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Résumé

Les précipitations constituent l’élément moteur des extrêmes hydrologiques et interviennent sur une
vaste gamme d’échelles spatiales et temporelles. Leur suivi à ces différentes échelles est essentiel
pour de nombreuses applications, telles que le dimensionnement d’ouvrages hydrauliques, la gestion
des ressources, et l’évaluation des risques pour les écosystèmes naturels ainsi que pour les popula-
tions et les infrastructures urbaines.

Suite à l’augmentation globale de la température prévue pour les décennies à venir, un nombre
croissant d’événements extrêmes de précipitation est aussi attendu. Pourtant, la caractérisation
de cette augmentation et la description des extrêmes aux différentes échelles d’intérêt hydrologique
demeurent difficiles. En particulier, les biais et les incertitudes des séries simulées par les modèles de
climat demeurent élevés quand on considère les extrêmes à de fines échelles spatiales et temporelles.
Par conséquent, la possibilité de prévoir la fréquence d’occurrence et l’intensité des extrêmes à partir
des séries simulées nécessite d’être évaluée en profondeur.

De façon plus générale, la couverture spatiale et la résolution des données disponibles, qu’elles aient
été enregistrées à des stations météorologiques ou qu’elles soient issues des modèles climatiques,
ne correspondent souvent pas à celles nécessaires pour les applications. Par exemple, les séries
observées aux stations sont généralement courtes (au mieux quelques décennies au Canada) et four-
nissent des informations limitées sur la structure spatiale des précipitations. Cette étude s’intéresse
donc à l’estimation des extrêmes de précipitation et de leur variabilité sur plusieurs échelles spatio-
temporelles à partir de plusieurs ensembles de données. Pour ce faire, nous cherchons à établir des
relations simples reliant les extrêmes estimés à différentes durées et sur différentes échelles spatiales.

De nombreuses études ont démontré que les propriétés physiques des fractales peuvent être utilisées
pour décrire la variabilité spatiale et temporelle des précipitations et des extrêmes. Notamment, il a
été démontré d’un côté que les modèles multifractals (multiscaling) sont appropriés pour représen-
ter les changements d’échelle pour l’ensemble de la distribution des précipitations (c’est-à-dire pas
seulement les extrêmes). D’un autre côté, de nombreuses études confirment la validité de mod-
èles monofractals (simple scaling) pour les queues de la distribution (c’est-à-dire les extrêmes).
Néanmoins, l’utilisation de ces modèles de lois d’échelle a été généralement restreinte à des régions
spécifiques ou à des petites bases de données. Une analyse plus fine des facteurs géoclimatiques
définissant les lois d’échelle est donc nécessaire pour des régions plus étendues et des données plus
variées en termes de résolution spatiale et temporelle. Également, les effets possibles des change-
ments climatiques sur la structure spatio-temporelle des précipitations et sur les lois d’échelle doivent
être évaluées.

Cette étude visait donc trois objectifs spécifiques. Dans un premier temps, des modèles de simple
scaling ont été utilisés pour décrire la structure temporelle des précipitations extrêmes en Amérique



du Nord (Canada et États-Unis) à l’échelle journalière et sous-journalière. La validité des modèles
des lois d’échelle a été confirmée en utilisant un grand nombre de séries (environ 2700 stations
météorologiques) et la variabilité spatiale des paramètres des modèles de lois d’échelle a été ex-
plorée. Les analyses fournissent des informations importantes sur l’influence des caractéristiques
locales ainsi que des structures climatiques régionales sur le changement d’échelle des précipitations
extrêmes.

Dans un second temps, les lois d’échelle des précipitations extrêmes ont été évaluées pour différents
jeux de données sur grille et comparées aux chroniques des stations. Deux jeux de données observés
ont été considérés (p. ex. données satellites et données interpolées provenant de plusieurs sources).
De même, des séries simulées par deux Modèles régionaux du climat (MRC) ont été utilisées: une
simulation provenant du modèle WRF à haute résolution (4 km) et celles provenant d’un grand
ensemble simulé à l’aide du Modèle régional canadien du climat de 5ème génération (CRCM5, à la
résolution de 0,11◦). L’analyse a mis en évidence l’influence des caractéristiques de base de données
sur l’estimation des modèles des lois d’échelle (p. ex. la résolution temporelle ou spatiale des don-
nés), et des techniques de transformation des séries utilisées, comme les méthodes de correction de
biais. Une expression analytique simple a aussi été proposée pour décrire la variation des distribu-
tions des précipitations extrêmes sur plusieurs échelles spatiales et temporelles.

Troisièmement, des séries de précipitations simulées pour le siècle futur ont été analysées dans le
but de décrire la réponse des lois d’échelles aux changements climatiques sur différents horizons
de temps. Pour cela, les chroniques de précipitation de 50 membres du grand ensemble CRCM5
ont été regroupées sur des courtes périodes (p. ex. 3 ans) et analysées à plusieurs échelles spatio-
temporelles. Cela a permis d’évaluer les quantiles des événements les plus extrêmes sur des périodes
courtes et d’estimer les lois d’échelle en utilisant une large base statistique. Les résultats décrivent
la façon dont les distributions des extrêmes de précipitation vont évoluer dans le futur et soulignent
des changements importants des lois d’échelle. L’analyse illustre également l’impact de la variabilité
naturelle du climat sur l’estimation des lois d’échelle et d’autres caractéristiques des précipitations
extrêmes.

Mots-clés: Précipitations extrêmes; Echelle spatio-temporelle, Loi d’échelle; Changements clima-
tiques.



Abstract

Characterizing extreme precipitation at different spatial and temporal scales is crucial in order to
evaluate and predict the impacts of natural hazards on infrastructures and regional ecosystems.
Being governed by climate and weather processes acting at different scales, extreme precipitation is
highly variable in space and time. However, historical observational datasets (e.g., station records)
provide limited information on the spatio-temporal structure of extreme precipitation. Also, the
spatial coverage and the resolution of available data, whether observed at meteorological stations
or simulated by weather and climate models, often mismatch the resolution needed in hydrological
applications.

One interesting paradigm for the multi-scale analysis of extreme precipitation is the scaling model
framework, based on the concept of statistical scale invariance and the fractal properties of pre-
cipitation probability distributions. By means of these models, the statistical distributions of the
extremes estimated at specific spatial and temporal scales are related to the distributions at other
scales. Several studies have provided physical evidence of the fractal and multifractal properties of
precipitation. On the one hand, it has been shown that multifractal models are more appropriate
for representing the scaling features of the whole precipitation distribution (i.e., not only the ex-
tremes). On the other hand, many studies confirmed the validity of simple scaling for the tails of
precipitation distribution. However, the use of scaling models has been mainly restricted to specific
regions and small observational datasets. A deeper analysis of the effect of geo-climatic factors on
the estimated scaling models is thus needed for large regions and various datasets having different
temporal and spatial resolutions.

The present study aims at deepening the knowledge of the scale-invariant properties of extreme
precipitation and has three specific objectives. First, simple scaling models were used to describe
the temporal structure of observed daily and sub-daily extreme precipitation across North America.
The validity of the temporal scaling models was confirmed over various duration ranges using a
large number of station series (approx. 2700 meteorological stations). The regional variability of
the estimated temporal scaling parameters across the domain was then investigated. The analysis
provides important guidance on the influence of both local geographical characteristics and regional
climatic features on extreme precipitation scaling.

Second, the spatio-temporal scaling properties of daily and sub-daily extreme precipitation were
analyzed for various gridded datasets and compared to scaling properties of station series. Two ob-
servational gridded datasets were considered: the bias-corrected satellite CMORPH and the Multi-
Source Weighted-Ensemble Precipitation (MSWEP) v2 datasets. Also, two simulated datasets from
Regional Climate Models (RCMs) were used: a convection-permitting high-resolution WRF model
(4 km resolution) and a large ensemble from the Canadian RCM v5 (CRCM5, 0.11◦ resolution).
The analysis illustrated the influence on temporal scaling exponent estimation of basic dataset char-



acteristics, such as their spatial and temporal resolutions, and series processing techniques, such
as bias correction methods. Also, a simple analytical expression was suggested for describing the
variation of extreme precipitation quantiles across a wide range of spatio-temporal scales.

Third, the evolution of simulated extreme precipitation under climate change was analyzed to assess
how the spatio-temporal scaling of the extremes responds to climate warming over different time
horizons. To this end, precipitation series from 50 CRCM5 members were pooled for various spatio-
temporal scales. This allows to assess high return period quantiles over short periods of few years
and estimate their extreme scaling properties using a large statistical basis. The results underline
the critical increase in AM precipitation quantiles, especially important for the shortest durations
and longest return periods. Accordingly, an intensification of the spatio-temporal scaling regimes
of projected extremes was detected for most of the model grid boxes, as well as some important
changes in the characteristics of the annual and daily cycles of precipitation AM.

Keywords: Extreme precipitation; Spatio-temporal scale; Scaling; Climate change.
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ML Maximum Likelihood
MS Multiscaling (model)
MSA Moment Scaling Analysis
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La compréhension de la structure des précipitations extrêmes est devenue une problématique cri-

tique en météorologie et climatologie puisque l’évaluation des risques environnementaux dépend de

la prévision des aléas naturels. Les précipitations extrêmes sont associées à des événements poten-

tiellement dangereux tels que les inondations ou les sécheresses, mais sont aussi impliquées dans

la gestion des ressources (par exemple ressources en eau douce, agriculture, territoires forestiers),

les plans d’aménagement à long terme, et la sécurité publique (Seneviratne et al. 2012; Field et al.

2014). La caractérisation des événements de précipitations extrêmes est cruciale pour la conception

des infrastructures (Mailhot et Duchesne 2010) et dans l’évaluation et la prévision de l’impact des

aléas naturels sur les écosystèmes et les sociétés humaines.

Problématique

Plusieurs méthodes existent pour mesurer et enregistrer les précipitations, notamment les plu-

viomètres aux stations météorologiques, les radars météorologiques et les mesures satellites (Tapi-

ador et al. 2017). Cependant, suite à la faible densité et couverture spatiale et temporelle des

observations, il est difficile de caractériser la structure spatio-temporelle complexe des précipita-

tions (Cooley et al. 2007; Kidd et al. 2016; Trenberth et al. 2017). De plus, en ayant à disposition

des séries courtes, il est impossible de tenir compte des tendances à long terme ou des cycles qui peu-

vent affecter les précipitations et il n’est pas possible de constituer un échantillon de taille adéquate

pour l’analyse des précipitations extrêmes qui, par définition, sont rares (Kunkel 2013).

Par exemple, seules quelques décennies de données sont disponibles au Canada (Mekis et Vincent

2011), ce qui rend impossible une fine caractérisation des tendances temporelles des précipitations.

De même, le réseau de stations pluviométriques en Amérique du Nord n’est pas assez dense pour
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capter systématiquement les évènements intenses de courte durée (p. ex., quelques heures) qui sont

généralement produits par des systèmes météorologiques très localisés (par exemple dans les régions

montagneuses de l’ouest des États-Unis; Kunkel 2013).

De nombreux efforts ont été consacrés à la mise au point de bases de données complémentaires,

incluant des simulations de modèles dynamiques météorologiques et climatiques (p. ex. Mearns

et al. 2007; Scinocca et al. 2016), des jeux de données interpolées sur grille (p. ex. Haylock et al.

2008), et des séries de réanalyses produites par l’assimilation de données observées dans les modèles

numériques (p. ex. Dee et al. 2011; Rienecker et al. 2011). Bien qu’elles soient constituées par des

séries couvrant de vastes territoires faiblement couverts par des stations météorologiques, les bases

de données complémentaires présentent d’autres désavantages en termes de résolution temporelle

ou spatiale ou au niveau des périodes de temps couvertes (Arritt et Rummukainen 2010; Flato et al.

2013). Par exemple, les Modèles climatiques globaux (MCG) et les Modèles régionaux du climat

(MRC) présentent encore des résolutions trop grossières (typiquement de 200 km à 10 km environ)

pour reproduire de manière satisfaisante les systèmes météorologiques qui génèrent le plus souvent

les précipitations extrêmes (Rummukainen 2016; Kendon et al. 2017). De même, les réanalyses qui

utilisent des données satellites ou radars couvrent généralement seulement les décennies les plus

récentes et présentent souvent les mêmes limitations que les MRC pour la simulation des extrêmes

de précipitation de courte durée.

Ces limitations deviennent d’autant plus contraignantes quand l’intérêt porte sur l’évolution tem-

porelle des extrêmes climatiques. Comme le climat évolue sous l’effet de différents facteurs de

forçages (naturels et anthropiques), il est probable que plusieurs caractéristiques des précipitations

évoluent aussi. Certains de ces changements ont déjà été observés, notamment l’intensification et

l’accélération du cycle hydrologique en réponse à l’augmentation globale de température. Suivant

l’expression "intensification hydro-climatique" introduite par Giorgi et al. (2011), cela signifie qu’une

augmentation de la sévérité des fortes précipitations est attendue de pair avec une diminution du

nombre total de ces événements.

Cependant, en plus des difficultés qu’on rencontre dans la collecte des données, l’analyse de l’évolution

temporelle des caractéristiques des précipitations extrêmes est complexifiée par le fait que dif-

férentes sources de variabilité spatiale et temporelle agissent sur les chroniques de précipitations

(Hawkins et Sutton 2009; Deser et al. 2012a). En particulier, les fluctuations temporelles des
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séries des précipitations dues à la variabilité naturelle du climat rendent difficile l’estimation des

changements à long terme des statistiques des précipitations extrêmes. Cette variabilité naturelle

est en fait associée à la nature chaotique du système climatique et peut amplifier significativement

l’importance des erreurs d’échantillonnage, en particulier aux échelles spatiales fines et pour les

événements les plus extrêmes intervenant sur des durées courtes (Hawkins 2011; Deser et al. 2012a).

Dans le but de produire des estimations des changements intervenus en climat passé et des pro-

jections fiables de l’évolution future des précipitations extrêmes, la différenciation des impacts des

différentes sources de variabilité à des échelles spatio-temporelles variées est d’autant plus impor-

tante. Notamment, la distinction doit être faite entre les changements des précipitations extrêmes

dus aux forçages anthropiques et ceux connectés à la variabilité naturelle du climat. De plus, la

compréhension de la manière dont ces changements affectent les caractéristiques des précipitations

aux différentes échelles spatiales et temporelles est importante pour appréhender la nature des

modifications du climat et ses possibles impacts sur les écosystèmes régionaux et locaux.

Analyse multi-échelle des précipitations extrêmes

Le besoin d’analyses multi-échelles des précipitations extrêmes a largement été reconnu dans le passé

(Rodriguez-Iturbe et al. 1984; Blöschl et Sivapalan 1995; Hartmann et al. 2013; Westra et al. 2014),

et des efforts particuliers ont été consacrés au développement de relations pouvant lier les carac-

téristiques statistiques des précipitations à différentes durées et différentes résolutions spatiales.

L’approche conventionnelle pour décrire les transitions d’échelle entre plusieurs durées consiste

à construire des courbes d’Intensité-Durée-Fréquence (IDF) (Bernard 1932; Sivapalan et Blöschl

1998; Koutsoyiannis et al. 1998; Veneziano et Yoon 2013) ou, de manière équivalente, des courbes

Hauteur-Durée-Fréquence (en anglais Depth-Duration-Frequency, DDF). Ces courbes sont couram-

ment utilisées dans la conception des ouvrages hydrauliques et dans l’analyse des risques liés aux

extrêmes puisqu’elles décrivent les relations entre la fréquence d’occurrence d’évènements de pré-

cipitations ayant une intensité (hauteur) donnée, xd,T , et leurs durées d (p. ex. CSA 2012). Dans

cette représentation, la fréquence d’occurrence des évènements de précipitations est généralement

exprimée en termes de période de retour T (Rootzén et Katz 2013), définie comme l’inverse de la

probabilité de dépassement annuelle de la valeur xd,T , qui est donc appelée niveau de retour. Un

exemple de courbe IDF est présenté en Fig. F1.
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Les courbes IDF et DDF sont typiquement définies en estimant séparément les distributions de prob-

abilité de Xd sur différentes durées (voir Koutsoyiannis et al. 1998 et Papalexiou and Koutsoyiannis

2013a sur les discussions des distributions de probabilité généralement utilisées). Les paramètres

ou les quantiles de ces distributions théoriques sont ensuite reliés de manière empirique les uns

aux autres pour décrire les variations des propriétés des précipitations extrêmes sur l’ensemble des

durées considérées. Malgré sa simplicité, cette procédure présente de nombreux désavantages. En

particulier, elle ne garantit pas la cohérence statistique des distributions des précipitations puisque

celles-ci sont estimées indépendamment sur les durées considérées. De plus, cette méthode ne per-

met pas d’extrapoler les IDF à des échelles de temps non observées ou à des sites non jaugés. Les

incertitudes sur les quantiles estimés sont aussi importantes puisque les distributions des précipita-

tions et les paramètres des courbes IDF sont estimés séparément.
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Figure F1: Exemple de courbe IDF estimée à partir des précipitations observées à la

station météorologique de l’aéroport Pierre-Elliot-Trudeau (Montréal, Québec) pour

la période 1943− 1993. Adaptée de Fichiers IDF, Ensembles de données climatiques en

génie, ECCC. http://climate.weather.gc.ca/prods_servs/engineering_f.html
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Basée sur une approche similaire, la définition de coefficients d’abattement spatial (en anglais Areal-

Reduction-Factors, ARF) est un outil standard permettant de relier statistiquement les intensités

de précipitations ponctuelles (c’est-à-dire des extrêmes estimés à des stations météorologiques) et

les intensités de précipitation sur une surface (Svensson et Jones 2010). Le coefficient d’abattement

spatial pour une période de retour T est défini comme le ratio entre le niveau de retour de pré-

cipitations estimée sur une surface A et pour une durée d et l’intensité ponctuelle (à la station)

correspondante pour les mêmes T , A et d.

Dans la pratique, les coefficients d’abattement spatial sont souvent estimés de manière empirique en

moyennant les estimations des niveaux de retour des précipitations extrêmes ponctuelles disponibles

sur une surface A couvrant le territoire visé (Musy et Laglaine 2005). De nombreuses approches

analytiques ont été aussi proposées (Svensson et Jones 2010). Cependant, ces approches ne mod-

élisent pas explicitement la dépendance des coefficients d’abattement spatial à la durée de la pré-

cipitation, alors que ceux-ci devraient augmenter avec d (Veneziano et Langousis 2005; Ceresetti

2011). L’autocorrélation spatiale qui définit la structure des précipitations dépend en fait large-

ment de d puisque les évènements de plus haute intensité sont généralement associés à des systèmes

météorologiques ayant une étendue spatiale réduite et une durée de vie courte. Les méthodes

permettant d’estimer simultanément les paramètres des distributions de probabilité des extrêmes

de précipitations et ceux décrivant la variation des coefficients d’abattement spatial avec A et d

devraient donc être préférées.

Les modèles des lois d’échelle

Des modèles des lois d’échelle (modèles de scaling, en anglais) (Lovejoy et Mandelbrot 1985;

Gupta et Waymire 1990; Veneziano et al. 2007) basés sur le concept de l’invariance d’échelle

(Dubrulle et al. 1997) ont été proposés pour relier les distributions de probabilité des précipita-

tions à différentes échelles spatiales et temporelles. Selon l’invariance d’échelle, les caractéristiques

statistiques (par exemple les moments ou les quantiles des distributions) des intensités des précip-

itations observées à deux différentes échelles ` et λ` peuvent être reliées entre elles par une loi de

puissance de la forme:

f(Xλ`) = λHf(X`), (F1)
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où f( ) est une fonction de X dont la forme ne varie pas quand on change l’échelle d’observation de

la variable X d’un facteur multiplicatif λH et où H est un scalaire (H ∈ R).

Dans le cas le plus simple, un facteur multiplicatif constant suffit à représenter correctement le

changement d’échelle. Les modèles statistiques correspondants sont connus sous le nom de modèles

Simple Scaling (SS) (Gupta et Waymire 1990). Ces modèles sont attrayants vu le petit nombre

de paramètres impliqués. Un seul exposant de changement d’échelle, H, est en fait utilisé pour

caractériser les relations entre les distributions de probabilité des précipitations extrêmes à toutes

les échelles pour lesquelles le principe de l’invariance d’échelle est valable.

p
d
f

X - Intensité de précipitation [mm/h]

Figure F2: Modèle de Simple Scaling (SS) temporel: les distributions de probabilité

des intensités de précipitations observées à différentes durées d et D sont reliées entre

elles par le facteur multiplicatif λH = (d/D)H .

Par conséquent, une estimation efficace des caractéristiques des précipitations extrêmes est possible,

même pour des échelles partiellement non-observées. Par exemple, on pourrait inférer les quantiles

de précipitations extrêmes de durée d = 1h à partir des séries des précipitations observées à l’échelle

journalière.

À partir de relations du même type que l’Éq. (F1), des formulations parcimonieuses des courbes IDF

et des coefficients d’abattement spatial sont aussi possibles (Menabde et al. 1999; Burlando et Rosso
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1996; De Michele et al. 2001; Veneziano et Furcolo 2002; Panthou et al. 2014). Ces courbes et coef-

ficients peuvent donc être estimés analytiquement tout en tenant compte des propriétés statistiques

de X aux différentes durées d et surfaces spatiales A.

Tout aussi important, l’impact des changements climatiques sur la structure spatio-temporelle des

précipitations extrêmes peut être évalué et décrit synthétiquement en caractérisant l’évolution tem-

porelle des paramètres des lois d’échelle.

Plusieurs études ont confirmé la validité des modèles de lois d’échelle temporelles (Simple Scaling

temporel) pour les distributions des extrêmes de précipitations (Gupta et Waymire 1990; Bur-

lando et Rosso 1996; De Michele et al. 2001; Boukhelifa et al. 2018). Néanmoins, l’application de

ces modèles a été généralement restreinte à de petites bases de données et des régions géographiques

peu étendues. Une analyse plus fine des facteurs géoclimatiques définissant et influençant les lois

d’échelle et une évaluation extensive de leur validité sur plusieurs intervalles d’échelles spatiales et

temporelles est donc nécessaire avant d’analyser leur évolution en climat futur.

Objectifs, méthodologie et synthèse des résultats

La présente étude a pour but d’approfondir les connaissances sur la structure spatiale et temporelle

des précipitations extrêmes dans le cadre de la théorie de l’invariance d’échelle. En particulier, on

cherche à définir des relations analytiques reliant les distributions de probabilité des extrêmes de

précipitations à différentes échelles spatio-temporelles pour produire une caractérisation détaillée

de la variabilité des champs des précipitations. Pour ce faire, les modèles des lois d’échelle existant

dans la littérature seront initialement considérés. La représentation synthétique des caractéristiques

des précipitations que de tels modèles fournissent sera utilisée pour comparer la description des pré-

cipitations fournie par divers ensembles de données, différentes régions spatiales et pour différentes

périodes pour évaluer comment les précipitations extrêmes journalières et sous-journalières répon-

dent au réchauffement climatique.

Le premier objectif de la présente étude était donc de valider l’usage des modèles des lois d’échelle

pour la description des propriétés statistiques des Maxima Annuels (MA) de précipitation sur une

grande partie de l’Amérique du Nord (Canada et États-Unis) en utilisant un grand nombre de séries
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des précipitations mesurées aux stations météorologiques.

La validité statistique des modèles de SS temporel a été confirmée pour une vaste gamme de durées

entre 15 min et 7 jours. La possibilité de construire des courbes IDF basées sur l’hypothèse

d’invariance d’échelle a été évaluée, en considérant les performances des modèles de SS dans

l’approximation des quantiles extrêmes des distributions de probabilité des MA. Finalement, l’analyse

de la variabilité spatiale des paramètres de SS temporel à travers le domaine a montré l’influence

des caractéristiques géographiques et climatiques locales sur les estimations des lois d’échelle, en

soulignant l’importance de les considérer pour l’estimation des paramètres des courbes IDF.

Le second objectif était d’investiguer comment les estimations des lois d’échelle varient quand on

change les jeux de données utilisés pour l’extraction des MA de précipitations. Ceci avait pour but

de décrire l’influence des caractéristiques des données (par exemple leur résolution temporelle ou

la résolution de mesure) sur la représentation de la structure spatio-temporelle des précipitations

extrêmes que l’on peut en tirer.

La validité de l’invariance d’échelle des précipitations extrêmes a été ainsi vérifiée pour plusieurs

ensembles de données sur grille, tant observés que simulés. Les jeux de données suivants ont été

considérés pour l’extraction des séries de précipitations:

• les données satellites CMORPH produites par correction de biais (Xie et Xiong 2011);

• l’ensemble MSWEP, obtenu par l’interpolation de séries provenant de différentes sources (don-

nées satellites, séries aux stations et données de réanalyses) (Beck et al. 2017a);

• une simulation provenant du modèle WRF à haute résolution (4 km) (Liu et al. 2017; Prein

et al. 2017a);

• les séries issues d’un grand ensemble simulé pas le Modèle Régional Canadien du Climat de

5ème génération (MRCC5) (Martynov et al. 2013; Separovic et al. 2013; Leduc et al. 2019).

En comparant les estimations des modèles de SS pour ces ensembles de données sur grille,

l’analyse a montré l’influence que les caractéristiques de base des jeux de données (p.ex. leur réso-

lution spatiale ou temporelle) ainsi que les techniques de traitement des séries (p. ex. les méthodes

de correction de biais) ont sur l’estimation des lois d’échelle pour des durées entre 1 h et 3 jours.
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Les modèles de SS temporel estimés pour différentes échelles d’agrégation spatiale ont été èn-

suite comparés. Les résultats suggèrent qu’une simple expression analytique décrit la variation

des paramètres de SS temporel à différentes échelles spatiales. Ceci permet de définir un modèle des

lois d’échelle spatio-temporelle (Spatio-Temporal Scaling, STS) reliant les quantiles des distributions

de probabilité des MA de précipitations sur une vaste gamme d’échelles spatio-temporelles. En util-

isant cette nouvelle relation analytique, il serait en théorie possible d’estimer les courbes IDF et les

coefficients d’abattement spatial (ARF) même à des endroits non jaugés, c’est-à-dire les endroits

où aucune station météorologique n’est disponible pour enregistrer les séries de précipitations.

Finalement, le troisième objectif était d’évaluer l’évolution temporelle des propriétés des précipi-

tations extrêmes sous l’effet des changements climatiques en se basant sur des séries projetées par

MRCC5 sur la période 1950-2100. Afin de déterminer l’impact des diverses sources d’incertitude

et de variabilité sur les estimations de précipitations extrêmes, les modèles de STS ont été estimés

pour des échantillons de MA provenant des 50 membres du grand ensemble du MRCC5 et combinés

sur de courtes périodes de temps (par exemple des périodes de 3 ou 7 ans).

Les résultats décrivent comment les distributions des précipitations extrêmes vont évoluer dans les

décennies à venir, en mettant en évidence l’intensification critique des quantiles des distributions

des MA pour tout le domaine spatial à l’étude. Environ 99% des points de grille du MRCC5 présen-

tent en fait des tendances temporelles significatives des quantiles de MA pour des durées de 24h

ou moins. En ce qui concerne les lois d’échelle, ces résultats se traduisent par une modification

significative des paramètres des modèles STS projetés pour les décennies à venir. Aussi, les analyses

sur les séries du grand ensemble du MRCC5 illustrent l’influence de changements climatiques sur

les caractéristiques des cycles annuels et journaliers d’occurrence des MA de précipitations.

Plan de la thèse

Le manuscrit est structuré tel que suit. La Partie I décrit les aspects de la caractérisation des précip-

itations extrêmes qui posent défis, les solutions proposées dans la littérature ainsi que les objectifs

du projet. Après une discussion générale à propos des problèmes liés à la définition et la modélisa-

tion des précipitations extrêmes (chapitre 1), le chapitre 2 présente les principaux problèmes liés à

l’évaluation des impacts des changements climatiques sur les précipitations extrêmes quotidiennes

et sous-quotidiennes. Le cadre statistique de l’analyse des précipitations extrêmes et la formulation
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théorique des modèles des lois d’échelle sont présentés dans les chapitres 3 et 4. Finalement, la

méthodologie, les jeux de données disponibles et les objectifs détaillés du projet sont décrits dans

le chapitre 5.

La Partie II rassemble les trois articles scientifiques qui ont été produits dans le cadre de cette thèse

et qui adressent les trois objectifs principaux de l’étude:

• L’article 1: "Simple Scaling of extreme precipitation in North America". Innocenti, S., Mailhot,

A., et Frigon, A. Publié sur en Novembre 2017, Hydrol. Earth Syst. Sci., 21, 5823-5846,

https://doi.org/10.5194/hess-21-5823-2017,2017.

• L’article 2: "Observed and simulated precipitation over North East North-America: how do

sub-daily extremes scale in space and time?". Innocenti, S., Mailhot, A., et Frigon, A., Cannon,

A.J., Leduc, M. En révision.

• L’article 3: "Extreme precipitation under climate change: probability distributions, seasonality,

and spatio-temporal scaling of sub-daily annual maxima". Innocenti, S., Mailhot, A., et Frigon,

A., Cannon, A.J., Leduc, M. Prêt à soumettre.

Finalement, la Partie III présente une synthèse et une discussion des résultats. Les principales con-

clusions de l’étude sont aussi discutées, ainsi que les perspectives sur des possibles développements

futurs de l’étude.
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Introduction

Understanding the behavior of extreme precipitation has become a critical issue in weather and

climate research as environmental risk assessment depends heavily on our ability to predict natural

hazards. Being often associated with potentially critical events such as floods and droughts, heavy

precipitation also has strong implications in monitoring resources (e.g. freshwater and agricultural

resources or forests), in long-term planning, and for public safety [Seneviratne et al. 2012; Field

et al. 2014]. Characterizing extreme precipitation events is thus crucial for infrastructure design

and evaluating and predicting the impacts of natural hazards on ecosystems and human societies.

Several monitoring techniques exist for recording precipitation, including gauge-stations, ground-

based weather radars, and satellite measurements [Kidd et al. 2016; Tapiador et al. 2017]. However,

the sparsity of the measurement networks makes it difficult to capture the complex spatial structure

and the intermittent temporal patterns of precipitation [Cooley et al. 2007; Trenberth et al. 2017].

Additionally, the usually short records do not allow an accurate investigation of trends and cycles.

Finally, the errors and uncertainties associated with both direct (stations) and indirect (e.g., radar

and satellite) measurements further hinder detecting the complex structure of precipitation systems

[AghaKouchak et al. 2012; Beck et al. 2017b].

Several efforts have been also devoted to the development of complementary datasets, including

dynamical weather and climate model simulations [e.g., Mearns et al. 2007; Scinocca et al. 2016],

interpolated gridded datasets [e.g., Haylock et al. 2008], and reanalysis products [e.g., Dee et al.

2011; Rienecker et al. 2011]. Although providing precipitation series with complete spatial cover-

age over regions sparsely covered by existing observational networks, each of these datasets comes

with drawbacks in terms of either its temporal or spatial resolution or the covered time period [Ar-

ritt and Rummukainen 2010; Flato et al. 2013]. For instance, Global Climate Models (GCMs) and
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Regional Climate Models (RCMs) still have too coarse spatial resolutions (typically from about 200

km to 10 km) to adequately reproduce small weather systems, which are likely to generate short

duration precipitation extremes [Rummukainen 2016; Kendon et al. 2017]. Similarly, reanalyses

which use satellite and radar among other data sources, usually cover only the most recent decades.

Finally, biases and uncertainties related to data interpolation techniques [Hofstra et al. 2008], and

inhomogeneity of the underlying observed series should be taken into consideration when consider-

ing gridded datasets [Gervais et al. 2014b; Beck et al. 2017b].

These constraints become further onerous when we are interested in the climatic evolution of the

extremes. As the climate system evolves under the stimulus of different forcing factors (e.g., ex-

ternal forcing from volcanic atmospheric aerosols, or human induced changes in greenhouse gases),

it is likely that many characteristics of precipitation will change as well. Some of these changes

have already been observed. The main evidence is the higher hydro-climatic intensity in response

to the global increase of temperature and atmospheric water holding capacity. Following the ter-

minology introduced by Giorgi et al. (2011), this means that the severity of heavy precipitation

is expected to increase while the total number of precipitation events is expect to decrease. How-

ever, the assessment of the temporal evolution of extreme precipitation characteristics is further

complicated by the presence of several sources of spatial and temporal variability in precipitation

series [Hawkins and Sutton 2009; Deser et al. 2012a]. In particular, the natural climate variability

associated with the chaotic nature of the climate system may hide the climate change signal for

precipitation extreme statistics and amplify sampling errors, especially at small spatial scales, short

durations, and for the most extreme events [Hawkins 2011; Deser et al. 2012a].

In order to produce reliable assessments of observed and projected changes, it is important to better

characterize how these changes affect precipitation at various scales in order to fully understand the

nature of climate modifications and their possible impacts on regional and local ecosystems.

One interesting paradigm for conducting a multi-scale analysis of extreme precipitation is the scal-

ing model framework [Schertzer and Lovejoy 1987; Menabde et al. 1999], based on the concept of

scale-invariance [Dubrulle et al. 1997]. Physical evidence of the scale-invariant properties of precip-

itation has been provided by several studies [e.g., Gupta and Waymire 1990; Burlando and Rosso

1996; De Michele et al. 2001; Boukhelifa et al. 2018]. Scaling models define relationships between

the statistical characteristics (e.g., moments or quantiles) of precipitation extremes estimated at

different spatial and temporal scales. Accordingly, the statistical spatio-temporal structure of pre-
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cipitation extremes may be in principle approximated for non-observed spatio-temporal scales. The

impact of climate changes may also be evaluated at various scales through the evolution of extreme

scaling properties in time.

Research questions and project objectives

The present study aims to deepen the knowledge on the spatial and temporal structure of pre-

cipitation extremes within the framework of the scale invariance theory. In particular, the rela-

tionships occurring between the probability distributions of extremes at different spatio-temporal

scales were investigated. Scaling models were also used for comparing precipitation features from

various datasets and to evaluate how daily and sub-daily precipitation extremes respond to climate

warming over different time-horizons.

Several data sources were thus considered: i) observed series at stations (gauge measurements pro-

vided by the Environment and Climate Change Canada, ECCC, and the Ministéere du Developpe-

ment Durable, de l’Environnement et de la Lutte contre les Changements Climatiques, MDDELCC,

networks for Canada and from NOAA precipitation datasets for United states); ii) the CMORPH

bias-corrected satellite dataset [Xie and Xiong 2011], iii) the Multi-Source Weighted-Ensemble Pre-

cipitation (MSWEP) v2 [Beck et al. 2017a], iv) a series simulated by the convection-permitting

Weather Research and Forecasting model (WRF) [Liu et al. 2017; Prein et al. 2017a], and v) a

50-member ensemble recently produced by the 5th generation of the Canadian Regional Climate

Model (CRCM5) [Martynov et al. 2013; Separovic et al. 2013; Leduc et al. 2019].

The first specific objective of the present study was to validate the use of scaling models for de-

scribing the spatial-temporal structure of daily and sub-daily extreme precipitation over most of

North-America using observational datasets. To this end, the validity of temporal Simple Scaling

(SS) was evaluated and confirmed over a broad range of temporal scales considering Annual Maxima

(AM) precipitation from 1 h to 3 days and using a large number of station series (≈ 2700 meteo-

rological stations). The accuracy of SS estimation for approximating empirical AM quantiles was

evaluated. The spatial variability of the estimated temporal scaling parameters across the domain

was then investigated, providing important guidance on the influence of both local geographical

characteristics and regional climatic features on extreme precipitation scaling.
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The second specific objective was to investigate the influence of dataset characteristics (e.g., their

temporal and spatial resolution) on the scale-invariant properties of daily and sub-daily precipi-

tation extremes. The validity of temporal SS was thus verified for observational gridded datasets

and simulated series. The analysis illustrated the influence on scaling estimation of basic datasets

characteristics, such as their temporal or measurement resolutions, and series processing techniques,

such as bias correction methods. Finally, the temporal SS estimates for various spatial scales were

considered for gridded datasets. Results suggest that a synthetic analytical expression can be used

for describing the scaling of AM precipitation quantiles across a wide range of spatio-temporal

scales.

The third objective was to assess the temporal evolution of scaling models under climate change

based on the CRCM5 Large-Ensemble (CRCM5-LE) simulated series. Series from various members

of the CRCM5-LE members were pooled and AM scaling models were compared across different

time-horizons and spatial regions. To better characterize changes in the meteorological systems

generating AM, the temporal evolution of AM annual and daily cycles were also investigated. The

results describe how extreme precipitation distributions evolve in future decades and underline

the critical intensification of their spatio-temporal scaling regimes. The analysis also illustrates

the influence of sampling errors and uncertainty related to the natural climate variability on the

spatio-temporal scaling of extreme precipitation at local and regional scales. Finally, important

modifications in annual and daily cycles of AM were also observed.

Thesis structure

The manuscript is structured as follows. Part I discusses the specific challenges related to extreme

precipitation analysis, reports some approaches proposed in the literature, and describes the thesis

objectives and methods. Part II gathers the scientific articles produced, each of them address-

ing one specific thesis objective. Finally, Part III summarizes the results, underlines the original

contributions, and presents the limitations of the study and perspective on future works.
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Literature review, objectives, and

methods





Chapter 1

Extreme precipitation:

preliminary considerations

This chapter introduces the basic concepts related to extreme precipitation analysis, focusing on

challenging aspects of data collection and dynamical simulation of precipitation extremes.

What are precipitation extremes ?

Heavy precipitation monitoring at global and local scales is critical for environmental risk assess-

ment, resource management (e.g., water supply and quality issues), and infrastructure design [East-

erling et al. 2000b; Mailhot and Duchesne 2010; Seneviratne et al. 2012]. Severe weather episodes

are a natural component of climatological systems and their effects highly depend on the exposure

and vulnerability of the systems they impact on. As a result, it may be inadequate to define ex-

treme weather events only in terms of their absolute magnitude or severity [Stephenson et al. 2008;

McPhillips et al. 2018], and many definitions of extreme have been proposed in the climate science

literature.

In the absence of an absolute characterization of what is "normal" and what is "extreme", meteo-

rological and hydro-climatological extremes can only be identified in relation to their peculiarity of

being uncommon [IPCC 2013]:
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"An extreme weather event is an event that is rare at a particular place and

time of year",

as opposed to "typical" states of the climate system in that particular place for the period con-

sidered. When the observed extreme weather conditions last for a relatively long period of time,

such a season, the event may be considered as a climatological extreme, according to the mentioned

definition of the IPCC (2013) Glossary. Detailed discussion about meteorological and climate ex-

treme identification can be found in Seneviratne et al. (2012) and Westra et al. (2014), while general

analyses of the problem of extreme characterization in natural and social sciences are presented in

Albeverio et al. (2006) and McPhillips et al. (2018).

In the present study we will refer to "extreme precipitation" as any weather episode that produces

the maximum value of precipitation depth or intensity in a given time frame (e.g., a year), regardless

of other characteristics (e.g., either solid and liquid precipitation is considered) and of the type of

event involving precipitation (thunderstorm, snowstorm, hurricane, cyclone, etc.). Expressions such

as "extreme precipitation", "heavy precipitation", or "severe precipitation" will be thus considered

as synonyms even if potentially different in essence.

Specifically, a precipitation event can be defined as any continuous manifestation of meteorological

water falling in solid or liquid state on a given area at a given rate [Musy and Laglaine 2005]. The

duration of this event may vary from few minutes to several hours, while its spatial extent can range

from less than one to thousand square kilometers. However, precipitation can only be measured

with respect to a fixed accumulation period and area. Since it is difficult to effectively assess the

spatial extent of each particular event from available observations (e.g., meteorological stations),

this characteristic has often been neglected in the analysis of extreme precipitation [e.g., Touma

et al. 2018].

Precipitation events can be identified by considering the successions of contiguous time steps with

precipitation greater than a specified minimum precipitation depth, and separated by a dry period

of a minimal fixed length [Minimum Interevent Time, MIT; Dunkerley 2008]. However, follow-

ing another approach, precipitation events are generally identified through the precipitation to-

tals accumulated over a time interval (e.g., one hour) and a spatial window of fixed length [e.g.,

Karl and Knight 1998; Easterling et al. 2000a].

8
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Accordingly, the following point-measures of precipitation are typically defined at a particular point

in space for a selected duration, d:

Precipitation Depth [mm]: total precipitation amount collected over a time interval of length d,

i.e.

Zd(t) =
∫ t

t−d
Z(u)du, (1.1)

where Z(t) represents the precipitating water measured at a point in space, for instance at a

gauge station, at time t.

Precipitation Intensity [mm/h]: average precipitation rate over d, i.e. Yd(t) = d−1Zd(t).

Spatially aggregated measures may be subsequently considered to characterize the spatial distribu-

tion of precipitation by simply considering the depth,

Zd,A(t) = 1
A

∫
A
Zd(t, x)dx, (1.2)

and the intensity, Yd,A(t) = d−1Zd,A(t), where x is the vector of the spatial coordinates of an arbi-

trary point inside the area A over which precipitation is recorded or estimated.

The frequency of occurrence of precipitation extremes over a specific period can then be assessed

from available precipitation records by considering the Zd,A(t) values that display some specified

characteristics (e.g., depth or intensity values above a given threshold) for a fixed spatial scale A

and duration d. For instance, considering the Zd,A(t) series as a realization of a random variable,

precipitation extremes can be identified as the events with low frequency in historical observations,

e.g. lower than 10% according to the IPCC (2013) report. In other words, extremes are defined as

Zd,A(t) accumulations that have low probability of occurrence.

Figure 1.1 illustrates these concepts on a theoretical probability distribution used for the precipita-

tion depth: extremes are identified as events in the tail of the distribution (violet part) defined, for

example, as the interval of precipitation values above a given percentile.

9
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0

precipitation
heavy

precipitation  [mm]mean

variance

EXTREMES

Figure 1.1: Extreme precipitation definition as the events with low probability of occurrence, i.e.
associated to the tail of the precipitation distribution.

Once extreme events have been defined, three major issues must be considered:

• The complex spatio-temporal structure of severe precipitation events imposes a concurrent

analysis of the spatial and temporal features of the extremes. Equally important, several

sources of bias and uncertainties affect precipitation estimates and need to be accounted for

when dealing with the extreme characterization.

• The chaotic nature of the climate system implies that extremes are subject to important

variations over a wide range of spatial and temporal scales. The variability of precipitation

extremes over these scales therefore needs to be considered.

• The rarity of the extremes, implicit in their definition, necessarily reduces the number of

recorded extremes. Hence, adapted statistical techniques must be considered to efficiently

extract the information from small observation samples and evaluate the impact of sampling

errors on extreme characteristic estimates.
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1.1 Complex spatio-temporal structure of precipitation extremes

Precipitation generation involves the combination of various atmospheric processes occurring at dif-

ferent spatial and temporal scales. For instance, large-scale mechanisms, such as front formation or

convection, cause air to move and rise, cool down, and moisture to condense [Hand et al. 2004]. At

the same time, specific micro-scale conditions must be met for vapor condensation and for droplets

to coalesce into bigger drops and to produce precipitation [Trenberth et al. 2003; Hand et al. 2004].

Precipitation extremes further require specific favorable atmospheric conditions. For example, a

strong powerful upward motion allowing air to rise quickly is usually needed to cause intense short-

duration precipitation, while a continuous and abundant supply of moisture is needed for heavy

precipitation events to take place over daily and longer durations [Trenberth et al. 2003; Kunkel

2013].
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Figure 1.2: Characteristic spatial and temporal scales of various weather and climatic phenomena
(violet) and related major sources of variability and atmospheric processes involved in precipitation
generation (light blue). Adapted from Blöschl and Sivapalan (1995) and Westra et al. (2014).
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Figure 1.2 depicts the characteristic temporal and spatial scales of the main weather and climatic

processes involved in the generation of precipitation, illustrating the main spatial and temporal

variability components influencing extreme characteristics.

