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1 INTRODUCTION 

The present report summarizes various aspects of the development and calibration of a 

multivariate P ARMA model for the Ottawa River system, or, more precisely, for five 

regions in that system. The overall objective of the study is to develop a generator of daily 

simultaneous flows at 30 sites. The generation of a large number of multi-site flow 

sequences for input to current management models permits to study the reliability of the 

system, both in terms of hydropower production and in terms of adequacy of the hydraulic 

installations. The main interest in the current project is the reliability assessment of existing 

constructions such as dams, spillways, dikes, etc., vis-à-vis extreme floods. Floods occur 

over a relatively short period of time, in Quebec usually in the spring as a result of snow 

melt. This is why it is necessary to consider time-steps as small as one day. Since the 

P ARMA type model is unsuitable for generating daily flows and also is practically limited by 

the number of sites that can be handled, it has to be combined with various disaggregation 

models. In the present report, only one component of the flow generator is considered, 

namely a 5-region, weekly P ARMA model. Generated weeklY regional flows will be 

disaggregated spatially to each site in the region and to a daily time step, but that part of the 

generator is not described here. The delineation of 27 gauged sites in the Ottawa River 

system into five regions has been carefully done with the emphasis on maximizing the 

statistically similarity of sites within regions. This work is described in Mathier et al. (1995). 

Although no particular attention was paid to the geographical location of the sites, the five 

regions turned out to be geographically contiguous. They will in the following be referred to 

as North West (NW), North East (NE), East (E), Central (C), and South (S) regions. 

The distributions of aggregated weekly flows in the five regions have been carefully 

examined and transformed to normality (I. Grygier, personal communication). The results 

presented in the following deal only with the transformed data space. Although a good 

model performance in the transformed data space does not guarantee an equally good 

performance in real space, it is generally acknowledged that for a model to perform well in 

real space, it must do weil in the transformed space. Rence, the objective ofthis part of the 

project will be to identifY the MoSt adequate model for the transformed data. 

The models considered here are the class of multivariate P ARMA(p,q) models (lleriodic 

,ilutoregressive moving ,ilverage). The data are assumed normalized and standardized to zero 

Mean and unit variance, but even after removal of the periodic Mean and variance, the data 
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senes may still exhibit periodicity in the week-to-week correlations. Therefore it is 

necessary to consider a model with time-varying parameters, such as the multivariate 

P ARMA models, whose general form is: 
p q 

XV;t = L <Di.'tXV;t-i + sv.'t - L 9 j.'tsv.'t-j (1) 
~1 ~1 

The model relates the present flows at n sites (elements of vector x) to the p previous flows 

and to the q previous innovations. The model and its special cases will be described in detail 

later. In its general form, the parameter matrices <D~'t and 9 1.'t are allowed to be full. A 

substantial simplification can be obtained by assuming that these matrices are diagonal 

(Salas et al., 1980). This uncouples the equations and permits to model each (aggregated) 

site independently. The spatial dependence is introduced by generating innovation vectors 

with correlated elements. This type of model, commooly denoted contemporaneous, permits 

in principle to preserve explicitly the spatial correlation of flows at lag 0, whereas there is 

no explicit provision for preserving correlations at higher lags. Rowever, contemporaneous 

models have been used in several studies and are generally found to yield good results. 

The periodicity of the parameters and statistics related to them introduces sorne difficulties 

in identifying the appropriate model order. Classical identification techniques for stationary 

Box-Jenkins ARMA models are not directIy applicable to seasonal models. The 

autocorrelation function and the partial autocorrelation function, which are the usual tools 

for identifying the orders of stationary models, are meaningless when seasonality in the 

model parameters is present. One can gain some insight by looking at the correlations 

between periods, but in the case of weekly flows, an exhaustive analysis would be very 

tedious. Moreover, one cannot expect to arrive at a unique conclusion as to which values of 

p and q should be used, since generally the correlation pattern depend on the period. The 

approach taken here is the trial-and-error method. Some a priori chosen models are fitted to 

the observed data and their performances are evaluated and compared. With the limited data 

available for the Ottawa River, it is suggested that models beyond P ARMA(2,2) should not 

be considered. The P ARMA(2,2) model defines a class consisting of P ARMA(p,q) models 

with max{p,q} ~2. This class comprises among others the popular PARMA(I,O) and 

PARMA(l,l) models, as weIl as the PARMA(2,1) model. The PARMA(I,I) model is 

generally found to perform better than the PARMA(2,0) model which is the reason why the 

latter is not used in this study. PARMA(2,1) models are generally preferable to 

PARMA(I,2) model, and ooly the former is considered here. Rence, four PARMA models 

constitute the group of candidates to be examined in this study. 
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The first part of this report describes properties of the univariate model. Chapter 2 presents 

the criteria on which we based the model selection. Chapter 3 describes the three different 

estimation methods that were considered in this study and a comparison between them. 

Chapter 4 contains a brief description of the program CSU5 which eventually was used to 

calibrate the P ARMA models. In Chapter 5, we present the results of the calibration of the 

univariate models. 

In the second part of the report, the spatial dimension of the multivariate model is 

considered. The method of moments was used to estimate the cross-covariance matrices of 

residuals. This new method for calibrating higher-order contemporaneous models is 

described in detail in Chapter 6. In Chapter 7, we present the results of the spatial 

estimation. A few concluding remarks are given in Chapter 8. 
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2 MODEL SELECTION CRITERIA 

In the following, we consider the case of univariate P ARMA models and the problem of 

determining the appropriate model order. As mentioned in the introduction, Most of the 

classical methods for model identification do not apply to periodic models, so one usually 

has to base the choice of model order on a trial-and-error search. The parameters of each 

considered model is estimated, and one May compute various statistical properties of 

interest and perform a global comparison of the involved models using the historical data 

series as reference. Sorne of the properties that one would usually examine are the periodic 

means, variances, and period-to-period correlations (periodic autocorrelation). In the 

transformed data space, the periodic means can usually be reproduced exactly (identical to 

the historical)l, whereas the periodic variances and auto correlation may be more or less 

close to the historical values used to calibrate the model. Commonly, model properties are 

obtained by generating long series of flow data. Especially if data have been re-transformed 

to real space, this is the most straightforward method for deriving the statistical properties 

of the model. However, for model development, in particular the selection of model order, 

it May suffice to examine the statistical properties in the transformed data space. Generally, 

one cannot expect a model to perform well in real space, if it fails to perform weil in the 

transformed space (Stedinger, 1981). In this study, an analytical technique, based on the 

periodic Yule-Walker equations, are used to compute the periodic variance and 

autocorrelation in the transformed data space. This technique is described below. 

The univariate P ARMA(2,2) model relates the present flow to preceding flows and 

innovations by the following functional relationship 
2 2 

Xy,'t = L cl>i,'tXy,'t-i + 8 y,'t - Le j,'t8 y,'t_j (2) 
i=1 j=1 

where Xy,'t represents the normalized and standardized flow in year v, period t, cl>i,'t are 

autoregressive parameters depending on the specific period of the year, and e i 't are moving 

. average parameters, also depending on the period. It is assumed that there are 0) periods in 

the year. Due to the normalization of the flows, the innovations, 8 y 't' are normally 

distributed. Moreover, since the data are assumed standardized to zero Mean and unit 

variance, the innovations also have zero Mean. The variance of the innovations is denoted 

1 Here the term "reproduced exactly" does not imply that each generated series has the same mean as the 
historical series, but rather that the expected value of the rnean is identical to the historical rnean. Sarne 
comment applies to the variance and correlations. 
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g't and generally depends on the period. Due to the limited amount of data available for 

calibration, it may be appropriate to consider also models of lower order. Popular sub­

models are the PARMA(1,O) and PARMA(l,l), which in many cases provide a satisfactory 

description of the correlation structure of observed flows. However, when the considered 

time scale is very short (as for example in the case of weekly flows), the seasonal 

autocorrelation structure may exhibit irregularities which cannot be adequately captured by 

low-order P ARMA models. This is why we adopt the P ARMA(2,2) as a general c1ass of 

models that comprises itself and any submodel, i.e. any PARMA(p,q) model with 

max{p,q} S 2. 

The values of the parameters of a PARMA(p,q) model uniquely define the covariance 

structure of the model through the so-called periodic Yule-Walker equations which for the 

P ARMA(2,2) model read (Appendix A): 

m't (0) = <l>1.'tm't (1) + <l>2.'tm't (2) + g't - 91.'tg·t-! [<I>I.'t - 91.'t] 

- 92.'tg't-2 [<I>I.'t<l>I.'t-1 - <l>1.'t91.'t-1 + <l>2.'t - 92.'t] 

m't(l) = <l>1.'tm't-1 (0) + <l>2.'tm't-1 (1) - 91.'tg't-1 - 92.'tgt-2 [<I>I.'t-1 - 91.'t-1] 

mt(2) = <l>1.tmt-l(l) + <l>2.tmt-2(0) - 92.tgt-2 

k>2 

(3 a) 

(3b) 

(3c) 

(3d) 

where the periodic autocovariance function is defined as m'tO) = E[X't X't-J The above 

equations are valid for any submodel of the P ARMA(2,2) by setting particular parameters 

equal to zero. For instance, the periodic Yule-Walker equations corresponding to a 

PARMA(2,1) are obtained by setting 92.'t equal to zero. The periodic Yule-Walker 

equations serve an important purpose by allowing a fast and straightforward calculation of 

the periodic variance and the periodic auto correlation corresponding to a given estimated 

model. Equation (3c) can be used to remove m't(2) from (3a). After sorne manipulations, 

the first two periodic Yule-Walker equations can be written 

A
2 

A A A 

-<I>2.'tm't-2 (0) + m't (0) - <l>1.t<l>2.'tm't-1 (1) - <l>1.'tm't (1) 

= g't -êl.'tg't-I[~I.'t -êl.'t ]-ê2.'tg't-2[~I.'t~I.'t-1 -~I.'têl.'t-I +2~2.'t -ê2.'t] 
(4a) 

-~I.'tm't_1 (0) - ~2.'tm't-1 (1) + mt (1) = -êl.'tg't-I - ê2.'tg't-2 [~I.'t-I - ê l.t_1 ] (4b) 

where "J\lI is used to designate particular estimates. It is seen that the above equations 

constitute a linear system of2c.o equations with 2c.o unknowns, namely m't(O) and m't(1) for 

't = 1,2, .. ,c.o. The system is readily solved for m't(O) and m't(1), and the complete periodic 
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autocorrelation function can then be constructed from (3c-d). It is useful to emphasize that 

the implementation of (4a-b) aIso permits to evaluate the properties of any submodel of 

P ARMA(2,2) by equating particular parameters to zero. 

The above procedure provides an effective means to compare different model options and 

to guide in the selection of the most adequate. For example, one may wish to compare a 

PARMA(1,l), a PARMA(2,1), and a PARMA(2,2) for modeling weekly data at a given 

location. The first step is to obtain parameter estimates for each model considered, for 

example by one of the methods described in the next section. Then the periodic variances 

and autocovariances are computed from (4a-b) and plotted along with the corresponding 

historical values and a graphical comparison can be made. 

The above procedure constitutes the main basis for our model selection. There are other 

properties that could be examined as weIl, including stationarity conditions and whiteness of 

the residual series. 
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3 ESTIMATION METROnS 

3.1 Introduction 
Prior to undertaking the task of estimating and identifying the appropriate models for the 

five regions in the Ottawa River, a preliminary analysis of different estimation techniques 

was made. This analysis led to the conclusion that the method of least squares, as 

implemented in the software CSU5 developed by the research group of J. Salas at Colorado 

State University, provided results that were acceptable to aIl participants in the project, and 

the CSU5 was consequently selected and used for model calibration. However, for 

completeness, the three estimation alternatives we examined are briefly described here. 

3.2 Estimation by the method of least squares 
The LS estimators are the set of parameters that minimizes the sum of squared residuals, i.e. 

(assuming a P ARMA(p,q)-model) 

N fil [p q ]2 
{~i,'t,ej,'t} for which ~ ~ Xv,t - ~~i,tXv,t-i + ~ej,t8v,t_j is minimum 

v=1 t=1 1=1 )=1 

The estimate of the residual variance, gt' is obtained directly from the series of residuals. 

U sually one omits the first p data from the summation, because the p preceding values are 

unknown (Box and Jenkins' back forecast method do es not apply to periodic series). The 

fust q innovations are commonly set to zero. The LS method is fairly straightforward, but 

very computer intensive. The LS method as implemented in CSU5 is described in more 

detail in the next section. 

3.3 Estimation by the method of moments 
The moment estimators of the parameters of a P ARMA(p,q) model are the solution to the 

fust p+q + 1 periodic Yule-Walker equations in which the periodic auto covariance function 

is computed from the data. Hence, if a moment solution exists, the corresponding model 

preserves exactly the variance plus the lagged correlations up to order p + q. For low-order 

PARMA-models, a moment solution is fairly straightforward (Salas et aL, 1982), but if the 

order of the moving average component of the model exceeds one, then an analytical 

solution is not available, and even with numerical means, it seems impossible to obtain a 

solution (Bartolini and Salas, 1993). Therefore, in our study moment solutions were 

restricted to PARMA(1,O), PARMA(l,l), and PARMA(2,1) models. Unfortunately, in the 



10 Calibration of a multivariate P ARMA model 

Lag 1 correlation 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
0 4 8 12 16 20 24 28 32 36 40 44 48 52 

Lag 2 correlation 

1.0 
0.8 
0.6 
0.4 
0.2 
0.0 

-0.2 
-0.4 
-0.6 

0 4 8 12 16 20 24 28 32 36 40 44 48 52 

Lag 3 correlation 

1.0,.......------------------------, 
0.8 
0.6 
0.4 
0.2 ----................................... . .......................... . 
0.0 +-.--------------11---1---------1 

-0.2 . __ ..... -_ ............................ . 
-0.4 -._ ..... -........................ _......................... . ......................................... . 
-0.6 .-.. --.... --.-..................... ----... -............................. _ ............ . 
-O.8+rHH~++rrHH~+rH4~~HH4+++HH~++rH~++HH~~ 

o 4 8 12 16 20 24 28 32 36 40 44 48 52 

Lag 10 correlation 

0.8 
0.6 
0.4 
0.2 
0.0 

-0.2 
-0.4 

1 4 . 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 

Figure 3.1 Periodic covariance function of a moment estimated 

P ARMA( l, 1) model for the Central region 
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case of P ARMA(I, 1) and P ARMA(2, 1) models a moment solution may not exist. When 

calibrating the models, some of the residual variances may tum out negative, indicating that 

there is no feasible solution to the periodic Yule-Walker equations. When applying the 

method of moments to the Ottawa River data, it was found necessary to smooth the 

periodic autocorrelation in order to obtain feasible solutions. A Fourier analysis showed that 

two harmonics were generally enough to de scribe adequately the periodic autocorrelations, 

except for the spring flood period. Hence, in our approach we first replaced the data during 

the flood period with typical values prior to and after the flood period. The coefficients of 

the tirst two harmonics were determined. Then the irregular correlations in the flood season 

were inserted in the smoothed periodic autocorrelation function, and the resulting function 

was used to calibrate the P ARMA-model. 

