Record Number: 12280

Author, Monographic: Haché, M.//Perreault, L.//Rémillard, L.//Bobée, B.

Author Role:

Title, Monographic: Analyse de fréquence des précipitations maximums saisonnières

Translated Title: Reprint Status:

Edition:

Author, Subsidiary:

Author Role:

Place of Publication: Québec
Publisher Name: INRS-Eau
Date of Publication: 1996

Original Publication Date: Novembre 1996

Volume Identification:

Extent of Work: ix, 206

Packaging Method: pages incluant 3 annexes

Series Editor:

Series Editor Role:

Series Title: INRS-Eau, rapport de recherche

Series Volume ID: 485

Location/URL:

ISBN: 2-89146-410-9

Notes: Rapport annuel 1996-1997

Abstract: Rapport rédigé pour la Société d'électrolyse et de chimie Alcan Lté, groupe Ressources

hydriques

30.00 \$

Call Number: R000485 Keywords: rapport/ ok/ dl

ANALYSE DE FRÉQUENCE DES PRÉCIPITATIONS MAXIMUMS SAISONNIÈRES

ANALYSE DE FRÉQUENCE DES PRÉCIPITATIONS MAXIMUMS SAISONNIÈRES

Rapport rédigé pour

Société d'électrolyse et de chimie Alcan limitée Groupe Ressources hydriques

par

Mario Haché
Luc Perreault
Louise Rémillard
Bernard Bobée

Chaire en Hydrologie statistique CRSNG / Hydro-Québec Institut national de la recherche scientifique, INRS-Eau 2800, rue Einstein, Case postale 7500, SAINTE-FOY (Québec), G1V 4C7

Rapport de recherche Nº R-485

Novembre 1996

ÉQUIPE DE RECHERCHE

CHARGÉ DE PROJET

INRS-Eau

MARIO HACHÉ

CHARGÉ DE PROJET

Alcan

LOUISE RÉMILLARD

COLLABORATEURS

INRS-Eau

LUC PERREAULT

SÉBASTIEN LAVOIE

Alcan

JANINE DUFOUR

TITULAIRE DE LA CHAIRE

INRS-Eau

BERNARD BOBÉE

TABLE DES MATIÈRES

LISTE DES TABLEAUX	vii
LISTE DES FIGURES	ix
CHAPITRE 1: Introduction	1
1.1 Problématique	1
1.2 Description du projet	2
1.3 Description des données	4
1.4 Contenu du rapport	
CHAPITRE 2 : Notions de base de l'ajustement	11
2.1 Principe de l'ajustement	11
2.2 Lois de probabilité considérées	12
2.3 Vérification des hypothèses de base	16
2.3.1. Indépendance : test de Wald-Wolfowitz	16
2.3.2. Homogénéité : test de Wilcoxon	17
2.3.3. Stationnarité : test de Kendall	18
2.4 Autres tests statistiques utilisés dans l'étude	20
2.4.1 Test de Levene	20
2.4.2 Test de Kolmogorov-Smirnov	21
2.5 Critères de sélection d'une loi de probabilité	22
2.5.1 Critères statistiques	22
2.5.1.1 Représentation graphique	22
2.5.1.2 Critère de l'écart moyen en valeur absolue (ÉMVA)	23
2.5.1.3 Parcimonie	24
2.5.1.4 Critère d'information d'Akaïke (CIA)	24
2.5.2 Critères météorologiques	24
2.5.2.1 Information régionale	25
2.5.2.2 Cohérence spatiale	25

2.5.2	.4 Précipitation max	imale pro	bable (PMP)	25
			·	
2.5.3 Pro	cédure de sélection.	•••••		26
CHAPITRE 3:	•		précipitations	
3.1 Analyse	- e préliminaire de	s donné	es	29
			base	
_	_			
4.1 Compa			automne	
4.1 Compa	raison des saisor	ıs été et	automne	49
4.2 Analyse	e préliminaire de	es donné	Ses	51
4.2 Vérifica	ation des hypoth	èses de	base	53
4.3 Compa	raison des ajuste	ements		55
4.4 Distrib	utions choisies	•••••		69
CHAPITRE 5:	Conclusion	•••••	•••••	73
CHAPITRE 6:	Références bi	bliogra	aphiques	75
ANNEXE A: I	Oonnées validé	es		A0
	· ·		ts aux précipitations	
	Résultats des aju	ıstemen	ts aux précipitations	s maximums de

LISTE DES TABLEAUX

Tableau 1.1.	Stations météorologiques utilisées dans l'étude
Tableau 1.2.	Données météorologiques des bassins versants utilisés dans l'étude6
Tableau 2.1.	Lois de probabilité considérées dans l'étude
Tableau 2.2.	Précipitations maximales probables (PMP) en mm (tiré de SNC, 1994)26
	Statistiques descriptives des séries de précipitations maximums printanières des bassins versants
	Statistiques descriptives des séries de précipitations maximums printanières des stations météorologiques
Tableau 3.2a.	Résultats des tests d'indépendance et de stationnarité (bassins versants)31
Tableau 3.2b.	Résultats des tests d'indépendance et de stationnarité (stations météo.)32
	Valeurs du critère d'Akaïke (CIA) pour les lois ajustées aux précipitations maximums printanières des bassins versants
	Valeurs du critère d'Akaïke (CIA) pour les lois ajustées aux précipitations maximums printanières des stations météorologiques
Tableau 3.4a	Valeurs d'écart moyen en valeur absolue (ÉMVA) pour les lois ajustées aux précipitations maximums printanières des bassins versants
Tableau 3.4b	Valeurs d'écart moyen en valeur absolue (ÉMVA) pour les lois ajustées aux précipitations maximums printanières des stations météorologiques 36-37
Tableau 3.5a	Rangs correspondant aux critères d'Akaïke (CIA) dans le cas des bassins versants (classements I et II)
Tableau 3.5b	Rangs correspondant aux critères d'Akaïke (CIA) dans le cas des stations météorologiques (classements I et II)
Tableau 3.6a	Rangs correspondant aux critères d'ÉMVA dans le cas des bassins versants (classements I et II).
Tableau 3.6b	Rangs correspondant aux critères d'ÉMVA dans le cas des stations météorologiques (classements I et II)
Tableau 3.7a	Lois choisies pour représenter les précipitations maximums printanières sur les bassins versants
Tableau 3.7b	Lois choisies pour représenter les précipitations maximums printanières sur les stations météorologiques
Tableau 4.1.	Statistiques descriptives des séries témoins de précipitations maximums d'été- automne
Tableau 4.2.	Comparaison de la moyenne (Mann-Whithney), de la variance (Levene) et de la distribution (Kolmogorov-Smirnov)

	Statistiques descriptives des séries de précipitations maximums d'été-automne des bassins versants
Tableau 4.3b.	Statistiques descriptives des séries de précipitations maximums d'été-automne dés stations météorologiques
Tableau 4.4a.	Résultats des tests d'indépendance et de stationnarité des bassins versants 53
Tableau 4.4b.	Résultats des tests d'indépendance et de stationnarité des stations météorologique
Tableau 4.5a.	Valeurs du critère d'Akaïke (CIA) pour les lois ajustées aux précipitations maximums d'été-automne des bassins versants
Tableau 4.5b.	Valeurs du critère d'Akaïke (CIA) pour les lois ajustées aux précipitations maximums d'été-automne des stations météorologiques
Tableau 4.6a	Valeurs d'écart moyen en valeur absolue (ÉMVA) pour les lois ajustées aux précipitations maximums d'été-automne des bassins versants.
Tableau 4.6b	Valeurs d'écart moyen en valeur absolue (ÉMVA) pour les lois ajustées aux précipitations maximums d'été-automne des stations météorologiques 58-59
Tableau 4.7a	Rangs correspondant aux critères d'Akaïke (CIA) dans le cas des bassins versants (classements I et II).
Tableau 4.7b	Rangs correspondant aux critères d'Akaïke (CIA) dans le cas des stations météorologiques (classements I et II)
Tableau 4.8a	Rangs correspondant aux critères d'ÉMVA dans le cas des bassins versants (classements I et II)
Tableau 4.8b	Rangs correspondant aux critères d'ÉMVA dans le cas des stations météorologiques (classements I et II)
Tableau 4.9.	Lois choisies pour représenter les précipitations maximums d'été-automne sur les stations météorologiques

LISTE DES FIGURES

Figure 1.1. Bassins versants utilisés dans l'étude	7
rigure 1.1. Dassiis versants utilises dans retude	/
Figure 1.2. Stations météorologiques utilisées dans l'étude	8
Figure 2.1. Formes classiques de fonctions de densité de probabilité continues	.14

Le groupe Ressources hydriques (GRH) de la société d'électrolyse et chimie Alcan Ltée (SÉCAL) a donné à la chaire en hydrologie statistique Hydro-Québec/CRSNG établie à l'INRS-Eau le mandat de réaliser trois études techniques portant sur:

- A. L'ajustement des apports non contrôlés extrêmes saisonniers et des volumes de printemps
- B. L'ajustement des précipitations extrêmes saisonnières
- C. L'ajustement des équivalents en eau des mois de janvier, février et mars

Ce rapport vise à présenter les travaux réalisés dans le cadre de la deuxième étude intitulée "Analyse de fréquence des précipitations extrêmes saisonnières du réseau hydrométrique d'Alcan".

1.1 Problématique

La connaissance de la probabilité d'occurrence d'événements comme les précipitations extrêmes saisonnières des stations météorologiques et des bassins versants de son système hydrique est très importante pour Alcan. En effet, cette information permet de mieux connaître les risques associés aux événements de précipitation de façon à gérer de manière plus sécuritaire les ressources hydriques dont la compagnie dispose, afin en particulier:

- d'évaluer la capacité des ouvrages;
- de minimiser les risques reliés à l'entretien des réservoirs;
- de valider certaines règles de gestion des réservoirs;
- de guider la stratégie de prévention et des plans de mesures d'urgence.

Un des outils privilégié par les hydrologues pour estimer les précipitations extrêmes correspondant à un risque donné (c'est-à-dire à une probabilité au dépassement donnée) est l'analyse de fréquence. Cette approche a pour objectif l'utilisation de mesures d'événements hydrologiques passés pour estimer les probabilités futures d'occurrence. On tente en particulier d'estimer l'événement extrême x_T de période de retour T (quantile de période de retour T ou de probabilité au dépassement 1/T). L'estimation \hat{x}_T de la valeur théorique du quantile inconnu x_T peut être obtenue en ajustant une loi de probabilité $F(x; \underline{\theta})$ à un

-échantillon de précipitations extrêmes observées historiquement (estimation des paramètres), où $\underline{\theta}$ désigne le vecteur de paramètres associé à la distribution F.

L'estimation des quantiles dépend donc directement de la loi de probabilité et de la méthode d'estimation des paramètres utilisées. En général, pour chacune des lois employées en hydrologie, il est possible, sur une base théorique ou à partir de simulations, d'identifier une méthode d'estimation efficace selon l'objectif visé (description, prédiction). La sélection de la loi de probabilité a alors une influence plus importante sur les résultats. Le choix d'une distribution pour représenter une variable aléatoire est souvent difficile à réaliser. On se base en général sur la qualité de l'adéquation de la loi aux données observées. Il importe donc, pour les stations météorologiques et les bassins versants du réseau, d'effectuer de nombreux ajustements de différentes lois de probabilité et de faire une comparaison globale des résultats.

1.2 Description du projet

L'objectif du projet était de fournir à Alcan, pour chacune des stations et chacun des bassins, des recommandations concernant les lois de probabilité les plus adéquates pour représenter les précipitations extrêmes de chaque saison. Le projet rend donc disponible une information validée concernant les quantiles de précipitations extrêmes.

Ce projet a été divisé en trois sous-projets :

- A. Détermination de saisons homogènes pour les précipitations extrêmes
- B. Modélisation des séries de précipitations extrêmes saisonnières
- C. Comparaison des ajustements effectués sur les séries de précipitations et recommandations d'une loi de probabilité

L'état d'un réservoir (niveau, etc.) change considérablement durant l'année. Ainsi, l'importance du risque associé aux événements de précipitations extrêmes, qui dépend du processus engendrant les précipitations, varie avec les saisons. L'exploitation de l'ensemble du réservoir et en particulier la gestion des ouvrages hydrauliques doit tenir compte des variations saisonnières des conditions hydrométéorologiques. Pour cette raison, il est donc important de déterminer les précipitations extrêmes de période de retour T pour chacune des saisons statistiquement homogènes.

Le sous-projet A a donc été consacré à la-partition de l'année en saisons hydrologiques. Les précipitations extrêmes sont le résultat de facteurs météorologiques qui diffèrent selon la période de l'année. En particulier, les types de précipitations extrêmes (orage convectif, tempête cyclonique, etc.) peuvent varier d'une saison à l'autre. L'année a été divisée en trois saisons: printemps, été et automne. Les spécialistes d'Alcan ont une idée assez précise des dates de transition entre les saisons. Cependant, quelques analyses statistiques (graphiques et tests) ont été réalisées afin de faire ressortir les différences saisonnières dans les caractéristiques statistiques des séries de précipitations extrêmes (moyennes, écarts-types, distributions, etc.). Ces analyses ont porté uniquement sur la partition été/automne puisque ces deux périodes sont plus difficiles à distinguer.

Le sous-projet B a été consacré à la modélisation des séries de précipitations extrêmes saisonnières pour chacune des stations et chacun des bassins considérés dans la présente étude. La réalisation de ce sous-projet a été effectuée en 3 étapes à l'aide du logiciel *AJUSTE-II* développé à l'INRS-Eau (Perreault et Bobée, 1996b, Perron *et al.*, 1996):

- 1. Analyse préliminaire des données;
- 2. Vérification des hypothèses statistiques, préalable à l'ajustement;
- 3. Ajustement des lois de probabilité.

L'étape 1 consistait à faire une analyse statistique descriptive de chacune des séries. Les principales caractéristiques statistiques ont été calculées (moyenne, écart-type, quantiles empiriques, coefficients de variation, d'asymétrie et d'aplatissement, etc.) et un examen de quelques représentations graphiques a été effectué (histogramme, tracé sur différents papiers de probabilité).

L'étape 2 avait pour objet de vérifier des hypothèses statistiques de base sur lesquelles repose l'ajustement d'une loi de probabilité. Les hypothèses d'homogénéité, de stationnarité et d'indépendance ont été testées respectivement à l'aide des tests de Wilcoxon, de Kendall et de Wald-Wolfowitz (section 2.3). Les séries pour lesquelles au moins l'une de ces hypothèses n'était pas vérifiée ont quand même fait l'objet d'un ajustement de loi, mais à titre indicatif seulement.

Enfin, les ajustements de lois de probabilité ont été effectués à l'étape 3. Toutes les distributions disponibles dans le logiciel AJUSTE-II ont été ajustées à chaque série

d'observations. Les paramètres des lois, les quantiles estimés \hat{x}_T , leur variance asymptotique ainsi que leur intervalle de confiance ont été calculés.

Le sous-projet C consistait enfin à comparer les résultats des ajustements obtenus au sousprojet B et à fournir, pour chaque série (site/saison), des recommandations concernant les lois de probabilité les plus adéquates. Le choix d'une loi de probabilité pour représenter les précipitations extrêmes dépend de plusieurs facteurs :

- la méthode de calcul de la variable étudiée : la définition d'une variable peut orienter le choix d'une loi;
- l'adéquation de la courbe de fréquence aux données, qui indique la validité de la loi pour représenter approximativement les données;
- les périodes de retour T qui intéressent plus particulièrement la compagnie Alcan (description ou prédiction);
- la variance des estimateurs des quantiles et la largeur des intervalles de confiance;
- le nombre de paramètres de la loi.

Puisque la distribution théorique des précipitations extrêmes est inconnue, les lois de probabilité sont considérées comme des modèles approximatifs de la vraie population. Ainsi, si aucune raison théorique ne permet de choisir une loi en particulier (par exemple, la méthode de calcul de la variable), le principal critère de sélection de distributions est la qualité de l'adéquation aux données observées. L'adéquation des lois a donc été étudiée visuellement à l'aide des graphiques fournis par le logiciel *AJUSTE-2* (représentation des courbes d'ajustement et des données observées sur papier de probabilité). En effet, les tests statistiques d'adéquation (par exemple, le test du khi-deux) sont généralement peu puissants pour caractériser la qualité de la représentation. Outre cet examen graphique, divers critères ont été utilisés pour discriminer entre les ajustements des distributions statistiques considérées. En particulier, les résultats d'études de la précipitation maximale probable (PMP) déjà réalisées par Alcan ont été pris en compte.

1.3 Description des données

Dans la présente étude, 14 stations météorologiques et les données météorologiques de 8 bassins versants du réseau hydrométrique d'Alcan ont été considérés. Les stations ayant moins que 20 ans de données ont été préalablement éliminées de l'étude. En effet, la discrimination entre différentes lois ajustées à un échantillon restreint n'est pas appropriée.

La plupart des séries de précipitations extrêmes sont déterminées pour une durée de 3 jours (72 heures). Cette durée est reliée au temps de concentration des bassins versants gérés par Alcan et correspond aux événements qui peuvent provoquer les augmentations d'apports non contrôlés les plus importantes. Il y a trois stations pour lesquelles les précipitations extrêmes journalières sont considérées (Tab 1.1 : Bonnard, Chute-des-Passes et Roberval-A). L'analyse des événements extrêmes de précipitations sur une base journalière permet de quantifier ce type d'événement.

Alcan a fourni à l'INRS-Eau une banque de données contenant les précipitations maximums saisonnières liquides pour chacune des stations et chacun des bassins versants. Les saisons ont été définies au préalable par Alcan de la manière suivante:

• Printemps : 01/04 - 30/06

Été : 01/07 - 31/08

• Automne : 01/09 - 31/12

Les détails (identification, période et durée) concernant les stations composant cette banque de données sont présentés au tableau 1.1. La notation qui sera utilisée dans le texte est également indiquée dans ce tableau. Il s'agit de l'abréviation de la station suivie de la durée (exemple: Bonnard 1 jour \rightarrow BON1). La station Roberval comporte trois séries. La série ROBC est constituée des données des séries ROBA et ROBB. Cette série combinée est intéressante car elle contient un nombre important de données et permet ainsi un meilleur ajustement. Toutefois, l'homogénéité de cette série doit être vérifiée (sections 3.2 et 4.3).

Le tableau 1.2 donne la taille, la période d'observation, la durée et la notation associées aux données météorologiques des huit bassins versants incluent dans la banque de données. La précipitation moyenne d'un bassin est déterminée à partir d'une moyenne pondérée des précipitations enregistrées aux stations à l'intérieur et près du bassin. Ce calcul a donc évolué avec le temps en fonction de l'ouverture et de la fermeture des stations météorologiques.

Les figures 1.1 et 1.2 illustrent respectivement les bassins versants et les stations météorologiques considérées dans cette étude. Les échantillons validés (prise en compte des saisons incomplètes et remplacement de valeurs aberrantes) sont présentés à l'annexe A.

Tableau 1.1 Stations météorologiques utilisées dans l'étude

Station Identification Pério		riode	Durée	Notation	
	• •	Printemps	Été-automne		
Bagotville-A	7060400	53 - 95	53 - 94	3 jours	BAGOT3
Bonnard	7060825	62 - 95 62 - 95	62 - 94 61 - 94	1 jour 3 jours	BON1 BON3
Chute du Diable	7061560	53 - 95	53 - 94	3 jours	CDIA3
Chute-des-passes	7061541	60 - 95	60 - 94	1 jour et 3 jours	CDPS1 et CDPS3
Chapais-2	7091305	62 - 91	62 - 91	3 jours	CHAP3
Chibougamau-A	7091401	72 - 95	71 - 94	3 jours	CHIBA3
Isle-Maligne	7063320	53 - 93	53 - 93	3 jours	IM3
Lac Bouchette	7063560	53 - 91	53 - 91	3 jours	LBOU3
Mistassini Post	7095000	53 - 79	53 - 80a	3 jours	MPOST3
Nitchequon	7095480	53 - 85	53 - 85	3 jours	NITCH3
Normandin-CDA	7065640	53 - 95	53 - 94	3 jours	NORM3
Péribonca	. -	53 - 82 ^b	53 - 82	3 jours	PERIB3
Roberval-A	7066685	14 - 66 58 - 95 14 - 95	14 - 66 58 - 94 14 - 94	1 jour et 3 jours 1 jour et 3 jours 1 jour et 3 jours	ROBA1 et ROBA3 ROBB1 et ROBB3 ROBC1 et ROBC3
Shipshaw	7068160	53 - 93	53 - 93	3 jours	SHIP3

a la valeur de 1976 a été remplacée par 43.7 mm b les années 1958 et 1962 ont été enlevées car la saison est incomplète

Tableau 1.2 Données météorologiques des bassins versants utilisés dans l'étude

Bassin versant (BV)	Superficie du BV	Pé	riode	Durée	Notation
	(km²)	Printemps	Été-automne		
Lac Manouane	5 000	53 - 95	53 - 94	3 jours	LM3
Passes-Dangereuses	10 000	53 - 95	53 - 94	3 jours	PD3
Bassin amont	16 000	53 - 95	53 - 94	3 jours	AM3
Chute du Diable	9 700	53 - 95	53 - 94	3 jours	CD3
Chute à la Savane	1 300	53 - 95	53 - 94	3 jours	CS3
Lac St-Jean	46 000	53 - 95	53 - 94	3 jours	LSJ3
Bassin aval	57 000	53 - 95	53 - 94	3 jours	AM3
Bassin total	73 000	53 - 95	53 - 94	3 jours	TOT3

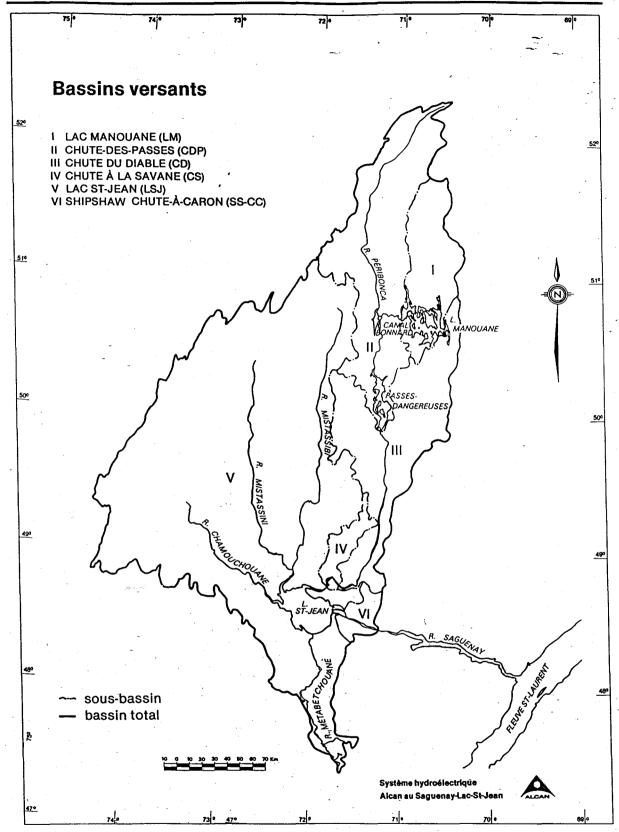


Figure 1.1 Bassins versants utilisés dans l'étude

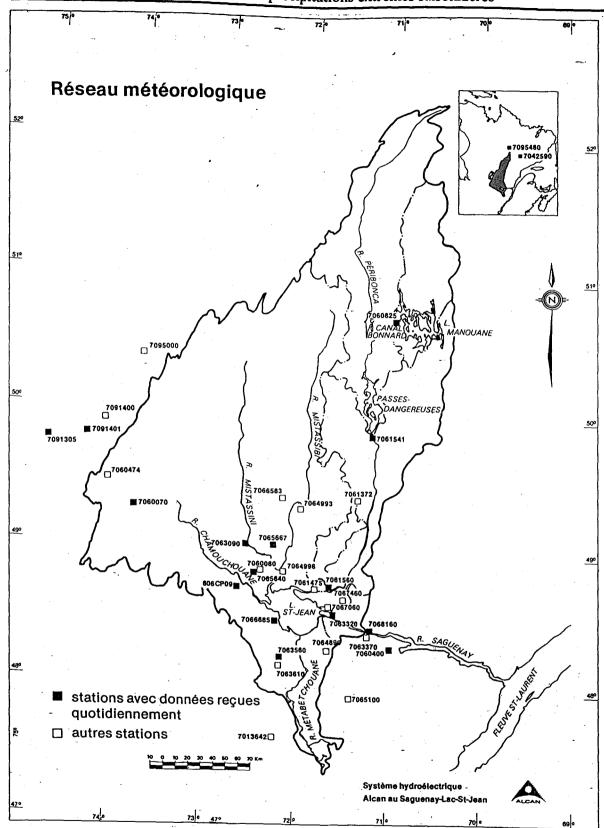


Figure 1.2 Stations météorologiques utilisées dans l'étude

1.4 Contenu du rapport

Ce rapport présente donc les principaux résultats de l'analyse de fréquence des précipitations extrêmes pour différentes saisons des principales stations et des bassins versants du réseau d'Alcan.