The complex interactions between atmospheric and climate system components involved in precipi-

tation genesis prevent a sharp distinction between the various sources of variability in precipitation

series [Westra et al. 2014]. The chaotic and non-linear nature of the climate system further com-

plicate these multi-scale interactions as small perturbations of the system at small spatio-temporal

scales may rapidly result in drastic changes of system conditions at large scales.

However, the multi-scale nature of precipitation and the effects of the various variability sources

on extremes are difficult to assess, primarily because of deficiencies in available observational and

simulated precipitation datasets which limit our ability to adequately sample extremes across a wide

range of spatio-temporal scales [Beck et al. 2017a; Herold et al. 2017].

1.2 Biases and uncertainty in recorded precipitation series

The evaluation of the possible biases and uncertainties present in recorded series is an essential

preliminary step to any statistical analysis of extreme precipitation. Measurement errors in records

and sampling errors due to short series and sparse networks are the major sources of biases and

uncertainties which must accounted for [Herold et al. 2017].

Several studies have demonstrated the presence of both systematic (i.e. constantly present) and

random (i.e. variable in magnitude and timing) errors in precipitation series measured at ground-

gauge stations, or estimated by radar and satellites.

The wind under-catchment effect has been recognized as a major cause of systematic gauge errors

[e.g., Groisman and Legates 1994; Devine and Mekis 2008; Sevruk et al. 2009], mainly due to the

deflection of rainfall and snow particles from measurement bucket [Metcalfe et al. 1997]. Other

important biases may also be produced under specific meteorological conditions which may cause

evaporation loss, wetting loss1 and trace precipitation (i.e., amounts that are below the instrument

resolution) [Sevruk et al. 2009; Mekis and Vincent 2011].
1Water that adheres to the walls of the pluviometer and is not measured in precipitation volume.
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Significant uncertainties in gauge station estimates may also result from one-off events (e.g., damage

of instruments) or changes in measurement technology and station locations, causing temporal

inhomogeneities and discontinuities in records [Groisman and Legates 1994; Kunkel 2013]. More

generally, precipitation measurements depend on station exposure and local environment (e.g.,

local topography) which affect both the quality and the spatial representativeness of gauge records

[Tapiador et al. 2017; WMO 2008]. The aggregate effect of all these biases is an underestimation

of precipitation, which can be larger than 10% of the observed rainfall depth, and than 100% for

solid precipitation [Sevruk et al. 2009; Kochendorfer et al. 2017]. Reviews and examples of bias

correction methods can be found in Adam and Lettenmaier (2003), Kochendorfer et al. (2017), and

in the WMO (2008) report.

For remote sensing techniques (radar and satellites), the main sources of systematic errors are

related to the empirical or theoretical relationship used to transform electromagnetic radiation

measurements into precipitation amounts [Wright et al. 2017; Teegavarapu 2012]. Other factors

such as topography and specific weather conditions (e.g., particular air humidity and temperature

conditions) can seriously impact the measured electromagnetic signal [Berne and Krajewski 2013;

Xie et al. 2017]. Despite these weaknesses, remote sensing techniques are superior to gauge products

in spatial coverage and have relatively high temporal resolution. A pedagogical discussion about

the working principles and uses of radars and satellites systems for precipitation measurement can

be found in Teegavarapu (2012) and references therein.

1.2.1 Sampling issues

Sampling errors arise due to the fact that measurements are limited in space and time and do not

record all occurring precipitation events. For instance, the average spatial density of major gauge

networks in the United States has been estimated to be approximately one every 30-35km [Kunkel

2013]. Lower station densities, however, characterize the sparsely populated regions, such as the

western intermountain United States and northern Canada. This strongly limits the possibility of

recording many intense precipitation events.

The impacts of measurement density and coverage is dependent on the spatial heterogeneity and

temporal intermittency of the specific type of extreme [Kunkel 2013]. For instance, short-duration

13
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convective events are more rarely sampled by sparse networks as they are highly localized in space.

Conversely, smaller uncertainties are expected for the estimation of long-duration event character-

istics as they generally display higher spatial homogeneity [Gervais et al. 2014b].

1.2.2 Uncertainties related to interpolation techniques

Different spatial interpolation techniques are used to assess precipitation characteristics at non-

sampled locations and to evaluate their spatial distribution. Uncertainties on resulting gridded

datasets depend on the used interpolation method and can be especially important for extremes,

because of the smoothing process involved in the transformation of sparse measures in gridded

values [Tustison et al. 2001; Gervais et al. 2014b]. Also, the inhomogeneity of the underlying

observed records may strongly affect the inference of precipitation characteristics from gridded

datasets [Hofstra et al. 2009; Trenberth et al. 2017], as well as the topographic characteristics of the

region under study [Daly et al. 2008]. Extremes, in particular, are altered by the interpolation in

an incommensurable way with respect to the center of the precipitation distribution [Hofstra et al.

2009]. Accordingly, the interpolation of at-site precipitation series should be avoided when interested

in sub-daily extremes, owing to the inherent high variability of precipitation at fine temporal and

spatial scales [Kidd et al. 2016].

1.3 Use of climate models to estimate extreme precipitation

Datasets produced by meteorological and climatological models represent an interesting option to

access data about extreme precipitation as they provide simulated precipitation series with complete

spatial coverage over large regions [Arritt and Rummukainen 2010; Flato et al. 2013; Rummukainen

2016]. Models currently used in climate analysis are Global Climate Models (GCMs) and their

regional version, Regional Climate Models (RCMs).

1.3.1 Global Climate Models (GCMs)

GCMs can generate Earth scale simulations over long time horizons [from decades to several cen-

turies; e.g., Taylor et al. 2011]. Consisting of a discrete representations of the climate system [IPCC
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2013], GCMs numerically reproduce the dynamics of the climate system and the complex interac-

tions between the atmosphere, oceans, land surface (including vegetation) and cryosphere, and give

access to precipitation series and future projections spanning the globe over a regular grid. However,

due to their high complexity GCMs are computationally expensive and simulations are typically

run at spatial resolutions that are too coarse [typically coarser than 100 km for state-of-the-art

GCMs; Rummukainen 2016] to simulate small scale atmospheric processes which are relevant for

most of precipitation extremes [Mearns et al. 2018]. In particular, GCMs rely on parameterized

representations of processes which occur on scales too small to be directly resolved by the dynamical

equations [e.g., convection and clouds and cloud processes occurring on smaller spatial scales than

the model grid box; see, for instance, Fig. 1.2].

Figure 1.3: Examples of dynamical model grids and domains: a) global uniform grid typical of GCMs
b) uniform grid over a limited-area domain typical of RCMs. For clarity, grid resolutions are coarser
than state-of-the-art CGMs and RCMs. Adapted from Fig. 1 in Zadra et al. (2008).

1.3.2 Regional Climate Models (RCMs)

RCMs use representations of climate processes comparable to those of GCMs to numerically simu-

late the patterns of the climate system on smaller geographical areas [Mearns et al. 2018]. RCMs

are forced by lateral and ocean conditions for large scale variables (e.g., winds, air temperature,

and humidity) specified either from a GCM or reanalysis2 and develop their own meteorology in
2Reanalyses are simulated datasets obtained by assimilating observed series from a variety of sources (e.g., ground

meteorological stations, ships, and satellites) in Numerical Weather Prediction (NWP) models in order to simulate
short term predictions. NWP forecasts are then updated in light of the new assimilated observations [e.g., Uppala
et al. 2005; Dee et al. 2011; Parker 2016].
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the interior of their domain in response to the large scale boundary conditions [e.g., Scinocca et al.

2016]. Running at higher spatio-temporal resolution than GCMs (e.g., from 12 to 50 km in space),

state-of-the-art RCMs allow a more realistic representation of topography, land use, and their cor-

responding forcings (e.g., land-sea contrasts, sea surface temperature, and sea-ice coverage). An

example of the topography details reproducible at the typical horizontal spatial resolutions of GCMs

and RCMs are showed in Fig. 1.4. Moreover, RCMs are sometimes based on more sophisticated

subgrid-scale parameterizations than GCMs, can rely on parameterization regional tuning, and al-

low for a better simulation of small scale atmospheric processes and coupled feedbacks which are

relevant for precipitation and precipitation extremes [Rummukainen 2016].

Figure 1.4: European topography at the horizontal spatial resolution of a) a very high-resolution GCM
(87.5 × 87.5 km) and b) a typical state-of-the-art RCM (30 × 30 km). From Rummukainen (2016)
[Fig. 2].
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By means of comparative studies with observed data, RCMs have been shown to adequately repro-

duce the statistical properties of precipitation totals at annual and monthly time scale [Gutowski

et al. 2010; Flato et al. 2013], though important inaccuracies have often emerged while comparing

the distribution of simulated precipitation extremes to those estimated from records [e.g., Min et al.

2011; Gervais et al. 2014a]. More recently, some improvements in RCM structure, parameterization

schemes, and spatial resolution have led to significant advances in RCM ability to simulate crucial

features of precipitation such as the annual cycle and the statistics of daily rainfall extremes [e.g.,

Ban et al. 2014; Sunyer et al. 2016; Lucas-Picher et al. 2017].

However, RCMs may still display large biases for sub-daily extremes (e.g., diurnal cycle and hourly

extremes), especially for regions and seasons where small spatio-temporal scale processes are the

main driver of extreme events [Cavicchia et al. 2016; Kendon et al. 2017 and references therein].

This has been ascribed to two specific model limitations. First, the model spatial resolution is still

too coarse to represent highly localized precipitation systems which are more often associated with

extreme precipitation [Toreti et al. 2013; Gervais et al. 2014a; Hartmann 2015]. Second, the rep-

resentation of physical processes involved in the generation of short-duration intense precipitation

[i.e., the sub-grid parametrization; Hartmann 2015] is still inadequate [e.g., Westra et al. 2014; Liu

et al. 2017]. This often results in too-frequently simulated light precipitation [the so-called drizzling

problem; Dai 2006; Trenberth et al. 2017] and underestimated intensity and frequency of short

duration heavy precipitation, as it also happens for GCMs [Gutowski et al. 2007; Stephens et al.

2010; Woodhams et al. 2018].

Promising approaches for improving the simulation of short duration extremes rely on the use of

Convection-Permitting Models (CPMs) [e.g., Ban et al. 2015; Prein et al. 2015; Dai et al. 2017].

Running simulations at grid resolutions of a few kilometers, CPMs more completely resolve physi-

cal equations of deep convection with a limited use of parametrization schemes [Prein et al. 2017b;

Rasmussen et al. 2017]. This is expected to improve extreme precipitation simulation, especially in

regions of strong spatial heterogeneities (mountains and urban areas) and where deep convection

dominates [Prein et al. 2016; Kendon et al. 2017].

However, the high computational and storage costs of CPM simulations limit the possibility of

exploring many crucial aspects such as their sensitivity to spatial domain size or to nesting and

driving strategies, which remain largely unexplored [Prein et al. 2015; Prein et al. 2017a]. More-
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over, relatively few continuous CPM runs have been produced to date and they generally cover

short time periods (e.g., 10 years or less) and small spatial domains [Brisson et al. 2015; Prein et al.

2016; Mantegna et al. 2017]. For these reasons, investigating the characteristics of rare precipita-

tion extremes remains difficult and it is challenging to robustly assess CPM biases and uncertainties

[Kendon et al. 2017; Gadian et al. 2017].
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Chapter 2

Climate Change (CC) impacts on

mean and extreme precipitation

The climate is changing owing to anthropogenic forcings linked to land use, population growth, and

alteration of the chemical composition of the atmosphere that have the effect of increasing the mean

temperature at the global scale [AghaKouchak et al. 2012; Melillo et al. 2014].

Global warming results in increasing evaporation and moisture-holding capacity of the atmosphere,

as the saturation water vapor pressure increases by approximately 7 % per degree of temperature

rise according to the Clausius-Clapeyron relationship. A warmer atmosphere having a larger water

vapor content, an increase in precipitation is also expected, especially in the form of severe and

heavy intensity events, as more atmospheric moisture is drawn into storms [Trenberth 2011; Fis-

cher and Knutti 2016]. In particular, extreme precipitation could be expected to scale according to

the Clausius-Clapeyron relationship based on the consideration that in intense storms a constant

and considerable fraction of water vapor is converted into rain. However, different scaling rates of

precipitation extremes on temperature have been empirically estimated and may depend on various

factors, including the geographical region and the precipitation spatial scale and duration considered

[e.g., Westra et al. 2014; Drobinski et al. 2016; Lenderink et al. 2017 and references therein]. More-

over, enhanced by changes in the atmospheric circulation, the acceleration of the hydrological cycle

in a warmer climate [Giorgi et al. 2011] is likely to have important impacts on other characteristics

of precipitation extremes, such as their frequency and/or spatio-temporal structure depending on
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the regions and seasons [e.g., Lenderink et al. 2017; Skeeter et al. 2018; Pendergrass 2018].

In climate science, Climate Change (CC) is defined as the ensemble of modifications of the sta-

tistical characteristics of the climatological variables that persist for an extended period, typically

decades or longer [IPCC 2013]. According to this definition, a strong body of evidence that the

frequency and intensity of heavy precipitation are changing has been constructed based on the com-

bined use of climate models and historical records [e.g., Hartmann et al. 2013]. Nevertheless, the

detection and characterization of changes in the spatio-temporal structure represent a big challenge

[Zhang and Zwiers 2013; Dittus et al. 2015], especially for short-duration intense extremes owing to

their high spatio-temporal variability [Westra et al. 2014; Barbero et al. 2017; Kendon et al. 2017].

2.1 Observed changes in historical climate

Following Ch. 2 of the IPCC report [Hartmann et al. 2013], historical CC mainly resulted in

a global redistribution of precipitation over land areas without significant impacts on the total

volume of precipitation at a global scale. Conversely, changes in mean and total annual or seasonal

precipitation have been recorded in different regions, with increases at mid- and high- latitudes of

the Northern Hemisphere and decreases in tropical and subtropical areas.

Some authors also showed how changes in total precipitation are often driven by changes in the

contribution from the most extreme events. For instance, Karl and Knight (1998) have shown that

the increasing trend in daily precipitation over the United States during the 20th century is mainly

due to increasing heavy precipitation (e.g., daily precipitation above the 90th percentile of the daily

precipitation distribution) compared to moderate precipitation (e.g., between the 50th and the 55th

percentile). The frequency of days with precipitation also increased [Karl and Knight 1998].

Generally, there is a broad consensus on the increase in the frequency and/or the intensification

of daily and multi-daily precipitation extremes for the last decades at global and regional scales

[e.g., Alexander et al. 2006; Fischer and Knutti 2016; Kendon et al. 2018 and references therein].

However, the amplitude of the observed changes greatly varies at local scales [e.g., Donat et al.

2013].
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2.1.1 Observed changes over the United States and Canada

Significant increases in total precipitation have been reported during the 20th century in several

regions of the United States (US) and Canada [Karl and Knight 1998; Zhang et al. 2000; Easterling

2017].

The analysis of historical data over the US highlighted changes in the frequency and/or intensity

of extreme events at daily and coarser temporal scales [e.g., Karl and Knight 1998; Trenberth et al.

2003; Kunkel et al. 2013; Mallakpour and Villarini 2017 and references therein], especially in moun-

tainous regions, the Midwest, and the Northeast [Hoerling et al. 2016; Huang et al. 2017]. Less

significant trends are reported for west coastal regions [e.g., Karl and Knight 1998; Kunkel et al.

2013; Easterling 2017].

Using gridded daily precipitation records from 1948 to 2012, Mallakpour and Villarini (2017) found

limited evidence for changes in the magnitude and seasonality of heavy precipitation over the US.

However, they highlighted that the frequency of extreme precipitation events increased over large

areas of the contiguous US, with strong effects of large-scale circulation modes. Considering various

precipitation indexes, Easterling (2017) underlined that both the intensity and frequency of daily

and longer precipitation extremes increased in most parts of the US since 1901 and with important

regional differences in trends. Skeeter et al. (2018) provided further evidence for the increased fre-

quency and magnitude of intense precipitation events for the southeastern US using station records

and related these results to changes in the frequency of specific surface weather conditions.

Concerning Canada, some studies [e.g., Zhang et al. 2001; Vincent and Mekis 2006] did not find

evidence for consistent and spatially coherent trends for extreme indices1 during the 20th century,

while attesting trends in daily intensity [e.g., a decrease of about 5% of mean daily intensity over

the period 1950-2003 in Vincent and Mekis 2006] and in the total annual or seasonal precipitation,

especially in southern regions [Akinremi et al. 1999; Stone et al. 2000; Zhang et al. 2000; Wazneh

et al. 2017]. Akinremi et al. (1999) also showed that the observed increase in the number of days

with precipitation (wet days) for Canadian prairies was mainly due to an increase in the number

of days with light (≤ 5 mm) precipitation during the period 1921-1995. Conversely, for the second
1For instance, Vincent and Mekis (2006) defined the following four indices for the analysis of extremes: the number

of days with precipitation greater than 10 mm; the annual maximum precipitation total for 5 consecutive days; the
number of days with precipitation ≥ than the 95th percentile of the non-zero daily precipitation amount distribution
over the considered period; and the annual maximum number of consecutive days without precipitation.
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half of the 20th century, Stone et al. (2000) observed an increase of total seasonal precipitation

due to increasing intermediate (≥ 2 mm) and heavy (station-specific threshold) daily events in

southern Canada. Trends connected with increasingly frequent daily heavy events were detected for

northern Canada during winter [Easterling et al. 2000a], while Mailhot and Talbot (2011) found a

statistically significant intensification of hourly and sub-hourly extremes only for a few stations in

southern Quebec.

More recently, some studies highlighted important non-stationarity in daily and sub-daily extremes

at regional scale using regional trend analysis [Shephard et al. 2014; Sarhadi and Soulis 2017]. How-

ever, at-site analyses of homogenized daily precipitation series showed that extreme daily rainfall,

snowfall, and precipitation trends were statistically significant only for a few Canadian stations

[Vincent et al. 2018]. Assessing trends for sub-daily precipitation is, in fact, difficult, as available

recorded sub-daily series are usually short (e.g., typically shorter than 30 years) and network den-

sity is much lower than for daily stations [Shephard et al. 2014; Barbero et al. 2017], especially in

northern regions. Some authors also underlined the difficulty of assessing precipitation trends in

Canada due to the evolving measurement practice [Metcalfe et al. 1997; Akinremi et al. 1999; Stone

et al. 2000; Vincent and Mekis 2006].

2.2 Projecting CC

GCMs and RCMs are the primary tools available to project the impact of changes in the external

and internal forcings on the climate system. Forcing scenarios depend on several factors, such as

the evolution of world demography, energy, land uses, and economic and technological development,

ultimately determining the future greenhouse gas (GHG) and aerosols concentrations in the atmo-

sphere [Myhre et al. 2013]. Different sets of forcing scenarios have been produced, including those

from the IPCC Special Report on Emission Scenarios (SRESs) [Nakicenovic and Swart 2000] and

the more recent Representative Concentration Pathways (RCPs) [Van Vuuren et al. 2011; Myhre

et al. 2013].

SRES are 40 different scenarios describing plausible socio-economic evolutions along with their cor-

responding levels of GHG emissions without assuming specific climate policy interventions. They

are organized in four families (A1, A2, B1, and B2 scenario families), each containing qualitative
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"storylines" similar in terms of the future demographic and economic growth and repartition across

the world, and similar for the future technological evolution they assumed [Nakicenovic and Swart

2000].

The RCPs represent the projected radiative forcing (i.e. the incoming-outgoing energy balance

in the atmosphere primarily caused by changes in the atmospheric composition) associated with

specific greenhouse gas, aerosols, land-use emissions. RCPs are intended to serve directly as input

for climate and atmospheric chemistry models [Van Vuuren et al. 2011]. Each RCP covers the

period 1850-2100 (with some extensions up to 2300) and can correspond to a wide range of possible

socio-economic and development scenarios. RCPs take their name from the values of total radiative

forcing reached in the year 2100 (RCP2.6, RPC4.5, RPC6, and RPC8.5 indicating values of +2.6,

+4.5, +6.0, and +8.5 Watts per square meter [W/m2], respectively).

Starting from a specific set of initial conditions, any individual dynamical model simulation rep-

resents one of the possible trajectories that the climate system might follow in response to the

prescribed external forcing scenario [Flato et al. 2013].

2.2.1 Projected changes for United States and Canada

Numerous studies agreed on the expectation of changes in total precipitation and daily or longer ex-

tremes at global scale resulting from increasing GHG concentration in the atmosphere [e.g., Collins

et al. 2013; Fischer and Knutti 2016; Kharin et al. 2018]. In particular, the contrast between wet

and dry regions and among seasons will likely exacerbate in future years [e.g., Giorgi et al. 2011]. An

increasing frequency of extreme events linked with the positive trend of temperatures is expected

as well [e.g., Toreti et al. 2013; Kharin et al. 2013; Collins et al. 2013].

In agreement with these changes at the global scale, RCMs project modifications in annual and

seasonal precipitation over many regions of North America [Plummer et al. 2006; Wehner 2013;

Mearns et al. 2018 and references therein]. Wehner (2013), for instance documented changes in fu-

ture mean seasonal precipitation rates and in average seasonal maximum daily precipitation through

a comparison between the 2038-2070 period projections (A2 SRES scenario) and the simulations for

the 1968-1999 period in the context of the North American Regional Climate Change Assessment

Program (NARCCAP) multi-model numerical experiment [Mearns et al. 2009]. The author found
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an increase of these variables at high latitudes (largest in northern regions during winter) and a

decrease at low latitudes (strongest in southern regions during summer). The magnitudes of the

changes in average seasonal maximum daily precipitation are smaller than those for mean precipi-

tation [Wehner 2013].

The analysis of Chen et al. (2005) also suggested a potential increase in the frequency and intensity

of heavy daily precipitation events (≥ 32 mm/d) over the US, as a warming climate favors the

increase of convective precipitation.

Mladjic et al. (2011) underlined the increase in the projected intensity of daily and multi-daily pre-

cipitation depth maxima between April and September over Canada for the 2041-2070 period, with

relatively larger increases in northern regions. Analyzing simulations provided by the NARCCAP

for the same emission scenario (SRES A2), Mailhot et al. (2012) showed that the intensity of annual

maxima precipitation of several durations is also expected to increase. In accordance with these

findings, Jalbert et al. (2015) underlined the expected increase of North-American daily extremes

for all seasons, especially in northern Canada during summer.

Increases in hourly precipitation extremes were found by Prein et al. (2016) for the US when ana-

lyzing a 13-year 4-km CPM simulations with a pseudo-global-warming approach [Rasmussen et al.

2017 and references therein]. Considering GCM simulation under RCP4.5 and RCP8.5 over the US,

Fix et al. (2018) found increases in annual maximum daily precipitation over the US, with larger

changes being associated with larger temperature changes.

Finally, important modifications in the frequency, intensity, and increases in the heterogeneity of

the spatial characteristics of weather systems producing precipitation extremes have been found in

Canada and US by Guinard et al. (2015) and Prein et al. (2017b) using RCM projections.

More generally, possible modifications of the spatio-temporal structure of extreme rainfall are ex-

pected, based on projected changes in extreme characteristics such as duration, seasonality, daily

timing, and spatial extents [Touma et al. 2018]. The assessment of the specific mechanisms driving

these changes remains a fertile field still largely unexplored [Wasko et al. 2016; Dwyer and O’Gorman

2017].
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2.3 Uncertainty in projected changes

The identification and quantification of uncertainty in climate model simulations are particularly

critical when assessing and interpreting their results. Projections provide in fact a range of possible

future climate evolutions under the assumption that climate and weather processes are correctly

represented in dynamical models and assuming the validity of forcing scenarios. Evaluating the

uncertainties associated with these assumptions is crucial for correctly assessing CC impacts and

for the development of adequate adaptation strategies [Zhang and Zwiers 2013].

Uncertainty in climate projections are typically classified as [Tebaldi and Knutti 2007; Flato et al.

2013; Knutti 2018]:

• scenario uncertainty, related to the unknown external forcing on the climate system for future

years;

• model uncertainty, associated with model structure, resolution, and parametrization [Tebaldi and Knutti

2007; Kendon et al. 2017]; and

• intrinsic uncertainty, linked with the natural variability of the climate system [Hawkins 2011;

Deser et al. 2012b].

Natural variability represents the climate internal variability which occurs solely with the internal

interactions of the climate system components [e.g., Deser et al. 2012b; Hingray and Saïd 2014].

These fluctuations may transiently hide or amplify long-term trends due to CC [Vecchi and Soden

2007; Hawkins 2011]. While CCs are generally considered to affect the climate system systemati-

cally and structurally, internal variability generates near-term fluctuations and randomness of the

observed signal, resulting in substantial unpredictability [Hawkins 2011].

Some climatic experiments focused on the characterization of these three sources of uncertainty by

the use of multi-model and/or multi-member ensemble simulations [Deser et al. 2012b; Flato et al.

2013]. These experiments consist of the use of multiple climate trajectories simulated by several

models over a common period, considering various initial conditions and/or several forcing scenarios

for running the simulations [Tebaldi and Knutti 2007; Sanderson et al. 2018]. In particular, the

generation of ensembles of simulations using various forcing scenarios has been widely considered
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for analyzing the sensitivity of the climate responses to different forcing sources [used, for instance,

for the detection and attribution of the human contribution to the projected climate changes; e.g.,

Stott et al. 2010]. In the same vein, sets of simulations from various GCMs and/or RCMs have

been generated to evaluate how structurally different models2 respond to the same external forcing

[IPCC 2013]. Pooling information from various simulations, multi-model ensembles may allow for

a more robust assessment of the climate signal and provide a measure of the model uncertainty,

quantified as the spread of the model responses [Galmarini et al. 2018]. Finally, initial-condition

ensembles from a single climate model and forcing scenario have been used to discriminate CCs

from natural variability for global and regional climate extremes, through the comparison of the

estimated long-term changes in climate statistics and their spread across the independently initiated

simulations [e.g., Thompson et al. 2015; Fyfe et al. 2017; Martel et al. 2018].

Using these approaches, various authors highlighted that natural variability is expected to be the

major source of uncertainty for precipitation, especially for the most extreme events and short time

horizons, while uncertainties on emission scenarios dominate for 30-year and longer projections and

for most of the other climate variables [e.g., Hawkins and Sutton 2009; Hingray and Saïd 2014].

However, giving a comprehensive picture of the uncertainty in climate projections remains a diffi-

cult task due to a number of reasons. In particular, the representativeness of simulated ensembles

with regard to the mentioned sources of uncertainties has been questioned since different models

cannot be expected to be independent from each other, and various practical constraints determine

the composition and size of multi-model / multi-member ensembles [e.g., computational limita-

tions Tebaldi and Knutti 2007; Abramowitz et al. 2019]. Considering the inter-model dependencies

and possible common biases, the uncertainty range spanned by the ensemble spread is likely to be

underestimated, while a clear assessment of model dependence effects on projection results is not

straightforward in practice [Ylhaisi 2014; Abramowitz et al. 2019 and references therein]. Accord-

ingly, some difficulties also emerge for the definition of how to statistically combine information

from global- and regional-scale simulations run at different spatio-temporal resolutions and the in-

terpretation of ensemble results in different applications [Knutti et al. 2010; Galmarini et al. 2018].

2Ensembles of simulations from a single model that use different tuning of parameters can also be considered to
explore parameter uncertainties [perturbed physics ensembles; e.g., Tebaldi and Knutti 2007].
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Chapter 3

Statistical modeling of precipitation

extremes

In order to represent the likelihood of a precipitation event to occur, both in terms of precipitation

depth [mm] and intensity [mm/h], one usually refers to the quantiles of the precipitation distri-

bution [e.g., Cunnane 1978]. However, as previously noted, the estimation of quantiles is usually

carried out on the basis of time series covering a short period, even for the more extreme quantiles.

For this reason, techniques for extrapolating the information about non-observed extreme events

from the available samples must be defined [Coles 2001]. The statistical methods belonging to the

Extreme Value Theory (EVT) perform these estimations based on the properties of order statistics

of precipitation samples.

This chapter introduces the basic concepts of the EVT and describes their application to extreme

precipitation analysis. Statistical methods commonly used for the characterization of the spatial

distribution of precipitation extremes are also briefly reviewed.

3.1 Extreme Value Theory (EVT) for precipitation

First formulations of the EVT were set by Fisher and Tippett (1928), Von Mises (1936), and

Gnedenko (1943). The discipline was then systematically formalized by Gumbel (1958), which



Ch. 3. Statistical modeling of precipitation extremes

also promoted its use for modeling physical processes such as hydrology extremes. Gumbel (1958)

further introduced the distribution which bears the same name, and which is still fairly used in

hydrological applications.

The first step in the application of the EVT is the definition of some practical strategies to select

events belonging to the tail of the distribution from the available time series of precipitation. Two

main approaches are used: the Block Maxima (BM) and the Partial Duration Series (PDS) approach,

also known as Peak-Over-Threshold (POT) method.

Block Maxima (BM) approach: it consists in splitting the available time series in sub-samples

of the same size; the maximum value of each sample is then selected as a realization of an

extreme event. The most common BM application in hydrology uses 1-year blocks, which

enables a clear phenomenological interpretation of the maximum of each block. In this case,

the series of selected extremes are called Annual Maxima Series (AMS).

Peak-Over-Threshold (POT) approach: this method relies on extracting all the time series

values exceeding a certain threshold in order to construct the sample of extremes. As a result,

extreme samples constructed by this approach correspond to the N largest time series values.

When dealing with precipitation, the BM approach is often preferred since it overcomes problems

linked with seasonal components and clustered values in precipitation series that are particularly

important at certain spatio-temporal scales (e.g., for daily and sub-daily precipitation) [Coles et

al. 1999; Katz et al. 2002]. The independence assumption for sample observations is more easily

applicable. Also, the selection of a threshold value for implementing the POT approach is not

straightforward, to some extent arbitrary, and more difficult to handle in a non-stationary contest.

For these reasons, only the BM approach will be considered in this thesis.

It has to be noted, however, that the use of AMS series may entail to neglect some extreme events

in the case that several heavy precipitation events have occurred during the same year. By the same

token, the maximum value in a given year may be very small compared to other large events occur-

ring during other years. In these cases, the use of POT methods may provide better information

about extremes from the available series.
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3.1.1 BM approach to the EVT

BM series are represented by the probability distribution family known as Generalized Extreme

Value (GEV) distribution. This distribution originates from the following asymptotic result: the

maximumXM = max{Z1, Z2, ..., ZM} of a sequence of continuous i.i.d. random variables Z1, Z2, ..., ZM

converges to a known distribution as M → ∞, after proper renormalization and without any par-

ticular assumption regarding the exact distribution of Z [Fisher-Tippett theorem, 1928].

The distribution of the Annual Maxima (AM) of precipitation is thus known and corresponds to

one of the distributions of the GEV family, as long as the block length (i.e., M for each year) can be

assumed to be long enough for respecting the Fisher-Tippett asymptotic condition. If we represent

the AM series with (x1, x2, ..., xn), the GEV cumulative distribution function (cdf) of the random

variable X can be written as [Coles 2001]:

F (x) =


exp

{
−
[
1 + ξ

(
x−µ
σ

)]−(1/ξ)
}

if ξ 6= 0

exp
{
− exp

{
−
(
x−µ
σ

)}}
if ξ = 0

(3.1)

where the support of the distribution is −∞ < x ≤ µ+ σ/ξ if ξ < 0, 1/µ+ σξ ≤ x < +∞ if ξ > 0,

and −∞ < x < +∞ if ξ = 0. Parameters µ ∈ R, σ > 0 et ξ respectively represent the position,

scale, and shape1 parameters of the distribution.

The shape parameter plays here a critical role because it describes the characteristics of the dis-

tribution tails. It thus controls the frequency and the magnitude of the extreme events generated

by F (x). For ξ = 0 the distribution has a light-tailed shape and corresponds to the Gumbel dis-

tribution (GEV-type I). Conversely, the Weibull distribution (GEV-type III), corresponding to the

case ξ < 0, shows an upper bounded tail, meaning that no value exceeding the upper bound can be

observed. Finally, when ξ > 0, the distribution is known as the Fréchet distribution (GEV-type II)

and presents an upper unbounded tail. In this last case we say that the distribution is heavy-tailed

meaning that more frequent and "more extreme extremes" may be generated by F (x) [Papalexiou

et al. 2013]. To appreciate the difference between these three cases, Fig. 3.1 presents some examples

of GEV probability density functions (pdf) corresponding to different parameter values.

1Note that in hydrology the parametrization k = −ξ is also common.
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Figure 3.1: Examples of GEV pdf f(x;µ, σ, ξ) corresponding to different parameters values [adapted
from Blanchet and Lehning 2010].

Precipitation extremes are often characterized in terms of their return period which can be defined

as the average time interval expected between two events with intensity larger or equal to xT [e.g.,

Gumbel 1941; Cooley 2013]. If X represent the AM precipitation measured a particular location

for a given duration (e.g., one hour or one day), the return period T [years] can be expressed as:

T = [1− F (xT )]−1 = [1− P (X ≤ xT )]−1, (3.2)

where 1 − F (xT ) corresponds to the probability of occurrence of an event larger than xT over

a year. The chosen intensity xT is referred as return level and simply corresponds to the pth

quantile of the X distribution when p = (1− 1/T ) [Rootzén and Katz 2013]. The present definition

of return period and return level relies on the implicit assumption of the stationarity of precipitation

distribution over the observational time period. For discussions about return period definitions in

non-stationary contexts see Cooley (2013), Rootzén and Katz (2013), and Naveau et al. (2018).

For the GEV distribution, the solution of the equation F (x) = p gives:

xT = F−1 (p; ξ, µ, σ) =


µ+ (σ/ξ)

{
[− ln (p)]−ξ − 1

}
if ξ 6= 0;

µ+ σ {− ln [− ln (p)]} if ξ = 0.
(3.3)

Figure 3.2 shows some examples of return levels against − ln(p) on a logarithmic scale (return level

plot), for different F (x) parameter values. It is worth to appreciate the difference between the

three curves in the right panel [Fig. 3.2, 3rd col]. While, as expected, the intensity of return levels
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increases with the return period for each of the three GEV types, the relative increase of xT with

T →∞ for the Fréchet distribution is clearly larger than for the Weibull and Gumbel distributions.

Figure 3.2: Return level plots corresponding to different parameter values [adapted from
Blanchet and Lehning 2010].

An accurate estimation of the GEV parameter values, and in particular of the shape parameter,

is thus critical to evaluate the characteristics of more (rare) extremes (i.e., for small vales of p).

This estimation is usually achieved by the use of the Maximum-Likelihood (ML) or the Probability

Weighted Moments (PWMs) methods [Greenwood et al. 1979; Hosking et al. 1985]. Detailed de-

scriptions of both ML and PWM estimation procedures are provided in Appendix A.

Although the PWM method is sometimes preferred for its good performances on small samples

[Hosking et al. 1985], the ML estimation is often promoted because of its optimal asymptotical

properties [Katz et al. 2002]. Moreover the ML method easily handles reparametrizations and

the inclusion of covariates in GEV models [Katz 2013]. This could be useful, for instance, for

modeling spatial and temporal trend in the AM distribution [see, for instance, Appendix A, and

Blanchet and Lehning 2010; Kharin et al. 2018]

3.1.2 Estimated GEV for AM precipitation: literature review

Due to its importance in terms of more extreme AM quantiles, many studies focused on the accuracy

of shape GEV distribution estimation [e.g., Koutsoyiannis 2004a; Koutsoyiannis 2004b; Papalex-

iou and Koutsoyiannis 2013b]. Those that investigated daily precipitation extremes are reviewed in

Ragulina and Reitan (2017) and Ye et al. (2018).

31



Ch. 3. Statistical modeling of precipitation extremes

Based on theoretical and empirical analyses, Koutsoyiannis (2004a) and (2004b) highlighted that

daily rainfall AMS are better described by GEV distributions with positive shape parameter, while

the common assumption of ξ = 0 (Gumbel hypothesis) may severely underestimate the risk associ-

ated with extreme events. Extending these analyses, Papalexiou and Koutsoyiannis (2013b) showed

that different regions are characterized by different precipitation regimes, hence the geographical

location may affect the shape parameter estimation [see also Ragulina and Reitan 2017; Blanchet

et al. 2009]. Even more importantly, high uncertainty affects the GEV shape at local scales. There-

fore, its estimation critically depends on the length of the series under consideration [Koutsoyiannis

2004a]. For series of 40 to 163 years, ξ is likely to range in a narrow value interval [approximately

between 0 and 0.23; Papalexiou and Koutsoyiannis 2013b] .

Methods such as the Regional Frequency Analysis (RFA) [Hosking and Wallis 1997] have been pro-

posed for better estimating GEV parameters when only short series are available at single spatial

locations. RFA combines several AMS from various locations (e.g., from several meteorological

stations). If a geographical region can be considered homogeneous, the estimation of ξ is then

performed on the pooled sample of AMS.

3.2 Intensity-Duration-Frequency (IDF) curves

Intensity-Duration-Frequency (IDF) curves are used to synthetically represent information about

extreme precipitation. These curves describe the relationships between rainfall intensity X(T, d)

and duration for given values of the return period (e.g., T equal to 2, 5, and 10 years) [CSA 2012].

An example of IDF curve is given in Fig. 3.3.

Many mathematical expressions have been proposed to estimate IDF. Typical IDF relationships

found in early literature [e.g., Bernard 1932; Chow et al. 1988] can be represented by the following

general expression [Koutsoyiannis et al. 1998]:

X(T, d) = f(T )
g(d) (3.4)

where X(T, d) represent the precipitation intensity quantile parametrized in terms of the duration

d and return period T and the functions f(T ) and g(d) are assumed to be two explicit functions of

T and d, or two constant values.
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Figure 3.3: IDF curves for the Pierre-Elliot-Trudeau Airport gage station (Montreal, Quebec) for
the period 1943− 1993. Adapted from Short Duration IDF Data, Engineering Climate Dataset, ECCC,
https://www.canada.ca/en/sr/srb.html?q=Intensity-Duration-Frequency&wb-srch-sub=#wb-land.

In particular, g(d) is often defined as [Koutsoyiannis et al. 1998]:

g(d) = (d+ θ)η, (3.5)

where θ and η are non-negative coefficients to be estimated, and 0 < η < 1. The wide use of this

expression is due to the fact that, intuitively, X(T, d) must be a monotonically decreasing function

of duration, regardless of the specific distribution adopted for the precipitation intensity. In fact,

for a fixed occurrence frequency, the intensity of a short-duration precipitation event is expected

to be larger than for long-duration ones. Expressions similar to Eq.(3.4) have been also proposed

based on more rigorous procedures. For instance, Koutsoyiannis (2006) justifies the same expression

based on considerations about maximum entropy properties of rainfall processes.

A power or logarithmic form may be chosen for f(T ) [e.g., Chow et al. 1988]. More often, however,

f(T ) is set constant, i.e. f(T ) = ω [CSA 2012]. The parameters θ, η, and ω are then estimated

by numerical optimization. Figures 3.3 shows IDF curves corresponding to various return periods.
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In this case, a Gumbel distribution was used for modeling the AM intensity of the observed series

at each duration. η and ω have been estimated by linear regression, while θ has been fixed to 0

[http://climate.weather.gc.ca/prods_servs/engineering_e.html].

More conveniently, f(T ) can be also derived from the analytic expression of the return levels pro-

vided by the parametric expression of F (x). This technique has been strongly recommended by

Koutsoyiannis et al. (1998) in order to ensure IDF theoretical consistency with the statistical be-

havior of precipitation intensity. Accordingly, a practical IDF relationship for the GEV distribution

is [Koutsoyiannis et al. 1998; Eq. (13) and (22)]:

X(T, d) = xT
(d+ θ)η =

µ+ (σ/ξ)
{

[− ln (p)]−ξ − 1
}

(d+ θ)η , (3.6)

where the GEV quantile xT is expressed in terms of the GEV-type I and -type II cdf2 for the

reference duration chosen, for simplicity, as equal to 1h. In this case, the GEV parameters, θ and

η can be estimated at the same time by fitting Eq.(3.6) to the empirical quantiles of X at duration

d [Koutsoyiannis et al. 1998]. This estimation, however, does not consider the statistical properties

of the GEV parameters and does not insure the optimal properties of ML and PMW estimators.

Note that Eq.(3.4) and (3.6) assume that IDF curves are separable, in the sense that the duration

and the return period affect the intensity in an independent multiplicative way. However, some

authors [e.g., Bendjoudi et al. 1997; Veneziano and Furcolo 2002] noted that this is not a suitable

property for IDFs because precipitation intensity is more sensitive to T for small d than that for

longer durations. A different formulation of the IDF curves which allows to account for this property

will be thus presented in Ch. 4.

3.3 Areal Reduction Factors (ARFs) and

Intensity-Duration-Area-Frequency (IDAF) curves

Areal rainfall models describe the distribution of precipitation aggregated over a selected area.

Generally, this is accomplished by explicitly modeling the spatial correlation structure of the pre-
2The Gumbel expression of the IDF can be obtained by simply considering ξ → 0 in Eq.(3.6).
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cipitation field. Many models have been constructed to describe areal measures of precipitation in

space and time [Coles and Tawn 1996]. Various authors also showed how the EVT paradigm can be

applied to areal measures [e.g., Coles and Tawn 1996; Allen and DeGaetano 2005; Overeem et al.

2009].

However, modeling the transition between point precipitation intensities and the aggregated mea-

sures over a surface is not straightforward. This is a critical issue, since gauge stations are still

considered the most reliable source of observations in precipitation analysis [Ceresetti 2011; Tapi-

ador et al. 2017]. The computation of Areal Reduction Factors (ARFs) is the standard tool used to

this end [Svensson and Jones 2010 and references therein].

ARFs are generally defined as the ratio between the areal (maxima) intensity corresponding to a

specified return period T and a specific duration d, and the point (maxima) intensity corresponding

to the same T and d, i.e.:

ARF (T,A, d) = X(T,A, d)
X(T, d) , (3.7)

where X(T,A, d) represent the Intensity-Duration-Area-Frequency (IDAF) curve, which defines the

intensity of AM rainfall for a given area, duration, and return period. Note thatX(T, d) = X(T, 0, d)

and that we usually consider the area A as centered to the location where the IDF is defined (e.g.,

gauge station). For alternative definitions and a detailed discussion on ARFs, see Svensson and Jones

(2010).

In practice IDAF are typically estimated empirically, by averaging the numerator of Eq.(3.7) over

various areas A covering the target domain. These areas are selected through a sliding spatial

moving-window (fixed-area ARFs) or by defining concentric windows around given precipitation

events (storm-centered ARFs) [Musy and Laglaine 2005]. However, storm-centered ARFs do not

have a clear return period interpretation [Veneziano and Langousis 2005] and some concerns have

been expressed about their construction, which may involve the use of areal- and point- maxima

generated by different weather systems [Omolayo 1993; Ceresetti 2011].

First attempts to analytically derivate of ARFs and IDAF curves accounting for extreme precipi-

tation properties have been made by Lebel and Laborde (1988) and Sivapalan and Blöschl (1998),
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while precedent studies were based on inconsistent assumptions regarding the spatial correlation

structure of the extremes [e.g., Rodriguez-Iturbe and Mejía 1974]. Examples of the ARFs estimated

for Austria [Sivapalan and Blöschl 1998] and United Kingdom [NERC 1975] are shown in Fig. 3.4

and 3.5.

d

Figure 3.4: ARFs for the rainfall intensity in Austria, as a function of the catchment area considered
A/λ2 and return period T . λ represents the spatial correlation length involved in the definition of the
exponential isotropic correlogram for X. Adapted from Sivapalan and Blöschl (1998)

From Fig. 3.4, it is evident that the ARF is a decreasing function of both the area A and re-

turn period T . Nonetheless, for long T the ARF dependence on return period is less obvious

[Veneziano and Langousis 2005]. For A → 0 ARF tends to 1, the areal precipitation approaching

the gauge-point value.

