05170
31 | 11360 06510 11810  0.1697 0.8900  -0.1990 02980  0.2460
32 07310 01160 0690 03352 1.8890  -09950  0.8690 02992
33 | 18900 09240 09350 02061 07180 00520 02680 04212
34 |05980 01690 03970 03844 04560 08500  -13030 03147
35 | 17940 07420 08730  0.2621 21100  -11340 14110 03411
36 | 15600  -0.6910 05920  0.1962 201350 07040 09200  0.4462
37 | 23640  -13000 15360  0.1608 02890 06450  -L1110 04970
38 | 14680  -0.5420 08670 02352 14100  -03820 09010 04238
39 [-02020 07060  -1.4990  0.1772 01100 06590  -1.1220 02190
40 | 06410 01990 04180 03329 11350 -0.1400 05630  0.1798
41 2838  -1.6420 20100  0.1739 06070 01620  -0.7600  0.1608
42 |30950 22000 26300 02401 0.1420 06020  -1.1580  0.1980
43 | 11230 01100 01980 02025 10570  -0.0790 06830 02125
44 |-04660 12140  -12820 03469 10140  -02000 00100 02970
45 |os170 12050  -1.8580  0.3399 02190 08660  -13040  0.1832
46 | 14630 05730 07610 03147 1.5460  -0.5920 12010 03114
47 | 15270 03680 04920  0.0918 10710  -0.1550 02960 02621
48 02240 11730  -12030  0.1529 07100 01660 02710 03434
49 1-10500 18210  -19740  0.1190 02280 04830 06110 03272
S0 [ 15130 07440 07730 03795 11070 15130  -22340  0.1648
51 | 21140 09100 13840 02125 09030  -0.0630 00280  0.28%4
52 |-11180 15980  -1.9900  0.2992 0.8010  0.0590 04150  0.4160
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Table 5.2 (cont,)
South Region
T ¢1,1: e],‘t g‘t
1 11110 12380 05198
2 08170 07010  0.6740
3 07140  0.4110  0.7868
4 14450 12860  0.4872
5 11360 11620 03660
6 0.8740 01750 03352
7 0.7080  -0.0600  0.4692
8 07770  0.1060  0.4556
9 0.8050 0.7070 0.6593
10 09790 10340 06577
1 11580  0.6950  0.4007
12 09120 04740 04212
13 10920 11400 03215
14 0.8590 06750  0.4844
15 0.8920 03430  0.4449
16 0.5570  0.1240  0.7482
17 14960 12400 03709
18 0.8700 05250  0.4858
19 09780 05210  0.4083
20 0.6570 03950  0.7140
21 0.6370  -0.0610  0.5213
2 06530 02920  0.758
23 07940 03830  0.8263
24 06750  -12580  0.6320
25 03980  -04220  0.5285
26 20.1520 09990  0.6006
27 0.0380  -09440  0.4238
28 0.4300 02850  0.8855
29 13940 19750  0.4720
30 0.8810 05730  0.5491
31 0.5490  0.4920  0.8668
3 14410 10130  0.5550
33 0.7750 02540  0.5883
34 0.8260  0.4300  0.6194
35 0.4030 03610  0.5746
36 02760  0.0500 09235
37 21880 22490  0.7174
38 0.5440 00760  0.7621
39 0.7670  0.5300  0.8154
40 20.1640 00200  1.0302
4 0.6480 09100  0.8336
42 19550 20170  0.6593
43 0.6060 0.4160 0.8446
44 1.4030 1.6030 0.6496
45 1.0910 0.9820 0.5868
46 10090  0.8660  0.5776
47 0.4930 02570  0.8668
48 1.5160 14880  0.6839
49 07850 05150  0.7500
50 07490 08150  0.8464
st 1.1180 07850  0.7379
52 11890 11370  0.6257
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6 ESTIMATION OF THE CROSS-COVARIANCE
OF RESIDUALS

6.1 Introduction

In order to generate flow sequences that are coherent in space, a multivariate model must
be formulated. Due to the complexity of parameter estimation, the parameter matrices given
in (1) are rarely considered full. An exception is the multivariate PAR(p)-model of Matalas
(1967), which, however, is deemed inadequate for the present study. A common approach
is to consider the parameter matrices ®,, and ©,, diagonal. This procedure is denoted
contemporaneous modeling, because only the lag-0 cross-correlation of (transformed) flows
can be explicitly modeled through the spatial covariance of the residuals. By considering the
parameter matrices diagonal, the different sites involved in the analysis are decoupled and
can be studied separately. Hence, when the parameters at each site have been estimated,
only the spatial correlations of residuals remain to be determined.

In this section, we address the question of how to estimate the spatial correlation of
residuals. There are essentially two possible avenues: the method of maximum likelihood
and the method of moments. The former is by far the most used for more complicated
seasonal models. It consists in deriving the residual series of each site and then to compute
the correlation matrix for each season from these series. The ML method is thus easy to
implement, and always yields results, but it tends to underestimate the true correlations.
Stedinger et al. (1985) derived the moment estimator of the covariance matrix in the case of
a contemporaneous stationary ARMA(1,1) model, and specifically conclude that for
multivariate annual ARMA(1,1) models, the estimator of the residual covariance matrix that
reproduces the observed correlation generally is superior to the maximum likelihood
estimator.

Haltiner and Salas (1988) extended Stedinger results to the contemporaneous PARMAC(1,1)
case. Their derivation of the estimator of G, (periodic cross-covariance matrix of the
residuals) is instructive and is briefly reviewed here. By squaring the left and the right hand
sides of (1), with p=q =1, one obtains
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E[XtXE] = E[(q)1xt—l + € - 9181-—1 )(q)txt-l + €. - 9181—1) ]
= (i)tE[xlez-l ]&)E + &:E[xr-lsz] - (i)tE[xr-laz—l ]@3 &)

+E[s,xf_, ]@f + E[e,sf] + E[e,sf_, ]@f

_étE[et—lxz—l ]&I - étE[st—lsz] + étE[sr-le;r—l ]@3
where the year index has been omitted for notational convenience. <AI>T and @, are assumed
known. Noting that E[ee"]= G, E[x,_&e]]=0, and E[e_&] ,]=0, the above relation can
be written:

G, =M, (0)-dM_,(0)&] + .G, 6]+6.G, & -6.G, 6] O]
in which only the G_-matrices are unknown. Note that G, depends on G__, etc. If a feasible
solution to (6) exists, then the model will exactly reproduce the variance of the
(transformed) flows at each site. However, there is a potential risk in combining, for
example, LS-estimators of the autoregressive and moving average parameters with moment
estimators of the residual variances. The combined solution may not be coherent and could
at some sites lead to periodic autocorrelations that deviate more from the observed
correlations than the pure LS-estimation. It then becomes patticularly important to compute
each sites periodic autocorrelation as described previously. If the solution to (6) is
unsatisfactory, one can choose to preserve only the cross-covariances between sites exactly,
i.e. the off-diagonal elements of M. (0). The procedure for doing this will be described
later. In the following, we consider the problem of estimating G, by the method of
moments when the individual site models are PARMA(2,2), or, in general, any submodel

hereof.