Le chapitre 2 est consacré à la description sommaire des principales notions de base de la théorie de l'ajustement. En particulier, les tests statistiques de vérification des hypothèses de base ainsi que les critères de comparaison des ajustements y sont présentés. Les résultats des ajustements pour les précipitations sont présentés aux chapitres 3 et 4.

<u>:</u>	

Ce chapitre a pour objet d'établir les bases théoriques de l'étude. Dans un premier temps, les principes généraux ainsi que les étapes de l'analyse de fréquence y sont brièvement présentés. Ensuite, on discute des hypothèses de base que doivent respecter les échantillons afin de pouvoir leur ajuster une loi de probabilité et des tests appropriés permettant de les valider. D'autres tests statistiques, utilisés en particulier pour comparer les précipitations extrêmes d'été et d'automne, sont aussi décrits. Enfin, les critères de comparaison des ajustements considérés ainsi que la procédure de sélection de la loi utilisée dans cette étude y sont présentés.

2.1 Principes de l'ajustement

Plusieurs processus hydrologiques peuvent être analysés et expliqués en termes de probabilités en raison de leur caractère aléatoire. Des méthodes statistiques sont disponibles pour organiser, présenter et réduire de tels ensembles de données de façon à faciliter leur interprétation et leur évaluation. L'une de ces approches, l'analyse hydrologique de fréquence (AHF), est employée en particulier pour optimiser la conception des aménagements hydroélectriques et leur gestion. Cette méthode statistique a comme objectif principal d'établir la relation existant entre des événements hydrologiques (crues, étiages, volumes, etc.) et leurs probabilités de dépassement ou de non-dépassement. L'AHF repose sur certaines notions statistiques de base qu'il est nécessaire de connaître afin d'appliquer cette approche. Nous ne présentons ici que les principes de base qui sont décrits plus en détail dans Perreault et Bobée (1996b).

L'AHF est utilisée, en particulier, pour estimer l'événement annuel x_T de période de retour T (quantile de période de retour T ou de probabilité au dépassement 1/T). L'estimation \hat{x}_T de la valeur théorique du quantile inconnu x_T peut être obtenue en ajustant une loi de probabilité $F(x; \underline{\theta})$ à un échantillon de précipitations extrêmes observés historiquement, où $\underline{\theta}$ désigne le vecteur de paramètres associé à la distribution F. Si une série de n valeurs (la précipitation maximum annuelle observée pour n années par exemple) vérifie certaines hypothèses de base (indépendamment et identiquement distribuées selon la loi F), les paramètres $\underline{\theta}$ peuvent être estimés en ajustant la distribution $F(x;\underline{\theta})$ aux n observations. On peut montrer que le risque hydrologique associé à la valeur x_T est donné par

 $\Pr(X \ge x_T) = 1/T$ et que si $F(x; \hat{\theta})$ désigne la fonction de répartition (cf. section 2.2) avec les paramètres estimés $\hat{\theta}$, alors le quantile estimé de période de retour T est donné par :

$$\hat{\mathbf{x}}_T = F^{-1} \left(1 - 1/T \,; \, \underline{\hat{\mathbf{\theta}}} \right) \tag{2.1}$$

Les quatre étapes principales de mise en oeuvre de cette procédure sont :

- la sélection d'un échantillon de mesures satisfaisant certaines hypothèses statistiques de base;
- le choix d'un modèle paramétrique considéré comme une approximation de la distribution théorique inconnue pouvant représenter adéquatement un échantillon donné;
- l'ajustement du modèle aux données à l'aide de la méthode d'estimation la plus adéquate compte tenu des objectifs visés (description, prédiction);
- l'estimation des événements x_T de période de retour T (quantiles de la loi) pour faire une inférence statistique.

2.2 Lois de probabilité considérées

Considérons une variable aléatoire continue X. Une telle variable peut prendre toutes les valeurs comprises dans un intervalle donné. Ces valeurs constituent le domaine de variation D de la variable aléatoire et sont non dénombrables. Cette caractéristique nous permet de donner une définition plus mathématique d'une variable aléatoire continue : une variable aléatoire X est dite continue si $\operatorname{Prob}\{X=x\}=0$ pour tout x. Puisque pour une variable aléatoire continue on ne peut considérer les événements ponctuels, il est plus approprié d'introduire d'abord la fonction de répartition F plutôt que la fonction de densité de probabilité f.

La fonction F définie par $F(x) = \text{Prob}\left\{X \le x\right\}$ pour tout x dans le domaine D = (c, d) (probabilité au non-dépassement) est appelée la fonction de répartition continue et répond aux axiomes suivants :

- (i) $0 \le F(x) \le 1$, pour tout x
- (ii) F est une fonction non décroissante de x
- (iii) F(c) = 0 et F(d) = 1

La fonction de répartition représente la somme des probabilités des valeurs de la variable comprises dans l'intervalle $(-\infty, x]$ et est utile pour calculer différentes probabilités associées à la variable aléatoire X. Par exemple, on déduit de la définition que

$$\operatorname{Prob}\left\{a \leq X \leq b\right\} = F(b) - F(a), \quad a \leq b \tag{2.2}$$

Toutefois, en pratique, les lois de probabilité continues sont généralement définies en terme de fonction de densité de probabilité. Une fonction de densité de probabilité continue est une fonction f admettant que des valeurs positives, et telle que :

$$\int_{-\infty}^{+\infty} f(x) dx = 1 \tag{2.3}$$

On peut maintenant aisément faire la correspondance entre la fonction de répartition F et la densité f. Ainsi, si f est une fonction de densité de probabilité, alors la fonction F définie par:

$$F(x) = \int_{-\infty}^{x} f(y) dy, \quad -\infty < x < +\infty$$
 (2.4)

est la fonction de répartition correspondante car elle satisfait aux axiomes (i)-(iii).

Il existe une infinité de formes de fonction de densité de probabilité. La figure 2.1 en indique quelques formes classiques.

Plusieurs lois de probabilité sont susceptibles de représenter adéquatement les différentes variables hydrologiques (précipitations, débits, etc.). Quinze distributions, incluses dans le logiciel AJUSTE, ont été considérées dans la présente étude. Le Tableau 2.1 donne pour chaque distribution l'expression de la fonction de densité de probabilité f(x) et quelques références.

Enfin, dans la présente étude, nous avons considéré en priorité, pour estimer les paramètres et les quantiles de ces distributions, la méthode du maximum de vraisemblance. Les propriétés théoriques de cette méthode sont bien connues (Bickel et Doksum, 1977), du

¹ Nous utilisons, au tableau 2.1, les abréviations suivantes pour les distributions considérées dans la présente étude: gamma (GA), Pearson Type 3 (P3), log-Pearson Type 3 (LP3), gamma généralisée (GG), gamma inverse (GI), valeur extrême généralisée (GEV), Gumbel (GU), Weibull (WE), normale (NO), log-normale à 2 paramètres (LN3), exponentielle (EXP), Halphen Type A (HA), Halphen Type B (HB) et Halphen Type B⁻¹ (B⁻¹).

moins pour des échantillons d'assez grande taille. Toutefois, pour certains ajustements, cette approche n'admet pas de solution ou n'est pas optimale pour une taille d'échantillon restreinte. Dans ce cas, une méthode d'estimation alternative, souvent la méthode des moments, a été employée. Les diverses méthodes d'estimation disponibles dans le logiciel *AJUSTE-II* sont décrites dans Perreault et Bobée (1996b) ou dans les références citées au tableau 2.1.

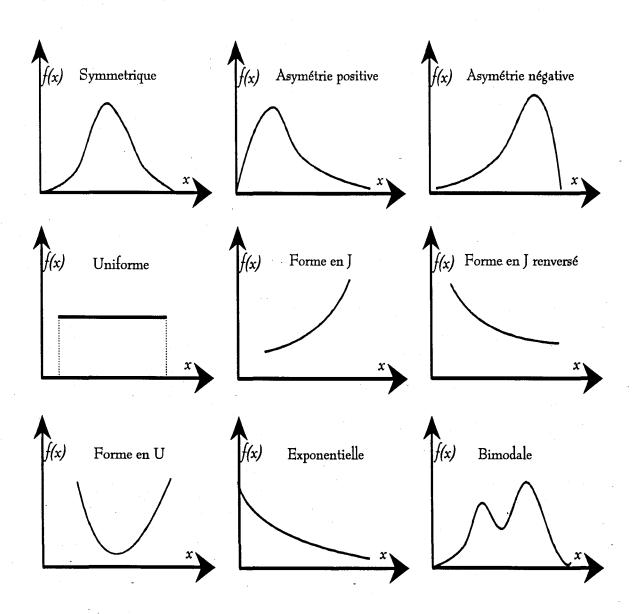


Figure 2.1. Formes classiques de fonctions de densité de probabilité continues

Tableau 2.1. Lois de probabilité considérées dans l'étude.

' Loi	Domaine D	Fonction de densité de probabilité $f(x)$	Références
GA	<i>x</i> > 0	$f(x) = \frac{\alpha^{\lambda}}{\Gamma(\lambda)} x^{\lambda - 1} e^{-\alpha x}$	Bobée et Ashkar (1991) Perreault et Bobée (1992c)
P3	<i>x</i> > <i>m</i>	$f(x) = \frac{\alpha^{\lambda}}{\Gamma(\lambda)}(x-m)^{\lambda-1}e^{-\alpha(x-m)}$	Bobée et Ashkar (1991) Perreault et Bobée (1992c)
LP3	$x > e^m$	$f(x) = \frac{\alpha^{\lambda}}{x\Gamma(\lambda)} (\ln x - m)^{\lambda - 1} e^{-\alpha(\ln x - m)}$	Bobée et Ashkar (1991) Perreault et Bobée (1992c)
GG	<i>x</i> > 0	$f(x) = \frac{ s \alpha^{s\lambda}}{\Gamma(\lambda)} x^{s\lambda-1} e^{-(\alpha x)^{s}}$	Bobée et Ashkar (1991) Perreault et Bobée (1992c)
GI	<i>x</i> > 0	$f(x) = \frac{\alpha^{\lambda}}{\Gamma(\lambda)} \left(\frac{1}{x}\right)^{\lambda+1} e^{-\alpha/x}$	Kotz et Johnson (1983)
GEV	$x > u + \alpha/k$, $si k < 0$ $x < u + \alpha/k$, $si k > 0$	$f(x) = \frac{1}{\alpha} \left[1 - \frac{k}{\alpha} (x - u) \right]^{\frac{1}{k} - 1} \exp \left\{ -\left[1 - \frac{k}{\alpha} (x - u) \right]^{\frac{1}{k}} \right\}$	Perreault et Bobée (1992a)
GU	$-\infty < x < +\infty$	$f(x) = \frac{1}{\alpha} \exp \left[-\frac{x-u}{\alpha} - \exp \left(\frac{x-u}{\alpha} \right) \right]$	Perreault et Bobée (1992a)
WE	<i>x</i> > 0	$f(x) = \frac{c}{\alpha} \left(\frac{x}{\alpha} \right)^{c-1} \exp \left[-\left(\frac{x}{\alpha} \right)^{c} \right]$	Perreault et Bobée (1992b)
NO	$-\infty < x < +\infty$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$	Perreault et Bobée (1992d)
LN2	x > 0	$f(x) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left\{-\frac{(\ln x - \mu)^2}{2\sigma^2}\right\}$	Aitchison et Brown (1957)
LN3	<i>x</i> > <i>m</i>	$f(x) = \frac{1}{(x-m)\sigma\sqrt{2\pi}} \exp\left\{-\frac{\left[\ln(x-m)-\mu\right]^2}{2\sigma^2}\right\}$	Aitchison et Brown (1957)
EXP	<i>x</i> > <i>m</i>	$f(x) = \frac{1}{\alpha} \exp\left\{-\frac{x-m}{\alpha}\right\}$	Lehmann (1983)
НА	<i>x</i> > 0	$f(x) = \frac{1}{2m^{\nu}K_{\nu}(2\alpha)}x^{\nu-1}\exp\left[-\alpha\left(\frac{x}{m} + \frac{m}{x}\right)\right]$	Perreault et Bobée (1996a)
НВ	<i>x</i> > 0	$f(x) = \frac{2}{m^{2\nu}ef_{\nu}(\alpha)} x^{2\nu-1} \exp\left[-\left(\frac{x}{m}\right)^{2} + \alpha\left(\frac{x}{m}\right)\right]$	Perreault et Bobée (1996a)
HB-1	<i>x</i> > 0	$f(x) = \frac{2m^{2\nu}}{ef_{\nu}(\alpha)} x^{-2\nu-1} \exp \left[-\left(\frac{m}{x}\right)^2 + \alpha \left(\frac{m}{x}\right) \right]$	Perreault et Bobée (1996a)

2.3 Vérification des hypothèses de base

L'analyse hydrologique de fréquence repose sur des hypothèses statistiques. En effet, pour que les résultats d'une telle analyse soient théoriquement valides, les observations utilisées doivent être indépendantes et identiquement distribuées (cette condition implique qu'elles sont homogènes et stationnaires). Nous présentons, dans ce qui suit, ces caractéristiques ainsi que les tests utilisés dans cette étude pour vérifier ces hypothèses.

2.3.1 Hypothèse d'indépendance : test de Wald-Wolfowitz

Des observations sont indépendantes si la probabilité d'occurrence de chacune d'entre elles n'est pas influencée par les autres observations. Par exemple, on considère les précipitations maximums annuelles indépendantes si l'intensité d'une pluie n'est pas influencée par celle observée l'année précédente. En d'autres mots, on ne peut tirer aucune information d'une précipitation maximum annuelle pour prédire celle de l'année suivante. Une dépendance peut généralement être observée lorsque l'intervalle de temps entre les observations est réduit. En effet, il est clair que les précipitations horaires ne sont pas indépendantes puisqu'il y a forte chance qu'une pluie horaire observée soit élevée si celle du jour précédent est élevée, et faible lorsque l'observation du jour précédent est faible. On dira alors que les observations sont autocorrélées, et dans ce cas on ne peut pas utiliser l'analyse hydrologique de fréquence.

Le test utilisé dans cette étude pour vérifier l'indépendance des observations est le test de Wald-Wolfowitz (1943) qui compare les hypothèses suivantes :

$$H_0: X_1, X_2, ..., X_n$$
 sont indépendantes contre
$$H_1: X_1, X_2, ..., X_n \text{ ne sont pas indépendantes}$$

Considérons n variables aléatoires $X_1, X_2, X_3, ..., X_n$ (les précipitations maximums des n dernières années, par exemple) et les réalisations correspondantes $x_1, x_2, ..., x_n$ (valeurs numériques correspondantes). La statistique de Wald-Wolfowitz R s'exprime de la façon suivante :

$$R = \sum_{i=1}^{n-1} X_i X_{i+1} + X_1 X_n$$
 (2.5)

Sous l'hypothèse nulle, c'est-à-dire lorsque les n variables aléatoires sont indépendantes, la statistique R est distribuée asymptotiquement (lorsque $n \to +\infty$) selon une loi normale de moyenne $E\{R\}$ et de variance $Var\{R\}$ données dans Wald et Wolfowitz (1943).

La statistique standardisée :

$$U = \frac{R - E\{R\}}{\sqrt{Var\{R\}}}$$
 (2.6)

est donc distribuée asymptotiquement selon une loi normale centrée réduite. Les observations seront indépendantes si la valeur de R est proche de sa moyenne. Ainsi, on rejette l'hypothèse nulle pour de grandes valeurs de la statistique U en valeur absolue, calculée à partir des valeurs numériques $x_1, x_2, ..., x_n$. La région critique du test de Wald-Wolfowitz au niveau de signification α est alors de la forme $\{|U| > z_{\alpha/2}\}$, où $z_{\alpha/2}$ est le quantile de probabilité au dépassement égale à $\alpha/2$ de la loi normale centrée réduite.

La règle de décision pour effectuer ce test à un niveau de signification donné α est donc la suivante :

- Si $|U| > z_{\alpha/2}$, on rejette H_0 , les observations ne peuvent être considérées comme indépendantes;
- Sinon, on ne rejette pas H_0 .

2.3.2 Hypothèse d'homogénéité: test de Wilcoxon

On entend par échantillon aléatoire homogène, un échantillon dont toutes les observations proviennent de la même population statistique. En pratique, une série d'observations sera homogène si les données sont toujours acquises dans les mêmes conditions. Par exemple, les précipitations peuvent être hétérogènes s'il y eu déplacement de la station de mesure durant la période d'acquisition des données. Une façon de vérifier dans ce cas l'hypothèse d'homogénéité est de comparer la moyenne des précipitations obtenues avant la date de modification de la procédure d'acquisition avec celle des précipitations obtenues après cette date. C'est ce que le logiciel *AJUSTE-II* permet d'effectuer à l'aide du test de rang de Wilcoxon.

Considérons n variables aléatoires $X_1, X_2, X_3, ..., X_n$ et la série de réalisations correspondantes $x_1, x_2, ..., x_n$ que l'on divise en deux sous-échantillons, l'un formé des observations mesurées $x_1, x_2, ..., x_n$ avant la date de modification de la procédure

d'acquisition et l'autre des données mesurées suite au changement $y_1, y_2, ..., y_{n_2}$. On suppose de plus qu'ils proviennent respectivement de deux populations de moyenne et de variance (μ_1, σ_1^2) et (μ_2, σ_2^2) . Le test de Wilcoxon compare les hypothèses :

$$H_0: \mu_1 = \mu_2$$
 contre $H_1: \mu_1 \neq \mu_2$

La statistique utilisée, qui est asymptotiquement distribuée selon une loi normale centrée réduite, est donnée par :

$$W = \frac{V - \frac{n_1(n+1)}{2} + \frac{1}{2}}{\sqrt{Var\{V\}}}$$
 (2.7)

où V est une statistique de rang et $n = n_1 + n_2$. L'expression analytique de V et $Var\{V\}$ sont données dans Perreault et Bobée (1996b):

La règle de décision pour effectuer ce test à un niveau de signification donné α est la suivante :

- Si $|W| > z_{\alpha/2}$, on rejette H_0
- Sinon, on ne rejette pas H_0

où $z_{\alpha/2}$ est le quantile de probabilité au dépassement $\alpha/2$ de la loi normale centrée réduite. Un test tout à fait équivalent au test de Wilcoxon est celui de Mann-Withney. Lehmann (1975, Chap. 1) donne les détails théoriques concernant ces deux tests. Mentionnons enfin que le test de Wilcoxon peut être aussi utilisé pour comparer la moyenne des précipitations maximums de différentes saisons (cf. chapitre 4). Toutefois, il est important de souligner que la date de séparation doit être connue a priori et que ce test ne peut être appliqué à répétition pour déterminer a posteriori la partition d'une série en plusieurs sous-ensembles homogènes.

2.3.3 Hypothèse de stationnarité : test de Kendall

On dit que les observations sont stationnaires si, outre les fluctuations aléatoires de la série, les caractéristiques statistiques (moyenne, variance, etc.) de la série ne varient pas dans le temps. La non-stationnarité se traduit généralement par des changements brusques ou graduels de la moyenne des observations. Cette hypothèse peut être vérifiée dans le cas de changements brusques en comparant les moyennes de deux sous-échantillons à l'aide du test de Wilcoxon (section 2.3.2), si on connaît a priori la date du saut. Toutefois, lorsqu'on n'a

pas cette information, ou si on soupçonne un changement graduel de la moyenne, il est préférable d'utiliser un autre test, en l'occurrence le test de Kendall.