First analytical approaches, such as the one used by Sivapalan and Blöschl (1998), did not explicitly

model the ARF dependence on precipitation duration, while the ARF is expected to increase with

increasing d [Veneziano and Langousis 2005; Mineo et al. 2018], as shown by Fig. 3.5. In fact,

the spatial correlation structure of precipitation largely depends on the duration because higher

intensity events are generally associated with meteorological systems having small spatial extent

and "shorter lifetime".
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Figure 3.5: ARFs for the United Kingdom derived from the tabulated values in the Flood studies report
[NERC 1975]. Figure presented in Svensson and Jones (2010).

An explicit formulation of the IDAF curves within the framework of the EVT has been proposed

by Overeem et al. (2010) by using d and A as covariates for the GEV-parameters3:

X(T,A, d) =
µ(A, d) + σ(A, d)

{
[− ln (p)]−ξ(A,d) − 1

}
ξ(A, d) , (3.8)

where µ(A, d), σ(A, d), and ξ(A, d) are linear combinations of the duration and the area of the

measured AM.

3More precisely, Overeem et al. (2010) studied and modeled Depth-Duration-Area-Frequency (DDAF) curves which
actually consider the rainfall depth as a function of duration and area. However, the same results are easily extended
to IDAF.
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Chapter 4

Scaling models for extreme

precipitation

This chapter describes how scaling models can be used to provide a fine characterization of precip-

itation variability across various spatio-temporal scales. First, Simple Scaling (SS) laws are defined

for modeling the statistical structure of extreme precipitation at different time scales (durations).

The construction of IDF curves in this scale-invariant context is presented. Then, SS models are

extended to consider the Spatio-Temporal Scaling (STS) of precipitation for the construction of

IDAF curves. Finally, Multiscaling (MS) laws are briefly introduced.

4.1 Scale invariance and self-similarity of precipitation

In mathematics, scale invariance refers to the invariant shape of a function f(x) under rescaling the

variable x by a multiplicative factor λ:

f(λx) = λHf(x) (4.1)

for some choice of exponent H ∈ R. In geometry, scale invariance is related to the concept of self-

similarity1, which indicates that one or some features of an object do not change if its dimension
1More precisely, self-similarity usually indicates the combination of scale invariance with statistical isotropy [Tessier

et al. 1993]. In the literature, it is however common to find different terminologies to describe the concept of scale
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or the observational scale are changed [Dubrulle et al. 1997]. As a consequence, no reference scale

characterizes the object, and no preferred observational point of view better outlines object features.

Such objects are currently referred as fractals and they are typically the result of highly non-linear

processes involved in chaotic systems [Mandelbrot 1977].

First arguments about scale invariance of precipitation mainly originated from the observation of

characteristic patterns in the spatial organization of mesoscale weather systems [e.g., Austin and Houze

1972; Houze 1981]. These patterns define a hierarchical structure of precipitation in which low-

intensity synoptic-scale systems contain higher-intensity mesoscale areas which are formed, in turn,

by small-scale clusters of higher-intensity convective cells.

Lovejoy (1982) and Lovejoy and Schertzer (1985) were among the first to link precipitation scale-

invariance to other self-similar processes occurring in the atmosphere [e.g., hydrodynamic turbu-

lence, Kolmogorov 1941]. They also related the self-similar properties of precipitation to the highly

erratic nature of the climate. Then, various studies provide empirical evidences of this property

[e.g., Gupta and Waymire 1990; Burlando and Rosso 1996; Menabde et al. 1999; Yu et al. 2004;

Bara et al. 2009; Ceresetti et al. 2010; Veneziano and Yoon 2013; Panthou et al. 2014].

Self-similarity implies that the statistical characteristics (e.g., moments) of precipitation intensity

(or depth) observed at several scales are related to each other by a power law similar to the one

defined in Eq. (4.1). The corresponding mathematical models are known as scaling models.

Two types of scaling models are usually considered: Simple Scaling (SS) and Multiscaling (MS)

models. In SS models, a constant multiplicative factor is used to describe the relationships among

the precipitation distributions at different spatial or temporal scales. In MS models, conversely,

several parameters are used to describe the scale change in terms of moments or quantiles of the

precipitation distribution.

invariance [Dubrulle et al. 1997], and also some ambiguous uses of the same notion to refer to different types of
self-similarity [Gupta and Waymire 1990]. For excellent definitions and discussions of these concepts see Dubrulle
et al. (1997) and Mandelbrot (1977).
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4.2 Simple Scaling (SS) models

When equality in Eq.(4.1) holds for the statistical properties of a random variable X, it defines

a statistical scaling model. Denoting by X` and XL the variable (e.g., the precipitation intensity)

considered at two different scales ` and L = λ` (e.g., two different durations), the scaling model

implies that [Gupta and Waymire 1990; Menabde et al. 1999]:

XL
dist= λHX`, (4.2)

where H ∈ R is called scaling exponent. Expression Eq. (1.2) means that the same probabil-

ity distribution applies for the precipitation intensity at scales l and L, up to a magnification or

contraction equal to λH = (L/`)H , i.e.:

FXL(x) = P (XL ≤ x) = P (λHX` ≤ x) = P (X` ≤ λ−Hx) = FX`(λ
−Hx). (4.3)

Eq. (1.2) defines the so-called Simple Scaling (SS) model. It implies that the X distribution shape

remains unchanged when the variable is rescaled.

An interesting consequence of the SS assumption is that, if XL and X` have finite moments of order

q, their moments respect the following relationship [Gupta and Waymire 1990]:

E[Xq
L] = λHqE[Xq

` ]. (4.4)

This last relationship is usually referred to as wide sense simple scaling property, because it is less

general than Eq. (1.2) [i.e. the strict sense scaling valid for the whole distribution; Gupta andWaymire

1990].

4.2.1 Moment Scaling Analysis (MSA)

Based on the definition of wide sense SS, scale invariance results in a simple translation of the

log-moments between scales:

lnE[Xq
L] = Hq lnλ+ lnE[Xq

` ]. (4.5)
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By checking the log-log linearity of the X moments versus the λ, the SS model can be thus validated

and estimated [Gupta and Waymire 1990]. This moment-based estimation of the scaling law consists

in

i) estimating the slopes of the log-log relationships between the empirical q-moments ofX`1 , X`2 , ...,

and X`L and the corresponding scales `1 < `2 < .. < `L; and

ii) verifying that the estimated slopes vary linearly with the order of moment q.

If the scaling exponent H estimated for the first moment equals the exponents (slopes) for the other

moments, the precipitation intensity X is considered to be scale invariant under SS in the range of

durations `1 to `L.

b)
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q	-	Moment	order
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d1 d2 ... dD
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q =	1

q =	2

q =	4
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...

ln(l)
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Hq

Figure 4.1: MSA: (a) the linear relationships between moments E[Xq
` ] and scale ` is estimated in a

double-logarithmic plane for various q; (b) the linearity of the slopes as a function of q is checked.
Adapted from Innocenti et al. (2017).

More refined methods have also been proposed for detecting and estimating scale invariance, such

as dimensional analysis [Lovejoy and Schertzer 1985; Tessier et al. 1993; Dubrulle et al. 1997],

spectral analysis and wavelet estimation [Olsson et al. 1999; Ceresetti 2011], and empirical pdf

power law detection [Hubert and Bendjoudi 1996; Ceresetti et al. 2010]. However, the MSA is by

far the simplest and most intuitive tool to check the scaling hypothesis and has been widely applied

[Menabde et al. 1999; Burlando and Rosso 1996; Borga et al. 2005; Nhat et al. 2007; Panthou et al.

2014].
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4.2.2 SS in time

The SS framework has been used to model the relationships between the precipitation intensity

distributions at several durations d1 < d2 < ... < dD, ranging from a few minutes up to several

days. The values for the scaling exponents H depend on the climatological and geographical char-

acteristics of the study region and typically range between -0.8 and -0.5 for precipitation intensity

[e.g., Menabde et al. 1999; Ceresetti 2011; Panthou et al. 2014; Casas-Castillo et al. 2018; Sane

et al. 2018]. Note, however that the parametrization H ′ = −H has also been used in the literature

and has been considered for Paper 1. Also it could be easily shown that the following relationship

links the SS exponents for precipitation depth and intensity: Hdepth = Hintensity + 1.

An interesting result emerging from some of these studies concerns the difference between H values

estimated for different duration ranges. In particular, some authors noticed a sharp difference be-

tween the scaling regime of short-duration intensity (e.g., for durations shorter than a few hours)

and the scaling regime for longer duration intervals [e.g., Borga et al. 2005; Ceresetti 2011]. This

finding has been interpreted as a manifestation of the transition from weather dynamics dominated

by synoptic systems to a highly variable convective regime [Ceresetti et al. 2010]. This hypothesis

has also been supported by two main results. First, the transition between the two scaling regimes

occurs at different breakpoint-durations depending on the geographical region and on its climatol-

ogy. Second, the H value seems to depend on the topographic characteristics of the geographical

region considered [Borga et al. 2005; Ceresetti et al. 2010].

For short-durations ranges (e.g., less than one hour) some authors also reported that the scaling

exponent is generally homogeneous in space, which suggests that local convective precipitation has

similar properties independently of the region considered [e.g., Alila 2000; Borga et al. 2005 and

references therein]. Opposite results have been observed for the scaling regimes characterizing long

duration precipitation [e.g., Borga et al. 2005].

4.2.3 SS-GEV model and SS-IDF curves

For the GEV distribution it is straightforward to verify that, if X dist= GEV (µ, σ, ξ) then

λX
dist= GEV (λµ, λσ, ξ) for any λ ∈ R. This means that the GEV family, respects scale invariance

for any constant multiplicative transformation of X.
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Many authors proposed IDF and IDAF models for extreme precipitation series based on this scale

invariant formulation of the GEV distribution [e.g., Bara et al. 2009; Panthou et al. 2014; Blanchet

et al. 2016]. Under SS, in fact, GEV distribution parameters can be expressed as:

µd = dHµ∗, σd = dHσ∗, and ξd = ξ∗, (4.6)

where µ∗, σ∗, and ξ∗ represent the parameters of the reference Xd∗ chosen, for simplicity, such that

d∗ = 1h. Hence, the GEV return level formula [Eq. (3.3)] can also be rewritten as [Mélèse et al.

2018]:

X(T, d) = dHµ∗ + dHσ∗
ξ

{
[− ln (p)]−ξ∗ − 1

}
=
µ∗ + (σ∗/ξ∗)

{
[− ln (p)]−ξ∗ − 1

}
d−H

(4.7)

Note the similarity of this expression with the one proposed by Koutsoyiannis et al. (1998) [Eq.(3.6)].

However, Eq.(4.7) state that η = −H and θ = 0 on scaling arguments and naturally suggests the

use of an estimation of H, µ∗, σ∗, and ξ∗ more consistent with the statistical behavior of X. In fact,

a Least Square estimation of the four parameters which make use of empirical cdf estimates (e.g.,

Gringorten or Cunanne plotting positions) is used by Koutsoyiannis et al. (1998). Conversely, the

scaling formulation provides for the use of more suitable estimators for H (e.g., MSA) and for the

GEV parameters [e.g., the ML method, Blanchet et al. 2016, or PWM2]

Accordingly, all available AMS for the range of durations d1 < d2 < ... < dD that satisfies the

SS hypothesis can be merged in one sample. Then, the GEV parameters corresponding to the

reference d∗ = 1 can be estimated on the pooled sample of series, reducing the uncertainty for the

shape parameter.

4.3 Scale invariance in space and time: dynamic scaling

Spatial scaling has mainly been studied using the dynamical scaling approach proposed by Love-

joy and Schertzer (1985) and Venugopal et al. (1999). Within a dynamic scaling approach the

scale-invariance hypothesis is formulated in both space and time using a relationship of the follow-
2Some authors also use alternative equivalent expressions of the scaling Gumbel or GEV IDF. For instance, Ceresetti

(2011) and Borga et al. (2005), used the common formulation of the return level based on frequency factors, as
introduced by Chow (1951), that better outline how the PWM can be used for estimating SS-GEV parameters.
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ing type [Venugopal et al. 1999; De Michele et al. 2001]:

a

A
= f

(
D

d

)
, (4.8)

where (D,d) and (a,A) respectively represent two couples of temporal and spatial scales. By a

simple mathematical argument, Venugopal et al. (1999) demonstrated that the only transformation

f(.) which allows Eq.(4.8) is a power law, i.e.:

f

(
D

d

)
=
(
D

d

)z
= λz (4.9)

Hence the spatial variability of precipitation intensity over a particular time interval can be simply

expressed in terms of its temporal variability over a particular area [Venugopal et al. 1999; Ceresetti

2011]. Introducing then a SS hypothesis we have:

XD,A
dist= λHXd,λza , (4.10)

which states that the dependence of precipitation on spatial and temporal scales can be reduced to

a one-dimensional problem involving only the temporal scale ratio λ and the scaling exponent H of

point precipitation in time (time scaling). In Eq. (4.10), the spatial scaling is assessed through the

dynamical scaling exponent z which links space and time scales [Eq. (4.8)-(4.9)]: (a/A) = λz.

Several studies applied Eq.(4.10) to precipitation series over time scales ranging from a few minutes

to several hours [e.g., from 20min to 6h in the application of De Michele et al. 2002, and up to 24h

in Panthou et al. 2014; station series and interpolation on a regular grid were used in these cases]

and from 1 to some hundreds of Km2. However, the number of applications presented in literature

remains low and scaling exponents are considered difficult to estimate [Castro et al. 2004].

4.3.1 Scaling models for ARFs and IDAF curves

Within the dynamical scaling framework the same scaling exponent can be used to link the statistical

distribution of precipitation at different temporal scales (scaling in time) and to extend the estimated

scaling IDF to IDAF curves [Panthou et al. 2014]. Based on dimensional considerations, De Michele
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et al. (2001) demonstrated that the ARF of dynamical scaling AMS can be expressed as:

ARF (A, d) =
[
1 + ω

(
Aα

dβ

)]H
β

, (4.11)

where α > 0 and β > 0 are two constants linked to the dynamical scaling exponent through

α×β = z. α, β express the variation of the ARFs with d and A, while ω is a normalization factor.

By means of this ARF expression an IDAF relationship for the annual maxima series XA,d modeled

with a GEV distribution is given by:

X(T,A, d) =
µ(A, d) + σ(A, d)

{
[− ln (p)]−ξ(A,d) − 1

}
ξ(A, d) , (4.12)

where [Panthou et al. 2014],

µ(A, d) = ARF (A, d) λHµ∗, σ(A, d) = ARF (A, d) λHσ∗, and ξ(A, d) = ξ∗ (4.13)

Note the similarity of the IDAF in Eq.(4.12) and the formulation presented by Overeem et al.

(2010) [Eq.(3.8)]. However, while Overeem et al. (2010) suggested polynomial approximations of

GEV parameters on A and d based on empirical estimates, Eq.(4.12) is based on the dynamical

scaling hypothesis and statistical scale invariance.

As a concluding remark, it has to be mentioned that the absence of the T index for the ARF in

Eq.(4.11)-(4.12) means that this quantity is independent of the return period, while this dependence

is introduced in the IDAF only through the use of the GEV quantile. As previously noted, some

theoretical considerations [e.g., Veneziano and Langousis 2005] and empirical evidence [e.g., Bac-

chi and Ranzi 1996; De Michele et al. 2001] suggest that ARFs should decrease with increasing T .

A possibility to solve this theoretical inconsistency is offered by the multiscaling framework briefly

introduced in next section.
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4.4 Multiscaling

While SS processes result from many additive random components of variability [Tessier et al.

1993; Dubrulle et al. 1997], the large fluctuations of the climate system governing precipitation are

likely to produce a "cascade of random multiplicative effects" [Gupta and Waymire 1990]. These

multiplicative processes can also be described by a power law connecting the statistical distributions

of X among different scales. However, a single multiplicative factor, such as λH in SS, is no longer

adequate to model this relationship. Accordingly, many authors argued that distribution moments

and quantiles of different orders may need a different (i.e. order-specific) scaling exponent [e.g.,

Gupta and Waymire 1990; Burlando and Rosso 1996; Ceresetti 2011].

A broader definition of scale invariance of precipitation has thus been given, by considering the

following wide sense Multiscaling (MS) model [Gupta and Waymire 1990]:

E[Xq
L] = λK(q)E[Xq

` ], (4.14)

where the moment scaling function K(q) is a non-linear function of the moment order q [Fig. 4.2].

This means that moments of different orders scale differently between the ` and the L scale.
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Figure 4.2: Scaling moment function in a MS model.

A change of scale therefore implies a modification of the shape of the X distribution and not only its

magnification or contraction. In order to appreciate this difference Fig. 4.3 graphically represents

pdf scale change under SS and MS.
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Figure 4.3: Probability distribution scaling: a) SS and b) MS. Adapted from Ceresetti (2011).

Some authors [e.g., Gupta and Waymire 1990; Burlando and Rosso 1996] derived the explicit ex-

pression of k(q) for some particular distribution functions and stochastic processes, based on the

mathematical properties of k(q) [Gupta and Waymire 1990]. Formulations of IDF and IDAF curves

in a MS context have also been developed, among others, by Veneziano and Furcolo (2002), De

Michele et al. (2001), and Veneziano et al. (2007) and (2013).

However, some limitations to the use of the MS models in extreme precipitation analysis still exist.

In particular, due to the difficulty to deal with EVT distributions in an MS framework3 and because

of the larger number of parameters that MS involves, the estimation of IDF and IDAF curve has

been often limited to SS models. Moreover, while MS has been demonstrated to be more appropriate

for modeling scale invariance of the overall precipitation distribution (i.e., not only the extremes),

abundant studies confirmed the validity of SS for precipitation distribution tails [Ceresetti et al.

2010; Panthou et al. 2014; Sane et al. 2018].

3For instance, the GEV naturally respects the mono-fractal SS property, as it has been showed in Sec. 4.2.3.
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Thesis overview

The previous chapters showed the importance of a multi-scale analysis of extreme precipitation. No

single statistical modeling technique seems to comprehensively embody all the crucial aspects of the

precipitation distribution and spatio-temporal structure. However, several issues can be addressed

and modeled at the same time using scaling models.

5.1 Research questions

Taking advantage of the physical basis of the scale invariance property of precipitation, and inte-

grating the central elements of the EVT, scaling models allow an efficient description of the extreme

precipitation variability across scales. Data from different scales can be pooled under the hypothesis

of scale invariance, reducing sampling errors and uncertainties in the inference of extreme precipi-

tation distribution.

Moreover, the scaling framework allows for a statistically consistent and parsimonious definition

of IDF and IDAF curves, while in engineering practice their estimation is mainly empirical and

may involve some arbitrary assumptions. Even more interesting, within the range of spatial and/or

temporal scales for which the scale-invariance holds, the statistical characteristics of extreme pre-

cipitation may also be approximated for scales with no available record. For instance, assuming

that the SS is valid for sub-daily to daily precipitation, sub-daily extreme characteristics can be in

principle inferred from longer-duration series (e.g., daily precipitation data) which are more widely
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available than short-duration records. The approach could thus provide a more comprehensive rep-

resentation of precipitation extremes for spatio-temporal scales which are more difficult to sample

and over regions that are sparsely covered by meteorological network.

However, the use of scaling models has been mainly restricted to specific regions and small observa-

tional datasets. An extensive analysis of the effects of local climate and geographic characteristics

on the estimated scaling relationships, as well as the evaluation of their validity across a wide range

of spatio-temporal scales, is thus needed.

Moreover, the number of applications of spatio-temporal scaling models remains small, as available

observations (e.g. station records) limits the investigation of extreme precipitation across vari-

ous spatial scales. In the literature, STS investigations were often based on interpolated gridded

datasets obtained from station series [e.g., De Michele et al. 2002; Ceresetti et al. 2010; Panthou

et al. 2014]. This entailed the use of correction, interpolation, and averaging techniques in order

to construct gridded precipitation series that may ultimately impair the spatio-temporal structure

of extreme precipitation. The impacts of such preliminary processing, as well as some other basic

characteristics of precipitation datasets (e.g., their spatial or temporal resolution), on estimated

scale invariance properties might be substantial but, to our knowledge, no exhaustive study has

focused on the subject.

Finally, as stressed in Ch. 2, many authors highlighted that important modifications of the spatio-

temporal structure of extreme precipitation are expected under CC, with direct implications regard-

ing IDFs and ARFs [e.g., Li et al. 2015; Cannon and Innocenti 2018]. Scaling models can be thus

considered for providing a comprehensive assessment of projected extreme precipitation changes

across scales. However, only a few studies exploited the scale invariance framework to efficiently

evaluate these changes [e.g., Casas-Castillo et al. 2018] and, to our knowledge, they were mainly

restricted to temporal SS applications.

5.2 Project objectives

The overall objective of the thesis was to conduct a comprehensive analysis of the spatio-temporal

structure of extreme precipitation based on scaling models in historical and future climate.
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Temporal SS models were first defined and the scale-invariance properties of heavy precipitation with

respect to duration were assessed using a large dataset of meteorological station series. This aimed

at evaluating the possibility of drawing information on both observed and non-observed temporal

scales through the SS framework. To this end, the following specific objectives were considered:

1.1 Find the specific formulations of SS suitable for different duration intervals and determine the

SS IDF expressions that adequately represent the statistical distributions of at-site precipita-

tion intensity for each station of the study domain (see Sec. 5.3).

1.2 Evaluate biases arising from temporal SS approximations for extreme precipitation quantiles.

The variability of temporal scaling estimates across various spatial scales was also investigated

for observational gridded datasets (e.g., satellite data).

1.3 Assess the spatial distribution of scaling parameters over a large spatial domain and examine

if the geo-climatic characteristics of the study region have an impact on the scale-invariance

properties of extreme precipitation.

1.4 Evaluate the influence on temporal SS estimators of dataset characteristics, such as their

spatio-temporal or measurement resolutions. The range of validity, the magnitude, and the

spatial variability of the estimated scaling laws were also compared among datasets, in order

to assess the impacts of data processing techniques (e.g., series interpolation).

The second objective was to evaluate CC impacts on precipitation extremes based on scaling models

evolution in next decades.

The validity of the scale-invariance property for simulated series covering past periods was verified in

order to evaluate the ability of climate models to reproduce the spatio-temporal structure of extreme

precipitation and their probability distributions. Hence, the specific objectives of the second part

of the project were:

2.1 Evaluate the effectiveness of RCMs in reproducing the scale-invariance relationships previously

identified on observational datasets. The differences between the simulated and observed

datasets were analyzed in terms of the estimated SS parameter values.
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2.3 To identify specific biases and uncertainties for simulated extreme characteristics, the annual

and daily cycles of extreme precipitation occurrences were also compared between simulated

and observational datasets.

2.3 Analyze the temporal evolution of scaling laws in future climate using projected precipitation

series. The impacts of the climate variability and CC on precipitation scaling properties

were studied through the analysis of precipitation projections for various periods of different

lengths. Using samples of various sizes allowed to assess the uncertainty of the estimations at

local spatial scales.

5.3 Data and Study region

Five datasets with different characteristics were considered in the project:

• series from ≈3000 meteorological stations covering the continental US and Canada;

• a 50-member ensemble and two ERA-Interim driven simulations from the Canadian RCM

generation 5 (CRCM5) [Leduc et al. 2019];

• one high-resolution CPM simulation from the Weather Research and Forecasting (WRF)

model [Liu et al. 2017; Prein et al. 2017a];

• the CMORPH bias-corrected satellite dataset [Xie and Xiong 2011]; and

• the Multi-Source Weighted-Ensemble Precipitation (MSWEP) v2 dataset [Beck et al. 2017a].

Meteorological stations were used to assess SS properties of point-scale precipitation AM over most

of North America [Fig. 5.1a] for durations between 15 min and 7 days. Then, both stations and

gridded datasets were considered to evaluate the variability of SS estimates across various spatial

scales over the northeastern part of North America [CRCM5 North-American domain; Fig. 5.1-5.2].

Finally, CRCM5 simulations for future decades were considered to evaluate the temporal evolution

of scaling model estimates.

The main characteristics of the available datasets and series used in the three steps of the analysis

are summarized in Tables 5.1 and 5.2.
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5.3.1 Meteorological station series

Four gage-station datasets were considered for the extraction of point-scale AMS: the Hourly Pre-

cipitation Data (HPD) and 15-Min Precipitation Data (15PD) datasets made available by the

National Oceanic and Atmospheric Administration (NOAA) agency1 for the United States, and

the Daily Maxima (DM) and Hourly (H) series provided by Environment and Climate Change

Canada (ECCC) and the Ministère du Développement Durable, de l’Environnement, de la Lutte

contre les Changements Climatiques du Québec (MDDELCC) for Canada. For consistency of nota-

tion, datasets for Canada are referred to as Daily Maxima Precipitation Data (DMPD) and Hourly

Canadian Precipitation Data (HCPD).
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° N
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70° W

40°N

60°

N

DMPD and HCPD

15PD and HPD
One series only **

** Either DMPD or HCPD (Canada) or 15PD or HPD (US)

a)

CRCM5
domain

Figure 5.1: Stations and temporal resolution of recorded series selected for the analysis of: a) temporal
SS properties of point-scale AMS; b) temporal SS comparison between station and gridded dataset
AMS.

DMPD, Canada: DMPD series were available from 370 stations generally equipped with tipping

bucket gauges and recording daily maxima depth for durations of 5, 10, 15, and 30 minutes and

1, 2, 6, and 12 hours. Each day is defined as the fixed 24-hour window starting at 8:00 AM.
1Data and documentation are available at http://gis.ncdc.noaa.gov/geoportal/catalog/search/resource/

details.jsp?id=gov.noaa.ncdc%3AC00313 and http://gis.ncdc.noaa.gov/geoportal/catalog/search/
resource/details.jsp?id=gov.noaa.ncdc%3AC00505, respectively for HPD and 15PD.
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The period covered by DMPD series goes from 1937 to 2010, but many records are shorter

than 15 years. Moreover, for most stations, the annual recording period does not cover winter

months, and available series generally include precipitation measured from May to October.

HCPD, Canada: A total of 655 hourly precipitation series were available from 1953 to 2012.

HCPD stations record precipitation with weight-type or tipping bucket gauges [Mailhot and Tal-

bot 2011; CSA 2012] and are often located next to DMPD stations. Similarly to DMPD series,

winter month precipitation is generally not recorded.

HPD and 15PD, US: Hourly and 15-min precipitation accumulations are measured by two differ-

ent gauges (tipping bucket and weighing gauge) located at National Weather Service, Federal

Aviation Administration, and cooperative observer stations in the United States. The total

number of stations included in the datasets is 5500 [NCDC 2003], but a far smaller number

was available for the present study. The recording period ranges approximately from 1948 to

2011, while the record length varies considerably by state and region. The earliest records

date back to 1900 for a few stations and 1970s for the most recent stations [NCDC 2003],

especially for 15-min series.

5.3.1.1 Station selection and quality control

The selection of stations aimed at providing the most comprehensive coverage of the study region

with the longest series. This procedure takes into consideration missing data2 through the following

criteria:

• at least 85% of the observations must be valid for each year, otherwise, the year is considered

as missing;

• each station must have at least 15 valid years.

These criteria ensure not to reject too many years/stations while maintaining a minimal number of

observations for computing the annual maximum of each year.
2Lists of identified and possible errors in available recorded series are provided in Metcalfe et al. (1997), Mail-

hot and Talbot (2011), Mekis and Vincent (2011), and CSA (2012) for Canada station measurements, and in NCDC
(2003) for US series.
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Because the recording period for the DMPD and HPD datasets does not generally include winter

months, point-scale SS assessment (see Article 1) considered series covering:

• the period from June to September for the stations located north of the 49th Parallel (122

days/year are used);

• the period from May to October for stations located south of the 49th Parallel (184 days/year

are used);

Selected stations were mainly located in the United States and southern and most densely populated

parts of Canada, as shown by Fig. 5.1a. For the comparison between stations and gridded datasets

[see Table 5.2 and Article 2], only stations with valid records over the entire year (i.e., also during

winter months) were considered, resulting in fewer series concentrated in the southern part of the

CRCM5 domain [Fig. 5.1b].

Table 5.1: List of available meteorological station series selected for point-scale SS analysis.

Dataset Region
N. of Period∗ Temporal

stations resolution

Daily Max. Prec. Data (DMPD) Canada 230 1964-2007 1, 2, 6, 12 h

Hourly Can. Prec. Data (HCPD) Canada 379 1967-2003 1 h

Hourly Prec. Data (HPD) USA 2278 1948-2013 1 h

15-Min Prec. Data (15PD) USA 1083 1971-2013 15 min

∗ Main operational network period corresponding to the 0.25th percentile of starting recording years
and the 0.75th percentile of ending recording years of available stations.

5.3.2 CRCM5 series

As a part of the Climate change and hydrological Extremes (ClimEx) project 3, a large ensemble

of 50 simulations has been produced using the 5th generation Canadian RCM [CRCM5 v3.3.3.1;

Martynov et al. 2013; Separovic et al. 2013] for two spatial domains: one covering the northeastern

part of North America [Fig. 5.2] and one covering most of Europe [Fig. 2 in Leduc et al. 2019].
3www.climex-project.org
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This 50-member CRCM5 Large Ensemble (CRCM5-LE) was simulated for the 1950-2100 period by

dynamically downscaling the previously existing CanESM2 [Salzen et al. 2013; Arora et al. 2011]

Large Ensemble (CanESM2-LE) [Sigmond and Fyfe 2016; Fyfe et al. 2017] to a 0.11◦ resolution grid

(≈12km) [Leduc et al. 2019]. The 50 independent CanESM2-LE runs were generated by applying

random perturbations in initial simulation conditions [Fyfe et al. 2017] and considering observed

emissions up to year 2005 and the RCP8.5 thereafter [Sigmond and Fyfe 2016; Meinshausen et al.

2011].

WRF

CRCM5

CMOR
PH

MSWEP

40°	N

60°	N

80°	W

60°	W

Figure 5.2: Spatial domains of gridded datasets: CRCM5 domain with topography and relevant
boundaries of the WRF and CMORPH domains; MSWEP grid covers the entire CRCM5 domain.

After the removal of a 50-grid point buffer, simulated CRCM5-LE hourly precipitation series were

available over the 1954-2099 period for 280× 280 grid points [domain in Fig.5.2].

For the same domain, two additional CRCM5 simulations driven by the European Centre for

Medium Range Weather Forecast (ECMRWF) ERA-Interim reanalysis [Dee et al. 2011] were pro-

duced at the same spatial resolution for the 1979-2013 period [Leduc et al. 2019]. For one of these
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two simulations, hereby referred to as ERA-CRCM5-SN, large-scale spectral nudging was applied

[Riette and Caya 2002; Separovic et al. 2012], as opposed to the other reanalysis-driven simulation,

hereafter referred to as ERA-CRCM5. Since ERA-CRCM5-SN and ERA-CRCM5 presented almost

indistinguishable estimates [see, for instance Fig. S1-S5 in the Supplementary Material of Article

2], only ERA-CRCM5 results are presented.

The ClimEx set-up for the simulation of the CRCM5-LE and ERA-Interim driven simulations

is exhaustively described in Leduc et al. (2019), while CRCM5 dynamics and sub-grid model

parametrization are described in Martynov et al. (2013) and Separovic et al. (2013).

5.3.3 WRF simulation

The WRF model, designed by the National Center for Atmospheric Research (NCAR) [Skamarock

et al. 2008], has been frequently used to produce high-resolution simulations over short time periods

and relatively limited domains in North America [e.g., Mahoney et al. 2012 and 2013; Liu et al.

2011; Rasmussen et al. 2011; and 2014].

Longer WRF simulations were recently run on larger domains to construct synthetic regional clima-

tologies of severe storms and orographic precipitation [Liu et al. 2017; Hoogewind et al. 2017]. In

particular, Liu et al. (2017) configured WRF into a RCM covering much of North America [see also

Prein et al. 2017a]. A 13-year WRF v3.4.1 simulation was performed by dynamically downscaling

the ERA-Interim reanalysis at the 4km resolution from October 2000 to September 2013 [Liu et al.

2017]. Details about WRF model and simulation set-up are provided in Prein et al. (2017a) and

Liu et al. (2017).

WRF precipitation series were extracted for land grid boxes included in the CRCM5 domain [Fig.

5.2] for the 2001-2013 period.

5.3.4 CMORPH series

The CMORPH v1.0 CRT bias corrected dataset constitutes a homogeneous integration of the Cli-

mate Prediction Center (CPC) morphing technique (CMORPH) series at nearly global scale (60◦N

and 60◦S) [Xie et al. 2017].
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Original satellite analyses4 consist in high resolution precipitation estimates at a 8km - 30min res-

olution obtained after the combination of observations from multiple low-orbit microwave satellites

(≈ 12km x 15km resolution) [Joyce et al. 2004; Xie and Xiong 2011]. Xie et al. (2017) applied a bias

correction to the purely satellite-based analyses. Bias correction coefficients were computed against

CPC daily gauge analysis [Xie et al. 2010] for land grid boxes. In particular, land grid box bias

correction considered the climatological distribution pdf matching between the CPC gauge analy-

sis and CMORPH analyses at the 0.25◦ resolution and daily scale plus an adjustment at coarser

spatio-temporal resolution to account for the year-to-year variability [Xie et al. 2017].

CMORPH v1.0 CRT (hereinafter CMORPH) precipitation series were extracted for the entire record

period (1998-2016) for all land grid boxes included in the CRCM5 domain [Fig. 5.2].

5.3.5 MSWEP series

The global Multi-Source Weighted-Ensemble Precipitation (MSWEP) v2 [Beck et al. 2017a and

2017b; http://www.gloh2o.org/] has been constructed through a multi-stage merging procedure

of various datasets: the CPC Unified v1.0 and real time [Xie et al. 2007; Chen et al. 2008] and the

GPCC Full Data Reanalysis and First Guess v7 [Schneider et al. 2014] gauge-based datasets, the

quasi-global CMORPH v1.0, GSMaP-MVK v5-v6 [Ushio et al. 2009], and the TMPA 3B42RT v7

[Huffman et al. 2007] satellite analyses, and the Era-Interim and JRA-55 [Kobayashi et al. 2015]

reanalyses. A detailed description and preliminary evaluation of MSWEP can be found in Beck

et al. (2017a) and [2017b].

MSWEP precipitation series were available at the 3h temporal resolution on a 0.1◦ grid covering

the entire CRCM5 domain for the 1979-2016 period.

Despite its relatively coarse temporal resolution, this dataset can provide valuable information

about precipitation extremes occurring in northern regions of the study domain where no sub-

daily precipitation records are available. For the same reason, however, MSWEP performances in

northern areas should be evaluated due the usually poor quality of satellite data in cold regions and

the sparse station network in the north of the domain.
4http://www.cpc.ncep.noaa.gov/products/janowiak/cmorph_description.html
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Table 5.2: Stations and gridded datasets used for extracting AM at various spatial scales.

Dataset Description Period Spatio-temporal
resolution

Reference

Meteorological
stations

HCPD and
DMPD series

1940 - 2013

1h and Daily
Maxima∗

ECCC
MDDELCC

15PD and
HPD series

15min
and 1h

NOAA

CRCM5-LE
[50 members]

CanESN2-LE
driven members 1954 - 2099

0.11◦ - 1h,
(≈12km)

Leduc et al.,
2019

ERA-CRCM5
ERA-Interim

driven simulation
1981 - 2013

WRF ERA-Interim
driven simulation

Oct. 2000 -
Sep. 2013

4km - 1h Liu et al. (2017)

CMORPH
[v1.0 CRT]

Bias-corrected
satellite analyses

1998 - 2016 8km - 30min Xie et al. (2017)

MSWEP [v2]
Multi-source

gridded dataset
1979 - 2016 0.1◦ - 3h,

(≈ 11km)
Beck et al. (2017a)

and [2017b]
∗ Daily maxima depth over a 24h window beginning at 08:00 (LT) for durations 1, 2, 6, and 12h

5.4 Annual Maxima (AM) extraction

Annual Maxima (AM) were used to characterize precipitation extremes at each spatial location,

namely a station or land grid box, for various durations d = d0, d1, . . . , dD, and various spatial

scales5, a = a0, a1, . . . , aA. For each dataset, a0 corresponds to its native grid resolution (a0 = 0 for

stations) and d0 to its native temporal resolution.

A mowing window was applied to depth precipitation series to estimate aggregated series at each

duration d, excepted that for DMPD station series. For gridded datasets, a fixed window in space

was also used to aggregate grid box series at various spatial scales a [see Table 5.3 for the lists

of spatial scales considered for each dataset]. In particular, grid box series at d0 were spatially

aggregated for each time step over coarser resolution grids, defined starting at the south-west cor-
5Note that the spatial scale is here identified with a for consistency with previous chapters, while the notation r

was used in Article 2 and 3 for consistency with datasets resolution notation (e.g., r0 for dataset native resolution).
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ner of native dataset grids and moving toward the opposite (north-east) corner. Native grid boxes

associated with water bodies were removed and grid boxes at spatial scales a > a0 were discarded if

including less than 75% native land grid boxes. This spatial aggregation procedure was defined to

most realistically mimic the possible changes in the spatial resolution of gridded datasets [Eggert

et al. 2015].

Finally, for each location, duration, and spatial scale, AM were extracted for each valid year. For

stations with both DMPD and HCPD series, or 15PD and HPD series, the maximum value of the

two available AM was retained as the annual AM.

Table 5.3: Spatial scales considered for each gridded dataset.

a0 No. of scales a

ERA-CRCM5

CRCM5-LE
≈12 km 6 12, 24, . . . , 72 km

WRF 4 km 12
4, 8, . . . , 24 km

and 32, 40, . . . , 72 km

CMORPH 8 km 9 8, 16, . . . , 72 km

MSWEP ≈11 km 6 11, 22, . . . , 66 km
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Art. 1. SS of point-scale extreme precipitation

Résumé

Les précipitations extrêmes sont caractérisées par une forte variabilité spatiale et temporelle. Il est
donc important de caractériser les distributions de l’intensité des précipitations à plusieurs échelles
spatiales et temporelles. Il s’agit d’un enjeu fondamental autant pour la prévision des risques liés
aux aléas naturels que pour la conception des infrastructures et la gestion des ressources. Dans
ces domaines, les courbes Intensité-Durée-Fréquence (IDF) sont des outils standards pour décrire
les relations entre les intensités, fréquences et la durée des pluies extrêmes. Les modèles des lois
d’échelle basés sur l’hypothèse d’invariance d’échelle (Simple Scaling, SS) peuvent aussi être utilisés
pour décrire les relations entre les distributions de probabilité des extrêmes de précipitations sur
plusieurs durées et représentent un outil puissant pour améliorer les estimations des courbes IDF.
Dans cette étude, les modèles SS ont été appliqués sur environ 2700 stations en Amérique du Nord.
Des séries des Maxima Annuels (MA) de précipitations extraites sur plusieurs intervalles de durée (de
15 minutes à 7 jours) ont été considérées. L’étendue de la validité, l’ordre de grandeur et la variabilité
spatiale des exposants qui définissent les lois d’échelle ont été examinés.
Les résultats enrichissent les connaissances concernant l’influence autant des caractéristiques géo-
graphiques locales (telles que la topographie) que celle des propriétés climatiques régionales sur les
lois d’échelle des précipitations extrêmes. Les distributions généralisées des valeurs extrêmes (GEV)
basées sur les modèles SS ont aussi été analysées. Les résultats montrent une amélioration des esti-
mations des paramètres de la GEV, particulièrement pour le paramètre de forme, lorsque les données
sont regroupées sous l’hypothèse d’invariance d’échelle.
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Abstract

Extreme precipitation is highly variable in space and time. It is therefore important to character-
ize precipitation intensity distributions at several temporal and spatial scales. This is a key issue
in infrastructure design and risk analysis, for which Intensity-Duration-Frequency (IDF) curves are
the standard tools used for describing the relationships among extreme rainfall intensities, their fre-
quencies, and their durations. Simple Scaling (SS) models, characterizing the relationships among
extreme probability distributions at several durations, represent a powerful means for improving IDF
estimates. This study tested SS models for approximately 2700 stations in North America. An-
nual Maxima Series (AMS) over various duration intervals from 15 min to 7 days were considered.
The range of validity, magnitude, and spatial variability of the estimated scaling exponents were
investigated. Results provide additional guidance for the influence of both local geographical char-
acteristics, such as topography, and regional climatic features on precipitation scaling. Generalized
Extreme Value (GEV) distributions based on SS models were also examined. Results demonstrate
an improvement of GEV parameter estimates, especially for the shape parameter, when data from
different durations were pooled under the SS hypothesis.