The above approach was applied to the data from the five regions in the Ottawa River. 

Results from fitting a PARMA(I,I) to the Central region is shown in Figure 3.1. The 

variance, and the lags 1 and 2 of the transformed data are reproduced exactly (Le. identical 

to the historical, transformed series.) It is particularly interesting to study the performance 

of higher order lags which are not explicitly preserved. It is seen that up to at least lag 10, 

the P ARMA(I, 1 )-model provides an excellent description of the correlation structure. 

One obvious advantage of smoothing the periodic auto correlation functions is that the 

number of independent parameters can be substantially reduced. For example, a 

PARMA(I,I)-model contains 3co-parameters, which, in the case ofweekly data, means 156 

parameters. Since the fitting of parameters to smoothed periodic autocorrelations functions 

results in smoothed parameters, one can reduce the number of "independent" parameters to 

two times the number of harmonics considered plus the number of original correlations used 

during the flood period (in addition to the means, variances, and transformation 

parameters ). 

3.4 Estimation using the MATLAB/ARMAX function 
A third method for estimating the parameters of PARMA(2, 2) models was suggested and 

developed by Mrs. L. Fagherazzi, Hydro-Quebec. It is based on the ARMAX subroutine in 

MATLAB's System Identification Toolbox. The key idea of this approach is to estimate the 

parameters of each season independently of the other seasons, ignoring the functional 

relationship between the moving average parameters of adjacent periods, but allowing for a 
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fast and simple estimation. The first step is to sequentially extract one column from the data 

matrix given by: 

XIJ X I2 X 13 x lm 

X 21 X 22 X 23 X2m 

The two preceding columns are used as exogenous input series (sorne adjustment is needed 

for the tirst two periods), and the series of flows in a particular period, with length equal to 

the number of years available for the study, is modeled by a moving average process of 

order 2. The estimation is based on the method of least squares. 

It was found that the estimates of the autoregressive parameters is equivalent to those one 

would obtain by fitting a traditional P AR(2) model with either the method of moments or 

the method ofleast squares (autoregressive parameters generally do not pose any estimation 

problems). The meaning of the moving average parameters is somewhat obscure, since they 

do not relate directly to the original time series, but rather to the series of one period's flow 

over n years in which there is no significant autocorrelation 

3.5 Comparison of estimation methods 
In order to choose the most satisfactory estimation method, a simulation study was carried 

out, in which the three methods described above were used to calibrate the data series for 

the South region. The performance of each method was evaluated by generating, for each of 

the three estimation methods and for various model orders, 1000 series of 23 years of 

weekly data (corresponding to the length of the historical series) and by computing various 

statistics in the real data space. These statistics comprised periodic means, variances, lag 1 

week-to-week correlations, annual mean, annual maximum, and the distribution of the 

annual maximum. It was found that in certain periods, the re-transformation had a 

significant impact on the preservation of statistics. It is well-known that a good preservation 

of correlations in the transformed data space does not guarantee a good preservation of 

correlations in real space. However, in principle it should be possible to preserve the 

periodic real means exactly, but sorne departure was observed in the beginning of the year. 

This can only be ascribed to the transformation. Also the standard deviation was in sorne 

cases way off (Figure 3.2). Figure 3.3 shows the average lag 1 week-to-week correlation 

for a PARMA(I,I)/LS, a PARMA(I,I)/MOM, and a PARMA(2,2)/MATLAB model. Not 
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Figure 3.2 Periodic standard deviation of simulated flows for the South region. 

(dotted lines represent simulated values) 

13 

surprisingly, it is seen that the MATLAB-method results in a po or preservation of the 

correlation structure. Because of the smoothing of correlations in the case of estimation.by 

the method of moments, the generated mean correlations are also fairly smooth as opposed 

to the model based on LS-estimation, in which the periodic real correlations fluctuate, 

sometimes very close to, but other times quite away from the historical value. The choice 

between the LS-method and the MOM-method is not evident. After a careful study of the 

different statistical characteristics of series generated with the three methods, it was decided 

to adopt the LS-method for estimating the parameters of the five regional series in the 

Ottawa River. 
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4 DESCRIPTION OF CSU5 

CSU5 is a computer software developed at Colorado State University by J. Salas and others 

for calibration of P ARMA models. The program permits to estimate the parameters of 

several types of periodic models, including the P ARMA(p,q). The program was originally 

written for application to monthly flows, so the code had to be revised for the current 

project, in which weekly data are used. 

Parameters are estimated by the LS method, briefly described in the preceding chapter. A 

method of moment solution is used as starting point in the search for a minimum. Initially, 

the program attempts to estimate a PARMA(l,l)-model by the method of moments. If a 

solution does not exist, a P ARMA(l,O) moment solution is used as starting values. With an 

initial estimation of the parameters, the Powell method of direct search is invoked to find 

the set of parameters that minimizes the sum of squared residuals. The p flows and q 

innovations preceding the first data (year 1, period 1) is set to zero, and the objective 

function to be minimized is therefore a sum of nro terms, where n is the number of years. 

The search terminates when a user-specified accuracy has been attained. The variance of the 

residual series is used as estimator of gT . 

The program provides a variety of outputs such as periodic means and variances of the 

input series and of the residual series, periodic auto correlation structure, and statistics of the 

aggregated annual flows. The pro gram aIso tests for whiteness of residuals and for 

stationarity of the solution. The program, however, does not provide output of the periodic 

autocovariance function corresponding to the solution. Using MATLAB, we implemented a 

routine for calculating this important property following the procedure described in Chapter 

2. 

When estimating the parameters of P ARMA(2,2)-models, the program tumed out to be 

quite sensitive to the particular computer on which it was run, and also to the Fortran 

compiler used to compile the source code. A series of test runs based on the same monthly 

data set were made on ditferent computers and with ditferent compilers in order to examine 

the ditferences in the solutions. Although the estimated parameters ditfered substantially, 

the periodic autocovariance structures of the estimated models were quite similar, and it 

was consequently found impossible to conclu de that any particular computer/compiler 

combination was significantly superior to the others. Since no particular preference could be 
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attributed to a specific computer, it was decided to use a PC, on which the manipulation of 

data is more tractable than on a mainframe. The instability in the solution can be explained 

by the high dimensions of the PARMA(2,2)-model. In fact, the objective function 

supposedly is very flat around the minimum, indicating that a large number of solutions may 

yield virtually identical results in terms of periodic autocovariance structure. The use of 

high-order models represents one particular point of view in modeling, namely that the large 

number of parameters and the corresponding instability in the solution is unimportant as 

long as the covariance structure of the model reasonably well describes the observed 

historical correlations. 



5 RESULTS OF SINGLE-SITE ESTIMATION 

5.1 Introduction 
As mentioned in the introduction, our approach to estimating the parameters of the 

univariate P ARMA-models is the trial-and-error method. Four models, namely the 

PARMA(l,O), PARMA(l,l), PARMA(2,1), and PARMA(2,2), were considered. The main 

emphasis was put on finding the model whose temporal covariance structure was closest to 

the historical (transformed data). Figure 5.1 shows the observed lag 1 to 4 week-to-week 

correlation ofweekly flows at the Central in the Ottawa River system. Note that around the 

spring flood period, there is a significant drop in the correlation. The same drop is seen in 

the lag 2, 3, and 4 week-to-week correlation and can easily be explained. In Quebec, there 

is usually one big spring flood each year occurring around April-May and extending over a 

period of a few days. The fact that the spring flood extends over a period of the same order 

of magnitude as the time scale of the considered flows (weekly) and that the flood season 

(i.e. the period in which the spring flood is likely to occur) on the other hand extends over 

4-5 weeks give rises to the negative lagged correlations. If the flood does not occur in the 

first half of the flood season, then it will occur in the second half, and vice-versa. Renee,· 

there will be a tendency that in the flood season of anyone year, one week has a large flow 

while the others have small flows compared to their means, i.e. a negative correlation. 
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~:~/::Y1\:~~?:f~30~\:zS'X,~: 
._ •••• _ •.•••••.••.•••• _._ ........................ _._ •••••••• _ •.•••. _..................... . •...........• ,......... 1 ....•. 1 .~\,.::::<.i:..:.~~ .. 

0.25 .~ ,.~ . ··rt,.] . , 
;:~~ +-..... -.... -..... -..... -..... -... -..... -..... -..... -..... -.... -..... -..... -..... -..... -..... -..... -..... -... -. --.. -.-.... -..... -'-.... -..... -... -..... t-\>~/I-m~+-!/+;' ----... -..... -..... -..... -..... -.... -.. -. -----1 

-0.50 .. _ ............ _._._ .................. _ .... _._ ............ __ ...... -................. . ... "':", ·~···t······ .. . ................... . 

~.75++~~~-H~~rrr+++++++++++++++~~~rrrrrr++++++~~ 

o 4 8 12 16 20 24 28 32 36 40 44 48 52 

1- las 1 ._-. las 2 .mmm lag 3 ...... las 41 

Figure 5.1 Observed lag 1 to 4 week-to-week correlation in the Central region. 
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As the emphasis of the present study is on the generation of extreme flows, particular 

attention was paid to a fair modeling of correlations during the flood season. In fact, the 

negative correlations appearing in the tirst lagged week-to-week correlations should be 

reasonably weIl reproduced in order to generate realistic flood scenarios. This may imply 

severe requirements to the flow generation model. For example, the P ARMA(I,O) was 

found unable to reproduce the observed correlations in a satisfactory way, and results for 

that model are not presented. 

Sorne general remarks on the results from the CSUS program are appropriate here, It was 

generally impossible to obtain a feasible PARMA(I,I) moment solution as starting point for 

the least square search algorithm, so a PARMA(I,O) was used instead. Estimation of 

PARMA(2,1) and PARMA(2,2) parameters on a PC typically took two to three hours 

depending on the number of years available for the site. The hypothesis of normality of 

residuals was always rejected. This must be ascribed to the data transformations which do 

not always result in normally distributed input data. Likewise, the Anderson tests of 

uncorrelated residuals were also rejected. There is no exact test for whiteness when the 

correlations structure of the data is periodic, and when applied to weekly data, the 

Anderson test is too powerful for practical application (Tao and Delleur, 1976, p. 1548). 

We decided to ignore the problem of sorne autocorrelation in the residual series, and also 

the problem of non-normality. The latter issue might be of sorne concern, but as it is related 

to the transformation of flows, it faIls outside the scope of the present work. 

The number of years available for the analysis is shown in Table 5.1. The fact that the series 

are relatively short explains much of the fluctuations in the observed periodic statistics. 

NO 
NE 
E 
C 
S 

Table 5.1 Length of data series 

1960-1989 
1961-1989 
1968-1989 
1965-1991 
1967-1989 

30 years 
29 years 
22 years 
27 years 
23 years 
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Results of the fitting of three PARMA-models, PARMA(l,l), PARMA(2,1), and 

P ARMA(2,2) with the method of least squares (program CSU5) are presented in Appendix 

C. The periodic autocorrelation structure of each model has been computed according to 

the algorithrn described in Chapter 2 (the MATLAB code is presented in Appendix B). A 

series of figures were prepared, each corresponding to a given lagged periodic week-to­

week correlation. More specificaIly, we considered the variance, and the lagged correlations 

of order 1, 2, 3, 4, 5, and 10. When comparing the three PARMA models Most attention 

was given to the variance, followed by the lag 1 week-to-week correlation, followed by the 

lag 2, and so forth. Furthermore, we paid special attention to the statistical properties 

during the flood season, since badly represented statistics during this period May result in 

flood scenarios that deviate significantly from the historical (in an average sense). 

5.2 North East region 
From the figures in Appendix Cl, it is seen that the PARMA(l,l) preserves the variance of 

the transformed, standardized flows very weIl. In the first few periods it deviates from 1, 

probably due to the initialization of the first residual in the LS-estimation algorithrn. The 

variance ofboth PARMA(2,1) and PARMA(2,2) deviates significantly from 1. Deviations 

of 20-25% are observed in some periods. In the critical flood season (week 26-35) the 

PARMA(2,2) seems to deviate more than the PARMA(2,1) from 1. For correlations up to 

lag 4, PARMA(2,1) and PARMA(2,2) do weIl, whereas the PARMA(I,I) does not 

satisfactorily described the critical correlations during the flood season. The P ARMA(2, 1) 

seems to do slightly better than the P ARMA(2,2) in describing the lagged correlation. The 

PARMA(2,1)-model was therefore selected as the Most adequate model for the North East 

region. 

5.3 North West region 
For the North West region, the variance is best reproduced by the PARMA(I,I)-model. 

The P ARMA(2,2) generally does a better job than the P ARMA(2, 1) in reproducing the 

periodic variance, and notably in the critical flood season. As for the lagged correlations, the 

P ARMA( 1,1) fails to reproduce satisfactorily the correlations during the flood periods, 

whereas the other two models essentially do equally weIl. In the light of these observations, 

it was decided to choose the PARMA(2,2)-model for the North West region. 
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5.4 East region 
Again the PARMA(l,l) preserves the variance almost exactly. The PARMA(2,l) and 

P ARMA(2,2) fluctuates quite much and seem to be equally good (or bad). The same thing 

can be said about the lagged correlations, where there is little difference between the two. 