Le test de Kendall compare les hypothèses suivantes :

 $H_{\rm 0}$: La moyenne des variables aléatoires est constante dans le temps contre

 H_1 : La moyenne des variables aléatoires n'est pas constante dans le temps

Considérons n variables aléatoires $X_1, X_2, X_3, ..., X_n$ classées par ordre chronologique. La statistique S du test de Kendall (1975) s'exprime de la façon suivante :

$$S = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} sgn(X_j - X_i)$$
 (2.8)

où la fonction sgn(.) est donnée par :

$$sgn(x) = \begin{cases} 1 & \text{si } x > 0 \\ 0 & \text{si } x = 0 \\ -1 & \text{si } x < 0 \end{cases}$$
 (2.9)

Sous l'hypothèse nulle, c'est-à-dire lorsque les variables aléatoires sont stationnaires, la statistique S est distribuée asymptotiquement selon une loi normale de moyenne nulle et de variance $Var\{S\}$ (cf. Kendall, 1975). En ajoutant une correction de continuité, la statistique standardisée :

$$K = \begin{cases} \frac{S-1}{\sqrt{Var\{S\}}} & \text{si } S > 0\\ 0 & \text{si } S = 0\\ \frac{S+1}{\sqrt{Var\{S\}}} & \text{si } S < 0 \end{cases}$$
 (2.10)

est distribuée asymptotiquement selon une loi normale centrée réduite. Les observations seront stationnaires si la valeur de S est proche de sa moyenne, c'est-à-dire nulle. Ainsi, on rejette l'hypothèse nulle pour de grandes valeurs de la statistique |K| en valeur absolue, calculée à partir des observations $x_1, x_2, ..., x_n$. La région critique du test de Kendall au niveau de signification α est alors de la forme $\{|K| > z_{\alpha/2}\}$ où $z_{\alpha/2}$ est le quantile de probabilité au dépassement égale à $\alpha/2$ de la loi normale centrée réduite.

La règle de décision pour effectuer ce test à un niveau de signification donné α est donc la suivante :

- Si $|K| > z_{\alpha/2}$, on rejette H_0 , les observations ne peuvent être considérées stationnaires;
- Sinon, on ne rejette pas H_0 .

2.4 Autres tests statistiques utilisés dans l'étude

Deux autres tests statistiques ont été employés dans la présente étude. Il s'agit du test de Levene (1960) et du test de Kolmogorov-Smirnov. Ces deux tests ont été employés, avec le test de Wilcoxon (section 2.3.2), pour comparer les distributions des séries de précipitations maximums des saisons été et automne (chapitre 4) et l'homogénéité de la série ROBC qui est une combinaison des séries ROBA et ROBB. Nous donnons, dans ce qui suit, une brève description des aspects théoriques de ces deux tests d'hypothèses.

2.4.1 Test de Levene

Le test de Levene (1960) examine l'hypothèse d'égalité des variances des deux échantillons, c'est-à-dire :

$$H_0: \sigma_1^2 = \sigma_2^2$$
 contre $H_1: \sigma_1^2 \neq \sigma_2^2$

Conover et al. (1980) ont montré à l'aide de simulations que ce test est le plus efficace parmi 50 procédures considérées pour comparer les variances. Pour alléger la présentation du test, nous notons y_{1j} la jième donnée du premier échantillon et y_{2j} la jième observation du second. Pour effectuer ce test, on calcule d'abord pour chaque échantillon les écarts en valeurs absolues des observations par rapport à la médiane :

$$EC_{ij} = |y_{ij} - Med_i|, \quad i = 1, 2$$
 (2.11)

La statistique du test de Levene (1960) est alors donnée par :

$$L = \frac{(N-2)\left[n\left(\overline{EC_1} - \overline{EC}\right)^2 + n_i\left(\overline{EC_2} - \overline{EC}\right)^2\right]}{\sum_{j=1}^n \left(EC_{1j} - \overline{EC_1}\right)^2 + \sum_{j=1}^{n_i} \left(EC_{2j} - \overline{EC_2}\right)^2}$$
(2.12)

où $\overline{EC_1}$, $\overline{EC_2}$ et \overline{EC} sont respectivement les moyennes des écarts pour le premier échantillon, pour le second échantillon et pour l'échantillon combiné.

La règle de décision pour effectuer ce test à un niveau de signification donné α est la suivante :

- Si $L \le F_{1,n-n_1-2}(1-\alpha)$, on accepte H_0
- Sinon, on rejette H_0

où $F_{1,n-n_1-2}(1-\alpha)$ est le quantile de probabilité au non-dépassement $1-\alpha$ de la loi de Fisher à 1 et $(n-n_1-2)$ degrés de liberté.

2.4.2 Test de Kolmogorov-Smirnov

Le test de Kolmogorov-Smirnov consiste à comparer les fonctions de répartition empiriques de deux échantillons indépendants (Capéraà et Van Cutsem, 1988). Ce test permet donc de comparer globalement la forme des distributions des deux échantillons plutôt que seulement certaines caractéristiques données comme la moyenne (test de Wilcoxon) et la variance (test de Levene).

Considérons deux échantillons indépendants de taille n $X_1, ..., X_n$ et $Y_1, ..., Y_n$ distribuées respectivement selon les lois de probabilité F et G. Notons F_n et G_n les fonctions de répartition empiriques associées à ces échantillons et définies comme suit:

$$F_n(x) = \frac{\text{nombre de } X_i \le x}{n}$$
 (2.13)

$$G_n(y) = \frac{\text{nombre de } Y_i \le y}{n}$$
 (2.14)

Le test de Kolmogorov-Smirnov vérifie les hypothèses $H_0: F = G$ contre $H_1: F \neq G$ et la statistique utilisée est donnée par :

$$D = \underset{x}{\text{Max}} \left| F_n(x) - G_n(x) \right| \tag{2.15}$$

La statistique D mesure donc l'écart maximum entre les deux fonctions de répartition empiriques et la règle de décision pour effectuer ce test à un niveau de signification donné α est la suivante :

- Si $D \le c_{\alpha}$, on accepte H_0
- Sinon, on rejette H_0

où c_{α} est le quantile de probabilité au non-dépassement 1- α de la loi de la statistique D. L'expression analytique de cette distribution est donnée, pour le cas de deux échantillons de même taille, dans Capéraà et Van Cutsem (1988).

2.5 Critères de sélection d'une loi de probabilité

Le choix d'une loi de probabilité pour représenter les précipitations extrêmes dépend de plusieurs facteurs que l'on peut classer en deux catégories : les facteurs statistiques et les facteurs météorologiques. En effet, une loi de probabilité adéquate pour représenter un phénomène météorologique donné doit non seulement répondre à certaines considérations probabilistes mais aussi tenir compte des divers aspects liés au processus physique.

2.5.1 Critères statistiques

Puisque la distribution théorique des précipitations extrêmes est inconnue, les lois de probabilité sont considérées comme des modèles approximatifs de la vraie population inconnue. Ainsi, si aucune raison théorique ne permet de choisir une loi en particulier, les principaux critères statistiques de sélection de distributions concernent la qualité de l'adéquation aux données observées et la parcimonie du modèle.

2.5.1.1 Représentation graphique

La représentation graphique sur papier de probabilité des valeurs de l'échantillon et de la distribution ajustée permet une évaluation visuelle de l'adéquation du modèle. Elle permet également une comparaison entre différentes lois ajustées sur un même ensemble de données lorsque les ajustements sont représentés sur le même graphique.

L'axe des abscisses d'un tel graphique correspond aux probabilités au non-dépassement (1-1/T) et l'axe des ordonnées à la variable aléatoire étudiée (précipitations extrêmes: x_T). On retrouve sur cette figure les valeurs estimées des quantiles des lois considérées reliées par un trait continu (courbe d'ajustement) ainsi que les observations de l'échantillon. Les observations ont d'abord été classées en ordre croissant $x_{(1)} \le ... \le x_{(k)} \le ... \le x_{(n)}$ et une probabilité empirique au non-dépassement P_k a été attribuée à chacun des éléments. Les formules de probabilité empirique sont habituellement basées sur la moyenne, le mode ou la médiane de la fréquence observée et elles sont des cas spéciaux de la formule générale (Harter, 1971):

$$P_{k} = \frac{k - a}{n - 2a + 1} \tag{2.16a}$$

Cunnane (1978) a effectué une étude approfondie du sujet et a suggéré une formule compromis (éq. 2.16a avec α =0.4) utilisable pour toutes les distributions qui ont été employées dans la présente étude:

$$P_k = \frac{k - 0.4}{n + 0.2} \tag{2.16b}$$

Le papier de probabilité considéré dans l'étude est celui de la loi normale.

2.5.1.2 Critère de l'écart moyen en valeur absolue (ÉMVA)

Pour quantifier l'adéquation de l'ajustement d'une loi donnée aux grandes valeurs de l'échantillon, nous avons considéré l'écart moyen en valeur absolue EMVA. Ce critère repose sur les études de Benson (1968) et de Bobée et Robitaille (1977) et permet de quantifier l'écart entre la courbe d'ajustement et la courbe empirique des observations. Cette méthode empirique consiste à comparer les quantiles \hat{x}_T estimés par un ajustement avec les valeurs correspondantes déduites de l'échantillon, notées $(x_T)_e$, pour des périodes de retour T fixées. Pour une distribution et une période de retour T données, l'écart en valeur absolue s'exprime comme suit:

$$\dot{E}C(T) = \left| \hat{x}_T - (x_T)_e \right| \tag{2.17}$$

Les périodes de retour considérées sont 2, 5, 10, 20, 50 et 100 ans (c'est-à-dire les probabilités au dépassement de 0.50, 0.20, 0.10, 0.05, 0.02 et 0.01). La comparaison de l'ajustement des distributions est effectuée en calculant, pour chaque ajustement, la moyenne des écarts absolus EC(T):

$$\dot{E}MVA(T) = \frac{1}{L} \sum \dot{E}C(T)$$
 (2.18)

où L désigne le nombre de périodes de retour considérées (ici, L = 6).

Afin de calculer les valeurs $(x_T)_e$ correspondant aux périodes de retour considérées, nous avons procédé par interpolation sur le papier de probabilité normal. Cette interpolation linéaire dans l'espace de la loi normale utilise les probabilité empiriques P_k (éq. 2.16b) des observations et est décrite dans Haché (1993).

2.5.1.3 Parcimonie

L'objectif général en modélisation statistique est de représenter le plus adéquatement possible les données compte tenu de l'information restreinte disponible. On cherche donc un modèle possédant un nombre de paramètres minimum de façon à diminuer l'incertitude des estimations et à respecter le principe de parcimonie.

Ce principe a été considéré lors de la sélection des lois de probabilité. Les distributions étudiées dans ce travail possèdent 2 ou 3 paramètres (tableau 2.1). Pour des ajustements comparables, une loi à 2 paramètres a été favorisée.

2.5.1.4 Critère d'information d'Akaïke (CIA)

Le critère proposé par Akaike (1974) permet de comparer l'adéquation des distributions, n'appartenant pas nécessairement à la même famille, à l'ensemble des observations d'un échantillon. Cet indice repose sur l'idée intuitive que, plus une loi de probabilité est adéquate pour un échantillon donné, plus la valeur de la fonction de vraisemblance $\ln L(\underline{\theta})$, évaluée en son maximum $\underline{\hat{\theta}}$ (estimateurs du maximum de vraisemblance), sera grande.

Le critère d'Akaïke CIA est défini de la manière suivante:

$$CIA = -2\ln L(\hat{\underline{\theta}}) + 2p \tag{2.19}$$

où L désigne la fonction de vraisemblance de la distribution (cf. Perreault et Bobée 1996b, section 3.3.1) dont les p paramètres $\underline{\theta}$ ont été estimés par la méthode du maximum de vraisemblance. La meilleure distribution, selon le critère d'Akaïke, correspond à celle ayant la plus petite valeur de CIA.

Ce critère a l'avantage de tenir compte du principe de parcimonie. En effet, on remarque qu'en augmentant la complexité du modèle (plus de paramètres), le second terme de l'équation (2.18) augmente, défavorisant ainsi les modèles à plusieurs paramètres et ce, même si le premier terme diminue à cause de l'amélioration de l'ajustement.

2.5.2 Critères météorologiques

L'analyse statistique rigoureuse d'un phénomène hydrologique donné doit, autant que possible, prendre en compte les diverses informations disponibles sur le processus pour s'assurer de la validité pratique des résultats. Dans la présente étude, il s'agit en particulier

de tenir compte de l'information régionale et des résultats d'études sur la précipitation maximum probable (PMP) déjà réalisées par Alcan (SNC, 1994).

2.5.2.1 Information régionale

La sélection de la meilleure distribution pour représenter les précipitations extrêmes à une station ou à un bassin est effectuée dans un optique régionale. En effet, lorsque cela est possible, une loi commune pour des sites voisins est retenue. En particulier, la meilleure loi pour un sit ayant une longue série est une bonne candidate pour représenter les observations d'un site voisin dont l'échantillon est de taille plus restreinte et, par conséquence, comportant moins d'information. D'autre part, le fait qu'une même loi ajuste bien les observations de bassins voisins contribue à justifier son choix.

2.5.2.2 Cohérence spatiale

En général, la précipitation moyenne sur une surface diminue avec l'augmentation de la superficie de la surface. Afin de conserver la cohérence spatiale des précipitations sur les bassins versants, il est souhaitable que la précipitation décamillénaire (précipitation de période de retour de 10 000 ans) diminue avec une augmentation de la superficie des bassins. Ce critère sera employé pour discriminer certaines lois de probabilité. Mentionnons toutefois que l'estimation du quantile décamillénaire est incertain et qu'ainsi le choix d'une distribution ne peut reposer seulement sur ce critère.

2.5.2.3 Cohérence temporelle

Pour un même site, les précipitations extrêmes d'une durée de 1 jour sont inférieures aux précipitations extrêmes déterminées pour une durée de 3 jours. Afin de conserver cette cohérence temporelle, les lois choisies doivent être telles que la précipitation décamillénaire de 1 jour est supérieure à celle de 3 jours.

2.5.2.4 Précipitation maximale probable (PMP)

La précipitation maximale probable (PMP, cf. SNC, 1994) est calculée en considérant des conditions météorologiques exceptionnelles. Plus précisément, la PMP correspond à la hauteur de pluie maximale qu'auraient laisser les orages si leur contenu en eau et leur efficacité avaient été maximums. Le tableau 2.2 donne les valeurs de PMP pour différentes superficies de bassins versants. La PMP diminue avec une augmentation de superficie car la précipitation à plus de chance d'être intense sur une région petite que sur une région étendue.

Saison	Durée	Superficie (km²)							
	(jours)	100	1 000	2 000	5 000	10 000	25 000	50 000	100 000
Printemps	1	199	178	165	146	132	107	89	71
	3	224	203	191	173	158	135	114	97
Été-automne	1	287	259	249	231	203	163	130	104
•	3	366	340	325	300	269	231	208	188

Tableau 2.2 Précipitations maximales probables (PMP) en mm (tiré de SNC, 1994)

Il est incohérent d'obtenir une estimation de la précipitation maximum décamillénaire supérieure à la PMP puisque cette dernière quantité représente une borne supérieure aux précipitations. Les lois qui conduisent à ce genre d'anomalie sont jugées inadéquates et éliminées de la comparaison des lois.

2.5.2.5 Maximum historique

Le phénomène de précipitations extrêmes est souvent très localisé. Un événement extrême peut être enregistré à une station et ne pas l'être à une autre station distante de seulement quelques kilomètres. En raison de la propriété sporadique que peuvent avoir les précipitations extrêmes, nous considérons que la précipitation maximale de toutes les stations combinées aurait pu se produire à n'importe quelle autre station. Ainsi, par mesure de précautions, les lois dont la précipitation décamillénaire est inférieure au maximum historique de toutes les stations étudiées sont considérées douteuses. Les maximums historiques enregistrés à une station pour des durées de 1 jour et 3 jours sont respectivement 102 mm et 153 mm.

2.5.3 Procédure de sélection

La sélection de la distribution la plus adéquate pour l'ensemble des séries étudiées a été réalisée lors de rencontres de travail réunissant Mme Louise Rémillard d'Alcan et MM. Mario Haché et Luc Perreault de l'INRS-Eau. Les choix ont été effectués en faisant la synthèse des critères présentés aux sections 2.5.1 et 2.5.2 et en examinant les meilleurs ajustements sur papier de probabilité normal. Une attention particulière a été apportée au respect du principe de parcimonie, de la cohérence avec la crue maximale probable et de la cohérence spatiale.

De manière générale, la procédure qui a été adoptée lors de ces rencontres est la suivante:

- 1. Classement des lois de probabilité selon le critère statistique CIA (cf. section 2.5.1.4). Deux classements ont été considérés: un classement général de toutes les distributions et un classement distinguant les lois à 2 et 3 paramètres.
- Classement des lois de probabilité selon le critère statistique ÉMVA (cf. section 2.5.1.2). Deux classements ont été considérés: un classement général de toutes les distributions et un classement distinguant les lois à 2 et 3 paramètres.
- 3. Choix des meilleurs ajustements selon le critère CIA (4 à 6 lois retenues). Ce critère a été considéré pour cette première discrimination entre les lois parce que, contrairement au ÉMVA, le CIA considère l'adéquation de la distribution à l'ensemble des données et non seulement aux grandes valeurs.
- 4. Examen de la représentation graphique comparée des meilleures lois selon le critère CIA (distributions retenues à l'étape 3). Il s'agit ici de l'examen de l'adéquation des courbes d'ajustement aux données sur un papier de probabilité normal pour les grandes périodes de retour. Le critère ÉMVA est ici employé comme complément quantitatif à cet examen visuel. Les critères hydrologiques ont également été pris en compte lors de cette étape.
- 5. Examen des représentations graphiques individuelles avec intervalle de confiance des meilleures lois selon les critères CIA et ÉMVA (distributions retenues à l'étape 3). Cela a été effectué en particulier pour examiner la largeur des intervalles de confiance (incertitude d'échantillonnage).

Les lois de probabilité sélectionnées sont le résultat d'un compromis entre diverses considérations statistiques et hydrologiques. Compte tenu de la taille limitée des échantillons et des diverses contraintes pratiques, les choix effectués sont entachés d'incertitudes et devraient être validés périodiquement, selon la procédure proposée, lorsque de nouvelles informations deviennent disponibles.

	-				
•		÷			
				,	
• •	•				
	a		•		
				· ·	
				-	
				-	
	 · •				
			-		

3 AJUSTEMENT DES PRÉCIPITATIONS MAXIMUMS PRINTANIÈRES

Ce chapitre est consacré à la présentation de l'analyse hydrologique de fréquence des précipitations maximums du printemps (01/04 - 30/06) pour les 29 séries considérées:

- 16 séries aux stations météorologiques pour une durée de 3 jours;
- 5 séries aux stations météorologiques pour une durée de 1 jour;
- 8 séries aux bassins versants pour une durée de 3 jours.

3.1 Analyse préliminaire des données

Cette section est consacrée aux principales caractéristiques statistiques des séries annuelles de précipitations maximums du printemps des stations météorologiques et des bassins versants du réseau d'Alcan.

Les tableaux 3.1a et 3.1b donnent les caractéristiques statistiques des précipitations maximums printanières des bassins versants et des stations. En examinant ces tableaux, on peut constater que:

- en ce qui concerne les stations, la moyenne et l'écart-type varient peu pour une même durée;
- la moyenne et l'écart-type des petits bassins (LM3, PD3, AM3, CD3 et CS3) sont supérieurs à ceux des grands bassins (LSJ3, AV3 et TOT3);

Tableau 3.1a. Statistiques descriptives des séries de précipitations maximums printanières des bassins versants.

				Statisti	QUES DESCRIP	FIVES		
Bassin	n	Moy.	Min.	Max.	ÉcTyp.	Cv	Cs	Ck
LM3	43	34.7	19.4	71.8	10.7	0.31	1.79	5.76
PD3	43	33.8	19.2	69.0	9.8	0.29	1.79	5.94
AM3	43	34.0	19.3	69.9	10.0	0.30	1.81	5.96
CD3	- 43	34.3	17.4	60.3	8.9	0.26	0.75	3.32
CS3	43	34.9	20.1	62.1	9.5	0.27	0.66	2.95
LSJ3	43	31.0	19.2	47.4	7.0	0.23	0.67	2.65
AV3	43	31.0	19.3	47.8	7.0	0.23	0.69	2.66
TOT3	43	30.9	19.9	52.7	7.2	0.23	1.12	3.69

- Les bassins situés en amont (LM3, PD3 et AM3) ont des coefficients Cv, Cs et Ck supérieurs à ceux des bassins en aval (CD3, CS3, LSJ3, AV3 et TOT3). Cela est indicateur d'une certaine homogénéité de la distribution des précipitations extrêmes.
- le coefficient d'asymétrie (Cs) est positif et en général le coefficient d'aplatissement (Ck) est supérieur à 3.

Tableau 3.1b. Statistiques descriptives des séries de précipitations maximums printanières des stations météorologiques.

				STATISTIC	QUES DESCRIPT	IVES		
Station	n	Moy.	Min.	Max.	ÉcTyp.	Cv	Cs	Ck
BAGOT3	43	40.6	16.0	80.8	13.5	0.33	0.74	3.45
BON1	34	29.0	16.0	66.5	12.0	0.41	1.27	3.85
BON3	34	42.1	22.9	82.3	14.9	0.35	0.91	3.04
CDIA3	43	37.3	18.5	71.0	11.7	0.31	0.84	3.26
CDPS1	36	28.5	15.0	53.8	10.8	0.38	0.95	2.81
CDPS3	36	41.4	22.1	72.1	13.4	0.32	0.75	2.52
СНАР3	30 ⁻	42.3	21.2	75.7	13.9	0.33	0.67	2.61
CHIBA3	24	41.3	18.6	90.4	15.4	0.37	1.57	5.21
IM3	41	38.4	21.1	80.6	12.4	0.32	1.21	4.69
LBOU3	39	39.8	20.8	98.4	15.3	0.39	1.95	7.09
MPOST3	28	37.7	10.0	72.4	14.2	0.38	0.66	2.99
NITCH3	33	33.3	8.9	81.8	13.1	0.39	1.35	6.56
NORM3	41	36.9	12.9	82.0	12.4	0.34	1.15	5.38
PERIB3	29	34.8	15.2	70.0	11.0	0.32	1.03	4.46
ROBA1	38	25.4	11.2	83.2	12.2	0.48	3.17	13.93
ROBA3	38	37.2	15.0	87.4	13.1	0.35	1.68	6.88
ROBB1	51	27.6	11.0	101.0	15.0	0.54	2.70	12.20
ROBB3	51	35.8	14.0	101.0	14.3	0.40	2.07	9.41
ROBC1	80	27.0	11.0	101.0	14.2	0.53	2.85	13.07
ROBC3	80	36.5	14.0	101.0	14.0	0.38	1.95	8.92
SHIP3	41	43.1	22.1	93.5	14.8	0.34	1.25	4.52

3.2 Vérification des hypothèses de base

Les tableaux 3.2a et 3.2b donnent les résultats de l'application du test d'indépendance de Wald-Wolfowitz (section 2.3.1) et du test de stationnarité de Kendall (section 2.3.3) pour chacune des séries des précipitations maximums printanières des bassins versants et des stations météorologiques. La valeur de la statistique de chacun des tests et la probabilité au dépassement (p) correspondante y sont données. Les résultats significatifs au niveau de signification de 5% ont été ombragés.