The derivation of (6) is fairly straightforward, because G, can be easily expressed (although
implicitly) as a function of the properties to be preserved, 1(71T (0). In the case of the
contemporaneous PARMA(2,2) model, the derivation of a G_-estimator is less evident.
Note that if the left and right hand site of (1), with p = q = 2 are squared, then lagged cross-
correlations will appear. However, contemporaneous PARMA models do not permit to
preserve explicitly lagged cross-correlations. Preservation of the symmetric lf’[, (0) matrices
imposes @m(m+1)/2 constraints which is exactly the number of degrees of freedom in the
o G, matrices. Therefore, Haltiner and Salas' results for the contemporaneous
PARMA(1,1) model are not generally applicable to models of higher order. In the present
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study, we have developed a moment estimation method for any PARMA(p,q) model with
max{p,q} <2.

6.2 Moment estimation of spatial correlations
To estimate G, we shall make use of the periodic multivariate Yule-Walker equations. The

following definition is important:

E[x x; ]= M, (1) and hence E[x,_le] =M:(1) )

3 20 |

where T indicates a transposed vector or matrix. Note that M_(1) will in general not be
symmetric. With these definitions, one can deduce the first three multivariate periodic Yule-
Walker equations (Appendix A):

M, (0)= E[xtxf]
=M, (1) @], +M,(2) ;. +G,-[®.-0,.]G, 0], (82)
- [Ql,TQI,T—l - q)l,tel.‘lr—l + q)z,t - 92,1: ]GT—ZQ;J

M (1) = E[x_x} |=M,,(0) ®], +M_,(1) @], - G, O],

8b
- [q)l;r—l - 91,1—1 ]G,_z@;, (8b)

M’ (2)=E[x,_,x]|=ML,(1) ®], +M,,(0) @}, -G, ,0;, (8¢c)

A careful inspection of these equations shows that the relations corresponding to the
diagonal elements are simply the univariate cases given in (3a-c). On the other hand, the off-
diagonal elements of M_(0), M_(1), and M (2), as expressed in the above equations, are
defined in terms of off-diagonal elements of themselves and off-diagonal elements of G,
but do not involve any terms from the diagonal of these matrices. This important
observation implies that the variance terms of G_, i.e. the diagonal elements can be
estimated one at the time, and the covariances, i.e. off-diagonal elements can be estimated
independently of the variances. Moreover, when estimating the correlations of residuals,
one needs only consider two sites at the time, since other sites do not affect the particular
element in G, that corresponds to the two sites. Hence, in the following we develop the

estimation procedure for two sites.
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First, equation (8c) is used to eliminate M_(2) from (8a). Then the equations
corresponding to the off-diagonal elements of M, (0) and M (1) are written out.
Considering first the entry (1,2), we obtain from (8a-b)

{l60de, - 4082, + b2, -60. )62 +6042] 623 - (62 -62)82 G2

1t-1

(%)
+GI + 402 MBM+§2 M) = M) - 242 M)

62(30, -61,) G +62 G2 -42 MBM+MP () = $? M (0)
(9b)

The " is used here to distinguish known terms, either estimated parameters or moments
calculated from the data, from the terms which are to be estimated at this step. Hence, there
is an important difference between, for example, M%?(0) and M%?(1). The former is
estimated from the data and preserved by the model; the latter is a model property, not
necessarily equal to what one would get by estimating it from the data. G'® is the
covariance between the residuals at time 1, and M9 (0) = M@ (0) is the cross-covariance
of lag zero, estimated from the data. Since the data are assumed standardized, the cross-
covariance is equal to the cross-correlation. The lag 1 cross-covariance is defined as
M&2(1) = E[x“’x"’] It is important to note that in general MY? (1) # M@ (1). The above
expressions have been obtained from (8a-b) by considering the element (1,2). Two other
sets of equations can be obtained by considering the elements (2,1) in (8a-b), which
corresponds to switching the site indices in (9a-b). Note that the element G!” remains
unaltered, since G{” =G®". Hence, we essentially have 4o linear equations with 30
unknowns, namely G/?, M (1), and M®(1) for 1=1,..,0 . In fact, one of the sets of
equations is superfluous, and can be omitted. Eventually, it can be used to check the
solution. Hence, we consider the system of linear equations consisting of (8a-b) and (8b)
with reversed site indices. These 3o equations can without any major difficulty be solved for
G{?, M (1), and M@V (1).

If the variance of the flows at each site is not preserved exactly by the individual univariate
models, then M®?(0) on the right side of the above equations must be adjusted with a

factor {/M.'(0) MZ(0) where the terms in the square root are the variances produced by

the individual models. This adjustment is necessary in order to correctly reproduce the
correlation of flows.
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The complex structure of the individual site models may impose such constraints on each
series that exact preservation of the spatial cross-correlation of flows is not feasible. For
example, it may appear that some of the estimated correlations between residuals are
greater than one or less than minus one. This, of course, is meaningless, and some
adjustment of the estimated G_-matrices is needed. In general, the requirement to the G,
matrices is that they be positive semidefinite. Hence, if a given G, matrix is negative
definite, an adjustment must be made to make it positive semidefinite. Generally, this will
imply that the correlation of flows will no longer be exactly preserved. The adjustment
should have as little influence on the G, matrices as possible. There seems to be no
standard method for adjusting symmetric, negative definite matrices so as to make them
positive semidefinite. If a G matrix is negative definite (i.e. have negativé eigenvalues) then
one could proceed as follows:

1) Decompose the G matrix in eigenvectors and eigenvalues, P and A, where the columns
of P contain the eigenvectors of G, and A is a diagonal matrix with the eigenvalues on
the diagonal. Hence, G = PAP'.