1.1 Introduction

Extreme precipitation is highly variable in space
and time as various physical processes are in-
volved in its generation. Characterizing this spa-
tial and temporal variability is crucial for infras-
tructure design and to evaluate and predict the
impacts of natural hazards on ecosystems and
communities. Available precipitation records are
however sparse and cover short time periods, mak-
ing a complete and adequate statistical character-
ization of extreme precipitation difficult. The res-
olution of available data, whether observed at me-
teorological stations or simulated by weather and
climate models, often mismatches the resolution
needed for applications [e.g., Blöschl and Siva-
palan 1995; Maraun et al. 2010; Willems et al.
2012], thus adding to the difficulty of achieving
complete and adequate statistical characteriza-
tions of extreme precipitation.
The need for multi-scale analysis of precipita-

tion has been widely recognized in the past
[Rodriguez-Iturbe et al. 1984; Blöschl and Siva-
palan 1995; Hartmann et al. 2013; Westra et al.
2014 among others] and much effort has been
put into the development of relationships among
extreme precipitation characteristics at different
scales. The conventional approach for characteriz-
ing scale transitions in time involves the construc-
tion of Intensity-Duration-Frequency (IDF) or
the equivalent Depth-Duration-Frequency (DDF)
curves [Bernard 1932; Burlando and Rosso 1996;
Sivapalan and Blöschl 1998; Koutsoyiannis et al.
1998; Asquith and Famiglietti 2000; Overeem et
al. 2008; Veneziano and Yoon 2013]. These curves
are a standard tool for hydraulic design and risk
analysis as they describe the relationships be-
tween the frequency of occurrence of extreme rain-
fall intensities (depth) Xd and various durations d
[e.g., CSA 2012]. Analysis is usually conducted by
separately estimating the statistical distributions
ofXd at the different durations [see Koutsoyiannis
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et al. 1998; Papalexiou et al. 2013 for discussions
about commonly used probability distributions].
The parameters or the quantiles of these theoreti-
cal distributions are then empirically compared to
describe the variations of extreme rainfall proper-
ties across temporal scales.
Despite its simplicity, this procedure presents sev-
eral drawbacks. In particular, it does not guar-
antee the statistical consistency of precipitation
distributions, independently estimated at the dif-
ferent durations, and it limits IDF extrapolation
at non-observed scales or ungauged sites. Uncer-
tainties of estimated quantiles are also presum-
ably larger because precipitation distribution and
IDF curve parameters are fitted separately.
Scaling models [Lovejoy and Mandelbrot 1985;
Gupta and Waymire 1990; Veneziano et al. 2007]
based on the concept of scale invariance [Dubrulle
et al. 1997], have been proposed to link rainfall
features at different temporal and spatial scales.
Scale invariance states that the statistical char-
acteristics (e.g., moments or quantiles) of precipi-
tation intensity observed at two different scales d
and λd can be related to each other by a power
law of the form:

f(Xλd) = λ−Hf(Xd) (1.1)

where f(.) is a function of X with invariant
shape when rescaling the variable X by a mul-
tiplicative factor λ and for some values of the
exponent H ∈ R. In the simplest case, a con-
stant multiplicative factor adequately describes
the scale change. The corresponding mathemat-
ical models are known as Simple Scaling (SS)
models [Gupta and Waymire 1990]. SS mod-
els are attractive because of the small number
of parameters involved, as opposed to Multiscal-
ing (MS) models which involve more than one

multiplicative factor in Eq. (1.1) [e.g, Love-
joy and Schertzer 1985; Gupta andWaymire 1990;
Burlando and Rosso 1996; Veneziano and Furcolo
2002; Veneziano and Langousis 2010; Langousis
et al. 2013]. A single scaling exponent H is used
to characterize the extreme rainfall distribution at
all scales over which the scale invariance property
holds. As a consequence, a consistent and effi-
cient estimation of extreme precipitation charac-
teristics is possible, even at non-sampled tempo-
ral scales, and a parsimonious formulation of IDF
curves based on analytical results is available [e.g.,
Menabde et al. 1999; Burlando and Rosso 1996;
De Michele et al. 2001; Ceresetti 2011].
Theoretical and physical evidence of the scaling
properties of precipitation intensity over a wide
range of durations has been provided by several
studies. MS has been demonstrated to be ap-
propriate for modeling the temporal scaling fea-
tures of the precipitation process (i.e., not only
the extreme distribution) and for the extremes in
event-based representations of rainfall (stochas-
tic rainfall modeling) [e.g, Veneziano and Fur-
colo 2002; Veneziano and Iacobellis 2002; Lan-
gousis et al. 2013 and references therein]. These
multifractal features of precipitation last within a
finite range of temporal scales (approximatively
between 1 hour and 1 week) and concern the
temporal dependence structure of the process.
They have been connected to the large fluctu-
ations of the atmospheric and climate system
governing precipitation which are likely to pro-
duce a "cascade of random multiplicative effects"
[Gupta and Waymire 1990].
At the same time, many studies confirmed the va-
lidity of SS for approximating the precipitation
distribution tails in IDF estimation [for exam-
ples of durations ranging from 5 min to 24 h see
Menabde et al. 1999; Veneziano and Furcolo 2002;
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Yu et al. 2004; Nhat et al. 2007; Bara et al. 2009;
Ceresetti et al. 2010; Panthou et al. 2014]. This
type of scaling is substantially different from the
temporal scaling since it only refers to the power
law shape of the marginal distribution of extreme
rainfall. Application of the SS models to precip-
itation records showed that the scaling exponent
estimates may depend on the considered range of
durations [e.g., Borga et al. 2005; Nhat et al. 2007]
and the climatological and geographical features
of the study regions [e.g., Menabde et al. 1999;
Bara et al. 2009; Borga et al. 2005; Ceresetti et
al. 2010; Blanchet et al. 2016]. However, the ap-
plication of the SS framework has been mainly
restricted to specific regions and small observa-
tional datasets. A deeper analysis of the effects
of geoclimatic factors on the SS approximation va-
lidity and on estimated scaling exponent is thus
needed.
The present study aims to deepen the knowledge
of the scale-invariant properties of extreme rain-
fall intensity by analyzing SS model estimates
across North America using a large number of sta-
tion series. The specific objectives of this study
are: a) assess the ability of SS models to repro-
duce extreme precipitation distribution; b) ex-
plore the variability of scaling exponent estimates
over a broad set of temporal durations and iden-
tify possible effects of the dominant climate and
pluviometric regimes on SS; c) evaluate the pos-
sible advantages of the introduction of the SS hy-
pothesis in parametric models of extreme precip-
itation.
Note that, although modifications in precipitation
distributions are expected as a result of climate
changes [e.g., Trenberth et al. 2003; Hartmann
et al. 2013; Westra et al. 2014], the proposed
approach implicitly relies on the assumption of
stationarity for extreme rainfall. This choice has

been motivated by both the limited evidence for
changes in rainfall intensities for North America
extremes during last decades, and the difficul-
ties of assessing distribution changes from short
recorded series, especially for sub-daily extremes
[Barbero et al. 2017 and references therein].
The article is structured as follows. In Sect. 1.2
the statistical basis of scaling models is presented,
while data and their preliminary treatments are
described in Sect. 1.3. Sect. 1.4 presents
the distribution-free estimation of SS models and
their validation using available series. Section 1.5
focuses on to the spatial variability of SS expo-
nents and discusses the scaling exponent variation
from a regional perspective. Finally, the SS esti-
mation based on the Generalized Extreme Value
(GEV) assumption is discussed in Sect. 1.6, fol-
lowed by a discussion and conclusions [Sect. 7].
Table S1 of the supplementary material lists in
alphabetic order the recurrent acronyms used in
text.

1.2 Simple Scaling models for

precipitation intensity

When the equality in Eq. (1.1) holds for the cu-
mulative distribution function (cdf) of the precip-
itation intensity X sampled at two different du-
rations d and λd, the Simple Scaling (SS) can be
expressed as [Gupta and Waymire 1990; Menabde
et al. 1999]:

Xd
dist= λHXλd, (1.2)

where H ∈ R and dist= means that the same prob-
ability distribution applies for Xd and Xλd, up to
a dilatation or contraction of size λH . An impor-
tant consequence of the SS assumption is that Xd
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and λHXλd have the same distribution. Hence, if
Xd andXλd have finite moments of order q, E[Xq

d ]
and E[Xq

λd], these moments are thus linked by the
following relationship [Gupta and Waymire 1990;
Menabde et al. 1999]:

E[Xq
d ] = λHqE[Xq

λd]. (1.3)

This last relationship is usually referred to
as the wide sense simple scaling property
[Gupta and Waymire 1990] and signifies that sim-
ple scaling results in a simple translation of the
log-moments between scales:

ln {E[Xq
d ]} = ln {E[Xq

λd]}+Hq ln λ (1.4)

Moreover, without loss of generality, λ can always
be expressed as the scale ratio λ = d/d∗ defined
for a reference duration d∗ chosen, for simplic-
ity, as d∗ = 1. Therefore, the SS model can be
estimated and validated over a set of durations
d1 < d2 < .. < dD by simply checking the lin-
earity in a log-log plot of the X moments versus
the observed durations dj , j = 1, 2, . . . , D [see,
for instance, Gupta and Waymire (1990); Bur-
lando and Rosso (1996); Fig. 1 of Nhat et al.
(2007); and Fig. 2 (a) of Panthou et al. (2014)].
If H estimated for the first moment equals the ex-
ponents (slopes) for the other moments, the pre-
cipitation intensity X can be considered scale in-
variant under SS in the interval of durations d1 to
dD.
More sophisticated methods have also been pro-
posed for detecting and estimating scale invari-
ance [for instance, dimensional analysis, Love-
joy and Schertzer (1985); Tessier et al. (1993);
Bendjoudi et al. (1997); Dubrulle et al. (1997);
spectral analysis and wavelet estimation Ols-
son et al. (1999); Venugopal et al. (2006) Cere-

setti (2011); and empirical probability distri-
bution function (pdf) power law detection Hu-
bert and Bendjoudi (1996); Sivakumar (2000);
Ceresetti et al. (2010)]. However, estimation
through the moment scaling analysis is by far the
simplest and most intuitive tool to check the SS
hypothesis for a large dataset. For this reason,
the presented analyses are based on this method.

According to the literature, the values of the scal-
ing exponents H generally range between 0.4 and
0.8 for precipitation intensity considered at daily
and shorter time scales [e.g., Burlando and Rosso
1996; Menabde et al. 1999; Veneziano and Furcolo
2002; Bara et al. 2009] (note that for the rainfall
depth the scaling exponent Hdepth = 1 − H ap-
plies). Values from 0.3 to 0.9 have also been re-
ported for some specific cases [e.g, Yu et al. 2004;
Panthou et al. 2014 for scaling intervals defined
within 1 h and 24 h].
Higher H values have been generally observed for
shorter-duration intervals, and regions dominated
by convective precipitation [e.g, Borga et al. 2005;
Nhat et al. 2007; Ceresetti et al. 2010; Panthou
et al. 2014 and references therein]. Nonetheless,
some studies performing spatio-temporal scaling
analysis reached a different conclusion. For in-
stance, Eggert et al. 2015, analyzing extreme pre-
cipitation events from radar data for durations
between 5 min and 6 h and spatial scales between
1 km and 50 km, indirectly showed that stratiform
precipitation intensity generally displays higher
temporal scaling exponents than convective inten-
sity. For short-duration intervals (typically less
than one hour), previous studies have also re-
ported more spatially homogeneous H estimates
than for long-duration intervals [e.g, Alila 2000;
Borga et al. 2005 and references therein]. This
suggests that processes involved in the generation
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of local precipitation are comparable across dif-
ferent regions.
More generally, higher H values are associated
with larger variations in moment values as the
scale is changed (i.e. a stronger scaling), while
H close to zero means that the Xd distributions
for different durations d more closely match each
other.

1.2.1 Simple Scaling GEV models

Annual Maximum Series (AMS) are widely used
to select rainfall extremes from available pre-
cipitation series. Various theoretical arguments
and experimental evidences support their use for
extreme precipitation inference [e.g.,Coles et al.
1999; Katz et al. 2002; Koutsoyiannis 2004a; Pa-
palexiou et al. 2013].
Based on the asymptotic results of the Extreme
Value Theory [Coles 2001], the AMS distribution
of a random variable X is well described by the
Generalized Extreme Value (GEV) distribution
family. If we represent the AMS by (x1, x2, ..., xn),
the GEV cdf can be written as [Coles 2001]:

F (x) = exp
{
−
[
1 + ξ

(
x− µ
σ

)]−1/ξ
}

(1.5)

where ξ 6= 0, −∞ < x ≤ µ+ σ/ξ if ξ < 0
(bounded tail), and 1/µ+ σξ ≤ x < +∞ if ξ > 0
(heavy tail). If ξ = 0 (light-tailed shape, Gumbel
distribution), Eq. (1.5) reduces to:

F (x) = exp
{
− exp−

{
x− µ
σ

}}
(1.6)

where−∞ < x < +∞. In Eq. (1.5) and (1.6), the
parameters µ ∈ R, σ > 0 and ξ respectively repre-
sent the location, scale, and shape parameters of
the distribution. The shape parameter describes

the characteristics of the distribution tails. Thus,
high order quantile estimation is particularly af-
fected by the value of ξ.
In applications, the GEV distribution is fre-
quently constrained by the assumption that ξ = 0
(i.e., to the Gumbel distribution), due to the diffi-
culty of estimating significant values of the shape
parameter when the recorded series are short [e.g,
Borga et al. 2005; Overeem et al. 2008; CSA
2012]. However, based on theoretical and em-
pirical evidence, many authors have shown that
this assumption is too restrictive for extreme pre-
cipitation, and may lead to important underes-
timations of the extreme quantiles [e.g, Kout-
soyiannis 2004a; Koutsoyiannis 2004b; Overeem
et al. 2008; Papalexiou et al. 2013; Papalex-
iou and Koutsoyiannis 2013]. Instead, approaches
aimed at increasing the sample size may be used
to improve the estimation of the GEV distribu-
tion shape parameter [for instance, the Regional
Frequency Analysis (RFA), Hosking and Wallis
1997]. Among these approaches, SS models con-
stitute an appealing way to pool data from differ-
ent samples (durations) and reduce uncertainties
in GEV parameters.

For the GEV distribution it is straightfor-
ward to verify that, if X dist= GEV (µ, σ, ξ) then
λX

dist= GEV (λµ, λσ, ξ) for any λ ∈ R. This
means that the GEV family described by Eq.
(1.5) and (1.6) satisfies Eq. (1.1) and thus com-
plies with statistical scale invariance for any con-
stant multiplicative transformation of X. Hence,
when the scale invariance is further assumed for
the change of observational scale from duration d
to λd [as in Eq. 1.2], the wide sense SS definition
[Eq. (1.3)] gives:

µd = dHµ∗ , σd = dHσ∗ , and ξd = ξ∗ (1.7)
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where µ∗, σ∗, and ξ∗ represent the GEV param-
eters for a reference duration d∗ chosen, for sim-
plicity, as d∗ = 1, so that λ = d.

1.2.2 SS GEV estimation

Taking advantage of the scale invariant formula-
tion of the GEV distribution, many authors have
proposed simple scaling IDF and DDF models
for extreme precipitation series [e.g, Yu et al.
2004; Borga et al. 2005; Bougadis and Adamowski
2006; Bara et al. 2009; Ceresetti 2011]. In these
cases, the scaling exponent and the GEV pa-
rameters are generally estimated in two separate
steps: first, the H value is empirically deter-
mined through a log-log linear regression, as de-
scribed above; then, GEV parameters µ∗, σ∗, and
ξ∗ for the reference duration d∗ are estimated on
the pooled sample of all available durations. In
this case, classical estimation procedures, such
as GEV Maximum-Likelihood (ML) [Coles 2001]
or Probability Weighted Moment (PWM) [Green-
wood et al. 1979; Hosking et al. 1985], can be
used.
In a few other cases, a Generalized Additive
Model ML (GAM-ML) framework [Coles 2001;
Katz 2013] has also been used to obtain the joint
estimate of H,µ∗, σ∗, and ξ∗ through the intro-
duction of the duration as model covariate [e.g,
Blanchet et al. 2016].

1.3 Data and study region

Four station datasets were used for the con-
struction of intensity Annual Maxima Series
(AMS) at different durations: the Daily Max-

ima Precipitation Data (DMPD) and the Hourly
Canadian Precipitation Data (HCPD) datasets
provided by Environment and Climate Change
Canada [ECCC n.b.] and the MDDELCC
(n.b.) [in french Ministère du Développement
Durable, de l’Environnement et de la Lutte contre
les Changements Climatiques] for Canada, and
the Hourly Precipitation Data (HPD) and 15-
Min Precipitation Data (15PD) datasets made
available by the National Oceanic and Atmo-
spheric Administration [NOAA n.d.] agency
[http://www.ncdc.noaa.gov/data-access/
land-based-station-data] for United States.
The total number of stations was approximately
3400, with roughly 2200 locations having both
DMPD and HCPD series, or both HPD and 15PD
series. The majority of stations are located in
the United States and in the southern and most
densely populated areas of Canada. In north-
ern regions the station network is sparse and the
record length does not generally exceed 15 or 20
years. Moreover, for most of DMPD and HCPD
stations, the annual recording period does not
cover the winter season and available series gen-
erally include precipitation measured from May
to October. For this reason, the year from which
the annual maxima was sampled was limited to
the recording season going from June to Septem-
ber for northern stations [stations located north
of the 52nd Parallel] and from May to October1

for the southern stations. As a result, 122 days a
year were used for northern stations and 184 days
a year for remaining stations.
Data were collected through a variety of in-
struments [e.g., standard, tipping-bucket, and
Fischer-Porter rain gauges] and precipitation val-
ues were processed and quality-controlled using
both automated and manual methods [CSA 2012

1The published version of the paper contain the following mistake: "June to September".
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Table 1.1: List of available datasets and their main characteristics.

Dataset Region N. of Operational Temporal Prevalentc

stations periodb resolution resolution [mm]

Daily Maxima Prec. Dataa (DMPC) Canada 370 1964-2007 1, 2, 6, 12 h 0.1 (82.25%)
Hourly Canadian Prec. Data (HCPD) Canada 665 1967-2003 1 h 0.1 (70%)

Hourly Prec. Data (HPD) USA 2531 1948-2013 1 h 0.254 (82.5%)
15-Min Prec. Data (15PD) USA 2029 1971-2013 15 min 2.54 (80.42%)

a Daily maxima depth series over a 24-hour window beginning at 8:00 AM.
b Main station network operational period corresponding to 25th percentile of the first recording year and the 75th

percentile of the last recording year of the stations.
c Prevalent instrument resolution, estimated by the lowest non-zero value for each series, and corresponding percentage
of stations with this resolution.

Table 1.2: Final datasets used in scaling analysis and corresponding AMS characteristics.

Scaling Durations N. of Mean series Max series
dataset Stations length [yr] length [yr]

SDa 15min, 30min, ..., 6h 1083 20 36
ID 1h, 2h, ...,24h 2719 37.4 66
LD 6h, 12h, ..., 168h 2719 37.4 66

a Only 15PD series.

HPD and 15PD online documentation]. Most of-
ten, observations were recorded by tipping-bucket
gauges with tip resolution from 0.1 mm to 2.54
mm [CSA 2012; Devine and Mekis 2008]. 15 min
series usually present the coarser instrument res-
olution, with a minimum non-zero value of 2.54
mm, observed for about 80.5% of 15PD stations.
The effects of such a coarse instrument resolution
on simple scaling estimates could be important
leading to empirical Xd cdfs becoming step-wise
functions with a low number of steps. Some
preliminary analyses aiming at evaluating these
effects on SS estimates are presented in the sup-
plementary material [see S2 and S3]. However,
the 15PD dataset is important considering the
associated network density and its fine temporal
resolution, and thus it has been retained for our
study. The main characteristics of the available
datasets are summarized in Table 1.1.
The scaling AMS datasets were constructed ac-

cording to the following steps:

(i) Three duration sets were defined: a) 15 min
to 6 h with a 15-min step; b) 1 h to 24 h with a
1-h step; c) 6 h to 168 h (7 days) with a 6-h step.
These duration sets are hereinafter referred to
as Short-Duration (SD), Intermediate-Duration
(ID), and Long-Duration (LD) datasets, respec-
tively [see Figure 1.1 (a)].

(ii) Meteorological stations that were included
in each final dataset were selected according to
the following criteria: 1) precipitation series must
have at least 85% of valid observations for each
May to October (or June to September) period,
otherwise the corresponding year was considered
as missing; 2) each station must have at least 15
valid years; 3) for each station, it was possible to
compute AMS for all durations considered in the
scaling dataset (e.g., HCPD and HPD stations
were not included in the SD dataset because only
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hourly durations were available). Note that, in
order to exclude outliers possibly associated with
recording or measurement errors, extremely large
observations were discarded and assimilated to
missing data. In particular, as in some previous
studies [e.g, Papalexiou and Koutsoyiannis 2013;
Papalexiou et al. 2013], an iterative procedure
was applied prior to step (ii)-1) to discard obser-
vations larger than 10 times the second largest
value of the series.

(iii) A moving window was applied to 15PD,
HCPD, and HPD series to estimate aggregated
series at each duration. For DMPD series, a
quality check was also implemented in order to
guarantee that precipitation intensities recorded
each day at different durations were consistent
with each other. For instance, each pair of
DMPD rainfall intensity [mm] (xd1 , xd2) observed
at durations d1 < d2 must respect the condition
xd2/xd1 ≥ d1/d2 derived from the definitions of
daily maximum rainfall intensity and depth; oth-
erwise all DMPD values recorded that day were
discarded and assimilated to missing data.

(iv) For each selected station, annual maxima
were extracted for each valid year and duration.
For stations having both DMPD and HCPD se-
ries, or 15PD and HPD series, for each year, the
annual maxima extracted from these two series
were compared and the maximum value was re-
tained as the annual maximum for that year.

Major characteristics of each scaling AMS dataset
are reported in Table 1.2.

1.4 SS estimation through

Moment Scaling Analysis

(MSA)

Moment Scaling Analysis (MSA) for the SD, ID,
and LD datasets was carried out to empirically
validate the use of SS models for modeling AMS
empirical distributions. Assessing the validity of
the SS hypothesis for various duration intervals
also aimed at determining the presence of different
scaling regimes for precipitation intensity distri-
butions. In order to identify possible changes in
the SS properties of AMS distributions, various
scaling intervals were defined for the MSA. In
particular, all possible subsets with 6, 12, 18 and
24 contiguous durations were considered within
each dataset. Figure 1.2 and Figure 1.3 show the
136 scaling intervals thereby defined: 40 scaling
intervals for SD and ID, and 56 scaling intervals
for LD. For instance, the top left matrix of Fig.
1.2(a) presents the 6-duration scaling intervals 15
min - 1 h 30 min, 30min - 1 h 45 min, . . . , 4
h 45 min - 6 h defined for the SD dataset [i.e.
the 19 scaling intervals containing six contiguous
durations defined with a 15min increment]. More
schematically, Fig. 1.1(b) shows an example of
the first five 6-duration scaling intervals for the
ID dataset [i.e. 1 h - 6 h, 2 h - 7 h, . . . , 5 h -
10 h, containing six contiguous durations defined
with an increment of 1h]. This procedure was
defined in order to evaluate the sensitivity of the
SS estimates to changes in the first duration d1 of
the scaling interval and in the interval length [i.e.
the number of durations included in the scaling
interval].
For each scaling interval (for simplicity, their in-
dex has been omitted), the validity of the SS
hypothesis was verified according to the following
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Figure 1.1: Methodology steps: a) Definition of the SD, ID, and LD scaling datasets. b) Identification
of durations and scaling intervals within each matrix of Fig. 1.2 and 1.3; c) Moment Scaling Analysis
(MSA) regression for the estimation of the slope coefficients Kq; d) Slope test: regression of Kq on
the moment order q and Student’s t-test for the null hypothesis H0: ĥ1 = K1; e) Examples of valid and
non-valid SS stations according to the Slope and GOF tests; f) Example of valid SS station proportion
values and Normalized RMSE values, rxd , as represented, in Fig. 1.2 and 1.3.
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steps:

1. MSA regression: for each q =
0.2, 0.4, . . . , 2.8, 3, the slopes Kq of the log-
log linear relationships between the empirical
q−moments 〈Xq

d〉 of Xd1 , Xd2 , . . . , XdD and the
corresponding durations d1, d2, . . . , dD in the scal-
ing interval [d1, dD] were estimated by Ordinary
Least Squares (OLS) [see Fig. 1 (c) for a graphic
example]. Order q ≥ 3 were not considered be-
cause of the possible biases affecting empirical
high order moment estimates.

2. Slope test: to verify the SS assumption that
the estimated Kq exponents vary linearly with
the moment order q, i.e. Kq ≈ Hq, an OLS re-
gression between the MSA slopes Kq and q was
applied [see Fig. 1.1 (d)]. For the regression line
Kq = ĥ0 + ĥ1 q, a Student’s t-test was then used
to test the null hypothesis H0: ĥ1 = K1. If H0

was not rejected at the significance level α = 0.05,
the SS assumption was considered appropriate for
the scaling interval and the simple scaling expo-
nent H = K1 was retained.

3. Goodness-of-Fit (GOF) test: for each dura-
tion d, the goodness of fit of the Xd distribu-
tion under SS was tested using the Anderson-
Darling (AD) and the Kolmogorov-Smirnov (KS)
tests. These tests aim at validating the appro-
priateness of the scale invariance property for
approximating the Xd cdf by the distribution
of Xd,ss = d−HXd∗ . To this end, each AMS,
~xdj =

(
xdj ,1, xdj ,2, . . . , xdj ,i, . . . xdj ,n

)
, recorded at

duration dj was rescaled at the reference duration
d∗ by inverting Eq. (1.2):

~x∗dj =
(
dj
Hxdj ,1, dj

Hxdj ,2, . . .

. . . , dj
Hxdj ,i, . . .

. . . dj
Hxdj ,n

) (1.8)

where n represents the number of observations
(years) in ~xdj . Then, the pooled sample, ~xd∗ , of
the D rescaled AMS, ~x∗dj , was used to define Xd∗

under the SS assumption:

~xd∗ =
(
~x∗d1 , . . . , ~x

∗
dj , . . . , ~x

∗
dD .
)

(1.9)

Since, in Eq. (1.9), D represents the number of
durations dj in the scaling interval, n×D rescaled
observations were included in ~xd∗ .
As in previous applications [e.g., Panthou et al.
2014], the AD and KS tests were then applied at
significance level α = 0.05 to compare the em-
pirical distributions [Cunnane plotting formula,
Cunnane 1973] of the SS sample, xd,ss = d−H~xd∗ ,
and the non-SS sample, xd. In fact, despite the
low power of KS and AD tests for small sample
tests, they represent the only suitable solution to
the problem of comparing empirical cdfs when the
data do not follow a normal distribution. Because
both AD and KS are affected by the presence of
ties in the samples (e.g., repeated values due to
rounding or instrument resolution), a permuta-
tion test approach [Good 2013] was used to esti-
mate test p-values. According to this approach,
data in xd and xd,ss were pooled and randomly re-
assigned to two samples having same sizes as the
SS and non-SS samples. Then, the test statistic
distribution under the null hypothesis of equality
of the Xd,ss and Xd distributions was approxi-
mated by computing its value over a large set of
random samples. Finally, the test p-value was ob-
tained as the proportion of random samples pre-
senting a test statistic value larger than the value
observed for the original sample.

The SS model validity and the mean error re-
sulting from approximating the Xd distribution
by the SS model were then evaluated in a cross-
validation setting. For this analysis, each du-

76



Art. 1. SS of point-scale extreme precipitation

ration was iteratively excluded from each scal-
ing interval and the scaling model re-estimated
at each station by repeating steps 1 to 3 [MSA
regression, Slope test, and GOF tests]. Predic-
tive ability indices, such as the Mean Absolute
Error (MAE) and the Root Mean Squared Error
(RMSE) between empirical and SS distribution
quantiles, were then estimated for highest quan-
tiles for valid SS stations. In particular, to focus
on return periods of practical interest for IDF es-
timation, only quantiles larger than the median
were considered (i.e., only return periods greater
than 2 years).
For each station s, the normalized RMSE, εxd,s ,
was estimated:

εxd,s =
εxd,s
xd,s

(1.10)

where εxd,s and xd,s are, respectively, the RMSE
and the mean value of all Xd quantiles of order
p > 0.5. Then, the average over all stations of the
normalized RMSE, εxd , was computed for each
scaling interval and duration:

εxd = 1
ns

ns∑
s=1

εxd,s (1.11)

where ns is the number of valid SS stations in
the dataset. Note that εxd is a measure of error,
meaning that values of εxd,s closer to 0 correspond
to a better fit than larger values.

1.4.1 Model estimation and validation

Figure 1.2 presents the results of steps 1 to 3 of the
methodology for evaluating the SS validity. For
all the three scaling datasets, no particular pat-
tern was observed for slope test results, and at
most 2% of the stations within each scaling inter-

val displaying a non linear evolution of the scaling
exponent with the moment order. For this reason,
Fig. 1.2(a)-(c) show, for each scaling interval and
duration, the proportion of valid SS stations with-
out differentiating for slope or GOF test results.
As showed in the example in Fig.1.1(e), for each
scaling interval, valid SS stations were defined as
stations having not rejected both the Slope test
for the scaling interval and the GOF tests for each
duration included in this scaling interval.
As expected, the proportion of valid SS stations
decreased when the number of durations within
the scaling interval increased and with decreasing
d1. This is particularly evident for short d in SD
and ID datasets. More GOF test rejections were
observed for longer scaling intervals [not shown],
due to the higher probability of observing large
differences between xd and xd,ss quantiles when
xd,ss had larger sample size and included data
from more distant durations. However, several
factors can impact GOF test results when shorter
d1 are considered. First, GOF tests are particu-
larly sensitive to the presence of very large values
in short-duration samples. Second, when consid-
ering durations close to the temporal resolution of
the recorded series [i.e., 15 min in SD and 1 h in
ID and LD], stronger underestimations could af-
fect the measure of precipitation because intense
rainfall events are more likely to be split between
two consecutive time steps. Finally, preliminary
analyses [Fig. S2 and S3 in the supplementary
material] showed that the largest GOF test rejec-
tions could also be connected to the coarse instru-
ment resolution of 15PD series, which, similar to
the temporal resolution effect, induces larger mea-
surement errors in the shortest duration series.
Note that comparable resolution issues were pre-
viously reported by some authors while estimat-
ing fractal and intermittency properties of rain-
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Figure 1.2: Proportion of stations satisfying both the Slope and GOF tests applied at the 0.95 confi-
dence level, for each duration (vertical axis) and scaling interval (horizontal axis) for the SD, ID, and
LD datasets [row a), b), and c) respectively]. White circles indicate proportions between 0.25 and
0.90. See Fig. 1 (b) and (f) for the identification of durations and scaling intervals within each matrix.

fall processes [e.g., Veneziano and Iacobellis 2002;
Mascaro et al. 2013] and IDF [e.g, Blanchet et al.
2016].
Valid SS station proportions between 0.99 and 1
were always observed for GOF tests in ID and
LD datasets, except for some durations shorter

than 3 h (ID dataset) or 6 h (LD dataset). When
considering both GOF and Slope test, with the
exception of some durations ≤1 hour, the propor-
tion of stations satisfying SS was higher than 0.9,
and the majority of scaling intervals [65%, 90%,
and 98% of the scaling intervals in SD, ID, and
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Figure 1.3: Cross-Validation Normalized RMSE averaged over all valid SS stations (rxd) for each du-
ration (vertical axis) and scaling interval (horizontal axis) in the SD, ID, and LD datasets [row a), b),
and c) respectively]. White circles indicate values between 0.15 and 0.3. See Fig. 1 (b) and (f) for the
identification of durations and scaling intervals within each matrix.

LD, respectively] included at least 95% of valid SS
stations. For each scaling interval, only valid SS
stations were considered in the rest of the analy-
sis.
These findings were also confirmed by cross-
validation experiments. The proportion of valid
SS stations resulting from cross-validation Slope

and GOF tests were similar, event if slightly
lower, to proportions displayed in Fig. 1.2 [see
Fig. S4 of the supplementary material].
Figure 1.3 presents, for each scaling interval and
duration, the station average, εxd , of the normal-
ized RMSE. These graphics show that mean rel-
ative errors on intensity quantiles did not gener-

79



Art. 1. SS of point-scale extreme precipitation

ally exceed 5% of the precipitation estimates for
6-duration scaling intervals [Fig. 1.3, first col.].
Greater errors were observed for durations at the
border of the scaling intervals. Not surprisingly,
this result underlines that, in a cross-validation
setting, both the MSA estimation of H and the
Xd,ss approximation are less sensitive to the ex-
clusion of an inner duration of the scaling interval
than to the exclusion of d1 or dD. Conversely, the
extrapolation under SS of the Xd distribution is
generally less accurate for durations at the bound-
aries or outside the scaling interval used to esti-
mate H. Moreover, as for the valid SS station
proportion, the performances of the model dete-
riorated with decreasing d1 and with increasing
scaling interval length, especially for durations at
the border of the scaling intervals. However, for
more that 70% of 12-, 18-, and 24-duration scal-
ing intervals, εxd ≤ 0.1 for each duration included
in the scaling interval. εxd ≥ 0.25 were observed
for 15 min in 12-duration or longer scaling inter-
vals, pointing out the weaknesses of the model in
approximating short duration extremes when the
scaling interval included durations ≥ 3 h.

1.4.2 Estimated scaling exponents and

their variability

In order to evaluate the sensitivity of SS to the
considered scaling interval, the variability of H
with d1 has been analyzed. Then, the spatial dis-
tribution of the scaling exponents for each scaling
interval was studied to assess the uncertainty in
H estimation and the dependence of SS exponents
on local geoclimatic characteristics.
Investigating the variability of the scaling expo-
nent with the scaling interval is particularly im-
portant since, if SS is assumed to be valid be-

tween some range of durations, one should expect
that H remains almost unchanged over the vari-
ous scaling intervals included in this range. For
this reason, the variation ∆H(j) of the scaling ex-
ponents computed for overlapping scaling inter-
vals having the same d1 but different lengths was
analyzed. For each station and d1, ∆H(j) was de-
fined as:

∆H(j) = H(j) −H(6) (1.12)

where j = 12, 18, or 24 represents the number of
durations considered in the specified scaling in-
terval, H(j) is the corresponding scaling exponent,
and H(6) is the scaling exponent estimated for the
6-duration scaling interval having the same d1. If
SS is appropriate over a range of durations, ∆H(j)

is expected to be small for scaling intervals de-
fined within this range.
Figures 1.4(ii)-(iv) show for all relevant scaling
intervals, the median, Interquantile Range (IQR),
and quantiles of order 0.1 and 0.9 of the ∆H(j) dis-
tribution over valid SS stations. Adding new du-
rations to the scaling intervals the median ∆H(j) ,
as well as its IQR, increased for all d1. Nonethe-
less the median scaling exponent variation was
generally smaller than 0.05, except for a rela-
tively small proportion of stations. Equally im-
portant, |∆H(j) | was generally centered on 0 and
for all d1 ≥ 1 h more than 50% of stations had
|∆H(12) | ≤ 0.025 (SD dataset) and |∆H(18) | ≤ 0.03
(ID dataset) [Fig. 1.4 (ii)-(iii)].
For some stations, a dramatic difference could ex-
ist in IDF estimations obtained with the different
definitions of the scaling interval. For instance,
for the 24-duration scaling interval "1h - 24h" (ID
dataset), the median ∆H(24) was equal to 0.047
[Fig. 1.4(iv) b)]. For the interval "15min - 6h" (SD
dataset), ∆H(24) was even larger, with a median
scaling exponent variation approximately equal to
0.087 and with 25% of stations having ∆H(24) ≥
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Figure 1.4: Col. (i): Median and relevant quantiles of the scaling exponent distribution over all valid
SS stations for each 6-duration scaling interval. Col. (ii)-(iv): Median and relevant quantiles of the
distribution of the scaling exponent deviation ∆H(j) [defined in Eq. (1.12)]. The average number of
valid SS stations over the scaling intervals (identified by their first duration, d1 ) is indicated at the
top of each graph.

0.11 [Fig. 1.4(iv) a)]. Finally, changes in H val-
ues were also important when comparing 6- and
12-duration scaling intervals when d1 ≤ 1 h (SD
and ID datasets) and in LD dataset [Fig. 1.4 (ii)].
The median, Interquantile Range (IQR), and
quantiles of order 0.1 and 0.9 of the H distribu-
tion across stations, are presented in Fig. 1.4(i)
for each 6-duration scaling interval. The smallest
median H values were observed for d1 ≤ 30 min in
Fig. 1.4 (a-i), and for the longest d1s in Fig. 1.4
(c-i). Scaling intervals beginning at 15 and 30 min

also displayed the smallest variability across sta-
tions. Although fewer stations were available for
these intervals (only 15PD stations were used and
the number of valid SS stations was smaller), this
result is consistent with previous reports in the
literature demonstrating that H values are spa-
tially more homogeneous for short durations.
A larger dispersion ofH values was observed when
d1 ranged between approximately 1 h and 5 h, in
particular in the SD dataset, for which the 10th-
90th percentile difference almost covered the en-
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Figure 1.5: Spatial distribution of the scaling exponent for the first (i.e. with minimum d1) 6-, 12-, and
24-duration scaling intervals (first, second, and third col., respectively) for SD, ID, and LD datasets
(first, second, and third row, respectively). These scaling intervals correspond to the first column of
matrices in Fig. 1.2 and 1.3.

tire range of observed H values [Fig. 1.4 (i)]. This
result could be partially explained by the use of
scaling intervals having equally spaced durations.
This implies that the mean distance between the
logarithms of durations in the scaling interval de-
creases as d1 increases. Hence, the OLS estimator
of H used in the MSA regression may have larger
variance for longer d1, especially when scaling in-
tervals include few durations. Larger uncertainty
may thus have an impact on the H estimation for
the longest d1 scaling intervals of SD. However,

as showed in next sections, H spatial distribution
may also explain the greater variability of the scal-
ing exponent for d1 greater than a few hours.
Largest median H were observed for d1 greater
than 10 hours [Fig. 1.4 (b-i)] and lower than 2
days [Fig. 1.4 (c-i)], with approximately half of
the stations having H ≥ 0.8. This means that a
stronger scaling (i.e., largerH values) is needed to
relate extreme precipitation distributions at ap-
proximately 12-hours to distributions at daily and
longer scales. It may therefore be expected that
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Figure 1.6: Spatial distribution of the scaling exponent for the last (i.e. with maximum d1) 6-, 12-, and
18-duration scaling intervals (first, second, and third col., respectively) for SD, ID, and LD datasets
(first, second, and third row, respectively). These scaling intervals correspond to the last column of
matrices in Fig. 1.2 and 1.3.

the stations characterized by H closer to 1 are lo-
cated in geographical areas where differences in
precipitation distributions are important among
temporal scales included in these scaling intervals.
Examples of the spatial distributions of the scal-
ing exponent are given in Fig. 1.5 and 1.6 for
the first and last d1 for each interval length and
dataset, respectively. Since only one 24-duration
scaling interval was defined for both the SD and
ID datasets, only scaling intervals containing 6,
12, and 24 (Fig. 1.5) or 18 (Fig. 1.6) durations are
presented. This avoids the redundancy of show-
ing twice the "15min - 6h" (SD dataset) and "1h
- 24h" (ID dataset) scaling intervals.
Generally, the scaling exponent displayed a strong

spatial coherence and varied smoothly in space,
although a more scattered distribution of H char-
acterizes maps in Fig. 1.6. In this last figure, the
local variability of H may be attributed to the
larger estimation uncertainties affecting longer d1

scaling intervals, as previously mentioned. Mean-
ingful spatial variability and clear spatial patterns
emerged for d1 ≥ 1 h. In fact, for stations located
in the interior and southern areas of the continent,
a shift from weaker scaling regimes (smaller H) to
higher H values was observed as d1 increases [e.g.,
second and third rows of Fig. 1.5]. On the con-
trary, a smoother evolution of H over the scaling
intervals characterized the northern coastal areas,
especially in north-western regions, and the Rock-
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Figure 1.7: Climatic regions of Bukovsky (2012) [grey borders] and regions defined for this analysis
[regions A1 to F in the legend; colored borders]. Abbreviations for each region are in parenthesis.

ies, where H > 0.75 values were rarely observed
even for greater d1 values.

1.5 Regional analysis

Regional differences in scaling exponents were in-
vestigated. Only the results for the 6-duration
scaling intervals are presented, similar results hav-
ing been obtained for longer scaling intervals [see
the supplementary material, Fig. S6 and S7 for
12- and 18-duration scaling intervals]. Stations
were pooled into six climatic regions based on the
classification suggested by Bukovsky (2012) [see
Fig. 1.7]. Stations outside the domain covered
by the Bukovsky regions were attributed to the

nearest region. Regions with less than 10 stations
were not considered (regions without colored bor-
ders in Fig. 1.7); regions A1 (W_Tun) and A2
(NW_Pac) were kept separated since only 14 sta-
tions were available in region A1 (W_Tun) for ID
and LD datasets.
To provide deeper insights about regional features
of precipitation associated with specific scaling
regimes two variables related to the precipitation
events observed within AMS were also analyzed:
the mean number of events per year, N̄eve, and
the mean wet time per event, T̄wet, contributing
to AMS within each scaling interval. For a given
year and station, annual maxima associated to
different durations of a given scaling interval were
considered to belong to the same precipitation
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Figure 1.8: Median and Interquantile Range (IQR) of the scaling exponent distribution over valid
SS stations within each region of Fig. 1.7 for 6-duration scaling intervals for the SD (left curve), ID
(central curve), and LD (right curve) datasets. For each region, the mean number of valid SS stations
over the scaling intervals is indicated in brackets in the legend. See Fig. 1.7 for region definition.

event if the time intervals over which they oc-
curred overlapped. The mean wet time per event
contributing to AMS, T̄wet, was defined as the
mean number of hours with non-zero precipita-
tion within each event. Details on the calculation
of N̄eve, T̄wet, and the corresponding results are
presented in the supplementary material [Sect. S2
and Fig. S5 and S6].

1.5.1 Regional variation of the scaling

exponents.

Figure 1.8 shows the distribution ofH within each
region. Three types of curves can be identified.

First, curves in Fig. 1.8 (a) to (c) have a charac-
teristic smooth S shape. Conversely, Fig. 1.8 (d)
displays a rapid increase of H for scaling inter-
vals defined in ID and LD datasets until d1 = 2
days, preceded and followed by two plateaus: one
plateau for the longest d1 with remarkably high
H values, and one for the shortest d1 with small
H values. Finally, an inverse-U-shaped curve can
be seen in Fig. 1.8 (e) and (f), with globally high
H values already reached at sub-daily durations
in dry regions (E).
For d1 ≤ 24 h, Fig. 1.8 (a) displays lower values
of H than Fig. 1.8 (e)-(f), meaning that smaller
variation in AMS moments are observed in A1
and A2 when the scale is changed. This differ-
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ence can be partially explained by the weaker im-
pact of convection processes in generating very
short duration extremes in rNorth-West coastal
regions with respect to southern areas (regions E
and F). For northern regions, in fact, the transi-
tion between short and long duration precipita-
tion regimes may be smoothed out by cold tem-
peratures which moderate short-duration convec-
tive activity, especially for W_Tun (region A1).
The topography characterizing the northern pa-
cific coast may then explain the smoothing effect
for the curve of region NW_Pac (A2). In this
case, in fact, the precipitation rates at daily and
longer scales are enhanced by the orographic ef-
fect acting on synoptic weather systems coming
from the Pacific Ocean [Wallis et al. 2007].
Similarly, mountainous regions in C [Fig. 1.8 (c)]
displayed the smallest variations of H over d1, in-
dicating that analogous scaling regimes character-
ize both short- and long-duration scaling inter-
vals. Again, this may be related to the important
orographic effects of precipitation in these regions
that are involved in the generation of extremes for
both sub-daily and multi-daily time scales.
The mean number of events per year in regions A
and C was higher than in regions E-F, in particu-
lar for SD scaling intervals, and displayed steeper
decreases with increasing d1 [Fig. S5 (a) and (c)
in the supplementary material].
Main differences between regions B and A were
the stronger scaling regimes observed in B, which
were mainly due to contributions from stations
located in the south-eastern part of the E_Bor
region (not shown). For scaling intervals in the
ID dataset, region B was also characterized by
the highest mean number of events per year, with
most of the stations presenting N̄eve > 2 for d1 =
1 h and d1 = 2 h and sharp decreases of N̄eve with
increasing d1 [Fig. S5 (b) in the supplementary

material]. Moreover, a remarkably large range of
N̄eve was observed for 1 h ≤ d1 ≤ 6 h, suggesting
that B may be highly heterogeneous.
Two distinct scaling regimes can be observed for
SW_Pac (region D) at, respectively, d1 ≤ 3 h
(SD dataset) and d1 ≥ 2 days (ID dataset) [re-
gion D in Fig. 1.8 (d)]. These plateaus may be
interpreted by recalling that 1−H = Hdepth. On
the one hand, the low and constantH observed for
d1 ≤ 3 h indicates that the average precipitation
depth increases with duration at the same growth
rate for all these intervals. On the other hand, H
approximately equal to 0.9 at daily and longer du-
rations demonstrates that the average precipita-
tion depth associated with long-duration annual
maxima remained roughly unchanged when the
duration increased from 1.5 to 7 days (λHdepth ≈ 1
in Eq. (1.3)). This, along with the fact that the
scaling exponent increased almost monotonically
for 1 h ≤ d1 ≤ 24 h (ID and LD datasets), sug-
gests that extremes at durations shorter than ∼
3 h (SD dataset) drive annual maxima precipi-
tation rates at longer scales, with the rapid and
continuous decay in mean intensity caused by the
increasing size of the temporal scale of observa-
tion.
For SW_Pac (region D), the relative absence
of long-lasting weather systems able to produce
important extremes for long durations, was con-
firmed by the analysis of N̄eve and T̄wet [see Fig.
S5 and S6 of the supplementary material]. In fact,
the mean number of events per year was relatively
high for short durations (the median N̄eve is equal
to 1.82 for d1 = 15 min and to 1.4 for d1 = 1h),
while it rapidly decreased below 1.1 events per
year for d1 ≥ 6 h (ID dataset) and for d1 ≥ 18
h (LD dataset). With the exception of d1 = 6 h
(LD dataset), at least 90% of SW_Pac stations
had N̄eve ≤ 1.25 for all d1 > 3 h. In other regions,

86



Art. 1. SS of point-scale extreme precipitation

median N̄eve were never smaller than 1.1 for the
SD and ID datasets, except for d1 ≥ 12h in region
E.
These results suggests that both the distinctive
topography of the west coast and the characteris-
tic large-scale circulation of the south-west areas
of the continent are crucial factors determining
the transition between the two scaling regimes in
region D.
Median H values displayed inverse-U shapes for
the remaining regions with very small IQR, de-
spite the high number of valid SS stations: a slow
transition from lower to higher H is observed ap-
proximately between 1 h and 12 h (region E) or 30
h (region F). The strongest scaling regimes were
observed for 1 h ≤ d1 ≤ 2 days in arid west-
ern regions [Fig. 1.8 (e)], while median H values
greater than 0.8 were only observed for approxi-
mately 6 h≤ d1 ≤ 2 days in more humid areas [1.8
(f)]. In both region E and F, very short-duration
extremes are typically driven by convective pro-
cesses, while a transition to different precipitation
regimes may be expected between 1 h and a few
hours. However, H shows a smoother increase in
Fig. 7 (f) with respect to Fig. 7(e). This may
indicate that in eastern areas [region F] sub-daily
duration extremes are more likely associated to
embedded convective and stratiform systems, or
to mesoscale convective systems, which are less
active in western dry areas of region E [Kunkel
et al. 2012]. On the contrary, differences between
short- and long-duration extreme precipitation in-
tensity seem stronger for south-western dry re-
gions [Fig. 1.8 (e)], where less intense summer
extremes are expected compared to eastern areas
[see supplementary material, Fig. S1]. In par-
ticular, H tended to scatter in a range of higher
values for approximately 1 h ≤ d1 ≤ 12 h indicat-
ing that precipitation intensity moments strongly

decrease as the duration increases.
In summary, these results suggest a regional effect
on precipitation scaling of both local geographi-
cal characteristics, such as topography or coastal
effects, and general circulation patterns. In gen-
eral, the weakest scaling regimes were observed
for short d1 and along the west coast of the conti-
nent and seem to be connected to scaling intervals
and climatic areas characterized by homogeneous
weather processes. Low H values correspond in
fact to small variations in AMS distribution mo-
ments. On the contrary, stronger scaling regimes
were observed for longer d1 in the other regions
of the study area. This indicates that important
changes occur in AMS moments across duration
and, thus, in extreme precipitation features. Ac-
cording to these results, it would be important
to take into account the climatological informa-
tion included in the scaling exponent to improve
SS and IDF estimation. Even more important,
these results give useful guidelines for modeling
the spatial distribution of H, which could help for
the definition of IDF relationships at non-sampled
locations.

