

Seasonal contributions of water and pollutants to Lake St. Charles, a drinking water reservoir

Journal:	Canadian Water Resources Journal
Manuscript ID	TCWR-2019-0028.R1
Manuscript Type:	Original Paper
Date Submitted by the Author:	n/a
Complete List of Authors:	Narancic, Biljana; INRS, Eau-Terre Environnement Laurion, Isabelle; INRS, Eau-Terre Environnement Wolfe, Brent B.; Wilfrid Laurier University, Geography and Environmental Studies Behmel, Sonja; Association pour la protection de l'environnement du lac Saint-Charles et des Marais du Nord, Limnology Rousseau, Alain; INRS, Eau-Terre Environnement
Keywords:	stables isotopes; nutrients; fecal coliforms; septic installations; wastewater treatment plants;
	·

1	Seasonal contributions of water and pollutants to Lake St. Charles, a
2	drinking water reservoir
3	
4	Biljana Narancic ¹ , Isabelle Laurion ¹ , Brent B. Wolfe ² , Sonja Behmel ³ and Alain N.
5	Rousseau ¹
6	
7	¹ Centre Eau Terre Environnement, Institut national de la recherche scientifique, Québec,
8	QC G1K 9A9, Canada
9	² Department of Geography and Environmental Studies, Wilfrid Laurier University,
10	Waterloo, ON N2L 3C5, Canada
11	³ Association pour la protection de l'environnement du lac Saint-Charles et des Marais du
12	Nord, Québec, QC G3G 1H4, Canada
13	
14	Corresponding author: Biljana Narancic (now at Laboratoire de paléoécologie aquatique,
15	Centre d'études nordiques, Département de géographie, Université Laval, QC G1V 0A6,
16	Canada)
17	E-mail: <u>biljana.narancic.1@ulaval.ca</u>
18	ORCID ID: orcid.org/0000-0002-4986-6927
19	
20	
21	
22	

23 Abstract

24 Surface waters are widely used as sources of drinking water in Canada. The identification 25 of the main sources of pollutants to surface waters, often associated with increasing 26 urbanization, is needed to improve management strategies. We used stable water isotopes 27 (δ^{18} O and δ D), and nutrient and fecal coliform mass fluxes to estimate the seasonal 28 contributions of water and pollutants of different inflows to Lake St. Charles (LSC). Our 29 results indicate that out of six identified LSC water sources, groundwater (GW), Hurons 30 River (HR) and small stream tributaries (SSTs) represent the major contributors (in terms 31 of water volume). The three other water sources, including two wastewater treatment 32 plants (WWTPs), Delage Lake (DL) and precipitation (rain and snow), represent smaller 33 seasonal contributions. During the high-flow seasons (spring and fall), LSC receives 34 water mainly from SSTs and HR, while during the low-flow season (summer), the lake 35 relies mainly on GW inflows. Estimates of point source (WWTPs) versus non-point 36 source (primarily septic installations) concentrations of nutrients and fecal coliforms 37 show that the latter represents a seasonally variable and greater source of pollutants (5 % 38 WWTPs vs. 95 % septic installations). HR and SSTs, draining densely occupied areas of 39 single housing units with individual septic installations, are categorized as non-point 40 sources, and as such are considered major nutrient and fecal coliform contributors. The 41 higher precipitation in spring and fall caused increased fluxes of nutrients and fecal 42 coliforms through higher stream discharge. Due to the seasonally variable and difficult to 43 predict discharge dynamics of SSTs and HR, these two sources represent a potentially 44 larger threat to LSC water quality. We advocate that improved management requires 45 reducing the number of individual septic installations in the LSC watershed.

47 Résumé

48 Les eaux de surface sont largement utilisées comme sources d'eau potable au Canada. 49 L'identification des principales sources de polluants dans les eaux de surface, souvent 50 associées à une urbanisation croissante, est nécessaire pour élaborer des stratégies de 51 gestion améliorée. Nous avons utilisé des isotopes stables dans l'eau (δ^{18} O et δ D) et des 52 charges en nutriments et coliformes fécaux pour estimer les contributions saisonnières de 53 différents affluents vers le lac Saint-Charles (LSC). Nos résultats indiquent que parmi les 54 six sources d'eau identifiées, les eaux souterraines (GW), la rivière des Hurons (HR) et 55 les petits tributaires (SSTs) représentent les principaux contributeurs (en termes de 56 volume d'eau). Les trois autres sources d'eau, dont deux stations d'épuration d'eaux usées 57 (WWTPs), Lac Delage (DL) et les précipitations (pluie et neige), représentent une 58 contribution saisonnière moins importante. Pendant les saisons de fort débit (printemps et 59 automne), LSC reçoit de l'eau principalement des SSTs et HR, tandis que pendant la 60 saison de faible débit (été), le lac dépend principalement de GW pour maintenir son 61 niveau d'eau. Les estimations des sources ponctuelles (WWTPs) par rapport aux sources 62 non ponctuelles (principalement des installations septiques) de nutriments et coliformes 63 fécaux ont démontré que cette dernière source représente une contribution saisonnière 64 variable, mais plus importante de polluants (5% des WWTPs contre 95% des installations 65 septiques). HR et SSTs qui drainent les zones densément occupées par des maisons avec 66 des installations septiques privées, sont classées comme des sources non ponctuelles et, à 67 ce titre, sont considérées comme des contributeurs majeurs en nutriments et coliformes 68 fécaux. Les précipitations plus abondantes au printemps et à l'automne ont entraîné une 69 augmentation des flux de nutriments et coliformes fécaux en raison du débit plus élevé. 70 La dynamique de débits saisonniers difficile à prévoir des SSTs et HR, représente une

- 71 menace potentiellement plus grande pour la qualité de l'eau du LSC que d'autres sources.
- 72 Nous préconisons que l'amélioration de la gestion nécessite de réduire le nombre
- 73 d'installations septiques privées dans le bassin versant du LSC.
- 74

77

- 75 Keywords: Quebec; stables isotopes; nutrients; fecal coliforms; septic installations;
- 76 wastewater treatment plants;

78 Introduction

79 In Canada, two-thirds of the population depend on surface waters from lakes, rivers and 80 reservoirs for their drinking water supply (Statistics Canada 2011). In southern Quebec, 81 surface waters provide more than 75 % of the drinking water (MDDEP 2008). 82 Increasingly, people are moving out of city centers, because of lower housing prices, and 83 developers are quickly converting forested areas and floodplains into building lots to 84 respond to this growing demand, and as a consequence replacing land cover serving as 85 natural filters (Ritchot et al. 1994)). The accelerated urbanization, often not connected to 86 sewer systems, particularly in the urban-rural fringe areas, is viewed as a major threat to 87 long-term sustainability in water quality and quantity and represents a major challenge 88 for water managers.

89 Lake St. Charles (LSC) is the main drinking water reservoir of Quebec City 90 providing drinking water to 300,000 inhabitants and is located in the urban-rural fringe 91 area. There is increasing evidence that the lake water quality is undergoing accelerated 92 degradation associated with increased urbanization (Tremblay et al. 2002; Tremblay and 93 Pienitz 2015; APEL 2014b and 2019). Based on APEL reports (Association pour la 94 protection de l'environnement du lac Saint-Charles et des Marais du Nord; 2012, 2014a, 95 2014b), a non-profit lake steward organization, urban development is increasing faster 96 than the infrastructure capacity (e.g., the capacity of the two wastewater treatment plants 97 upstream from Lake St. Charles in addition to the increasing number of housing on septic 98 installations), and regulations are needed to control diffuse (non-point) and point sources 99 of pollution from domestic waste water sources. Residential development and increased 100 discharge of domestic wastewaters into the lake have substantially increased during the

101	past 50 years (APEL 2019). These land cover changes have accelerated the lake
102	eutrophication process and ensuing degradation rate, which is already perceptible by
103	occurrences of cyanobacterial blooms occurrence, aquatic plant proliferation and
104	increased water salinity (Légaré 1997, 1998; APEL 2012, 2014a). Indeed, the lake was
105	classified as mesotrophic when considering both nutrient and algal biomass (APEL
106	2014b). Within the lake watershed, there are two wastewater treatment plants (WWTPs)
107	serving close to 5 000 people. WWTPs are permanent point sources of nutrients and
108	pollutants. In addition, approximately 3 000, single housing units with on-site septic
109	installations composed of a sedimentation tank and purification field, viewed as non-
110	point sources of pollution, are also located within the LSC watershed.
111	Several studies have observed that septic installation failure contributes to water
112	quality degradation, but even a properly working septic installation, which has a working
113	life expectancy between 10 to 20 years, does not handle all pollutants effectively and is
114	likely insufficient to prevent pollution of downstream waterbodies and groundwaters
115	(Aravena et al. 1992; Wilhelm et al. 1996; Ptacek 1998; Robertson et al. 1998; Wernick
116	et al. 1998; Arnade 1999; Moore et al. 2003). To our knowledge, there are no studies that
117	have focused on the efficiency of septic installations and contributing pollution to LSC
118	based on geochemical proxies, and the same can be said for the two WWTP effluents
119	located within its drainage area. The study of Wernick et al. (1998) advocates that
120	individual septic installations are one of the main non-point sources of nitrogen pollution
121	in stream waters. In their comparison between lakes with houses connected to a central
122	sewer system and those surrounded by houses with individual septic installations, Moore

et al. (2003) concluded that the latter had higher levels of phosphorous and *chlorophyll*-aconcentrations.

125 The two municipalities located within the LSC watershed, are considering the 126 possibility of connecting individual septic installations to their local sewer systems 127 (modernised WWTPs) and/or diverting their domestic wastewaters to WWPT located in 128 Quebec City, that is beyond the lake watershed. Therefore, there is a need to identify the 129 dominant pollutant sources in order to prioritize investments. To provide municipalities with this knowledge, we assessed and compared intra- and inter-annual contributions of 130 point (WWTPs) and non-point sources (septic installations drained by small stream 131 132 tributaries) of waters, nutrients and fecal coliforms located within the LSC watershed. We used water stable isotopes (δ^{18} O and δ D) to partition water sources to LSC, and 133 134 limnological tracers (mass fluxes, that is loadings, of phosphorus, nitrogen and fecal 135 coliform) to assess the transport of pollutants to LSC over a two-year period. Stable 136 isotope analysis is often used to determine the relative contribution of different water 137 sources, but also about the evaporation effects, precipitation patterns and groundwater 138 recharge (Clark and Fritz 1997; Turner et al. 2010; Tondu et al. 2013; Narancic et al. 139 2017). Moreover, water stable isotopes are considered water management tools (Tondu et 140 al. 2013). Here we used a linear mixing model for partitioning six lake water sources 141 using δ^{18} O and δ D. The isotopic similarity of LSC waters to individual water sources is 142 used to estimate their relative contribution to the lake water balance. 143 The estimation of nutrient and fecal coliform mass fluxes to the lake is paramount 144 in assessing the sustainability of LSC water quality. The characterization of the mass

145 fluxes through our applied hydro-limnological approach will inform governance