2) Set the negative eigenvalue in A equal to zero. This defines a new matrix A*.
3) Compute the matrix G* = PA*P', which is positive semi-definite.

4) In order to preserve the variance terms of the original G matrix (i.e. the diagonal

elements), perform the following computation
G, =UG*U

;]

where

[ [GaD /G *(D) 0 0
e e 0

0 0 /G(mrn)/G *(mm)

In order to check to what degree the cross-covariance of the transformed flows are
reproduced by the obtained estimates of G{?, equations (8a-b) (with M, (2) eliminated

from (8a) by means of (8c)) are reformulated as a system of 4a linear equations in MY (0),
M®(0), M8 (1), and M®(1). These equations become:
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=465 M3(0)+ M (0)- 5 ME () -6 MIP()
=606 + 67 - (32 -67)6707 (108)

~($0602, - 5080, +40 6264262

Lr-1

§2 MO+ MBO-MO ()= G202 +(2, 02, )60 (ob)

1~1

plus the same two sets of equations with reversed site indices. Strictly, only three equations
are needed, since M{? (0) = M®”(0). However, the above formulation provides a test of
coherence. In a first step, one should verify that M?(0) is identical to M®"(0). If not, this
could indicate a programming error or lack of precision in the computation. The model
cross-covariance MY?(0) can be compared with the observed cross-covariance of the
transformed data MY?(0).

Lagged cross-correlations are not preserved explicitly. The extent to which an estimated
model produces lagged cross-correlations that resembles the observed can be examined by
comparing M_(1) and M_(2) of the model with the corresponding observed lagged cross-
covariance matrices. Note that M_ (1) is obtained as a biproduct in the estimation of G,.
With known M_(0) and M_(1), M, (2) is readily obtained from (8c). One can generalize
equation (3d) to the multivariate case:

M, (k) =E[xx],]=® M _(k-D)+®, M, ,(k-2) k>2 an

but usually only the first or second lagged correlations need to be examined.
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The method of moments was used to estimate the off-diagonal elements of the periodic
cross-covariance matrices of residuals. The MATLAB computer codes used to compute
these properties are presented in Appendix B. The G_-matrices have dimension 5x5, but
only 10 elements in each are unknown, corresponding to the number of combinations of
two sites out of five. Estimated autoregressive and moving average parameters of each pair
of sites, as well as the observed periodic cross-correlation of transformed flows, were
entered into a program, which as output yielded the periodic cross-covariance of residuals
needed to reproduce the cross-correlations of flows. This resulted in ten vectors of periodic

cross-covariances of residuals, representing an initial estimate of the ten off-diagonal
elements of the G_-matrices. As noted in the previous section, there is no guarantee that

this is a feasible solution. The G, -matrices must be positive semidefinite, but there is no

provision for this in the method of moments. In fact, the problem pertaining to negative
definite matrices turned out to be more severe than expected. Only one of the 52 matrices
were positive definite, 21 matrices had one negative eigenvalue, 28 had two negative
eigenvalues, and two had three negative eigenvalues. All matrices with negative eigenvalues
were modified with the technique described in the previous section. This had a significant
effect on some of the elements of the matrices. The matrix G, had three negative
eigenvalues, G, had two negative eigenvalues, and G, had one negative eigenvalue. The

first three G-matrices were changed as follows?:

[0.35 0.49 0.70 0.53 -0.43 [0.35 0.28 0.20 0.38 -0.32
023 0.88 0.63 —0.45 023 0.16 0.31 -0.24

G,= 012 079 -0.25 > G, = 012 0.22 -0.15
0.43 -0.35 0.43 -0.29

i 0.52 i 0.52
[0.15 0.11 -0.14 0.00 0177 [0.15 0.10 —0.04 0.04 0.10
035 -0.23 0.24 012 : 0.35 -0.15 020 0.10

G,= 021 -0.23 045 - G, = 0.21 —0.08 0.25
013 0.13 0.13 0.06

0.67 I 0.67

2) The elements of the matrices correspond to the regions in the following order: North East, North West,
East, Central, and South.
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Table 7.1 Elements of the periodic covariance matrices of residuals