1.6 Simple Scaling GEV etima-

tion

Results presented in this section are limited to
a descriptive analysis of GEV parameter esti-
mates for 6-duration scaling intervals. Similar re-
sults were generally obtained for 12-, 18-, and 24-
duration intervals [see supplementary material,
Fig. S10 to S16]. An assessment of the poten-
tial improvements carried out by Simple Scaling
GEV (SS GEV) models with respect to non-SS
GEV models is also presented.
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Figure 1.9: Distribution over valid SS stations of SS GEV parameters (gray and black lines) for
6-duration scaling intervals and non-SS GEV parameters (red solid and dashed lines) for reference
durations. Location and scale parameters (first and second col., respectively) are scaled at d∗ = 1h
(SD and ID datasets) and d∗ = 24h (LD dataset). Distributions for the shape parameter (third col.)
are presented for ξ > 0 and ξ < 0, excluding cases where ξ = 0 (Gumbel distribution).

In our study, the Probability Weighted Moment
(PWM) procedure was applied to estimate SS-
GEV parameters µ∗, σ∗, and ξ∗ [Eq. (1.7)] from
xd∗ [Eq. (1.9)]. For each duration d, PWM were
also used to estimate non-SS parameters µd, σd,
and ξd from each of the non-SS samples xd. Pre-
liminary comparisons of various estimation meth-
ods [PWM, classical ML estimators, and GAM-
ML; see Sect. 1.2.2], showed that PWM slightly
outperformed the other methods.
Quantiles estimated from the SS and the non-
SS GEV were compared with empirical quantiles.
Global performance measures, such as RMSE,

were computed to evaluate the overall fit of the
estimated GEV to the empirical Xd distributions.
In particular, mean errors between SS and non-SS
quantile estimates and empirical quantiles were
compared using the relative total RMSE ratio,
Rrmse, defined as:

Rrmse = [Rss −Rnon−ss]
Rnon−ss

(1.13)

where

Rmod =
D∑

d=d1

εd,mod
x̄d

(1.14)
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represents the normalized mean square difference
between model and empirical quantiles of order
p > 0.5 for all the durations included in the scal-
ing interval. See Eq. 1.10 for the definition of
εd,mod for each station.

1.6.1 Estimated SS GEV parameters

Figure 1.9 presents the distributions over valid SS
stations of the SS GEV parameters rescaled at
d∗ = 1 h [Fig. 1.9 (a) and (b)] and d∗ = 24 h
[Fig. 1.9 (c)].
For the SD dataset, even for scaling intervals
which did not include the reference duration d∗,
the µ∗ and σ∗ distributions appeared to be simi-
lar to the non-SS µd and σd distributions [Figure
1.9, first row]. Similarly, for 6 h ≤ d1 ≤ 2 days in
the LD dataset, the SS location and scale param-
eter distributions are in relatively close agreement
with the corresponding non-SS parameter distri-
butions. Conversely, for the ID dataset, both µ∗
and σ∗ distributions are more positively skewed
than the corresponding non-SS distributions. Fi-
nally, for d1 ≥ 2 days in the LD dataset, µ∗ and σ∗
had distributions shifted toward lower values than
µ24h and σ24h. Moreover, the relative differences
∆µ = (µ∗ − µd)/µd and ∆σ = (σ∗ − σd)/σd were
estimated for each station, duration, and scaling
interval. Two important results came out of this
analysis [see Figures S11 and S12 of the supple-
mentary material]. On the one hand, median val-
ues of ∆µ and ∆σ were generally smaller than
±5% and ±10%, respectively. On the other hand,
∆σ showed large positive values when ξd = 0 (i.e.
Gumbel distributions), while small ∆σ < 0 were
estimated when ξd 6= 0 [not shown for concise-
ness]. These results are interesting since the es-
timation of the scale parameter σ of a GEV dis-
tribution may be biased when the shape param-

eter is spuriously set to zero (ξ = 0). Hence,
while non-SS µd values can be considered to be
accurate estimates of the Xd location parameter,
small uncertainties should be expected for the
scale parameter only when the ξd value is cor-
rectly assessed. In addition, µ∗ and σ∗ displayed
a strong spatial coherence. Their spatial distri-
butions were characterized by an obvious North-
West to South-East gradient [Fig. 1.10 shows ex-
amples for the scaling intervals 15min - 1.5h, 1h -
6h, and 6h - 36h].
Notable differences between SS GEV and non-
SS GEV estimates were observed for the shape
parameter [Fig. 1.9, third col., and Fig. 1.11].
Firstly, for cases having shape parameters strictly
different from zero [third column of Fig. 1.9],
ξ∗ absolute values were smaller than non-SS ξd

absolute values. Secondly, the distributions of
ξ∗ across stations were generally more peaked
around their median value than the correspond-
ing non-SS distributions. Finally, for the non SS
model the majority of stations had shape param-
eter ξd non-significantly different from zero, while
the fraction of SS GEV shape parameters ξ∗ 6= 0
was always greater than 39% [asymptotic test
for PWM GEV estimators applied at level 0.05;
Hosking et al. 1985]. In particular, for each du-
ration, non-SS models estimated light-tailed dis-
tributions (i.e., ξd = 0) for more than 85% of the
stations, except that for d = 15 min and d = 30
min [Fig. 1.11, first col.]. Conversely, for all scal-
ing intervals with d1 > 15 min, SS GEV shape
parameters were significantly different from zero
for 40% to 45% of valid SS stations [Fig. 1.11,
second col.]. Moreover, when using scaling inter-
vals of 12 durations or more, the proportion of
ξ∗ > 0 was always important [greater than 35%
for all 18- and 24-duration scaling intervals; see
the supplementary material, Fig. S10].
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Figure 1.10: Spatial distribution over valid SS stations of SS GEV position (first col.), scale (second
col.), and shape (3rd col.; gray symbols indicate Gumbel distributions, ξ∗ = 0) parameters scaled at
d∗ = 1h for the first 6-duration scaling interval (i.e. interval with minimum d1) of: SD (a), ID (b), and
LD (c) datasets.

The previous results suggest that pooling data
from several durations may effectively reduce the
sampling effects impacting the estimation of ξ, al-
lowing more evidence of non-zero shape parame-
ters, and, in many cases, of heavy tailed (ξ > 0)
AMS distributions. This conclusion is consistent
with previous reports, namely that 100- to 150-
year series are necessary to unambiguously assess
the heavy-tailed character of precipitation distri-
butions [e.g., Koutsoyiannis 2004b; Ceresetti et
al. 2010]. These studies typically reported values
of ξ ≈ 0.15 [e.g., Koutsoyiannis 2004b], which are

close to ξ∗ values estimated in the present analy-
sis for cases with ξ∗ > 0.
However, uncertainties on ξ∗ estimates remain im-
portant. Support for this comes from the spatial
distribution of ξ∗, which was still highly heteroge-
neous, with local variability dominating at small
scales [e.g., Fig. 1.10, third col.].
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Figure 1.11: Stacked histograms of the fractions of valid SS stations with ξ < 0 (in red), ξ = 0 (in
grey), and ξ > 0 (in blue) resulting from the Hosking test applied at the 0.95 confidence level for each
duration (non-SS GEV, first col.) and each 6-duration scaling interval (SS GEV, second col.) for: SD
(a), ID (b), and LD (c) datasets.

1.6.2 Improvement with respect to

Non-SS models

The proportion of series for which the SS model
RMSE, εd,ss, was smaller than the non-SS GEV
RMSE, εd,non−ss, was analyzed [see the supple-
mentary material, Fig. S11]. For cases with non-
zero ξ∗, more than 60% of stations had εd,ss <

εd,non−ss over most scaling intervals and dura-
tions. The 6-duration scaling intervals "15 min
- 1 h 30 min" (SD dataset) and "1 h - 6 sih" (ID
dataset) showed the largest fractions of stations
with increasing errors. On the contrary, increas-
ing errors (εd,ss > εd,non−ss) were observed for all
scaling intervals and durations for most stations
(generally more than 70%) having ξ∗ = 0.
Figure 1.12 presents the Rrmse distribution over

valid SS stations. When the SS shape parame-
ters were not significantly different from zero [Fig.
1.12, second col.], the relative increases in to-
tal RMSE were usually smaller than 0.1 in SD
dataset and only scaling intervals with d1 < 1 h
had greater Rrmse. For the ID and LD datasets,
the medians of the total relative RMSE ratio dis-
tributions were smaller than 0.05 for d1 ≥ 4 h and
d1 ≥ 24 h, respectively. Furthermore, more than
90% of stations had Rrmse < 0.125 for d1 ≥ 6 h
(ID dataset) and d1 ≥ 30 h (LD dataset). When
ξ∗ 6= 0, an increase of the mean error in high or-
der quantile estimates was observed for d1 = 15
min (SD dataset) and d1 = 1 h (ID dataset) for at
least half of the stations [Fig. 1.12, first col.; note
the different scale on the y-axis]. However, for all
other d1, negative Rrmse values were observed for
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Figure 1.12: Distribution of the relative total RMSE ratio, Rrmse, for ξ∗ < 0 (first col.), ξ∗ = 0 (second
col.), and ξ∗ > 0 (third col.) for 6-duration scaling intervals in SD (a), ID (b), and LD (c) datasets.
The average number of valid SS station over the scaling intervals is indicated in the right-top corner
of each graph.

the majority of stations for all scaling intervals,
with a median reduction up to 30% of the mean
error. Note that also for 12- and 18-duration scal-
ing intervals the median Rrmse where generally
negative for d1 > 1 h and ξ∗ 6= 0 [Fig. S14 and
S15 of the supplementary material]. Conversely,
Rrmse increased for the majority of stations in all
24-duration scaling intervals having d1 < 12 h
[Fig. S17 of the supplementary material]. Note
also that no particular spatial pattern character-
ized the Rrmse estimates.

1.7 Discussion and conclusion

This study investigated simple scaling properties
of extreme precipitation intensity across Canada
and the United States. The ability of SS models
to reproduce extreme precipitation intensity dis-
tributions over a wide range of sub-daily to weekly
durations was evaluated. The final objective was
to identify duration intervals and geographical ar-
eas for which the SS model can be used for an
efficient production of IDF curves.
The validity of SS models was empirically con-
firmed for the majority of the scaling intervals.
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In particular, based on the comparison of SS dis-
tributions to empirical quantiles, the hypothesis
of a scale-invariant shape of the Xd distribution
held for all duration intervals spanning from 1 h
to 7 days. Less convincing results were obtained
for durations shorter than 1 h, especially for the
longest scaling intervals (24-duration intervals).
One possible explanation is that the coarse in-
strument resolution of the available 15 min series
may strongly impact both the validation tools (for
instance, GOF tests) and SS estimates. These re-
sults provide important operative indications con-
cerning the inner and outer cut-off durations for
AMS scaling and show the importance of a deeper
analysis to evaluate the impact of dataset char-
acteristics (e.g., their temporal and measurement
resolutions, or the series length) on the scale in-
variant properties of extreme precipitation.
The majority of the estimated scaling exponents
ranged between 0.35 and 0.95, showing a smooth
evolution over the scaling intervals and a well-
defined spatial structure. Six geographical re-
gions, initially defined according to a climatolog-
ical classification of North America into 20 re-
gions, displayed different features in terms of scal-
ing exponent values. Specifically, distinct median
values of H were observed for the various geo-
graphical regions, each characterized by a differ-
ent precipitation regime. This is consistent with
results reported in the literature for some spe-
cific regions and smaller observational datasets
[e.g, Borga et al. 2005; Nhat et al. 2007; Cere-
setti et al. 2010; Panthou et al. 2014 and refer-
ences therein]. Moreover, while small and smooth
changes of H over the scaling intervals were ob-
served in regions containing the majority of sta-
tions, one region, SW_Pac, displayed two dra-
matically distinct scaling regimes separated by a
steep transition occurring between a few hours

and 24 h. These results limit the applicability
of SS models in SW_Pac, and were connected to
the local features of intense precipitation events
by the analysis of the mean number of events per
year and the mean wet time of these events.
Weak scaling regimes, characterized by relatively
smallH values (H close to 0.5), were generally ob-
served for scaling intervals containing very short
durations (e.g, less than 2 h) and for regions on
the west coast of the continent [regions A1, A2,
and D; see Fig. 1.8]. For these scaling intervals
and regions, we can expect that extreme precip-
itation events observed at various durations will
have similar statistical characteristics, being gov-
erned by homogeneous weather processes.
The interpretation of high H values (e.g., H >

0.8), observed between 1 and several days, de-
pending on the region, is more complex. These
scaling regimes correspond to mean precipita-
tion depth that varies little with duration. This
suggests an important change in precipitation
regimes occurring at some durations included in
the scaling interval. One interesting example was
region SW_Pac (region D) for scaling intervals
of durations longer than 1 day . In this case, the
analysis of the mean number of events per year
sampled in AMS suggested that very few long-
duration extreme events were produced by large-
scale dynamic precipitation systems.
For scaling intervals of durations longer than 4
days, scaling exponents seemed to converge to ap-
proximately 0.7 for all regions, except west coast
regions (regions A1, A2, and D).
These results suggest that SS represents a rea-
sonable working hypothesis for the development
of more accurate IDF curves. This may have
important implications for infrastructure design
and risk assessment for natural ecosystems, which
would benefit from a more accurate estimation
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of precipitation return levels. Besides, the spa-
tial distribution of the scaling exponent and its
dependency on climatology should be taken into
account when defining SS duration intervals for
practical estimation of IDF. The accuracy of the
SS approximation may in fact depend on the
range of considered temporal scales. Equally crit-
ical, estimated H values were found to gradually
evolve with the considered scaling intervals. In
this respect, interesting extensions of the analy-
sis should consider methods for the quantification
of the uncertainty in H estimations as well as
the possibility of modeling the scaling exponent
as a function of both the observational duration
and the AMS distribution quantile/moment or-
der, i.e. by the use of a multiscaling (MS) frame-
work for IDFs. Equally important, the events
sampled by the AMS also showed different statis-
tical features within different geographical regions
and some specific results [e.g., for the SW_Pac
region] stimulate the interest for an analysis of the
scaling property of extreme precipitation by the
use of a temporal stochastic scaling approach.
The evaluation of SS model performances under
the assumption of GEV distributions for AMS in-
tensity was then performed. Results indicate that
the proposed SS GEV models may lead to a more
reliable statistical inference of extreme precipita-
tion intensity than that based on the conventional
non-SS approach. In particular, a better assess-
ment of the GEV shape parameter seems possible
when pooling data from several durations under
the scaling hypothesis. The use of the SS approx-
imation may introduce biases in high quantile es-
timates when AMS distributions move drastically
away from perfect scale invariance (short dura-
tions and/or longest scaling intervals). Nonethe-
less, decreases in the SS GEV RMSE with re-
spect to non-SS GEV models for d1 longer than

a few hours and/or scaling intervals shorter than
24 durations indicate that quantile errors in IDF
estimates can be generally reduced.
Caution is advised when interpreting these results
due to the fact that high order empirical quantiles
were used as reference estimates of true Xd quan-
tiles, which could be a misleading assumption es-
pecially when available AMS are short. More-
over, two important limitations of the presented
SS approach must be stressed. Firstly, a more
comprehensive assessment of the scaling exponent
uncertainty and of the influence of dataset charac-
teristics on the estimation of AMS simple scaling
is recommended for a reliable estimation of Sim-
ple Scaling IDF curves. Secondly, the proposed
model relies on the implicit hypothesis of station-
arity of AMS over the observed period while grow-
ing evidence supports the ongoing changes in ex-
treme precipitation intensity, frequency, duration,
and spatial patterns as a result of climate change
[e.g, Hartmann et al. 2013; Westra et al. 2014;
Donat et al. 2016]. In particular, short duration
extreme rainfall is expected to respond to global
warming with a different sensitivity to tempera-
ture than those expected at daily or longer time
scales [e.g, Westra et al. 2014; Lenderink and At-
tema 2015; Wasko and Sharma 2017; Barbero et
al. 2017] which implies a change in the temporal
scaling properties of precipitation over time.
Hence, considering these limitations and our gen-
eral results, any future extension of this study
should investigate the possibility of introducing
spatial information in scaling models as well as
the characterization of possible evolution of the
scaling exponent in a warmer climate in order
to identifying valuable approaches allowing non-
stationarity of SS model parameters.
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Résumé

La caractérisation des précipitations extrêmes à de fines échelles spatiales et temporelles représente
un défi majeur en sciences hydro-climatiques. En effet, de larges incertitudes affectent l’estimation
des précipitations à partir des données disponibles. Comparer la structure spatio-temporelle des
précipitations extrêmes estimées à partir de différents jeux de données devient ainsi crucial et constitue
une étape essentielle dans l’évaluation des modèles climatiques.
Cette étude vise deux objectifs spécifiques. Premièrement, l’analyse s’intéresse à la comparaison
des propriétés statistiques (les distributions de probabilité et les cycles annuels et diurnaux) des
précipitations extrêmes extraites à plusieurs échelles spatio-temporelles et à partir de plusieurs jeux
de données. Plus précisément, des séries simulées issues du Modèle Régionale Canadien du Climat
(MRCC5), le jeu de données du satellite CMORPH v1.0 CRT avec correction du biais, le jeu de
donnée Multi Source Weighted-Ensemble Precipitation MSWEP v2 ansi qu’une simulation de 13 ans
du modèle à haute résolution spatial WRF v3.4.1 sont considérés, en plus que des séries provenant
de stations météorologiques.
Deuxièmement, l’étude propose et évalue la validité statistique de modèle synthétique pour décrire
la structure spatio-temporelle des Maxima Annuels (AM) de précipitations pour des jeux de données
sur grille. L’analyse est effectuée pour la période 1980-2013 dans le nord-est de l’Amérique du Nord.
Les résultats montrent que la simulation du MRCC5 piloté par la réanalyse ERA-Interim reproduit
adéquatement les quantiles des AM pour des courtes durées (p. ex. inférieures à 3h) ainsi que les cycles
journaliers et annuels des extrêmes de précipitation. L’analyse illustre aussi certains impacts que les
caractéristiques de base des données considérées (p. ex. leurs résolutions spatiales et temporelles)
peuvent avoir sur l’estimation des lois d’échelle spatio-temporelles (Spatio-Temporal Scaling, STS)
des précipitations extrêmes. Les impacts des erreurs d’échantillonnage et de la variabilité locale
sur les estimations du STS sont aussi évalués en utilisant les 50 membres d’un grand ensemble
climatique simulé par le MRCC5. Les résultats montrent que moyenner les estimations temporelles
des lois d’échelle obtenues sur plusieurs membres du MRCC5 permet de réduire l’incertitude locale
et d’estimer de façon robuste les propriétés de changement d’échelle spatio-temporelle des AM.
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Abstract

The characterization of extreme precipitation at fine spatial and temporal scales represents a paramount
challenge in hydro-climate sciences due to large uncertainties that affect the precipitation estimation
from available datasets. Comparing the spatio-temporal structure of precipitation extremes esti-
mated from different datasets is thus crucial and represent an essential step for the evaluation of
climate models. This study aims at: i) comparing daily and sub-daily extreme precipitation sta-
tistical properties (probability distribution and annual and diurnal cycles) estimated from series
simulated by the Canadian RCM version 5 (CRCM5) with the corresponding estimations obtained
from meteorological stations and three gridded datasets (the bias-corrected satellite CMORPH v1.0
CRT dataset, the Multi-Source Weighted-Ensemble Precipitation dataset, MSWEP v2, and a 13-year
convection-permitting WRF v3.4.1 simulation); and ii) proposing a synthetic model describing the
spatio-temporal structure of Annual Maxima (AM) precipitation for gridded datasets. The analysis
is conducted for the 1980-2013 period over the north-east part of North America. The results showed
that the ERA-Interim driven CRCM5 simulation well reproduced sub-daily extreme quantiles and
AM rainfall daily and annual cycles. The analysis also illustrated the influence of basic dataset char-
acteristics (e.g., spatial and temporal resolutions) on the spatio-temporal scaling (STS) of extreme
precipitation. The impacts of sampling errors and local variability on the STS estimates was then
assessed using the 50 member CRCM5 large ensemble (CRCM5-LE). Results show that averaging
temporal scaling estimates from various CRCM5-LE members allows to reduce local uncertainty and
robustly estimate AM spatio-temporal scaling properties.

2.1 Introduction

Heavy precipitation may have severe and threat-
ening impacts on human societies and natural
ecosystems [e.g., Seneviratne et al. 2012; Good-
ess 2013]. Moreover, as important changes in
the frequency, duration, and spatial distribution
of extreme precipitation events are expected at
global and regional scales [e.g., Hartmann et al.
2013; Dai et al. 2017; Dwyer and O’Gorman 2017],
the need for an accurate characterization of ex-
treme rainfall across various spatial and temporal
scales becomes even more important. However,
such an objective is still challenging, primarily
because of deficiencies in available datasets [Wes-
tra et al. 2014; Herold et al. 2017]. Sparse net-

works and short records prevent a comprehensive
characterization of the complex spatial structure
and the intermittent temporal patterns of extreme
precipitation events [Grimaldi et al. 2015; Tren-
berth et al. 2017]. Equally important, the biases
and large uncertainties related to precipitation
measurements [e.g., Sikorska and Seibert 2016],
data interpolation techniques and representative-
ness errors [Tustison et al. 2001], as well the in-
homogeneity of observed records [e.g., Hofstra et
al. 2008], must be considered when using gridded
datasets and reanalyses [Tapiador et al. 2017].

In this context, Regional Climate Models (RCMs)
represent an interesting option to access climate
information about extreme rainfall since they pro-
vide precipitation series with complete and physi-
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cally coherent spatial and temporal coverage over
large regions [Flato et al. 2013]. Increasing RCM
spatial resolution and improvements in the repre-
sentation of key physical processes led to signifi-
cant advances in RCM ability at simulating key
features of precipitation, such as the annual cycle
and the statistics of daily extremes [e.g., Prein et
al. 2015; Lucas-Picher et al. 2017]. With spatial
resolutions typically ranging from 12 to 50 km
state-of-the-art RCMs allow for a more realistic
representation of surface forcings, such as orogra-
phy and coastlines, and small scale climate and
weather processes [e.g., Rummukainen 2016; Fos-
ser et al. 2017].
However, RCMs may still display important in-
accuracies in the simulation of sub-daily rainfall
characteristics (e.g., diurnal cycle and hourly ex-
tremes) that have been generally ascribed to the
inadequate representation of many important pro-
cesses (e.g. clouds dynamics) at the sub-grid scale
[e.g., Westra et al. 2014; Cavicchia et al. 2016; Liu
et al. 2017]. Promising approaches for overcoming
these inaccuracies rely on the use of Convection-
Permitting Models (CPM) [e.g., Ban et al. 2015;
Dai et al. 2017]. Running simulations at grid res-
olutions of a few kilometers, CPMs more com-
pletely resolve physical equations of deep convec-
tion [Rasmussen et al. 2017] resulting in a more re-
alistic representation of small-scale processes gen-
erating sub-daily extremes [e.g., Prein et al. 2016;
Kendon et al. 2017]. However, due to their high
computational and storage costs, many crucial as-
pects of CPMs, such as the sensitivity to nesting
and driving strategies, or spatial domain size, re-
main largely unexplored [Prein et al. 2017]. For
the same reasons, relatively few continuous CPM
runs are currently available and are typically re-
stricted to small spatial domains and short time
periods (e.g., 10 years or less) [e.g., Prein et al.

2016; Mantegna et al. 2017]. This prevents a ro-
bust assessment of uncertainties through the use
of classical multi-model and/or multi-member ap-
proaches [Kendon et al. 2017; Gadian et al. 2017].

As part of Climate change and hydrological Ex-
tremes (ClimEx) project, a large ensemble of
high-resolution (0.11◦ lat-lon) simulations has
been produced for two spatial domains: one cov-
ering the north-east part of North America [Fig.
2.1a] and one covering most of Europe [see Leduc
et al. 2019, Fig. 2]. This 50-member ensemble has
been simulated over the period 1950-2100 through
the use of the 5th generation Canadian Regional
Climate Model (CRCM5) [Martynov et al. 2013;
Separovic et al. 2013] and is hereinafter called
CRCM5 Large-Ensemble (CRCM5-LE).

Previous investigations demonstrated the ability
of CRCM5 in reproducing annual and seasonal
mean precipitation, as well as daily and multi-
daily extreme precipitation [e.g., Diaconescu et al.
2016; Whan and Zwiers 2016]. Leduc et al. (2019)
validated CRCM5-LE monthly temperature and
precipitation by comparing the large ensemble
with observational gridded datasets. However, no
comprehensive assessment of the spatiotemporal
characteristics of CRCM5 extreme precipitation
has been provided so far. In particular, evaluating
the relative change of simulated extreme proper-
ties (e.g., quantiles) with the spatiotemporal scale
would be crucial to assess whether the CRCM5 re-
produces the statistical structure of observed pre-
cipitation [Cortes-Hernandez et al. 2016].

Previous studies showed that observed precipita-
tion extremes are generally scale-invariant, mean-
ing that extreme statistical distributions esti-
mated at different spatiotemporal scales can be
related to each other by simple analytical rela-
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tionships (e.g., a power law) [e.g., Menabde et al.
1999; De Michele et al. 2001; Veneziano and Lan-
gousis 2010]. These relationships are generally
referred to as scaling models [Veneziano and Lan-
gousis 2010]. However, while many studies as-
sessed the validity of scale invariance over a wide
range of spatiotemporal scales for observed pre-
cipitation series [e.g., Burlando and Rosso 1996;
Ceresetti 2011; Panthou et al. 2014; Boukhelifa
et al. 2018], investigations of spatiotemporal scal-
ing remain scarce for RCM simulations [Cortes-
Hernandez et al. 2016].

The present study aims at: i) assessing and com-
paring extreme precipitation properties (quan-
tiles, annual and diurnal cycles, and tempo-
ral scaling) from CRCM5 simulations with the
corresponding estimations obtained from mete-
orological stations and three gridded datasets:
the CMORPH bias-corrected satellite dataset
[Xie and Xiong 2011], the Multi-Source Weighted-
Ensemble Precipitation (MSWEP) v2 dataset
[Beck et al. 2017a], and one series simulated by
the convection-permitting Weather Research and
Forecasting model (WRF) [Liu et al. 2017; Prein
et al. 2017]; and ii) propose a synthetic model
that describes the variability of extreme tempo-
ral scaling estimates over a wide range of spa-
tial scale. Characterizing quantile changes across
spatial and temporal scales, the proposed scal-
ing model concisely describes the spatiotempo-
ral structure of precipitation extremes in gridded
datasets.

The paper is structured as follows. Section 2.2
provides information about the datasets used in
this study, while Sec. 2.3 describes the procedure
used to extract rainfall extremes at various spa-
tiotemporal scales. Sections 2.4 and 2.5 define the
statistical indexes used to compare extreme esti-
mates between datasets. Results for the evalua-

tion of gridded datasets against stations are pre-
sented in Sections 2.6 and 2.7, and Sec. 2.8 anal-
yses the spatiotemporal scaling for the CRCM5-
LE. Finally, Sec. 2.9 summarizes the main conclu-
sions with relevant discussions and perspectives
on future work.

2.2 Data and study area

The study area considered corresponds to the
North American simulation domain of the
CRCM5 model for the ClimEx experiment [Fig.
2.1a]. Basic characteristics of the considered
datasets are summarized in Table 2.1.

2.2.1 Meteorological station series

Data from four rain gauge networks operating be-
tween 1900 and 2013 over the study domain were
pooled for the construction of the point-scale ob-
servational dataset: the Daily Maxima Precipi-
tation Dataset (DMPD) and the Hourly Cana-
dian Precipitation Dataset (HCPD) [ECCC; MD-
DELCC] for Canada, and the Hourly Precipita-
tion Data (HPD) and 15-min Precipitation Data
(15PD) [NOAA] for the United States.

Quality check of available records [see Innocenti
et al. 2017 for more details] resulted in the selec-
tion of series with at least 15 years of records and
less than 15% of missing values each year. A total
of 759 stations were therefore selected, 72.2% of
them having both 15PD and HPD series (in the
US) and 2.24% having both DMPD and HCPD
series (in Canada) [blue and red locations in Fig.
2.1b, respectively]. Selected stations are concen-
trated in the southern part of the study domain
[Fig. 2.1b], stations in northern regions having
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Figure 2.1: Spatial domains of gridded datasets and station networks: a) CRCM5 domain with topog-
raphy and relevant boundaries of the WRF and CMORPH domains (MSWEP grid covers the entire
CRCM5 domain); b) stations and available temporal resolution of recorded series: Daily Maxima and
Hourly Canadian Precipitation Dataset (DMPD and HCPD), 15-min and Hourly Precipitation Data
(15PD and HPD); c) undersampled WRF grid.

been excluded since their records only cover the
summer period (generally May to October).

2.2.2 CRCM5 Large-Ensemble

(CRCM5-LE)

Within the ClimEx initiative, 50 CRCM5 v3.3.3.1
runs were produced by downscaling the CanESM2
[von Salzen et al. 2013; Arora et al. 2011] Large
Ensemble (CanESM2-LE) [Sigmond and Fyfe
2016; Fyfe et al. 2017] to a 0.11◦ resolution grid
(≈ 12 km) for the period 1950-2100 [Leduc et
al. 2019]. The 50 independent and equally likely
CanESM2-LE members were generated by apply-
ing random perturbations in cloud-overlap pa-
rameters [Fyfe et al. 2017]. CanESM2-LE consid-
ered observed greenhouse gas, aerosols, and land-
use emissions up to the year 2005 and radiative
forcing from the RCP8.5 for the 2006-2100 pe-
riod [Sigmond and Fyfe 2016; Meinshausen et al.
2011]. Hourly precipitation series simulated over
the 1954−2099 period were available for 280×280
grid points over northeast North-America [Fig.

2.1a]. The reader is referred to Martynov et al.
(2013) and Separovic et al. (2013) for specific de-
tails about CRCM5, and to Leduc et al. (2019)
for the CRCM5-LE simulation set-up.

An additional CRCM5 simulation was also pro-
duced using the European Centre for Medium
range Weather Forecast (ECMWF) ERA-Interim
reanalysis [Dee et al. 2011] as atmospheric lat-
eral CRCM5 boundaries for the 1979-2013 pe-
riod [Leduc et al. 2019]. Monthly climatologies of
precipitation and temperature from the CRCM5-
LE and one ERA-Interim driven simulation (here-
after referred to as ERA-CRCM5) have been val-
idated against observational gridded datasets by
Leduc et al. (2019). In the present study, the
ERA-CRCM5 simulation was used to evaluate the
performance of CRCM5 over the 1981-2013 pe-
riod.
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2.2.3 Convection-permitting WRF

simulation

The Weather Research and Forecasting (WRF)
model, designed and operated by the National
Center for Atmospheric Research (NCAR) [Ska-
marock et al. 2008], has been recently configured
into a regional climate model with a single compu-
tational domain of 1360×1016 grid boxes covering
much of North America [Liu et al. 2017]. For this
experiment, a 13-year WRF (version 3.4.1) sim-
ulation was performed by dynamically downscal-
ing the ERA-Interim reanalysis to a 4-km reso-
lution grid from October 2000 to September 2013
[Liu et al. 2017]. Modelling and simulation details
are provided in Prein et al. (2017) and Liu et al.
(2017).

First evaluations showed good performances of
the WRF simulation in capturing the frequency
and distribution of seasonal and annual precipi-
tations over most of the contiguous US, as well as
in simulating orographic precipitation over com-
plex terrain [Liu et al. 2017; Dai et al. 2017; Prein
et al. 2017].

WRF precipitation series were extracted from
January 2001 to September 2013 for land grid
boxes within the CRCM5 domain after the with-
drawal of 50-grid-point buffer due to some border
effects observed at northern and eastern bound-
aries of the WRF domain [e.g., Fig. S1-S2 in the
Supplementary material].

2.2.4 CMORPH: bias-corrected satel-

lite dataset

The Climate Prediction Center (CPC) morphing
technique (CMORPH) satellite analysis combines

observations from multiple low-orbit microwave
satellites (≈ 12 km x 15 km resolution) to pro-
duce high resolution precipitation estimates at a
nearly global scale (60◦N and 60◦S) [Joyce et al.
2004; Xie and Xiong 2011]. Recently, Xie et al.
(2017) reprocessed the CMORPH series through-
out the entire record period (January 1998 to De-
cember 2016) to get a homogeneous integration of
the purely satellite-based estimates, resulting in
the CMORPH v1.0 CRT bias corrected dataset at
a 8km-30min resolution. Bias correction for land
grid boxes consisted in a Probability Distribution
Function (PDF) matching at 0.25◦ with the CPC
daily gauge analysis [Xie et al. 2010] plus an ad-
justment at coarser spatiotemporal resolution to
account for the year-to-year variability [Xie et al.
2017].

The reprocessed bias-corrected CMORPH, has
been validated against other observational prod-
ucts demonstrating the ability of representing
sub-daily variability of rainfall during the warm
season over land [Xie et al. 2017]. However, the
underestimation of the wintertime precipitation
linked to satellite deficiencies in detecting snow-
fall [Xie and Joyce 2014] is a major shortcoming
that must be considered when using CMORPH in
high-latitude land and/or during the cold seasons
[Trenberth et al. 2017].

2.2.5 Gridded MSWEP dataset

The Multi-Source Weighted-Ensemble Precipita-
tion (MSWEP) v2 [Beck et al. 2017b and 2017b]
dataset blends observations from two global
gauge-based datasets (CPC Unified v1.0 and real
time, Xie et al. 2007 and Chen et al. 2008, and
GPCC Full Data Reanalysis and First Guess v7,
Schneider et al. 2014), three quasi-global satel-
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Table 2.1: Precipitation datasets and their basic characteristics.

Dataset Description Period Spatio-temporal
resolution

Reference

Meteorological
stations

HCPD and
DMPD series

1940 - 2013

1h and Daily
Maxima∗

ECCC
MDDELCC

15PD and
HPD series

15min
and 1h

NOAA∗∗

CRCM5-LE
[50 members]

CanESN2-LE
driven members

1954 - 2099
0.11◦ - 1h,
(≈ 12km)

Leduc et al.,
2019

ERA-CRCM5
ERA-Interim

driven simulation
1981 - 2013

WRF ERA-Interim
driven simulation

Oct. 2000 -
Sep. 2013

4km - 1h Liu et al. (2017)

CMORPH
[v1.0 CRT]

Bias-corrected
satellite analyses

1998 - 2016 8km - 30min Xie et al. (2017)

MSWEP [v2]
Multi-source

gridded dataset
1979 - 2016 0.1◦ - 3h,

(≈ 11km)
Beck et al. (2017b)

and [2017b]
∗ Daily maxima depth over a 24h window beginning at 08:00 (LT) for durations 1, 2, 6, and 12h

∗∗ http://www.ncdc.noaa.gov/data-access/land-based-station-data

1940 1960 1980 20202000 2100...1950 1970 1990 2010

ERA-CRCM5

Meteorological	stations

MSWEP	

CMORPH

WRF

50	CRCM5-LE	members	

4km

8km

Point	
scale

12km

11km

Analysis	of	
gridded	dataset	
performances

Analysis	of	
CRCM5-LE

Simulated
Observation
based	

Figure 2.2: Spatial resolution (y-axis) and covered period (x-axis) of datasets; the black rectangle
defines the period (1940-2016) and identifies the datasets used for the analysis on gridded dataset
performance [see Sec. 2.6], while the gray rectangle defines the period (1980-2015) considered for the
analysis of the CRCM5-LE [Sec. 2.8].
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lite analyses (CMORPH v1.0, GSMaP-MVK v5-
v6, Ushio et al. 2009 and TMPA 3B42RT v7,
Huffman et al. 2007), and two reanalyses (ERA-
Interim and JRA-55, Kobayashi et al. 2015). Con-
structed through a multi-stage merging procedure
of various datasets at different spatiotemporal res-
olutions, the MSWEP is a global precipitation
dataset spanning the period 1979-2016 on a 0.1◦

grid with a 3h temporal resolution. A detailed de-
scription and preliminary evaluation of MSWEP
can be found in Beck et al. (2017b) and [2017b].

The MSWEP dataset outperformed other satel-
lite and reanalysis datasets in terms of the 3-day
and monthly precipitation patterns and for vari-
ous precipitation indices [Beck et al. 2017b]. How-
ever, considering that the quality of satellite data
for northern regions may be questioned in some
instances, MSWEP performance for precipitation
extremes over our study area must also be evalu-
ated.

2.3 Extraction of Annual Max-

ima series at various spa-

tiotemporal scales

Let d0 represent the native temporal resolution
and r0 the nominal spatial resolution of each
dataset (consider r0 = 0 for stations). From the
series of precipitation depth available at (r0, d0),
simulated and observed extremes were assessed
through the Annual Maxima (AM) series at vari-
ous spatiotemporal scales (r, d). In the remainder
of the paper, subscripts for r and d are omitted if
referring to a generic spatial and temporal scale.

The aggregated spatial scales rk = k · r0, with
k = 1, 2, . . . , K, were used and they are expressed

in km, for simplicity. The coarsest resolution was
set to rK ≈ 72km, with the number of considered
spatial scales ranging from 6 for CRCM5 simula-
tions (with KCRCM5 = 6) to 12 for WRF (with
KWRF = 18). The list of spatial scales considered
for each dataset appears in Table 2.2.

For each time step, precipitation series were ag-
gregated at scales rk > r0 with a fixed window
in space, i.e. computing the average precipita-
tion depth values for k × k contiguous grid boxes
with no overlap between coarser scale grid boxes.
Dataset grids at scales rk > r0 were defined start-
ing from the south-west corner of the native grid
and aggregating the grid boxes toward North-
East. This aggregation procedure most realisti-
cally mimics the resolution changes for gridded
datasets [Eggert et al. 2015]. For each aggrega-
tion levels, grid boxes associated to the ocean and
water bodies were removed, and spatially aggre-
gated series were discarded if computed over less
than 75% native land grid boxes.

A moving window in time was then applied to
temporally aggregate precipitation depth series at
durations d = 1, 2, 3, 4, 6, 12, 18, 24, 36, 48, 60, and
72h. (d = 1, 2, and 4h were not considered for
MSWEP since d0 = 3h). Finally, the AM series
at each spatiotemporal scale (r, d) were extracted.

For the 565 stations having two recorded series
[blue and red points in Fig. 2.1b], the maximum
of the two AM values was retained for each com-
mon year and duration d.
Moreover, to reduce the computational time, the
WRF 4km-grid was under-sampled with a ratio
1/10 leading to the selection of ≈ 26500 randomly
distributed points. All WRF grid boxes contain-
ing one or more stations were also retained [see
Fig. 2.1c].

The dates and day time of occurrence of the
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Table 2.2: Spatial scales considered for each gridded dataset.

k No. of scales
rk, spatial
resolution

CRCM5-LE∗ 1, 2, . . . , 6 6 12, 24, . . . , 72km

WRF
1, 2, . . . , 6 and

12
4, 8, . . . , 24km

8, 10, 12, . . . , 18 and 32, 40, . . . , 72km
CMORPH 1, 2, . . . , 9 9 8, 16, . . . , 72km
MSWEP 1, 2, . . . , 6 6 11, 22, . . . , 66km

∗ Includes ERA-CRCM5

AM were extracted for each spatiotemporal scale,
year, and location (i.e., a station or grid box) con-
sidering the AM starting hour (UTC-5).

Since the day time was not available for the
DMPD network, such analysis was not performed
for stations or years with only DMPD records.
Some problems related to the coarse measurement
resolution of the tipping-bucket gauges recording
15PD and HPD series were also observed. Since
their typical tip resolution (i.e. the minimum
recorded non-zero value) is 2.54 mm (i.e. 1/10
in), only a few distinct rainfall depth values can
be recorded at these stations at their native tem-
poral resolution d0 (15min or 1h) [NOAA data
online documentation; Innocenti et al. 2017]. This
results in numerous ties in recorder series and
therefore many occurrences of the same AM val-
ues for some specific years, making therefore im-
possible to uniquely identify the date of AM oc-
currences for those years. Some preliminary anal-
yses showed that the numbers of ties in AM series
are important for 15PD and HPD stations for du-
ration d ≤ 6h [see Fig. S9 of the Supplementary
material]. To cope with this issue, date and time
of all AM ties were also extracted and included in
AM occurrence analysis.

2.4 Statistical characterization

of AM series

Let X = (x1, x2, . . . , xn) represent the series of
AM precipitation depths [mm] at the spatiotem-
poral scale (r, d) for a generic location, namely a
station or grid box. AM probability distributions
were estimated for each X through the empiri-
cal cumulative distribution function (cdf) F̂ (x)
[Hazen plotting position; Cunnane 1978]. The
X quantiles x̂q were then computed from F̂ (x)
for all AM series with n > 1.2 q observations,
where q = (1− p)−1 is the return period [yr] and
p = F̂ (xq) ≥ 0.5 (i.e., q ≥ 2 yr). Specifically, only
return periods q ≤ 10yr were considered for the
shortest available series (13-yr WRF and 18-yr
CMORPH series). For instance, only moderate
extremes of return period equal or less than 10
years (p ≤ 0.9) were computed for WRF series.
Similarly, stations with AM series shorter than
1.2 q years were not considered for estimating the
q-yr quantiles x̂q.

2.4.1 Annual and daily cycles

Many different approaches have been proposed in
the literature to estimate the annual and daily

108



Art. 2. STS of extreme precipitaton

precipitation cycles [e.g., Dai et al. 1999; Cortes-
Hernandez et al. 2016]. In the present study, the
annual cycle has been assessed at each location
through the relative monthly frequencies, fm, of
AM occurrences. Each fm value was estimated
by adding the number of hours that each AM be-
longed to month m. If a given AM overlapped
two consecutive months, the total AM duration,
d, was split between these two months.

Similarly, the relative hourly frequencies, fh, h =
0, 1, 2, . . . , 23, of AM occurrences were used to
evaluate the daily cycles for durations 1 < d <

24h. Each AM of duration d contributed to the
frequencies of exactly d hourly bins of the 24h
histogram and was split if overlapping two con-
secutive days.

2.4.2 Spatial and temporal scaling

The temporal scaling of AM was evaluated con-
sidering the changes of AM quantiles with the du-
ration and estimated through the following regres-
sions:

ln(x̂r,d) = αr + βr ln(d), (2.1)

where x̂r,d represents the q-yr quantile estimated
at the spatiotemporal scale (r, d), and the index
r for αr and βr indicates that the model was es-
timated for each spatial scale r = r0, r1, . . . , rK .
For simplicity, the index q has been omitted from
Eq.(2.1) and in the rest of the paper. The Theil-
Sen estimator [Sen 1968] was used to estimate
regression parameters since more appropriate for
small samples [e.g., O-Gorman 2015; Barbero et
al. 2017].