The PARMA(I,l) aIso here fails to reproduce the negative correlations during the flood 

season. Since the two higher order models yield quite similar results, the P ARMA(2,l)­

model is selected in accordance with the principle of parameter parsimony. 

5.5 Central region 
For the Central region, the variance of the PARMA(2,2) deviates up to 70% from the 

historical, transformed variance during severai weeks around and following the flood 

season, and it was therefore excluded. Both P ARMA(l,l) and P ARMA(2,l) do a good job 

in describing the variance and the lagged correlations, although for the last property, the 

P ARMA(2, 1) seems slightly superior. It is therefore selected as the appropriate model. 

5.6 South region 
Historical statistics for the South region are characterized by large fluctuations. The 

P ARMA(2,2) yields a relatively poor representation of the variance of the transformed 

process, the PARMA(l,l) does excellently, and the PARMA(2,1) is somewhere in between. 

As for the lagged correlations, the PARMA(2,2) seems worst, the PARMA(1,l) seems 

better, and the PARMA(2,1) seems best, although the difference between PARMA(l,l) and 

PARMA(2,1) is small. As a whole, it seems that the PARMA(l,l) provides a reasonable 

description of the data for the South region. 

5.7 Summary of results 
The estimated model parameters for the five sites are listed in Table 5.2 
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Table 5.2 Estimated P ARMA(p,q)-parameters for the five regions in the Ottawa River. 

North East Region North West Region 

or cl>1.'t cIl2.'t 91.'t g't cIlI.'t cIl2.'t 91.'t 92.'t gt 

1 1.2740 .0.1320 0.6600 0.3540 1.8640 .0.9000 1.S360 -0.1810 0.2256 
2 1.9950 .0.9790 1.0100 0.l475 0.3230 0.5210 -0.4530 0.4190 0.3457 
3 0.1680 0.6240 .0.8470 0.2520 1.2140 -0.2940 0.4090 0.1570 0.3238 
4 1.8280 .0.7440 1.3200 0.1739 0.0940 0.6710 .0.6090 -0.1640 0.1781 
5 0.6260 0.2450 0.1710 0.2256 1.4960 -0.6230 0.7760 0.0500 0.3588 
6 -1.8100 2.2770 -2.7980 0.2043 0.4040 0.2170 -0.5730 -0.3430 0.3047 
7 1.2780 .0.4300 0.2020 0.1568 0.7360 0.1790 -0.2830 0.2680 0.2025 
8 1.0630 .0.1330 0.0420 0.1204 0.6230 0.2120 0.5130 -0.3210 0.1714 
9 1.0300 .0.1830 0.4010 0.3341 0.3000 0.6150 .0.3790 0.4140 0.2266 

10 1.2480 .0.2840 0.4730 0.2611 1.6960 -0.7430 1.2070 -0.5270 0.2218 
11 1.5960 .0.5560 0.8130 0.l665 1.6550 -0.7700 1.3580 -0.3450 0.4020 
12 1.3440 .0.3430 0.6890 0.1467 0.4470 0.4970 -0.3800 0.4110 0.1289 
13 0.6070 0.1860 0.1190 0.3994 0.2540 0.6530 -0.6570 0.2800 0.2581 
14 2.2870 -1.0200 1.4860 0.1592 2.4320 -1.3050 1.7710 0.1060 0.3192 
15 1.4650 .0.5870 1.0900 0.3588 1.6670 -0.6260 1.2890 0.1580 0.3058 
16 0.7100 0.1780 0.2290 0.3636 0.5130 0.4510 0.4100 0.1180 0.3636 
17 1.2230 -0.3680 0.2030 0.3422 2.1960 -I.S610 2.1810 -1.7820 0.5155 
18 1.2420 .0.4630 0.6290 0.5055 1.8700 .0.6370 1.7940 -0.8600 0.3869 
19 -0.4920 0.8380 -1.2470 0.4610 0.8890 0.0260 1.0620 -0.1400 0.4225 
20 -0.7500 0.9730 -U340 0.4706 0.7130 0.1930 0.6660 -0.2180 0.4900 
21 2.8560 -1.S760 2.5200 0.4369 -0.3020 0.3960 .0.8130 -0.3670 0.6241 
22 1.1670 .0.2220 0.9310 0.3516 0.4860 0.5640 .0.0820 0.7760 0.5329 
23 1.0630 .0.0630 1.0440 0.4147 1.0400 0.1030 0.6300 0.3080 0.5213 
24 0.4550 0.1310 0.1100 0.7430 0.3100 0.0390 .0.3790 -0.1180 0.6889 
25 -2.0930 1.4150 -2.4260 0.6806 -0.0930 0.5700 .0.6070 -0.0730 0.5184 
26 0.3690 0.1930 .0.1720 0.6675 -1.2690 1.9660 -1.9950 1.2490 0.4277 
27 1.6820 -0.4610 0.8050 0.2034 0.9060 0.0010 0.0460 0.1750 0.3192 
28 0.2730 0.5430 .0.7460 0.1576 -0.0100 0.5310 .0.9370 -0.3710 0.2228 
29 2.1870 -1.2460 1.1980 0.2520 1.0970 .0.3210 0.3110 0.ISI0 0.5155 
30 -1.8380 1.9690 -2.8480 0.4556 0.8900 .0.6260 0.0850 0.3740 0.7090 
31 0.3810 -0.4470 .0.5960 0.4665 -1.9970 .0.8520 -2.5590 -2.6720 0.3624 
32 0.7640 -0.4980 -0.1420 0.3770 0.9630 -0.2540 -0.2170 0.1880 0.1673 
33 0.6940 0.0970 -0.2920 0.2430 1.0860 -0.1770 .0.1860 0.2800 0.2510 
34 2.1950 -1.1550 1.3220 0.2162 0.5920 0.1520 -0.4960 0.0220 0.2905 
35 -0.6910 1.3030 -1.6810 0.2714 1.S970 -0.7490 0.5740 0.0820 0.3446 
36 1.2670 -0.4220 0.4230 0.3295 -0.7490 0.8250 -1.7700 -0.5980 0.4160 
37 -0.7520 1.2650 -U910 0.3147 1.9560 -0.6290 1.1510 0.6210 0.3036 
38 1.8850 -1.1360 0.8410 0.3697 0.0830 0.5060 .0.8270 -0.2840 0.2777 
39 0.7310 0.0320 -0.2360 0.2852 1.3710 .0.4650 0.5900 0.1760 0.3648 
40 1.1720 -0.4980 0.1110 0.4290 2.0230 .0.7540 1.2370 0.5340 0.1122 
41 1.0850 -0.1440 0.4610 0.3672 1.8880 -1.0070 1.6320 -0.1790 0.2200 
42 0.3940 0.3680 .0.5310 0.2323 0.4730 0.4100 .0.3850 0.8870 0.2510 
43 1.7550 -0.8370 1.3040 0.4369 0.7280 0.0600 0.0760 -0.0370 0.4134 
44 0.5250 0.1870 .0.3840 0.3080 1.0320 .0.0530 0.1650 0.8060 0.2256 
45 -1.3910 1.6280 -2.7000 0.2228 1.0290 -0.1620 0.2980 0.2390 0.4638 
46 1.0560 -0.2510 0.0720 0.2116 1.8290 -0.7480 0.9720 0.5090 0.2938 
47 1.7610 -0.7590 0.9110 0.2162 1.0790 -0.2000 0.8310 -0.2370 0.3025 
48 2.3950 -1.3500 1.3790 0.1640 1.1760 -0.5610 0.0630 -0.8810 0.2460 
49 .0.5270 1.2410 -1.6940 0.l901 -0.5920 1.1760 -0.8060 -0.3160 0.3576 
50 0.3700 0.4400 .0.5780 0.2570 0.7830 0.0980 0.4830 0.2980 0.4761 
51 1.1310 -0.3880 0.2340 0.4382 -0.7210 1.2550 -1.4660 0.9920 0.4747 
52 -0.6300 0.7810 -1.4610 0.5476 2.0580 -0.7120 1.3170 0.3370 0.2209 



22 Calibration of a multivariate P ARMA model 

Table 5.2.(cont.) 

East Region Central Region 

't cj)I,'t cj)2,'t 91,'t g't cj)I,'t cj)2,'t 91,'t g't 

1 -1.9750 2.1270 -3.0740 0.1163 0.5000 0.3470 -0.1400 0.4330 
2 0.6650 0.1160 -0.3930 0.2107 2.4540 -1.3140 U630 0.1260 
3 4.4630 -2.8420 3.6180 0.0918 0.1610 0.6950 -0.5550 0.2247 
4 1.4070 -0.4400 1.7340 0.0900 0.5520 0.3590 -0.2150 0.1665 
5 0.4990 0.3200 -1.2600 0.0497 U160 -0.6310 0.7850 0.3283 
6 0.2780 0.5660 -2.4530 0.0488 0.4430 0.3390 -0.4900 0.2209 
7 0.8710 0.0540 0.7700 0.0876 0.7420 0.0120 -0.4020 0.2652 
8 1.1740 -0.3240 0.2140 0.1731 0.9490 -0.0670 -0.0950 0.2470 
9 0.8890 0.0300 0.3750 0.2581 -0.5130 1.1300 -1.1950 0.4970 

10 2.1450 -1.0870 1.1580 0.1849 -0.5800 1.0500 -1.4370 0.2294 
11 1.4560 -0.5140 0.7030 0.2007 0.2920 0.4990 -0.7190 0.1927 
12 1.4490 -0.4320 0.7050 0.1764 2.3620 -1.2790 U980 0.0986 
13 2.9620 -1.7580 2.6810 0.1714 1.8950 -0.9100 1.2010 0.1414 
14 0.6360 0.2970 -0.5390 0.1267 -0.2170 1.0850 -1.3180 0.0784 
15 0.9410 -0.0440 0.5470 0.0955 U110 -0.5660 1.0970 0.1858 
16 2.0060 -1.0040 1.1750 0.0930 1.1940 -0.1670 1.4140 0.1011 
17 0.1870 0.5880 -0.6000 0.1376 0.6060 0.2870 0.5810 0.3192 
18 1.4540 -0.5150 0.6250 0.1884 0.6860 0.2420 0.6030 0.3600 
19 1.1300 -0.2250 0.3060 0.1731 0.3130 0.5170 -0.0010 0.4147 
20 2.3280 -1.2420 1.6000 0.2343 0.6000 0.4590 0.5030 0.2088 
21 2.7280 -U64O 1.9080 0.2652 0.6390 -0.0530 -0.4200 0.4886 
22 2.1520 -1.1630 1.1570 0.2052 0.8290 0.1330 0.0910 0.2218 
23 -0.4440 1.1570 -1.4780 0.1945 0.2370 0.4630 -0.3670 0.4610 
24 0.2740 0.5120 . -0.7550 0.2480 2.6180 -1.3040 2.2120 0.5155 
25 -0.3830 1.0740 -1.4400 0.2079 -0.0680 0.5380 -0.7070 0.5402 
26 -1.9280 2.1240 -3.0710 0.4045 0.9360 -0.2790 0.2250 0.5730 
27 0.4590 0.1020 -0.6940 0.2642 -0.0680 0.5430 -0.8320 0.4122 
28 0.1910 0.5810 -0.8370 0.1498 -0.0420 0.6060 -0.9570 0.3318 
29 -0.2730 0.7260 -1.6330 0.5685 -0.8650 1.1980 -1.8200 0.4343 
30 -0.4810 0.0940 -U310 0.2162 1.6920 -1.6320 1.0990 0.5170 
31 1.1360 -0.6510 1.1810 0.1697 0.8900 -0.1990 0.2980 0.2460 
32 0.7310 -0.1160 -0.6960 0.3352 1.8890 -0.9950 0.8690 0.2992 
33 1.8900 -0.9240 0.9350 0.2061 0.7180 0.0520 0.2680 0.4212 
34 0.5980 0.1690 -0.3970 0.3844 -0.4560 0.8500 -1.3030 0.3147 
35 1.7940 -0.7420 0.8730 0.2621 2.1100 -1.1340 1.4110 0.3411 
36 U600 -0.6910 0.5920 0.1962 -0.1350 0.7040 -0.9200 0.4462 
37 2.3640 -1.3000 1.5360 0.1608 -0.2890 0.6450 -1.1110 0.4970 
38 1.4680 -0.5420 0.8670 0.2352 1.4100 -0.3820 0.9010 0.4238 
39 -0.2020 0.7060 -1.4990 0.1772 -0.1100 0.6590 -1.1220 0.2190 
40 0.6410 0.1990 -0.4180 0.3329 1.1350 -0.1400 0.5630 0.1798 
41 2.8380 -1.6420 2.0100 0.1739 0.6070 0.1620 -0.7600 0.1608 
42 3.0950 -2.2010 2.6300 0.2401 0.1420 0.6020 -1.1580 0.1980 
43 1.1230 -0.1100 0.1980 0.2025 1.0570 -0.0790 0.6830 0.2125 
44 -0.4660 1.2140 -1.2820 0.3469 1.0140 -0.2000 0.0100 0.2970 
45 0.8170 1.2050 -1.8580 0.3399 -0.2190 0.8660 -1.3040 0.1832 
46 1.4630 -0.5730 0.7610 0.3147 U460 -0.5920 1.2010 0.3114 
47 U270 -0.3680 0.4920 0.0918 1.0710 -0.1550 0.2960 0.2621 
48 -0.2240 1.1730 -1.2030 0.1529 0.7100 0.1660 0.2710 0.3434 
49 -1.0500 1.8210 -1.9740 0.1190 0.2280 0.4830 -0.6110 0.3272 
50 U130 -0.7440 0.7730 0.3795 -1.1070 U130 -2.2340 0.1648 
51 2.1140 -0.9100 1.3840 0.2125 0.9030 -0.0630 0.0280 0.2894 
52 -1.1180 1.5980 -1.9900 0.2992 0.8010 0.0590 0.4150 0.4160 
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Table 5.2 (cont.) 