On remarque l'hypothèse de stationnarité des séries IM3, SHIP3 et ROBB1 est rejetée à un niveau de signification de 5%. Elle est toutefois acceptée à un niveau de signification de 1%. La stationnarité de ces séries est donc douteuse mais on ne conclut pas à la présence d'une tendance dans la série.

On constate aussi que le test de Wald-Wolfowitz ne révèle, pour aucune des séries de précipitations maximums printanières, la présence d'une dépendance des données.

En 1975, les stations météorologiques CDIA et CDPS ont connu un changement d'instrumentation et furent déplacées. Le test d'homogénéité de Wilcoxon (section 2.3.2) appliqué aux séries de *précipitations maximums printanières* n'a pas révélé de changement dans la moyenne à cette date. Toutefois, il est reconnu que les séries de *précipitations annuelles* à ces deux stations ont subies un changement en 1975 (test d'homogénéité).

Tableau 3.2a. Résultats des tests d'indépendance et de stationnarité (bassins versants).

	Wald-We	olfowitz	Kend	iali
Bassin	Statistique U	р	Statistique K	p
LM3	0.621	0.535	1.476	0.140
PD3	0.801	0.423	1,612	0.107
AM3	0.724	0.469	1.486	0.137
CD3	0.931	0.352	0.084	0.933
CS3	0.662	0.508	0.722	0.470
LSJ3	1.069	0.285	0.230	0.818
AV3	1.098	0.272	0.209	0.834
тотз	1.452	0.146	0.167	0.867

Tableau 3.2b. Résultats des tests d'indépendance et de stationnarité (stations météo.).

	Wal	d-Wolfowitz		Kendall
Station	Statistique U	Prob. au dépassement	Statistique K	Prob. au dépassement
BAGOT3	1.189	0.234	1.245	0.213
BON1	0.134	0.893	0.845	0.398
BON3	0.427	0.670	1.245	0.213
CDIA3	1.370	0.171	0.042	0.967
CDPS1	0.381	0.703	0.926	0.354
CDPS3	0.207	0.836	0.463	0.643
CHAP3	1.632	0.103	1.538	0.124
CHIBA3	0.823	0.410	1.215	0.224
IM3	0.263	0.793	1.999	0.046
LBOU3	0.147	0.883	0.460	0.646
MPOST3	0.823	0.411	0.533	0.594
NITCH3	0.624	0.533	0.031	0.975
NORM3	0.350	0.727	0.674	0.500
PERIB3	1.068	0.286	0.507	0.613
ROBA1	0.235	0.814	0.251	0.801
ROBA3	0.608	0.543	0.453	0.651
ROBB1	0.134	0.894	2.193	0.028
ROBB3	0.280	0.780	1.243	0.214
ROBC1	0.050	0.961	1.462	0.144
ROBC3	0.371	0.711	0.000	1.000
SHIP3	0.945	0.345	2.246	0.025

Les séries ROBC1 et ROBC3 sont respectivement le résultat de la combinaison des séries ROBA1 et ROBB1 et des séries ROBA3 et ROBB3. L'application du test de Wilcoxon à la date de transition n'a pas permis de déceler une non-homogénéité dans les précipitations maximums printanières.

Les séries de précipitations maximums printanières, à l'exception des séries IM3, SHIP3 et ROBB1 sont donc tout à fait compatibles avec les hypothèses de base de l'analyse de fréquence. Toutefois, pour les séries IM3, SHIP3 et ROBB1 l'hypothèse de stationnarité est rejetée au niveau de signification de 5% et acceptée au niveau de 1%. Le résultat de ce test est significatif mais non très significatif et il doit donc être interprété avec prudence. En raison de la non-homogénéité des séries de *précipitations annuelles* des stations CDIA et

~CDPS, les résultats des ajustements des séries CDIA3, CDPS1 et CDPS3 sont à interpréter avec précaution.

3.3 Comparaison des ajustements

Les tableaux 3.3a et 3.3b donnent respectivement, pour chaque bassin et chaque station, les valeurs du critère d'Akaïke (CIA) obtenues à partir de l'ajustement des 15 distributions considérées. La valeur moyenne du CIA pour l'ensemble des bassins versants (Tab. 3.3a) et les stations météorologiques (Tab. 3.3b) pour chaque distribution y est aussi présentée. Les distributions retenues en raison d'une valeur peu élevée du CIA pour un examen comparatif des ajustements sont identifiées dans ces tableaux en ombragé.

Les tableaux 3.4a et 3.4b donnent la valeur du critère ÉMVA obtenue pour chacun des ajustements. Ce critère donne, presque systématiquement, des valeurs inférieures pour les lois à 3 paramètres. Cela est tout à fait normal puisque ces distributions sont plus souples et l'adéquation entre la courbe ajustée et les observations est meilleure. Ce critère favorise donc les lois à 3 paramètres et ne tient pas compte du principe de parcimonie.

Les lois ajustées ont été rangées en ordre croissant de la valeur du CIA et de la valeur d'ÉMVA. Deux types de classement ont été considérés: un classement global des 15 lois (classement I) et un classement séparé pour les lois à 2 et à 3 paramètres (classement II). Les tableaux 3.5a et 3.5b donnent les rangs pour le CIA et les tableaux 3.6a et 3.6b contiennent ceux pour l'ÉMVA. Les valeurs moyennes des rangs pour chacune des lois et pour les deux types de classement sont également données dans ces tableaux.

Mentionnons que le (CIA) et l'ÉMVA ne peuvent être calculés, en général, que pour une seule des trois lois de la famille des distributions Halphen. En effet, pour un échantillon donné, les estimateurs du maximum de vraisemblance existent généralement que pour l'une des trois lois (Perreault et Bobée, 1996a).

L'estimation des paramètres des distributions à 3 paramètres passe, dans la plupart des cas, par la résolution d'un système complexe de 3 équations à 3 inconnues nécessitant une méthode itérative. Ces méthodes méthode ne convergent pas toujours ou produisent des erreurs arithmétiques. C'est le cas des lois d'Halphen pour certaines des séries étudiées. De plus, le CIA par définition (éq. 2.19) ne peut pas toujours être calculé dans les cas où la méthode du maximum de vraisemblance n'est pas utilisée (P3 et LP3).

Tableau 3.3a. Valeurs du critère d'Akaïke (CIA) pour les lois ajustées aux précipitations maximums printanières des bassins versants

					Bass	SINS	-		-	-
	Loi	LM3	PD3	AM3	CD3	CS3	LSJ3	AV3	тотз	Moy
2 par.	EXP	326.76	322.56	323.40	335.29	323.88	304.33	303.19	298.28	317.21
	GU	310 29	303 63	304.93	310.01	314.83	288.37	288.12	285 29	300.68
	NO	328.98	321.55	323.39	313.50	319.04	292.60	292.87	295.21	310.89
	LN	313.63	307.16	308.56	309.55	314.70	288.53	288.50	287.51	302.27
	WE	331.17	324.85	326.45 [~]	315.92	320.55	295.69	296.00	299.82	313.81
	GA	317.70	310.98	312.51	309.95	315.35	289.31	289 39	289.46	304.33
	GI	310 73	304 43	305.72	310.06	314.62	268 27	288.11	286.12	301.01
3 par.	LN3	311.18	305.03	306.18	311.54	316.24	290.20	289.97	286.92	302.16
	GEV	310 04	303.88	304.96	311.45	316.75	290.11	289.97	286.98	301.77
	GG	311.74	305.07	306.34	311.55	318.65	290.27	290.10	287.04	302.60
	- P3	313.17	306.95	308.21	311.59	315.00	290.06	289.72	286.91	302.70
	LP3	314.54	310.09	313.17	311.54	316.58	290.26	290.09	287.01	304.16
	HA	-	-	-	311.54	316.44	290.26	290.13	-	•
	HB	-	-	-	• •	-	-		-	-
	HB-1	310.06	-	304.94	-	. - *	- ,	-	, -	-

Tableau 3.3b. Valeurs du critère d'Akaïke (CIA) pour les lois ajustées aux précipitations maximums printanières des stations météorologiques

				•	STA	TIONS			
•	Lor	BAGOT3	BON1	BON3	CDIA3	CDPS1	CDPS3	СНАРЗ	CHIBA3
2 PAR.	EXP	367.59	248 32	274.90	344.12	265.59	291.26	248.91	203.99
	GU	345.49	257.44	276.87	330.47	268.88	286.47	243.04	195.41
	NO	348.58	268.49	283.11	336.32	276.77	291.80	246.03	202.32
	LN	345.43	256.92	276.70	330.38	268.61	286.49	242.84	195.57
	WE	348.61	265.59	282.29	336.85	274.99	291.67	245.82	201.69
	GA	344.89	259.63	277.83	331.22	270.17	287.37	243.05	196 77
	GI	347.58	255.05	276.35	330.55	267.99	286.33	243 36	195.44
		***************************************				-			
3 par.	LN3	346.87	252.97	277.81	332.24	269.37	288.07	244.82	197.43
	GEV	346.84	254.94	278.59	332.42	270.19	288.40	244.90	197.23
	GG	346.87	259.45	278.35	332.32	269.98	288.30	244.81	197.41
	P3	346.87	257.74	278.80	338.29	271.05	287.28	244,43	197.80
	LP3	346:88	256.04	278.36	332.32	270.00	288.29	244.81	197,39
	HA	346.88	-	278.25	339.19	269.94	288.18	244.70	197.40
	HB		-	-	-		-	-	
	HB-1		255.84	-	-	269.94	-	- .	-

Tableau 3.3b (suite) Valeurs du critère d'Akaïke (CIA) pour les lois ajustées aux précipitations maximums printanières des stations météorologiques

	-				STAT	ions			
	Loi	IM3	LBOU3	MPOST3	NITCH3	NORM3	PERIB3	ROBA1	ROBA3
2 par.	EXP	321.91	313.72	247.96	282.84	348.56	236.70	394.51	422.39
	GU	316.92	310.04	230.00	262.37	321/18	221.25	400.50	402.31
•	NO	325.60	326.49	231.03	266.31	325.86	224.53	423.85	419.05
	LN	317.13	310.70	231.59	263.85	321.28	221.09	392.25	400.96
	WE	326.42	324 73	230.37	265.36	326.42	225.28	410.17	416.14
	GA	318.74	314.34	229.67	262.28	320.93	221.21	398.11	404.15
	GI	316.55	308.68	235.84	268.24	323.78	222.00	388.07	400.59
3 par.	LN3	318.24	310.04	231.20	263.75	322.58	222.97	389.36	402.64
	GEV	318.71	310.08	231,08	263.95	322.62	222.98	389.63	402.28
	GG	318.54	310.05	231.43	264.27	322.81	223.00	391.25	402.46
	P3	317,33	310.19	231.27	264.09	322.93	223.09	-	-
	LP3	318.51	310.01	231.92	266.86	323.05	223.01	389.37	402.56
	HA	318.53	-	-	-	322.92	223.07	_	402.56
	НВ	-	.	-	-	-	-	-	-
	HB-1	-		-	_		-	389.52	-

				STATIONS			
	Loi	ROBB1	ROBB3	ROBC1	ROBC3	SHIP3	Моч
2 PAR.	EXP	283.46	317.71	609.71	664.03	337.86	329.78
	GU	273.65	296 49	615.13	627,41	330.08	317.82
	NO	300.69	306.32	654.68	651.75	340.08	328.86
	LN	273.86	296.77	599.61	626.59	330.37	317.49
	WE	293.43	306.44	634.14	648.91	339.98	327.78
	GA	280.35	298.16	612.03	630.56	332.31	319.60
	GI	270.23	297.35	593.45	627.23	329.60	316.98
3 par.	LN3	272.28	298.76	595.37	628.53	331.39	317.72
•	GEV	270 68	298.44	593.89	627.90	331.65	317.64
	GG	272.84	298.72	597.59	630.10	331.58	318.38
	. P3	<u>-</u>	299.55	* -	630.32	331.02	-
	LP3	- -	298.75	596.09	628.46	331.55	<u>.</u>
	HA	-	299.04	- _	628.89	331.61	-
	HB	-	•	-	-	-	•
· .	HB-1	270.67	-	594.02	- -	-	-

Tableau 3.4a Valeurs d'écart moyen en valeur absolue (ÉMVA) pour les lois ajustées aux précipitations maximums printanières des bassins versants.

				-	Bas	SINS				
	Loi	LM3	PD3	АМ3	CD3	CS3	LSJ3	AV3	тот3	Moy
2 PAR.	EXP	5.72	6.51	6.13	12.95	9.56	7.57	7.15	5.68	7.66
	GU	4.86	4.12	4.42	1.20	1.40	1.21	1.14	1.36	2.46
	NO	5.55	5.44	5.48	2.23	2.10	1.49	1.66	2.61	3.32
	LN	4.65	4.50	4.53	0.93	1.23	0.97	1.05	1.96	2.48
	WE	5.14	5.09	5.12	2.05	2.17	1.26	1.47	2.29	3.07
	GA	5.04	4.92	4.96	1.55	1.69	1.18	1.37	2.32	2.88
	GI	4.35	4.12	4.18	0.85	1.32	1.17	1.15	1.70	2.35
3 par.	LN3	3.26	3.39	3.37	1.10	1.55	1.14	1.13	0.83	1.97
	GEV	2.88	2.82	2.78	1.12	1.19	1.13	1.15	0.89	1.75
	GG	2.83	2.96	2.94.	1.10	1.04	1.16	1.17	0.92	1.77
	P3	3.87	3.98	3.99	1.20	1.69	1.04	1.03	1.10	2.24
	LP3	2.32	2.48	2.42	1.13	1.21	1.13	1.14	0.99	1.60
	HA	-	-	- .	1.12	1.21	1.12	1.15	-	-
	HB	<u>-</u>		-	-	-	-	-	-	-
	HB-1	2.92	-	2.72				·	-	

Tableau 3.4b Valeurs d'écart moyen en valeur absolue (ÉMVA) pour les lois ajustées aux précipitations maximums printanières des stations météorologiques.

					Stat	IONS	-		
	Loi	BAGOT3	BON1	BON3	CDIA3	CDPS1	CDPS3	СНАРЗ	СНІВАЗ
2 par.	EXP	17.61	2.22	7.45	10.79	4.96	9.59	11.90	9.79
	GU	1.44	4.16	1.44	0.86	2.10	2.78	2.23	3.18
	NO	2.71	4.15	4.39	2.99	3.25	3.18	3.26	5.08
	LN	0.75	2.97	1.42	1.19	2.12	2.63	1.86	3.33
	WE	2.20	3.24	3.72	2.46	2.67	2.60	2.96	4.93
	GA	1.43	3.79	3.02	2.26	2.24	2.47	1.91	4.08
	GI	3.04	2.33	1.45	1.02	2.42	2.95	3.03	2.79
3 par.	LN3	1.28	4.58	2.33	0.86	2.59	2.82	1.72	3.08
	GEV	1.27	6.14	1.52	1.18	2.62	2.94	1.55	2.89
	GG	1.27	2.01	1.41	1.06	2.50	2.86	1.51	2.92
	P3 .	1.29	1.86	1.59	- 3.15	2.01	2.52	1.70	3.39
	LP3	1.27	1.75	1.20	1.18	2.29	2.80	1.55	2.90
-	HA	1.30	<u>-</u> -	1.17	1.15	2.27	2.73	1.43	2.91
	HB	-	-	-	-	-	-	-	-
	HB-1	-	2.65	- ,	-	2.59	-		-

Tableau 3.4b (suite) Valeurs d'écart moyen en valeur absolue (ÉMVA) pour les lois ajustées aux précipitations maximums print. des stations météo.

					Stat	IONS			
	Loi	IM3	LBOU3	MPOST3	NITCH3	NORM3	PERIB3	ROBA1	ROBA3
2 par.	EXP	8.40	5.88	14.20	19.91	18.96	11.69	5.87	12.78
	GU	2.69	6.40	1.53	6.43	2.82	2.30	5.90	4.15
	NO	5.00	7.88	3.40	6.72	3.88	1.43	7.64	5.81
	LN	3.06	6.09	1.47	6.33	3.06	1.67	4.87	4.07
	WE	4.70	6.99	2.96	7.05	4.13	2.05	7.04	5.89
	GA	3.96	6.80	1.83	6.42	3.16	1.14	5.77	4.52
	GI	2.28	5.33	3.72	7.77	3.07	2.31	4.22	3.63
3 par.	LN3	2.03	4.36	2.41	6.26	3.04	1.19	4.33	3.90
	GEV	2.13	3.92	2.39	6.37	3.09	1.35	3.48	3.70
	GG	2.19	4.08	2.41	6.43	3.11	1.25	4.48	3.78
	P3	2.24	5.05	2.50	6.39	3.17	1.27	5.29	4.23
	LP3	2.43	4.11	3.01	6.69	3.21	1.25	3.98	3.69
	HA	2.42	-	· -	-	3.17	1.28	-	3.69
	нв	-	-	-	-	•	-	-	-
	HB-1	-		-	-	-	· •	3.72	.

	_			STATIONS	<u></u>		
	Loi	ROBB1	ROBB3	ROBC1	ROBC3	SHIP3	Моч
2 PAR.	EXP	5.98	13.85	6.81	13.07	9.64	10.54
	$\mathbf{G}\mathbf{U}$	6.69	3.20	6.89	5.03	2.48	3.56
	NO	7.82	5.68	8.55	6.63	4.32	4,94
	LN	6.38	3.54	5.88	4.84	2.43	3.33
	WE	7.58	5.06	8.06	6.55	3.73	4.60
	GA	6.94	4.59	6.77	5.42	3.50	3.91
	GI	5.76	2.88	5.23	4.50	1.81	3.41
3 par.	LN3	5.20	3.67	5.35	4.80	1.61	3.21
	GEV	4.44	3.23	4.63	4.64	1.66	3.10
٠.	GG.	4.76	3.42	5.38	4.32	1.66	2.99
	P3	6.46	4.04	6.20	5.13	1.84	- 3.40
	LP3	4.05	3.26	4.77	4.69	1.82	2.95
-	HA		3.32	<u>-</u>	4.77	1.83	_ -
	нв	<u>-</u> .	- ·	-	- -	.	-
	HB-1	4.04	-	4.65	. -	. -	-

- Tableau 3.5a Rangs correspondant aux critères d'Akaïke (CIA) dans le cas des bassins versants (classements I et II).

•					Ва	SSINS				
	Loi	LM3	PD3	AM3	CD3	CS3	LSJ3	AV3	ТОТ3	Moy
I	(Classen	nent globa	al des 15	lois de pro	obabilité)					
2 PARAM.	EXP	11	11	12	13	13	13	13	11	12.1
	GU	3	. 1	1	3	.3	2	2	1	2.0
	NO	12	10	11	11	11	11	11	10	10.9
	LN	8	7,	8	1	2	3	3	8	5.0
٠.	WE	13	12	13	12	12	12	12	12	12.3
	GA	10	9	9	2	5	4	4	9	6.5
	GI	4	3	4	4	1	1	1	2	2.5
3 param.	LN3	5	4	5	6	6	. 7	6	4	5.4
	GEV	1	2	3	5	9	6	6	. 5	4.6
	GG	6	. 5	6	.9	10	10.	9	7	7.8
	P3	.7	6	7	10	4	5	5	3	5.9
	LP3	. 9	8	10	6	8	8	8	6	7.9
	HA	• -	-	<u>-</u> ·	6	7	8	10	-	-
	HB	-	•	•	-		-		- ·	-
	HB-1	2	-	2	-	•	-	•	-	-
п	-		_	_			paramètre			11
2 PARAM.	EXP	5	6	6	7	7	7	7	6	6.4
	GU	1	1	1	3	3	2	2	1	1.8
	NO	6	5	5	5	5	5	5	5	5.1
	LN	3	3	3	1	2	3	3	3	2.6
	WE	7	7 -	7	6	6	6	6	7	6.5
	GA	4 (4	4	2	4	4	4	4	3.8
	GI	2	. 2	2	4	1	, 1	1	2	1.9
3 param.		3	2	3	2	2	3	2	2	2.4
	GEV	1	1	2	1	5	2	2	3	2.1
	GG	4	3	4	5	6	6	5	5	4.8
	P3	_ 5	4	5 ,	6	1	1	. 1	1	3.0
	LP3	6	5	6	2	4	4 -	4	4	4.4
	HA	.=	-	-	2	3	4	6	-	-
	нв	- '	-	-		-	-	-	-	
	HB-1	. 2	-	1.	-	•	-	-	•	-

Tableau 3.5b Rangs correspondant aux critères d'Akaïke (CIA) dans le cas des stations météorologiques (classements I et II).

					STAT	TIONS			
	Loi	BAGOT3	BON1	BON3	CDIA3	CDPS1	CDPS3	СНАР3	СНІВАЗ
I	(Classen	nent global de	es 15 lois e	de probabil	lité)				
2 PARAM.	EXP	13	1	1	13	1	11	13	13
	GU	3	8	4	2	4	2	2	1
	NO	11	13	13	9.	14	13	12	12
	LN	2	7	3	1	3	3	1	3
	WE	12	12	12	10	13	12	11	11
	GA	. 1	11	6	4	10	5 _	.3	4
	GI	10	4	2	3	2	. 1	4	2
3 param.	LN3	5	2	5	5	5	6	9	9
	GEV	4	3	10	8	. 11	10	10	5
	GG	5	10	8	6	8	9	7	8
	P3	5.	9	11	11	12	4	5	10
	LP3	8	6	9	6	9	8	7 .	6
	HA	8	•	7	12	6	7	6	7
	HB	•	• .	-	-	-		-	-
	HB-1	-	5		- '	6	-		
п	(Classer	ment distingu	ant les loi	s de probal	bilité à 2 e	t 3 paramèt	res)		
2 PARAM.	EXP	7	1	1	7	1	5	7	7
	GU	3	4	4	2	4	2	2	1
	NO	5	7	7	5	7	7	6	6.
	LN	2	3	3	1	3	3	1	3
	WE	6	6	6	6	6	6	5	5
	GA	, 1	5	5	4	5	4	3	. 4
	GI	4	2	2	3	2	1	4	2
3 PARAM.	LN3	2	. 1	1	1	1	2	5	5
	GEV	1	2	5	4	6	6	6	1
	GG	2	6	3	2	4	5	. 3	4
-	P3	2	5	6	5	7	1	1	6
	LP3	5	4	- 4	2	5	4	3	2
-	HÀ	5	-	2	6	2	3	2	3
	HB	-	-	-	=	-		. •	
	HB-1	-	3	-	-	2	· . •	-	•

Tableau 3.5b (suite) Rangs correspondant aux critères d'Akaïke (CIA) dans le cas des stations météorologiques (classements I et II).