TheK temporal scaling slopes βr represent the av-
erage relative change of x̂r,d for a relative change
in duration, while the intercept αr represents an

estimate of ln(x̂r,1h). Hence, small βr correspond
to similar AM distributions over different dura-
tions, while βr close to 1 imply larger variations
in depth quantiles as the duration is changed.
Also, for each quantile order, station β0 estimates
correspond to the slopes of the Depth-Duration-
Frequency (DDF) curves [Burlando and Rosso
1996; Koutsoyiannis et al. 1998], and βr are analo-
gous to the simple scaling exponents βintr = βr−1
that have been widely used for describing the tem-
poral scaling of AM precipitation intensity distri-
butions [e.g., Menabde et al. 1999; Blanchet et al.
2016 for point-scale precipitation; Cannon and In-
nocenti 2018 for gridded dataset estimates].

Previous studies showed that temporal scaling
estimations convey synthetic climatological in-
formation about extreme precipitation and geo-
graphical and climatological features of the study
region [e.g., Ceresetti et al. 2010; Innocenti et al.
2017; Casas-Castillo et al. 2018]. Moreover, some
studies highlighted that different weather regimes
typically lead to distinctive scaling exponent val-
ues for short (e.g., hourly and sub-hourly) and
daily and longer durations [e.g., Borga et al. 2005;
Eggert et al. 2015]. Preliminary analysis sug-
gested the existence of two scaling regimes for the
available datasets [see Fig. S14 in the Supplemen-
tary material], although the duration at which the
scaling regime changes may depend on the loca-
tion. Therefore, durations 1h ≤ d < 6h, here-
inafter Short Durations (SD), and 6h ≤ d ≤ 72,
hereinafter Long Durations (LD) were analyzed
separately. Only LD estimation was considered
for MSWEP, since only one duration (d = 3h)
was available for SD.

Results presented in Sec. 2.7 also suggest that re-
gional averages of βr values vary linearly with the
spatial scale r. To evaluate the validity of this
linear approximation at the local scale, the fol-
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lowing Spatio-temporal Scaling (STS) model was
considered at each grid box:

βr = h0 + h1r. (2.2)

The intercept h0 represents the temporal scal-
ing slope extrapolated at the station scale (i.e.,
r = 0) from available coarser spatial scales
r = r0, r1, . . . rK , while h1 expresses the aver-
age change of βr associated with a unit spatial
scale change (i.e, 1km). Combining Eq.(2.2) and
Eq.(2.1), the q-yr quantile at the spatiotemporal
scale (r, d) can be expressed as:

ln(x̂r,d) = ln(x̂r,1h) + (h0 + h1r) ln(d). (2.3)

Considering that Eq.(2.3) reduces to ln(x̂0,d) =
ln(x̂0,1h) + h0 ln(d) for r = 0, a straightfor-
ward expression for the spatiotemporal scaling of
AM quantiles emerges when writing the difference
ln(x̂r,d)− ln(x̂0,d) as:

ln
(
x̂r,d
x̂0,d

)
= ln

(
x̂r,1h
x̂0,1h

)
+ h1 r ln(d) (2.4)

The ratios
(
x̂r,d
x̂0,d

)
and

(
x̂r,1h
x̂0,1h

)
between areal

and point rainfall quantiles are referred to
as Areal Reduction Factors (ARF) [e.g., Siva-
palan and Blöschl 1998; Svensson and Jones 2010]
for durations d and 1h. According to Eq.(2.4),
h1 thus represents the variation of quantile ARFs
corresponding to changes in the spatiotemporal
scale (r, d) with respect to the hourly ARF and
may be possibly used to extrapolate the ARF be-
yond the empirically available range of r and d.

In previous studies, ARF values were found
to vary with the geo-climatic characteristics
of the region under study [e.g., Omolayo

1993; Asquith and Famiglietti 2000], the sea-
son [e.g., Allen and DeGaetano 2005], and in
some specific cases with the return period [e.g.,
Asquith and Famiglietti 2000; Allen and DeGae-
tano 2005]. These results were attributed to the
different spatial correlation structures of precipi-
tation characterized by different weather regimes.
For similar reasons, the ARF are expected to in-
crease with duration d [e.g., NERC 1975; Mineo
et al. 2018]. Some authors noted that the char-
acteristics of the precipitation datasets (e.g., the
density of the recording network or series length)
and the methods used for extracting the extremes
strongly affect ARF properties and their depen-
dence on d [Kursinski and Zeng 2006; Svens-
son and Jones 2010]. It is thus crucial to assess
the validity of Eq. (2.2)-(2.4) for a wide range of
spatiotemporal scales and for various datasets.

The statistical significance of the h0 and h1 pa-
rameters [Eq.(2.2)] was tested though a linear re-
gression permutation test [Anderson and Robin-
son 2001]. This test considers the null hypothesis
H0 : h1 = 0, under which all the K! random
pairs of the linear model response, βr, and the
predictor, r, are equally probable. The distri-
bution of the STS model parameters under H0

can be thus simulated by repeating the estima-
tion of Eq. (2.2) for a large number of permu-
tations of βr while r is fixed to the original val-
ues r0, r1, . . . , rK . For CRCM5 and MSWEP, all
the available K! = 720 permutations were used,
while for WRF and CMORPH a subset of 1000
random permutations was considered. Since h1

values were expected to be positive according to
some preliminary results [see Sect. 2.7], the one-
tailed alternative hypothesis H1 : h1 > 0 was
used.
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2.5 Evaluating dataset perfor-

mances

Two major issues must be considered when assess-
ing climate model performance: the spatiotem-
poral resolution mismatch between observed and
simulated series [Chen and Dai 2017] and the
choice of adequate performance metrics [e.g.,
Chardon et al. 2016; Herold et al. 2017]. For
instance, classical point-to-grid comparison of
RCMs against stations makes it difficult to sepa-
rate the relative contributions of spatial mismatch
and structural model error, while averaging the
performance metrics over coarse resolution grids
may smooth local effects [Tapiador et al. 2017].
Therefore, the use of native grids for both ob-
servational and simulated datasets may be jus-
tified for local comparison at sub-daily scales
[Diaconescu et al. 2016; Lucas-Picher et al. 2017].

The analysis was thus carried out in two steps.

i) Comparison of grid box and station AM char-
acteristics at native resolution: the reanalysis
driven CRCM5 simulation was first compared
to the other datasets, except CRCM5-LE. Series
covering the period 1940-2016 were considered
[black rectangle in Fig.2.2a]. Each station was
associated to the nearest grid box or discarded if
their distance was larger than

√
2r. The selected

grid box-station pairs are hereinafter identified
by the station coordinates [lat-lon] and referred
to as L1 locations.

ii) AM spatiotemporal scaling for gridded
datasets: Spatio-temporal scaling models were
estimated and validated at each grid box for all
gridded datasets, including CRCM5-LE. To this
end, each grid box at native resolution r0 was
associated to the overlapping grid boxes at each

coarser spatial scale rk. Also, CRCM5-LE esti-
mates over the 1980-2015 period [gray rectangle
in Fig. 2.2a] were considered and compared to
ERA-CRCM5 over the entire spatial domain.

Gridded dataset performances were first assessed
comparing point and areal estimates of AM quan-
tiles using the following relative difference:

Bd(x̂) = x̂s − x̂g
x̂s

(2.5)

where x̂s and x̂g represent the q-yr return period
quantiles estimated, respectively, at station s and
its nearest grid box g for any relevant duration
d. For readability, r0, q, and d indexes have been
omitted for x̂s and x̂g and no location index is
used for Bd(x̂) and all following metrics. Bd(x̂) is
hereinafter referred to as quantile relative bias, al-
though non-zero Bd(x̂) values may be attributed
to model biases, as well as to representativeness
errors, namely errors that derive from the tempo-
ral and/or spatial resolution mismatch [Tustison
et al. 2001].

A permutation test was used to estimate the sta-
tistical significance of quantile biases [Good 2013].
The null hypothesis of the permutation test as-
sumed the equality of the station and grid box
distributions of X, i.e. H0 : F̂s(x) = F̂g(x) ∀x ∈
R+, which also implies the equality of quantiles
for each return period: H0 : x̂s = x̂g. To con-
struct the Bd(x̂) distributions under H0, 5000 it-
erations were used for each station-grid box pair.

Station and gridded dataset annual cycles of
AM were compared using the Perkins Skill Score
(PSS) [Perkins et al. 2007], defined at each loca-
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tion as:

SM =
12∑
m=1

min{fm,s, fm,g} (2.6)

with fm,s and fm,g corresponding, respectively,
to the relative frequency of AM occurrences at
station s and at the corresponding grid box g for
month m. Eq.(2.6) therefore measures the com-
mon area between the two cycles and SM = 1
corresponds to a perfect match between monthly
frequencies fm,s and fm,g, while a value of SM
close to 0 means small overlapping between fm,s
and fm,g curves.

The PSS was then adapted to measure the overlap
between station and gridded dataset daily cycles:

SH =
23∑
h=0

min{fh,s, fh,g} (2.7)

where fh,s and fh,g are the relative hourly fre-
quency of AM occurrences at station s and corre-
sponding grid box g.

2.6 Gridded dataset and sta-

tion AM statistics at native

resolution

The spatial distributions of AM quantiles were
consistent across the datasets, with important
SW-NE gradients across the study domain [see
Fig. S1-S5 in the Supplementary material for
some examples]. Local effects were observed for
longer durations around the Great Lakes and the
northern Atlantic coast for the two RCMs, while
clusters of spuriously high AM values were ob-
served in the northern areas for CMORPH.

2.6.1 Relative differences in AM

quantiles

Figure 2.3 a-d shows, for each duration (x-axis),
the distributions over L1 locations of the rela-
tive bias, Bd(x̂), between station and gridded
dataset AM quantiles at their native resolution.
For each return period, Bd(x̂) distributions gen-
erally moved from the positive to negative half-
plane when increasing d from 1h to longer dura-
tions. This means that gridded datasets under-
estimate station quantiles for the shortest dura-
tions, whereas they generally overestimated sta-
tion rainfall extremes for temporal scales longer
than few hours.
ERA-CRCM5 (and WRF) showed good agree-
ment with stations for d = 1h with |B1h(x̂)| ≤
0.05 for more than 50% (53%) of L1 locations
for q = 2yr [Fig. 2.3a-b, 1st col.]. As showed
by the solid black line in Fig. 2.3a, the ERA-
CRCM5 median relative underestimation of sta-
tion quantiles is between 10% and 20% for d ≥ 3h
for all return periods. Conversely, beside a large
spread across positive and negative values, the
median of the WRF Bd(x̂) distribution is close
to zero for all durations and return periods. Also,
while WRF biases were statistically significant for
a small fraction of L1 locations (fH1 ≤ 0.18 for all
d and q), corresponding fractions are much more
important for ERA-CRCM5 (0.14 ≤ fH1 < 0.65
for q = 2yr and 0.05 < fH1 < 0.38 for q ≥ 10yr),
with the highest fH1 values at daily and longer
durations.

CMORPH and MSWEP biases were important
for durations close to their temporal resolution
but rapidly decrease as d increases, being approx-
imately centered around zero for long durations
and smaller than model biases for d ≥ 12h [Fig.
2.3c and d]. Median Bd(x̂) curves showed impor-
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Figure 2.3: Distribution over L1 locations of the relative differences, Bd(x̂), between station and grid
box 2-yr (1st col), 10-yr (2nd col), and 25-yr (3rd col) AM quantiles estimated at the native dataset
resolution for: a) ERA-CRCM5; b) WRF; c) CMORPH; and d) MSWEP. The red dashed curves
(y-axis on the right) corresponds to the fractions, fH1 , of L1 locations with statistically significant
bias [i.e. station-grid box pairs rejecting the null hypothesis H0 : Bd(x̂) = 0]. The total number of L1
locations available in each case is indicated at the bottom-left corner of each panel.

tant CMORPH underestimations at the hourly
scale with Bd(x̂) ≥ 0.2 for more than 50% of L1
locations and both periods.
Compared to the other gridded datasets, MSWEP
displayed the highest relative underestimations of
AM quantiles for d ≤ 6h while at daily and longer
durations it presented the smallest bias and the
lowest fH1 fractions [Fig. 2.3d].

Fig. 2.4 displays the spatial distributions of Bd(x̂)
values estimated for the return period q = 10yr
and d = 1, 3, and 24h. Positive significant biases
were found in the southern and western areas for
the two models for d ≤ 3h [Fig. 2.4a-b]. For

ERA-CRCM5, in particular, negative Bd(x̂) val-
ues are concentrated in eastern and central areas
for d = 1h and gradually extended to the rest
of the domain as d approaches 24h [Fig. 2.4a].
Conversely, beside presenting a small number of
locations with significant biases for d ≥ 3h, WRF
and CMORPH displayed a clear regional struc-
ture with differences between west (Bd(x̂) > 0
values) and north-east areas, where the Bd(x̂)
are negative and generally significant [Fig. 2.4b-
c]. For d0 = 3h, MSWEP biases are positive
throughout the entire domain, while at the the
daily scale a small number of L1 locations dis-
played the east-west pattern already observed for
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Figure 2.4: Spatial distribution over L1 locations of the relative bias, Bd(x̂), between station and grid
box 10- yr AM quantiles at native dataset resolution for: a) ERA-CRCM5; b) WRF; c) CMORPH;
and d) MSWEP. Smaller points represent locations with no statistically significant bias (i.e. station-
grid box pairs that did not reject the null hypothesis H0 : Bd(x̂) = 0 at the 0.05 significance level).
Percentages of L1 locations with significant relative bias are indicated at the bottom right corner of
each panel.

the other datasets.

Similar results were found for 2-yr and 25-yr AM
quantiles [e.g., Supplementary material, Fig. S6-
S7] and coarser spatial scales. Moreover, us-
ing aggregated measure of gridded dataset per-
formances over all L1 location [e.g., normalized
Root Mean Squared Error, RMSE between station
and grid box quantiles; Fig. S8 in Supplementary
material], ERA-CRCM5 generally outperformed

the other datasets at d0, while the lowest aggre-
gated errors were found for WRF for durations
3h ≤ d ≤ 6h and for MSWEP for d ≥ 12h.

2.6.2 Annual and daily cycles

Figure 2.5 compares station and gridded dataset
annual and daily cycles. Station AM annual
cycles were well reproduced by the two RCMs,

114



Art. 2. STS of extreme precipitaton

M

a)	annual	cycle

ERA-CRCM5

24h

S

0.85

0.95

0.9

1

18h12h6h3h1h

0.875

0.975

b)	daily	cycle

H

Figure 2.5: PSS between station and gridded dataset for a) annual cycles averaged over L1 locations,
SM , and b) daily cycles averaged over L1 locations, SH .

with ERA-CRCM5 displaying the smallest differ-
ences with stations (i.e., highest SM values) for
d ≤ 6h [Fig. 2.5a]. For longer durations, the
two RCMs slightly underestimated winter AM fre-
quencies while WRF anticipated station AM sum-
mer peak for short durations [some fm examples
are showed in Fig. S10 of the Supplementary ma-
terial]. Low SM CMORPH values durations were
due to the too high AM frequencies during winter
and fall and the consequent underestimation of
AM occurrence frequency during summer. This
result is consistent with reported CMORPH bi-
ases and uncertainties in cold conditions [Tren-
berth et al. 2017]. MSWEP adequately repro-
duced station annual cycles, resulting in highest
SM for 6h < d ≤ 24 and very good performance
at daily and longer durations.

As showed by Fig. 2.5b, the two RCMs well repro-
duced observed daily cycles, with ERA-CRCM5
and WRF displaying comparable performance for
all durations. It has to be noted, however, that
hourly AM frequencies presented later peaks com-
pared to stations, namely between 18:00 and 19:00
(17:00 and 18:00) for ERA-CRCM5 (WRF). Con-
versely, as duration increases, station daily cycles

became generally flatter, and AM more frequently
occurred between midnight and 10:00 than in sim-
ulated series. ERA-CRCM5 and WRF AM occur-
rences, instead, clustered around late afternoon
and early night values [e.g., Fig. S11a-b in the
Supplementary material].
For MSWEP the coarse temporal resolution of
this dataset (d0 = 3h) prevented any definite of its
daily cycle, which displayed a 2:00 am peak but
was globally flat (not shown). While CMORPH
slightly outperformed the other datasets for d ≤
4h in terms of SH , it also displayed noisy daily
cycle estimates [e.g., Fig. S11d of the Supple-
mentary material].

2.7 Spatio-temporal scaling of

AM rainfall

Figure 2.6 presents for each return period and
dataset the slopes βr,1 estimated through Eq.
(2.1) for 1h ≤ d < 6h (SD) and 6h ≤ d ≤ 72h
(LD).

As expected, the temporal scaling was weaker for
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LD than SD extremes, and more dispersed sta-
tion β0 distributions were observed for SD com-
pared to LD. Also, the scaling slope values gen-
erally increased with r, and these increases were
more important for SD than LD extremes. In par-
ticular, gridded datasets showed stronger tempo-
ral scaling than stations but the differences be-
tween areal and point-scale scaling slopes were
more pronounced for SD [Fig. 2.6a]. For LD,
βr0 values were generally within the station in-
terquartile ranges [Fig. 2.6b]. As an exception,
MSWEP displayed high LD scaling slopes, with
βr > 0.26 for all r and return periods, possibly
due to its coarse temporal resolution. These re-
sults are consistent with the smoothing of short
duration AM expected as the spatial scale in-
creases. Since SD extremes are more likely asso-
ciated to localized convective events, changes in
AM depth corresponding to duration changes are
more pronounced for coarser spatial scales, which
results in larger βr values as r increases. Also,
WRF displayed larger βr increases with r than
ERA-CRCM5 and CMORPH for SD [Fig. 2.6a],

while the differences between WRF and the other
datasets are less pronounced for LD [Fig. 2.6b].
These results could be explained by the fine na-
tive resolution of WRF, which is expected to have
an impact on fine scale SD AM and/or more ex-
treme events.

Interestingly, the increase of the temporal scaling
slopes with the spatial scale is nearly linear, as
outlined by the good fit of the βr = h0 +h1r lines
[dotted lines in Fig. 2.6] to mean scaling slope
values.

To further investigate the linearity of the tempo-
ral scaling slopes on r, the βr estimated at each
L1 location were linearly regressed on the spa-
tial scale according to Eq. (2.2). The validity
of this STS relationship was then assessed with
a permutation test. Figure 2.7 presents for each
dataset the fraction, fL1, of L1 locations having
significant h1 for common significance levels (i.e.,
α = 0.05 and α = 0.1). Also, as an example of
regression fit evaluation, the fractions of L1 loca-
tions with linear coefficient of determination, R2,
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higher than 0.75 is reported in Fig. 2.7 (red num-
bers) for 10-yr quantiles.
For the two RCMs, SD h1 parameters were signifi-
cantly different from 0 for most L1 locations [Fig.
2.7a]. For instance, fL1 ≥ 90 for WRF at the
0.05 confidence level for all return periods, which
could likely be attributed to the fine WRF spa-
tial resolution and to the large number of spatial
scales available for estimating Eq. (2.2). How-
ever, larger uncertainty is associated with the spa-
tiotemporal LD scaling estimation, resulting in
lower fL1 values for both ERA-CRCM5 and WRF
compared to SD. This is also confirmed by the fact
that only a few L1 locations revealed R2 > 0.75
for the estimation of Eq.(2.2), suggesting poor lin-
ear fit of the spatiotemporal model for LD.

CMORPH and MSWEP showed lower fractions of
significant h1 parameters than RCMs. For LD, in
particular, most of L1 locations rejected the use
of the STS model at typical significance levels,
suggesting that little information can be inferred
from the use of multiple spatial scales for approxi-
mating point-scale DDF curves. A possible expla-
nation is that both CMORPH and MSWEP used
post-processing methods that involve the compu-
tation of rainfall statistics and the adjustment
of the corresponding series at several space and
time aggregations [Xie et al. 2017; Beck et al.
2017a]. For instance, CMORPH bias correction
was applied in various steps at the (0.25◦, 24h)
and coarser resolutions through correction coeffi-
cients computed on neighboring grid boxes [Xie et
al. 2017]. Similarly, the merging of multiple data
sources for MSWEP necessarily involved combin-
ing data at different spatiotemporal resolutions.

As expected, longer return period quantiles gen-
erally had smaller fL1 values than 2-yr AM. These
differences between return periods are particu-
larly obvious for SD [Fig. 2.7a], since the extreme

estimation is, in this case, more strongly impacted
by native resolution and the series length.

2.8 AM statistics for the

CRCM5-LE

The proposed STS model was evaluated using the
CRCM5-LE, considering ensemble mean tempo-
ral scaling slopes. The impact of lateral bound-
ary conditions was also investigated through the
comparison of ERA-CRCM5 and CRCM5-LE es-
timates. The main conclusions of this analysis are
summarized in Tab. 2.3.

2.8.1 CRCM5-LE spatiotemporal

scaling

The estimation of βr was first carried out for
each member and spatial scale r. The ensem-
ble mean of βr parameters was then computed
for sub-groups of 5, 10, and 50 members and then
used to estimate h0 and h1. Sub-groups of 5 (10)
members were constructed considering members
1-5, 5-10, . . . , 45-50 (1-9, 10-19, . . . 41-50).

Figure 2.8 shows the permutation test results for
the STS regressions estimated for the first mem-
ber, all members, and for the first 5- and 10-
member sub-groups. The fraction of grid boxes
with significant h1 increased with the number
of members, showing that local estimation un-
certainty was considerably reduced by averag-
ing βr over various members before applying Eq.
(2.2), especially for SD and high return periods.
For instance, STS parameters were significant for
less than 50% (40%) of grid boxes for SD (LD)
when only the first member was considered for
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Table 2.3: Main results of the comparison between between ERA-CRCM5 and CRCM5-LE.

Statistics Main results
Quantiles Important latitudinal gradient for the relative differ-

ences of the estimates: CRCM5-LE quantiles are smaller
(larger) than ERA-CRCM5 in the south (north-east).
Similar spatial distributions for all d [e.g., Fig. S15 of
the Supplementary material]

Annual cycle More AM ERA-CRCM5 occur in summer compared to
CRCM5-LE for d ≤ 24h; for d > 24h, CRCM5-LE sim-
ulated more AM than ERA-CRCM5 from November to
May. Results varies according to the geographical region
[e.g., Fig. S16 of the Supplementary material].

Daily cycle Minor differences.
Temporal
scaling

Minor differences for SD. CRCM5-LE showed weaker
scaling regimes than ERA-CRCM5 for LD.
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Figure 2.8: Permutation test for Eq.(2.2) for sub-groups of CRCM5-LE members: fraction, fg, of grid
boxes with significant h1 for each return period for a) SD and b) LD.

q = 10yr, while more than 90% of grid boxes had
significant h1 when using 50 members for both
SD and LD [Fig. 2.8a-d]. Also, more than 94%
(74%) of grid boxes had coefficient of determina-
tion R2 > 0.9 for the 50-member estimation of
Eq.(2.3) for SD (LD) and all return periods (not
shown).

Interesting spatial patterns can be observed for
h0 and h1 when the 50-member CRCM5 ensem-
ble is considered [Fig. 2.9]. For SD, lower h0

values were observed for the interior of the do-
main and east of Great Lakes, while the highest
scaling regimes (e.g., h0 ≥ 0.45) were observed
at the southern and northern borders [Fig. 2.9a].
Similar patterns were found for LD, with strong
scaling regimes in south-west and north-east re-
gions [Fig.2.9b]. Very small h0 values were also
estimated in the north-west, between the Great
Lakes and the south coast of the Hudson Bay.
Similar spatial patterns for stations h0 values were
found by Innocenti et al. (2017) in an extensive
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study of rainfall intensity scaling exponents over
North America.

Important NW to SE gradients were observed for
h1 values, with the highest values found over the
Appalachian Mountains, especially for SD [Fig.
2.9c]. This indicates that AM temporal scaling
slopes in southern regions are more sensitive to
changes in the spatial scale than in northern areas,

or, equivalently, that ARFs vary more strongly
with the spatiotemporal scale (r, d) [see Eq.(2.4)].
One possible explanation for these patterns is
that the characteristics and the spatial extent
of weather systems producing short duration ex-
tremes vary with latitude. Conversely, relatively
larger spatial extent is expected for weather sys-
tems generating LD extremes, as well as weaker
changes in weather systems characteristics over
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the CRCM5 spatial domain. This would also ex-
plain smoother latitudinal gradients and weaker
response to topography observed for LD h1 val-
ues.
For h1, the differences between western regions
and the south-east portion of the domain could
also be related to the large-scale circulation pat-
terns which strongly affect the spatiotemporal
structure of precipitation extremes in these areas
[Touma et al. 2018].

As a final note, although the dependence of h0

and h1 on return period should be further inves-
tigated, preliminary analysis showed differences
between STS parameters for q = 2yr, 10yr, and
25yr in some regions. In particular, in areas where
both spatiotemporal parameters are small, h0 and
h1 were found to slightly decrease with increasing
return period [see Fig. S17-S18 of the Supplemen-
tary material].

2.9 Summary and conclusion

Characterizing the spatiotemporal structure of
extreme precipitation is important for many hy-
drological applications and the development of
future projections of extreme precipitation. Be-
fore any projection analysis, it is however crucial
to evaluate the ability of RCMs to simulate sub-
daily and daily precipitation characteristics. Ac-
cordingly, the primary objective of the presented
analysis was to compare the statistical properties
of observed and simulated AM precipitation for
various spatial scales and durations ranging from
1 h to 3 days.
Two ERA-Interim driven simulations, one from
the CRCM5 (ERA-CRCM5) and one from the
convection-permitting WRF model, were evalu-

ated against observational records in terms of
extreme precipitation quantiles, their diurnal and
seasonal cycles, and considering the spatiotempo-
ral temporal scaling of sub-daily and daily AM.
The performances of the bias-corrected satellite
CMORPH dataset and the multi-source MSWEP
dataset were also considered.

At their native spatial resolution, both ERA-
CRCM5 and WRF showed good agreement with
stations for short duration AM quantiles and all
considered return periods. Few significant biases
were observed at stations located in the eastern
part of the domain. For daily and longer dura-
tions, ERA-CRCM5 significantly overestimated
AM quantiles at many stations.
Small differences were observed between station
and ERA-CRCM5 annual cycles for all consid-
ered durations, while WRF anticipated the sum-
mer peak of AM occurrences especially for sub-
daily extremes and both RCMs slightly under-
estimated winter AM frequencies. Interestingly,
ERA-CRCM5 and WRF showed comparable per-
formances for the daily cycles, with later after-
noon peaks of hourly AM occurrences compared
to observations and almost unchanged diurnal cy-
cles for longer d.

A strong underestimation of station AM quan-
tiles was observed for CMORPH and MSWEP for
sub-daily extremes, whereas the two observation-
based datasets generally showed good perfor-
mance for durations d ≥ 24h. In particular,
MSWEP showed the smallest biases for daily
and longer duration AM and adequately repro-
duced observed annual cycles for d ≥ 24h. How-
ever, MSWEP coarse temporal resolution (i.e.,
d0 = 3h) prevents any meaningful assessment of
sub-daily AM characteristics.
The presence of some clusters of spuriously high
quantiles in northern regions and the overesti-
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mation of AM frequencies during fall and winter
months corroborates previously identified issues
about CMORPH performance in cold regions and
during cold seasons [Xie and Joyce 2014; Tren-
berth et al. 2017].

The spatiotemporal scaling properties of AM
quantiles were then analyzed and compared
among datasets over L1 locations. Three ma-
jor results were found.
First, temporal scaling regimes were stronger for
short durations (SD, d < 6h) than longer dura-
tion (LD, d ≥ 6h) AM. Hence, changes in rainfall
quantiles across durations are smaller for LD than
for SD, which is consistent with the fact that
longer duration AM are generated by spatially
more homogeneous weather systems.
Second, the temporal scaling slopes increased
with the spatial scale. SD, however, showed
higher sensitivity to the spatial scale than LD
AM. SD extremes are more likely associated with
intense localized convective systems and thus
more sensitive to changes in the spatial resolu-
tion. Accordingly, it is interesting to note that
ERA-CRCM5, WRF, and CMORPH displayed
similar temporal scaling slope values for SD at
spatial scale r ≈ 24km but the increase of tem-
poral scaling slopes with r was much larger for
WRF, likely because of its finer native spatial
resolution.
Third, for both SD and LD the increase of tempo-
ral scaling slopes with the spatial scale was found
to be approximately linear for all return periods
and datasets. Accordingly, two parameters can be
used to describe at each location the AM changes
with the observational spatiotemporal scale (r, d):
the extrapolated temporal scaling slope, h0, and
the spatiotemporal scaling parameter h1.
The use of the STS linear model [Eq.(2.3)] was
statistically validated for most locations for SD 2-

yr quantiles, suggesting the possibility of approxi-
mating point scale DDF slopes through h0 values.
However, the local estimation of the STS model
was highly uncertain for longer return periods
and LD extremes. For MSWEP and CMORPH,
in particular, few locations adequately fit Eq.(2.3)
with significant h1 values. This suggests that
bias corrections and other post-processing meth-
ods applied to these datasets likely altered their
spatiotemporal scaling properties , while the STS
relationship may be further considered to evalu-
ate the consistency of the spatiotemporal staisti-
cal structure of AM precipitation estimated from
different datasets.

The second objective of this study was to examine
whether the empirical linearity of the temporal
scaling slopes can be validated at the local scale
when sampling errors associated with short series
and local variability are reduced. To this end, the
temporal scaling estimates from various CRCM5-
LE members were averaged to robustly estimate
h0 and h1 at each CRCM5 grid box.
Increasing the ensemble size improved the esti-
mation of STS parameters and led to increasing
fractions of grid boxes with significant h1 as the
sample size (members) increased. Also, improved
fit was obtained for Eq.(2.3), validating the use of
the STS model for all return periods and both SD
and LD extremes. STS parameters also showed
clear spatial distributions that may be associ-
ated with different precipitation regimes and to
large-scale circulation patterns and topographic
features, although h1 displayed higher local vari-
ability than h0.
The proposed parsimonious STS model may
therefore be considered to estimate DDF and
ARF at locations where no sub-daily records are
available and to downscale AM marginal distri-
butions from large simulated ensembles. More-
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over, h0 and h1 parameters represent essential
AM statistics that synthetically describe the spa-
tiotemporal structure of rainfall extremes.

Future works should explore the following issues.
First, the proposed spatiotemporal model should
be thoughtfully compared with stations and other
methods for approximating local scale AM quan-
tiles (e.g., downscaling distribution methods) and
DDF (e.g. station DDF parameters interpola-
tions). Also, it would be essential to extend the
study to other model simulations and large ensem-
bles to further examine model-related uncertainty
in STS estimation.
Second, although the spatial patterns of consid-
ered AM statistic were consistent with station
values, the sampling errors due to the low net-
work density may be important for observational
datasets. Hence, repeating the analysis for re-
gions with higher network density would allow
improving the empirical evidence of the presented
STS relationships.
Third, future studies should investigate the sea-
sonality of the STS relationships and analyze
shorter duration AM (e.g., d < 1h) to investigate
the validity of the proposed model at these tem-
poral scales.
Finally, similar investigations using alternative
definitions of extreme, such as event-based defini-
tions of heavy rainfall, and projected series under
future climate conditions should be carried out.
Meteorological explanations for the proposed STS
models would help to understand the atmospheric
processes involved in the simulation of extreme
rainfall and predict their future evolution.

Despite these limitations, this study constitutes
a basic work on the spatiotemporal characteris-
tics of simulated extreme precipitation that may
provide guidelines for the development of post-
treatment tools for RCM series and the future

precipitation projections.
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NOAA Climate Prediction Center (CPC)
[http://www.ncdc.noaa.gov/data-access/
land-based-station-data]. Houly Canadian
Precipitation Data (HCPD) and Maximum Daily
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Precipitation Data (DMPD) for Canada were ob-
tained from Environment and Climate Change
Canada (ECCC) [data available upon request;
Climate.Services@ec.gc.ca] and from the MD-
DELCC of Québec [data available upon request;
Info-Climat@mddelcc.gouv.qc.ca]. The CRCM5-
LE dataset will become publicly available dur-
ing year 2019 at www.climex-project.org or
can be obtained upon request contacting Oura-
nos. HRCONUS WRF series were provided by
the Research Applications Laboratory, National
Center for Atmospheric Research (NCAR) from
[Rasmussen and Liu 2017]. The CMORPH v1.0
CRT bias corrected dataset is available online
at http://ftp.cpc.ncep.noaa.gov/precip/
CMORPH_V1.0/CRT/. MSWEP v2 dataset is freely
available for download via the www.gloh2o.org
website.
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Résumé

Il est attendu que le réchauffement climatique modifie l’intensité, la fréquence et la saisonnalité des
précipitations extrêmes. Même la structure spatio-temporelle de ces évènements de précipitation
pourrait être modifiée, ce qui pourrait avoir des conséquences importantes sur les sociétés humaines
et les écosystèmes locaux et régionaux. Dans le cadre de cette étude, l’évolution temporelle des précip-
itations projetées pour le climat futur a été analysée de manière à évaluer l’impact du réchauffement
climatique sur les extrêmes journaliers et sous-journaliers pour différents horizons temporels.
À l’aide du grand ensemble de 50 simulations issues du Modèle Régional Canadien du Climat généra-
tion 5, (MRCC5), les distributions de probabilité, ainsi que les dates et les heures d’occurrence des
Maxima Annuels (MA) de précipitation ont été analysées pour différentes échelles spatiales et pour
des durées allant de 1 heure à 3 jours. La structure spatio-temporelle des quantiles de précipitation
les plus extrêmes a ainsi été caractérisée.
Regrouper les données des 50 membres du grand ensemble MRCC5 a permis d’estimer les statis-
tiques des MA sur des sous-périodes de quelques années (par exemple de 3 ou 7 ans). Les résultats
ont souligné une augmentation critique des quantiles des MA de précipitation, et ce plus particulière-
ment pour les durées plus courtes et pour des longues périodes de retour. On notera également que
des modifications importantes des lois d’échelle spatio-temporelle ainsi que des cycles annuels et jour-
naliers ont été observées pour les extrêmes futurs.
Enfin, les analyses ont démontré que la définition des lois d’échelle spatio-temporelle avait le potentiel
d’améliorer substantiellement l’estimation des caractéristiques les plus incertaines des MA (notam-
ment les paramètres de forme des distributions de probabilité et les quantiles associés aux longues
périodes de retour), en permettant en fait de regrouper les MA provenant de différentes durées et
résolutions spatiales. En suggérant des modifications de queues des distributions des MA, les résul-
tats soulignent aussi qu’une certaine prudence doit être observée quant à l’utilisation de méthodes
basées sur l’hypothèse de stationnarité de la forme des distributions de probabilité des extrêmes de
précipitations, ainsi que pour l’utilisation de longues séries pour l’estimation de la climatologie des
MA de précipitations.
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Abstract

Global warming is expected to produce important modifications in the intensity, frequency, and sea-
sonality of extreme precipitation. The spatio-temporal structure of precipitation extremes is also
expected to change in future climate, with possibly dramatic consequences for local and regional
ecosystems and human societies. In the present study, the temporal evolution of simulated extreme
precipitation was analyzed to assess how daily and sub-daily extremes respond to climate warming
over different time-horizons. Using the recent 50 member Canadian RCM5 Large Ensemble (CRCM5-
LE), the probability distributions, date and time of occurrences, and spatio-temporal structure of
simulated Annual Maxima (AM) precipitation were analyzed at various spatial scales and for dura-
tions between 1 h and 3 days. Pooling data from the 50 CRCM-LE members allowed estimating AM
statistics over short sub-periods of a few years (e.g., 3 or 7 years). Results underline the large increase
in AM precipitation quantiles, and the relative increases are more important for shortest durations
and longest return periods. Also, modifications in the spatio-temporal scaling properties, as well as
in the annual and daily cycles emerged for projected extremes. Finally, the analyses demonstrated
that AM pooling across various spatio-temporal scales improves the estimation of most uncertain AM
characteristics. Accordingly, heavy-tail GEV distributions are expected to be more frequent in future
climates. Some regions also showed a significant increase of GEV shape parameter values with time,
which calls into question a familiar hypothesis usually adopted for climate change analysis of extreme
precipitation.

3.1 Introduction

The impact of climate change on precipitations
is a major issue in hydrological and climate sci-
ence due to potential impacts these changes may
have on natural ecosystems and socio-economic
activities [Fischer and Knutti 2016]. Modifica-
tions in the probability distributions of precipi-
tation are expected to occur at regional and lo-
cal scales as a result of global warming because
of the increased moisture holding capacity of a
warmer atmosphere [Trenberth 2011; Westra et
al. 2014]. According to these theoretical con-
siderations, more intense and frequent precipi-
tation extremes are expected, especially at sub-
daily and sub-hourly temporal scales. Changes

in the seasonality and spatial distribution of ex-
treme rainfall events may also be expected based
on both thermodynamic considerations and pos-
sible changes in small and large scale dynamics
[Dhakal et al. 2015; Skeeter et al. 2018; Touma
et al. 2018].

Using historical records and simulations in his-
torical climate, numerous studies supported these
theoretical arguments, showing increases in the
frequency and/or the intensification of daily and
multi-daily precipitation extremes over the past
decades at global and regional scales [e.g., Fis-
cher and Knutti 2016; Barbero et al. 2017;
Kendon et al. 2018]. Some evidence of changes
in the duration and spatial characteristics of ex-
treme rainfall events, such as the spatial extent

131



Art. 3. STS of extreme precipitaton under CC

and auto-correlation structure, have also been re-
ported [e.g., Wasko et al. 2016 for observed pre-
cipitation series; Li et al. 2015 and Guinard et
al. 2015 for Regional Climate Model (RCM) sim-
ulations under future conditions; and Prein et
al. 2017 for convection permitting RCM projec-
tions]. This has important implications for se-
curity issues, resource management, and infras-
tructure design since watershed and ecosystem re-
sponse to extreme rainfall events is highly depen-
dent on their spatial and temporal features [Mal-
lakpour and Villarini 2017]. However, while there
is a significant and growing literature on extreme
precipitation intensity, fewer studies have jointly
examined the future evolution of extreme precip-
itation characteristics such as duration, season-
ality, timing, and spatial features [Wasko et al.
2016]. As a result the possible modifications of the
spatiotemporal structure of extreme rainfall and
the mechanisms driving these changes in a warm-
ing climate are not completely understood [Mal-
lakpour and Villarini 2017; Dwyer and O’Gorman
2017; Touma et al. 2018].

Although there is a broad consensus that climate
change particularly affects extremes at short du-
ration and for long return periods [Westra et al.
2014; Kharin et al. 2018], modifications of sub-
daily rainfall extremes are generally difficult to
assess due to their high temporal and spatial vari-
ability [e.g., Barbero et al. 2017; Kendon et al.
2018] and the paucity of high-quality rainfall se-
ries [Westra et al. 2014].

Sparse gauge networks, short records, and mea-
surement errors limit the possibility of assessing
extreme spatiotemporal characteristics from ob-
served rainfall series [Tapiador et al. 2017]. Also,
uncertainties associated with the use of dynamical
models [e.g., structural modeling and tuning un-
certainties Tebaldi and Knutti 2007; Kendon et

al. 2017], to radiative forcing [e.g., scenario un-
certainties; Hawkins and Sutton 2009], and possi-
ble biases arising from the relatively coarse reso-
lution of state-of-the-art RCMs [e.g., Prein et al.
2015] should be accounted for when inferring rain-
fall extreme characteristics climate model sim-
ulations. Finally, the natural climate variabil-
ity associated to the chaotic and nonlinear na-
ture of the climate system may hide the tempo-
ral changes in precipitation extreme statistics due
to a warming climate, especially at small spa-
tiotemporal scales and for most extreme events
[Hawkins 2011]. However, the impacts of these
uncertainties on the spatiotemporal structure of
rainfall extremes are difficult to evaluate, partly
because they emerge at different time horizons
and spatiotemporal scales [Fatichi et al. 2016 and
references therein]. For instance, whereas model
and scenario uncertainties play an important role
for most climate variables for projections at the
global scale and/or for centennial lead times, in-
ternal variability is expected to be the major
source of uncertainty for precipitation, especially
for the most extreme events and short time hori-
zons [e.g., one decade or two; Hawkins and Sutton
2009; Hingray and Saïd 2014].

One way to assess the impact of internal vari-
ability on rainfall extreme estimation is done by
generating initial-condition ensembles from a sin-
gle climate model and a given radiative forcing
scenario [e.g., Flato et al. 2013; Sanderson et
al. 2018]. Ensemble members are thus created
by applying minor perturbations to the initial
state of the model simulation so that the differ-
ent climate trajectories are surrogate representa-
tions of the climate natural variability [Deser et
al. 2012]. Initial-condition ensembles have been
therefore used for detecting and discriminating
climate changes from natural variability in global
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and regional climate extremes [e.g., Fyfe et al.
2017; Martel et al. 2018]. Nonetheless, the inte-
gration of natural variability into statistical pro-
jections of climate variables is still under develop-
ment [Hingray and Saïd 2014].

In this study, a recent 50 member initial-condition
large ensemble simulated by the 5th generation of
the Canadian Regional Climate Model (CRCM5)
[Martynov et al. 2013; Separovic et al. 2013] for
the period 1950-2100 [Leduc et al. 2019], is used
to investigate the multi-scale characteristics of ex-
treme precipitation changes in a warming climate.
The analysis focuses on the assessment of tempo-
ral changes in the extreme rainfall statistical prop-
erties, such as depth quantiles and date or time of
extreme occurrence, at various spatial scales and
for durations ranging from 1 h to 3 days. In this
context, the salient question is that of examin-
ing sampling error effects on the spatiotemporal
structure of simulated extreme by comparing the
estimations of Annual Maxima (AM) precipita-
tion statistics when series from various CRCM5
members are pooled [Li et al. 2019].

The paper is organized as follow. Section 3.2 in-
troduces the CRCM5 large ensemble (CRCM5-
LE) and Sec. 3.3.1 describes the extraction
AM precipitation series at various spatiotemporal
scales. Sections 3.3.2-3.3.3 outline the methodol-
ogy used for pooling AM series from the various
CRCM5-LE members and to assess the possible
effects of climate change on rainfall extremes. The
statistics characterizing the spatiotemporal struc-
ture of precipitation AM are described in Sec.
3.3.4-3.3.6. Results are presented and discussed
in Sec. 3.4, while Sec. 3.5 provides a summary
and presents the perspective for future works.

3.2 Data

The study is based on the integration of 50 mem-
bers simulated at the 0.11◦ resolution (≈ 12 km)
by the Canadian Regional Climate Model genera-
tion 5 (CRCM5) [Martynov et al. 2013; Separovic
et al. 2013] over North East North America [Fig.
3.1] for the period 1950-2100 [Leduc et al. 2019].

The initial-condition CRCM5 large ensemble,
hereinafter CRCM5-LE, was generated using the
CanESM2-LE [Sigmond and Fyfe 2016; Fyfe et
al. 2017]. The 50 independent CanESM2-LE
simulations were simulated by the Canadian 4th

generation Atmospheric Global Climate Model
(CanESM2) [von Salzen et al. 2013; Arora et al.
2011] by applying random perturbations to the
initial state of cloud-overlap parameters while all
other simulation settings (e.g., forcing scenario)
and model parameters remained unchanged [Fyfe
et al. 2017]. For each member, the radiative forc-
ing was prescribed as the observed concentrations
of historical greenhouse gases, aerosol loadings,
and land use emissions until 2005 and through
the Representative Concentration Pathway 8.5
(RCP8.5) scenario thereafter [Meinshausen et al.
2011]

A spin up period of four years was discarded for
each CRCM5-LE member series, resulting in 146
years of hourly precipitation available at 280×280
grid points over the 1954-2099 period. The reader
can refers to Leduc et al. (2019) for additional de-
tails on experimental setup and the validation of
CRCM5-LE monthly temperature and precipita-
tion statistics.