146 strategies to improve or avoid further degradation of lake water quality. The results can 147 also serve to improve the hydrological modelling through a more complete description of 148 seasonal changes in limnological conditions, and to make projections linked to climate 149 change, which is especially critical for this municipal source of drinking water. 150 151 **Materials and Methods** 152 Study site LSC (46°55' N, 71°22' W), located 20 km northwest of Quebec City (Canada), is a 153 154 medium-size lake reservoir (3.6 km^2) with a deeper northern (up the lake) basin 155 (maximum depth = 17.5 m) and shallower southern basin (towards the lake outlet; 156 maximum depth = 4.5 m; Figure 1). The drainage area of the watershed is 198 km^2 , 157 transgressing the administrative boundaries of five neighbouring municipalities: 158 Stoneham-and-Tewkesbury, City of Lac Delage, Quebec City, Saint-Gabriel-de-159 Valcartier and Lac Beauport (Figure 1). Based on previous studies, the main sources of 160 water to LSC come from the Hurons River, Delage Lake, and 34 small streams, 161 respectively draining 82 %, 4 % and 11 % of the watershed. Diffuse runoff from lake 162 hillslopes were estimated to drain the remaining 3 % of the watershed (APEL 2014b). 163 LSC discharges into the St. Charles River via a dam that separates the lake and the river. 164 The dam was built in 1934 to create the drinking water reservoir for Quebec City (APEL 165 2014a; APEL 2019), and is now a run-of-the-river type dam since 2012. The short water 166 residence time, ca. 23 days for the northern basin and ca. 8 days for the southern basin, 167 characterises LSC as a fluvial lake system (Légaré 1998; Tremblay et al. 2002). [Figure 1 168 near here]

169	LSC is located on the Canadian Shield in an ancient glacial valley surrounded by steep
170	hills with altitudes varying between 150-450 m (the highest peak is at 750 m; Tremblay
171	et al. 2002). Surface deposits are thin with outcrops (APEL 1981). Upstream surface
172	water has naturally low ionic charge, and thus, low conductivity and pH (78.6 μ S/cm and
173	6.7 pH). Approximately, 70 % of the lake watershed is covered by dense forests,
174	dominated by deciduous and mixed wood stands. Significant macrophyte growth occurs
175	in shallow areas along the lake shores. Since 2012, macrophyte growth has been
176	extensive and tends to cover 55 % of the southern basin area and 36 % of the northern
177	basin area (APEL 2014b).
178	Today, approximately 13 000 people live in the lake watershed, with more than 4
179	000 housing units located close to the shores (i.e. at less than 500 m; APEL 2014b). More
180	than half of these housing units have on-site individual septic installations. Given the
181	1960 population growth in the lake watershed, some of these septic installations are more
182	than 50 years old (APEL 2019 and references therein). In 1990, two WWTPs were built
183	for the towns of Stoneham-and-Tewkesbury and City of Lac Delage. Both WWTPs have
184	aerated lagoons. Since 2017, the Stoneham-and-Tewkesbury WWTP uses tertiary
185	treatment of sewage discharge and treated waters are directly flushed out through an
186	underground pipe system into Hurons River, ca. 4 km upstream of LSC. City of Lac
187	Delage WWTP provides alum-based coagulation to treat the wastewaters, and treated
188	waters are discharged into marshes (Northern Marshes) upstream of LSC (Figure 1).
189	According to the 1981–2010 climate normal from the closest Environment and
190	Climate Change Canada meteorological station (Jean-Lesage airport, Station ID
191	7016294), the average annual temperature and precipitation are 4.2 °C and 1 190 mm,

0.1

0015

. ., ..

750() **011**

192	respectively (Environment Canada 2017). Most of the precipitation (ca. 75%) falls as
193	rain. The lake is covered by ice from December to April. Annual precipitation for 2016 (1
194	337 mm) and 2017 (1 231 mm) were slightly above the 1981-2010 climate normal. Both
195	years had exceptionally wet conditions during the spring and fall (710 mm = 2016; 753
196	mm = 2017; compared to 595 mm = 30-year climate average) and drier than normal
197	conditions during the summer (297 mm = 2016; $222 = 2017$; compared to 358 mm = 30-
198	year climate average; Figure 2). The temperature for both years were generally similar to
199	the 30-year climate average, with slightly warmer winter temperatures for the months of
200	January (-8.6°C = 2016; -8.9°C = 2017; compared to -12.8°C = 30-year climate average)
201	and February (-8.9°C = 2016; -8.6°C = 2017; compared to -10.6°C = 30-year climate
202	average) and colder summer temperatures for the month of July ($18.9^{\circ}C = 2016$; $17.9^{\circ}C$
203	= 2017; compared to $19.5^{\circ}C$ = 30-year climate average; Figure 2). [Figure 2 near here]
204	

205 Field sampling and analysis

1 (.

100

206 Waters from LSC were sampled at five different locations (stations C03, C04 and C05 in the pelagic zone; stations SCE and SCA in the littoral zone; Table 1). Hurons River (HR), 207 208 Delage Lake (DL), WWTP effluents of Stoneham-and-Tewkesbury (WWTP-ST), City of 209 Lac Delage (WWTP-LD), and 28 small stream tributaries (SSTs; DD, CC, BB, AA, FF, 210 W, Z, GG, U, T, HH, S, R, Q, P, CPLSC18, M, KK, L, K, J, E, OO, H, C, F, G and PP) 211 were sampled at only one location. All sites were sampled every other week from June to 212 October 2016 and an additional six SSTs (IID, IIB, LL, NN, N and A) were sampled 213 from April to October 2017. The HR, DL, WWTP-ST, WWTP-LD and four SSTs (AA, 214 S, K and OO) were sampled once a month from January to March 2017. Groundwater

215	(GW) in private drinking water wells was sampled at five different locations near the
216	shoreline of LSC (GW1, 2, 3, 4 and 5), once in fall 2016 and four times during the period
217	of January-October 2017. At least one precipitation sample per month from June 2016 to
218	October 2017, except for the months of December and January 2017, was taken at the
219	lake outlet; that is at the aforementioned dam location (Figure 1).
220	Six environmental variables were used to estimate the seasonal contributions of
221	the main water sources (SSTs, HR, DL and WWTPs) to LSC: in-situ measured discharge,
222	water oxygen (δ^{18} O) and hydrogen (δ D) stable isotope composition, total nitrogen (TN),
223	total phosphorus (TP) and fecal coliforms (Fc). Water stable isotopes were also used to
224	estimate the seasonal contribution of GW and precipitation to LSC.
225	
226	Discharge
227	The discharge $(n = 50)$ was measured once a month by different methods logistically
228	constrained by flow strength, water depth, stream bed types or pipe configuration. For
229	most stations, it was not possible to use a single method because the flow was too
230	variable from one visit to another. The velocity-area method for the determination of the
231	stream flow of HR and discharge of DL consisted of measuring depth, distance and
232	stream velocity between different cross-sections of the river. The velocity was
233	measured using a current meter (Swoffer model 2100) and the average was obtained for
234	each cross-section. The discharge rate was then derived from the sum of the product of
235	mean velocity, depth and width between cross-sections. When the water level and flow
236	velocity were too low to use a current meter, we used the <i>speed-area method</i> with floats.
237	The velocity was first calculated by measuring the time the float took to travel a fixed

238 distance, and after the area of that river section was measured. The discharge was then 239 calculated by multiplying the section area by the velocity. When water flow was 240 extremely low, we used the *volumetric method*. This method consisted of calculating the 241 discharge from the time needed to fill a container of known volume. These latter two 242 methods were used to measure discharge from the SSTs. 243 244 Water stable isotope composition 245 Water samples were collected in 30-ml, high-density polyethylene bottles at each 246 sampling site (Figure 1). In total, 105 (2016) and 339 (2017) surface water samples, and 4 247 (2016) and 17 (2017) GW samples were collected. Samples of rain and snow were 248 obtained when precipitation events occurred. Rainwater was collected in a plastic pan 249 until enough water was gathered to fill the 30-ml bottles. This took 2 hours or less. Snow 250 samples were collected in Ziploc® bags and once completely melted, the meltwater was 251 transferred into the 30-ml bottles. Samples were stored at 4°C prior to analysis at the 252 University of Waterloo Environmental Isotope Laboratory by Off-Axis Integrated Cavity 253 Output Spectroscopy (Berman et al., 2013). Isotope compositions are expressed as δ -values relative to the Vienna Standard 254 Mean Ocean Water (VSMOW) in per mil (‰), such that $\delta_{\text{sample}} = (R_{\text{sample}} - R_{\text{VSMOW}})$ 255

225 Thean occur water (volvo v) in per him (vol), such that osample (resample revision)

256 $/R_{VSMOW} \times 1000$, where R_{sample} and R_{VSMOW} are the ratio ${}^{18}O/{}^{16}O$ or $D/{}^{1}H$ in the sample

and VSMOW, respectively. Results of δ^{18} O and δ D analysis are normalized to 55.5 ‰

and 428 ‰, respectively, for Standard Light Antarctic Precipitation (SLAP; Coplen

259 1996). Analytical uncertainties are ± 0.2 % for δ^{18} O, and ± 0.8 % for δ D.

260

261	LSC water source partitioning
262	LSC and its source water isotope compositions were first evaluated in $\delta^{18}\text{O-}\delta\text{D}$ space
263	including the Local and Global Meteoric Water Line (LMWL and GMWL) for
264	references. The LMWL ($\delta D = 8.58 \times \delta^{18}O + 15.36$) and GMWL ($\delta D = 8 \times \delta^{18}O + 10$;
265	Craig, 1961) respectively expresses the local and global linear relationships between the
266	oxygen and hydrogen isotope compositions of precipitation. The $\delta^{18}O$ and δD values for
267	precipitation typically fall along the GMWL (or LMWL), and their position reflects
268	variability in spatial and seasonal trajectory of the atmospheric vapor contributing to local
269	precipitation (Rozanski et al. 1993). This normally leads to isotopically-depleted winter
270	precipitation and isotopically enriched summer precipitation (Dansgaard 1964).
271	As shown in Figure 3, LSC does not display substantial evidence of evaporative
272	isotopic enrichment. Lake water isotope composition will usually plot along another
273	linear trend called Local Evaporation Line (LEL: Yi et al. 2008; Turner et al. 2010). The
274	LEL typically has a lower slope than the LMWL and GMWL. Lake water isotope
275	compositions in our study plot along and above the GMWL and LMWL, as expected
276	given the fluvial setting. With the absence of evaporation, it is assumed that the measured
277	lake water isotope composition is a straightforward reflection of the varying
278	combinations of water sources. Prior to proceeding with source partitioning, seasonal
279	isotopic ratios for the lake and its water sources (HR, DL, SSTs, WWTPs) were weighted
280	by the discharge. Each $\delta^{18}O$ (and δD) value was multiplied by the corresponding
281	discharge, and their sum divided by the sum of the total discharge during that season. For
282	GW and precipitation, the arithmetic mean of the isotope compositions was used.