] gll gl2 gl3 gl4 gls g22 23 g24
1 0.3540 0.2819 0.1983 0.3844 -0.3204 0.2256 0.1604 0.3104
2 0.1475 0.1047 -0.0418 0.0357 0.1041 0.3457 -0.1538 0.2035
3 0.2520 0.2643 -0.0939 0.1330 -0.1907 0.3238 -0.1158 0.1726
4 0.1739 0.1243 -0.0828 0.1308 -0.1998 0.1781 -0.1066 0.1279
5 0.2256 0.1637 0.0511 0.1373 -0.0928 0.3588 0.0997 0.2250
6 0.2043 0.0737 0.0322 -0.0602 0.1127 0.3047 -0.0843 0.1700
7 0.1568 0.1043 0.0818 0.0313 -0.0207 0.2025 -0.0189 0.1924
8 0.1204 0.0891 0.0087 0.1350 0.0634 0.1714 -0.1255 0.1965
9 0.3341 0.1797 0.1806 0.3385 -0.0497 0.2266 0.0253 0.2070
10 0.2611 0.1483 0.1206 0.1560 0.3679 0.2218 0.0120 0.0579
11 0.1665 0.0998 -0.1170 -0.0437 -0.1495 0.4020 -0.0716 0.0803
12 0.1467 0.0800 -0.0575 0.1137 0.1331 0.1289 0.0257 0.0593
13 0.3994 0.1710 0.0253 0.1468 0.2901 0.2581 -0.0384 0.0827
14 0.1592 0.0777 -0.0231 -0.0044 0.2548 0.3192 0.1274 0.0933
15 0.3588 0.2497 0.0655 0.1050 -0.0952 0.3058 -0.0151 -0.0056
16 0.3636 0.2921 0.0097 0.0231 0.2039 0.3636 0.0452 0.0399
17 0.3422 0.2851 0.0499 0.1618 0.0004 0.5155 -0.0470 0.0020
18 0.5055 -0.0077 0.0851 0.2432 0.1203 0.3869 0.0124 -0.0937
19 0.4610 -0.0392 -0.0423 0.0047 -0.0215 0.4225 0.0047 -0.0961
20 0.4706 0.0868 0.1353 0.1472 0.1871 0.4900 0.2834 0.0475
21 0.4369 0.5121 0.2590 04168 0.3277 0.6241 0.2573 0.4833
22 03516 0.2948 0.1994 0.2632 0.4194 0.5329 0.1558 0.2256
23 0.4147 0.4542 0.2495 03121 0.4338 0.5213 0.3004 0.3131
24 0.7430 03105 0.1525 0.2697 0.2692 0.6889 0.2722 0.3792
25 0.6806 0.4882 0.3356 0.5324 0.4302 0.5184 0.2969 0.4530
26 0.6675 0.5072 0.3969 0.5377 03914 0.4277 0.2611 0.3925
27 0.2034 0.2490 0.2102 02779 <0.1121 0.3192 0.2755 0.3224
28 0.1576 0.1197 0.1118 0.1740 -0.3173 0.2228 0.1213 0.1870
29 0.2520 0.2706 0.2833 0.1998 -0.0884 0.5155 0.3249 0.2423
30 0.4556 0.5538 0.3039 0.4557 -0.3235 0.7090 0.3522 0.5259
31 0.4665 0.3651 0.2642 0.1795 0.0084 0.3624 0.2444 0.2513
32 0.3770 0.1795 0.0452 0.3284 0.3886 0.1673 -0.0756 0.1871
33 0.2430 0.1785 0.1085 0.3050 0.2000 0.2510 0.2056 0.2699
34 0.2162 0.1662 0.2619 0.1525 0.2040 0.2905 0.1460 0.1854
35 0.2714 0.2403 0.0766 0.1565 -0.0142 0.3446 0.2329 0.2954
36 0.3295 0.3052 0.1473 0.3783 0.0429 0.4160 0.2357 0.3863
37 0.3147 0.2520 0.2015 0.1428 02755 0.3036 0.2057 0.3109
38 0.3697 0.1511 0.1803 0.1494 -0.0672 0.2777 0.1142 0.0803
39 0.2852 0.0789 0.0879 0.1997 -0.0186 0.3648 -0.1003 0.1103
40 0.4290 0.2127 0.1176 0.1307 0.1578 0.1122 0.0935 0.0586
41 0.3672 0.2834 0.1876 0.2311 -0.1522 0.2200 0.1351 0.1827
42 0.2323 0.2307 0.2010 0.1273 0.1208 0.2510 0.2374 0.1788
43 0.4369 0.4056 0.1447 0.1675 -0.4186 0.4134 0.2055 0.2066
44 0.3080 0.1563 0.2114 0.0811 -0.0284 0.2256 0.2293 0.0137
45 0.2228 0.2628 0.1255 0.0141 0.0084 0.4638 0.3139 0.1815
46 0.2116 0.2288 0.1804 0.2136 0.0681 0.2938 0.1906 0.2303
47 0.2162 0.1340 0.0707 0.1538 -0.2314 0.3025 0.1665 0.2743
48 0.1640 0.1064 0.0895 0.2331 0.1378 0.2460 -0.0773 0.1629
49 0.1901 0.1640 -0.0246 -0.0104 0.0435 0.3576 0.0918 0.2334
50 0.2570 0.2490 0.2624 0.1251 -0.2266 0.4761 0.3775 0.2640
51 0.4382 0.2652 0.0296 0.3061 -0.1207 0.4747 0.1537 0.2712
52 0.5476 0.1644 0.1804 0.0530 -0.3323 0.2209 -0.1398 0.2026
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Table 7.1 (cont.)

x 25 £33 g4 £35 g4 g45 855

1 02385 01163 02243  -0.1451 04330 02880  0.5198
2 00958 02107  -0.0837 02521  0.260 00558  0.6740
3 01443 00918  -0.1419 00540 02247 00686  0.7868
4 00551 00900  -0.1179 00174 01665  -0.0195 04872
s 200592 00497 01252 00374 03283 00713  0.3660
6 200403 00488  -0.1032 00059 02209 00441 03352
7 00068 00876  -0.0881  -0.0060 02652 00715  0.4692
8 00124 01731  -0.1038 01036 02470 00934  0.4556
9 00604 02581 00983 02111 04970  -0.1181  0.6593
10 03144 01849 02018 02055 02204 02834 06577
11 0.1832 02007  -0.0413 00489  0.1927 01081  0.4007
12 00576 01764  0.0776 00896 0098 00768  0.4212
13 0125 01714  -0.1084 01097  0.1414 00571 03215
14 02417 01267 00979 00599 0078 00684 04844
15 00683 00955 01113 00553  0.I858  -00846  0.4449
16 01411 00930 00953 00859 01011 00864 07482
17 0.145% 01376 02000 00260 03192  -00026 03709
18 01302 01884 02329 00704 03600 01108 04858
19 02606  0.1731 02466 02038 04147 02509  0.4083
20 00979 02343 00180 01411 02088 03106  0.7140
21 04068 02652 02130 02242 04836 01565 05213
22 03821 02052  0.1967 03896 02218 03939 07586
23 0.5210 01945 02057 03751 04610 05041  0.8263
24 0.5494 02480 03557 03820 05155 05429 06320
25 04290 02079 02392 03158 05402 02610  0.5285
26 03702 04045 04669 03412 05730 04687  0.6006
27 00850 02642 02488  -0.1131 04122 01767 04238
28 03993 01498 02112 02945 03318  -04104 08855
29 00144 05685 02202  0.1847 04343 00879  0.4720
30 04482 02162 03250  0.1890 05170 01985  0.5491
31 02253 01697  0.1596  0.1069 02460 03536  0.8668
32 0.1900 03352  -0.0151 02225 02992 03252  0.5550
33 01226 02061  0.1613 01671 04212 01483  0.5883
34 00347 03844 02496 03407 03147 01171 06194
35 0.0079 02621 02840 01095 03411 00761  0.5746
36 00327 01962 02070  0.1880 04462 00737 09235
37 01668 01608 02027 02275 04970 01751 07174
38 02454 02352 02717 02563 04238 03310 07621
39 05292 01772 00444 01470 02190 00662  0.8154
40 00859 03329 01291 0419 01798 04007 10302
41 20.1480  0.739 00835 01674 01608  -02044  0.8336
) 0.1376 02401  0.1987  0.1599  0.1980 00672 06593
43 03117 02025  0.1907 00603 02125  -02018  0.8446
44 00036 03469 01439 02155 02970 00793  0.6496
as 01234 03399  0.1636 03401  0.1832 0069  0.5868
46 00587 03147 03061 03568 03114 0298  0.5776
47 201176 00918 01496 00542 02621  -02083  0.8668
48 00440 01529 01155  0.1287 03434 01132  0.6839
49 00102 01190 01839  0.843 03272 01679  0.7500
50 00227 03795  0.1743 00324 01648  -00457  0.8464
51 00030 02125 01352  0.1507 02894 00575  0.7379
52 02546 02992  0.1284  0.1419 04160 00423 06257
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0.25 032 -034 0.10 -0.22 0.25 026 -0.09 0.13 -0.19