South Region 

't <l>l,'r 81 't g't 

1 1.1110 1.2380 0.5198 
2 0.8170 0.7010 0.6740 
3 0.7140 0.4110 0.7868 
4 1.4450 1.2860 0.4872 
5 1.1360 1.1620 0.3660 
6 0.8740 0.1750 0.3352 
7 0.7080 -0.0600 0.4692 
8 0.7770 0.1060 0.4556 
9 0.8050 0.7070 0.6593 

10 0.9790 1.0340 0.6577 
11 1.1580 0.6950 0.4007 
12 0.9120 0.4740 0.4212 
13 1.0920 1.1400 0.3215 
14 0.8590 0.6750 0.4844 
15 0.8920 0.3430 0.4449 
16 0.5570 0.1240 0.7482 
17 1.4960 1.2400 0.3709 
18 0.8700 0.5250 0.4858 
19 0.9780 0.5210 0.4083 
20 0.6570 0.3950 0.7140 
21 0.6370 -0.0610 0.5213 
22 0.6530 0.2920 0.7586 
23 0.7940 0.8830 0.8263 
24 -0.6750 -1.2580 0.6320 
25 0.3980 -0.4220 0.5285 
26 -0.1520 -0.9990 0.6006 
27 0.0380 -0.9440 0.4238 
28 0.4300 0.2850 0.8855 
29 -1.3940 -1.9750 0.4720 
30 0.8810 0.5730 0.5491 
31 0.5490 0.4920 0.8668 
32 1.4410 1.0130 0.5550 
33 0.7750 0.2540 0.5883 
34 0.8260 0.4300 0.6194 
35 0.4030 -0.3610 0.5746 
36 0.2760 0.0500 0.9235 
37 2.1880 2.2490 0.7174 
38 0.5440 0.0760 0.7621 
39 0.7670 0.5300 0.8154 
40 -0.1640 0.0200 1.0302 
41 ..0.6480 -0.9100 0.8336 
42 1.9550 2.0170 0.6593 
43 0.6060 0.4160 0.8.446 
44 1.4030 1.6030 0.6496 
45 1.0910 0.9820 0.5868 
46 1.0090 0.8660 0.5776 
47 0.4930 0.2570 0.8668 
48 l.S160 1.4880 0.6839 
49 0.7850 0.5150 0.7500 
50 0.7490 0.8150 0.8464 
51 1.1180 0.7850 0.7379 
52 1.1890 1.1370 0.6257 
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6 ESTIMATION OF THE CROSS-COVARIANCE 
OF RESIDUALS 

6.1 Introduction 
In order to generate flow sequences that are coherent in space, a multivariate model must 

be formulated. Due to the complexity of parameter estimation, the parameter matrices given 

in (1) are rarely considered full. An exception is the multivariate PAR(p)-model ofMatalas 

(1967), which, however, is deemed inadequate for the present study. A common approach 

is to consider the parameter matrices c})i,'f and 9~'f diagonal. This procedure is denoted 

contemporaneous modeling, because only the lag-O cross-correlation of (transformed) flows 

can be explicitly modeled through the spatial covariance of the residuals. By considering the 

parameter matrices diagonal, the different sites involved in the analysis are decoupled and 

can be studied separately. Hence, when the parameters at each site have been estimated, 

only the spatial correlations of residuals remain to be determined. 

In this section, we address the question of how to estimate the spatial correlation of 

residuals. There are essentially two possible avenues: the method of maximum likelihood 

and the method of moments. The former is by far the most used for more complicated 

seasonal models. It consists in deriving the residual series of each site and then to compute 

the correlation matrix for each season from these series. The ML method is thus easy to 

implement, and always yields results, but it tends to underestimate the true correlations. 

Stedinger et al. (1985) derived the moment estimator of the covariance matrix in the case of 

a contemporaneous stationary ARMA(I,I) model, and specifically conclude that for 

multivariate annual ARMA(I, 1) models, the estimator of the residual covariance matrix that 

reproduces the observed correlation generally is superior to the maximum likelihood 

estimator. 

Haltiner and Salas (1988) extended Stedinger results to the contemporaneous PARMA(I,I) 

case. Their derivation of the estimator of G'f (periodic cross-covariance matrix of the 

residuals) is instructive and is briefly reviewed here. By squaring the left and the right hand 

sides of(I), with p = q = 1, one obtains 
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(5) 

where the year index has been omitted for notational convenience. i't and ê't are assumed 

known. Noting that E[SST] = G't' E[x't_IE!] = 0, and E[E'tE!_I] = 0, the above relation can 

be written: 

(6) 

in which only the G't-matrices are unknown. Note that G't depends on G't_1 etc. If a feasible 

solution to (6) exists, then the model will exactly reproduce the variance of the 

(transformed) flows at each site. However, there is a potential risk in combining, for 

example, LS-estimators of the autoregressive and moving average parameters with moment 

estimators of the residual variances. The combined solution may not be coherent and could 

at sorne sites lead to periodic autocorrelations that deviate more trom the observed 

correlations than the pure LS-estimation. It then becomes particularly important to compute 

each sites periodic auto correlation as described previously. If the solution to (6) is 

unsatisfactory, one can choose to preserve only the cross-covariances between sites exactly, 

i.e. the off-diagonal elements of M't(O). The procedure for doing this will be described 

later. In the following, we consider the problem of estimating G't by the method of 

moments when the individu al site models are PARMA(2,2), or, in general, any submodel 

hereof. 

The derivation of (6) is fairly straightforward, because G't can be easily expressed (although 

implicitly) as a function of the properties to be preserved, M't(O). In the case of the 

contemporaneous PARMA(2,2) model, the derivation of a G't-estimator is less evident. 

Note that if the left and right hand site of(I), with p = q = 2 are squared, then lagged cross­

correlations will appear. However, contemporaneous P ARMA models do not permit to 

preserve explicitly lagged cross-correlations. Preservation of the symmetric M't(O) matrices 

imposes com(m + 1)/2 constraints which is exactly the number of degrees of freedom in the 

co G't matrices. Therefore, Haltiner and Salas' results for the contemporaneous 

PARMA(l,l) model are not generally applicable to models ofhigher order. In the present 
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study, we have developed a moment estimation method for any P ARMA(p,q) model with 

max{p,q} ~2. 

6.2 Moment estimation of spatial correlations 
To estimate G't' we shall make use of the periodic multivariate Yule-Walker equations. The 

foUowing definition is important: 

(7) 

where T indicates a transposed vector or matrix. Note that M't(l) will in general not be 

symmetric. With these definitions, one can deduce the first three multivariate periodic Yule­

Walker equations (Appendix A): 

M't(O) = E[x'txn 

=M't(l) è»~'t +M't(2) è»~.'t +G't -[è»I.'t -81.'t]G't_18~'t 

- [~I.'tè»I.'t-l -è»1.'t8 1.'t_1 +è»2.'t -82.'t]G't-28~.'t 

M; (1) = E[ X't_lX;] = M't_l (0) è»~'t + M't-l (1) ~~.'t - G't_18~'t 

- [~l.'t-l - 8 1.'t-l]G't-28 i.'t 

(Sa) 

(Sb) 

(Sc) 

A careful inspection of these equations shows that the relations corresponding to the 

diagonal elements are simply the univariate cases given in (3a-c). On the other hand, the off­

diagonal elements of M't(O), M't(l), and M't(2), as expressed in the ab ove equations, are 

defined in terms of off-diagonal elements of themselves and off-diagonal elements of G't' 

but do not involve any terms from the diagonal of these matrices. This important 

observation implies that the variance terms of G't' i.e. the diagonal elements can be 

estimated one at the time, and the covariances, i.e. off-diagonal elements can be estimated 

independently of the variances. Moreover, when estimating the correlations of residuals, 

one needs only consider two sites at the time, since other sites do not affect the particular 

element in G't that corresponds to the two sites. Hence, in the following we develop the 

estimation procedure for two sites. 
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First, equation (8c) is used to eliminate Mt (2) from (8a). Then the equations 

corresponding to the off-diagonal elements of Mt(O) and Mt(1) are written out. 

Considering first the entry (1,2), we obtain trom (8a-b) 

_[(~(1)~(1) _ ~(l)Ô(1) + ~(1) _ Ô(l) )Ô(2) + Ô(l) ~(2)] G(12) _ (~(1) _ Ô(1»)Ô(2) G(12) 
l,t l,t-1 l,t 1;t-1 2,t 2,t 2,t 2,t 2,t t-2 l,t l,t l,t t-l 

(9a) 
+G(12) + ~(1)~(2) M(12) (1) + l(2) M(12)(1) = M(12) (0) _ ~(1)~(2) M(12)(0) 

t l,t 2,t 't-1 'Vl,t 't 't 2,'t 2,t t-2 

(9b) 

The IN is used here to distinguish known terms, either estimated parameters or moments 

calculated trom the data, trom the terms which are to be estimated at this step. Hence, there 

is an important difference between, for example, M~12) (0) and M~12) (1). The former is 

estimated trom the data and preserved by the model; the latter is a model property, not 

necessarily equal to what one would get by estimating it from the data. G~12) is the 

covariance between the residuals at time t, and M~12)(O) = M~21)(O) is the cross-covariance 

of lag zero, estimated from the data. Since the data are assumed standardized, the cross­

covariance is equal to the cross-correlation. The lag 1 cross-covariance is defined as 

M~12)(1) = E[X~l)X~:>d. It is important to note that in general M~12)(1)::t: M~21)(1). The above 

expressions have been obtained trom (8a-b) by considering the element (1,2). Two other 

sets of equations can be obtained by considering the elements (2,1) in (8a-b), which 

corresponds to switching the site indices in (9a-b). Note that the element G~12) remains 

unaltered, since G~12) = G~21). Renee, we essentially have 4ro linear equations with 3ro 

unknowns, namely G~12), M~12)(1), and M~21)(1) for t = 1, .. ,ro . In fact, one of the sets of 

equations is superfluous, and can be omitted. Eventually, it can be used to check the 

solution. Renee, we consider the system of linear equations consisting of (8a-b) and (Sb) 

with reversed site indices. These 3ro equations can without any major difficulty be solved for 
G~12), M~12)(1), and M~21)(1). 

If the variance of the flows at each site is not preserved exactly by the individual univariate 
models, then M~12)(O) on the right side of the above equations must be adjusted with a 

factor ~M~l(O) M;Z(O) where the terms in the square root are the variances produced by 

the individual models. This adjustment is necessary in order to correctly reproduce the 

correlation of flows. 
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The complex structure of the individu al site models may impose such constraints on each 

series that exact preservation of the spatial cross-correlation of flows is not feasible. For 

example, it may appear that sorne of the estimated correlations between residuals are 

greater than one or less than minus one. This, of course, is meaningless, and sorne 

adjustment of the estimated G't-matrices is needed. In general, the requirement to the G't 

matrices is that they be positive semidefinite. Hence, if a given G't matrix is negative 

definite, an adjustment must be made to make it positive semidefinite. Generally, this will 

imply that the correlation of flows will no longer be exactly preserved. The adjustment 

should have as titde influence on the G't matrices as possible. There seems to be no 

standard method for adjusting symmetric, negative definite matrices so as to make them 

positive semidefinite. If a G't matrix is negative definite (i. e. have negative eigenvalues) then 

one could proceed as follows: 

1) Decompose the G matrix in eigenvectors and eigenvalues, P and A, where the columns 

of P contain the eigenvectors of G, and A is a diagonal matrix with the eigenvalues on 

the diagonal. Hence, G = PAPI. 

2) Set the negative eigenvalue in A equal to zero. This defines a new matrix A*. 

3) Compute the matrix G* = PA* Pl, which is positive semi-definite. 

4) In order to preserve the variance terms of the original G matrix (i.e. the diagonal 

elements), perform the following computation 

Gadj =UG*U 

where 

U= 

o 

o 

o 

o 
o 

In order to check to what degree the cross-covariance of the transformed flows are 
reproduced by the obtained estimates of G~12), equations (Sa-b) (with M't(2) eliminated 

from (Sa) by means of(Sc» are reformulated as a system of4oo linear equations in M~12)(O), 

M~21)(O), M~12)(l), and M~21)(1). These equations become: 
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_~(1)~(2) M(12)(0)+M(12)(0)_~(I),k(2) M(12)(I)_,k(2) M(12)(1) 2,'t 2,'t 't-2 't 1,'t'l'2,'t 't-I 'l'I,'t 't 
= -ê(1) Ô(12)~(2) + Ô(12) _ (~(1) _ ê(1»)Ô(12)ê(2) 

2,'t 't-2 2,'t 't I,'t l," ,,-1 I,'t (10a) 

_(~(1)~(1) -~(1)ê(1) +,k(I) -ê(I))Ô(12)ê(2) 
l," 1,"-1 l," 1,,,-1 '1'2," 2," ,,-2 2," 

,k(2) M(2) (0) + i(2) M(12) (1) - M(21) (1) = Ô(12)ê(2) + (i(1) - ê(1) )Ô(12)ê(2) (lOb) 'l'l," 't-I 'l'2,'t ,,-1 " ,,-1 l," 'l'I,'t-1 1,,,-1 ,,-2 2,'t 

plus the same two sets of equations with reversed site indices. Strictly, only three equations 

are needed, since M~l2) (0) = M~21) (0). However, the above formulation provides a test of 

coherence. In a fi.rst step, one should verify that M~12)(0) is identical to M~21)(0). Ifnot, this 

could indicate a programming error or lack of precision in the computation. The model 

cross-covariance M~12)(0) can be compared with the observed cross-covariance of the 

transformed data M~12)(0). 