283	We applied the standard linear mixing model developed by Phillips and Gregg
284	(2003) to determine multiple combinations of multiple source proportions using the
285	IsoSource 1.3.1 program. This model is well suited when the number of contribution
286	sources to a mixture is too large to obtain a unique value, and thus an estimated range of
287	individual contributions (0%-100%) is provided. These ranges depend on the similarity
288	and position within the mixing polygons of source isotope composition in reference to a
289	mixture. In general, small mass balance tolerance ($\pm 0.1\%$) of source proportions of a
290	mixture is considered to have feasible solutions, from which the frequency (histograms)
291	and range (%) of potential source contributions can be determined.
292	As a linear relationship exists between $\delta^{18}O$ and δD (Craig 1961) in meteoric
293	water, we assumed that the water source partitioning is the same for both isotopes. We
294	supplied the IsoSource 1.3.1 program with the water isotope compositions of the lake and
295	its water sources, along with the desired source increment (± 1 %) and the mass balance
296	tolerance (± 0.1 ‰) in order to include all possible contributions. As described by
297	Phillips and Gregg (2003), the program repeatedly calculates each possible combination
298	of source proportions. The predicted isotope composition for the lake water was
299	computed as each combination was generated. These predicted lake water isotope
300	compositions were compared to observed values. If they were equal or within a
301	predetermined mass balance tolerance (± 0.1 ‰), they were considered to represent a
302	possible solution and, thus, included in the results. All combinations were represented by
303	histograms with descriptive statistics of the distributions for each source. Within the
304	drawn polygons in δ^{18} O- δ D space, we assumed that source waters falling closest to that
305	of LSC provided the greatest water contribution. We used the mean value of the

306	partitioning solution for each water source to estimate the seasonal changes in source
307	contribution to LSC.
308	
309	Nutrients and fecal coliforms
310	As previously mentioned, waters from LSC ($n=61$), SSTs ($n=393$), HR ($n=24$), DL ($n=$
311	27) and WWTP effluents (n= 44) were sampled at two-week intervals during the two-
312	year sampling period for the measurement of TN, TP and Fc (except Fc not measured in
313	LSC in 2016). The samples were collected in 250-ml high-density polyethylene bottles,
314	and immediately stored in a cooler before taking to the laboratory of Québec City on the
315	same day.
316	Total nitrogen (TN) was obtained by the catalytic oxidation method with a
317	Shimadzu TOC- V_{CPH} NTM-1 instrument. Nitrogenous compounds were oxidized on a
318	platinum catalyzer at 680°C under pure oxygen atmosphere, the generated nitric oxide
319	reacted with ozone, and the product analysed by chemiluminescence (Nollet and De
320	Gelder. 2007). Total phosphorus (TP) analysis was conducted with a sensitive automated
321	colorimetric method for phosphate detection using a flow segmented Astoria analyzer.
322	Phosphorous compounds were first digested with persulfate in acidic conditions, and then
323	reacted with molybdophosphoric acid and ascorbic acid to form the molybdenum blue
324	color complex quantified by spectrophotometry (APHA, AWWA, WEF, 2005). The
325	detection limits for phosphorous and nitrogen are 0.08 mg N $L^{\text{-1}}$ and 2 $\mu\text{gP}~L^{\text{-1}},$
326	respectively.
327	The water discharge was used to calculate nutrients and Fc seasonal mass fluxes
328	to the LSC from the aforementioned sources (i.e., HR, DL, SSTs and WWTPs). The mass

329 flux for each of water source was estimated using the averaging estimators' method 330 explained in Quilbé et al. (2006). The mass flux was first calculated for each day where 331 both variables were measured by multiplying the concentration with the corresponding 332 discharge on a given day (discharge \times concentration \times 24h), and the mean monthly mass 333 flux was then calculated for each water source. For SSTs, the mass fluxes of 29 small 334 tributaries were summed over each month. When more than one mass flux was available 335 for any specific SST, the mean was calculated, and this value was then included in the 336 total SSTs monthly mass flux. Seasonal fluxes were obtained by weighting the mean 337 monthly flux (F) by the total number of days in a given season. For example, to obtain 338 the seasonal flux estimation over summer (June, July and August), the weighted summer mass flux was determined as follows: $(F_{Jun} \times 30 + F_{Jul} \times 31 + F_{Aug} \times 31) / (30 + 31 + 31)$. 339 61.6 340

341 Results

342 Water isotope composition

LSC and its water source isotope compositions were plotted in δ^{18} O- δ^{2} H space to assess 343 344 the varying signatures of this hydrological system (Figure 3; Table 1). The isotope 345 composition of LSC and most of its water sources cluster along and above the 346 GMWL/LMWL, indicating the absence of any significant seasonal evaporative isotopic 347 enrichment. WWTP, DL, HR and GW display similar ranges in isotope composition, and 348 are also similar to the LSC signature. However, the isotope composition of SSTs and 349 precipitation span a greater range. Thus, both SSTs and precipitation water characteristics 350 vary from isotopically-enriched to isotopically-depleted lake water sources. The 351 superimposed isotope compositions of LSC and its water sources makes it difficult to

assess the relative contributions of individual sources, thus, a standard linear mixing
model was applied to provide mathematical solutions for partitioning these waters. This
required a seasonal estimation of the mean isotope composition for LSC water sources.
[Table 1 near here] [Figure 3 near here]
Water discharges of HR, DL, SSTs, WWTPs were also used to determine amount-
weighted mean isotope values, while GW and precipitation mean isotope compositions
were determined arithmetically (Table 2). HR, SSTs and GW presented similar ranges,
while WWTPs, DL and rain had slightly more enriched values. Snow (only sampled
during winter 2017) had mean isotope values of -11.2 ‰ for δ^{18} O and -81.9 ‰ for δ D.
[Table 2 near here]
Source water partitioning
<i>Source water partitioning</i> For most LSC water sources, results from IsoSource 1.3.1 program modelling generated
For most LSC water sources, results from IsoSource 1.3.1 program modelling generated
For most LSC water sources, results from IsoSource 1.3.1 program modelling generated broad ranges of possible contributions (Figure 4). Figure 4 illustrates mixing polygons for
For most LSC water sources, results from IsoSource 1.3.1 program modelling generated broad ranges of possible contributions (Figure 4). Figure 4 illustrates mixing polygons for δ^{18} O and δ D signatures of the six LSC water sources. The histograms associated with
For most LSC water sources, results from IsoSource 1.3.1 program modelling generated broad ranges of possible contributions (Figure 4). Figure 4 illustrates mixing polygons for δ^{18} O and δ D signatures of the six LSC water sources. The histograms associated with each source show the distribution of feasible contributions from each potential source to
For most LSC water sources, results from IsoSource 1.3.1 program modelling generated broad ranges of possible contributions (Figure 4). Figure 4 illustrates mixing polygons for δ^{18} O and δ D signatures of the six LSC water sources. The histograms associated with each source show the distribution of feasible contributions from each potential source to LSC. Values shown in the boxes cover 1–99 percentile ranges for these distributions.
For most LSC water sources, results from IsoSource 1.3.1 program modelling generated broad ranges of possible contributions (Figure 4). Figure 4 illustrates mixing polygons for δ^{18} O and δ D signatures of the six LSC water sources. The histograms associated with each source show the distribution of feasible contributions from each potential source to LSC. Values shown in the boxes cover 1–99 percentile ranges for these distributions. LSC isotope composition fell within the mixing polygons bounded by all sources,
For most LSC water sources, results from IsoSource 1.3.1 program modelling generated broad ranges of possible contributions (Figure 4). Figure 4 illustrates mixing polygons for δ^{18} O and δ D signatures of the six LSC water sources. The histograms associated with each source show the distribution of feasible contributions from each potential source to LSC. Values shown in the boxes cover 1–99 percentile ranges for these distributions. LSC isotope composition fell within the mixing polygons bounded by all sources, indicating plausible contributions from all sources during any given season (although
For most LSC water sources, results from IsoSource 1.3.1 program modelling generated broad ranges of possible contributions (Figure 4). Figure 4 illustrates mixing polygons for δ^{18} O and δ D signatures of the six LSC water sources. The histograms associated with each source show the distribution of feasible contributions from each potential source to LSC. Values shown in the boxes cover 1–99 percentile ranges for these distributions. LSC isotope composition fell within the mixing polygons bounded by all sources, indicating plausible contributions from all sources during any given season (although only four sources were characterized for summer 2016).

375	during three of the six-time intervals. The dominant contribution by HR occurred during
376	fall 2016 (0-72%) and winter 2017 (5-63%). The high contribution of HR in summer
377	2016 (43-91%) may be overestimated as only four sources were characterized during that
378	interval. GW exceeded the 50% contribution threshold during summer 2017 (36-67%),
379	winter 2017 (0-54%) and spring 2017 (0-52%), whereas SSTs exceeded 50% in fall 2016
380	(0-58%), fall 2017 (0-52%) and spring 2017 (16-59%). Overall, at least one of HR, GW
381	or SSTs was a dominant water source during any given season. DL and WWTP exceeded
382	50% only in spring 2017 (0-56% and 0-55%, respectively). Precipitation never exceeded
383	the 50% threshold as expected given the small ratio of the lake surface area to the lake
384	watershed area (1:55). [Figure 4 near here]
385	Using only the mean value from the possible range of solutions predicted by
386	IsoSource 1.3.1 program for each water source and season, we estimated seasonal
387	variability in water source contributions (Figure 5). To simplify to the four principal
388	seasons (out of six in this two-year study), we averaged summers 2016 and 2017, and
389	falls 2016 and 2017. The largest seasonal contribution of all sources was estimated for
390	GW, which ranged from 17% to 53%, with the largest contribution in summer (53%).
391	The second most important contributor was discharge from the HR, which ranged from
392	12% to 35%, with the highest contribution occurring in winter (35%) and fall (26%),
393	followed by SSTs, which ranged from 11% to 33%, with the highest contribution in
394	spring (33%). Other contributions were smaller, including those of DL (6-16%), WWTPs
395	(5-16%), rain (6-15%) and snow (8%), with a maximum contribution in spring for DL
396	(16%) and WWTPs (16%), and in fall for rain (15%). Based on these results, while
397	acknowledging only two years of study, we can rank in decreasing order the annual water

398	source contributions to LSC as follows: GW > HR > SSTs > WWTP > DL >
399	Precipitation. [Figure 5 near here]
400	
401	Contribution of pollutants to LSC
402	The distributions of nutrients and Fc in LSC and its sources are presented in Table 1 and
403	Figure 6. The largest nutrient concentrations were observed in WWTP effluents followed
404	by SST flows during all six seasons studied. The smallest nutrient concentrations were
405	measured in the HR followed by DL. The highest Fc concentrations were measured in
406	SST flows during all six seasons with the exception of spring 2017. The smallest Fc
407	concentrations were observed in DL. Despite some sources being relatively large in
408	nutrients (i.e. WWTPs) and Fc (i.e. SSTs), LSC waters have relatively small
409	concentrations in nutrients and Fc (on average 0.40 mg N L ⁻¹ , 13.20 μ gP L ⁻¹ and 13.30
410	CFU/100ml). [Figure 6 near here]
411	The calculated seasonal nutrient and fecal coliform mass fluxes are presented in
412	Table 3 and Figure 7. HR had the highest nutrient mass flux during all seasons (2 - 9 467
413	kg N d ⁻¹ and 46 - 662 kg P d ⁻¹) followed by SSTs (90 - 3 438 kg N d ⁻¹ and 11 - 76 kg P d ⁻¹
414	¹) with maximum values in fall 2016 (TP) or fall 2017 (TN). The WWTP-ST effluent
415	nutrient mass flux, which is discharged in the HR a few kilometers upstream, was also
416	important, particularly TN mass flux (120 - 992 kg N d ⁻¹ and 2.7 - 26 kg P d ⁻¹). WWTP-
417	LD effluent and DL had the smallest nutrient flux among LSC sources (WWTP-LD: 63 -
418	234 kg N d ⁻¹ and 1 - 13 kg P d ⁻¹ ; DL: 35 - 71 kg N d ⁻¹ and 1 - 3 kg P d ⁻¹). Fecal coliform
419	mass flux was the smallest for HR during three seasons (summer 2016, spring 2017 and
420	summer 2017; reaching up to 221 432 $\times 10^9$ CFU d ⁻¹) and for SSTs during two seasons