032 -019 029 -0.14 032 -012 0.17 -0.14

G, = 0.09 -0.66 -0.15 9 G, = 0.09 -0.14 -0.05
0.22 0.07 0.22 007

0.79 0.79

It is seen that part of the problem is that some of the covariances in the initial matrices are
"too" high as compared with the corresponding variances. For example, the moment

solution requires that the correlation coefficient between the residuals in region 1 and 3 at
time T=1 be 0.70/,/0.35-0.12 =3.4. Since correlation coefficients are restricted to the

interval [-1;1], the element at row 1, column 3 must be reduced with at least a factor 3.4.
One cannot generally conclude that the number of negative eigenvalues determines the
"amount" of correction needed, since also the value of the eigenvalues are important. The
number of negative eigenvalues, which in our algorithm is set to zero, determines the rank
of the adjusted G-matrices. For example, the matrix G,, which has three negative
eigenvalue, is modified to a matrix with rank 2. This means that the generated residual
vectors at T =1 only have two degrees of freedom, or, in other words, two elements of the
residual vectors uniquely determine the three others. Note that the variance terms of the
matrices (diagonal elements) remain unchanged. They are identical to the values listed in
Table 5.2.

The complete set of adjusted G-matrices is given in Table 7.1. An important step in the
analysis is to evaluate the consequences of the adjustments made on the initial moment
estimates. The theoretical procedure described in the previous section was implemented
(see Appendix B) and invoked in order to compute the cross-covariance of generated flows.
The results are shown in Figure 7.1. The following conclusions can be drawn from the
figures:

1. The correlations between the transformed flows in certain regions are substantially
underestimated in the beginning of the (hydrological) year. This is especially true for
the combinations involving the East region. It should be noted, however, that the
flows in this period are relatively low, thus reducing the practical impact of this
underestimation.

2. The cross-correlations are generally well preserved during the critical flood seasons.
In the light of the objectives of this study, this is a very pleasant observation.

3. Correlations between the South region and the other regions are well preserved. This
can probably be ascribed to the fact that the site model at South is a PARMA(1,1). In
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fact, for a close reproduction of cross-correlations it seems advantageous that the site
models be as simple as possible. (For example, if all site models were PARMA(1,0),
there would be no problem in preserving the observed cross-correlations.)

4. The adjusted moment estimates yield cross-correlations of flows that are generally
closer to the observed, than those corresponding to ML-estimates.

The estimation of the G-matrices completes the calibration of the multivariate PARMA-
model. |
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Figure 7.1 Observed and fitted cross-correlation of flows
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8 CONCLUDING REMARKS

The results presented in this report constitute only one element of a flow-generator
developed for the Ottawa River system. It will be used in connection with a spatial
disaggregation model, and a time disaggregation scheme that takes the weekly data down to
a time scale of one day. Hence, when evaluating the output of the flow-generator, several
other elements enter as potential sources of errors or inadequacies. It is important that each
component of the generator be thoroughly tested and evaluated. We have developed several
routines that permit to test and evaluate the performance of the multivariate PARMA model
as applied to transformed weekly data.

Apparently, for models beyond the PARMA(1,1), the method of moments has never been
used to estimate the residual cross-covariances. Although no exact feasible moment solution
could be obtained in this study, the approximate solution, based on corrected G-matrices,
turned out to be generally superior to the ML-method. More research should be devoted to
techniques for adjusting matrices that are negative definite. We examined several options
and selected the one that seemingly gave the best results. However, it cannot be excluded
that even better methods can be found.
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Appendix A. Periodic multivariate Yule-
Walker equations

The periodic multivariate Yule-Walker equations can be deduced as follows. By definition,

we have
E[X X7]=M,(0) (AD)
E[X X1, ]=M,() and E[X,_ X]]=M(1) (A2)
E[eref ] =G, (A3)
E[X _el]=0 fori>0 | (A4)
The multivariate PARMA(2,2) model has the form
X, =9, X_+®, X ,+¢,-0,.¢_,-0,¢ , (AS)

Using the above definitions, one easily shows that
E[X el|=E[e.X]]=G, (A6)
E[Xel,]=[®.-8,]G., and E[e_X]]=G, [0}, -6]] (A7)
E[X.el,]=[®,.,®.-0, @, +®, -0,.]G,, and
E[e. . X;|=G. [@]. 0], - O] @] +®; -0} ] (A8)

The covariance matrix of X_ and X_; is obtained by multiplying (AS5) by X__, and taking
expectation;

M, (0) = E[X.X[| =M, () ®], + M, (2) ®;, +G, - [®,.-O,.]|G, 0],

- [@,.9,.,-2,.0, ,+®,.-0,.]G_,0], (49)
MI()=E[X,X']=M,,(0) @, +M,,() ®], -G 6!, -[®,., -6, ]G, .8l

(A10)

M;(2) = E[X, X]|=ML,(l) ®], +M, ,(0) ®],. -G, ,0; (A11)

M} (k) =E[X X[|=ML (k- ®] +M_,(k-2)®;, k>2 - (Al2)

The univariate cases (3a-d) correspond to the diagonal elements of the above matrices.
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APPENDIX B MATLAB PROGRAMS

The following pages contains a listing of some of the most important routines developed in
this project for calibrating and testing a multivariate PARMA(2,2) model. The following
table summarizes the name and purpose of the four main functions and routines.