					STAT	IONS			
	Loi	IM3	LBOU3	MPOST3	NITCH3	NORM3	PERIB3	ROBA1	ROBA3
. I	(Classem	ent globa	l des 15 lois	de probabil	lité)				
2 PARAM.	EXP	11	9	12	12	13	13	9	13
	$\mathbf{G}\mathbf{U}$	2	3	2	2	2	3	6	1
	NO	12	12	4	9	11	11	11	11
	LN	3	8	9	4	3	- 1	7	2
	WE	13	11	3	8	12	12	10	12
	GA	. 10	10	1	1	1	2	8	4
	GI	1	1	11	11	10	4	1	3
3 PARAM.	LN3	5	3	6	3.	4	5	4	8
	GEV	9	_. - 6	5	5	5	6	3	5
	GG	8	5	8	7	6	7	5	6
	P3	4	7	7	6	8	10	-	10
	LP3	6	2	10	10	9	8	-	7
	HA	7	-	-	-	7	9	-	9
	нв	-	•	-	-	-	-	-	-
	HB-1	-	-	•	-	-	. -	2	-
II	(Classem	ent distir	nguant les lo	ois de probal	oilité à 2 et	3 paramèt	res)		
2 PARAM.	EXP	11	9	12	12	13	13	. 9	13
	GU	2 -	3	2	2	2	3	6	. 1
	NO	12	- 12	4	9	11	11	11	11
	LN	3	. 8	9	4	3	1	7	2
	WE	13	11	3	8	12	12	10	12
* *	GA	10	1,0	1	1	1	2	8	4
•	GI	1	1	, 11	11	10	4	1	3
3 PARAM.	LN3	5	3	6	3	4	5	4	8
	GEV	9	6	5	5	5	6	3	5
	GG	8	. 5	8	7	6	7	5	6
•	P3	4	7	7	6	8	10	-	10
	LP3	6	2	10	10	9	8	-	7
	HA	7	-	-	-	7	9 .	-	9
	HB	-		- '	-		-	, -	-
	HB-1	-	-	. •	-	-	-	2	-

Tableau 3.5b (suite) Rangs correspondant aux critères d'Akaïke (CIA) dans le cas des stations météorologiques (classements I et II).

				STATIONS			-
	Loi	ROBB1	ROBB3	ROBC1	ROBC3	SHIP3	Moy
I	(Classem	ent global des	15 lois de pro	babilité)			
2 PARAM.	EXP	8	12	8	13	11	10.0
	GU	10	4	10	3	2	3.6
	NO	12	11	12	12	13	11.3
	LN	7	2	7	1	3	3.8
	WE	11	10	11	11	12	10.9
	GA	9	9	. 9	10	10	6.1
	GI	1	1	1	2	1	3.6
3 PARAM.	LN3	2	8	4	6	5	5.2
•	GEV	5	3	2	4	9	6.1
	GG	6	5	6	8	7	6.9
	P3	-	-	•	9	4	-
	LP3	· 3	6	5	5	6	_
	HA	-	- 6	-	7	8	-
	нв	-	-	-	-	•	_
	HB-1	4	-	.3		. -	- .
П					t 3 paramètres)		H
2 PARAM.	EXP	3	7	3	7	5	5.2
	GU	5	3	5	3	2	2.7
æ	NO	7	6	7	6	7	6.0
	LN	2	2	2	1	3	2.5
	WE	6	5	6	5	6	5.6
	GA	4	4	4	4	4	3.5
	GI	1	1	1	2	. 1	2.5
3 PARAM.	LN3	1	5	3	3	2	2.3
	GEV	4	1	1	1	6	3.0
	GG	5	2 -	5	5	4	3.7
	Р3	•	- ,	-	6	•1,	-
	LP3	2	3	4	2	3	-
•	HA	-	3	• .	4	5 _	-
	HB	•	-	-	=	-	-
	HB-1	3	-	2	• •	-	-

Tableau 3.6a Rangs correspondant aux critères d'ÉMVA dans le cas des bassins versants (classements I et II).

				····	BA	SSINS	<u>. </u>	·		
	Loi	LM3	PD3	AM3	CD3	CS3	LSJ3	AV3	тот3	Moy
I	(Classen	nent globa	al des 15 l	lois de pro	obabilité)					
2 PARAM.	EXP	13	12	13	13	13	13	13	12	12.8
	GU	9	6	8	8	7	10	4	6	7.3
	NO	12	11	12	12	11	12	12	11	11.6
	LN	8	8	9	2	5	1	2	8	5.4
	WE	11	10	11	11	12	11	11	9	10.8
	GA	10	9	10	10	9	9	10	10	9.6
	GI	7	6	7	1	6	8	6	7	6.0
3 param.	LN3	5	4	- 5	3	8	6	3	1	4.4
	GEV	3	2	3	5	2	4	6	2 .	3.4
	GG	2	3	4	3	1	7	. 9 .	3	4.0
	P3	6	5	6	8	9	2	1	5	5.3
	LP3	1 -	1	1	7	3	4	4	4	3.1
	HA		-	-	5	3	3	6	-	-
	HB	. -		-	-	-	-	-	-	-
	HB-1	4	-	2	-	-	-	-	•	-
11	(Classer	nent disti					paramètre			
2 PARAM.	EXP	7	7	. 7	7	7	7	7	7	7.0
	GU	3	1	2	3	3	4	2	1	2.4
	NO	6	6	. 6.	6	5	6	6	6	5.9
	LN	2	3	3	2	- 1	1	1	3	2.0
	WE	5	5	5	5	6	5	5	4	5.0
	GA	4	4	4	4	. 4	3	4	5	4.0
	GI	1	1	1	-1 -	2	2	3	2	1.6
3 PARAM.	LN3	5	4	5	. 1	5	5	2	1	3.5
	GEV	3	2	3	3	2	3	4	2	2.8
	$\mathbf{G}\mathbf{G}$	2	3	4	1	1	6	6 -	3	3.3
	P3	6	5	6	6	6	1	1	5	4.5
	LP3	1	1	1	5	3	3	3	4	2.6
	HA	-	-	-	3	3	2	4		-
	нв	-	• ,		-	-	-	•	•	-
	HB-1	4	-	2	-	-	-	_	-	-

Tableau 3.6b Rangs correspondant aux critères d'ÉMVA dans le cas des stations météorologiques (classements I et II).

-	*	·		r	STAT	TIONS	f Multi-		
	Loi	BAGOT3	BON1	BON3	CDIA3	CDPS1	CDPS3	СНАРЗ	СНІВАЗ
İ	(Classen	nent global de	es 15 lois o	de probabil	lité)			_	-
2 PARAM.	EXP	13	4	13	13	14	13	13	13
	GU	9	11	5	1	2	6	9	7
	NO	11	10	12	11	13	12	12	12
	LN	1	7	4	8	3	4	7	- 8
•	WE	10	8	11	10	12	3	10	11
	GA	8	9	10	9	4	1	8	10
	GI	12	5	6	3	7	. 11	11	1
3 param.	LN3	<u>,</u> 5	12	. 9	1	9	8	6	6
	GEV	2	13	7	6	11	10	3	2
	GG	2	3	3	4	8	9	2	5
	P3	6	2	8	12	1	2	5	9
	LP3	2	1	2	6	6	7	3	3
	HA	7	-	1	5	5	5	1	4
	HB	-	-	-	-	-	-	•	-
	HB-1	-	6	• -	-	9	•	,•	-
П	(Classer	nent distingu	ant les loi	s de probal	bilité à 2 et	t 3 paramèt	res)		
2 PARAM.	EXP	7	. 1	, • 7	7	7	7	7	7
	GU	3	· 7	2	1	1	4	3	2
	NO	5	6	6	6	6	6	6	6
	LN	1	3	1	3	2	3	1 -	3
	WE	4	4	5	5	5	2	4	5
	GA	2	5	4	4	3.	1	2	4
	GI	6	2	3	2	4	5	5	1
3 PARAM.	LN3	4	5	6	1.	5	4	6	5
	GEV	1	6	4	4	7	. 6	3	1
	GG	1	3	3	2	4	5	2	4
	P3	5	2	5	6	· 1	1	5	6
	LP3	1	1	2	4	3	3	3	2
	HA	6	-	1	3	. 2	2	1	3
	HB	-	-	-	-	•	-	-	-
	HB-1	•	4	-	-	5	-	-	

Tableau 3.6b (suite) Rangs correspondant aux critères d'ÉMVA dans le cas des stations météorologiques (classements I et II).

		r		•	STAT	IONS			
	Loi	ІМ3	LBOU3	MPOST3	NITCH3	NORM3	PERIB3	ROBA1	ROBA3
I	(Classeme	ent globa	l des 15 lois	de probabi	lité)				-
2 PARAM.	EXP	13	7	12	12	13	13	7	13
	GU	8	9	2	6	1	11	10	2
	NO	12	12	10	9	11	8	13	12
	LN	9	8	1	2	3	9	8	7
	WE	11	11	8	10	12	10	12	11
	GA	10	10	3	5	7	1	11	10
	GI	5	6	11	11	4	12	6	1
3 PARAM.	LN3	1	4	5	1	2	2	5	8
	GEV	2	1	4	3	5	7	· 3	3
	GG	3	2	5	6	6	3	4	6
	P3	4	. 5	7	4	8	5	9	9
	LP3	7	3	9	8	. 10	3	2	4
	HA	6	-	-	-	8	6	-	5
	HB	-	-		-	-	-	-	- .
	HB-1	-	-		•	-	-	- 1	-
n	(Classem	ent distir	nguant les lo	ois de proba	bilité à 2 et	3 paramèt	res)		
2 PARAM.	EXP	7	2	7	7	7	7	2	7
	$\mathbf{G}\mathbf{U}$	2	4	2	3	1	5	4	2
•	NO	6	7	5	4	_. 5	-2	7	6
	LN	3	3	1	1	2	3	3	3
	WE	5	6	4	5	6	4	6	5
	GA	4	5	3	2	4	1	5	4
	GI	1.	1	6	6	3	6	1.	1
3 PARAM.	LN3	. 1	4	2	1	1	1	5	5
	GEV	2	1.	1	2	2	6	3	-1
	GG	3	2	2	4	3	2	4	4
	P3	4	5	4	3	4	4	6	6
	LP3	6	3	5	5	6	2	2	2 ·
	HA	5			-	4 .	5	-	3
	HB	-	. -	-	-	-		=	-
	HB-1	-	•	•	-	-	•	1	-

Tableau 3.6b (suite) Rangs correspondant aux critères d'ÉMVA dans le cas des stations météorologiques (classements I et II).

				STATIONS			
	Loi	ROBB1	ROBB3	ROBC1	ROBC3	SHIP3	Moy
I	(Classem	ent global des	15 lois de pro	babilité)			
2 PARAM.	EXP	10	13	10	13	13	11.7
	GU	11	8	. 11	8	9	7.0
	NO	13	11	13	12	12	11.5
	LN	7	7	7	7	8	6.0
	WE	12	12	12	11	11	10.4
•	GA	9	10	9	10	10	7.8
	GI	4	1	4	2	4	6.0
3 PARAM.	LN3	5	6	5	6	1	5.1
	GEV	1.	4	1	3	2	4.4
	GG	6	5	6	1 1	2	4.3
	P3	8	9	. 8	9	7	6.5
	LP3	3	. 2	3	4	5	4.4
	HA	-	2	-	5	6	-
	нв	-	-	-	-	-	-
	HB-1	2	-	2	. -	-	-
П	(Classen		nt les lois de p	robabilité à 2 e	t 3 paramètres)		
2 PARAM.	EXP	4	7	4	7	7	6.0
	GU	5	3	5	3	3	3.1
	NO	7	5	7	6	6	5.7
	LN	2	2	2	2	2	2.2
	WE	6	6	6	5	5	4.9
	GA	3	4	3	4	4	3.4
	GI	1	1	1	1. 1.	1	2.8
				·			Programme
3 PARAM.	LN3	4	5	4	5	1	3.6
	GEV	1	3	1 .	2	2	2.8
	GG	5	4	5	1	2	3.1
	P3	6	6	6	6	6	4.6
-	LP3	3	1	3	3 ,	4 -	3.0
	HA	-	1	-	4	5	-
	нв		-		- .	•	-
	HB-1	2	-	2	- -	-	-

Les principales observations tirées de l'examen des tableaux 3.3a à 3.6b sont les suivantes:

- En général, les lois exponentielle (sauf BON1, BON3 et CDPS1), normale et Weibull admettent de grandes valeurs du CIA pour l'ensemble des séries et ont été rejetées comme modèle pour représenter les précipitations maximums printanières.
- Les lois log-normale à 2 paramètres, gamma inverse et Gumbel donnent des valeurs du CIA faibles. La loi log-normale à 2 paramètres conduit à des valeurs du CIA moins performantes dans le cas des bassins versants.
- La loi gamma donne des résultats intermédiaires entre les lois inadéquates et celles adéquates.
- Les lois à trois paramètres donnent des valeurs du CIA et d'ÉMVA assez semblables. Il n'est pas possible de discriminer d'une manière globale une loi plutôt qu'une autre.
- Les lois à trois paramètres conduisent à des valeurs du CIA supérieures à celles des lois à deux paramètres. Il semble que la plus grande flexibilité des lois à trois paramètres ne vaut pas l'augmentation de la complexité du modèle (par rapport aux lois à deux paramètres).
- Les lois à trois paramètres conduisent à des valeurs d'ÉMVA inférieures à celles des lois à deux paramètres.

3.4 Distributions choisies

Comme il a été mentionné à la section 2.5.3, pour chaque bassin, les ajustements des lois retenues à la section 3.3 (cf. tableaux 3.3a et 3.3b) ont été comparés en examinant l'adéquation des courbes aux données sur le même papier de probabilité normal. L'examen des représentations graphiques individuelles avec intervalle de confiance a aussi été effectué. Les résultats des ajustements des quatre ou cinq distributions retenues pour ces séries sont souvent très proches. Afin de discriminer entre ces différentes distributions, une attention particulière a été portée au respect du principe de parcimonie et de la cohérence avec la précipitation maximale probable et le maximum historique.

Les distributions choisies pour les précipitations maximums printanières sont données au tableaux 3.7a et 3.7b pour les différentes séries de l'étude. Quelques remarques expliquant les choix y sont également données. Nous présentons à l'Annexe B les résultats de l'ajustement issus des lois sélectionnées pour chacune des séries.

Tableau 3.7a Lois choisies pour représenter les précipitations maximums printanières sur les bassins versants

Bassin	Loi choisie	Commentaires
LM3 PD3 AM3	GEV	Même si le CIA favorise les lois à 2 paramètres, la loi GEV obtient une des valeurs du CIA la plus faible pour les bassins situés en amont. De plus, l'écart entre les valeurs d'ÉMVA des lois à 2 et 3 paramètres est assez important. Également, les quantiles de grande période de retour des lois à 2 paramètres sont plus faibles que ceux de la loi GEV.
CD3 CS3 LSJ3 AV3 TOT3	GI	En général, les lois gamma inverse, Gumbel et log-normale conduisent aux plus faibles valeurs du CIA et à des valeurs du même ordre de grandeur pour les bassins situés en aval. Sauf pour le bassin TOT3, l'ÉMVA est comparable pour les meilleures distributions à 2 paramètres et celles à 3 paramètres. Il est donc préférable de choisir une distribution à 2 paramètres dans ce cas. Statistiquement, les lois Gumbel et lognormale s'ajustent bien aux échantillons mais leurs quantiles de grande période de retour sont plus faibles que ceux de la loi GI (sauf pour le bassin TOT3). Bien que l'ÉMVA est plus petit pour la log-normale, la gamma inverse a été choisie. La loi gamma inverse a quand même été choisie pour le bassin TOT3 afin de tenir compte de l'aspect régionalisation.

Tableau 3.7b Lois choisies pour représenter les précipitations maximums printanières sur les stations météorologiques.

Station	Loi choisie	Commentaires
BAGOT3	LN	Les lois Gumbel, log-normale et Gamma donnent presque les mêmes résultats (CIA). La loi Gamma a été rejetée car elle produit des quantiles de grande période de retour faibles. La loi log-normale a un ÉMVA plus faible que celui de la loi Gumbel et a été retenue pour cette raison
BON1	GI	La loi exponentielle conduit à la valeur du CIA la plus faible mais produit un quantile décamillénaire supérieur à la PMP. Les lois à 3 paramètres donnent également un quantile décamillénaire trop élevé. Des lois à 2 paramètres, la gamma inverse donne l'ÉMVA le plus faible.
BON3	GI	La loi exponentielle conduit à la valeur du CIA la plus faible mais produit un quantile décamillénaire près de la PMP. Les lois log-normale, gamma inverse et Gumbel donnent des résultats similaires (CIA). Toutefois, les quantiles de grande période de retour des lois log-normale et Gumbel sont inférieurs à ceux de la loi gamma inverse.
CDIA3	GI	Cette série n'est peut-être pas homogène. La loi gamma inverse a été choisie car elle donne les quantiles les plus élevés et il est connu que les précipitations mesurées à CDIA3 sont sous-estimées.
CDPS1 et	GI	Ces séries ne sont peut-être pas homogènes. La loi GI a été choisie à partir du CIA, de considérations régionales et pour maintenir la cohérence temporelle entre les durées 1 jour et 3 jours.
СНАРЗ	GU	Malgré le fait que les lois log-normale et gamma donnent de meilleurs résultats en terme d'ÉMVA et du CIA, la loi Gumbel a été choisie car elle donne le quantile décamillénaire le moins inférieur au maximum historique de l'ensemble des stations.

Tableau-3.7b (suite) Lois choisies pour représenter les précipitations maximums printanières sur les stations météorologiques.

Station	Loi choisie	Commentaires
СНІВАЗ	GI	La loi gamma inverse conduit aux plus faibles CIA et ÉMVA. La loi Gumbel donne également de bons résultats.
IM3	GI	Il y a peut-être une tendance dans cette série. La loi GI conduit à la plus faible valeur du CIA et à la plus faible valeur de l'ÉMVA des lois à 2 paramètres.
LBOU3	LN3	La log-normale à 3 paramètres donne un des plus faibles CIA et s'approche bien des données extrêmes sans conduire à un quantile décamillénaire trop près de la PMP.
MPOST3	GU	La gamma a une meilleure adéquation mais elle produit des quantiles de grande période de retour faibles par rapport à ceux des stations voisines. La loi Gumbel a été choisie car elle conduit a des quantiles plus élevés tout en ayant une faible valeur du CIA.
NITCH3	GU	Les lois Gumbel et gamma conduisent aux plus faibles valeurs du CIA et d'ÉMVA (lois à 2 paramètres). La loi gamma constitue un bon choix mais la loi Gumbel a été préférée car elle produit un quantile décamillénaire moins inférieur au maximum historique de l'ensemble des stations.
NORM3	GU	La loi gamma conduit au plus faible CIA mais donne des quantiles de grande période de retour faibles. Les lois log-normale et Gumbel produisent des valeurs de CIA faibles et conduisent à des ajustements équivalents. La loi Gumbel a été choisie par souci de cohérence régione.
PERIB3	GI	Malgré le fait que les loi log-normale et gamma donne les meilleures valeurs du CIA et d'ÉMVA, la loi gamma inverse a été sélectionnée car elle donne le quantile décamillénaire qui s'approche le plus du maximum historique de toutes les séries. Les autres lois étudiées conduisent à un quantile décamillénaire inférieur au maximum historique de l'ensemble des séries.
ROBA1	GI	La gamma inverse donne la valeur la plus faible du CIA.
ROBA3	GI	Les lois gamma inverse et log-normale conduisent aux plus faibles valeurs du CIA. Toutefois, la loi log-normale produit des quantiles de grande période de retour faibles. Il n'a pas été possible de conserver la cohérence entre les durées (1 jour et 3 jours) pour les séries ROBA1 et ROBA3.
ROBB1	GI	Il y a peut-être une tendance dans cette série. La loi gamma inverse donne la plus faible valeur du CIA
ROBB3	GI	Les lois log-normale, gamma inverse et Gumbel donnent toutes trois une faible valeur du CIA. Tout comme pour la série ROBC3, c'est la loi gamma inverse qui ajuste mieux les événements historiques extrêmes de grande période de retour.
ROBC1	GI	La loi gamma inverse donne la valeur la plus faible du CIA.
ROBC3	GI	Les lois log-normale, gamma inverse et Gumbel conduisent aux plus faibles valeurs du CIA. Cependant, la loi gamma inverse s'approche le plus près des événements historiques extrêmes de grande période de retour.
SHIP3	GI	Il y a peut-être une tendance dans cette série. La loi gamma inverse donne la plus faible valeur du CIA et de l'ÉMVA pour les lois à 2 paramètres.

4 AJUSTEMENT DES PRÉCIPITATIONS MAXIMUMS D'ÉTÉ-AUTOMNE

Ce chapitre est consacré à la présentation de l'analyse de fréquence des précipitations maximums d'été-automne (01/07 - 31/12) pour les 29 séries considérées:

- 16 séries aux stations météorologiques pour une durée de 3 jours;
- 5 séries aux stations météorologiques pour une durée de 1 jour;
- 8 séries aux bassins versants pour une durée de 3 jours.

4.1 Comparaison des saisons été et automne

Cette section a pour objectif d'examiner les différences entre les précipitations maximums d'été et celles d'automne. Dans le cas où les caractéristiques des séries d'été et d'automne sont semblables, une seule série regroupant les deux saisons peut être envisagée. Dans le cas contraire, les précipitations maximums d'été et d'automne doivent être traitées séparément car elles ne proviennent pas de la même population.

Trois stations météorologiques et trois bassins versants témoins ont été choisis afin de vérifier l'hypothèse que les précipitations d'été et d'automne proviennent de la même population. Les séries témoins choisies représentent différentes régions du bassin versant et constituent des séries de grande taille. Le tableau 4.1 donne les statistiques descriptives de chacune des séries témoins pour les deux saisons considérées. Les tests non paramétriques de Wilcoxon (section 2.3.2) et de Levene (section 2.4.1) qui permettent de vérifier s'il y a une différence significative entre la moyenne et la variance de deux échantillons ont été appliqués aux séries témoins. Le test de Kolmogorov-Smirnov (section 2.4.2) qui vérifie s'il y a une différence significative entre la distribution de deux échantillons a également été utilisé dans l'étude. La valeur de la statistique de chacun des tests et la probabilité au dépassement correspondante (entre parenthèses) de ces différents tests sont présentées au tableau 4.2. Les résultats significatifs au niveau de signification de 5% ont été ombragés. Rappelons que ces trois tests sont non paramétriques et, par conséquent, ils sont peu influencés par les valeurs extrêmes.