- 421 (falls 2016 and 2017, up to 12 286 x10⁹ CFU d⁻¹). In general, WWTP effluents had lower
- 422 fecal coliform mass fluxes than HR and SSTs (WWTP-ST: 5-802 x109 CFU d-1; WWTP-
- 423 LD: 0.7-78 x10⁹ CFU d⁻¹), with maximum values reached in winter 2017 (WWTP-ST) or
- 424 spring 2017 (WWTP-LD). DL had the smallest fecal coliform mass flux (4-51 x10⁹ CFU
- 425 d⁻¹) during all seasons. [Table 3 near here]
- 426 [Figure 7 near here]
- 427

428 Discussion

429 A six-season snapshot of LSC and its water source isotope composition provides insights 430 into the hydrological regime of this lake. LSC and its water sources span a narrow range 431 of isotope compositions and do not display any evaporative enrichment, supporting the 432 known fluvial nature of this lake with a relatively short residence time. Some water 433 source isotope compositions plotted above the GMWL/LMWL, reflecting the importance of precipitation from local moisture recycling (Clark and Fritz 1997; Froehlich et al. 434

435 2008; Wenling et al. 2017).

436 Using the mean values from the possible solution ranges and the threshold value 437 set at 50%, we were able to estimate that HR is not the only dominant water source as 438 previously evaluated (APEL 2014a and b). Water sources of LSC were dominated by 439 SSTs and HR during the spring and fall high flow season, and GW and HR during the 440 low flow periods of summer and winter (Figure 5). Moreover, the contribution of HR 441 might be overestimated; that is, it could even be lower considering that some sources 442 (e.g., GW) were not included in the estimate of summer 2016, and only four SSTs were 443 sampled in winter 2017 due to logistical constrains (Section 2). Our results also indicate

444	that WWTPs, DL and precipitation never became dominant contributors of water to LSC.
445	Although their volumetric contributions were relatively stable throughout the year, their
446	relative contributions were in all likelihood largest during either spring (WWTPs and DL)
447	or fall (Rain; Figure 5). It is important to acknowledge that for most of the water sources,
448	only broad ranges of possible contributions to LSC could be determined. There are two
449	reasons for this outcome. First, there was a high degree of similarity between LSC and
450	water source isotopic signatures, making the mixing polygons very narrow (Figure 4).
451	This overlap is likely linked to the similar moisture source among waters, and to the
452	absence of any effects caused by variations in topography or surface water temperature
453	within the watershed. Second, the lake isotopic signature fell near the centre of the
454	polygons (e.g., in falls 2016 and 2017), and, thus, was apparently composed of
455	approximately equal contributions of these potential sources (e.g., more diffuse solutions)
456	as explained in Phillips and Gregg (2003).
457	Based on our results, the high GW contribution to LSC water budget in summer
458	must have played a significant role in buffering the evaporation and the lake water level
459	drawdown, as lake water isotope composition demonstrated negligible evaporative
460	enrichment. While Quebec City relies on the LSC during summer, the high-water demand
461	season, the lake relies on groundwater supply to maintain its water level. Thus, additional
462	investigations on this source are crucial to gain a comprehensive knowledge of
463	groundwater quantity, quality and seasonal discharge enabling a more sustainable
464	management of this drinking water reservoir in the coming years and in response to
465	climate change.

466	Our results showed that SSTs are one of the three main contributors to the LSC
467	water budget (Figure 5) despite of their small drainage areas (Figure 1) and overall
468	discharge (Table 1). During spring, their contributions were twofold and relatively
469	greater when compared to other sources (Figure 5). Meanwhile, during the dry summer
470	and winter seasons, the contribution of SSTs decreased to less than about one-third of the
471	HR (winter 2017) and one-sixth of the GW (summer 2017). These results suggest that
472	SSTs are dominantly rain-fed, and that their discharge is in inherently governed by
473	fluctuations in precipitation amount, making them more variable on a seasonal basis,
474	unlike the steady and controlled discharge of WWTP effluents. It is noteworthy that
475	almost 200 single housing units with septic installations are drained by these small
476	streams, which makes them an important non-point source of pollutants to LSC, and
477	comparable to WWTPs as both are domestic wastewater sources to the lake (see below).
478	Therefore, the cumulative impact from changes in precipitation-driven discharge and
479	densification of the septic installations through housing development will likely influence
480	the water quality of these small streams and ultimately that of LSC (Moore et al. 2003).
481	To gauge the amplitude of these drivers, long-term monitoring of individual small
482	streams to gauge the amplitude of these drivers will be critically needed to assess, for
483	example, the impacts of deforestation, groundwater abstraction by sewage contraction or
484	housing development.
485	To reduce excessive nutrient mass loadings causing lake eutrophication, the
486	assessment of both non-point and point sources at the watershed scale is required (Moore
487	et al. 2003). Most of the phosphorus and nitrogen loading to LSC were transiting through

488 the HR (combined sources of WWTP-ST and septic installations) and SSTs, indicating

489	the greater nutrient contributions from areas with higher number of individual septic
490	installations through diffuse runoff when compared to that from WWTP effluents (Figure
491	7). The relatively lower nutrient fluxes estimated for spring 2017 through SST flows
492	(approximately 4% of the seasonal budget) may be linked to the under-sampling of the
493	small tributaries (n=9) in April, which covered less than 43% of the SST watersheds.
494	Most of SSTs were still either frozen or were difficult to access. Most importantly, the
495	HR drains a large number of individual septic installations, approximately 2 700, septic
496	installations in the watershed of this large river. Therefore, our estimate of the relative
497	importance of individual septic installations draining domestic wastewaters through SSTs
498	is conservative.
499	The HR watershed is heavily impacted by human activities such as deforestation,
500	urbanization, erosion and recreational tourism (APEL 2014b). All of these activities have
501	the potential to contribute excessively to nutrient and fecal coliform fluxes (Smol 2008;
502	Wetzel 2011). Even though HR has nearly 10-fold mass fluxes of nutrients and fecal
503	coliforms than those of the WWTP-ST effluent, due to its higher discharge, the high fecal
504	coliform mass flux from WWTP-ST in winter 2017 (Figure 7) is not negligible. These
505	exceptionally large fecal coliform values could be linked to the recreational activities
506	occurring at the nearby upstream large ski resort over the winter period, which is
507	connected to the WWTP-ST, and the lower ambient temperature of the aerated lagoons
508	could be responsible for an insufficient treatment when compared to the performance
509	during the other seasons (Stein and Hook 2010). The seasonally-driven increase in
510	population within a watershed represents an important factor to consider when estimating
511	the overall source-specific nutrient and pollutant contributions.

512	The DL (55 individual septic installations; Table 1) and WWTP-LD (connecting
513	600 inhabitants) showed the smallest nutrient and fecal coliform contributions to LSC.
514	The small community size and low discharge, with the occasional LSC inflow to DL
515	during high-flow seasons (waters flowing from LSC to DL instead of the normally
516	opposite flow direction), are the reasons why these two water sources make a small
517	contribution of pollutants (APEL 2014b), as compared to the WWTP-ST (5 000
518	inhabitants and close to 2 700 septic installations) and SSTs (ca. 200 septic installations).
519	Moreover, the WWTP-LD effluent runs into a marsh located in the northern basin of LSC
520	(Figure 1) that is most likely filtering excess nutrients and Fc (VeHRoeven and
521	Meuleman 1999; Knight et al. 2000; APEL 2014b). However, a more specific
522	investigation would be needed to evaluate the impact of the WWTP-LD during winter
523	and fall when filtration by senescent marsh plants is inefficient.
524	The largest nitrogen, phosphorous and fecal coliform mass fluxes from SST
525	runoff were detected during high-flow periods in the fall. The precipitation during fall of
526	both studied years were above the 1981-2010 normal (notably in October; Figure 2) and
527	are likely to have caused particularly high inputs of pollutants and nutrients over these
528	specific years. This seasonal increase in stream flow has been identified in other studies
529	(Nash and Gleick 1991; Rowe et al. 1994; Zhang et al. 2001; Barnett et al. 2005). On the
530	other hand, the higher precipitation during spring was not associated with exceptionally
531	high nutrient and fecal coliform mass fluxes (Figures 2 and 7). Spring flow depends on
532	water equivalent of the snowpack and on the local warming temperature rates that
533	directly influence lake ice-free conditions (Barnette et al. 2005; Ouranos 2015). Higher
534	winter temperatures, increasing precipitation, are inducing an earlier spring freshet and

535	higher peak flow in recent years (Ouranos 2015). Winter temperatures were warmer
536	during our study period compared to the climate normal (January-February; Figure 2),
537	possibly shifting the spring SST flows earlier than anticipated for the sampling campaign.
538	Consequently, the peak spring flow might not have been entirely captured,
539	underestimating its importance in the overall budget. Changes in the seasonal
540	precipitation regime and temperature trends have important implications on stream flow
541	dynamics (IPCC 2014), and therefore on changes in the SST runoff and their mass flux
542	potentials. The urbanization of the SST watersheds, especially in the southern basin of
543	LSC, may have amplified the effects of increased runoff and ensuing contributions of
544	pollutants due to the associated rise in impermeable surfaces (e.g., asphalted). The SST
545	watersheds with higher urbanisation (HH, N, J, E, H, F, A, G and PP), indeed, had larger
546	concentrations of nutrients and Fc (Table 1).
547	Conclusion
548	Conclusion

548 Conclusion

549 Waters of Lake St. Charles (LSC) and its main water sources were sampled for two 550 consecutive years covering six seasons (summer 2016 - fall 2017). Oxygen and hydrogen 551 stable isotope signatures, and seasonal mass fluxes of nutrients and fecal coliforms, using 552 stream flow and concentration measurements, were used to estimate the seasonal 553 contributions of water to the lake. The contribution of the different water sources to LSC 554 varied seasonally, the most important being GW, HR and SSTs followed by WWTP, DL and Precipitation ($GW > HR > SST_s > WWTP > DL > Precipitation$). 555 556 The major contributors of nutrients to LSC were HR, SSTs and WWTP-ST 557 effluents. During fall, nutrient and fecal coliform mass fluxes from SSTs were highly