Table B1 MATLAB subroutines

modelcov : The function modelcov takes as input the estimated model
parameters (autoregressive, moving average and variance of
residuals) of a univariate PARMA(2,2) model, or any sub-
model. It returns the periodic variance and the periodic
autocorrelation.

gij : The function takes as input the estimated model parameters
(autoregressive and moving average) of a bivarate
PARMA(2,2) model and the observed cross-correlation
between the transformed flows at the two sites. It returns a
vector containing the covariance terms in the 52 covariance
matrices of residuals, which produces exactly the observed
cross-correlation of flows. However, the solution may not be
feasible!

dij : This routine examines each of the 52 (5 x 5) matrices for
negative eigenvalues. If negative eigenvalues are present, the
matrix is adjusted to make it positive semidefinite.

modelcol : The function takes as input the estimated model parameters
(autoregressive and moving average) of a bivariate
PARMA(2,2) model and the cross-covariance of residuals
between the two sites. The function returns the
corresponding  cross-correlation of transformed flows
between the two sites.
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% (2222222232222 2223222 X3 22222322222 2222X222 222222232222 222X22 22}
3 Covariance structure of PARMA(2,2) and sub-models

% @1994 by Peter F. Rasmussen

% 1222332222222 2222222222322 2X22X2223 22222222222 X222 2222222222322 )]
%

$ function [var, scr] = modelcov(phi,tht,qg)

]

%

% Input: phi (2 x 52) : phi parameters

% tht (2 x 52) : tht parametezrs

8 g (1 x 52) : residual variance

%

$ Output: scr (10 x 52) : seasonal correlations up to lag 10

% var (1 x 52) : variance of process

% _____________________________________________________________

function [var, scr] = modelcov{phi,tht,qg);

§ ** Define constants
m=length(g);
nmslag=10;

$§ ** Initialization of coefficient matrix
a = zeros(3*m,3*m);
clear y;

$§ ** Calculate some useful constants
for i=1l:m

il = i-1;
i2 = i-2;
if i==
il = m;
i2 = m-1;
end
if i==
i2 = m;
end
aa{(i) = tht(2,1i) * g(i2);
bb(i) = -tht(1,i) * g(il) + aa(i) * tht(1l,il);
cc(i) = g(i) + tht(l,i)”*2 * g(il) + aa(i) * tht(2,1i);
end;

$ ** £il1]l out coefficient matrix

B e e e e e e S i e e e
% phi(l,t) m(1,t-1) + phi(2,t) m(0,t-2) - m(2,t) = aa(t)
B e e e e e e i o e e e e
for i=1l:m
if ji==
a(i,3) = -1;
a(i,3*m-5) = phi(2,1i);
a(i,3*m-1) = phi(l1,i):
y(i) = aa(i);
elseif i==2
a(i,6) = -1;
a{(i,3*m-2) = phi(2,1i);
a(i,2) = phi(1,1i):
y(i) = aa(i);

else
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a(i,3*i) = -1;
a(i,3*i-8) = phi(2,1i);
a(i,3*i-4) = phi{l,i);

y{i) = aa(i);
end;
end;
B e e o e e e e e e
2 m(l,t) - phi{(l,t) m(0,t-1) - phi(2,t) m(1,t-1)
% = bb(t) - phi(l,t-1) aa(t)
B et e e e
for i=1l:m
if i==
a{m+i,2) = .1;
a{mt+i,3*m-2) = -phi(1,i);
a(mt+i,3*m-1) = -phi(2,i);
y(m+ti) = bb(i) - aa(i) * phi(l,m);
else
a(m+i,3*i-1) = 1;
a(m+i,3*i-5) = -phi(1,1i):
a(mt+i,3*i-4) = -phi(2,1i);
y(m+i) = bb(i) - aa(i) * phi(l,i-1);
end;
end;
B e e e e e e e e e e o e e e e o e
% m(0,t) - phi(l,t) m(1,t) - phi(2,t) m(2,t)
% = cc(t) + phi(1l,t) bb(t) - aa(t) [phi(l,t) phi(l,t-1) + phi(2,t)}
e e e e e e e e e e o
for i=l:m
if i==
a(2*m+i,3*i-2) = 1;
a(2*m+i,3*i-1) = -phi(1,i):;
a(2*m+i,3*i) = -phi(2,1i):
y{2*m+i) = cc(i) - aa(i) * (phi(l,1i)
* phi(l,m)+phi(2,i) ) + bb(i)*phi(l,i);
else
a(2*m+i,3*i-2) = 1;
a(2*m+i,3*i-1) = -phi(l,i);
a(2*m+i,3*i) = -phi(2,i):
y(2*m+i) = cc{i) - aa(i) * (phi(l,i) .
* phi(l,i-1) + phi(2,1i) ) + bb(i)*phi(l,1i);
end;
end;

$ ** Solve a * x = y for x
x=a\y';
clear a

$ ** Store solution x in scr (matrix of seasonal covariances)
clear var;
clear scr;
for i=1l:m
var(i) = x(3*i-2);
scr(l,i) X(3*i-1);
scr(2,1i) x(3*1);
end;
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$ ** Compute seasonal covariance up to order mslag
for k=3:mslag
for i=1:m
if i==
scri(k,1i)
elseif i==
scrik,1i)
else
scr(k,i)
end;
end;
end;

phi(l,i)*scr(k-1,m) + phi(2,1i)*scr(k-2,m-1);

phi(l,1i)*scr(k-1,i~1) + phi(2,1i)*scr(k-2,m);

phi(l,i)*scr(k-1,i-1) + phi(2,i)*scr(k-2,i-2);

fl

§ ** Compute seasonal correlations up to order mslag
for i=1l:m
for k=1l:mslag

if(i-k>0)
scr(k,i) = scr(k,i) / sqrt(var(i)) / sqrt(var(i-k));
else
scr(k,i) = scr(k,i) / sqrt(var(i)) / sqgrt(var(i+l2-k));
end;
end;

end;
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P dP gp P P P P P P AP dP AP P P P P I P P P P P P P P dP P PP PP PP PPN P

&

Input

L3 X222 22222222222 222222222 R 2222222222 dR 2R R ]

Moment estimation of the periodic cross-covariance of
residuals at two sites

@1994 by Peter F. Rasmussen

(2232222222322 2222322222222 2222222322 222222222222 2222222232 222222 ]

Comment:
For a given solution for phi and tht at two sites,
and observed cross correlation 'ml2' of flows at the
same two sites, the program computes the covariance
of residuals 'gl2' that produce the cross correlation
of flows.

NB If gl and g2 (the residual variances at the two

sites) do not produce a model variance of exactly

1, then it might be preferable to estimate the gl2
that produces a cross covariance of

mi2* (varl*var2)*0.5, where varl and var2 are the

the model variance (these can be obtained with

the routine MODELCOR.M). This adjustment assures

the model generates flows with the observed cross
correlation, although not with the observed variance.