À la lumière des résultats des tests de comparaison des échantillons, on obtient les conclusions suivantes:

- En ce qui concerne les bassins versants, les précipitations maximums d'été et d'automne proviennent de la même population. En effet, il y a seulement le bassin AM pour lequel une différence de la moyenne significative à 5% mais non très significatif (1%) est identifiée.
- Les précipitations maximums d'été et d'automne enregistrées aux stations météorologiques ne semblent pas provenir pas de la même population. En effet, il y a une différence significative à 5 % (mais non à 1%) de la moyenne pour deux des trois stations témoins. De plus, une différence significative à 5 % (mais non à 1 %) de la variance et de la distribution sont détectées pour certaines des stations témoins.

Tableau 4.1. Statistiques descriptives des séries témoins de précipitations maximums d'été-automne.

			, e	Statistic	UES DESCRIE	TIVES	
		Saison	Moy.	ÉcTyp.	Cv	Cs	Ck
Bassin	АМ3	Été	38.3	10.9	0.28	0.31	1.75
		Automne	35.1	15.6	0.45	2.93	12.05
	AV3	Été	35.1	9.4	0.27	0.73	3.10
		Automne	35.2	11.8	0.34	0.98	2.84
	TOT3	Été	34.8	8.8	0.25	0.86	3.28
		Automne	34.8	12.1	0.35	1.28	3.66
Station	BON3	Été	46.1	16.3	0.35	1.14	3.52
		Automne	39.2	26.0	0.66	3.46	13.14
	CDPS3	Été	49.3	17.4	0.35	0.38	2.12
		Automne	40.6	12.8	0.31	0.77	3.03
	ROB3	Été	35.8	13.1	0.37	0.47	3.00
		Automne	31.2	16.4	0.53	2.63	10.36

Tableau 4.2 Comparaison de la moyenne (Mann-Whithney), de la variance (Levene) et de la distribution (Kolmogorov-Smirnov)

	Séries témoins								
Test	AM3	AV3	ТОТ3	BON3	CDPS3	ROBC3			
Mann-Whithney	-2 129	-0.680	-1.065	-3.065	-2.073	-0.858			
	(0.03)	(0.50)	(0.29)	(0.00)	(0.04)	(0.39)			
Levene	0.014	2.196	3.342	0.127	4.929	0.259			
	(0.91)	(0.14)	(0.07)	(0.72)	(0.03)	(0.61)			
Kolmogorov-Smirnov	0.262	0.167	0.214	0.364	0.297	0.113			
	(0.11)	(0.61)	(0.29)	(0.02)	(0.03)	(0.21)			

Cette situation peut s'expliquer physiquement car en été les précipitations sont souvent abondantes et localisées à une petite région (orages convectifs) alors qu'en automne elles sont moins abondantes localement mais affectent de grandes régions (tempêtes cycloniques). Ainsi, les caractéristiques des précipitations maximums d'été et d'automne des stations météorologiques sont différentes. Toutefois, sous l'effet de la moyenne pondérée (calcul de la hauteur de précipitations sur une surface), les caractéristiques des précipitations maximums d'été et d'automne des bassins versants sont confondues.

Bien que statistiquement il semble y avoir une différence significative (à 5% mais non à 1%) entre les précipitations maximums d'été et d'automne pour les stations, l'analyse de fréquence a été appliquée à la seule saison été-automne. Voici les principales raisons qui ont motivées cette décision:

- l'étude concernant la précipitation maximale probable (PMP) et la crue maximale probable (CMP) considère la saison été-automne.
- le regroupement en une seule saison des saisons d'été et d'automne répond mieux aux besoins d'Alcan. Cette approche est un peu plus sécuritaire car elle produit dans ce cas des quantiles de grande période de retour plus élevés.

4.2 Analyse préliminaire des données

Cette section est consacrée aux principales caractéristiques statistiques des séries annuelles de précipitations maximums d'été-automne des stations météorologiques et des bassins versants du réseau d'Alcan.

Les tableaux 4.3a et 4.3b donnent les principales caractéristiques statistiques des précipitations maximums d'été-automne des bassins et des stations. En examinant ces tableaux, on peut constater que:

- en ce qui concerne les stations, la moyenne et l'écart-type varient peu (sauf l'écart-type de BON3);
- la moyenne et l'écart-type des petits bassins (LM3, PD3, AM3, CD3 et CS3) sont supérieurs à ceux des grands bassins (LSJ3, AV3 et TOT3);
- Tout comme pour les séries de printemps, les bassins situés en amont (LM3, PD3 et AM3) ont des coefficients Cv, Cs et Ck supérieurs à ceux des bassins en aval (CD3, CS3, LSJ3, AV3 et TOT3). Cela est indicateur d'une certaine homogénéité de la distribution des précipitations extrêmes.
- Pour les stations, le coefficient d'asymétrie (Cs) est positif et le coefficient d'aplatissement (Ck) est tantôt supérieur à 3 et tantôt inférieur à 3 (par rapport à la distribution normale).

Tableau 4.3a. Statistiques descriptives des séries de précipitations maximums d'étéautomne des bassins versants.

-		STATISTIQUES DESCRIPTIVES								
Bassin	n	Moy.	Min.	Max.	ÉcTyp.	Cv	Cs	Ck		
LM3	42	44.4	27.7	106.3	15.5	0.35	1.82	7.14		
PD3	42	43.6	27.0	107.2	14.8	0.34	2.11	8.87		
AM3	42	43.8	27.5	106.9	15.0	0.34	2.02	8.35		
CD3	42	44.2	28.2	69.6	11.9	0.27	0.72	2.26		
CS3	42	47.2	24.6	74.9	13.6	0.29	0.37	2.08		
LSJ3	42	40.2	24.9	63.4	10.2	0.25	0.72	2.55		
AV3	42	40.3	25.8	64.3	10.3	0.26	0.72	2.38		
тот3	42	40.2	26.7	70.7	10.6	0.26	1.04	3.18		

Tableau 4.3b. Statistiques descriptives des séries de précipitations maximums d'étéautomne des stations météorologiques.

				STATISTIC	QUES DESCRIPT	TIVES		
Station	n	Moy.	Min.	Max.	ÉcTyp.	Cv	Cs	Ck
BAGOT3	42	50.0	30.8	104.6	15.9	0.32	1.63	5.19
BON1	34	36.2	18.2	102.4	17.2	0.48	2.17	7.39
BON3	33	53.4	31.0	153.0	26.2	0.49	2.30	7.62
CDIA3	42	54.5	27.5	89.8	17.7	0.32	0.23	1.78
CDPS1	35	38.2	20.4	83.8	14.4	0.38	1.26	4.16
CDPS3	35	53.6	25.9	88.1	15.2	0.28	0.43	2.25
СНАР3	30	51.3	27.5	129.0	19.8	0.39	2.23	8.32
СНІВАЗ	24	55.5	33.1	127.9	19.6	0.35	2.20	8.04
IM3	41	54.6	27.5	96.6	16.4	0.30	0.53	2.44
LBOU3	39	57.1	27.7	107.4	17.5	0.31	1.06	4.07
MPOST3	28	47.4	22.9	83.6	15.6	0.33	0.57	2.41
NITCH3	33	49.8	20.5	94.4	18.0	0.36	0.93	2.87
NORM3	41	50.2	12.9	90.1	18.3	0.36	0.68	2,58
PERIB3	30	51.9	27.2	79.8	15.0	0.29	0.46	2.05
ROBA1	37	40.7	17.2	102.6	15.1	0.37	1.99	8.34
ROBA3	37	55.2	26.2	116.0	18.7	0.34	0.95	4.12
ROBB1	52	33.6	13.0	73.0	12.1	0.36	1.11	4.04
ROBB3	52	44.7	18.0	106.0	19.7	0.44	1.76	5.54
ROBC1	80	37.6	13.0	102.6	14.2	0.38	1.60	7.30
ROBC3	80	49.9	18.0	116.0	20.1	0.40	1.25	4.33
SHIP3	41	54.9	32.9	100.1	17.8	0.32	1.18	3.42

4.3 Vérification des hypothèses de base

Les tableaux 4.4a et 4.4b donnent les résultats de l'application du test d'indépendance de Wald-Wolfowitz (section 2.3.1) et du test de stationnarité de Kendall (section 2.3.3) pour chacune des séries des précipitations maximums d'été-automne des bassins versants et des stations météorologiques. La valeur de la statistique de chacun des tests et la probabilité au dépassement correspondante (p) y sont données. Les résultats significatifs au niveau de signification de 5% ont été ombragés.

On constate d'abord que les précipitations maximums d'été-automne sont significativement dépendants à un niveau de signification de 5 % mais pas à un niveau de 1 % pour la série MPOST3. L'indépendance de cette série est donc douteuse mais on ne conclut pas à la présence d'une autocorrélation d'ordre 1 significative. L'autocorrélation d'ordre 1 évalue le lien entre les observations successives (intervalle de temps d'une année ici).

On remarque que l'hypothèse de stationnarité des séries CDPS1 et ROBC3 est rejetée à un niveau de signification de 5%. Elle est toutefois acceptée à un niveau de signification de 1% pour la série CDPS1. Dans le cas de la série ROBC3, le changement peut venir du fait qu'elle est composée des séries ROBA3 et ROBB3. L'application du test de Wilcoxon (section 2.3.2) à la date de changement indique un saut significatif à un niveau de signification de 5% pour les séries ROBC1 et ROBC3. De plus, le test de Kolmogorov-Smirnov rejette l'hypothèse d'une même distribution à un niveau de signification de 5 %.

Tableau 4.4a. Résultats des tests d'indépendance et de stationnarité des bassins versants.

	Wald-We	olfowitz	Kend	lali
Bassin LM3 PD3 AM3 CD3 CS3	Statistique U	р	Statistique K	p
LM3	0.513	0.608	0.130	0.897
PD3	0.274	0.784	0.033	0.974
AM3	0.355	0.723	0.065	0.948
CD3	0.960	0.337	0.704	0.481
CS3	0.599	0.549	1.604	0.109
LSJ3	0.258	0.796	0.661	0.509
AV3	0.543	0.587	0.206	0.837
TOT3	0.684	0.494	0.152	0.879

Tableau 4.4b. Résultats des tests d'indépendance et de stationnarité des stations météorologiques.

	Wald-W	olfowitz	Kend	iali
Station	Statistique U	p	Statistique K	р
BAGOT3	0.642	0.521	0.314	0.753
BON1	0.983	0.325	0.549	0.583
BON3	0.806	0.421	0.078	0.938
CDIA3	1.228	0.219	1.290	0.197
CDPS1	1.260	0.208	1.988	0.047
CDPS3	1.852	0.064	1.704	0.088
CHAP3	0.782	0.434	1.766	0.077
CHIBA3	0.510	0.610	1.364	0.172
IM3	0.563	0.573	0.000	1.000
LBOU3	0.335	0.738	0.339	0.735
MPOST3	2.263	0.024	0.711	0.477
NITCH3	0.706	0.480	0.418	0.676
NORM3	0.314	0.754	0.337	0.736
PERIB3	0.444	0.657	0.642	0.521
ROBA1	0.320	0.749	0.157	0.875
ROBA3	0.110	0.912	0.327	0.744
ROBB1	0.763	0.445	0.726	0.468
ROBB3	0.115	0.909	0.355	0.723
ROBC1	0.233	0.816	1.820	0.068
ROBC3	0.698	0.485	2.746	0.006
SHIP3	1.180	0.238	1.213	0.225

En 1975, les stations météorologiques CDIA et CDPS ont connu un changement d'instrumentation et furent déplacées. Le test d'homogénéité de Wilcoxon appliqué aux séries de précipitations maximums printanières identifie un changement de la moyenne à un niveau de significatication de 1 % à cette date pour les séries CDIA3, CDPS1 et CDPS3.

Les séries de précipitations maximums printanières, à l'exception des séries MPOST3, CDIA3, ROBC1, ROBC3, CDPS1 et CDPS3, sont donc compatibles avec les hypothèses de base de l'analyse de fréquence. Les séries CDIA3, CDPS1 et CDPS3 sont non stationnaires en raison d'un déplacement de station en 1975. Les séries ROBC1 et ROBC3 sont également non stationnaires car leurs données proviennent de deux stations différentes. Ces 5 séries feront l'objet d'un ajustement de loi à titre indicatif seulement. Enfin, pour la série

MPOST3, l'hypothèse d'indépendance est rejetée au niveau de signification de 5% et acceptée au niveau de 1%. Le résultat de ce test est significatif mais non très significatif et il doit donc être interprété avec prudence.

4.4 Comparaison des ajustements

Les tableaux 4.5a et 4.5b donnent respectivement, pour chaque bassin et chaque station, les valeurs du critère d'Akaïke (CIA) obtenues à partir de l'ajustement des 15 distributions considérées. La valeur moyenne du CIA pour chaque distribution pour l'ensemble des bassins versants (4.5a) et des stations météorologiques (4.5b) y est aussi présentée. Les distributions retenues en raison d'une valeur peu élevée du CIA pour un examen comparatif des ajustements sont identifiées dans ce tableau en ombragé.

Les tableaux 4.6a et 4.6b donnent la valeur du critère ÉMVA obtenue pour chacun des ajustements. Ce critère conduit, presque systématiquement, à des valeurs inférieures pour les lois à 3 paramètres. Cela est tout à fait normal puisque ces distributions sont plus souples. Ce critère favorise donc les lois à 3 paramètres et ne tient pas compte du principe de parcimonie.

Les lois ajustées ont été rangées en ordre croissant de la valeur du CIA et de la valeur d'ÉMVA. Deux types de classement ont été considérés: un classement global des 15 lois (classement I) et un classement distinguant les lois à 2 et à 3 paramètres (classement II). Les tableaux 4.7a et 4.7b donnent les rangs pour le CIA et les tableaux 4.8a et 4.8b contiennent ceux pour l'ÉMVA. Les valeurs moyennes des rangs pour chacune des lois et pour les deux types de classement sont également données dans ces tableaux.

Mentionnons que le CIA et l'ÉMVA ne peuvent être calculés, en général, que pour une seule des trois lois de la famille des distributions Halphen. En effet, pour un échantillon donné, les estimateurs du maximum de vraisemblance existent généralement que pour l'une des trois lois (Perreault et Bobée, 1996a).

L'estimation des paramètres des distributions à 3 paramètres passe, dans la plupart des cas, par la résolution d'un système complexe de 3 équations à 3 inconnues nécessitant une méthode itérative. Ces méthodes méthode ne convergent pas toujours ou produisent des erreurs arithmétiques. C'est le cas des lois d'Halphen et pour certaines des séries étudiées. De plus, le CIA ne peut pas toujours être calculé dans les cas où la méthode du maximum de vraisemblance n'est pas utilisée (Pearson type 3 et gamma généralisée).

Tableau 4.5a. Valeurs du critère d'Akaïke (CIA) pour les lois ajustées aux précipitations maximums d'été-automne des bassins versants.

					Bas	SINS				
	Loi	LM3	PD3	AM3	CD3	CS3	LSJ3	AV3	тотз	Moy
2 par.	EXP	326.71	325.88	324.27	323.05	351.91	318:97	314.49	308,41	324.21
	GU	336.42	331.45	332.84	323.10	339.99	311.17	311.20	310.04	324.53
	NO	352.36	348.77	349.73	330.35	341.47	317.02	317.85	320.57	334.77
	LN	337.56	332.91	334.20	324.23	339.42	311.85	312.28	312.28	325.59
	WE	352.44	349.63	350.35	331.78	341.52	319.16	319.82	323.28	336.00
	GA	341.10	336.69	337.91	325.66	339.27	312.95	313.56	314.41	327.69
	GI	335 25	330.54	331.85	323.21	340,23	311.24	311.41	310.64	324.30
3 par.	LN3	331.99	329.23	329.79	323.38	341.39	312.64	311.97	308.99	323.67
	GEV		330.69	331.75	324.45	341.23	313.12	312.88	310.26	324.88
	GG	336.89	331.54	331.76	326.82	341.24	313.12	312.89	310.25	325.56
	P3	327.89	-	- 0	321.42	340.80	311.62	310.48	307.08	_
	LP3	334.94	330.21	331.46	324.78	341.25	313.15	313.08	310.84	324.96
	HA	. - ,	- '	=	-	341.07	-	-	-	. -
	HB	•	-	-	-	-	_	· <u>-</u>	-	-
	HB-1	335.61	326.66	332.30	324.67	-	313.09	312.95	311.14	-

Tableau 4.5b. Valeurs du critère d'Akaïke (CIA) pour les lois ajustées aux précipitations maximums d'été-automne des stations météorologiques.

		<u> </u>			Stat	IONS			
	Loi	BAGOT3	BON1	BON3	CDIA3	CDPS1	CDPS3 🐮	CHAP3	CHIBA3
2 PAR.	EXP	338.28	270.43	277.18	366.98	277,41	308.59	256.26	203.20
	GU	337.75	273.93	291.48	362.92	279.30	291,50	252 87	203.92
	NO	354.59	292.85	312.30	363.45	288.90	292.65	267.28	214.03
	LN	340.41	273.42	291.00	362.24	279.24	291.00	253.70	204.59
	WE	355.94	287.03	305.72	362.31	287.45	293.02	265.96	214.14
	GA	344.14	278.23	296.54	361.70	281.27	290.81	256.97	206.78
	GI	337.67	270.31	287.08	363.38	278.21	291.86	251.69	203.33
3 par.	LN3	335,19	270 02	270.02	364.17	279.37	292.89	252.67	204.56
	GEV	335.87	270.06	282.67	363.77	280.16	292.71	252.59	204.90
	GG	335.85	270.06	291.52	363.66	280.03	292.79	253.44	204.83
	P3	335.12			362.70	279.62	292.68	-	-
	LP3	335.94	270.03	283.54	363.81	280.03	292.78	252 63	204.64
-	HA	-		-	363,56	-	292.72	-	•
	HB	-	· -	-	-	-	-	. -	-
-	HB-1	336.94	270.25	284.91		283.78	-	252.60	204.81

Tableau 4.5b (suite) Valeurs du critère d'Akaïke (CIA) pour les lois ajustées aux précipitations maximums d'été-automne des stations météorologiques.

			·		Stati	ons	·	<u> </u>	
	Loi	IM3	LBOU3	MPOST3	NITCH3	NORM3	PERIB3	ROBA1	ROBA3
2 par.	EXP	358.65	347.64	241.15	294.90	384.88	258.48	424.73	451.67
	GU	345.58	330.60	234.20	280.94	354.13	248.99	399.31	440.60
	NO	348.58	336.74	236.46	287.38	357.61	250.58	409.72	460.29
	LN	345.20	330.63	233.91	281.00	355.48	248.88	399.42	436,87
	WE	348.78	338.01	236.11	286.37	356.54	250.77	408.57	454.03
	GA	345.45	331.49	234.01	282.03	354.07	248.68	400.83	442.23
	GI	345 64	330 97	234,38	281.06	360.13	249.23	400.08	434 11
3 par.	LN3	347.15	332.61	235.89	282.87	355.76	250.65	321 78	401 39
	GEV	347.35	332.50	236.05	282.79	355.39	250.52	401.20	435.44
	GG	347.19	332.59	235.87	-	356.06	250.60	401.37	435.63
	P3	346.40	332.80	235.33	283.03	355.96	250.42	401.76	438.46
	LP3	347.19	332.59	235.87	282.87	356.29	250.60	401.37	436.10
	HA	346.58	332.66	235.70	282.82	. -	250.51	401.44	
	HB	-	-	-	-	-	-	<u>-</u> '	
	HB-1	_	-		· -	<u> </u>	-		435.68
					STATIONS				
	Loi	ROBB1	RO	BB3	ROBC1	ROBC3	SHII	P3	Moy
2 par.	EXP	313.57	329	9.16	674.58	720.07	341.	40	354.25
	GU	296.31	32	10	633.63	689.10	343.	23	343.35
	NO	308.82	324	4.83	654.26	709.83	355.	36	353.64
	LN	296.57	31	9.80	634.02	687.61	344.	57	343.30
	WE	308.11	32	4.75	651.18	704.32	355.	70	352.13
	GA	298.84	32	0.22	636.23	691.60	347.	24	345.21
	GI	296.19	32	0.43	634 37	686.87	342	70	342.84
3 par.	LN3	250.65	29	8 34	436 29	635.22	342	19	326.50
	GEV	297.93	32	2.03	634.83	688.84	343.	10	343.37
	GG	298.13	32	1.78	635.15	688.80			-
	P3	299.31	32	1,25	636.42	689.55	340.	40	
	LP3	298.32	32	1.78	635.16	688.74	343.	30	343.50
-	HA	298.19	32	1.67	635.53	688.65	-	1.	-
	HB	-		-	-	-	•		.
	HB-1			•	-	-	343.	48	•

Tableau 4.6a. Valeurs d'écart moyen en valeur absolue (ÉMVA) pour les lois ajustées aux précipitations maximums d'été-automne des bassins versants.

					Bas	SINS				,
	Loi	LM3	PD3	AM3	CD3	CS3	LSJ3	AV3	тот3	Moy
2 PAR.	EXP	4.63	5.63	5.41	7.27	15.48	8.18	6.72	4.50	7.23
	GU	4.56	5.49	5.44	3.29	3.92	1.84	2.40	2.28	3.65
	NO	6.69	7.73	7.68	2.82	2.16	2.38	2.51	3.01	4.37
	LN	4.79	5.91	5.84	2.97	2.93	1.65	2.15	2.28	3.56
	WE	7.02	8.11	8.04	2.41	2,07	2.30	2.24	2.60	4.35
	GA	5.41	6.48	6.42	2.85	2.50	1.82	2.09	2.76	3.79
	GI	4.40	5.39	5.33	3.21	4.12	1.82	2.33	2.02	3.58
3 PAR.	LN3	5.83	4.50	4.21	4.34	2.78	1.86	3.11	3.00	3.70
	GEV	5.43	4.18	3.86	4.36	2.35	1.94	2.96	3.32	3.55
	GG ⁻	4.13	4.88	3.45	2.81	2.59	1.93	2.97	4.21	3.37
	P3	4.53	5.43	5.37	3.87	2.81	1.58	2.63	2.13	3.54
	LP3	4.05	4.78	4.73	3.24	2.69	1.81	2.35	1.35	3.12
	HA		-	-	-	2.65	-	-	- .	-
	HB	-	-	-	-	-	-	-	-	-
	HB-1	3.64	4.50	4.39	3.64	-	1.92	2.60	1.89	-

Tableau 4.6b. Valeurs d'écart moyen en valeur absolue (ÉMVA) pour les lois ajustées aux précipitations maximums d'été-automne des stations météorologiques.