Innocenti et al. (under review) evaluated the
Canadian RCM performances in representing the
extreme rainfall characteristics (including daily
and annual cycles) at several spatiotemporal
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Figure 3.1: CRCM5-LE domain with topography.

scales by comparing CRCM5 simulations driven
by the ERA-Interim reanalysis [Dee et al. 2011]
to other simulated and observational gridded
datasets. Their results showed an overall good
agreement between ERA-Interim CRCM5 simu-
lations and station quantiles at hourly time scale,
while the model generally overestimated rain-
fall extreme quantiles at daily and longer dura-
tions. Interestingly ERA-Interim CRCM5 simu-
lations also showed comparable performance than
a high-resolution RCM [a convection-permitting
WRF v3.4.1 simulation, Liu et al. 2017] and
two observation-based datasets [the CMORPH,
Xie et al. 2017, and the multi-source MSWEP
dataset,Beck et al. 2017] for representing observed
precipitation extreme annual and daily cycles. Fi-
nally, Innocenti et al. (under review) highlighted

that minor differences were found between the
ERA-Interim CRCM5 simulations and CRCM5-
LE diurnal cycles, while some dissimilarities were
observed for AM annual cycles and sub-daily AM
quantiles, especially in some areas of the domain.

3.3 Methods

3.3.1 Annual Maxima (AM) precipita-

tion at various spatial and tem-

poral scales

Annual Maximum (AM) precipitation series were
extracted for each model grid box and for various
spatiotemporal scales (r, d). A moving window
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was applied to grid box hourly precipitation series
for each CRCM5-LE member, to construct pre-
cipitation series at durations d = 1, 2, 3, 4, 6, 12,
18, 24, 36, 48, 60, and 72 h. As in Innocenti et al.
(under review), grid box hourly precipitation se-
ries were also aggregated at six spatial scales using
a fixed window in space (r = 12, 24, . . . , 72 km).
Grids at scales r > 12 km were defined by consid-
ering non-overlapping grid boxes starting at the
south-west corner of the native CRCM5 grid and
moving toward the north-east corner of the do-
main. Grid boxes associated with the ocean and
water bodies were removed, and series at coarser
spatial scales were discarded if they included less
than 75% native land grid boxes. Finally, AM
precipitation series aggregated at each spatiotem-
poral scale (r, d) were extracted.

The dates and day time (starting hour at local
time, UTC-5) of occurrence of AM were also ex-
tracted for each spatiotemporal scale, year, and
grid box.

For the analysis of AM statistics, each native
CRCM5 grid box was associated with the over-
lapping grid box at coarser spatial scales. Also,
to reduce the computational time, the CRCM5
grid was under-sampled with ratio 1/4, resulting
in the selection of ≈ 11800 grid boxes randomly
distributed over the CRCM5 North American do-
main. The strategy also reduced the number of
neighboring grid points and therefore the spatial
autocorrelation of computed statistics.

3.3.2 Pooling CRCM5-LE series

The probability of detecting changes in the time
series of a given climatic variable X depends
on the signal-to-noise ratio [Hawkins and Sutton
2012] which is a function of the magnitude of the

signal (e.g., the climatic trend of X), the series
length, and the variability of X. Since time series
of short-duration AM rainfall usually display large
variability, the signal-to-noise is generally low at
local spatial scales but can be enhanced by pool-
ing AM series from several spatial and/or tempo-
ral scales [e.g., Innocenti et al. 2017], from vari-
ous spatial locations [e.g., Shephard et al. 2014],
and/or from several simulated series [e.g., Martel
et al. 2018].

CRCM5-LE members represent 50 equiprobable
climate realizations over the 1954-2099 period,
providing for each year, spatiotemporal scale, and
grid box 50 independent AM, as well as their cor-
responding date and time of occurrence. In or-
der to reduce sampling errors on estimated AM
characteristics, the 50 CRCM5-LE series were
pooled over short sub-periods of 1, 3, and 7 years,
hereinafter referred to as 1SP, 3SP, and 7SP. A
schematic diagram showing the steps of this pro-
cedure for the 3SP case is provided in Fig. 3.2a-b.

3.3.3 Trend analysis for AM statistic

series

Consider a time series Yt, where Y is one of the
AM statistics defined in Sec.3.3.4-3.3.6 and the
superscript t indicate the median year of a given
1SP, 3SP, or 7SP. For instance, t = 1955 for the
first 3SP, as shown by the example in Fig. 3.2c.

The existence of significant monotonic trends for
Yt was assessed using the rank-based variance-
corrected Mann-Kendall (MK) [variance correc-
tion factor proposed by Yue and Wang 2004]. By
modifying the variance of MK statistics, the cor-
rected MK test accounts for the influence of se-
rial correlations in Yt and reduce the probabil-
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Figure 3.2: Pooling of AM precipitation series from the CRCM5-LE members: a) example for 3-years
short sub-periods (3SP), b) AM probability distributions for each 3SP; and c) non-stationary time
series of the Yt statistics (e.g, 100-yr AM quantile for each 3SP t)

ity of false trend detections [Blain 2013]. For ac-
counting the effects of CRCM5 grid box spatial
dependence on MK results, the field significance
of local tests was evaluated through a False Dis-
covery Rate (FDR) approach [Wilks 2006]. Ac-
cordingly, the average fraction of false discover-
ies (i.e., of incorrect rejections of the MK null
hypothesis made in the absence of a monotonic
trend) over the total number of test rejections can

be guaranteed to be no greater than the global
(field) significance level αglo = 0.1. The corre-
sponding FDR global p value, pglo, was computed
using the Benjamini and Hochberg (1995) proce-
dure and all local (grid box) tests yielding MK
p values ploc ≤ pglo were considered significant.
Field significance was considered to hold at the
αglo level if at least one local MK null hypothesis
was rejected [Wilks 2006].
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The magnitude of the significant temporal Yt
trend was then estimated using the following log-
linear model:

ln(Yt) = αY + βY t, (3.1)

where the subscript Y for αY and βY refers to
the considered AM statistic.

For small values of βY , we have eβY ≈ 1 + βY .
Hence, the slope of Eq. (3.1) represents the rel-
ative change of the Yt statistics expected for a
unit increase in t [Benoit 2011], namely the an-
nual mean relative change of Yt. Equivalently,
bx = 103βY approximates the mean decadal per-
cent increase of Yt and will be used as reference
measure for the trend magnitude.

For statistics that can assume negative values
[e.g., the shape GEV parameter; see Sect. 3.3.5],
classical linear regression models were used to es-
timate the absolute magnitude of expected Yt

trends. In this cases, the regression slope βY rep-
resents the absolute variation of Yt expected for a
unit increase in t , i.e. the expected annual vari-
ation of the statistic.

3.3.4 Statistical characterization of

AM rainfall

Let xt = (x1,t, x2,t, . . . , xi,t, . . . , xn,t) be the sam-
ple of n AM pooled from the 50 CRCM5-LE mem-
bers for the sub-period t, a given grid box s, and
the spatiotemporal scale (r, d). To simplify nota-
tion, grid box and and spatiotemporal scale sub-
scripts are omitted, unless otherwise stated. Em-
pirical AM quantiles, xt,q, were estimated for each
xt and various return periods q [yr] based on the
Hazen plotting position [Cunnane 1978].

To investigate the spatial and temporal structure
of the sampled extremes, the following log-log lin-
ear model was considered:

ln{xt,q(r, d)} = αr,t + (h0,t + h1,tr) ln(d), (3.2)

where xt,q(r, d) represents q-yr AM quantiles ex-
tracted at the spatiotemporal resolutions (r, d)
for the sub-period t and the intercepts αr,t

represent estimates of ln{xt,q(r, 1h)} for each
r = 12, 24, . . . , 72 km. Note that, for simplic-
ity, the index q for quantile orders have been
omitted for αr,t, h0,t, and h1,t parameters.

Eq.(3.2) is a synthetic expression that includes
both the temporal scaling of AM quantiles at the
point scale [Menabde et al. 1999; Casas-Castillo
et al. 2018] (through the h0,t coefficient, here-
inafter the temporal scaling parameter) and the
sensitivity of AM temporal scaling to changes
in the spatial scale (through h1,t, hereinafter
thespatiotemporal scaling parameter).

Previous investigations on the CRCM5-LE and
other gridded datasets justify the choice of
Eq.(3.2) [Innocenti et al. under review] and
showed how it extends the classical simple scal-
ing formulations [e.g., Gupta and Waymire 1990;
Burlando and Rosso 1996] of Depth-Duration-
Frequency (DDF) and Intensity-Duration-
Frequency (IDF) curves which are widely used in
hydrological and engineering applications [Kout-
soyiannis et al. 1998]. Innocenti et al. (under
review) also showed that h1,t can be interpreted
as the change of AM quantile Areal-Reduction-
Factors (ARFs) [Svensson and Jones 2010 and
references therein] corresponding to changes in
(r, d) for each sub-period t, i.e.:

ln{At,q(r, d)} = ln{At,q(r, 1h)}+ h1,t r ln(d), (3.3)
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where At,q(r, d) = xt,q(r, d)/xt,q(0, d) and
At,q(r, 1h) = xt,q(r, 1h)/xt,q(0, 1h) respectively
represent the q-yr quantile ARFs for durations d
and 1h at the spatial scale r and for the sub-period
t.
As a result, the future evolution of the extreme
precipitation spatiotemporal structure simulated
by the CRCM5 can be assessed through the pro-
jected h0,t and h1,t values. For instance, previous
studies stressed that temporal scaling parameters
might change with time, questioning the adequacy
of stationary frameworks classically used to esti-
mate DDF and IDF slopes [e.g., Casas-Castillo
et al. 2018 for observed rainfall extremes; Can-
non and Innocenti 2018 for daily and sub-daily
simulated AM]. Finally note that some authors
underlined the presence of two temporal scaling
regimes for short (e.g., hourly and sub-hourly)
and long (e.g., daily and longer) durations [e.g.,
Ceresetti 2011; Eggert et al. 2015]. Different
weather regimes that drive precipitation extremes
at different spatiotemporal scales explain this re-
sult [Eggert et al. 2015; Innocenti et al. 2017].
Hence, the scaling properties of CRCM5-LE AM
were separately investigated for Short Duration
(SD, 1h ≤ d < 6h) and Long Durations (LD,
6h ≤ d ≤ 72h), as in Innocenti et al. (under re-
view).

3.3.5 Simple Scaling Generalized Ex-

treme Value (SS-GEV) model

AM probability distributions were also assessed
through the Generalized Extreme Value (GEV)
distribution which is an appropriate model for
extremes according to asymptotic results of the
Extreme Value Theory (EVT) [Coles 2001]. Con-
sidering Xt to be the random variable for AM in

the xt sample, the GEV cumulative distribution
function (cdf) for the sub-period t and a generic
spatiotemporal scale can be written as:

Ft (x) = exp
{
−
[
1 + ξt

(
x− µt
σt

)]−1/ξt
}
, (3.4)

where ξt 6= 0, −∞ < x ≤ µt − σt/ξt if ξt < 0
(bounded tail, Weibull) and µt − σt/ξt ≤ x <

+∞ if ξt > 0 (heavy tail, Fréchet). If ξt = 0
(Gumbel) Eq. (3.4) reduces to:

Ft (x) = exp
{
− exp−

{
x− µt
σt

}}
, (3.5)

where −∞ < x < +∞. The parameters µt ∈ R,
σt > 0, and ξt respectively represent the location,
scale, and shape parameters of the distribution
for the sub-period t. Since the shape parameter
characterizes the distribution tail, an accurate es-
timation of ξt is critical to adequately assess ex-
treme precipitation quantiles.

Uncertainties on ξt are important for short records
[Koutsoyiannis 2004a and 2004b; Papalexiou et al.
2013] and various strategies to increase the sam-
ple size have been proposed to improve GEV pa-
rameter estimation [e.g., regional analysis, Hosk-
ing and Wallis 1997; or approaches combining AM
series at different temporal scales, Blanchet et al.
2016]. In particular, temporal scaling relation-
ships has been shown to be effective to increase
the robustness of GEV estimation for station se-
ries [Innocenti et al. 2017]. Extending typical sim-
ple scaling GEV formulations [e.g., Panthou et al.
2014; Blanchet et al. 2016], the following expres-
sions were thus considered for GEV parameters
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at each spatiotemporal scale (r, d):

µt(r, d) = dHt,rµ∗t,r

σt(r, d) = dHt,rσ∗t,r , and
ξt(r, d) = ξ∗t,r

(3.6)

where Ht,r, r = 12, 24, . . . , 72km, are generally
referred to as simple scaling exponents and µ∗t,r,
σ∗t,r, and ξ∗t,r are the GEV parameters for the spa-
tial scale r, the sub-period t, and the d∗ = 1h
being used as reference duration. Distribution in
Eq.(3.6) is hereinafter referred to as Simple Scal-
ing GEV (SS-GEV) model.

Note that, according to Eq. (3.2) the SS-GEV
simple scaling exponents should verify Ht,r =
h0,t + h1,tr. However, while Eq.(3.2) may result
in spatiotemporal scaling parameters that depend
on the quantile return period q, the proposed SS-
GEV model is based on unique h0,t and h1,t values
estimated for each grid box and sub-period t (i.e.,
SS-GEV assumes scaling parameters to be inde-
pendent of the return period).

Several methods can be considered for the es-
timation of the parameters (Ht,r, µ

∗
t,r, σ

∗
t,r, ξ

∗
t,r)

of the SS-GEV model over each sub-period t.
The Nelder-Mead numerical approximation of the
Maximum Likelihood (ML) estimate was used,
considering Generalized Linear Model (GLM) for-
mulations of the SS-GEV. To this end, the du-
ration d was introduced as model covariate in
SS-GEV probability distribution function (pdf)
formulations [Coles 2001] as in temporal simple
scaling expressions used in previous studies [e.g.,
Mélèse et al. 2018 and references therein].

Likelihood-Ratio (LR) tests at the 0.05 signifi-
cance level were also used to test the null hypoth-
esis H0 : ξt = 0 for each t (Gumbel versus GEV
distributions).

SS-GEV distribution parameters were estimated
independently at each grid box and spatial scale r,
i.e. assuming that AM extracted at different d are
independent. This last assumption is not fully re-
spected since AM occurring during the same year
at different spatiotemporal scales may be associ-
ated to the same precipitation event or system.
However, previous studies pointed out that the
estimation is robust to likelihood misspecification
and AM dependence [e.g., Blanchet et al. 2016;
Mélèse et al. 2018]. Also, to reduce computation
time and improve convergence for GLM-ML op-
timizations, only durations d =1, 2, 3, 6, 24, and
72 h were considered for GEV and SS-GEV esti-
mation.

3.3.6 Characterization of AM annual

and daily cycles

Descriptive statistics for annual and daily cycles
of AM occurrences were assessed at the native
CRCM5-LE spatial resolution (r = 12km) within
the framework of circular statistics [Pewsey 2004],
specifically developed for the analysis of periodic
random variables. Within this framework, the
date and time of the occurrence of AM for each
spatiotemporal scale (r, d) are represented by an-
gular variables (in radians) as [Berens 2009]:

δi,t = 2πzi,t
365 and ηi,t = 2πwi,t

24 (3.7)

where zi,t and wi,t respectively represent the day
and the daily hour at which the ith AM of the xt
sample begins. Subscript for duration d has been
omitted to simplify notation and leap years are
not considered for variable δi,t. A visual repre-
sentation and an example for these variables are
shown in Fig. 3.3.
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Eq.(3.7) can then be used to measure the sample
mean, variance, and shape of the AM annual and
daily cycles. For instance, the mean date of AM
occurrence can be determined for the sub-period
t by averaging the cosine- and sine-component of
the angular vectors (δ1,t, . . . , δi,t, . . . , δn,t):

ūt = [ūt,1, ūt,2] , (3.8)

where
ūt,1 = 1

n

n∑
i=1

cos δi,t,

ūt,2 = 1
n

n∑
i=1

sin δi,t.
(3.9)

The mean angle, δ̄t, can then be computed as:

δ̄t = tan−1
(
ūt,2
ūt,1

)
, (3.10)

where tan−1 is the four quadrant inverse tangent
function. Equation 3.7 can then be used to esti-
mated the corresponding z̄t [days].

The mean daily time of occurrence of AM can be
estimated in a similar way considering mean vec-
tors v̄t and corresponding angles η̄t as shown in
the examples of Fig. 3.3b.

If the δi,t or ηi,t angles are uniformly distributed
on the unit circle, the length of the resulting ut
and vt vectors is 0, since sine and cosine distri-
butions will be centered on 0. Conversely, if all
AM occur at the same hour or on the same day,
ut and vt will be unit vectors (i.e., ‖ūt‖ = 1 and
‖v̄t‖ = 1). Hence, the length of the mean resul-
tant vectors is a non-negative measure the circu-
lar dispersion of δi,t and ηi,t values around their
mean values, δ̄t and η̄t, for each sub-period t. The
closer ‖ūt‖(‖v̄t‖) value is to one, less dispersed
are the AM occurrences concentrate around the
mean date (time) direction.

With a similar approach it is also possible to de-
fine measures of circular symmetry, skewness, and
higher order moments of circular probability dis-
tributions [Pewsey 2004]. The reader can refer to
Berens (2009) for further details.

3.4 Results

Unless otherwise noted, only results for 3SP are
presented since similar conclusions were reached
for the 1SP and 7SP [the Supplementary material
provides some examples for 1SP and 7SP results].

3.4.1 Projected changes in AM prob-

ability distributions

Figure 3.4 summarizes the main results for pro-
jected changes in empirical AM quantiles. Fig.
3.4a-b shows that hourly and daily AM quantiles
increased for virtually all grid boxes. The MK
null hypothesis of a non-significant trend was re-
jected for more than 98% grid boxes at the field
significance level αglo = 0.1 (not shown). Also,
while important increases appear during the 1990s
for both hourly and daily 100-yr quantiles [Fig.
3.4a-b], trends were relatively stronger for sub-
daily AM than for daily and longer durations [Fig.
3.4c].
Decadal percent variations of empirical AM quan-
tiles were particularly important for d ≤ 3h with
median bxt,q ≥ 3.3%/10-yr for more than half
of CRCM5 grid boxes at the hourly scale [Fig.
3.4c]. Estimated trends also displayed the largest
spatial variability for d = 1h, as shown by the
10th-90th and 25th-75th quantile ranges in Fig.
3.4c. Finally, note that, while similar results were
observed for shorter return periods, lower me-
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Figure 3.5: Spatial distribution of the expected decadal percent variation for 3SP AM quantiles: a)
2-yr and b) 100-yr empirical quantiles.

dian bxt,q values were observed for q = 2yr and
q = 25yr compared to 100-yr AM [Fig. 3.4c],
meaning that more extreme AM are expected to
experience larger relative increases in future cli-
mate.

Figure 3.5 shows that the largest decadal percent
variations were generally obtained in the north-
east portion of the domain, while a decreasing
gradient was observed along the NE to SW axis,
especially at the hourly time scale. For all du-
rations and return periods, estimated trends over
the Great Lake region and the southern Atlantic
coast were generally small compared to south in-
land regions. Local differences between coastal

and inland grid box trends emerged in some cases
over the North Atlantic coast for daily and longer
durations [Fig. 3.5, 2nd and 3rd col.]. Due to the
higher estimation uncertainty, larger spatial vari-
ability was observed for bxt,q for 100-yr quantiles
compared to shorter return periods, resulting in
noisier maps and less obvious spatial structures,
especially for daily and longer duration estimates.

GEV distribution parameters estimated through
Eq.(3.4)-(3.5 ) are presented in Fig.3.6 for each
3SP and 7SP t (x-axis) and for d =1h, 3h, 24h,
and 72h (for clarity, 72h is not shown in Fig.
3.6a). The comparison between 3SP and 7SP
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aims at evaluating the uncertainty on estimated
GEV parameters and the impact of CRCM5-
LE member pooling over sub-periods of various
lengths.

The LR-tests assessing the significance of the ξt
parameters showed that the Gumbel distribution
(ξt=0) adequately represents the AM distribu-
tions for most of grid boxes when 3SP are con-
sidered [Fig.3.6a], especially for d ≥ 24h. Also,
the fraction fξt<0 of grid boxes with significant
and negative shape parameter (bounded tail dis-
tribution) was negligible (fξt<0 < 8 ∗ 10−3) for
all considered durations and pooling sub-periods
(not shown). Moreover, the fraction of model grid

boxes rejecting the LR H0 clearly decreases with
increasing t for all d > 1h [Fig.3.6a]. This re-
sult was confirmed for 7SP, that presented 0.24 ≤
fξt=0 ≤ 0.30 (0.57 ≤ fξt=0 ≤ 0.62) for 20th
century sub-periods and 0.19 ≤ fξt=0 ≤ 0.21
(0.32 ≤ fξt=0 ≤ 0.41) for t > 2050 for d = 3h (d
= 24h).This suggests that the large 3SP propor-
tions of grid boxes with Gumbel distribution, were
mainly due to the large estimation uncertainty
on estimated GEV shape parameters. This un-
certainty can in principle be reduced using larger
samples (e.g., using 7SP).

Medians over the CRCM5 grid boxes of the esti-
mated GEV parameter values are shown in Fig.
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3.6b-d for 3SP and 7SP and several durations.
For shape parameters, Fig. 3.6b, only considers
grid boxes with ξt > 0. 3SP systematically dis-
played higher shape values than 7SP, with median
positive ξt values distributed around ξt ≈ 0.17.
This result is consistent with typical GEV shape
parameter values estimated from long recorded
series (e.g., more than 100 years) presented in
the literature [e.g., Koutsoyiannis 2004a and 2004;
Ragulina and Reitan 2017 and references therein].
In these cases ξ ranged across positive values lower
than ≈ 0.23. Finally, note that for both 3SP
and 7SP median ξt curves generally showed weak
changes with time for all durations. Owing to the
high uncertainty on estimated shape parameters,
the fraction of grid boxes with statistically signif-
icant trends for ξt was generally negligible (e.g.,
lower than 1% for most durations, not shown).
Conversely, most of grid boxes displayed statisti-
cally significant trends when considering statistics
for the AM distribution shape characteristics that
are less impacted by the sample size [e.g., the nor-
malized dispersion coefficient σt/µt; Fig. S1 in the
supplementary material].

An important shift of AM distributions toward
higher values is observed for all durations due to
increase in median location parameters with t,
while the increase of grid box median scale pa-
rameters corresponds to higher variability of AM
precipitation in future climate [Fig. 3.6c-d]. Ac-
cording to the MK tests, µt and σt displayed sig-
nificant increases for almost all grid boxes and
durations. For both parameters, decadal percent
variations showed low local variability, with spa-
tial patterns similar to those of the 2-yr AM quan-
tiles [e.g., Fig. S2 of the Supplementary material].

Finally, note that 3SP and 7SP estimates of µt
and σt did not present any appreciable difference

[Fig. 3.6c-d], indicating that sample size has no
impact on estimated values, contrary to shape pa-
rameter.

3.4.2 Projected changes in annual and

daily cycles

Basic statistics for the dates of occurrence of
hourly and daily AM are shown in Fig. 3.7 for
each 3SP t. The δ̄t distributions over the CRCM5
grid boxes is represented for each t though the an-
gular medians, that is the diameter that divides
the unit circle into two equally sized groups of
grid box δ̄t values. For each of these two groups,
the angular median computation is then repeated
to estimate pseudo-quartiles of the δ̄t distribu-
tion, i.e. angular measures that can be consid-
ered equivalent to 25th and 75th percentiles of the
δ̄t distribution over CRCM5 grid boxes.

Fig.3.7a shows that hourly AM are generally con-
centrated in July, with δ̄t pseudo-quartiles taking
values between the end of June and the begin-
ning of August for all 3SP, while δ̄t values are
more variable over summer months for d = 24h
[Fig.3.7c]. As expected, it could be shown that
clear spatial distributions emerged for δ̄t each
year, with evident influence of water bodies and
oceans as well as marked latitudinal gradients
[see, for instance, Fig. S3 of the Supplementary
material]. Median δ̄t remained almost unchanged
over time for both d = 1h and d = 24h. However,
at the end of the simulation period hourly and
daily AM more frequently occur outside summer
for some grid boxes, as the δ̄t pseudo-quartile in-
terval become wider and asymmetrical with time,
especially for d = 24h. In fact, daily and longer
duration AM more frequently occur during win-
ter and fall southern areas and grid boxes on the
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Figure 3.7: Distribution over CRCM5 grid boxes of the mean date of occurrences of AM (annual
cycle) over each 3SP for a) d = 1h and c) d = 24h (for simplicity, axis have been rotated 90◦, i.,e δ̄t = 0
at the top of each graph); distribution over CRCM5 grid boxes of the length of mean date vectors,
‖ūt‖, for b) d = 1h and d) d = 24h.

Great Lake and Atlantic coasts at the end of the
21st century, while in the southern continental ar-
eas annual peaks of daily AM are projected to
occur more frequently during spring in future cli-
mate [see, for instance, Fig. S3 of the Supplemen-
tary material].

As expected, hourly extremes showed weaker sea-
sonality than daily AM and annual cycles more
peaked around their mean. In fact, larger ‖ūt‖
values were observed for d = 1h compared to
d = 24h [Fig. 3.7b-d], which indicates that the
AM occurrence dates have less dispersed distribu-
tions for any given sub-period t. Also, the length

of mean vectors decreased in time for both hourly
and daily AM, with significant ‖ūt‖ trends de-
tected at more than 75% of grid boxes for all du-
rations and pooling strategies (not shown). This
means that AM are expected to occur over a wider
period of the year in future decades over most
grid-boxes. Annual cycles of AM occurrences over
many regions are therefore expected to be more
dispersed around their mean values in a future
warmer climate. Preliminary analyses on the cir-
cular skewness and kurtosis of δi,t values further
supported this conclusion, as they showed a global
tendency to more symmetric and less peaky grid
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box annual cycles, especially for sub-daily dura-
tions (not shown).

Important decreasing decadal percent variations
were estimated for ‖ūt‖ with different spatial
patterns for different durations, with b‖ūt‖ ≤
−2%/10yr (b‖ūt‖ ≤ −3%/10yr) for more than
20% of the grid boxes for hourly (daily) AM oc-
currences. Changes were generally more impor-
tant in northern regions west of Great Lakes and
coastal Atlantic areas, where the local temporal
variability of AM occurrence dates is expected to

substantially change, especially for for daily and
longer extremes [e.g., Fig. S4 of the Supplemen-
tary material].

Figure 3.8 shows the statistics for the daily cycles
of AM occurrences for each 3SP. It shows that
mean occurrences, η̄t, of hourly AM are concen-
trated between 19:00 and 21:00 for most of the
grid boxes over the 1950-2000 period. During
the following decades, hourly AM occur, on av-
erage, later in the evening. Similarly, for many
grid boxes, mean occurrences of 6h AM generally
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ranges between 17:00 and 20:00 for the 1950-2010
period, while a shift toward later mean daily time
of occurrence is observed later in the 21st century
[Fig. 3.8b].

For most grid boxes, however, the variability of
ηi,t within each sub-period was important, making
it difficult the identification of a clear peak daily
time of occurrence. This resulted in relatively
small ‖v̄t‖ values (smaller than 0.5 for almost all
grid boxes) which generally displayed significant
decreasing trends for the shortest durations (e.g.,
for at least 50 % of grid boxes for d ≤ 3h), es-
pecially in south-east areas (not shown). Hence,
the times of occurrence of sub-daily AM were rel-
atively evenly distributed over the 24-hour circle
within each sub-period t and η̄t is likely a poor
approximation of the daily cycle mode, especially
for the projected future climate.

3.4.3 Changes in AM spatiotemporal

structure

Grid-box distribution of the estimated SD and
LD scaling parameters [Eq. (3.2)] are shown
in Fig. 3.9 for each 3SP. Confirming previous
investigations on the spatiotemporal scaling of
gridded datasets [Innocenti et al. under review],
SD displays stronger scaling regimes (i.e. higher
h0 and h1 values) than LD. This implies that
changes in AM quantiles due to changes in the
spatiotemporal scale (r, d) are more important for
SD because short duration extremes are generated
by spatially and temporally more heterogeneous
weather systems.

Moreover, temporal scaling parameters decreased
with t for both SD and LD [Fig. 3.9, 1st row].
This indicates that the changes of point-scale AM

quantiles across durations are expected to be less
important in future climate than those observed
in past periods. Similar results were also reported
in previous studies [e.g., Cannon and Innocenti
2018 and references therein], that projected the
increase of simple scaling exponents for rain-
fall intensity distributions or, equivalently, the
change of IDF slopes towards more negative val-
ues. Note, in fact, that point-scale IDF slopes can
be expressed as hint0 = h0 − 1, where hint0 is the
temporal scaling parameters for AM precipitation
intensity. The projected decreases of h0 in time
may thus be explained by the relatively stronger
intensification of short duration extremes com-
pared to longer ones.

Increases of the spatiotemporal scaling parame-
ter, h1,t, were observed for the shortest return
period, while trends are less obvious for q ≥ 25-
yr, especially for SD [Fig. 3.9, 2nd row]. Hence,
the heterogeneity of the spatial characteristics of
precipitation events producing AM is expected to
increase in future decades, as higher h1 values cor-
responds to larger variations of the ARFs [see Eq.
(3.3)] for a specific change in the spatiotemporal
scale (r, d). Also, h1,t estimates showed higher
local variability (not show) and larger temporal
fluctuations than h0,t for q ≥ 25-yr [see, for in-
stance, median curves in Fig. 3.9], suggesting
that large uncertainty affect the spatiotemporal
scaling estimation for relatively small samples, as
previously found by Innocenti et al. (under re-
view).

The analysis of the spatial distribution of scaling
parameter trends revealed that important decadal
percent variations were observed for both h0,t and
h1,t, especially in north-eastern areas, as shown
in Fig. 3.10. For h0, significantly negative trends
were observed for most of the grid boxes, with
smallest changes (e.g., 0.3 ≤ bh0,t ≤ 0.) found for
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the Great Lake region and the southern Atlantic
coast [Fig. 3.10, 1st row]. Significant trends were
found for a smaller fraction of grid boxes for h1,
while some differences emerged between northern
(positive) and southern (negative and generally
not significant) bh1,t estimates, especially evident
for SD [Fig. 3.10, 2nd row].

Note that, although the decadal percent vari-
ations for longer return periods were larger and
characterized by similar spatial distributions than
those presented in Fig. 3.10, the fraction of field
significant trends for q = 100yr was generally low
(e.g., lower than 1%) for h0 SD estimates and for
h1 (for both SD and LD). Moreover fH1 slightly
decreased when increasing the number of years

pooled within each sub-period (not shown). This
underlines that changes in the spatiotemporal
structure of projected AM distributions are more
difficult to assess for more extreme quantiles,
especially for the shortest durations, while the
reduction of the scaling parameter series length
due to the use of longer pooling periods (i.e. 3SP
and 7SP) affects the power of the FDR MK test
for trend detection.

SS-GEV estimated parameters are presented in
Fig. 3.11 for each 3SP considering the reference
duration d∗ = 1h for SD and d∗ = 24h for LD at
the native CRCM5 spatial resolution (r = 12km).
This figure confirms the statistically significant
decrease of the temporal scaling parameter [Fig.
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3.11a] and the increase of the scale and location
SS-GEV parameters [Fig. 3.11c-d] with t that
were suggested by results in previous sections for
most of grid boxes. Results for coarser spatial
scale (i.e. r > 12km) were consistent with these

estimates (not shown).

Moreover, Fig. 3.11 highlights four important
results. First, the difference between short and
long duration scaling regimes is important, as SD
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scaling parameters take larger values than for LD
[Fig. 3.11a].
Second, Hr,t values estimated for r =
12, 24, . . . , 72km verified, for each sub-period, the
linear relationship Ht,r = h0,t + h1,tr presented
in Eq. (3.2) for empirical quantile scaling (not
shown). Equally important, the scale and lo-
cation SS-GEV parameters also varied linearly
with r [e.g., Fig. S6 of the Supplementary mate-
rial]. These linear relationships between the refer-
ence duration µ∗t,r and σ∗t,r values and the spatial
scales were statistically significant for most of grid
boxes. However, higher uncertainty characterized
the spatiotemporal scaling of the SS-GEV shape

estimates. It was therefore not possible to define
a unique function for describing the dependence
of ξ∗t,r on the spatial scale r for all grid boxes [see
the examples in Fig. S6 of the Supplementary
material].
Third, the SS-GEV distributions were mostly
heavy tailed, with 3SP shape parameters be-
ing significantly positive for more than 72% and
59% of grid boxes for each t and for SD and
LD respectively. The proportions of 3SP Gum-
bel distributions (ξ∗t,r = 0) were considerably
lower than the corresponding SD and LD pro-
portions estimated for non scaling GEV mod-
els (e.g, 0.15 ≤ fξ∗

t,r=0 ≤ 0.21 for SD and
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0.16 ≤ fξ∗
t,r=0 ≤ 0.31 for LD), and fξ∗

t,r=0 de-
creased with time, especially for LD [see Fig. S7
of the Supplementary material for examples on
various spatial scales]. Moreover, while virtu-
ally no grid box rejected the FDR MK test null
hypothesis for SD for all pooling strategies, statis-
tically significant increasing trends were detected
for the LD shape parameter values for 50.5%

of grid boxes [Fig. 3.11b for 3SP, while 50.7%
and 42.0% of significantly increasing trend were
detected for 1SP and 7SP respectively]. These
results are particularly important since they sug-
gest that crucial modifications can be expected for
the characteristics of AM probability distribution
tails, which have huge impacts on the statistical
properties of more extreme AM quantiles.
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Four, SD shape parameter values were larger than
corresponding LD values for each 3SP for more
61% of grid boxes, as also shown by the SD and
LD ξ∗t,r distributions [Fig. 3.11b; note that only
ξ∗t,r > 0 are considered in these figure]. Accord-
ingly, SD extremes displayed heavier tailed dis-
tributions than longer duration AM, which is
consistent with the hypothesis that links shape
parameter changes to changes in the character-
istics precipitation systems generating AM [Rag-
ulina and Reitan 2017].

Figure 3.12 presents the spatial distribution of the
temporal trends estimated at the native CRCM5
resolution for ξ∗t,r, σ∗t,r, and µ∗t,r. Decadal percent
variations are shown for the scale and location
parameters for SD (d∗ = 1h) and LD (d∗ = 24h),
while the annual (absolute) variation βξ∗

t,r
[yr−1]

is considered for the SS-GEV shape for LD, vir-
tually no significant trend having been detected
for SD shape parameters. Trends estimated for
Hr,t are not shown, as consistent with results pre-
sented for empirical quantile in Fig. 3.9 and 3.10
[e.g., Fig. S8-S9 of the supplementary material].

As expected, the projected annual variations of
SS-GEV shape parameters displayed a weaker
spatial coherence than those estimated for the lo-
cation and scale parameters. Decadal percent in-
creases for σ∗t,r, and µ∗t,r were important in north-
eastern regions for SD, while smaller increases
(e.g. ≈ 2%/10-yr ) were estimated in western
areas. Also, smaller increases were observed over
the North Atlantic and St-Lawrence gulf coasts
for LD suggesting coastal effects for daily and
longer duration AM trends [Fig. 3.12b]. Finally,
note that σ∗t,r trends estimated in some areas
were larger than those found for µ∗t,r over cor-
responding grid boxes [e.g., over the Great Lake
region for SD, Fig. 3.12a]. Standardized measures
of AM distribution dispersion, such as the nor-

malized dispersion coefficient σ∗t,r/µ∗t,r, are thus
expected to increase in time, as suggested by Can-
non and Innocenti (2018) in a recent study, and
displayed significantly increasing trends for most
of grid boxes [e.g., Fig. S10 of the Supplementary
material]. However, high cross-correlation usu-
ally affect ξ∗t,r and σ∗t,r ML estimates and σ∗t,r/µ∗t,r
trends may strongly depend on the temporal evo-
lution of the SS-GEV shape parameter. Hence,
the impacts of stationary and non-stationary as-
sumptions for ξ∗t,r on the mentioned result should
be further investigated.

Finally note that consistent results were also
found for coarser spatial scale (i.e. r > 12km),
despite the fact that the trend magnitude de-
creased with increasing r [e.g., Fig. S9-S10 of the
Supplementary material].

3.5 Discussion and Conclusion

The spatiotemporal structure of precipitation ex-
tremes is expected to change with global warming,
which can have dramatic impacts on the hydro-
logical response of local and regional ecosystems.
The projected changes in the statistical properties
of sub-daily and daily precipitation extremes were
investigated using the recently available initial-
condition CRCM5-LE. Specifically, the impacts
of global warming on AM probability distribu-
tions (empirical AM quantiles and GEV distribu-
tion parameters), annual and daily cycles (date
and time of AM occurrences), and spatiotempo-
ral structure (AM quantile and SS-GEV scaling)
were considered.

The CRCM5-LE is constituted by 50 equiprob-
able climate realizations over the 1954-2099 pe-
riod, that downscale at the 0.11◦ resolution the
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CanESM2-LE (RCP8.5 forcing). Simulated grid
box precipitation series were pooled over short
sub-periods of 1, 3, and 7 years to create large
samples that were used for estimating AM statis-
tics at various spatial scales and durations (1h to
72h). For the spatiotemporal scaling, the analysis
was conducted separately for SD (1h ≤ d < 6h)
and LD (6h ≤ d ≤ 72h) AM series. The signif-
icance and the magnitude of trends for extreme
characteristics were assessed on the time series
of AM quantiles, AM occurrence date and time
statistics, and GEV and SS-GEV parameters.

Results globally confirmed the theoretical argu-
ments pointing at the intensification of extreme
precipitation over the study domain, with rela-
tively stronger trends for short duration AM and
more extreme events. This conclusion is consis-
tent with previous analyses over North America
[e.g., Mailhot et al. 2012, Kharin et al. 2018], and
was highlighted by both the results on AM empir-
ical quantiles and the analysis of their spatiotem-
poral scaling.
Increasing trends in AM empirical quantiles were
observed for most grid boxes, and hourly AM
decadal percent variations were larger than those
estimated for daily AM. Trends were also more
important for more extreme AM quantiles and
northern grid boxes.
The empirical temporal scaling parameters h0,t

displayed decreasing trends in time, which cor-
responds to a decrease in point-scale IDF slopes
toward more negative values. The decadal per-
cent variations of h0,t were statistically significant
and negative for most grid boxes for 2-yr AM
quantiles, for both SD and LD intervals, while
for longer return periods field significant trends
where only found for LD.
The estimated trends for spatiotemporal scaling
parameters h1,t suggest that changes may be ex-

pected in the spatial structure of empirical AM
quantiles in future climate. In particular, the vari-
ability of ARF values across the spatiotemporal
scales (r, d) is projected to increase, as h1,t in-
creased with time, especially for northern regions.
However, large uncertainty affects h1,t estimation
and projected trends were not significantly differ-
ent from zero for most of the grid boxes when con-
sidering return periods q ≥ 25yr. Interestingly,
SD showed larger but fewer significant decadal
percent increases than LD.

No meaningful temporal change was observed for
the mean date of AM occurrences for daily and
sub-daily durations for most grid boxes. How-
ever, increasing seasonal variability of hourly and
daily AM is expected in future decades, as the
dates of AM occurrences are projected to be more
dispersed around their summer peaks. Hence,
more frequent warm meteorological conditions
[e.g., Vincent et al. 2018] are likely to increase the
probability of occurrence of intense precipitation
events over an extended summer season. How-
ever, the temporal changes in annual peak dates
and seasonal variability also showed a well defined
spatial structure over the study domain for daily
and longer durations, which suggests that differ-
ent mechanisms may drive observed changes in
different areas.
A small shift toward later mean time of occur-
rence was projected for future sub-daily AM, sug-
gesting that their daily peak frequency of is ex-
pected to occur later in the evening compared to
past climate. Basic considerations on projected
temperature increases (e.g., higher evening and
night temperatures or possible changes in the sur-
face heat budget) could partly explain this re-
sult. However, various other factors and local
and large-scale land-atmosphere feedbacks may
influence this result [Lo et al. 2017 and references
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therein].

Considering GEV and SS-GEV models, the frac-
tion of grid boxes with heavy-tailed AM distribu-
tions was generally found to increase with time.
In particular, increasing fractions of grid boxes
with significant and positive shape parameters
were found for SS-GEV for both SD and LD at
the native CRCM5 spatial resolution. Classical
GEV models (i.e., without scaling) presented sim-
ilar results for all durations d ≥ 3h, although the
fraction of grid boxes with Gumbel distributions
weakly increased in time for 1h AM. Accordingly,
the assumption of Gumbel distributions (ξt = 0)
is often inadequate in future climate for sub-daily
AM and could lead to important underestima-
tions of long return period quantiles.
Some evidence for statistically significant trends
of the SS-GEV shape parameter values was also
observed, with most of grid boxes displaying sig-
nificant increases of ξ∗t for LD. This result is im-
portant as it suggests that the assumption of a
stationary GEV distribution shape parameter, of-
ten made because of the large uncertainties af-
fecting its estimation [Katz 2013], may be in-
adequate for the analysis of daily and sub-daily
AM. Limiting the range of possible changes de-
tectable for AM distribution tails, the stationary
hypothesis may thus affect the projected changes
for other GEV distribution parameters (e.g., for
the scale parameter) and/or more extreme pre-
cipitation quantiles. At the same time, however,
weaker statistical evidence was found for trends
in SD SS-GEV shape parameters and changes in
longer return period quantiles were mainly ob-
served through significant increases of the scale-
location parameter ratios, σ∗t,r/µ∗t,r. It is there-
fore more difficult to provide a robust assessment
of extreme precipitation characteristics and their
changes for the shortest durations, even when

data from various d and from different model
members are pooled.

Considering the ensemble of these results cau-
tion is advised when using very long precipita-
tion series for the assessment of climate change
impacts on AM characteristics, as also suggested
by DeGaetano and Castellano (2018). In fact,
while there exists a clear advantage in using large
samples of precipitation extremes for improving
the estimation of most uncertain AM statistics
(e.g., GEV shape distribution parameters or spa-
tiotemporal scaling statistics), important non-
stationarities characterize the AM probability dis-
tributions (e.g., changes in GEV location and
scale parameters) over very short period of time
(e.g., 10 years).

Future works should thus consider the possibility
of introducing temporal trends in SS-GEV models
(e.g., for spatiotemporal scaling and/or probabil-
ity distribution parameters) and further explore
the relationships between the SS-GEV parame-
ters and the spatial scale at which precipitation
extremes are extracted.
Moreover, it would be important to extend this
study to higher-resolution climate model simu-
lations in order to assess the possible impact of
convection representation on the reported conclu-
sion, especially those related to the diurnal cycle
and short duration AM. In particular,the use of
a large-ensemble from a parametrized RCM may
in fact represent a strong constraint on the type
of the detectable changes for precipitation charac-
teristics, especially limiting the assessment of the
nonstationarity of the extreme precipitation spa-
tiotemporal structure.
Similarly, modifications in timing and seasonality
of sub-daily extremes should be more thoughtfully
analyzed to better understand the weather pro-
cesses and climate feedbacks explaining the pro-
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jected changes, while other RCM large ensembles
should be considered to evaluate the impacts of
models on these results.

As a final remark, the practical implications of
the presented results need also to be further ex-
amined, as the consequences of the highlighted
changes in IDF and IDA curve characteristics may
be critical in terms of long- and mid-term infras-
tructure design and engineering practice [Mail-
hot and Duchesne 2010].
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Conclusion

Precipitation extremes are highly variable in space and time as various physical processes are in-

volved in their generation. Moreover, as global warming is expected to differently affect heavy pre-

cipitation at different spatial and temporal scales, important modifications in the spatio-temporal

structure of precipitation are expected for future decades. Characterizing the spatial and temporal

variability of precipitation extremes is challenging, especially considering the deficiencies and lim-

itations in actual data. Equally important, large sampling errors affect the extreme estimations,

making it difficult to achieve a complete and adequate statistical characterization of extreme pre-

cipitation.