It is very important to check that the covariance
matrix G is consistent, i.e. is positive semi-definite.
There is no guarantee that a moment solution exists!

function cov=gij(phil,thtl,phi2,tht2,ml2)

phil (2 x 52) : matrix for site 1
thtl (2 x 52) : matrix for site 1
phi2 (2 x 52) : matrix for site 2
tht2 (2 x 52) : matrix for site 2
ml2 (52) : correlations of transformed data

function cov=gij{phil, thtl,phi2, tht2,ml2)

m=52;

$ ** Fill out coefficient matrix
clear A y x .

for i=1l:m

il
i2
if

i-1;
i-2;

i==

il
i2

= mnm;
= m-1;

elseif i==

end

i2

= m;
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$ ** First set of equations

A(i,i2) = -( (phil(1,i)*phil(1,il) - phil(1l,i)*thtl(1,il)
+ phil(2,i) - thtl(2,i) ) * tht2(2,i) ...
+ thtl1(2,i)*phi2(2,1i) )2

A(i,il) = -tht2(1,i) * ( phil(1,i) - thtl(1,i) );

A(i,i) = 1;
A(i,m+il) = phil{(1l,i) * phi2(2,i);
A(i,mt+i) = phi2(1,i);

% ** Second set of equations

A(m+i,i2) = tht2(2,i) * ( phil(l1,il) - thtl(1,il) );
A{m+i,il) = tht2(1,1i);

A(m+i,m+il) = -phi2(2,i);

A(m+i,2*m+i) = 1;

§ ** Third set of equations

A(2*m+i,i2) = thtl(2,i) * ( phi2(1,il) - tht2(1,il) );
A(2*m+i,il) = thtl(l,i);

A(2*m+i,mt+ti) = 1;

A{2*m+i,2*m+il) = -phil(2,i);

§ ** Right hand side
y{(i) = ml2(i) - phil{(2,i)*phi2(2,i)*ml2(i2);
y({m+i) = phi2(1,i)*ml2(il);
y(2*m+i) = phil(1,i)*ml2(il);
end;

§ ** Solve system for vector x
§ ** The elements of x are [gl2(1:m) ml12(1l) (1:52) m21(1) (1:52)]
x=A\ y";

cov=x(1l:m);
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138 A4S 2222222222232 2228222222 2222222 a2 222 222223222222 222222

% Adjustment of covariance matrices of residuals

% Q1994 by Peter F. Rasmussen
3222222322222 222 a2 di R sl s issdss]

Comment: The procedure for adjusting the G matrices (i.e.
making them non-negative definite) consists of
the following steps:

1 The G matrix is firat decomposed into eigenvectors
and eigenvalues, EVEC and EVAL, using the 'eig'
function of MATLAB. v

2 If G has negative eigenvalues, then these are set
to zero. An adjusted G matrix is computed as
CORRG = EVEC * EVAL * EVEC'
where EVAL is the adjusted diagonal matrix of
non-negative eigenvalues
an additional adjustment is made to ensure that the
variances in the original G matrix are preserved.
CORRG is multiplied from left and from right with
a diagonal matrix having the elements
sqrt( G(ii) /CORRG(ii) )

Input : parameters and flow values for each of the five
sites must be specified in the beginning of the
program, as well as the model variance corrsponding
to each site (use program MODELCOV)

Output: vectors dij, i=1,..,5 I=i,..,5 which are the
elements of adjusted G matrices

mmij : model cross—covariance Of flows at site i and j

9P dP dP P P P dP dP O OP dP P P AP dP P GO dP OP OgP P P P P P P P P P P
W

% Selected LS—solution for the five sites

% RESI_VAl.MAT contains the parameters below plus the
% model variances corresponding to each solution
load resi_val

% Define input data

phil = phi ne;
thtl = tht_ne;
gl = g_ne;
ql = q _ne;
mll = var ne;
phi2 = phi_no;
tht2 = tht no;
g2 = g_no;
g2 = q_no;

m22 = var_no;

phi3 = phi_e;
tht3 = tht_e;
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g3 = g_e;

q3 = q_e;

m33 = var_e;
phi4 = phi c;
tht4 = tht_c;
g4 = g_c;

q4 = q_c;
md44 = var c;
phi5 = phi_s;
tht5 = tht_s;
g5 = g_s;

a5 = gq_s;

mb5 = var_s;

% ** compute cross-correlations

ml2 = cros_cor(ql,q2) .* sqrt(mll.*m22);
ml3 = cros_cor(ql,q3) .* sqrt(mll.*m33);
ml4 = cros_cor(ql,q4) .* sqrt(mll.*md4);
ml5 = cros_cor(ql,q5) .* sqrt(mll.*m55);
m23 = cros_cor(q2,q3) .* sqrt(m22.*m33);
m24 = cros_cor(q2,q4) .* sqrt(m22.*m44);
m25 = cros_cor{q2,q5) .* sqrt(m22.*mS5);
m34 = cros_cor(q3,q4) .* sqrt{(m33.*md4);
m35 = cros_cor(q3,q5) .* sqrt(m33.*m55);
m45 = cros_cor(q4,q5) .* sqrt{(m44.*m55);

% ** Estimate covariance matrices of residuals

gl2 = gij(phil,thtl,phi2, tht2,mi2);

gl3 = gij(phil,thtl,phi3, tht3,ml3);

gl4 = gij(phil,thtl,phi4, tht4,mldq);

gl5 = gij(phil, thtl,phi5, tht5,ml5);

g23 = gij(phi2,tht2,phi3, tht3,m23);

g24 = gij(phi2,tht2,phid, tht4,m24);

g25 = gij(phi2, tht2,phi5, tht5,m25);

g34 = gij (phi3,tht3,phi4, tht4,m34);

g35 = gij (phi3, tht3,phi5, tht5,m35);

g45 = gij (phi4, tht4,phi5, tht5,m45);

% ** Decompose G matrices

for i=1:52

G = [gl(i) gl2(i) gl3(i) gl4(i) gl5(i)

gl2(i) g2(i) g23(i) g24(i) g25(i)
gl3(i) g23(i) g3(i) g34(i) g35(i)
gl4(i) g24(i) g34(i) g4(i) g45(i)
gl5(i) ¢g25(i) g35(i) g45(i) ¢g5(i) 1:

% ** Decompose G in eigenvectors
[evec eval] = eig(G):
eval = real(eval);

and eigenvalues

§ ** Set negative eigenvalues equal to zero
ix = find(eval<0);
eval (ix)=zeros (1, length(ix));