558	significant and triggered by large amounts of precipitation and increased stream flow.
559	Nearly 200 septic installations were included in the study, focusing on the area drained
560	by the SSTs (i.e., 34 small stream tributaries). The septic installations in the HR
561	watershed were not included in this study. These sources could potentially represent a
562	greater input of nutrients and fecal coliform loadings to LSC, depending on the efficiency
563	of natural degradation (i.e., of Fc) and sedimentation (P) along the hydrological pathways
564	and influenced by the transition time. WWTP effluents (ST and LD) remain an important
565	vector of pollutants when assessing lake water quality and sustainability (Vandenberg et
566	al. 2005). However, their contributions of pollutants remained less important compared to
567	those of individual septic installations within the lake watershed. The discharge of
568	WWTP effluents is relatively constant and controlled, unlike the naturally fluctuating
569	seasonal discharge of small stream flows.
570	Our results indicate that the management of this drinking water reservoir should
570 571	Our results indicate that the management of this drinking water reservoir should focus on controlling the excessive nutrients and fecal coliform loadings from the
571	focus on controlling the excessive nutrients and fecal coliform loadings from the
571 572	focus on controlling the excessive nutrients and fecal coliform loadings from the widespread diffused runoff associated with individual septic installations within the LSC
571 572 573	focus on controlling the excessive nutrients and fecal coliform loadings from the widespread diffused runoff associated with individual septic installations within the LSC hillslopes and sub-watersheds (i.e., SST watersheds). Given the fact that the LSC is
571572573574	focus on controlling the excessive nutrients and fecal coliform loadings from the widespread diffused runoff associated with individual septic installations within the LSC hillslopes and sub-watersheds (i.e., SST watersheds). Given the fact that the LSC is experiencing signs of eutrophication, HR and SST watersheds need to be regulated and
571 572 573 574 575	focus on controlling the excessive nutrients and fecal coliform loadings from the widespread diffused runoff associated with individual septic installations within the LSC hillslopes and sub-watersheds (i.e., SST watersheds). Given the fact that the LSC is experiencing signs of eutrophication, HR and SST watersheds need to be regulated and carefully managed as they have the potential to increase the current trophic state of the
 571 572 573 574 575 576 	focus on controlling the excessive nutrients and fecal coliform loadings from the widespread diffused runoff associated with individual septic installations within the LSC hillslopes and sub-watersheds (i.e., SST watersheds). Given the fact that the LSC is experiencing signs of eutrophication, HR and SST watersheds need to be regulated and carefully managed as they have the potential to increase the current trophic state of the lake. Management should deal with problems associated with residential area
 571 572 573 574 575 576 577 	focus on controlling the excessive nutrients and fecal coliform loadings from the widespread diffused runoff associated with individual septic installations within the LSC hillslopes and sub-watersheds (i.e., SST watersheds). Given the fact that the LSC is experiencing signs of eutrophication, HR and SST watersheds need to be regulated and carefully managed as they have the potential to increase the current trophic state of the lake. Management should deal with problems associated with residential area development. The construction of a sewage network to connect old and new residential
 571 572 573 574 575 576 577 578 	focus on controlling the excessive nutrients and fecal coliform loadings from the widespread diffused runoff associated with individual septic installations within the LSC hillslopes and sub-watersheds (i.e., SST watersheds). Given the fact that the LSC is experiencing signs of eutrophication, HR and SST watersheds need to be regulated and carefully managed as they have the potential to increase the current trophic state of the lake. Management should deal with problems associated with residential area development. The construction of a sewage network to connect old and new residential and commercial buildings to the main Quebec City sewer system to minimize the effect

581	urban-rural fringe have the potential to accelerate eutrophication of this already fragile
582	lake ecosystem. Mitigation strategies to eutrophication involve complex socioeconomic
583	issues, but a reduction at the source is clearly the best alternative for sustainable lake
584	management. This would unequivocally involve reducing the number of septic
585	installations within the LSC watershed by connecting these to the Quebec City sewer
586	networks and installing sewer systems in anticipation of future residential development.
587	This is likely to be socioeconomically beneficial in the long-term.
588	
589	Acknowledgments

590 Many thanks to employees of APEL for water sampling, and to those of the Water

591 Quality Division of Quebec City for their assistance in the laboratory. A special thanks to

592 James Telford who helped with the stable isotope analyses. This work would not have

593 been possible without the shared financial support from a Mitacs Elevation Postdoctoral

594 Fellowship and APEL.

595 **References**

596 597	APEL (1981). Étude descriptive du bassin versant de Lac Saint-Charles, Association du Lac Saint-Charles, 110 p.
598	
599	APEL (2012). Rapport d'étape sur le suivi des cyanobactéries et de l'état trophique du
600	lac Saint- Charles en 2011, Association pour la protection de l'environnement du
601	lac Saint-Charles et des Marais du Nord, Québec, 143 p.
602	
603	APEL (2014a). Diagnose du lac Saint-Charles, Mémoire. Association pour la protection
604	de l'environnement du lac Saint-Charles et des Marais du Nord, 43 p.
605	
606	APEL (2014b). Diagnose du lac Saint-Charles, rapport final. Association pour la
607	protection de l'environnement du lac Saint-Charles et des Marais du Nord, 519 p.
608	
609	APEL (2019) Diagnose du lac Saint-Charles – 2016. Association pour la protection de
610	l'environnement du lac Saint-Charles et des Marais du Nord, Québec, 377 pages.
611	
612	APHA, AWWA & WEF (2005). Standard Methods for Examination of Water and
613	Wastewater, 21st ed. Washington D.C.
614	
615•	Aravena, R. Evans, M.L. & Cherry, J.A. (1992). Stable isotopes of oxygen and nitrogen
616	in source idetification of nitrate from septic systems. Ground water, 31(2): 180–186.
617	doi: 10.1111/j.1745-6584.1993.tb01809.x.
618	
619	Arnade, L.J. (1999). Seasonal correlation of well contamination and septic tank distance.
620	Ground water, 37(6): 920–923. doi:10.1111/j.1745-6584.1999.tb01191.x.
621	
622	Barnett, T.P., Adam, J.C., & Lettenmaier, D.P. (2005). Potential impacts of a warming
623	climate on water availability in snow-dominated regions. Nature Reviews,
624	438(7066): 303–309. doi:10.1038/nature04141.
625	
626	Berman, E.S.F., Levin, N.E., Landais, A., Li, S. & Owano, T. (2013). Measurement of
627	δ^{18} O, δ^{17} O, and ¹⁷ O-excess in Water by Off-Axis Integrated Cavity Output
628	Spectroscopy and Isotope Ratio Mass Spectrometry. Analytical Chemistry,
629	85:10392-10398. doi:10.1021/ac402366t.
630	
631	Clark, I. and Fritz, P. (1997). Environmental Isotopes in Hydrogeology. CRC
632	Press/Lewis Publishers, Boca Raton, 328 pp.
633	
634	Coplen, T.B. (1996). New guidelines for reporting stable hydrogen, carbon, and oxygen
635	<i>isotope – ratio data</i> . Geochim. Cosmochim. Acta., 60: 3359–3360.
636	doi:10.1016/0016-7037(96)00263-3.
637	
638	Craig, H. (1961). Isotopic variations in meteoric waters. Science 133, 1702–1703.
639	

640 641 642	Dansgaard, W. (1964). <i>Stable isotopes in precipitation</i> . Tellus XVI. doi: 10.3402/tellusa.v16i4.8993. doi:10.1111/j.2153-3490.1964.tb00181.x.
642 643	Environemnt Canada (2017). National Climate Data and Information Archive.
644	http://climat.meteo.gc.ca/historical_data/search_historic_data_f.html.
645 646	Froehlich, K., Kralik, M., Papesch, W., Rank, D., Scheifinger, H., & Stichler, W. (2008).
647	Deuterium excess in precipitation of Alpine regions - Moisture recycling. Isotopes in
648 649	Environmental and Health Studies, 44(1): 61–70. doi:10.1080/10256010801887208
650	IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups
651 652	<i>I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change</i> [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC,
653	Geneva, Switzerland, 151 pp.
654 655•	Knight, R.L., Payne Jr., V.W.E., Borer, R.E., Clarke Jr., R.A. & Pries, J.H. (1999).
656	Constructed wetlands for livestock wastewater management. Ecological
657	Engineering, 15(1-2): 41-55. doi: 10.1016/S0925-8574(99)00034-8.
658	
659	APEL (2019). Étude sédimentaire du lac Saint-Charles (Québec). In Diagnose du lac
660	Saint-Charles – 2016. Association pour la protection de l'environnement du lac
661	Saint-Charles et des Marais du Nord, Québec, 377 pages.
662	
663	Légaré, S. (1997). L'eutrophisation des lacs : le cas du lac Saint-Charles. Naturaliste
664	Can., 121: 65-68.
665	
666	Légaré, S. (1998). Étude limnologique du lac Saint-Charles. Rapport GREPAUL 98-
667	238, Université Laval, Sainte-Foy (Québec). 106 p.
668	
669	Ministère du Développement durable, de l'Environnement et des Parcs (MDDEP; 2008).
670	Guide technique, Captage d'eau souterraine pour des résidences isolées. Service de
671	l'aménagement et des eaux souterraines de la Direction des politiques de l'eau.
672	Marrie LW, Cabin dias D.E. Cabaranali M.D. Carith D. & Franker L (2002) Late
673	Moore, J.W., Schindler, D.E., Scheuerell, M.D., Smith, D., & Frodge, J. (2003). Lake
674 675	<i>Eutrophication at the Urban Fringe, Seattle Region, USA</i> . AMBIO: A Journal of the Human Environment, 32(1): 13–18. doi:10.1579/0044-7447-32.1.13.
675 676	Human Environment, 32(1). 13-18. aoi.10.1379/0044-7447-32.1.15.
677	Narancic, B., Wolfe, B.B., Pienitz, R., Meyer, H., & Lamhonwah, D. (2017). Landscape-
678	gradient assessment of thermokarst lake hydrology using water isotope tracers.
679	Journal of Hydrology, 545: 327–338. doi:10.1016/j.jhydrol.2016.11.028.
680	Journal of Hydrology, 343. 327 336. doi:10.1010/j.jnydrol.2010.11.026.
681	Nash, L. & Gleick, P.H. (1991). Sensitivity of streamflow in the Colorado basin to
682	<i>climatic changes.</i> Journal Of Hydrology, 125: 221–241. doi:10.1016/0022-
683	1694(91)90030-L.
684	
685	Nollet, L.M.L. & De Gelder, L.S.P. (2007) Handbook of Water Analysis. 2nd Edition,