					STAT	TONS			
	Loi	BAGOT3	BON1	BON3	CDIA3	CDPS1	CDPS3	СНАР3	СНІВАЗ
2 PAR.	EXP	4.97	3.97	10.56	18.34	5.14	20.90	8.00	8.15
	GU	7.92	9.57	18.32	5.80	3.36	4.48	9.22	2.48
	NO	7.88	8.90	16.10	1.75	5.19	2.12	10.58	4.58
	LN	7.31	7.93	15.49	5.05	2.86	2.86	9.03	2.68
	WE	6.49	7.27	13.86	1.50	4.30	2.04	10.77	4.82
	GA	7.74	8.76	16.35	3.13	4.17	1.36	9.47	3.20
	GI	7.01	7.14	14.84	7.72	1.69	4.53	8.58	2.36
3 par.	LN3	3.53	4.30	3.52	3.85	0.37	1.81	7.97	2.97
	GEV	3.75	3.46	5.85	1.72	0.57	1.34	7.44 -	2.12
	GG	4.37	2.90	9:03	2.69	0.62	1.44	7.95	1.95
-	P3	5.05	5.75	7.85	6.77	1.60	1.82	8.94	3.79
	LP3	4.63	4.23	8.12	3.63	1.50	1.69	7.64	2.27
	HA	-	-	-	3.52	-	1.64	-	-
	HB	-	-		-	-	-	-	-
	HB-1	4.73	3.69	8.67	-	0.74	-	7.34	1.90

Tableau 4.6b (suite) Valeurs d'écart moyen en valeur absolue (ÉMVA) pour les lois ajustées aux précipitations maximums d'été-automne des stations météorologiques.

	_	STATIONS								
	Loi	IM3	LBOU3	MPOST3	NITCH3	NORM3	PERIB3	ROBA1	ROBA3	
2 par.	EXP	18.42	18.42	9.72	17.39	29.01	17.53	12.72	9.85	
	GU	2.71	2.78	1.12	2.96	4.81	5.55	1.32	7.91	
	NO	2.64	6.40	2.30	5.80	4.26	3.25	3.48	11.93	
	LN	1.96	3.92	1.04	2.96	5.32	4.70	1.46	8.84	
	WE	2.55	5.53	2.08	4.95	3.54	3.00	2.67	10.62	
	GA	1.20	5.22	1.82	4.14	4.20	3.70	2.49	10.27	
٠	GI	3.29	2.51	1.67	3.24	8.89	5.85	1.00	7.34	
3 par.	LN3	2.12	4.04	1.36	2.99	4.40	4.36	1.54	7.13	
	GEV	1.34	3.86	1.88	3.15	4.39	3.72	1.48	5.92	
	GG	1.61	3.94	1.60	3.05	4.18	4.10	1.47	6.10	
	P3	2.13	4.26	1.07	2.79	4.22	4.24	1.73	8.47	
	LP3	1.61	3.89	1.63	3.03	3.88	4.19	1.46	6.06	
	HA	1.57	3.90	1.53	2.95	<u>-</u>	4.12	1.43		
	HB	-	-	-	-	-	·	-	-	
	HB-1	-	-	-	-	-	-	-	5.98	

	*	-					
	Loi	ROBB1	ROBB3	ROBC1	ROBC3	SHIP3	Moy
2 par.	EXP	13.48	18.20	16.38	16.30	5.88	13.49
•	GU	5.21	3.65	1.06	4.51	5.08	5.23
	NO	7.16	5.24	2.57	8.79	6.84	6.08
	LN	5.29	3.84	0.77	5.03	4.73	4.91
	WE	7.37	4.87	2.39	7.11	5.81	5.41
	GA	5.87	4.50	1.26	6.99	5.88	5.32
	GI	4.63	3.25	2.34	3.24	3.76	4.99
3 par.	LN3	5.03	3.88	0.74	3.59	4.21	3.51
	GEV	4.75	3.99	0.95	3.24	4.95	3.33
	GG	4.81	4.02	0.76	3.21	3.67	3.50
	P3	5.53	3.90	0.97	5.02	3.41	4.25
	LP3	4.68	4.01	0.87	3.60	3.97	3.65
•	HA	4.63	4.08	0.89	3.54	-	
	нв	-	-	-	. -	- .	-
	HB-1	-	- .	-	-	4.68	-

Tableau 4.7a Rangs correspondant aux critères d'Akaïke (CIA) dans le cas des bassins versants (classements I et II).

		Bassins								
	Loi	LM3	PD3	AM3	CD3	CS3	LSJ3	AV3	тот3	Moy
I	(Classer	nent globa	al des 15	lois de pro	obabilité)					
2 PARAM.	EXP	1	1	1	2	13	12	11	. 2	5.4
	GU	8	7.	8	3	3	1	2	4	4.5
	NO	12	11	11	12	11	11	12	12	11.5
	LN	10	9	9	6	2	4	5	10	6.9
	WE	13	12	12	13	12	13	13	13	12.6
	GA	11	10	10	10	1	6	10	11	8.6
	GI	6	5	6	4	4	2	3	7	4.6
3 param.	LN3	3	3	· 2	5	10	5	4	3	4.4
	GEV	4	6	4	7	7	8	6	6	6.0
	GG	9	8	5	11	8	8	7	5	7.6
	P3	2	-	-	1	5	3	1	1	-
	LP3	5	4	3	9	9	10	9	8	7.1
	HA		-	-	•	6	. -	-	-	-
	нв	-	-	-	-	-	-	-	-	-
	HB-1	7	2	7	8	-	7	8	9	-
п			nguant le	s lois de p			paramètre			
2 PARAM.	EXP	1	1	1	1	7	6	5	1	2.9
	GU	3	3	3	2	3	1	, 1	2	2.3
•	NO	6.	6	6	6	- 5	5	6	6	5.8
	LN	4	4	4	4	2	3	3	4	3.5
	WE	7	7	. 7	7	6	7	7	7	6.9
	GA	5	5	5	5	1	4	4	5	4.3
	GI	2	2	2	3	4	2	2	3	2.5
3 PARAM.		2	2	1	. 2	6	2	. 2	2	2.4
	GEV	3	4	3	3	.3	4	3	4	3.4
	GG	6	5	4	6	4-	4	4	3	4.5
	P3	1	-	-	_ 1	1	1	1	1 ;	-
	LP3	`4	3	2	5	5	6	6	5	4.5
	HA	-		-	-	2	-			-
	HB	. · · -	-	-	-	<u>-</u>	-	-	-	-
	HB-1	5	1	5	4	-	3	5	6	-

Tableau 4.7b Rangs correspondant aux critères d'Akaïke (CIA) dans le cas des stations météorologiques (classements I et II).

					STAT	TIONS			
_	Loi	BAGOT3	BON1	BON3	CDIA3	CDPS1	CDPS3	СНАР3	СНІВАЗ
I	(Classen	nent global de	es 15 lois o	de probabil	lité)				
2 PARAM.	EXP	9	7	2	13	1	13	9	1
	GU	8	9	8	5	4	3	6	3
	NO	12	12	12	7.	13	5	12	11
	LN	10	8	7	2	3	2	8	5
	WE	13	11	11	3	12	12	11	12
	GA	11	10	10	1	10	1	10	10
	GI	7	6	6	6	2	4	. 1	2
3 param.	LN3	2	1	1	12	5	11	5	4
	GEV	4	3	3	10	9	<u>.</u> 7	2	9
	GG	3	3	9	9	7	10	7	8
	P3	1	-	-	4	6	6	-	•
	LP3	5	2	4	. 11	7	9	4	6
	HA		-	-	8	-	8	-	-
	HB	-	-	-	-	-	-	-	-
	HB-1	6	5	5	-	11	-	3	7
П	(Classer	nent distingu	ant les loi	s de probal	bilité à 2 e	t 3 paramèt	res)		
2 PARAM.	EXP	3	2	1	7	1.	7	4	1
	$\mathbf{G}\mathbf{U}$	2	4	4	4	4	3	2	3
	NO	6	7	7	. 6	7	5	7	6
•	LN	4	3	3	2	3	2	3	4
	WE	7	6	6	3	6	6	6	7
	GA	5	5	5	1	5	1 .	5	5
	GI	1	1	2	5	2	4	1	2
3 PARAM.	LN3	2	1	1.	6	1	6	4	1
	GEV	4	3	, ,2	4	5	2	1	5
	GG	3	3	5	3	3	5	- 5	4
-	P3	1	• •	• -	1	2	1	-	-
· .	LP3	5	2	3	5	3	4	· 3	2
	HA	-		-	2	-	3	• •	, '
	HB	-	· -	-	•	-	-	-	•
	HB-1	6	5	4	-	6	- '	2	3

Tableau 4.7b (suite) Rangs correspondant aux critères d'Akaïke (CIA) dans le cas des stations météorologiques (classements I et II).

					STAT	IONS		_	
	Loi	IM3	LBOU3	MPOST3	NITCH3	NORM3	PERIB3	ROBA1	ROBA3
1	(Classem	ent globa	l des 15 lois	de probabi	lité)	· ·			
2 PARAM.	EXP	13	13	12	12	. 12	13	13	13
	GU	3	1	3	1	2	3	3 ,	3
	NO	1.1	11	11	11	10	8	12	12
	LN	1	2	1	2	4	1	4	2
	WE	12	12	10	10	9	12	11	11
	GA	2 .	4	2	4	1	1	9	4
	GI	4	3	4	3	11	4	2	5
3 param.	LN3	7	8	13	7	5	11	. 1	1
	GEV	10	5 -	9.	5	3	7	5	10
	GG	8	6	. 7	-	7	9	6	8
	P3	5	10	5	9	6	5	10	6
	LP3	8	6	7	7	8	9	8	8
	HA	6	9	6	6	-	6	7	7
	нв	-	. -	-	-	-	-	-	-
	HB-1		-	-	-	-	-	-	
п	(Classem	ent distir	guant les lo	ois de probab	oilité à 2 et	3 paramèti	res)		
2 PARAM.	EXP	7	7	7	7	7	7	7	7
•	GU	3	1	3	1	2	3	2	2
	NO	5	5 -	6	6	5	5	6	6
	LN	1	2	1	2	3	1	3	1
	WE	6	6	5	5	4	6	5	5
	GA	2	4	. 2	4	1	. 1	. 4	3
	GI	4	3	4	3	6	4 .	1	4
3 PARAM.	LN3	3	4	6	3	2	6	1	1.
	GEV	6	1	5	1	1	3	2	6
	GG	4	2	3	-	4	4	3	4
	Р3	1	6	1	5	· 3	. 1	6	. 2
	LP3	4	2	3	3	5	4	5	4
	HA	2	5	2	2	-	2	4	3
	нв	-	-	•	, · -	- .	_	-	-
	HB-1	-	-	-	-	-	-	_	· -

Tableau 4.7b (suite) Rangs correspondant aux critères d'Akaïke (CIA) dans le cas des stations météorologiques (classements I et II).

				STATIONS			
·	Loi	ROBB1	ROBB3	ROBC1	ROBC3	SHIP3	Moy
I	(Classem	ent global des	15 lois de pro	babilité)		**-	
2 PARAM.	EXP	13	11	13	13	2	9.9
	GU	2	9	2	8	6	4.4
	NO	12	13	12	12	11	11.0
	LN	3	7	3	3	9	4.1
	WE	11	12	11 -	11	12	10.9
	GA	5	10	9	10	10	6.4
	GI	4	2	4	2	4	4.1
3 param.	LN3	1	1	1	1 -	3	4.8
	GEV	6	3	5	7	5	6.0
	GG	7	4	6	6	-	_
	P3	10	8	10	9	1	-
	LP3	7	- 6	7	5	7	6.7
	HA	9	' -	8	4	- ·	· -
	HB	-	-	-	-	-	-
	HB-1	-	5	-	-	8	-
П					t 3 paramètres)		
2 PARAM.	EXP	7	5	7	7	1	5.2
	GU	1	3	. 1	3	3	2.6
	NO	6	7	6	6	6	6.0
	LN	2	2	2	2	4	2.4
	WE	5	6	5	5	7	5.6
	GA	4	4	4	4	5	3.5
	GI	3	1	3	1	2	2.7
3 PARAM.		1	1	1 .	. 1 .	2	2.6
	GEV	2	2	2	5	3	3.1
	GG	3	3	3	4	-	-
	P3	6	6	6	6	_1	-
	LP3	3	5	4	3	4	3.6
	HA	5	-	5	2		-
	HB	-	-	-	-	-	-
	HB-1	-	4	-	-	5	-

Tableau 4.8a Rangs correspondant aux critères d'ÉMVA dans le cas des bassins versants (classements I et II).

			· .		Ва	SSINS				
	Loi	LM3	PD3	AM3	CD3	CS3	LSJ3	AV3	тотз	Moy
I	(Classen	nent globa	al des 15	lois de pro	obabilité)					
2 PARAM.	EXP	7	9	8	13	13	13	13	13	11.1
	GU	6	8	9	8	11	6	6	5	7.4
	NO	12	12	12	3	2	12	7	10	8.8
	LN	8	10	10	5	10	2	2	5	6.5
	WE	13	13	13	1	1	11	3	7	7.8
	GA	9	11	11	4	4	4	1	8	6.5
	GI	4	6	6	6	12	4	4	3	5.6
3 param.	LN3	11	2	3	11	8	7	12	9	7.9
	GEV	10	1	2	12	3	10	10	11	7.4
	GG	3	5	1	2	5	9	11	12	6.0
	P3	5	7	7	10	9	1	9	4	6.5
	LP3	2	4	5	7	7	3	5	1	4.3
	HA	-	_	-	-	6	-	. •	-	-
-	HB		-	-	-	-	-	-	-	
	HB-1	1	2	4	9	-	8	8	2	-
п	(Classer	nent disti	nguant le	s lois de p	robabilité	à 2 et 3	paramètre	s)		
2 PARAM.	EXP	3	3	2	• 7	7	7	7	7 .	5.4
	GU	2	2	3	6	5	4	5	2	3.6
	NO	6	6	6	2	2	6	6	6	5.0
	LN	4	4	4	4	4	1	2	2	3.1
	WE	7	7	. 7	1	1 4	5	3	4	4.4
	GA	5	5	5	3	3	2	1	5	3.6
	GI	1	1	1	5	6	2	4	1	2.6
3 PARAM.	LN3	6	2	3	5	5	3	6	- 4	4.3
	GEV	5	1	2	6	1	6	4	5	3.8
	GG	3	5	1.	1	2	5	5	6	3.5
	P3	4	6	6	4	6	1	3	3	4.1
	LP3	2	4	5	2	4	2	1	1	2.6
-	HA	_		-	-	3	_	. -	-	[
	нв	-	-	-	-	, <u>-</u>	-	-	. •	_
	HB-1	1	2	4	3	<u>-</u>	4	2	2	_

Tableau 4.8b Rangs correspondant aux critères d'ÉMVA dans le cas des stations météorologiques (classements I et II).

		STATIONS							
	Loi	BAGOT3	BON1	BON3	CDIA3	CDPS1	CDPS3	СНАРЗ	СНІВАЗ
I	(Classen	nent global de	es 15 lois e	de probabil	lité)				
2 PARAM.	EXP	6	4	7	13	12	13	6	13
	GU	13	13	13	10	9	11	10	6
	NO	12	12	11	3	13	9	12	11
	LN	10	10	10	9	8	10	9	7
	WE	8	9	8	1	11	8	13	12
•	, GA	11	11	12	5	10	2	11	9
	GI	9	8	9	12	7	12	7	5
3 PARAM.	LN3	1	6	1	8 .	1	6	5	8
	GEV	2	2	2	2	2	1	2	3
	GG	3	1	6	4	3	3	4	2
	P3	7	7	3	11	6	7	8	10
	LP3	4	5	4	7	5	5	3	. 4
	HA	-	, · -	-	6	-	4	-	-
	HB	-	-	-	-	-	-		- '
	HB-1	5	3	5	-	4	-	1	1
П		nent distingu							
2 PARAM.	EXP	1	1	1	7	6	7	1	7
	GU	7	7	7	5	3	5	4	2
	NO	6	6	5	2	7	3	6	5
	LN	4	4	4	4	2	4	3	3
	WE	2	3	2	1	5	2	7	6
e e	GA	5	5	6	3	4	1	5	4
	GI	3	2	3	6	1	6	2	1
3 param.	LN3	1	5	1	5 .	1	5	5	5
• .	GEV	2	2	2	1	2	1	2	3
	GG	3	1	6	2	- 3	2	. 4	2
	P3	6	6	3	6	, 6	6	6	6 -
	LP3	4	4	4	4	5	4	3	4
	HA	- : -	-	-	3	-	3	-	-
	HB	-	-	-	-	· -	· -	-	• •
	HB-1	5	3	5	-	4	· -	1	. 1

Tableau 4.8b (suite) Rangs correspondant aux critères d'ÉMVA dans le cas des stations météorologiques (classements I et II).

					STAT	IONS			
	Loi	IM3	LBOU3	MPOST3	NITCH3	NORM3	PERIB3	ROBA1	ROBA3
I	(Classem	ent globa	l des 15 lois	de probabi	lité)				
2 PARAM.	EXP	13	13	13	13	12	13	13	13
	GU _.	11	2	3	3	9	11	7	2
	NO	10	12	12	12	6	2	11	12
	LN	6	6	1	3	10	10	8	3
	WE	9	11	11	11	1	1	12	11
	GA	. 1	10	9	10	4	3	10	10
	GI	12	1 .	8	9	. 11	12	1	1
3 param.	LN3	. 7	8	4	5	8	9	6	4
	GEV	2	3	10	8	7	4	4	6
	GG	4	7	6	7	3	5	5	8
	P3	8	9	2	1	5	8	9	5
	LP3	4	4	7	6	2	7	3	7
	HA	3	5	5	2	-	6	1	9
	HB	-	• -	-	-	-	-	-	<i>-</i> -
	HB-1	-		<u>-</u>		. -	-	-	-
П	(Classem	ent distir	iguant les lo	ois de probal	bilité à 2 et	3 paramèt	res)	<u>.</u>	 -
2 PARAM.	EXP	7	7	7	7	7	7	7	. 7
	GU	5	2	2	1	4	5	2	2
	NO	4	6	6	6	3	2	5	6
	LN	2	3	1	1	5	4 -	3	3
	WE	3	5	5	5	1	.1	6	5
	GA	1	4	4	4	2	3	4	4
	GI	6	1	3	3	6	6	1	1
3 param.	LN3	5	5	2	3-	- 5	6	5	1
	GEV	1	1	6	6	4	1	3	3
	GG	3	4 .	4	5	2	2	4	5
	P3	6	_ 6	. 1	1	3	5	6	2
	LP3	3	2	5	4	1	4	2	4
	HA	-2	3	3	2		3	1	6
	нв	-	-	-	-	-	-	-	-
	HB-1	-	-	-	-	-	-	-	-

Tableau 4.8b (suite) Rangs correspondant aux critères d'ÉMVA dans le cas des stations météorologiques (classements I et II).

				STATIONS			
	Loi	ROBB1	ROBB3	ROBC1	ROBC3	SHIP3	Moy
I	(Classem	ent global des	15 lois de pro	babilité)			
2 PARAM.	EXP	13	10	13	13	11	11.3
	GU	2	7	8	7	9	7.9
	NO	12	13	12	12	13	10.6
	LN	4	9	3	9	7	7.2
	WE	11	12	11	11	10	9.1
	ĢA	10	11	9	10	11	8.5
	GI	1	6	10	2	3	7.0
3 param.	LN3	8	5	1	5	5	5.3
	GEV	7	1	6	2	8	4.0
	GG	6	4	2	1	2	4.1
	P3	9	8	. 7	8	1	6.6
	LP3	4	3	4	6	4	4.7
	HA	3	-	5	4	-	-
-	HB	-	-	-	-	-	-
* 4	HB-1	-	2	-	-	6	-
п					t 3 paramètres)		
2 PARAM.	EXP	7	4	7	7	5	5.6
	GU -	2	2	2	2	3	3.5
	NO	. 6	7	6	6	7	5.2
	LN	3	3	1	3	2	3.0
	WE	5	6	5	5	4	4.0
	GA	4	5	3	4	5	3.8
	GI	1	1 .	4	1	1	2.8
							1
3 param.	LN3	5	5	1	4	. 4	3.8
	GEV	4	1	5	2	6	2.8
	$\mathbf{G}\mathbf{G}$	3	4	2	1 1	2	3.0
	P3	6	6	6	6	1	4.8
	LP3	2,	3	3	5	3	3.5
	HA	1	-	. 4	3	- .	-
	HB	-	•	-	-	• -	-
	HB-1	•	2	-	<u>-</u>	5	_

Les principales observations tirées de l'examen des tableaux 4.5a à 4.8b sont les suivantes:

- Les lois normale, Weibull et gamma donnent en général de grandes valeurs du CIA pour les bassins versants. Les lois exponentielle (sauf CS3, LSJ3 et AV3), Gumbel, gamma inverse et certaines lois à trois paramètres, en particulier la Pearson type 3, admettent de faibles valeurs du CIA. La bonne performance des lois à trois paramètres s'explique par la difficulté des lois à 2 paramètres à bien ajuster l'événement extrême du 13/09/1990.
- En ce qui concerne les stations météorologiques, les lois normale et Weibull conduisent à
 des valeurs du CIA élevées. Par contre les lois Gumbel, log-normale et gamma inverse
 donne en général de faibles valeurs du CIA. Les lois exponentielle et gamma donnent
 parfois des valeurs du CIA élevées ou faibles.
- Les lois à trois paramètres donnent des valeurs du CIA et d'ÉMVA assez semblables pour les stations. Il n'est pas possible de discriminer d'une manière globale une loi plutôt qu'une autre.
- Les lois à trois paramètres conduisent à des valeurs d'ÉMVA inférieures à celles des lois à deux paramètres. De plus, parfois, elles donnent des valeurs du CIA inférieures aux lois à deux paramètres en raison de l'événement extrême de 13/09/1990.

L'événement extrême du 13/09/90 qui a affecté les stations situées en amont présente quelques difficultés lors des ajustements. Cette précipitation a été validée et constitue un événement rare qui diffère des autres maximums annuels de précipitations. Lors de l'ajustement, un poids égal est donné à chacune des observations. Or, cette observation extrême pourrait avoir une probabilité empirique plus grande que celle obtenue par la formule de Cunnane (éq. 2.16, section 2.5.1.1). Il n'existe pas d'approche objective afin d'attribuer une probabilité empirique réaliste à cet événement exceptionnel. L'étude du traitement des événements rares lors de l'ajustement d'une loi de probabilité nécessiterait des efforts et un temps de recherche qui excédent le contexte du présent projet. Pour cette raison, les ajustements des séries affectées par la précipitation du 13/09/90 ont été effectués sans traitement particulier. Par contre, lors du choix de la meilleure loi, nous avons privilégié les lois qui s'approchaient de cet événement rare sans toutefois produire des quantiles de grande période de retour irréalistes.