% ** Compute adjustéd G matrix
corrG = evec * eval * evec';
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% ** Adjust corrG matrix in order to preserve variances, i.e
% the diagonal elements of matrix G
diag{sqrt(diag(G)./diag(corrG)));

factor

corrG = factor * corrG * factor;

D

% ** Store result in

= corrG;

if i==

dil

D(1,5);

d22
d33
d44
ds5

else

dil
di2
di3
di4
d15
d22
d23
d24
d25
d33
d34
d35
d44
d45
d55

end

o nn

o nono oo nnn

D(1,1); dl2

D(2,2); d23
D(3,3); d34
D(4,4); d4s

D(S5,5):

[d1l
[d12
[d13
[d14
[d15
[d22

[d24
[d25
[d33
[d34
[d35
[d44
[d45
[d55

10 vectors

D(1,2); di3

D(2,3); d24
D(3,4); d35
D(4,5);

D(1,3); dl4

D(2,4); d25
D(3,5);

% ** Decompose to D matrix to B where D=RB'
[evecD evalD]l=eig(D);
= real (evecD*sqrt (evalD));

B

end

g %*
mml2
mml3
mml4
mml5
mm23
mm2 4
mm25
mm34
mm35
mm4 5

Compute model crosscorrelation

| T O 1 S IR 1 |

modelcol (phil, thtl,phi2, tht2,d12);
modelcol(phil, thtl,phi3, tht3,d13);
modelcol (phil, thtl,phid4,tht4,d14);
modelcol (phil, thtl,phi5, tht5,d15);
modelcol (phi2, tht2,phi3, tht3,d23);
modelcol (phi2, tht2,phi4, tht4,d24);
modelcol(phi2, tht2,phi5, tht5,d25);
modelcol (phi3, tht3,phi4, tht4,d34);
modelcol (phi3, tht3,phi5, tht5,d35);
modelcol (phi4, tht4,phi5, tht5,d45);

il

D(1,4);

D(2,5);

dis
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IS A S22 S22 22222 222 iRl s s i s 22 il isdss il lil s sy

% Cross-correlations of flows at two sites corresponding
L ] to a calibrated model
% @1994 by Peter F. Rasmussen

S22 228222222222 ad sl ds i sl s sl st st ittt sl sl

Comment: For a given solution for phi and tht at two sites,
and an estimate of the covariance of the residuals,
the program permits to evaluate the correlation of
flows at the two sites
NB Before using this program, it should be verified

that all G matrices are positive semi-definite.
If this is not the case, an ajustment must be
made on G%

function ml2=modelcol (phil,thtl,phi2,tht2,gl2)

Input: phil (2 x 52) : matrix for site
thtl (2 x 52) : matrix for site
phi2 (2 x 52) matrix for site
tht2 (2 x 52) : matrix for site 2
gl2 (52) : covariance of residuals

NP

..

Output: ml2 (52) : correlations of transformed data

dP dP dP dP dP dP P dP dP P P P OP P dP P dP P P N P

function ml2=modelcol (phil,thtl,phi2,tht2,gl2)

% ** Define constant
m= 52;

% ** Initialize variables
A=zeros (4*m,4*n) ;
clear y

% ** Fill out coefficient matrix
for i=1l:m
il=i-1;
i2=i-2;
if i==
il=m;
i2=m-1;
end
if i==
i2=m;
end

$ ** First set of equation corresponding to ml12(0)
A(i,i2) = -phil(2,i)*phi2(2,1);
A(i,i) = 1;

A(i,2*m+il) = -phil(l,i)*phi2(2,i);
A(i,2*m+i) = -phi2(1,i);
y(i) = -tht1(2,i)*gl2(i2)*phi2(2,i) + gl2(i) ...

- ( phil(1,i)-tht1(1,i) )*gl2(il)*tht2(1,i) ...
- ( phil(1,i)*phil(1,il) - phil(1,i)*tht1(1,il)
+ phil(2,i) - thtl(2,i) ) * gl2(i2) * tht2(2,i});
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§ ** Second set of equation corresponding to m21(0)
A(m+i,m+i2) = -phi2(2,i)*phil(2,1i);
A(m+ti,m+i) = 1;

A(m+i,3*m+il) = -phi2(1,i)*phil(2,i);
A(m+i,3*m+i) = -phil(l,i);
y(m+i) = -tht2(2,i)*gl2(i2)*phil(2,i) + gl2(i) ...

- ( phi2(1,i)-tht2(1,i) )*gl2(il)*thtl(1l,1i)
- ( phi2(1,4i)*phi2(1,il) - phi2(1l,i)*tht2(1,il)
+ phi2(2,i) - tht2(2,i) ) * gl2(i2) * thtl(2,i);

% ** Third set of equations corresponding to ml2(1)

A(2*m+i,il) = phi2(1,i):

A(2*m+i,2*m+il) = phi2(2,1i);

A(2*m+i,3*m+i) = -1;

y(2*m+i) = gl2(il)*tht2(1,i) + (phil(1l,il)-
thtl(1,4il1))*gl2(i2)*tht2(2,1i);

% ** Forth set of equations corresponding to m21(1)

A(3*m+i,m+il) = phil(l,i);
A(3*m+i,3*m+il) = phil(2,1i):
A(3*m+i,2*m+i) = -1,

y(3*m+i) = gl2(il)*thtl(l,i) + (phi2(1,il)-
tht2(1,1il1))*gl2(i2)*thtl(2,1i);
end

$ ** Solve system for vector x
x=AaA\y";

ml2 = x(1l:m);
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North East region

Model variance
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North East region

Lag 1 correlation
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North East region

Lag 4 correlation
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North West region

Model variance
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North West region

Lag 1 correlation
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North West region
Lag 4 correlation
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East region
Lag 1 correlation
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East region
Lag 4 correlation
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Calibration of a multivariate PARMA model




Appendix C. Periodic variance and periodic autocorrelations of fitted models
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South region
Model variance
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— Observed —=- PARMA(1,1) -=- PARMA(2,1) ~= PARMA(2,2)
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Calibration of a multivariate PARMA model

1.0

South region
Lag 1 correlation

— Observed - PARMA(1,1) -=- PARMA(2,1).~=~ PARMA(2,2)
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South region
Lag 5 correlation
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— Observed -=- PARMA(1,1) -=- PARMA(2,1) -~ PARMA(2,2)