686	CRC Press, Boca Raton. 995 p.
687	
688	Phillips, D.L., & Gregg, J.W. (2003). Source partitioning using stable isotopes : coping
689	with too many sources, Oecologia, 136: 261–269. doi:10.1007/s00442-003-1218-3.
690	
691	Ptacek, C.J. (1998). Geochemistry of a septic-system plume in a coastal barrier bar,
692	Point Pelee, Ontario, Canada. Journal of Contaminant Hydrology, 33(3-4): 293-
693	312. doi:10.1016/S0169-7722(98)00076-X.
694	
695	Ritchot, G., Mercier, G. & Mascolo, S. (1994). L'étalement urbain comme phénomène
696	géographique : l'exemple de Québec. Cahiers de géographie du Québec, 38 (105),
697	261–300. https://doi.org/10.7202/022451ar.
698	
699	Robertson, W.D., Shiff, S.L. & Ptacek, C.J. (1998). Review of phosphate mobility and
700	persistence in 10 septic system plumes. Ground water, 36(6): 1000–1010.
701	doi :10.1111/j.1745-6584.1998.tb02107.x.
702	
703	Rozanski, K., Araguas-Araguas, L. & Gonfiantini, R. (1993). Isotope patterns in modern
704	global precipitation. Science 80: 258, 981–985. doi:10.1029/GM078p0001.
705	
706	Rowe, C.M., Kuivinen, K.C., & Flores-Mendoza, F. (1994). Sensitivity of streamflow to
707	climate change: a case study for Nebraska. Great Plains Research, 4(1): 27–49
708	
709	Ouranos (2015). Vers l'adaptation. Synthèse des connaissances sur les changements
710	climatiques au Québec. Partie 1 : Évolution climatique au Québec. Édition 2015.
711	Montréal, Québec: Ouranos, 114 p.
712	
713	Smol, J.P. (2008). Pollution of Lakes and Rivers: A Paleoenvironmental Perspective. 2nd
714	edition. Wiley-Blackwell Publishing, Oxford, 383 pp,
715	
716	Statistics Canada, Environment Accounts and Statistics Division (2011). Survey of
717	drinking water plants and households and the environment survey.
718	https://www150.statcan.gc.ca/n1/pub/16-403-x/16-403-x2013001-eng.htm.
719	(accessed December 2018).
720	
721	Stein, O.R. & Hook, P.B. (2010). Temperature, plant, and oxygen: How does season
722	affect constructed wetland performance? Journal of Environmental Science and
723	Health, 40(6-7): 1331-1342. doi:10.1081/ESE-200055840.
724	
725	Tondu, J-M.E., Turner, K.W., Wolfe, B.B., Hall, R.I., Edwards, T.W.D. & McDonald, I.
726	(2013). Using water isotope tracers to develop the hydrological component of a
727	long-term aquatic ecosystem monitoring program for a northern lake-rich
728	landscape. Arctic, Antarctic, and Alpine Research, 45(4): 594-614. doi :
729	10.1657/1938-4246-45.4.594.
730	
731	Tremblay, R., Légaré, S., Pienitz, R., Vincent, W.F., & Hall, R.I. (2002). Étude

732 733 734 735	paléolimnologique de l'histoire trophique du lac Saint-Charles, réservoir d'eau potable de la communauté urbaine de Québec. Revue des sciences de l'eau, 4(2001): 489–510. doi:10.7202/705429ar.
736 737 738 739	Tremblay, R., & Pienitz, R. (2015). Caractéristiques limnologiques de 56 lacs du Québec méridional en lien avec l'état trophique. Revue des sciences de l'eau, 28(2): 139. doi:10.7202/1032295ar.
740 741 742 743 744	Turner, K.W., Wolfe, B.B., & Edwards, T.W.D. (2010). Characterizing the role of hydrological processes on lake water balances in the Old Crow Flats, Yukon Territory, Canada, using water isotope tracers, Journal of Hydrology, 386: 103– 117. doi:10.1016/j.jhydrol.2010.03.012
745 746 747 748 749	Vandenberg, J.A., Ryan, M.C., Nuell, D.D. & Chu, A. (2005). Field evaluation of mixing length and attenuation of nutrients and fecal coliform in awastewater effluent plume. Environmental Monitoring and Assessment, 107: 45–57. doi:10.1007/s10661-005- 2020-y.
750 751 752 753	VeHRoeven, J.T.A. & Meuleman, A.F.M. (1998). Wetlands for wastewater treatment: Opportunities and limitations. Ecological Engineering, 12: 5-12. doi:10.1016/S0925-8574(98)00050-0.
754 755 756 757 758 759	 Wenling A., Shugui, H., Qiong, Z., Wangbin, Z., Shuangye, W., Hao, X., Hongxi, P., Yetang, W. & Yaping, L. (2017). <i>Enhanced Recent Local Moisture Recycling on the</i> <i>Northwestern Tibetan Plateau Deduced From Ice Core Deuterium Excess Records.</i> Journal of Geophysical Research: Atmospheres, 122(23): 541–556. doi:10.1002/2017JD027235.
760 761	Wetzel, R.G. (2001). <i>Limnology: Lake and river ecosystems</i> . San Diego: Academic Press, 1006p.
762 763• 764 765 766	Wernick, B.G., Cook, K.E., & Schreier, H. (1998). <i>Land-use and streamwater nitrate-N dynamics in an urban-rural fringe watershed</i> . Journal of the American water resources association, 34(3): 639–650. doi: 10.1111/j.1752-1688.1998.tb00961.x.
767 768 769 770	Wilhelm, S.R., Schiff, S.L. & Cherry, J.A. (1996). Biogeochemical evolution of domestic waste water in septic systems: 1. Conceptual model. Ground water, 32(6): 905–916. doi:10.1111/j.1745-6584.1994.tb00930.x.
771 772 773 774 775	Zhang, X., Harvey, K.D., Hogg, W.D., & Yuzyk, T.R. (2001). Trends in Canadian streamflow. Water Resources Reserche, 37(4): 987–998. doi:10.1029/2000WR900357.

and nun Lake St	te the	f septi les (LS mmh	c install SC). The	ations (e dotted	(SI) IOF d line re	wastewa presents	the limi	it betwo	and number of septic instantions (S1) for wastewater treatment plant (wwir), rutions kiver (rik), betage take (b1), small stream thoutailies (S31) and Lake St. Charles (LSC). The dotted line represents the limit between northern (upper) and southern (lower) SSTs with respect to the lake basins. N	riod	er) ar	nd southe	rn (lo	wer) SS	Ts with), sman respect	stream to the li	uributat ake basi	ns. N	r) and	
represer Sample	its the	סננוחנו	er of tin TN (mg/l)	nes the	sources	i were sz TP (μg P/l)	nubied o	over ine	represents the number of times the sources were sampled over the study period. TN TP Fe Fe Sample (mg/l) (CEU/100ml)	nod.		Discharge (m ³ /s)			δ18O ‰ (± 0.2)			ðD ‰ (± 0.8)		Area(ha) /Urb(%)	SI
	Z	Min.	Max.	Mean	Min.	Max.	Mean	Min.	Max.	Mean	Z	Mean	Z	Min	Max	Mean	Min	Max	Mean		
WWTP	I										I										
ST	20 24	3.00 2.14	36.40 13.50	18.24 7.21	119.00 112.00	683.00 1230.00	442.00 363.00	0.00 2.00	320.00 500.00	57.90 110.04	21	0.01	17	-11.48 -12.14	-9.41 -8.50	-10.26 -10.07	-80.15 -83.38	-66.32 -63.91	-71.57		
HR	24	0.26	0.70	0.46	6.10	57.70	14.83	6.00	2000.00	169.09	23	7.45	17	-12.23	-10.08	-11.13	-87.32	-63.73	-74.79		\$0***
DL	24	0.16	0.69	0.28	5.10	70.60	13.70	0.00	180.00	97.57	16	0.17	13	-12.23	-9.12	-9.81	-85.13	-63.62	-68.83	76/2	55
COT									7												
DD	16	0.17	12.90	1.13	6.20	76.70	19.26	0.00	3500.00	286.53	14	0.05	×	-12.52	-8.90	-10.54	-87.68	-57.32	-70.92	19/2	1(1)
СС	15	0.13	0.54	0.24	7.20	144.0	30.43	0.00	2300.00	183.07	×	0.01	9	-13.41	-8.99	-10.80	-89.26	-57.96	-71.74	8/5	0(0)
BB	14	0.10	0.62	0.18	5.70	107.00	24.60	0.00	6000.00	476.08	10	0.01	9	-13.13	-8.91	-11.00	-90.31	-58.31	-73.93	263/1	0(0)
AA	16	0.09	0.37	0.21	4.40	41.30	11.23	0.00	440.00	56.60	13	0.08	×	-12.81	-8.99	-10.18	-86.58	-64.51	-71.23	16/36	8(8)
FF	9	0.60	1.86	1.34	10.10	120.00	45.78	0.00	210.00	54.33	5	0.00		-12.51	-9.67	-10.95	-86.31	-63.28	-74.81	62/3	24(28)
W	17	0.12	0.55	0.24	2.10	39.40	8.78	0.00	1000.00	144.38	14	0.03	Ξ	-13.29	-9.38	-11.11	-89.54	-62.20	-74.24	31/7	2(2)
Ζ	17	0.15	0.37	0.19	1.00	82.50	12.45	0.00	1300.00	93.63	15	0.01	10	-13.22	-8.96	-11.07	-89.95	-59.26	-74.57	4/30	1(1)
GG	6	0.16	0.55	0.39	16.40	57.60	33.28	91.00	1500.00	378.50	6	0.00	ω	-12.17	-9.49	-10.68	-87.71	-60.67	-/3./0	13/7	6(6)
H C	13 15	0.48	9.29	2.43	18.20 5 20	245.00	74.31	0.00	6000.00	448.33	14	0.00	9	-13.66	-9.4I	-10.97	-93.78	-60.84	-73.47	8/11	4(4)
HH ·	7 5	1.56	4.38	3.01	8.10	22.20	15.31	0.00	5500.00	£46.43	6	0.00	6	-12.47	-9.47	-11.33	-87.39	-62.34	-77.63	4/68	11(11)
s	14	0.62	8.08	2.65	3.20	93.10	15.74	0.00	3500.00	292.64	14	0.00	15	-13.75	-8.04	-10.79	-94.09	-50.36	-72.04	6/9	1(1)
*R	S	0.22	0.60	0.40	12.00	88.90	29.44	0.00	400.00	115.80		0.00			•					3/9	2(2)
Q	15	0.16	0.68	0.37	2.50	110.00	14.85	0.00	170.00	40.64	15	0.00	9	-13.81	-9.95	-11.33	-93.51	-65.50	-76.17	3/5	1(1)
Р	15	0.11	0.69	0.23	2.70	37.80	7.12	0.00	110.00	20.73	15	0.00	9	-13.47	-9.31	-11.08	-90.62	-62.95	-73.86	15/10	7(7)
IIB**	63	0.23 0.33	0.68 1.86	0.41 0.94	24.50 14.70	46.70 36.70	35.20 28.12	6.00 5.00	360.00 280.00	146.33 87.67	ιw	0.00 -	7 5	-12.57 -13.06	-9.34 -7.17	-10.48 -9.74	-88.91 -90.40	-60.64 -45.60	-72.16 -67.61	122/34	41(77)
CPLSC18	12	0.38	0.97	0.63	27.40	244.00	89.70	1.00	1000.00	153.25	8	0.00	7	-12.79	-9.43	-10.51	-88.36	-63.27	-71.54	0/1	1(1)
N**	з	0.2	0.64	0.4	34.50	81.00	63.00	30.00	9400.00	3154.00	-	0.0	S	-13.67	-8.43	-10.34	-92.13	-57.76	-70.10	2/51	3(3)
М	15	0.16	0.74	0.44	13.00	1710.00	144.27	18.00	16000.00	1952.07	15	0.01	9	-13.43	-10.59	-11.47	-90.13	-71.72	-77.14	38/10	20(20)
KK	Ξ	0.42	1.32	0.77	18.10	52.10	32.43	0.00	5000.00	869.45	9	0.01	8	-12.43	-8.50	-9.78	-89.91	-52.48	-65.22	39/40	20(22)
L	15	0.42	0.76	0.56	5.80	57.50	17.02	0.00	1300.00	162.07	14	0.01	9	-13.58	-9.94	-11.76	-91.29	-68.04	-92.72	59/16	27(70)
К	18	0.16	0.52	0.26	8.50	154.60	36.524	14.00	3140.00	393.18	16	0.15	7	-12.40	-9.17	-10.69	-83.42	-61.39	-72.34	359/3	16(55)
ŗ	×	0.60	3.19	1.38	21.75	96.20	42.81	8.50	900.00	306.60	ŀ		4	-14.00	-6.95	-10.62	- 100.67	-42.38	-72.63	1/92	0(12)
LL**	6	0.40	0.80	0.55	20.70	42.10	31.00	22.00	2400.00	764.00			7	-12.04	-9.33	-10.26	-83.62	-60.78	-69.35	44/38	19(67)
NN**	4	0.62	1.11	0.86	37.40	78.90	49.15	46.00	1500.00	484.50			Ś	-11.45	-9.09	-9.70	-81.10	-60.52	-66.41	4/28	1(10)
Е	19	0.23	0.66	0.45	20.55	177.00	75.748	4.50	3650.00	772.96	•		8	-10.08	-7.13	-8.63	-69.64	-49.34	-58.65	7/61	0(29)
3	2	0.34	1.38	0.81	16.80	79.05	36.78	57.50	6050.00	1226.67	21	0.05	=	-11.93	-7.85	-10.07	-83.15	-55.03	-69.43	249/31	15(55)