Lagged cross-correlations are not preserved explicitly. The extent to which an estimated 

model produces lagged cross-correlations that resembles the observed can be examined by 

comparing M't(l) and M't(2) of the model with the corresponding observed lagged cross­

covariance matrices. Note that M,,(l) is obtained as a biproduct in the estimation of G't' 

With known M,,(O) and M't(l), M,,(2) is readily obtained from (Sc). One can generalize 

equation (3d) to the multivariate case: 

M,,(k) = E[X"X;_k] = Cl»1." M"_I(k-l) + Cl»2,,, M't-2 (k-2) k>2 (11) 

but usually only the first or second lagged correlations need to be examined. 
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The method of moments was used to estimate the off-diagonal elements of the periodic 

cross-covariance matrices of residuals. The MATLAB computer codes used to compute 
these properties are presented in Appendix B. The G'f-matrices have dimension 5x5, but 

only 10 elements in each are unknown, corresponding to the number of combinations of 

two sites out of five. Estimated autoregressive and moving average parameters of each pair 

of sites, as weIl as the observed periodic cross-correlation of transformed flows, were 

entered into a program, which as output yielded the periodic cross-covariance of residuals 

needed to reproduce the cross-correlations of flows. This resulted in ten vectors of periodic 

cross-covariances of residuals, representing an initial estimate of the ten off-diagonal 
elements of the G'f -matrices. As noted in the previous section, there is no guarantee that 

this is a feasible solution. The G'f -matrices must be positive semidefinite, but there is no 

provision for this in the method of moments. In fact, the problem pertaining to negative 

detinite matrices turned out to be more severe than expected. Only one of the 52 matrices 

were positive definite, 21 matrices had one negative eigenvalue, 28 had two negative 

eigenvalues, and two had three negative eigenvalues. Ali matrices with negative eigenvalues 

were modified with the technique described in the previous section. This had a significant 
effect on sorne of the elements of the matrices. The matrix G 1 had three negative 
eigenvalues, G 2 had two negative eigenvalues, and G3 had one negative eigenvalue. The 

first three G-matrices were changed as follows2: 

["" 
0.49 0.70 

"53 ~~I 0.35 0.28 0.20 0.38 

~31 0.23 0.88 0.63 -0.45 0.23 0.16 0.31 -0.24 

°1= 0.12 0.79 -0.25 0'- 0.12 0.22 -0.15 \-

0.43 -0.35 0.43 -0.29 

0.52 0.52 

0.15 0.11 -0.14 0.00 0.17 0.15 0.10 -0.04 0.04 0.10 

0.35 -0.23 0.24 0.12 0.35 -0.15 0.20 0.10 

0,= 0.21 -0.23 0.45 G'-.- 0.21 -0.08 0.25 

0.13 0.13 0.13 0.06 

0.67 0.67 

2) The elements of the matrices correspond to the regions in the following order: North East, North West, 
East, Central, and South. 
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Table 7.1 Elements of the periodic covariance matrices ofresiduals 

1 gl1 g12 g13 g14 g15 g22 g23 g24 

1 0.3540 0.2819 0.1983 0.3844 ..().3204 0.2256 0.1604 0.3104 

2 0.1475 0.1047 ..().0418 0.0357 0.1041 0.3457 -0.1538 0.2035 

3 0.2520 0.2643 ..().0939 0.1330 ..o. 1907 0.3238 -0.1158 0.1726 
4 0.1739 0.1243 ..().0828 0.1308 ..o. 1998 0.1781 ..o. 1066 0.1279 

5 0.2256 0.1637 0.0511 0.1373 ..().0928 0.3588 0.0997 0.2250 
6 0.2043 0.0737 0.0322 ..0.0602 0.1127 0.3047 ..().0843 0.1700 
7 0.1568 0.1043 0.0818 0.0313 ..().0207 0.2025 ..().0189 0.1924 

8 0.1204 0.0891 0.0087 0.1350 0.0634 0.1714 -0.1255 0.1965 

9 0.3341 0.1797 0.1806 0.3385 ..().0497 0.2266 0.0253 0.2070 
10 0.2611 0.1483 0.1206 0.1560 0.3679 0.2218 0.0120 0.0579 
11 0.1665 0.0998 -0.1170 ..().0437 ..o. 1495 0.4020 ..().0716 0.0803 
12 0.1467 0.0800 ..().0575 0.1137 0.1331 0.1289 0.0257 0.0593 
13 0.3994 0.1710 0.0253 0.1468 0.2901 0.2581 ..().0384 0.0827 
14 0.1592 0.0777 ..().0231 ..().OO44 0.2548 0.3192 0.1274 0.0933 
15 0.3588 0.2497 0.0655 0.1050 ..().0952 0.3058 ..().0151 ..().0056 
16 0.3636 0.2921 0.0097 0.0231 0.2039 0.3636 0.0452 0.0399 
17 0.3422 0.2851 0.0499 0.1618 0.0004 0.5155 ..().0470 0.0020 
18 0.5055 ..().OO77 0.0851 0.2432 0.1203 0.3869 0.0124 -0.0937 
19 0.4610 ..().0392 ..().0423 0.0047 ..().0215 0.4225 0.0047 ..().0961 

20 0.4706 0.0868 0.1353 0.1472 0.1871 0.4900 0.2834 0.0475 
21 0.4369 0.5121 0.2590 0.4168 0.3277 0.6241 0.2573 0.4833 
22 0.3516 0.2948 0.1994 0.2632 0.4194 0.5329 0.1558 0.2256 
23 0.4147 0.4542 0.2495 0.3121 0.4338 0.5213 0.3004 0.3131 
24 0.7430 0.3105 0.1525 0.2697 0.2692 0.6889 0.2722 0.3792 

25 0.6806 0.4882 0.3356 0.5324 0.4302 0.5184 0.2969 0.4530 
26 0.6675 0.5072 0.3969 0.5377 0.3914 0.4277 0.2611 0.3925 
27 0.2034 0.2490 0.2102 0.2779 ..o. 1121 0.3192 0.2755 0.3224 
28 0.1576 0.1197 0.1118 0.1740 "().3173 0.2228 0.1213 0.1870 
29 0.2520 0.2706 0.2833 0.1998 ..().0884 0.5155 0.3249 0.2423 
30 0.4556 0.5538 0.3039 0.4557 ..0.3235 0.7090 0.3522 0.5259 
31 0.4665 0.3651 0.2642 0.1795 0.0084 0.3624 0.2444 0.2513 
32 0.3770 0.1795 0.0452 0.3284 0.3886 0.1673 ..().0756 0.1871 
33 0.2430 0.1785 0.1085 0.3050 0.2000 0.2510 0.2056 0.2699 
34 0.2162 0.1662 0.2619 0.1525 0.2040 0.2905 0.1460 0.1854 
35 0.2714 0.2403 0.0766 0.1565 ..().0142 0.3446 0.2329 0.2954 
36 0.3295 0.3052 0.1473 0.3783 0.0429 0.4160 0.2357 0.3863 
37 0.3147 0.2520 0.2015 0.1428 0.2755 0.3036 0.2057 0.3109 
38 0.3697 0.1511 0.1803 0.1494 ..().0672 0.2777 0.1142 0.0803 
39 0.2852 0.0789 0.0879 0.1997 ..().0186 0.3648 ..o. 1003 0.1103 
40 0.4290 0.2127 0.1176 0.1307 0.1578 0.1122 0.0935 0.0586 
41 0.3672 0.2834 0.1876 0.2311 ..o. 1522 0.2200 0.1351 0.1827 
42 0.2323 0.2307 0.2010 0.1273 0.1208 0.2510 0.2374 0.1788 
43 0.4369 0.4056 0.1447 0.1675 "().4186 0.4134 0.2055 0.2066 
44 0.3080 0.1563 0.2114 0.0811 ..().0284 0.2256 0.2293 0.0137 
45 0.2228 0.2628 0.1255 0.0141 0.0084 0.4638 0.3139 0.1815 
46 0.2116 0.2288 0.1804 0.2136 0.0681 0.2938 0.1906 0.2303 
47 0.2162 0.1340 0.0707 0.1538 "().2314 0.3025 0.1665 0.2743 
48 0.1640 0.1064 0.0895 0.2331 0.1378 0.2460 ..().0773 0.1629 
49 0.1901 0.1640 -0.0246 ..().0104 0.0435 0.3576 0.0918 0.2334 
50 0.2570 0.2490 0.2624 0.1251 ..0.2266 0.4761 0.3775 0.2640 
51 0.4382 0.2652 0.0296 0.3061 ..o. 1207 0.4747 0.1537 0.2712 
52 0.5476 0.1644 0.1804 0.0530 ..0.3323 0.2209 ..o. 1398 0.2026 
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Table 7.1 (conf.) 

1; 12' g33 gl4 gl' g44 g4' g" 

1 -0.238' 0.1163 0.2243 -0.1451 0.4330 -0.2880 0.5198 
2 0.0958 0.2107 -0.0837 0.2521 0.1260 0.0558 0.6740 
3 -0.1443 0.0918 -0.1419 -0.0540 0.2247 0.0686 0.7868 
4 -0.0'51 0.0900 -0.1179 -0.0174 0.1665 -0.0195 0.4872 , -0.0592 0.0497 0.12'2 0.0374 0.3283 0.0713 0.3660 
6 -0.0403 0.0488 -0.1032 -0.00'9 0.2209 0.0441 0.3352 
7 -0.0068 0.0876 -0.0881 -0.0060 0.2652 0.0715 0.4692 
8 0.0124 0.1731 -0.1038 0.1036 0.2470 0.0934 0.4556 
9 -0.0604 0.2581 0.0983 -0.2111 0.4970 -0.1181 0.6593 

10 0.3144 0.1849 0.2018 0.2055 0.2294 0.2834 0.6577 
11 0.1832 0.2007 -0.0413 0.0489 0.1927 0.1081 0.4007 
12 0.0576 0.1764 -0.0776 0.0896 0.0986 0.0768 0.4212 
13 0.12'6 0.1714 -0.1084 0.1097 0.1414 0.0571 0.3215 
14 0.2417 0.1267 0.0979 0.0599 0.0784 0.0684 0.4844 
15 -0.0683 0.0955 0.1113 0.0553 0.1858 -0.0846 0.4449 
16 0.1411 0.0930 0.0953 0.0859 0.1011 0.0864 0.7482 
17 0.1456 0.1376 0.2000 0.0260 0.3192 -0.0026 0.3709 
18 0.1302 0.1884 0.2329 0.0704 0.3600 0.1108 0.4858 
19 0.2606 0.1731 0.2466 0.2038 0.4147 0.2509 0.4083 
20 0.0979 0.2343 0.0180 0.1411 0.2088 0.3106 0.7140 
21 0.4068 0.2652 0.2130 0.2242 0.4886 0.1565 0.5213 
22 0.3821 0.2052 0.1967 0.3896 0.2218 0.3939 0.7586 
23 0.'210 0.194' 0.2057 0.3751 0.4610 0.5041 0.8263 
24 0.'494 0.2480 0.3557 0.3820 0.5155 0.5429 0.6320 
25 0.4290 0.2079 0.2392 0.3158 0.'402 0.2610 0.5285 
26 0.3702 0.4045 0.4669 0.3412 0.5730 0.4687 0.6006 
27 -0.08'0 0.2642 0.2488 -0.1131 0.4122 -0.1767 0.4238 
28 -0.3993 0.1498 0.2112 -0.2945 0.3318 -0.4104 0.8855 
29 0.0144 0.5685 0.2202 0.1847 0.4343 0.0879 0.4720 
30 -0.4482 0.2162 0.32'0 -0.1890 0.5170 -0.198' 0.5491 
31 0.2253 0.1697 0.1596 0.1069 0.2460 0.3536 0.8668 
32 0.1900 0.33'2 -0.0151 0.2225 0.2992 0.3252 0.5550 
33 0.1226 0.2061 0.1613 0.1671 0.4212 0.1483 0.5883 
34 0.0347 0.3844 0.2496 0.3407 0.3147 0.1171 0.6194 
35 0.0079 0.2621 0.2840 0.1095 0.3411 0.0761 0.5746 
36 -0.0327 0.1962 0.2070 0.1880 0.4462 0.0737 0.9235 
37 0.1668 0.1608 0.2027 0.2275 0.4970 0.1751 0.7174 
38 0.2454 0.2352 0.2717 0.2563 0.4238 0.3310 0.7621 
39 -0.5292 0.1772 -0.0444 0.1470 0.2190 -0.0662 0.8154 
40 0.08'9 0.3329 0.1291 0.4196 0.1798 0.4007 1.0302 
41 -0.1480 0.1739 0.0835 0.1674 0.1608 -0.2044 0.8336 
42 0.1376 0.2401 0.1987 0.1599 0.1980 0.0672 0.6593 
43 -0.3117 0.2025 0.1907 -0.0603 0.2125 -0.2018 0.8446 
44 0.0036 0.3469 0.1439 0.2155 0.2970 0.0793 0.6496 
45 0.1234 0.3399 0.1636 0.3401 0.1832 0.0696 0.5868 
46 0.0587 0.3147 0.3061 0.3568 0.3114 0.2986 0.5776 
47 -0.1176 0.0918 0.1496 -0.0'42 0.2621 -0.2083 0.8668 
48 0.0440 0.1'29 0.1155 0.1287 0.3434 0.1132 0.6839 
49 0.0102 0.1190 0.1839 0.1843 0.3272 0.1679 0.7500 

'0 0.0227 0.379' 0.1743 0.0324 0.1648 -0.04'7 0.8464 
SI 0.0030 0.2125 0.1352 0.1'07 0.2894 0.0575 0.7379 

'2 -0.2'46 0.2992 -0.1284 0.1419 0.4160 0.0423 0.6257 
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[O." 
0.32 -0.34 0.10 -0.22 0.2S 0.26 -0.09 0.13 -0.19 
0.32 -0.19 0.29 -0.14 0.32 -0.12 0.17 -0.14 

0,= 0.09 -0.66 -o.lS 0'- 0.09 -0.14 -O. OS ,-
0.22 0.07 0.22 0.07 

0.79 0.79 

It is seen that part of the problem is that sorne of the covariances in the initial· matrices are 

"too" high as compared with the corresponding variances. For example, the moment 

solution requires that the correlation coefficient between the residuals in region 1 and 3 at 
time 't = 1 be 0,70 / .J0.35 ,0.12 = 3.4. Since correlation coefficients are restricted to the 

interval [-1~ 1], the element at row 1, column 3 must be reduced with at least a factor 3.4. 

One cannot generally conclude that the number of negative eigenvalues determines the 

"amount" of correction needed, since also the value of the eigenvalues are important. The 

number of negative eigenvalues, which in our algorithm is set to zero, determines the rank 

of the adjusted G-matrices. For example, the matrix G" which has three negative 

eigenvalue, is modified to a matrix with rank 2. This means that the generated residual 

vectors at 't = 1 only have two degrees of freedom, or, in other words, two elements of the 

residual vectors uniquely determine the three others. Note that the variance terms of the 

matrices (diagonal elements) remain unchanged. They are identical to the values listed in 

Table 5.2. 