The three articles that compose this thesis address these issues by applying a multi-scale analysis of

precipitation framed within the scaling model theory. This chapter summarizes and discusses the

main results presented in each paper.

6.1.1 Temporal Simple Scaling (SS) for station AM

The ability of temporal SS models to approximate the probability distribution of precipitation

intensity extremes was assessed using meteorological station AMS for durations from 15 min to

7 days. Results suggest that SS represents a reasonable working hypothesis for estimating IDF

curves, allowing a reduction of uncertainties in precipitation estimation. In particular, the analysis

of temporal SS models for summer AM (i.e., from May to October) led to the following results and

conclusions:

i) The validity of the SS hypothesis was empirically confirmed for the majority of the scaling

intervals (i.e. duration intervals) through the Moment Scaling Analysis (MSA). Then, two
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Goodness-of-Fit (GOF) tests and the calculation of error measures (e.g., normalized RMSE)

validated the use of SS models for approximating empirical AM distributions. The hypothesis

of a scale invariance held for all scaling intervals spanning durations from 1 h to 7 days. Lower

SS performance was observed for durations shorter than 1h, especially for long scaling intervals

(e.g., scaling intervals that contain 18 or 24 durations). Note that the coarse measurement

tip resolution of available 15PD series may partly explain this result as it is expected to affect

both the SS estimation and the validation tools (e.g., GOF tests).

ii) Exploring the variability of the SS exponent, H, over a wide range of scaling intervals allowed

assessing the influence of dominant pluviometric regimes on scaling estimates. Moreover, the

SS exponent values generally displayed a well-defined spatial distribution, although higher

local variability was observed for some scaling intervals. Characteristic changes in H values

over the scaling intervals were observed for six geographical regions characterized by different

precipitation regimes according to the Bukovsky (2012) classification. This suggests that both

local geographical characteristics (e.g., topography or coastal effects) and large scale forcings

(e.g., general circulation patterns) have an impact on estimated AM scaling.

H values generally ranged between 0.35 and 0.95, with weakest scaling regimes (i.e. lowest H

values for precipitation intensity) typically found for sub-hourly duration intervals and along

the west coast of the continent. Hence, for these scaling intervals and climatic areas, AM are

likely generated by homogeneous weather processes across different durations. In the interior

and southern areas of the continent, a more important shift from weaker to stronger scaling

regimes (i.e., smaller to larger H values) was observed for increasing durations, with highest

H values found for scaling intervals containing durations from ≈12h to 2days. This indicates

that important changes occur in AM intensity distribution moments and, thus, in extreme

precipitation features for these ranges of durations. For scaling intervals of durations longer

than a few days, H converges to ≈0.7 for most of the stations, except those on the Pacific

coast.

iii) The advantages of introducing the SS property in parametric distribution models were high-

lighted by comparing the performance of SS-GEV and classical (i.e. non-SS ) GEV estimations

for approximating AM quantiles. More evidence for positive GEV shape parameter (heavy

tailed distributions) was found for SS-GEV compared to non-SS models. Pooling data under

the scale-invariance hypothesis may thus allow a better assessment of ξ and a more reliable sta-
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tistical inference for AM distributions. Also, heavy-tailed SS-GEV models displayed smaller

errors (e.g., smaller RMSE between parametric and empirical AM quantiles) than non-SS

GEV for scaling intervals that respected the MSA conditions. This suggests that, if the scal-

ing interval (i.e., the range of durations across which the SS hypothesis is used) is adequately

selected, the SS allows a better assessment of the GEV shape parameter and errors in IDF

estimates can be overall reduced.

Note, however, that some important uncertainties remain in the estimation of SS-GEV parameters,

especially for ξ. Also, limited applicability of SS models was observed for sub-hourly duration

intervals and some specific regions (e.g., the Pacific South-West). Despite these specific cases, SS

models appeared to be an interesting approach for reducing uncertainties in precipitation quantiles

and IDF estimates. To this end, the spatial distribution of the scaling exponent and its dependency

on climatology should also be considered when constructing SS IDF curves.

6.1.2 Spatio-temporal structure of AM in gridded datasets

This study had two main objectives. First, it aimed at comparing the representation of sub-daily

and daily AM characteristics from various simulated and observational gridded datasets: precipita-

tion series from meteorological station records, the CMORPH bias-corrected satellite dataset, the

MSWEP multi-source dataset, and two RCM simulations driven by the ERA-Interim reanalysis,

one from the convection-permitting WRF model and one from the CRCM5. The focus was on

the evaluation of CRCM5 simulations before proceeding to the analysis of CRCM5-LE projections

in future climate (Article 3). Second, it aimed to develop an analytical expression of the scaling

relationship for describing AM probability distribution changes across various temporal and spatial

scales.

To this end, AM were extracted for durations ranging from 1 h to 3 days and various spatial

scales defined according to the native grid resolution of each gridded dataset. Then AM empirical

quantiles, AM annual and diurnal cycles, and temporal scaling estimates were compared to the cor-

responding statistics computed for meteorological stations. The following conclusions were drawn

from this analysis.
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i) At their native spatial resolutions, ERA-Interim driven CRCM5 and WRF simulations ade-

quately reproduced short-duration (e.g., d < 3h) station AM quantiles. At daily and longer

durations, the ERA-interim driven CRCM5 simulation significantly overestimated AM quan-

tiles for most stations. Moreover, the two RCM simulations adequately reproduced the ob-

served AM annual and daily cycles, although some discrepancies emerged for daily peaks of

hourly AM frequencies.

ii) Several issues were identified for CMORPH AM estimates in northern regions and during

winter, confirming biases and uncertainties in cold conditions already mentioned in previous

studies for this dataset [Xie and Joyce 2014; Trenberth et al. 2017]. However, AM quantiles

were well approximated from CMORPH series in southern areas for daily and longer dura-

tions. MSWEP outperformed other datasets for the approximation of daily and longer AM

distributions, but its coarse temporal resolution (i.e. d0 = 3h) prevents assessing sub-daily

extreme precipitation characteristics.

iii) Consistent with station SS estimates, the interval of short durations (SD, d < 6h) was as-

sociated with stronger(weaker) AM depth(intensity) scaling regimes than the long duration

interval (LD, d ≥ 6h). Interestingly, for each dataset, estimated SS exponent values were

found to linearly increase with the spatial scale, and the finest spatial resolution dataset,

WRF, displayed the steepest increases.

iv) The linearity of temporal SS exponents on the spatial scale was used to define a simple

Spatio-Temporal Scaling (STS) relationship describing the variation of AM quantiles across

the considered spatial and temporal scales.

High uncertainty affected local STS estimates (i.e. for a single grid box), especially for longest

return periods and LD extremes, despite the STS validity at the regional scale (i.e. when

estimated for the spatial average of SS exponents over all available locations). This result

was attributed to the high sampling errors affecting AM empirical quantiles for the available

relatively short precipitation series. Also, post-processing methods applied for MSWEP and

CMORPH seemed to affect the STS properties of AM for these datasets. Pooling AMS

from various CRCM5-LE members reduced sampling errors and the local uncertainty of STS

estimates, validating STS models for most of the grid boxes and all quantile return periods.

164



Conclusion

According to these results, gridded dataset precipitation series at various spatial scales could in

principle be used to efficiently estimate point-scale IDF curves and ARFs at locations where no

sub-daily station records are available. Based on the linearity of SS exponents, the proposed STS

model defines the statistical spatio-temporal structure of AM considering only two parameters: the

temporal scaling exponent, h0, extrapolated at the point scale resolution (i.e. r = 0), and the spatio-

temporal scaling parameter h1, which represents the sensitivity of quantile ARFs to changes in the

spatio-temporal scale (r, d). Despite the high local variability of h1 estimates, the distributions of

the two STS parameters over the study domain displayed a strong spatial coherence, with main

patterns likely associated with local geo-climatic characteristics (e.g., topography features) and

predominant precipitation regimes.

6.1.3 Evolution of the spatio-temporal structure of AM in time

Although there is a broad consensus that CC not only affects the frequency and intensity of heavy

precipitation events, the assessment of temporal modifications in extreme precipitation characteris-

tics such as their duration, seasonality, and spatial extent has received less attention in the literature.

Our third analysis thus examined the temporal evolution of the multi-scale characteristics of AM

based on CRCM5-LE simulations for the 1954-2099 period. The following main results were found:

i) The analysis of the pooled AM from the 50 CRCM5-LE members showed a significant inten-

sification of extreme precipitation quantiles for almost all grid boxes of the CRCM5 North

American domain. This confirms the theoretical arguments mentioned in the literature stat-

ing that relatively stronger increases should be observed for short durations extremes and for

long return periods (i.e., more extreme events).

ii) Using the STS model, some modifications of the spatio-temporal structure of AM distributions

were highlighted by the significant decreasing trends observed for the extrapolated SS expo-

nent, h0. This confirms that shorter duration extremes will experience higher increases than

long duration AM quantiles, and that station IDF slope values are expected to tend towards

more negative values in a warming climate. Significant increases of the spatio-temporal scaling

parameter, h1, were also found for many grid boxes. This implies that the ARF variability

across the considered spatio-temporal scales is expected to increase with time. However, less

evidence for the non-stationarity of the h0 and h1 scaling parameters was found for more
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extreme AM, especially for the SD interval (i.e. d < 6h). As previously suggested, a possible

explanation for these results is that high uncertainty affects the STS estimation for long return

period AM quantiles.

iii) Evidence of important changes of AM distribution tail characteristics emerged when consid-

ering SS-GEV models. On one hand, the proportion of grid boxes with a positive SS-GEV

shape parameter (heavy-tailed distribution) increased substantially over time for both SD

and LD. This implies that the use of Gumbel (i.e. light tail) distributions in future climate

is likely to critically underestimate long return period quantiles for sub-daily and daily AM.

On the other hand, SS-GEV shape parameters were found to significantly increase for most

of grid boxes for LD while little evidence for a significant ξ increase emerged for SD. Also,

the proportion of grid boxes with significant ξ trends was lower than the proportions of those

with trends for the other SS-GEV parameters and for other measures of AM distribution

dispersion, such as the normalized dispersion coefficient σ/µ, due to the high uncertainty that

affects GEV shape parameter estimation. These results are particularly important since they

highlight crucial modifications in the statistical properties of the most extremes precipitation

with climate change. However, this also underline that it is more difficult to achieve a robust

assessment of temporal changes in extreme precipitation characteristics for durations shorter

than 6h and more rare extremes, event when AM observations from various durations and

multiple RCM simulations are pooled under the SS hypothesis.

iv) Finally, two fundamental changes are to be expected for the annual and daily cycles of AM

occurrences according to CRCM5-LE simulations. First, hourly and daily AM are expected

to occur over an extended period of the year in future climate, especially in some specific

regions of the study domain (e.g., the southern areas between Appalachians mountains and

the Atlantic coast). Second, the mean daily time of AM occurrence is expected to occur later

in the evening for sub-hourly AM relative to past climate. Although many factors could drive

these changes, more frequent and more intense warm meteorological conditions can basically

explain these results.

In summary, STS models and pooled CRCM5-LE series seem to be effective methods for estimating

the temporal evolution of crucial AM statistics, related to the tail of the AM probability distribution

and the spatio-temporal scaling of the extremes. The reported results stress the importance of

reconsidering some hypotheses often used in AM precipitation analysis. For instance, important
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non-stationarity emerged for AM distributions even over relatively short time periods (e.g., 10

or 20 years), which are commonly used as reference climate periods in applications. Similarly, the

assumption of a Gumbel distribution and/or stationary shape parameter GEV may led to important

underestimations of projected changes for the more extreme precipitation events.

6.2 Original contributions

This thesis brought various original contributions. Applying an extensive validation of SS models

over a large dataset of recorded precipitation series covering North America, the present study has

allowed an unprecedented and systematic comparison of SS estimations across various duration

ranges and for regions characterized by different climatological characteristics. The comparison of

these results with previous studies has deepened the knowledge about the scale-invariant properties

of extreme precipitation and provided new insights about the influence of regional precipitation fea-

tures on estimated scaling regimes. Similarly, the assessment of SS estimates from various simulated

and observationally-based datasets with different temporal, spatial, and measurement resolutions

has allowed a more accurate description of the effects of dataset characteristics on precipitation

scaling. Despite having been previously mentioned in some previous studied, the impacts of these

characteristics on extreme precipitation scaling had not yet been thoroughly described in the liter-

ature.

New methodological developments were proposed for the assessment of scaling properties across var-

ious spatial scales. This allowed the integration of a spatial component in the scaling relationships

and the definition of a spatio-temporal scaling model that describes AM quantile variability over a

wide range of spato-temporal scales. Though this method should be more extensively validated, it

opens up to the possibility of estimating point-scale IDF curves and ARFs from precipitation series

available at coarser resolutions over regular grids.

Finally, the use of the recently produced CRCM5-LE has allowed assessing the temporal evolution

of AM characteristics using series of unprecedented length and testing the validity of STS models at

local scale with consistently reduced sampling errors. Temporal changes of AM characteristics were

studied with a straightforward methodological approach based on the construction of large samples

of AM extracted over consecutive sub-periods of a few years. This permitted the investigation of
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AM distribution changes in a transient climate. The results give a more complete and statistically

consistent portrait of CC impacts on precipitation extremes relative to the classical period-by-period

comparison of precipitation distributions between an historical reference period and one or many

future periods.

6.3 Limitations and perspective on future works

Three major limitations must be stressed. First, SS models showed limited applicability for sub-

hourly durations and some specific regions (e.g., the Pacific South-West), but the source of this

deviation from the scale-invariance hypothesis was not investigated. Many factors and some method-

ological choices may have impacted these results. For instance, limiting the analysis to summer AM

may have caused important heavy precipitation events to be neglected for some specific durations,

especially for the southern US West Coast, where daily extremes are generally expected to occur

during winter [Mallakpour and Villarini 2017].

Second, the analysis of STS parameters and their temporal trends highlighted some differences be-

tween the scaling properties of short and long return period quantiles. Further investigation should

thus clarify whether these results are due to the higher estimation uncertainty of more extreme

AM quantiles or if different STS regimes characterize quantiles of different orders. In the latter

case, the possibility of modeling the scaling exponent as a function of the quantile order (e.g., using

multiscaling frameworks for IDF) should be investigated.

Third, the proposed STS model should be carefully compared with other methods for approximat-

ing local scale AM distribution parameters (e.g., classical statistical downscaling methods) in order

to evaluate their performance in IDF estimation and for downscaling AM distributions from pre-

cipitation series available at coarse spatial scales.

Considering these limitations and our general results, a more comprehensive assessment of the sta-

tistical uncertainty of the STS estimation is recommended. The analysis of seasonal AM scaling

should also be considered to evaluate possible biases and sampling errors that may affect SS-IDF

estimation based on datasets with limited coverage and/or possible seasonal biases. Also, any fu-

ture extension of this study should investigate the possibility of introducing spatial information and
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temporal trends in scaling and SS-GEV models [e.g., by considering models with non-stationary

parameters in space and/or in time; Blanchet et al. 2018; Li et al. 2019]. Similarly, the relationships

between GEV and SS-GEV parameters for AM distributions estimated at different spatial scales

should be further investigated. In particular, it would be important to assess the possibility of defin-

ing analytical IDAF relationships based on the SS-GEV models and evaluate their consistency with

other semi-empirical relationships proposed in the literature for observed datasets [e.g., De Michele

et al. 2001; Panthou et al. 2014; Overeem et al. 2010]. Finally, note that it would be interesting

to extend the study to geographical regions which are well covered by high density recording net-

work (e.g., Europe) and/or characterized by different precipitation regimes. Other simulated RCM

ensembles could be considered to further evaluate the spatial variability and the representativeness

of the presented results. For instance, the analysis of high-resolution convection-permitting RCM

large ensembles, when available, could help to characterize the causes of the deviation from scale-

invariance that have been observed for short duration extremes and in some other specific cases.

Equally important, this would allow to evaluate the impact of convection parametrization on the

changes in time reported for short duration extreme distribution and scaling estimates.
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Appendix A:

GEV parameter estimation

Two common estimation methods for the Generalized Extreme Value (GEV) distribution are de-
scribed: the Maximum Likelihood (ML) method [Azzalini 1996; Coles 2001] and the Probability
Weighted Moment (PWM) method [Greenwood et al. 1979; Hosking et al. 1985].

A.1 Maximum Likelihood (ML) estimation

Consider a random variable X described by the probability density function f(x;ϑ), where f(.) is
a function known except that for the values of the parameters in the vector ϑ. Once a sample
x = (x1, x2, ..., xN ) of i.i.d. realizations of X has been observed, f(x;ϑ) depends only on ϑ. The
probability of the observed sample considered as a function of ϑ defines the likelihood function L(ϑ)
[Azzalini 1996]:

L(ϑ|x) =
n∏
i=1
f(x;ϑ). (A.1)

Since L(ϑ|x) is a non-negative quantity, we usually refers to the log-likelihood function, defined as
the logarithm of L(ϑ|x): `(L(ϑ|x)) = logL(ϑ|x).

Under the assumption that X ∼ GEV (ϑ), the log-likelihood function for the GEV parameters is
[Coles 2001]:

`(ϑ|x) = −N ln σ −
(1
ξ

+ 1
) N∑

i

ln
[
1 + ξ

σ
(xi − µ)

]
−

N∑
i

[
1 + ξ

σ
(xi − µ)

]−1/ξ
(A.2)

Eq.(A.2) is valid under the constraint 1 + ξ
(
xi−µ
σ

)
> 0 and when ξ 6= 0. The expression of the log-

likelihood for ξ = 0 can be obtained by simply replacing f(x) in Eq.(A.1) by the Gumbel probability
distribution function.

The maximization of Eq.(A.2) with respect to the vector of parameter ϑ = (µ, σ, ξ) provides the ML
estimations of GEV distribution parameters. Although this maximization has no analytical solutions,
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many numerical optimization techniques can be used to solve the equation system of first-order partial
derivatives of Eq.(A.2) with respect of each unknown parameter in ϑ.

ML inference for models with covariates

In applications, BM assumptions might be unrealistic because of the presence of trends, seasonality,
or other characteristic pattern of X. A simple way to deal with these patterns in the observed x is to
express distribution parameters as function of covariates [Coles 2001]. Consider ϑ to indicate either
µ, σ, or ξ of a GEV. The dependence of X on the covariates Y = [Y1, Y2, ..., Yp] can be accounted for
by expressing each ϑ as a function of some or all the Yj , j = 1, 2, ..., p : ϑ(Y ) = g(Y1, Y2, ..., Yp). A
common choice is to simply use a linear relationships [Coles 2001; Katz 2013]:

ϑ(Y ) = β0 + β1Y1 + β2Y2 + ...+ βpYp, (A.3)

but any functional expression g(Y ) can be theoretically used. β represents the set of parameters
involved in the expression of g(.) for each ϑ. Each Yj , for example, may represent the time or a geo-
graphical coordinate if we are interested in modeling temporal and spatial patterns of X, respectively
[e.g., Katz et al. 2002; Blanchet and Lehning 2010]. Other covariates in climatological applications
could also be used to model the effects of atmospheric oscillations and climate cycles on extremes
[e.g., Gilleland and Katz 2006].

As a result X ∼ GEV {µ(Y ), σ(Y ), ξ(Y )}, and its log-likelihood can be written as:

`(β|x,y) = −N ln σ(y;β)−
(

1
ξ(y;β) + 1

) N∑
i

ln
[
1 + ξ(y;β)

σ(y;β) (xi − µ(y;β))
]

−
N∑
i

[
1 + ξ(y;β)

σ(y;β) (xi − µ(y;β))
]−1/ξ(y;β) (A.4)

where β represents the vector of all parameters involved in the specification of µ(Y ), σ(Y ), and
ξ(Y ), and y is the matrix with column j equals to the N observed values y1,j , y2,j , ..., yN,j of the jth

covariate Yj .

Maximization of Eq.(A.4) with respect of β yields the ML estimates of the parameters. Standard
techniques also ca be used to estimate standard errors and confidence intervals for parameters and
quantiles [Coles 2001].

Note that, in many applications Eq.(A.4) is a misspecified expression of the log-likelihood. For
instance, it considers block maxima as being independent once the effect of the covariates is taken
into account (when specifying their joint distribution), while the may be a simplified hypothesis for
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the model. For example, for spatial GEV models1 [e.g., Buishand 1991; Blanchet and Lehning 2010],
AM observed at several locations s for a give year may not be independent. Similarly, scaling GEV
models [Sec. 4.2.3] involve AM observed at different scales which may be generated by te same
precipitation event, and thus be dependent between each other. However, the method is applicable
if we are not interested to explicitly model the dependency structure between observations and if the
misspecification is not too restrictive. Asymptotic properties of the ML estimator βML are available
from the theory of composite likelihood [Varin et al. 2011].

A.2 Probability Weighted Moment (PWM) estimation

The Probability Weighted Moment (PWM) method [Greenwood et al. 1979] is equivalent to the L-
Moment (LM) method which has been widely used for the estimation of GEV parameters since its
introduction in the EVT due to Hosking et al. (1985). L-moments are defined as the expectation
of linear combinations of order statistics of the target variable. As ordinary moments, L-moments
provide measures of the X probability distribution characteristics, such as location, dispersion, skew-
ness, and kurtosis, but they are computed from the ordered data sample. They have the advantage of
being more robust than conventional moments on small data samples and in the presence of outliers.

L-moment GEV parameter estimators, in the case that −0.5 < ξ < 0.5, can be written as [Hosking
et al. 1985]:

ξ̂ = −7.859c− 2.9554c2 (A.5)

σ̂ = l2ξ̂

(1− 2ξ̂)Γ(1− ξ̂)
(A.6)

µ̂ = l1 + σ̂

ξ̂

[
1− Γ(1− ξ̂)

]
(A.7)

where
c = 2

3 + t3
− ln 2

ln 3 (A.8)

and t3 = l3/l2, and l1, l2, l3 represents, respectively, the sample L-moments of order 1, 2, and 3.
Sample L-moments can be define from the r-order Probability Weighted Moments βr [Greenwood

1Note that, these models have been designated by different names, each of them indicating an essential characteristic
of the technique. Blanchet and Lehning (2010), for instance, referred to them as smooth-GEV model, pointing out
the difference with interpolation strategies; while the latter locally approximate the value of each ϑ, the smooth GEV
estimates the parameters as a smooth function of space directly from the original AMS. Panthou et al. (2012), using
the expression Spatial Maximum Likelihood Estimation (SMLE), underlined the fact that the model is based on the
ML estimation of the ϑ. Finally, and other authors, using more generic names such as Spatial GEV Regression [Van
de Vyver 2012] or Hierarchical GEV [Katz et al. 2002]. stressed the way how the spatial component is introduced in
the model.
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et al. 1979, Hosking et al. 1985]:

βr = E[X {F (X)}r], r = 1, 2, ... (A.9)

Given an observed i.i.d. sample x = (x1, x2, ..., xN ) of X having cumulative distribution function
F (x), an unbiased estimation of βr is [Hosking et al. 1985]:

br = 1
N

N∑
i=r+1

(i− 1)(i− 2)...(i− r)
(N − 1)(N − 2)...(N − r)x(i) (A.10)

where x(i) is the ith order statistic of x and with

b0 = 1
N

N∑
i=1
xi (A.11)

The corresponding estimators of the first three L-moments are:

l̂1 = b0 (A.12)

l̂2 = 2b1 − b0 (A.13)

l̂3 = 6b2 − 6b1 + b0 (A.14)

Hosking et al. (1985) demonstrated the asymptotic normality of PWM estimators and derived GEV
parameters standard errors useful for the construction of confidence intervals whenever ξ < 1/2. They
further indicated that asymptotic theory works well for sample sizes of 50 or larger. When a PWM
approach is adopted, confidence intervals for GEV quantiles are generally obtained from return levels
expressions based on frequency factors [Chow 1951] or trough the use of resampling techniques.
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Introduction

This supporting information presents some extended results and describes in more details some
methodological developments. It is structured as follows. Table S1 lists in alphabetic order the
recurrent acronyms used in text. Figure S1 displays the station locations and the median of the dis-
tribution of the annual maximum precipitation for various durations considered in the study. Figures
S2 and S3 show results for the SS model validation (Slope and GOF tests) when AMS are pooled ac-
cording to the instrument and temporal resolution. Section S1 briefly describes these figures. Figure
S4 presents the results of the cross-validation experiment for the SS model (Slope and GOF tests) for
each duration and scaling interval. Figures S5 and S6 present, respectively, the regional distribution
of the mean number of events per year, N̄eve, and the mean wet time, T̄wet, of these events for each
6-duration scaling interval. The detailed definition of N̄eve and T̄wet is given in Sect. S2. Finally, Fig.
S9 to S17, extend to longer scaling intervals the analysis presented in Sect. 4.3 (Regional analysis)
and Sect. 5.2 (SS-GEV model evaluation) for 6-duration scaling intervals.

https://doi.org/10.5194/hess-21-5823-2017-supplement
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Section S1: Details on Fig. 2 and 3

Figures S2 and S3 show the results of the Slope and GOF tests applied at the 0.05 significance
level when AMS are pooled according to the instrument and temporal resolution of the recording
station. Each of the 12 matrices of these figures represents the proportion of valid SS stations [see the
definition of valid SS station in Sect. 4.1 and in Fig. 1 (e) of the paper] for each duration (vertical
axis) and scaling intervals (horizontal axis).

Each grid-box of the heatmaps is divided in two triangles. Upper triangles in Fig. S2 correspond
to the fraction of AMS having instrument resolution < 2.54 mm, while lower triangles correspond
to AMS with instrument resolution of 2.54 mm. Tip resolution at each station is defined as the
minimum non-zero recorded value. Tip resolution at stations having both DPDM and HCPD series,
or both 15PD and HPD series, was defined as the maximum value between the resolutions of these
two series.

Upper triangles in Fig. S3 correspond to the fraction of AMS constructed from both HPD and 15PD
series, or both HCPD and DMPD series (i.e. with temporal resolution ≤ 1 h). Lower triangles
correspond to the fraction of AMS estimated from hourly series only (series constructed from HCPD
or HPD series, i.e. a 1h temporal resolution).

White triangles in Fig. S2 and S3 indicate non-significant differences between upper and lower triangle
proportions. Tests on proportion differences were applied at significance level 0.05 without accounting
for the spatial autocorrelation among stations.
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Section S2: Definition of N̄eve and T̄wet for the events sampled within

each scaling interval

To provide deeper insights about regional features of precipitation associated with specific scaling
regimes, two variables related to the precipitation events observed within AMS were also analyzed:
the mean number of events per year, N̄eve, and the mean wet time per event, T̄wet, contributing to
AMS within each scaling interval.

For a given year and station, annual maxima associated to different durations of a given scaling
interval were considered to belong to the same precipitation event if the time intervals over which
they occurred overlapped [see Fig. S5 (g); in this example 3, 4, and 5 h annual maxima are associated
with the first event while 1, 2, and 6 h annual maxima are associated to the second event]. The mean
number of events at each station was then computed:

N̄eve = 1
n

n∑
i

Neve,i (S1 .1)

with Neve,i the number of non-overlapping time intervals, i.e. the number of different events con-
tributing to AMS during the ith year of record. The distribution of N̄eve values within each region is
presented in Fig. S5.

For each station, the mean wet time, T̄wet [hours], of events sampled within each scaling interval was
computed as:

T̄wet = n−1
E

nE∑
e

Twet,e (S2)

with nE the total number of events e sampled by the annual maxima precipitation series in the scaling
interval [see Sect. 4.3 of the article for the definition of each event]. Twet,e is the wet time of the eth

event:
Twet,e = WeTe (S2)

whereWe is the fraction of event time steps during which positive precipitation depths were recorded,
and Te is the total event duration (in hours).

Figure S6 displays the distribution over valid SS stations of T̄wet within each region [Fig. S6 (a) to
(f)] and one example of calculation of Twet,e and T̄wet [Fig. S6 (g)].
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Table S1 .1: List of the relevant acronyms recurring in the manuscript.

AD: Anderson Darling test KS: Kolmogorov-Smirnov test
AMS: Annual Maxima Series ML: Maximum-Likelihood estimation
GEV: Generalized Extreme Value distribution MS: Multiscaling
GOF: Goodness-Of-Fit test MSA: Moment Scaling Analysis
IQR: Interquartile Range PWM: Probability Weighted Moments estimation
IDF: Intensity-Duration-Frequency curve SS: Simple Scaling
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Figure S1: Spatial distribution of the median precipitation intensity for: (a) 15 min, 1 h, and 3 h in
the SD dataset, (b) 6 h, 12 h, and 24 h in the ID dataset, and (c) 3days, 5days, and 7days in the LD
datasets.
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Figure S2: Proportion of valid SS stations for each duration and scaling interval for the SD, ID, and
LD datasets [row (a), (b), and (c) respectively] when accounting for series instrument resolutions.
Upper triangles correspond to the fraction of AMS having instrument resolution < 2.54 mm, while
lower triangles correspond to AMS with instrument resolution of 2.54 mm. White triangles indicate
non-significant differences between upper and lower triangle proportions. See Sect. S1 for details.
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Figure S3: Proportion of valid SS stations for each duration and scaling interval for (a) ID and (b)
LD datasets when accounting for series temporal resolutions Upper triangles in Figures S3 correspond
to the fraction of AMS with temporal resolution ≤ 1 h. Lower triangles correspond to the fraction of
AMS estimated from hourly series only. White triangles indicate non-significant differences between
upper and lower triangle proportions. See Sect. S1 for details.
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Figure S4: Proportion of stations satisfying both the Slope and GOF tests applied at the 0.95 confi-
dence level in cross-validation. Each grid-box represents the proportion for a duration (vertical axis)
and scaling interval (horizontal axis) for the SD, ID, and LD datasets [row a), b), and c) respectively]
computed when that duration is excluded from the scaling interval. White circles indicate proportions
lower than 0.90.
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Figure S5: Median and Interquantile Range (IR) of the distribution over valid SS stations of the mean
number of events per year, N̄eve, within each region of Fig. 7 for each 6-duration scaling interval for
the SD (left curve), ID (central curve), and LD (right curve) datasets. For each region, the mean
number of valid SS stations over the scaling intervals is indicated in the legend in brackets. Panel (g)
displays an example of how Neve,i is estimated for year i.
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Figure S6: Median and Interquantile Range (IR) of the distribution over valid SS stations of the
mean wet time, T̄wet, within each region for each 6-duration scaling interval in the SD (left curve), ID
(central curve), and LD (right curve) datasets. Graph (g) displays an example of how T̄wet is estimated
for one theoretical scaling interval. For each region, the mean number of valid SS stations over the
scaling intervals is indicated in brackets.
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Figure S7: Median and Interquantile Range (IR) of the distribution over valid SS stations of the mean
number of events per year, N̄eve, within each region for each 12-duration scaling interval for the SD
(left curve), ID (central curve), and LD (right curve) datasets. For each region, the mean number of
valid SS stations over the scaling intervals is indicated in brackets.
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Figure S8: Median and Interquantile Range (IR) of the distribution over valid SS stations of the mean
number of events per year, N̄eve, within each region for each 18-duration scaling interval for the SD
(left curve), ID (central curve), and LD (right curve) datasets. For each region, the mean number of
valid SS stations over the scaling intervals is indicated in brackets.
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Figure S9: Median and Interquantile Range (IR) of the scaling exponent distribution over valid SS
stations within each region for 12-duration scaling intervals in the SD (left curve), ID (central curve),
and LD (right curve) datasets. For each region, the mean number of valid SS stations over the scaling
intervals is indicated in brackets.
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Figure S10: Median and Interquantile Range (IR) of the scaling exponent distribution over valid SS
stations within each region for 18-duration scaling intervals for the SD (left curve), ID (central curve),
and LD (right curve) datasets. For each region, the mean number of valid SS stations over the scaling
intervals is indicated in brackets.
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Figure S11: Stacked proportion of valid SS stations with ξ < 0 (in red), ξ = 0 (in grey), and ξ > 0 (in
blue) for each 12-, 18-, and 24-duration scaling interval [1st, 2nd, and 3rd col., respectively] in SD, ID,
and LD datasets [(a), (b), and (c), respectively] .
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Figure S12: Median relative difference ∆µ for each for each scaling interval (horizontal axis) and
duration (vertical axis) in SD, ID, and LD datasets [(a), (b), and (c), respectively] .
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Figure S13: Median relative difference ∆σ for each scaling interval (horizontal axis) and duration
(vertical axis) in SD, ID, and LD datasets [(a), (b), and (c), respectively] .
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Figure S14: Proportion of valid SS stations having rd,ss < rd,non−SS for ξ∗ < 0 (1st col.), ξ∗ = 0 (2nd
col.), and ξ∗ > 0 (3rd col.) for each 6-duration scaling interval (horizontal axis) and duration (vertical
axis) in SD, ID, and LD datasets [(a), (b), and (c), respectively] .
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Figure S15: Distribution of the relative total RMSE ratio, Rrmse, for ξ∗ < 0 (1st col.), ξ∗ = 0 (2nd col.),
and ξ∗ > 0 (3st col.) for 12-duration scaling intervals in SD, ID, and LD datasets [(a), (b), and (c),
respectively] .
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Figure S16: Distribution of the relative total RMSE ratio, Rrmse, for ξ∗ < 0 (1st col.), ξ∗ = 0 (2nd col.),
and ξ∗ > 0 (3st col.) for 18-duration scaling intervals in SD, ID, and LD datasets [(a), (b), and (c),
respectively].
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Figure S17: Distribution of the relative total RMSE ratio, Rrmse, for ξ∗ < 0 (1st col.), ξ∗ = 0 (2nd col.),
and ξ∗ > 0 (3st col.) for 24-duration scaling intervals in SD, ID, and LD datasets [(a), (b), and (c),
respectively].
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Figure S1: Two-yr AM precipitation for duration d = 1h at the native spatial resolution of each dataset.
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Figure S2: Two-yr AM precipitation for duration d = 3h at the native spatial resolution of each dataset.
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Figure S3: Two-yr AM precipitation for duration d = 6h at the native spatial resolution of each dataset.

216



Supp. Mat. Art. 2

ERA-CRCM5 WRF

CMORPH

Stations

MSWEP

11098806250

[mm]

Figure S4: Two-yr AM precipitation for duration d = 24h at the native spatial resolution of each
dataset.
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Figure S5: Two-yr AM precipitation for duration d = 72h at the native spatial resolution of each
dataset.
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Figure S6: Spatial distribution over L1 locations of the relative difference, Br0,d(x̂), for the 2-yr AM
quantile at the native dataset resolution: a) ERA-CRCM5; b) WRF; c) CMORPH; and d) MSWEP.
Smaller points represent locations with no statically significant bias (i.e. station-grid box pairs that
did not reject the null hypothesis H0 : Br0,d(x̂) = 0 at the 0.05 significance level).
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Figure S7: Spatial distribution over L1 locations of the relative difference, Br0,d(x̂), for the 25-yr AM
quantile at the native dataset resolution: a) ERA-CRCM5 and b) MSWEP. Smaller points represent
locations with no statically significant bias (i.e. station-grid box pairs that did not reject the null
hypothesis H0 : Br0,d(x̂) = 0 at the 0.05 significance level).
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Figure S8: Root Mean Squared Relative Error (RMSRE), Rr,d, defined for each spatio-temporal scale

(r, d) as Rr,d = (n−1
n∑
i=1
B2
r,d(x̂))1/2, where the sum is over the n relevant L1 locations i, i = 1, 2, . . . , n.

RMSRE for 2-yr (1st col.) and 10-yr AM (2nd col) quantiles are presented for: a) ERA-CRCM5; b)
WRF; c) CMORPH; and d) MSWEP.
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Figure S9: Distribution over L1 locations of AM tie statistics: a) Mean number of ties per year (i.e.,
mean number of equal AM sampled each year); b) Total number of ties exceeding the number n of
years included in precipitation AMS (i.e. number of Ntie ≥ 1 over the entire observation period).
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Figure S10: Annual cycles of AM occurrences at the native dataset resolution, r0, for: a) ERA-
CRCM5; b) WRF; c) stations; d) CMORPH; and e) MSWEP. The period over which the annual
cycles are estimated for each dataset is indicated at the top right corner of panels a to e. Panel f)
displays the PSS between station and gridded dataset annual cycles averaged over L1-locations, Sm as
a function of duration.
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Figure S11: Daily cycles of sub-daily AM occurrence at the native dataset resolution, r0, for: a) ERA-
CRCM5; b) WRF; c) stations; d) CMORPH; and e) MSWEP. The period over which the diurnal
cycles are estimated for each dataset is indicated at the top right corner of panel a to e. Panel f)
displays the PSS between station and gridded dataset diurnal cycles averaged over L1-locations, Sh,
as a function of duration.
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Figure S12: Annual cycles of AM occurrences at the native dataset resolution computed starting from
1995 for: a) ERA-CRCM5; b) WRF; c) stations; d) CMORPH; and e) MSWEP. Panel f) displays the
PSS between station and gridded dataset annual cycles averaged over L1-locations, Sm as a function
of duration.
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Figure S13: Daily cycles of sub-daily AM occurrence at the native dataset resolution computed starting
from 1995 for: a) ERA-CRCM5; b) WRF; c) stations; d) CMORPH; and e) MSWEP. Panel f) displays
the PSS between station and gridded dataset diurnal cycles averaged over L1-locations, Sh as a function
of duration.
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Figure S14: Break duration for AM temporal scaling for 10-yr return period quantiles: proportion of
L1 locations achieving the best fit for a particular break duration (knot) in piece-wise models for the
temporal scaling linear regression [Eq.(4)] in terms of the adjusted coefficient of determination, R2

adj.
"No break" category corresponds to cases in which all possible 1-knot piece-wise regressions had lower
R2
adj than the linear model that uses all available durations.
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Figure S15: Spatial distribution of the relative difference, B ∗r0,d (x̂) = (xEra−CRCM5 −
xCRCM5−LE)/(xEra−CRCM5) between ERA-CRCM5 quantiles and the CRCM5-LE estimations for a)
2-yr and b) 10-yr AM quantile at the native dataset resolution.
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Figure S16: Annual cycles of AM occurrences at the native dataset resolution for ERA-CRCM5 (1st
col.) and CRCM5-LE (2nd col.) computed for all grid boxes (1st row), grid boxes in region A (2nd
row), and grid boxes in region B (3rd row).
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Figure S17: Spatial distribution of the extrapolated scaling slopes, h0, computed at each box for SD
(1st row) and LD (2nd row) using the 50 member ensemble mean of the CRCM5-LE for a) 2-yr SD,
b) 25-yr SD, c) 2-yr LD, and d) 25-yr LD AM quantiles.
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Figure S18: Spatial distribution of the extrapolated scaling slopes, h1, computed at each box for SD
(1st row) and LD (2nd row) using the 50 member ensemble mean of the CRCM5-LE for a) 2-yr SD,
b) 25-yr SD, c) 2-yr LD, and d) 25-yr LD AM quantiles.
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Figure S1: Expected decadal percent increase for 3SP GEV distribution parameters for durations
d=1,2,3,6,24 and 72h (x-axis): a) scale, σt; b) location, µt; c) scale-locatio ratio, σt/µt. The red dashed
curves (y-axis on the right) corresponds to the fractions,fH1 , of grid boxes with statistically significant
trend (MK at the at the αglo = 0.1 FDR level).
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Figure S2: Spatial distribution of the decadal percent variation computed over 3SP for the GEV scale
( σt, 1st row) and location (µt, 2nd row) for 1h (1st col.), 24h (2nd col.), and 72h (3rd col.).

233



Supp. Mat. Art. 3

a)
 1

97
8

b)
 2

09
8

1h 24h 72h

J

F

M

A

M

J

J

A

S

O

N

D

Figure S3: Spatial distribution of mean date of occurrence for a) t = 1978, and b) t = 2098 and for
d = 1h (1st col.), d = 24h (2nd col.), and d = 72h (3rd col.).
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Figure S4: Spatial distribution of the decadal percent variation computed over 3SP for the mean
vector length for the date of occurrence of a) hourly and b) daily AM.
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Figure S5: Distribution over CRCM5 grid boxes of the decadal percent variations for the scaling
parameters h0,t (1st row) and h1,t (2nd row) for a) SD and b) LD. The dashed curves (y-axis on the
right) corresponds to the fractions, fH1 , of grid boxes with statistically significant trend (MK at the
at the αglo = 0.1 FDR level).
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Figure S6: Median over CRCM5 grid boxes of 3SP S-GEV estimates for t = 1978 and t = 2098. The
reference duration d∗ = 1h has been considered for SD and d∗ = 24h for LD.
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Figure S7: Proportion of grid boxes with S-GEV shape parameter, ξ∗
t , significantly different from 0

according to the LR test at the αglo = 0.01 FDR level for a) SD and b) LD.
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Figure S8: Spatial distribution of the decadal percent variation of temporal scaling 3SP S-GEV pa-
rameters for a) SD and b) LD at the native spatial resolution (i.e. r = 12km).
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Figure S9: Distribution over CRCM5 grid boxes of the decadal percent (absolute) variation for 3SP
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αglo = 0.1 FDR level).
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Figure S10: Distribution over CRCM5 grid boxes of the decadal percent variation for 3SP S-GEV
scale (σ∗

t , 1st col.) and location (µ∗
t ,2nd col.) parameters, and for the normalized dispersion coefficient

(σ∗
t /µ

∗
t , 3rd col. The dashed curves (y-axis on the right) corresponds to the fractions, fH1 , of grid boxes

with statistically significant trend (MK at the at the αglo = 0.1 FDR level).) for a) SD and b) LD.

239


	Remerciements
	Résumé
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Acronyms

	Synthèse
	Problématique
	Analyse multi-échelle des précipitations extrêmes
	Les modèles des lois d'échelle
	Objectifs, méthodologie et synthèse des résultats
	Plan de la thèse

	Introduction
	I Literature review, objectives, and methods
	Extreme precipitation: preliminary considerations
	Complex spatio-temporal structure of precipitation extremes
	Biases and uncertainty in recorded precipitation series
	Use of climate models to estimate extreme precipitation

	Climate Change (CC) impacts on mean and extreme precipitation
	Observed changes in historical climate
	Projecting CC
	Uncertainty in projected changes

	Statistical modeling of precipitation extremes
	Extreme Value Theory (EVT) for precipitation
	Intensity-Duration-Frequency (IDF) curves
	Areal Reduction Factors (ARFs) and  Intensity-Duration-Area-Frequency (IDAF) curves

	Scaling models for extreme precipitation
	Scale invariance and self-similarity of precipitation
	Simple Scaling (SS) models
	Scale invariance in space and time
	Multiscaling

	Thesis overview
	Research questions
	Specific project objectives
	Data and Study region
	Annual Maxima (AM) extraction


	II Articles
	Simple Scaling of extreme precipitation in North America
	  Résumé en francais
	Introduction
	Simple Scaling models for precipitation intensity
	Data and study region
	SS estimation through Moment Scaling Analysis (MSA)
	Regional analysis
	Simple Scaling GEV etimation
	Discussion and conclusion

	Observed and simulated precipitation over North East North-America: how do sub-daily extremes scale in space and time?
	  Résumé en français
	Introduction
	Data and study area
	Extraction of Annual Maxima series at various spatiotemporal scales
	Statistical characterization of AM series
	Evaluating dataset performances
	Gridded dataset and station AM statistics at native resolution
	Spatio-temporal scaling of AM rainfall
	AM statistics for the CRCM5-LE
	Summary and conclusion

	Extreme precipitation under climate change: probability distributions, seasonality, and spatio-temporal scaling of sub-daily annual maxima.
	  Résumé en francais
	Introduction
	Data
	Methods
	Results
	Discussion and Conclusion


	III Conclusion
	6   Discussion and conclusion
	6.1   Synthesis and discussion of results
	Original contributions
	Limitations and perspective on future works

	Bibliography

	IV Appendix
	GEV parameter estimation
	Maximum Likelihood (ML) estimation
	Probability Weighted Moment (PWM) estimation

	Supplementary Material of Article 1
	Supplementary Material of Article 2
	Supplementary Material of Article 3