Canadian	
Water Resour	
rces Journal	

Н	17	0.53	5.54	3.03	7.75	142.25	36.03	0.00	2900.00	371.22	14	0.00	9	-12.83	-8.54	-10.91	-87.39	-55.05	-73.55	14/45	2(71)
с	18	0.04	4.84	1.32	13.90	369.00	60.22	11.00	6000.00	833.00	13	0.00	9	-13.97	-7.87	-10.5	-92.72	-49.86	-71.2	401/17	7(171)
A**	ω	0.19	0.47	0.37	18.40	81.60	48.40	240.00	2200.00	1220.00	-	0.00	4	-12.87	-8.53	-10.16	-86.13	-57.08	-67.53	0/48	10(0)
ΥŢ	ω	0.16	12.50	4.49	76.90	499.00	218.70	24.00	260.00	142.00	2	0.01	-			-12.89	•		-88.94	4/92	0(35)
G	ω	0.16	0.40	0.27	29.70	165.00	81.70	100.00	1500.00	800.00	2	0.00	-			-13.10			-90.62	3/93	0(31)
РР	9	0.46	8.55	2.36	0.00	252.00	56.74	0.00	3600.00	812.13	1		7	-11.79	-3.77	-9.75	-83.79	-22.61	-66.89	8/63	0(37)
Lake																					
C05 (P)	10	0.18	0.34	0.26	8.90	11.90	10.19	0.00	16.00	4.91	'		23	-12.86	-9.61	-10.66	-87.12	-63.00	-72.30		
C03 (P)	20	0.24	0.41	0.33	7.80	17.60	11.08	0.00	31.00	7.91	•		23	-12.36	-9.64	-10.75	-85.96	-63.15	-72.18		
C04 (P)	7	0.28	0.35	0.31	8.70	10.40	9.40				•		ω	-11.51	-12.40	-11.51	-86.74	-78.65	-78.65		
SCA (L)	17	0.27	5.88	0.66	6.30	119.00	22.31	0.00	180.00	28.17	•		21	-12.71	-9.44	-10.96	-89.64	-64.53	-74.22		
SCE (L)	7	0.28	0.39	0.33	10.10	15.60	13.27	0.00	48.00	12.33	•		21	-12.53	-9.25	-10.79	-86.61	-62.00	-73.03		
* Sampled only in 2016 ** Sampled only in 2017	ıly in 20 only in 2	16 017																			
***This number presents houses with septic tanks situated between the WWTP-ST and the lake (ca. 3 km).	ber pres	ents hous	es with sept	ic tanks sit	tuated betw	een the WW	/TP-ST and	l the lake (c:	a. 3 km).												
(P) - nelagic zone	ZONA																				

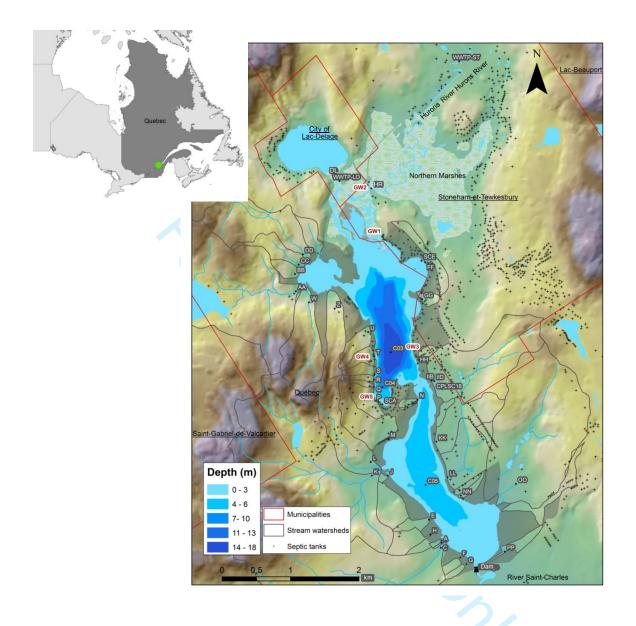
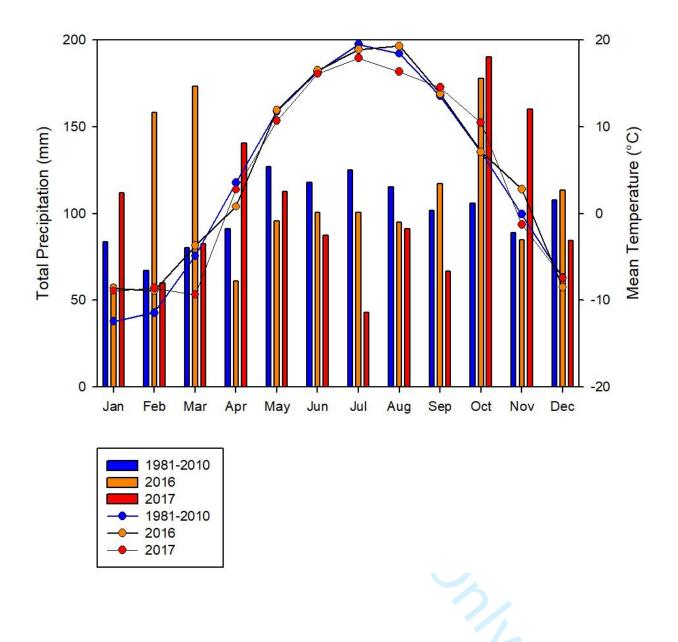
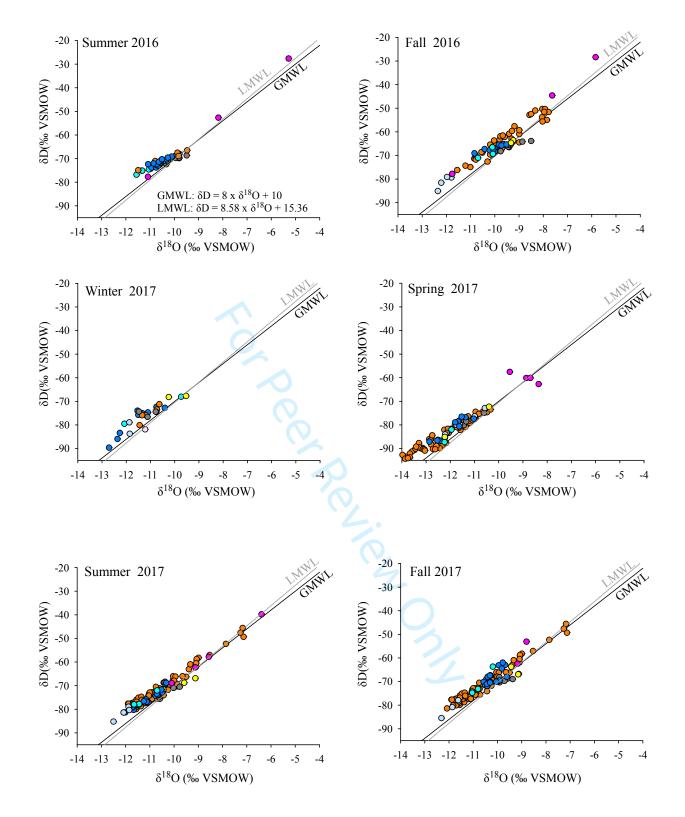
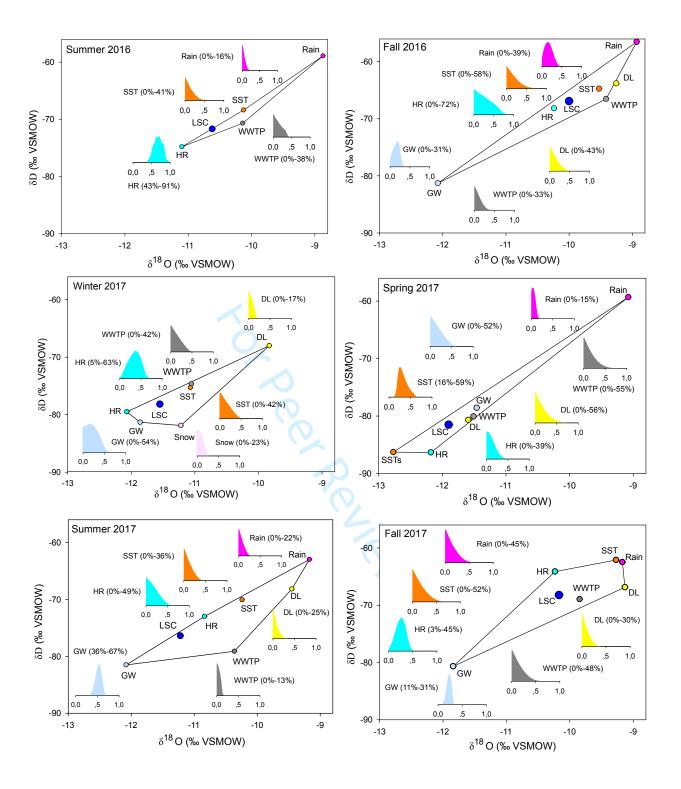

(P) - pelagic zone(L) - littoral zone

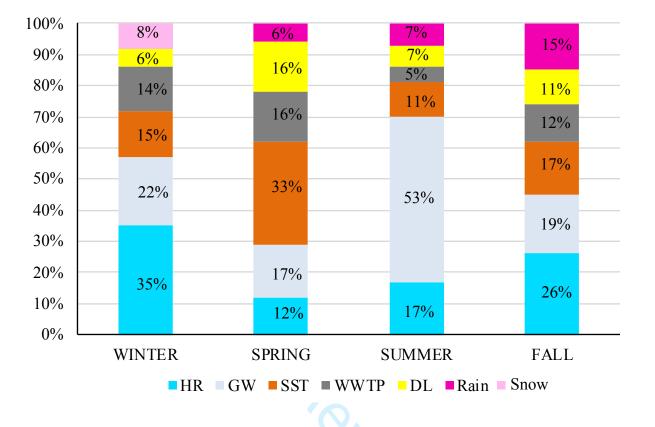
Table 2. Amount-weighted water isotope compositions using the discharges of six lake water sources: Hurons River (HR), small stream tributaries (SST), groundwater (GW), wastewater treatment plant (WWTP), Delage Lake (DL) and precipitation (rain + snow).