The complete set of adjusted G-matrices is given in Table 7.1. An important step in the 

analysis is to evaluate the consequences of the adjustments made on the initial moment 

estimates. The theoretical procedure described in the previous section was implemented 

(see Appendix B) and invoked in order to compute the cross-covariance of generated flows. 

The results are shown in Figure 7.1. The following conclusions can be drawn from the 

figures: 

1. The correlations between the transformed flows in certain regions are substantially 

underestimated in the beginning of the (hydrological) year. This is especially true for 

the combinations involving the East region. It should be noted, however, that the 

flows in this period are relatively low, thus reducing the practical impact of this 

underestimation. 

2. The cross-correlations are generally weIl preserved during the critical flood seasons. 

In the light of the objectives ofthis study, this is a very pleasant observation. 

3. Correlations between the South region and the other regions are weIl preserved. This 

can probably be ascribed to the fact that the site model at South is a PARMA(1, 1). In 
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fact, for a close reproduction of cross-correlations it seems advantageous that the site 

models be as simple as possible. (For example, if ail site models were PARMA(I,O), 

there would be no problem in preserving the observed cross-correlations.) 

4. The adjusted moment estimates yield cross-correlations of flows that are generally 

cIoser to the observed, than those corresponding to ML-estimates. 

The estimation of the G-matrices completes the calibration of the multivariate P ARMA­

model. 
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8 CONCLUDING REMARKS 

The results presented in this report constitute only one element of a flow-generator 

developed for the Ottawa River system. 1t will be used in connection with a spatial 

disaggregation model, and a time disaggregation scheme that takes the weekly data down to 

a time scale of one day. Hence, when evaluating the output of the flow-generator, several 

other elements enter as potential sources of errors or inadequacies. 1t is important that each 

component of the generator be thoroughly tested and evaluated. We have developed several 

routines that permit to test and evaluate the performance of the multivariate P ARMA model 

as applied to transformed weekly data. 

Apparently, for models beyond the P ARMA(I, 1), the method of moments has never been 

used to estimate the residual cross-covariances. Although no exact feasible moment solution 

could be obtained in this study, the approximate solution, based on corrected G-matrices, 

tumed out to be generally superior to the ML-method. More research should be devoted to 

techniques for adjusting matrices that are negative definite. We examined several options 

and selected the one that seemingly gave the best results. However, it cannot be exc1uded 

that even better methods can be found. 
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Appendix A. Periodic multivariate Yule­
Walker equations 

The periodic multivariate Yule-Walker equations can be deduced as follows. By definition, 

wehave 

E[ X~X~] = M~ (0) 

E[X~X~_I]=M~(l) and E[X~_IXn=M~(1) 

E[E~En = G~ 

E[X~_iEn = 0 for i > 0 

The multivariate P ARMA(2,2) model has the form 

U sing the above definitions, one easily shows that 

The covariance matrix of X~ and X~_i is obtained by multiplying (AS) by X~_i and taking 

expectation: 

M~(O) = E[X'tXn =M't(l) ~i.'t +M~(2) ~I~ +G't -[~I;t -el.'t]G~_18i.~ 

- [~I.~(I)I.~-I - ~1.t81.'t_1 + ~2 .. t - 8 2.'t ]G~_28i.t 

M~ (1) = E[ Xt_IX:~] = Mt_1 (0) ~i.t + M~_I (1) ~i.~ - GH8i.~ - [~l.~-I - el.'t-l]G~_2f)i.~ 

(Al) 

(A2) 

(A3) 

(A4) 

(AS) 

(A6) 

(A7) 

(A8) 

(A9) 

M~ (2) = E[Xt_2X!] = M~_1 (1) ~~t + M't_2 (0) ~i.'t - G~_28i.~ 

(AlO) 

(AlI) 

M~ (k) = E[ Xt-2Xn = M~_l (k -1) ~~~ + M t _ 2(k - 2) ~i.~ k> 2 (AI2) 

The univariate cases (3a-d) correspond to the diagonal elements of the above matrices. 
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ApPENDIX B MATLAB PROGRAMS 

The following pages contains a listing of some of the most important routines developed in 

this project for calibrating and testing a multivariate P ARMA(2,2) model. The following 

table summarizes the name and purpose of the four main functions and routines. 

Table BI MA TLAB subroutines 

modelcov: 

gij : 

dij : 

modelcol: 

The function modelcov takes as input the estimated model 

parameters (autoregressive, moving average and variance of 

residuals) of a univariate PARMA(2,2) model, or any sub­

model. It retums the periodic variance and the periodic 

autocorrelation. 

The function takes as input the estimated model parameters 

(autoregressive and moving average) of a bivariate 

P ARMA(2,2) model and the observed cross-correlation 

between the transformed flows at the two sites. It retums a . 

vector containing the covariance terms in the 52 covariance 

matrices of residuals, which produces exactly the observed 

cross-correlation of flows. However, the solution may not be 

feasiblel 

This routine examines each of the 52 (5 x 5) matrices for 

negative eigenvalues. If negative eigenvalues are present, the 

matrix is adjusted to make it positive semidefinite. 

The function takes as input the estimated model parameters 

(autoregressive and moving average) of a bivariate 

P ARMA(2,2) model and the cross-covariance of residuals 

between the two sites. The function retums the 

corresponding cross-correlation of transformed flows 

between the two sites. 
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% ************************************************************** 
% Covariance structure of PAmCA(2,2) and sub-models 

@1994 by Peter F. Raamussen 
% ************************************************************** 
% 
% function [var, scr] - modelcov(phi,tht,g) 
% 
% 
% Input: 
% 
% 
% 
% OUtput: 
% 

phi 
tht 

9 

scr 
var 

(2 x 52) phi parameters 
(2 x 52) tht parameters 
(1 x 52) residual variance 

(10 x 52) seasonal correlations 
(1 x 52) variance of pro cess 

up to lag 10 

% -------------------------------------------------------------

function [var, scr] = modelcov(phi,tht,g); 

% ** Define constants 
m=length(g); 
mslag=lO; 

% ** Initialization of coefficient matrix 
a = zeros(3*m,3*m); 
clear y; 

% ** Calculate some useful constants 
for i=l:m 

il = i-l; 
i2 = i-2; 
if i==l 

il = m; 
i2 = m-l; 

end 
if i==2 

i2 
end 
aa(i) 
bb(i) = 
cc(i) = 

end; 

m; 

tht(2,i) * g(i2); 
-tht(l,i) * g(il) + aa(i) * tht(l,il); 
g(i) + tht(1,i)A2 * g(il) + aa(i} * tht(2,i}; 

% ** fill out coefficient matrix 

%------------------------------------------------------------
% phi(l,t) m(l,t-l) + phi(2,t) m(0,t-2) - m(2,t) = aa(t) 

%------------------------------------------------------------
for i=l:m 

if i==l 
a(i,3} = -1; 
a(i,3*m-5} = phi(2,i}; 
a(i,3*m-l} = phi(l,i}; 
y(i} = aa(i}; 

elseif i==2 
a(i,6) = -1; 
a(i,3*m-2) = phi(2,i}; 
a(i,2} = phi(l,i}; 
Y ( i ) = aa ( i) ; 

else 



Appendix B. MATLAB programs 

a(i,3*i) = -1; 
a(i,3*i-8) = phi(2,i); 
a(i,3*i-4) = phi(l,i); 
Y (i) = aa (i) ; 

end; 
end; 

t------------------------------------------------------
t m(l,t) - phi(l,t) m(O,t-l) - phi(2,t) m(l,t-l) 
t - bb(t) - phi (l,t-l) aa(t) 
t------------------------------------------------------
for i=l:m 

if i==l 
a(m+i,2) =1; 
a (m+i,3*m-2) = -phi(l,i); 
a (m+i,3*m-1) = -phi(2,i); 
y (m+i) = bb(i) - aa(i) * phi(l,m); 

else 
a(m+i,3*i-1) = 1; 
a (m+i,3*i-S) = -phi(l,i); 
a(m+i,3*i-4) = -phi(2,i); 
y(m+i) = bb(i) - aa(i) * phi(1,i-1); 

end; 
end; 

47 

t------------------------------------------------------------------------
t m(O,t) - phi(l,t) m(l,t) - phi(2,t) m(2,t) 
t - cc(t) + phi(l,t) bb(t) - aa(t) [phi (l,t) phi(l,t-l) + phi(2,t)] 
t------------------------------------------------------------------------
for i=l:m 

if i==l 
a (2*m+i,3*i-2) = 1; 
a (2*m+i,3*i-1) = -phi(l,i); 
a (2*m+i,3*i) = -phi(2,i); 
y(2*m+i) = ccli) - aa(i) * (phi(l,i) 

* phi(1,m)+phi(2,i) ) + bb(i)*phi(l,i); 
else 

a(2*m+i,3*i-2) = 1; 
a(2*m+i,3*i-1) = -phi(l,i); 
a(2*m+i,3*i) = -phi(2,i); 
y (2*m+i) ccli) - aa(i) * (phi(l,i) 

end; 
end; 

* phi(1,i-1) + phi(2,i) ) + bb(i)*phi(l,i); 

t ** Solve a * x - y for x 
X = a \ yI; 
clear a 

t ** Store solution x in scr (matrix of seasonal covariances) 
clear var; 
clear scr; 
for i=l:m 

var (i) = 
scr(l,i) 
scr(2,i) 

end; 

x(3*i-2); 
x(3*i-1); 

= x(3*i); 
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Il ** Compute seasonal covariance up to orcier mslaq 
for k=3:mslag 

for i=l:m 
if i==l 

scr(k,i) = phi(l,i)*scr(k-l,m) + phi(2,i)*scr(k-2,m-l); 
elseif i==2 

scr(k,i) phi(l,i)*scr(k-l,i-l) + phi(2,i)*scr(k-2,m); 
else 

scr(k,i) phi(l,i)*scr(k-l,i-l) + phi(2,i)*scr(k-2,i-2); 
end; 

end; 
end; 

Il ** Compute seasonal correlations up to orcier mslaq 
for i=l:m 

for k=l:mslag 
if(i-k>O) 

scr(k,i) scr(k,i) / sqrt(var(i)) / sqrt(var(i-k)); 
else 

scr(k,i) = scr(k,i) / sqrt(var(i)) / sqrt(var(i+12-k)); 
end; 

end; 
end; 
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, ************************************************************** , , , 
MOment estimation of the periodic cross-covariance 
residuals a t two si tes 

@1994 by Peter F. Rasmussen 

of 

, ************************************************************** , 
, COJIIIIIent: 
, For a qiven solution for phi and tht at two sites, 
, and Observed cross correlation 'm12' of flows at the 
, same two si tes, the proqram computes the covariance 
, of residuals 'q12' that produce the cross correlation 
, of flows. , 
, NB If gl and g2 (the residual variances at the two 
, sites) do not produce a DIOdel variance of exactly 
, 1, then i t miqht be preferable to estimate the g12 
, that produces a cross covariance of 
, m12*(varl*var2)AO.5, where varl and var2 are the 
, the model variance (these can be obtained wi th 
, the routine MODELCOR.M). This adjustment assures 
, the model generates flows with the observed cross 
, correlation, althouqh not with the observed variance. , 
, NB It is very important to check that the covariance 
, matrix G is consistent, i.e. is positive semi-definite. 
, There is no quarantee that a moment solution exists! , 
, function cov-qij(phil,thtl,phi2,tht2,m12) , , , , , , , 
% 

Input phil 
thtl 
phi 2 
tht2 
m12 

(2 x 
(2 x 
(2 x 
(2 x 
(52) 

52) matrix for site 
52) matrix for site 
52) matrix for site 
52) matrix for site 

: correlations of 

'OUtput q12 : covariance of residuals 

1 
1 
2 
2 
transfo:r:med data 

, -------------------------------------------------------------
function cov=gij(phil,thtl,phi2,tht2,ml21 

m=52; 

, ** Fill out coefficient matrix 
clear A y x 

for i=l:m 
il = i-l; 
i2 = i-2; 
if i==l 

il = m; 
i2 = m-l; 

elseif i==2 
i2 = m; 

end 

49 
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, ** Firat aet of equationa 
A(i,i2) = -( (phi1(1,i)*phi1(1,i1) - phi1(1,i)*tht1(1,i1) ... 

+ phi1(2,i) - tht1(2,i) ) * tht2(2,i) 
+ tht1(2,i)*phi2(2,i) ); 

A(i,i1) = -tht2(1,i) * ( phil(l,i) - thtl(l,i) ); 
A(i,i) = 1; 
A(i,m+i1) = phi1(1,i) * phi2(2,i); 
A(i,m+i) = phi2(1,i); 

, ** Second aet of equationa 
A(m+i,i2) = tht2(2,i) * ( phi1(1,i1) - tht1(1,i1) ); 
A(m+i,i1) = tht2(1,i); 
A(m+i,m+i1) = -phi2(2,i); 
A(m+i,2*m+i) = 1; 

, ** Third aet of equationa 
A(2*m+i,i2) = tht1(2,i) * ( phi2(1,i1) - tht2(1,il) ); 
A(2*m+i,i1) = tht1(1,i); 
A(2*m+i,m+i) = 1; 
A(2*m+i,2*m+i1) = -phi1(2,i); 

, ** Riqht hand aide 
y(i) = m12(i) - phi1(2,i)*phi2(2,i)*m12(i2); 
y(m+i) = phi2(1,i)*m12(i1); 
y(2*m+i) = phi1(1,i)*m12(i1); 

end; 

, ** Solve ayatem for vector x 
, ** The elementa of x are [q12(1:m) m12(1) (1:52) m21(1) (1:52)] 
x=A\y'; 

cov=x (1 :m) ; 
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'*********************************************************** 
, Adjustment of covariance matrices of residuals 
, @1994 by Peter F. Rasmussen 
'*********************************************************** , 
'Comment: The procedure for adjustinq the G matrices (i.e. 
, makinq them non-neqative definite) consists of 
, the following steps: , , , , , , 
% , , 
% , , , , , , 
, Input , , , , 

1 

2 

3 

The G matrix is first decamposed into eigenvectors 
and eiqenvalues, EVEC and EVAL, using the ' eiq' 
function of MATLAB. 