Sample	Summe	er 2016	Fall	2016	Winte	er 2017	Spring	g 2017	Summ	er 2017	Fall 2017		
	$\delta^{18}O$	δD	$\delta^{18}O$	δD	δ ¹⁸ Ο	δD	δ ¹⁸ Ο	δD	$\delta^{18}O$	δD	δ ¹⁸ O	δD	
WWTP -	-10.14	-70.7	-9.42	-66.54	-11.06	-74.67	-11.51	-80.08	-10.36	-79.12	-9.84	-68.95	
HR	-11.1	-74.82	-10.24	-68.18	-12.07	-79.51	-12.18	-86.35	-10.84	-73.01	-10.23	-64.14	
DL			-9.25	-63.8	-9.83	-68.01	-11.59	-80.68	-9.45	-68.17	-9.13	-66.87	
SSTs	-10.12	-68.39	-9.52	-64.72	-11.07	-75.32	-12.77	-86.29	-10.24	-70.08	-9.27	-62.12	
GW*			-12.08	-81.3	-11.86	-81.33	-11.46	-78.58	-12.08	-81.51	-11.84	-80.67	
Rain	-8.87	-58.92	-8.93	-56.52			-9.08	-59.32	-9.17	-62.99	-9.17	-62.49	
Snow					-11.22	-81.89							
* Not weight	red							0,3					

SST_S	DL	WWTP-LD	HR	WWTP-ST		Sample
90.47	58.79	66.16	2310.31	342.3	TN (kg/d)	
10.78	2.45	3.13	93.74	10.02	TP (kg/d)	Summer 2016
510x10 ⁹	18x10 ⁹	16x10 ⁹	9765x10 ⁹	$14x10^{9}$	Fc (CFU/d)	16
240.63	41.78	63.4	1825.3	137.95	TN (kg/d)	
76.37	1.14	1.19	46.36	13.91	TP (kg/d)	Fall 2016
12286x10 ⁹	51x10 ⁹	$4x10^{9}$	1962x10 ⁹	23×10^9	Fc (CFU/d)	5
	7	122.42		992.47	TN (kg/d)	
		5.27		19.03	TP (kg/d)	Winter 2017
		$2x10^{9}$		802x10 ⁹	Fc (CFU/d)	017
352.94	70.59	233.98	9464.09	947.01	TN (kg/d)	
11.40	2.97	13.38	303.30	26.45	TP (kg/d)	Spring 2017
182x10 ⁹	4x10 ⁹	78×10^9	6524x10 ⁹	100x10 ⁹	Fc (CFU/d)	17
133.63	41.4	66.58	5981.43	604.19	TN (kg/d)	
10.22	1.87	3.58	661.59	7.51	TP (kg/d)	Su
1 579x10 ⁹	17x10 ⁹	17x10 ⁹	221432x10 ⁹	5×10^{9}	Fc (CFU/d)	Summer 2017
3438.29	34.93	74.81	4265.03	120.47	TN (kg/d)	
28.5	0.94	9.68	319.96	2.70	TP (kg/d)	Fall 2017
915x10 ⁹	10×10^{9}	0.7×10^9	343x10 ⁹	7x10 ⁹	Fc (CFU/d)	


wastewater treatment plant effluent of Stoneham-and-Tewkesbury (WWTP-ST), Hurons River (HR), wastewater treatment plant effluent of City of Lac Delage (WWTP-LD), Delage Lake (DL) and small stream tributary monoffe (SSTe) Table 3. Seasonal mass flux of TN (total nitrogen), TP (total phosphorous) and Fc (fecal coliform) based on measured discharges and concentrations in


Figure 1. The Lake St. Charles along with location of municipal boundaries (red line), 38 surface water and 5 ground water (GW) sampling stations, bathymetry of Lake St. Charles and septic installation locations. The shaded area represents diffuse (i.e. hillslope) runoff to Lake St. Charles. Small stream catchments are outlined for each stream tributary (grey line). The sampling points WWTP-LD and WWTP-ST represent the wastewater treatment plan effluents of City of Lac Delage and Stoneham-and-Tewkesbury, respectively.


Figure 2. Mean monthly air temperature (°C; lines) and total monthly precipitation (mm; vertical bars) recorded at the Jean Lesage international airport weather station (Station ID: 701S001) for year 2016 and 2017 compared to the 1981–2010 period (Environment Canada, 2017).

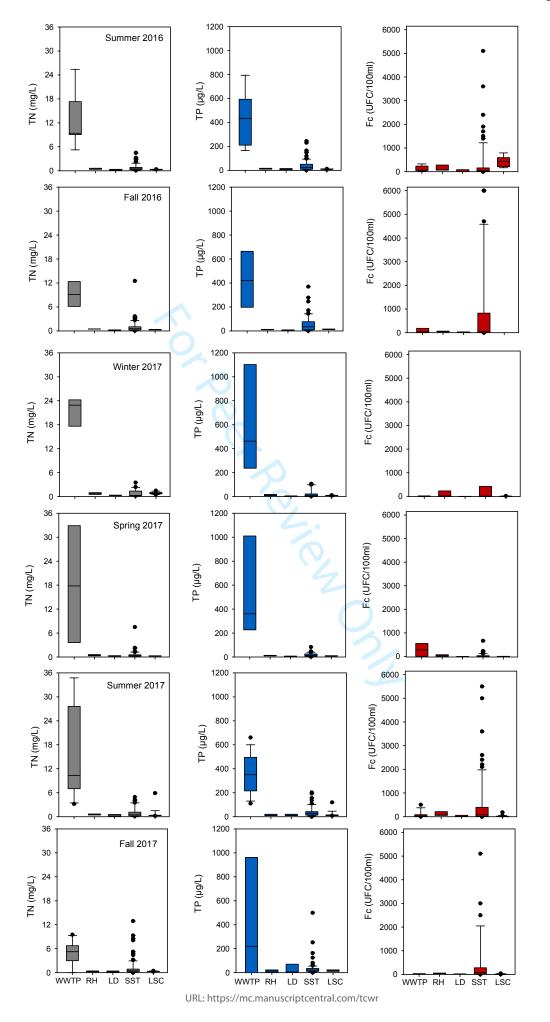

Figure 3. Isotope compositions of Lake St. Charles (LSC; dark blue) and of inflows: Hurons River (HR, light turquoise), small stream tributaries (SST, orange), wastewater treatment plant (WWTP, grey) effluents, groundwater (GW, light blue), Delage Lake (DL, yellow), and precipitation (dark pink for rain and light pink for snow) relative to the Local and Global Meteoric Water Line (LMWL and GMWL). The seasons were defined by astronomical calendar following the equinoxes and solstices.

Figure 4. Mixing polygons for average values of \Box^{18} O and \Box D of six sources: Hurons River (HR turquoise), small stream tributaries (SST orange), wastewater treatment plants (WWTP grey), Delage Lake (DL yellow), groundwater (GW light blue) and precipitation (rain dark pink and snow light pink) for Lake St. Charles (LSC dark blue). The histograms show the distribution of possible contributions from each source to the lake. Values shown in the boxes depict the 1-99 percentiles for these contributions. For the summer 2016, only four sources could be characterized.

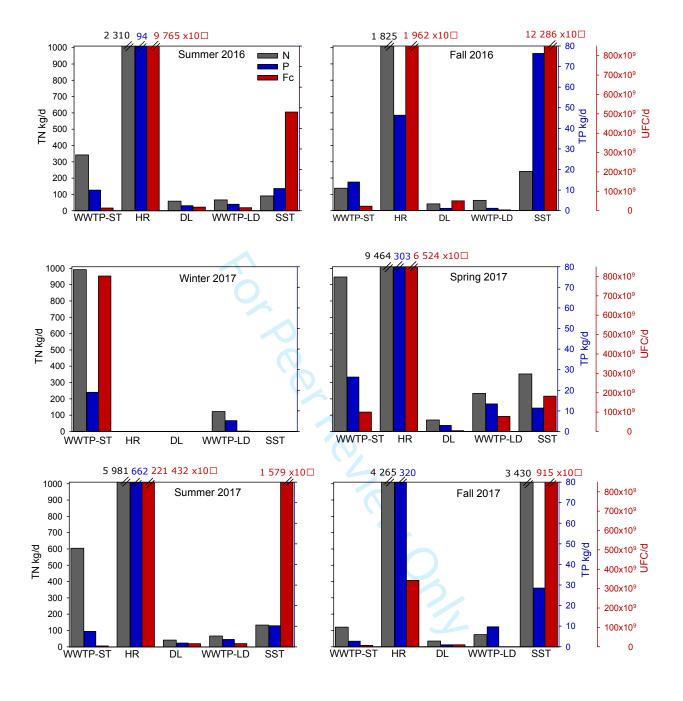


Figure 5. The mean seasonal contribution predicted in IsoSource for each water source of water: HR (Hurons River), GW (groundwater), SSTs (small stream tributaries), WWTP (wastewater treatment plants), DL (Delage Lake), rain and snow.

Figure 6. Seasonal concentrations of total nitrogen (TN dark grey), total phosphorous (TP blue) and fecal coliforms (Fc red) from four sources of water (WWTP = wastewater treatment plants, HR = Hurons River, DL = Delage Lake, SSTs = small stream tributaries) and Lake St. Charles (LSC). Mean concentration values from both WWTP effluents are presented (WWTP-ST = Stoneham-and-Tewkesbury, WWTP-LD = City of Lac Delage). The nutrient and Fc concentrations of ground water and precipitation were not measured, and the Fc concentrations of LSC were not measured in 2016.

For Peer Review On

Figure 7. Seasonal mass fluxes of total nitrogen (TN dark grey), total phosphorous (TP blue) and fecal coliforms (Fc red) in wastewater treatment plant effluent of Stoneham-and-Tewkesbury (WWTP-ST), Hurons River (HR), wastewater treatment plant effluent for City of Lac Delage (WWTP-LD), Delage Lake (DL) and small stream tributaries (SSTs). Mass fluxes for HR, DL and SSTs were not calculated for Winter 2017, because discharges were not measured. HR mass fluxes include WWTP-ST mass fluxes as the latter is located upstream of the HR sampling station (Figure 1).