:If G has neqative eigenvalues, then these are set 
to zero. An adjusted G matrix is computed as 

CORRG - EVEC * EVAL * EVEC' 
where EVAL is the adjusted diagonal matrix of 
non-negative eigenvalues 

An addi tional adjustment is made to ensure that the 
variances in the original G matrix are preserved. 
CORRG is multiplied from le ft and from right with 
a diaqonal matrix having the elaments 
sqrt( G(ii)/CORRG(ii) ) 

parameters and flow values for each of the five 
sites must he specified in the heginning of the 
program, as weIl as the model variance corrspondinq 
to each si te (use proqram MODELCOV) 

, OUtput: vectors dij, i-1, .. ,5 j-i, .• ,5 which are the 
, elaments of adjusted G matrices , , mmij : model cross-covariance of flows at si te i and j 

, -------------------------------------------------------------
, Selected LS-solution for the five sites 
, RESI_VA1.MAT contains the parameters below plus the 
, model variances correspondinq to each solution 
load resi val 

, Define input data 
phil = phi ne; 
tht1 = tht-ne; 
gl = 9 ne;-
q1 = q-ne; 
m11 = var_ne; 

phi2 = phi no; 
tht2 = tht-no; 
g2 = 9 no;­
q2 = cCno; 
rn22 = var_no; 

phi3 = phi e; 
tht3 = tht=:e; 

51 
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g3 = g_e; 
q3 = q e; 
m33 = var_e; 

phi4 = phi c; 
tht4 = tht-c; 
g4 = g_c; 
q4 = q C; 
m44 = var_ci 

phi5 = phi S; 
tht5 = tht=:s; 
g5 = g_s; 
q5 = q s; 
m55 = var_si 

% ** compute cross-correlations 
m12 cros_cor (ql,q2) * sqrt (mll. *m22) ; 
m13 = c.J:"os_cor(ql,q3) * sqrt (mll. *m33); 
m14 cros_cor(ql,q4) * sqrt (ml1. *m44) ; 
mlS = cros_cor (ql,q5) * sqrt(mll.*m55); 
m23 cros_cor (q2,q3) * sqrt (m22. *m33) ; 
m24 cros_cor (q2,q4) * sqrt(m22.*m44); 
m25 = cros_cor(q2,q5) * sqrt(m22.*m55); 
m34 = cros_cor (q3,q4) * sqrt(m33.*m44); 
m35 cros_cor(q3,q5) * sqrt(m33.*m55); 
m45 = cros_cor (q4,q5) * sqrt(m44.*m55); 

, ** Estimate covariance matrices of residuals 
g12 = gij(phil,thtl,phi2,tht2,m12); 
g13 gij(phil,thtl,phi3,tht3,m13); 
g14 = gij(phi1,thtl,phi4,tht4,m14); 
g1S = gij(phil,thtl,phi5,tht5,m15); 
g23 = gij(phi2,tht2,phi3,tht3,m23); 
g24 gij(phi2,tht2,phi4,tht4,m24); 
g25 = gij(phi2,tht2,phi5,tht5,m25); 
g34 = gij(phi3,tht3,phi4,tht4,m34); 
g35 = gij(phi3,tht3,phi5,tht5,m35); 
g45 = gij(phi4,tht4,phi5,tht5,m45); 

, ** Decompose G matrices 
for i=1:52 

G = [g1(i) g12(i) g13(i) g14 (i) g15(i) 
g12(i) g2(i) g23(i) g24(i) g25(i) 
g13(i) g23(i) g3(i) g34(i) g35(i) 
g14 (i) g24(i) g34(i) g4(i) g45(i) 
g15(i) g25(i) g35(i) g45(i) g5(i) ] ; 

, ** Decompose G in eiqenvectors and eigenvalues 
[evec eval] = eig(G); 
eval = real(eval)i 

, ** Set neqative eiqenvalues equal to zero 
ix = find(eval<O)i 
eval(ix)=zeros(l,length(ix»; 

, ** Compute adjusted G matrix 
corrG = evec * eval * evec'; 
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, ** Adjuat corrG matrix in orcier to preaerve variance., i.e 
, the diagonal elaments of matrix G 
factor = diag(sqrt(diag(G)./diag(corrG»); 
corrG = factor * corrG * factor; 

D = corrG; 

, ** store result in 10 vectora 
if i==l 

dll 0(1,1); d12 0(1,2) ; d13 = 0(1,3); 
0(1,5) ; 

d22 = 0(2,2); d23 = 0(2,3) ; d24 = 0(2,4); 
d33 = 0(3,3); d34 = 0(3,4); d35 = 0(3,5); 
d44 = 0(4,4); d45 = 0(4,5); 
d55 = 0(5,5); 

else 
dll = [dU 0(1,1)]; 
d12 [d12 0(1,2)]; 
d13 = [d13 0(1,3)]; 
d14 = [d14 0(1,4)]; 
d15 = [d15 0(1,5)]; 
d22 = [d22 0(2,2)]; 
d23 = [d23 0(2,3)]; 
d24 = [d24 0(2,4)]; 
d25 = [d25 0(2,5)]; 
d33 = [d33 D(3,3)]; 
d34 = [d34 0(3,4)]; 
d35 = [d35 0(3,5)]; 
d44 = [d44 0(4,4)]; 
d45 = [d45 D(4,5)]; 
d55 = [d55 0(5,5)]; 

end 

, ** Decompose to D matrix to B where D-BB' 
[evecO evalO]=eig(O); 
B = real(evecO*sqrt(evalO»; 

end 

, ** Compute model crosscorrelation 
mm12 = modelco1(phi1,tht1,phi2,tht2,d12); 
mm13 = modelco1(phi1,tht1,phi3,tht3,d13); 
mm14 = modelco1(phi1,tht1,phi4,tht4,d14); 
mm15 = modelco1(phi1,tht1,phi5,tht5,d15); 
mm23 = modelco1(phi2,tht2,phi3,tht3,d23); 
mm24 = modelco1(phi2,tht2,phi4,tht4,d24); 
mm25 = modelco1(phi2,tht2,phi5,tht5,d25); 
mm34 = modelco1(phi3,tht3,phi4,tht4,d34); 
mm35 = modelco1(phi3,tht3,phi5,tht5,d35); 
mm45 = modelco1(phi4,tht4,phi5,thtS,d4S); 

d14 0(1,4); d15 

d25 0(2,5) ; 

= 
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'************************************************************** 
, Cross-correlations of flows at two sites correspondinq 
, to a calibrated DIOdel 
, @1994 by Peter F. Rasmussen 
'************************************************************** , 
, COlIIIDent: , For a qiven solution for phi and tht at two sites, 

and an estimate of the covariance of the residuals, 
the proqram pe~ts to evaluate the correlation of 
flows at the two sites 

, , , , , , , 

NB Before using this proqram, i t should he verified 
that aIl G matrices are positive semi-definite. 
If this is not the case, an ajustment must he . 
made on G' 

, function ~2-modelco1(phi1,tht1,phi2,tht2,q12) , , , , , , , , 

Input: phil 
tht1 
phi2 
tht2 
q12 

(2 x 
(2 x 
(2 x 
(2 x 
(52) 

52) matrix for site 1 
52) matrix for site 1 
52) matrix for site 2 
52) matrix for site 2 

covariance of residuals 

, OUtput: ~2 (52) : correlations of transfor.med data 

,------------------------------------------------------------------
function m12=rnodelcol(phil,thtl,phi2,tht2,g12) 

, ** Define constant 
m = 52; 

, ** Initialize variables 
A=zeros(4*m,4*m); 
clear y 

, ** Fill out coefficient matrix 
for i=l:m 

il=i-l; 
i2=i-2; 
if i==l 

il=rn; 
i2=m-l; 

end 
if i==2 

i2=m; 
end 

, ** First set of equation corresponding to m12(O) 
A(i,i2) = -phil(2,i)*phi2(2,i); 
A(i,i) = 1; 
A(i,2*m+il) = -phil(l,i)*phi2(2,i); 
A(i,2*m+i) = -phi2(l,i); 
y(i) = -thtl(2,i)*g12(i2)*phi2(2,i) + g12(i) ..• 

- ( phil(l,i)-thtl(l,i) )*g12(il)*tht2(1,i) 
- ( phil(l,i)*phil(l,il) - phil(l,i)*thtl(l,il) 

+ phil(2,i) - thtl(2,i) ) * g12(i2) * tht2(2,i); 
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, ** Second set of equation corresponding to ~l(O) 
A(m+i,m+i2) = -phi2(2,i)*phil(2,i); 
A(m+i,m+i) = 1; 
A(m+i,3*m+il) = -phi2(1,i)*phil(2,i); 
A(m+i,3*m+i) = -phil(l,i); 
y (m+i) = -tht2(2,i)*g12(i2)*phil(2,i) + g12(i) ..• 

- ( phi2(1,i)-tht2(1,i) )*g12(il)*thtl(1,i) 
- ( phi2(1,i)*phi2(1,il) - phi2(1,i)*tht2(1,il) 

+ phi2(2,i) - tht2(2,i) ) * g12(i2) * thtl(2,i); 

, ** Third set of equations corresponding to ~2(1) 
A(2*m+i,il) = phi2(1,i); 
A(2*m+i,2*m+il) = phi2(2,i); 
A(2*m+i,3*m+i) = -1; 
y(2*m+i) = g12(il)*tht2(1,i) + (phil(l,il)­

thtl(1,il»*g12(i2)*tht2(2,i); 

, ** Forth set of equations corresponding to ~1(1) 
A(3*m+i,m+il) = phil(l,i); 
A(3*m+i,3*m+il) = phil(2,i); 
A(3*m+i,2*m+i) = -1; 
y(3*m+i) = g12(il)*thtl(1,i) + (phi2(1,il)­

tht2(1,il»*g12(i2)*thtl(2,i); 
end 

, ** Solve system for vector x 
x = A \ y'; 

m12 = x(l:m); 

55 



56 Calibration of a multivariate P ARMA model 



Appendix C 
Periodic variance and periodic autocorrelation of fitted models 



58 Calibration of a multivariate P ARMA model 



Appendix C. Periodic variance and periodic autocorrelations of fitted models 59 

North Eastregion 
Model variance 

1.30 -,--------------------------------, 

1.20 

1.10 

1.00 

0.90 

T··"v Q, 

! Cv 
l , , \ 

·-·_·-··········_·_·_·_···I··········_~·_·-, \ 
cp , 

....... _ .............. · ..... ---._.f.· .... y_·_··· ........... _ ......... . 
l '? 
1 Il) f\ " 1 \5>1\ 1? \ " 

8 : !\\ y j \ i t._ ....... _ ....... _.,_ ~ 'K '-'-i, \~ ... _._.-! .............. _._._._+ ·······\~P\~····/ .. -~~·······_·······_············_·_·_·_·1···············_. c···············_~ ..... _ .... , ... \~~:·_·_·_········T\;-·_· __ ·· .. ······_·_· 

'. , "'! ~ \ ~ Q" ~'" i\ '9.: .... ~ f \ 
J.,....Gl_ ~ ..G 

\ i / ~ , f 
\,\ W 
I,i i 

b\ f . i 
.---.-.---.••..... -.-.... -\ .•.. J ............... _ ... -... -

\1 
~ 

;- . 
S-d, 1, 

'l'ry 'If /'f! 
y Ji> ' 

l\/\!,V 
\! \! '<;>l, <p 

\ f t> \' , , 
'l 

"' .. ,.", ... -
~. 

O. 80 +-t-t-H-+-+-t-t-t-+-+-++-l-t-Hf--+-+-++-"f-Hf--+-+-++-+-t-t-+-H-+-++-+-H,.-f-+-++-+-+-I,.-f-+-+~ 

o 4 8 12 16 20 24 28 32 36 40 44 48 52 

[- Observed -8- PARMA(1, 1) --G- PARMA(2, 1)-v .... PARMA(2,2) 1 



60 Calibration of a multivariate P ARMA model 

North East region 
Lag 1 correlation 

1.0 

0.9 

0.8 

0.7 

0.6 _.-.. - ............. __ .... ... J. 
0.5 ._~_. __ ._._--_._--.-.. -.......... 

0.4 .. _ ............ -...•..... 
0.3 

0 4 8 12 16 20 24 28 32 36 40 44 48 52 

Lag 2 correlation 
1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

-0.2 

-0.4 Il 1 1 1-++ 

0 4 8 12 16 20 24 28 32 36 40 44 48 52 

Lag 3 correlation 
1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

-0.2 

-0.4 

-0.6 
0 4 8 12 16 20 24 28 32 36 40 44 48 52 

1- Observed --B- PARMA( 1,1) .-G- PARMA(2,1) ..... ç ..... PARMA(2,2) 1 



Appendix C. Periodic variance and periodic auto correlations of fitted models 61 

North East region 
Lag 4 correlation 

0.8.-~-----------------------------------------------------. 

0.6 

0.4 

0.2 +."c-m····_-·-.. ·-··-·· .... -·-_ ........ ·· .. ·· .. -.... -· .. · .. ····-·-·-·-....... 

0_0+---------------------~~------~~~~----~-----------4 

-0.2 .-... --..... -... _-.-_.-.-........... -.-_ .... . 

-0.4 ... -.-.. _.-.--.-.-.-............... -.-.-.-.... .. 

-0.6 i-t-HH-H-t+++-+-t-Hr-+--H-++-t-I-HH-H-t+++-+-f-t-i-t-H-+-+-t-+-l-l-t-t-t-t++++1 

o 4 8 12 16 20 24 28 32 36 40 44 48 52 

Lag 5 correlation 

0.8 

0.6 

0.4 

0.2 

0.0 

-0.2 

-0.4 

-0.6 

0 4 8 12 16 20 24 28 32 36 40 44 48 

Lag 10 correlation 

0.6~---------------------------------------------------------. 

0.4 

0.2 

-0.2 .-...... -.- ...... _.-....... _ .. '-".-'-

-0.4 +-t-+-l--+-iH-+++-++-+-t-H-+-+++-T-t-HI-+-H-t++++-+-t-i-t-H-++-t-+-t-iH-H-t++++1 

o 4 8 12 16 20 24 28 32 36 40 44 48 52 

- Observed -e-- PARMA(1,1) ."Q- PARMA(2,1) .. -......... PARMA(2,2) 



62 Calibration of a multivariate P ARMA model 



1.15 

l 

Appendix C. Periodic variance and periodic autocorrelations of fitted models 63 

North West region 
Model variance 

t ~ 1 . 1 0 T·_·_·- .... · ...... · .. · .................. · ...... · .............................. · .. ·........................... .. ................................... <:6 ... -\-............... _ ............. _ .............................................................................. -.......................... . 
- "i" / , t J' : : 
T f\ 1 l'Y 

1 05 T ~ S! id ............... c ................ .j ......... _.-\A ....... _............. y 9' . t v.~<:~ ....... · .. ·-.=:: ...... · .. _· ...... · .......... _ .. ·_ .. T;I~· .. · 9 1 Î l .. ·_· .. ·_·~·~ .. ::t\~~~\.~.';/~I\:·~ ..... 
, v-~ V ! \i 1 \ m,./· ",/,~""J .'Pi.;J\, \ ... , v~ d. \ l. / \ \. ' 0/ 1 ~ y . .• 'Sêl i 1 \ " ~I 1 

1 .00, v \. '!'.! , , /, ~;'/ ' _ 
ï <rf e· '17 •. ", Gl &'i \\ <X/' t.' -.! : i'! 9. vj . il" G-e '0 1 

TI" / l,rl I! ! \ "'" 1'17 r \ .'fI \ \ l ' : .: 'f \ ! \ 
-,IV 1 1 \ 1 i: ~ 1 l '.:, ! l ,'b w 1 1 1 5'>, 
- Cl Il \ l 'f cS \!!l, ; 1 f \ " :'::; l , 1 

0.95 t· .. ·- -......... _ ... _ ............. -_ ......... "? .. _._.~~ ..... f-'"''~''''''' ... -_ ..................... w·: ....... _._ ... ·\ .... 1·/-4 .. ·_· ~~; .... :~' ..... -_.~._ ..... ~ _ .................. _._ ...... ~ ... _ ... 
i '1 ,[Pi 0~0 1 
7 ' 1 IIi ( 
.!. 1 l ,If \ 1 
1 l , 1 f,: 1 1 

\1 'I\! \ q) 
0.90 

l 
i 
T 0.85 

o 

............ _ .... _ ............... _.- .............................. ·'\"1 ...... · . ................... .... ................. _ ............ ·_ ...... ·_ .... t .. nj'-·_ .... - .................... \ ·I· 
l' 1 10/ \ ( 

\1 If 6 
b V 

<!:> , \ 
, 1 

4 8 12 16 20 24 28 32 36 40 44 48 52 

I-observed --El- PARMA(1,1) --G- PARMA(2,1) "-or'- PARMA(2,2) 1 



64 

1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

-0.2 

-0.4 

0 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

-0.2 

-0.4 

-0.6 

0 

4 

4 

4 

Calibration of a multivariate P ARMA model 

8 

8 

8 

North West region 
Lag 1 correlation 

12 16 20 24 28 32 36 40 44 48 52 

Lag 2 correlation 

....--- ............ ·········:4·····················-···········-·· 
o 

12 16 20 24 28 32 36 40 44 48 52 

Lag 3 correlation 

12 16 20 24 28 32 36 40 44 48 52 

[- Observed -e- PARMA(1.1) --Q- PARMA(2.1) .. _o;>. PARMA(2.2) J 



0.8 

0.6 

0.4 

0.2 

0.0 

-0.2 

-0.4 

-0.6 

Appendix C. Periodic variance and periodic autocorrelations of fitted models 65 

0 4 8 12 

North West region 
Lag 4 correlation 

16 20 24 28 32 

Lag 5 correlation 

36 40 44 48 52 

1.0 ,-----------------------------------------------------------, 

0.8 

0.6 

0.4 

0.2 

o.o+---------------------~--~~--~~~~----------------~ 

-0.2 -.--... --.--.... -... -----.-.-... --.-.... -... -...... ---.-... -.-.-................. -... --.----.--...... --... ---

-0.4 ............................................. _ .............. _ ............................................ . 

-0.6 ++-HH-t-+++-+-+-H-t-t--t-+-+-+++-t-t-1C-+-t--t-++++-H-t-r-t-+-+-+++t-HH--I-t--t-I--t-!-+-l 

o 4 8 12 16 20 24 28 32 36 40 44 48 52 

Lag 10 correlation 

0.6 

0.4 

0.2 

0.0 

-0.2 

-0.4 
0 4 8 12 16 20 24 28 32 36 40 44 48 52 

1-Observed --€I- PARMA(1,1) .-G- PARMA(2,1) ···9- PARMA(2,2) 1 



66 Calibration of a multivariate P ARMA model 



Appendix C. Periodic variance and periodic autocorrelations of fitted models 67 

East region 
Model variance 

1.80 ~------------------------------------------------------~ 

1.60 

1.40 

1.20 

1.00 

0.80 

o 

Q 
1 
1 
1 
1 
1 ·-r-............ · .. -·-................ -.-.-.-............ -.-.... -.-.......... -.-.-....... .. ............................. -.- ................ -.-.................. -.-.................. -.... -.-............... . 
1 

\ ~ 
1 Il 
1 'I 
~ 1 1 

.-... \-............ -.-.-.-.................. -.-.--, ....... __ ._._._._ ............ - ............................... - ..................... - ............... -.-.... - ............... -.-.... - .......... --·-...... ·-............ · .. - ........ · .. · .. ·J...·1·-·-.. --· ........ ·-.. · ........ · ......... _._. 
1 1 1 \ r. . / \ Ci? Q 

\:\ ;' . '1/\ / \ p ; \ /~\ 
l 'il 1 l ' ,.' / 1 / \ 1 t;j., \ 

· .. ·-·~\·,r\.-· .. ~r!::9.:::.~~.-··· ........ ·-·-,:---·-.... \I ....... :.-.-... . .......... -.. .. .............. -................ -.-............. --.-.... ..... /_~ .• 'v..:'i7 . ... ·w·-.. ··· / .. .... .. C)·\ .. i'Çr·/\-~"Q":: 
,i 'Si 1\ V", ...! \ ,/"·9 .. ·17.... '? ,'P; 'i,\J \"" ""/\11 

9 ... fi >'( / \ V", .... "( ... v. l,;' v... / '57 ··,1,/' 'IlI)!l .... &} ..., / " 

1 \ / \ / V \ / :i _"\ / 0/ \ 

~ ···~~ef \! 

\ qj ~ 
\ 1 ......... _ ....... -...... __ ........ _ ...... _-............ _._ ....... -- .. _._ ....... _ .. ~_ ..... _ ........... ! ............ __ ......... _-

'B'e>/Z> 

4 8 12 16 20 24 28 32 

\ 
\ 

~ 
\ 

36 

\ / 
(9-0 

40 44 48 

I-Observed -e- PARMA( 1,1) --G- PARMA(2,1 )._.,...-.. PARMA(2,2) 1 

52 



68 Calibration of a multivariate P ARMA model 

East region 
Lag 1 correlation 

1.0~~------------~---------------------------------. 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 .----....... -.. -----................. -........ ----..... _._ .. _-_ .. _._. 

0.3T-------------------·-·--------------------------------------,-~-------.------- - --.--------.---.----------- --j 

0.2+14H~~rr++++~~~H_~br~~++++~~~~~++++++~~~ 

o 4 8 12 16 20 24 28 32 36 40 44 48 52 

Lag 2 correlation 
1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

-0.2 

-0.4 
0 4 8 12 16 20 24 28 32 36 40 44 48 52 

Lag 3 correlation 
1.0 
0.8 
0.6 
0.4 
0.2 
0.0 

-0.2 
-0.4 
-0.6 
-0.8 

0 4 8 12 16 20 24 28 32 36 40 44 48 52 

1- Observed -e- -PARMA(1, 1) --G- PARMA(2,1 ) __ 9" PARMA(2,2) 1 



1.0 
0.8 
0.6 
0.4 
0.2 
0.0 

-0.2 
-0.4 
-0.6 
-0.8 

0 

1.0 
0.8 
0.6 
0.4 
0.2 
0.0 

-0.2 
-0.4 
-0.6 
-0.8 

0 

0.8 

0.6 

0.4 

0.2 

0.0 

-0.2 

-0.4 
0 

Appendix C. Periodic variance and periodic autocorrelations of fitted models 69 

4 8 12 

4 8 12 

4 8 12 

1- Observed 

East region 
Lag 4 correlation 

16 20 24 28 32 

Lag 5 correlation 

16 20 24 28 32 

Lag 10 correlation 

16 20 24 28 32 

36 40 44 48 52 

36 40 44 48 52· 

36 40 44 48 52 

-e- PARMA(1,1) .-G- PARMA(2,1) ---Q-- PARMA(2,2) 1 



70 Calibration of a multivariate P ARMA mode} 



Appendix C. Periodic variance and periodic autocorrelations offitted models 71 

Central region 
Model variance 

1.80 -,------------------------------, 

1.60 

1.40 

1\ "Y,i\. 
j \, 

._._._ ............ _._._ .................. _._._._ ............ _._._._._ ............ _._._._ ............... _ ................. _ ......... _ .................. _. . ...................... _ .... _.1 ..... :\._._ .... 1._\ ........... _._._._ ............... _ .... _.-....................... . 

L-----------------------------l-~-\---------------
1.20 

1.00 

0.80 

~ .. ", , !' 'Y"'" 

........................................................ . ..... ~ ...... \.l ............ . 
~ 

0.60 +-t--f---l-t-++-H--f---+-+++-+-+-Hf-+-+-++-+-H-+-+-++-+-H--f----I-+-+4-H-+-+-+++-H-l-+-++++-1 

o 4 8 12 16 20 24 28 32 36 40 44 48 52 

1- Observed -e- PARMA(1,1) .. ..0- PARMA(2,1) ..... ,."._ .. PARMA(2,2) 1 



72 Calibration of a multivariate P ARMA model 



Appendix C. Periodic variance and periodic autocorrelations of fitted models 73 

Lag 10 correlation 
0.8.-~-----------------------------------------------------' 

0.6 

0.4 

0.2 

0.0 t-----\.J--------~~~~~'ffI»A-----___j 

-0.2 -.----.... - .. - ... -.................................. . 

o 4 8 12 16 20 24 28 32 36 40 44 48 52 

- Observed -a-: PARMA(1,1) .-<;>- PARMA(2,1) ... Q-•• PARMA(2,2) 



74 Calibration of a multivariate P ARMA model 



Appendix C. Periodic variance and periodic autocorrelations offitted models 75 

South region 
Model variance 

1.40 ...,.-------------------------------, 

\ 
1.30 .-.! .. - ......•..... -.-.-.-•.••.....•..... -.-.-.-..••..•. ---.-.-.-.-............ - ..•. -.-..••........... -.-.y ........... -............................................... -.... -.......... -.-.-._-...... -.... -.-.-.-.... -......... -.-.-.-... ··1·\······-····-·-···············-·· 

;r j\ i \ 
. • i \ i ~ 

~ i' ! ~- ! k .............. _ .... _ ........ _ ...... _._. ____ .......... __ ---.-..... --... ------.--.J .... i .. ----... -.-....... . 

~V\~~~h~/~:~~~+V~\;--r- ! \ 7 
f\ <!l f \ / \ / 4 i 
1 \ 1 ~j \ /)!> \ \ Le 
0\ .,.'V'''/1 \G'0 

1.20 

1.10 

1.00 

0.90 ..................... ; ... , ............ _ ................. ~ .... _._ .................. _._._ ............... _ ....... _... . ........... _ ... :\) .... . 

V ~ 

0.80 +-t-t---l-t-t-t-+++-t-l-t-t-f-+-+-++-t--+-t-t---l-t-f-+-t-+-+-t-+-t-t-t-t-f-+-++++-t-i-t-H-+-+++-t--l 

o 4 8 12 16 20 24 28 32 36 40 44 48 52 

1- Observed -f3-- PARMA(1,1) --G- PARMA(2, 1) .. -.'7.-.. PARMA(2,2) 1 



76 Calibration of a multivariate P ARMA model 

South region 
Lag 1 correlation 

1.0.-~---------------------------------------------------. 

0.8 

0.6 

0.4 

0.2 
,i 

'2. __ . ____ ........ ___ .... _ ... _ ........ . 
; 

..P ..... 
.,:, 

0.0 +-__________________________________________ ~~~~--~L---____ ~ 

o 4 8 12 16 20 24 28 32 36 40 44 48 52 

Lag 2 correlation 
0.8.-~----------~--_u-------------------------------------. 

0.6 

0.4 

0.2 

O.O+-------------------~~4+AH~4+----_Y~_v--~*---~~~ 

-0.2 .~----~.-------.----.--.-_._._._._ ...... . 

-0.4 -~--------'---"-'-'-'-'-'."""'-"'-'-'-'-'" 

~.6 ~~++~~++~_r++~~r+4~~rl ~1+1~1·~~++~~r+~_r~~~~~~++4 

o 4 8 12 16 20 24 28 32 36 40 44 48 52 

Lag 3 correlation 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

-0.2 

-0.4 

-0.6 
0 4 8 12 16 20 24 28 32 36 40 44 48 52 

I-Observed-e- PARMA(1,1) .-G- PARMA(2,1)·'·9; .. PARMA(2,2) 1 



0.8 

0.6 

0.4 

0.2 

0.0 

-0.2 

-0.4 

-0.6 

0.8 

0.6 

0.4 

0.2 

0.0 

-0.2 

-0.4 

-0.6 

-0.8 

Appendix C. Periodic variance and periodic autocorrelations of fitted models 77 

0 4 8 

0 4 8 

12 16 

South region 
Lag 5 correlation 

20 24 28 32 36 40 44 48 52 

Lag 4 correlation 

12 16 20 24 28 32 36 40 44 48 

Lag 10 correlation 
0.8~J-------------------~--------------------------------~ 

0.6 

0.4 

0.2 

-0.2 

-0.4 -H-r-H-+-+++-+-l-+-I-+-H-f++-+-+--l-+-H-H-+++-+-t-I-H-r-I-+-+-+++-+--+-HH-t--I--t-+-H 

o 4 8 12 16 20 24 28 32 36 40 44 48 52 

1- Observed -a- PARMA(1,1) .-G- PARMA(2,1) ._Q- PARMA(2,2) 1 