4.5 Distributions choisies

Comme il a été mentionné à la section 2.5.3, pour chaque bassin, les ajustements des lois retenues à la section 4.4 (cf. tableaux 4.5a à 4.5b) ont été comparés en examinant l'adéquation des courbes aux données sur le même papier de probabilité normal. L'examen des représentations graphiques individuelles avec intervalle de confiance a aussi été effectué. Les résultats des ajustements des quatre ou six distributions retenues pour ces séries sont souvent très proches. Afin de discriminer entre ces différentes distributions, une attention particulière a été portée au respect du principe de parcimonie et de la cohérence avec la précipitation maximale probable et le maximum historique.

La distribution choisie pour les précipitations maximums d'été-automne est la même pour chacun des bassins versants. Il s'agit de la loi Pearson type 3. Les valeurs du CIA de cette loi à trois paramètres sont souvent inférieures à celles des lois à 2 paramètres. Ainsi, le gain dans l'adéquation des données est valable en comparaison avec l'augmentation de la complexité du modèle (un paramètre de plus). La distribution Pearson type 3 a été incluse lors de l'examen graphique des bassins PD3 et AM3 (pas de valeur de CIA) en raison de la bonne performance de cette distribution pour les autres bassins. Il s'est avéré que l'ajustement de la loi Pearson type 3 aux données de ces deux bassins est adéquat. De plus, la loi Pearson type 3 permet de bien conserver la cohérence spatiale du quantile décamillénaire des différents bassins. Enfin, cette distribution ajuste bien les valeurs extrêmes des échantillons des bassins en amont (LM, PD et AM).

Pour les stations météorologiques, les distributions choisies pour représenter les précipitations maximums d'été-automne sont données au tableau 4.8. Quelques remarques expliquant les choix y sont également données. Nous présentons à l'Annexe C les résultats de l'ajustement issus des lois sélectionnées pour chacune des séries Nous rappelons ici que des anomalies ont été détectées dans les séries CDIA3, ROBC1, ROBC3, CDPS1 et CDPS3. Ces séries ne font l'objet d'un ajustement qu'à titre indicatif seulement.

Tableau 4.9 Lois choisies pour représenter les précipitations maximums d'été-automne sur les stations météorologiques

Station	Loi choisie	Commentaires
BAGOT3	LN3	Les lois à 3 paramètres donnent des valeurs du CIA plus faibles que celles des lois à 2 paramètres. Le paramètre supplémentaire améliore donc substantiellement l'ajustement. Contrairement aux autres lois étudiées, la loi log-normale à 3 paramètres donne des quantiles de grande période de retour élevés sans toutefois dépasser la PMP.
BON1	LN3	En général, le CIA des lois à 3 paramètres est plus faible que celui des lois à 2 paramètres. La distribution log-normale à 3 paramètres s'approche bien de l'événement extrême du 13/09/1990 tout en donnant un quantile décamillénaire inférieur à la PMP.
BON3	EXP	La loi exponentielle conduit au plus faible CIA et ÉMVA des lois à 2 paramètres. Elle ajuste bien l'événement extrême du 13/09/1990 tout en donnant un quantile décamillénaire réaliste par rapport à la PMP.
CDIA3	LN3	Cette série est non stationnaire. Cet échantillon particulier a un "plateau" pour les données de grande période de retour (figure C12). Malgré qu'elle ne conduit pas au meilleures résultats en termes de CIA et d'ÉMVA, la loi log-normale à 3 paramètres a été choisie car elle donne un quantile décamillénaire supérieur au maximum historique et par souci de cohérence régionale.
CDPS1 et	LN	Ces séries sont non stationnaires. La loi log-normale a été choisie car elle permet de tenir compte de la cohérence temporelle des durées 1 jour et 3 jours. Elle a également été favorisée car elle ajuste bien les données des stations voisines.
СНАР3	LN3	Les lois à 3 paramètres conduisent à des valeurs du CIA et d'ÉMVA inférieures à celles des lois à 2 paramètres. Bien que les valeurs d'ÉMVA et du CIA de la loi GEV soit meilleures, la loi log-normale à trois paramètres est nécessaire afin de bien ajuster l'événement extrême du 13/09/1990 sans donner un quantile décamillénaire supérieur à la PMP.
СНІВАЗ	LN3	Les meilleures lois à 2 et 3 paramètres donnent des valeurs du CIA équivalentes. Bien que la loi GEV soit meilleure en termes de CIA et d'ÉMVA, la loi lognormale à 3 paramètres est nécessaire afin de bien ajuster l'événement extrême du 13/09/1990 et produire un quantile décamillénaire réaliste. De plus, la loi lognormale à 3 paramètres a été privilégiée car elle a été choisie à la station voisine CHAP3.
IM3	LN	Les lois Gumbel, log-normale, gamma et gamma inverse conduisent toutes à une faible valeur du CIA. Graphiquement, la loi log-normale ne s'éloigne pas trop des données de grandes valeurs comme les lois gamma inverse et Gumbel. La loi gamma donne un quantile décamillénaire trop faible.
LBOU3	LN	Les lois Gumbel, log-normale et gamma inverse donnent les plus faibles valeurs du CIA et d'ÉMVA. La loi log-normale a été choisie comme un compromis entre les trois lois car elle est située entre les lois Gumbel et gamma inverse qui ajustent également bien les données.
MPOST3	LN	Cette série est peut-être dépendante. La loi log-normale donne la plus faible valeur du CIA et d'ÉMVA. Graphiquement, la loi Gumbel a un ajustement très similaire à celui de la loi log-normale. La loi log-normale a été choisie car elle ajuste bier les données d'autres stations voisines (régionalisation).

Tableau 4.9 (suite) Lois choisies pour représenter les précipitations maximums d'étéautomne sur les stations météorologiques.

Station	Loi choisie	Commentaires
NITCH3	LN	Les lois Gumbel, log-normale et gamma inverse donnent les plus faibles valeurs du CIA. La loi gamma inverse a toutefois tendance à s'éloigner des données de grandes valeurs. Les ajustements des lois Gumbel et log-normale sont pratiquement équivalents sur le papier de probabilité. La loi log-normale a été préférée par souci de régionalisation.
NORM3	LN	Les lois log-normale, Gumbel et gamma conduisent toutes trois à des valeurs de CIA intéressantes. Bien que la loi gamma ajuste bien les données, elle donne toutefois une valeur du quantile décamillénaire faible. La loi log-normale a été choisie car elle produit des quantiles de grande période de retour plus élevés (plus sécuritaire) que ceux de la loi Gumbel
PERIB3	LN	Les lois log-normale, Gumbel et gamma donnent les plus faibles valeurs du CIA. Les quantiles de grande période de retour de la loi gamma sont faibles même si cette dernière donne un ajustement adéquat des observations. La loi log-normale a été choisie car elle ajuste bien les données des autres stations (régionalisation).
ROBA1	GI	La loi gamma inverse a été choisie car elle ajuste bien les autres séries de Roberval et elle permet de préserver la cohérence temporelle des quantiles des séries ROBA1 et ROBA3.
ROBA3	GI	La loi gamma inverse donne la plus faible valeur du CIA et d'ÉMVA.
ROBB1	GI	La loi gamma inverse donne la plus faible valeur du CIA et d'ÉMVA. De plus, la loi gamma inverse réussit à bien ajuster l'événement extrême du 03/09/70 sans produire des quantiles de grande période de retour de trop élevés (PMP).
ROBB3	GI	La gamma inverse assure la cohérence temporelle du quantile décamillénaire entre les séries ROBB1 et ROBB3.
ROBC1	GI	Cette série n'est pas stationnaire. La loi gamma inverse réussit à mieux ajuster l'événement extrême du 03/09/70 sans produire des quantiles de grande période de retour trop élevés (PMP).
ROBC3	LN3	Cette série n'est pas stationnaire. Les lois à trois paramètres donnent des valeurs de CIA plus faibles que celles des lois à 2 paramètres. La loi log-normale à 3 paramètres réussit à bien ajuster l'événement extrême du 03/09/70 et a conserver la cohérence temporelle des séries ROBC1 et ROBC3.
SHIP3	Р3	La distribution Pearson type 3 donne la plus faible valeur du CIA et d'ÉMVA.

					•
		٠			
					-
	•				
			•		
			• •		
w.			•		
		•			
₽					
			• • • • • • • • • • • • • • • • • • •		
	•				. •
. •					
					•
				•	- 1
				-	-
,					•
					-
					_
					-
		·			
		•			

L'analyse de fréquence des précipitations extrêmes saisonnières est importante pour Alcan. Elle permet en particulier de mieux connaître les risques associés à un événement donné et ainsi de gérer de manière plus sécuritaire les ouvrages hydrauliques.

Ce rapport présente les résultats d'ajustement de distributions statistiques à des échantillons de précipitations extrêmes saisonnières. Dans une première partie, les bases théoriques de l'ajustement ont été exposées. Par la suite, l'ajustement des précipitations maximums de printemps et d'été-automne des stations météorologiques et des bassins versants a été effectué. Ce projet avait pour objectif la détermination de la loi la plus adéquate pour représenter les séries à chacun des sites. Le choix de la meilleure loi a pris en compte divers critères statistiques (représentation graphique, critère d'Akaïke, critère de l'écart moyen en valeur absolue et parcimonie) et météorologiques (information régionale, cohérences spatiale et temporelle, précipitation maximale probable et maximum historique).

Voici les principales conclusions générales qui ressortent de cette étude:

- Une distribution régionale des lois ressort de l'étude: amont et aval du bassin versant du lac St-Jean, la périphérie du lac St-Jean, le bassin versant de Chute du Diable.
- les précipitations maximums printanières des bassins versants sont le mieux représentées par les distributions GEV (bassins en amont) et gamma inverse (bassin en aval);
- les lois qui ajustent le mieux les précipitations maximums printanières des stations météorologiques sont la gamma inverse et la Gumbel;
- la loi Pearson type 3 a conduit aux meilleurs ajustements des précipitations maximums d'été-automne des bassins versants;
- les précipitations maximums d'été-automne des stations météorologiques sont le mieux ajustées par des lois log-normales à deux et trois paramètres.

Rappelons que certaines séries ne respectent pas les hypothèses de base (indépendance, homogénéité et stationnarité) pré-requises à l'ajustement des données. Ces séries ont alors fait l'objet d'ajustement à titre indicatif seulement.

Nous recommandons que l'estimation des quantiles déterminées en ajustant les lois choisies soit réévaluée annuellement lorsque de nouvelles données deviennent disponibles surtout lorsqu'elles sont extrêmes (par exemple, les précipitations extrêmes de l'été 1996). De plus,

il serait souhaitable de valider périodiquement les modèles choisis pour tenir compte de l'acquisition de nouvelles informations.

- Akaïke, H. (1974). A new look at the stattistical model identification. *IEEE Transactions on Automatic Control*, AC-19: 716-723.
- Aitchison, J. et J.A.C. Brown (1957). The Lognormal Distribution. Cambridge University Press, London: 176 p.
- Benson, M.A. (1968). Uniform form-frequency estimation methods for federal agencies. Water Ressources Research, 4: 891-908.
- Bickel, P.J. et K.A. Docksum (1977). Mathematical Statistics. Holden-Day, Oakland: 492 p.
- Bobée B. et F. Ashkar (1991). The Gamma and Derived Distributions Applied in Hydrology. Water Resources Publications, Littleton, Co., Yevjevitch (Ed.): 202 p.
- Bobée, B. et R. Robitaille (1977). The use of the Pearson type 3 and log-Pearson type 3 distributions revisited. Water Ressources Research, 13: 427-443.
- Capéraà, P. et B. Van Cutsem (1988). Méthodes et Modèles en Statistique Non Paramétrique: Exposé Fondamental, Dunod, Paris: 358p.
- Conover, W.J., Johnson, M.E. and M.M Johnson (1981). A comparative study of tests for homogeneity of variances with applications to the outer continental shelf bidding data. *Technometrics*, 23:351-361.
- Cunnane, C. (1978). Unbiaised plotting positions A review. Journal of Hydrology, 37: 205-222.
- Haché, M. (1993). Modélisation de Variables de Précipitation par des Distributions Statistiques Application à la Région du Québec et du Nouveau-Brunswick. Mémoire de maîtrise, INRS-Eau: 164p.
- Harter, H.L. (1971). Some optimization problems in parameters estimation. Edited by Jagdish S. Rustagi, Optimization Methods in Statistics, Academic Press, New-York, pp. 32-62.
- Kendall, M.G. (1975). Rank Correlation Methods. Charles Griffin, London.
- Kotz, S. et L.M. Johnson (1983). Encyclopedia of Statistical Sciences, Vol. 4. Wiley, New York.
- Lehmann, E.L. (1983). Theory of Point Estimation. Wiley, New York.: 506p.
- Levene, H. (1960). Robust tests for the equality of variances, in *Contributions to Probability and Statistics*, ed. I. Olkin. Palo Alto, Standford University Press: 278-292.
- Perreault, L., Haché, M., Rémillard, L. et B. Bobée (1996). Analyse de fréquence des volumes de crue et des apports maximums saisonniers. Rapport de Recherche n° 486, INRS-Eau: 110 p.
- Perreault, L. et B. Bobée (1996a). Les lois de Halphen. Rapport de Recherche, INRS-Eau. (En préparation).
- Perreault, L. et B. Bobée (1996b). Logiciel AJUSTE-II, guide théorique. HMS Énergie.

- Perreault, L. et B. Bobée (1992a). Loi généralisée des valeurs extrêmes. Propriétés mathématiques et statistiques. Estimation des paramètres et des quantiles XT de période de retour T. INRS-Eau, rapport de recherche n° 350 : 56 p.
- Perreault, L. et B. Bobée (1992b). Loi Weibull à deux paramètres. Propriétés mathématiques et statistiques. Estimation des paramètres et des quantiles XT de période de retour T. Rapport de Recherche no 351, INRS-Eau : 29 p.
- Perreault, L., Bobée, B. et V. Fortin (1992c). Approximation des quantiles de la loi Pearson Type 3 standardisée par les polynômes de Tchebichef. Rapport de Recherche no 346, INRS-Eau: 36 p.
- Perreault, L. et B. Bobée (1992d). Loi normale: propriétés mathématiques et statistiques. Estimation des paramètres et des quantiles XT de période de retour T. Rapport de Recherche nº 352, INRS-Eau : 18 p.
- Perron H., Bruneau, P. et B. Bobée (1996). Logiciel AJUSTE-II: guide de l'utilisateur. HMS Énergie.
- SNC (1994). Lac Saint-Jean Crues Maximales Probables. SNC-Shawinigan Inc.
- Wald, A. et J. Wolfowitz (1943). An exact test for randomness in the nonparametric case based on serial correlation. *Annals of Mathematical Statistics*, 14: 378-388.

ANNEXE A

Données validées

A1 et A32 - Lac Manouane (3 jours)

A2 et A33 - Passes-Dangereuses (3 jours)

A3 et A34 - Bassin amont (3 jours)

A4 et A35 - Chute du Diable (3 jours)

A5 et A36 - Chute à la Savane (3 jours)

A6 et A37 - Lac St-Jean (3 jours)

A7 et A38 - Bassin aval (3 jours)

A8 et A39 - Bassin total (3 jours)

A9 et A40 - Bagotville-A (3 jours)

A10 et A41 - Bonnard (1 jour)

A11 et A42 - Bonnard (3 jours)

A12 et A43 - Chute du Diable (3 jours)

A13 et A44 - Chute-des-passes (1 jour)

A14 et A45 - Chute-des-passes (3 jours)

A15 et A46 - Chapais-2 (3 jours)

A16 et A47 - Chibougamau-A (3 jours)

A17 et A48 - Isle-Maligne (3 jours)

A18 et A49 - Lac Bouchette (3 jours)

A19 et A50 - Mistassini Post (3 jours)

A20 et A51 - Nitchequon (3 jours)

A21 et A52 - Normandin-CDA (3 jours)

A22 et A53 - Péribonca (3 jours)

A23 et A54 - Roberval-A (Série A - 1 jour)

A24 et A55 - Roberval-A (Série A - 3 jours)

A25 et A56 - Roberval-A (Série B - 1 jour)

A26 et A57 - Roberval-A (Série B - 3 jours)

A27 et A58 - Roberval-A (Série C - 1 jour)

A29 et A60 - Roberval-A (Série C - 3 jours)

A31 et A62 - Shipshaw (3 jours)

Titre de l'étude : LAC MANOUANE, 0104-3006, 3J

Numéro	Données	Identificateur	Active/Désactive
1	19.40	28 - 04 - 1953	Active
2	28.90	10 - 05 - 1954	Active
3	30.10	29 - 06 - 1955	Active
4	25.80	13 - 05 - 1956	Active
5	27.30	28 - 06 - 1957	Active
1 6	35.90	14 - 06 - 1958	Active
1 7	32.50	8 - 06 - 1959	Active
8	32.00	24 - 06 - 1960	Active
9	29.90	18 - 06 - 1961	Active
10	31.10	3 - 05 - 1962	Active
11	71.80	20 - 06 - 1963	Active
12	49.70	23 - 06 - 1964	Active
1 13	28.10	16 - 05 - 1965	Active Active
1 14	23.70	19 - 05 - 1966	Active Active
15	34.30	6 - 06 - 1967	Active Active
16	30.10	2 - 06 - 1968 18 - 06 - 1969	Active
17	23.10	18 - 06 - 1969 19 - 06 - 1970	Active
1 18	45.60	19 - 06 - 1970	Active
19	31.50 28.20	14 - 06 - 1972	Active
20	41.90	3 - 05 - 1973	Active
21 22	41.90 27.70	11 - 05 - 1974	Active
22	27.70 36.90	31 - 05 - 1975	Active
23	30.90 38.90	12 - 05 - 1976	Active
24	38.90 28.40	30 - 06 - 1977	Active
1 26	59.70	12 - 06 - 1978	Active
1 27	39.70 46.80	11 - 06 - 1979	Active
28	24.90	26 - 06 - 1980	Active
1 29	32.10	23 - 06 - 1981	Active
30	35.10	20 - 06 - 1982	Active
31	37.30	18 - 04 - 1983	Active
32	28.00	26 - 05 - 1984	Active
33	35.80	18 - 05 - 1985	Active
34	34.10	15 - 06 - 1986	Active
35	27.90	26 - 06 - 1987	Active
36	41.30	29 - 06 - 1988	Active
37	27.10	28 - 06 - 1989	Active
37	28.80	25 - 06 - 1990	Active
39	28.50	12 - 05 - 1991	Active
1 40	42.60	20 - 06 - 1992	Active
1 41	32.90	27 - 06 - 1993	Active
42	64.30	29 - 06 - 1994	Active
43	33.20	14 - 04 - 1995	Active
,	,		

Titre de l'étude : CHUTE DES PASSES , 0104-3006, 3J

Numéro	Données	Identificateur	Active/Désactive
1 1	19.20	28 - 04 - 1953	Active
2	28.20	10 - 05 - 1954	Active
3	30.80	29 - 06 - 1955	Active
4	26.00	13 - 05 - 1956	Active
J 5 I	27.20	28 - 06 - 1957	Active
6	35.50	14 - 06 - 1958	Active
7	31.80	8 - 06 - 1959	Active
8	29.80	10 - 05 - 1960	Active
9	26.90	18 - 06 - 1961	Active
10	30.50	3 - 05 - 1962	Active
11	69.00	20 - 06 - 1963	Active
12	44.40	23 - 06 - 1964	Active
13	28.60	16 - 05 - 1965	Active
14	24.10	19 - 05 - 1966	Active
15	33.50	6 - 06 - 1967	Active
16	27.70	2 - 06 - 1968	Active
17	24.40	18 - 06 - 1969	Active
18	42.90	10 - 06 - 1970	Active
19	31.10	19 - 06 - 1971	Active
20	30.50	14 - 06 - 1972	Active
21	43.70	3 - 05 - 1973	Active Active
22	28.40	11 - 05 - 1974	Active Active
23	34.80	31 - 05 - 1975	Active Active
24	37.20	12 - 05 - 1976 30 - 06 - 1977	Active Active
25	29.10 59.00	00 00 20	Active Active
26	•	12 - 06 - 1978 11 - 06 - 1979	Active
27	44.80	26 - 06 - 1980	Active
28 29	25.10 31.60	23 - 06 - 1981	Active
30	33.50	20 - 06 - 1982	Active
30 31	35.70	18 - 04 - 1983	Active
31	33.70 27.10	26 - 05 - 1984	Active
32	27.10 34.30	18 - 05 - 1985	Active
34	31.40	15 - 06 - 1986	Active
34	25.70	26 - 06 - 1987	Active
36	38.80	29 - 06 - 1988	Active
37	24.00	28 - 06 - 1989	Active
37	31.20	25 - 06 - 1990	Active
39	28.20	12 - 05 - 1991	Active
1 40	43.00	20 - 06 - 1992	Active
41	36.20	4 - 05 - 1993	Active
42	57.10	29 - 06 - 1994	Active
43	31.20	14 - 04 - 1995	Active

Titre de l'étude : BASSIN D'AMONT, 0104-3006, 3J

-	Numéro	Données	Identificateur	Active/Désactive
- -	1	19.30	28 - 04 - 1953	Active
i	2	28.40	10 - 05 - 1954	Active
İ	3	30.60	29 - 06 - 1955	Active
İ	4	25.90	13 - 05 - 1956	Active
İ	5	27.20	28 - 06 - 1957	Active
i	6	35.60	14 - 06 - 1958	Active
1	7	32.00	8 - 06 - 1959	Active
1	8	30.40	24 - 06 - 1960	Active
	9	27.80	18 - 06 - 1961	Active
	10	30.60	3 - 05 - 1962	Active
	11	69.90	20 - 06 - 1963	Active
	12	45.90	23 - 06 - 1964	Active
-	13	28.50	16 - 05 - 1965	Active
-	14	24.00	19 - 05 - 1966	Active
	15	33.70	6 - 06 - 1967	Active
1	16	28.40	2 - 06 - 1968	Active
1	17	24.00	18 - 06 - 1969	Active
1	18	43.30	10 - 06 - 1970	Active
	19	31.10	19 - 06 - 1971	Active
	20	29.90	14 - 06 - 1972	Active
1	21	43.10	3 - 05 - 1973	Active
-	22	28.20	11 - 05 - 1974	Active
-	23	35.40	31 - 05 - 1975	Active
-	24	37.80	12 - 05 - 1976	Active
- [25	28.90	30 - 06 - 1977	Active
	26	59.00	12 - 06 - 1978	Active
	27	45.30	11 - 06 - 1979	Active
!	28	25.00	26 - 06 - 1980	Active
!	29	31.80	23 - 06 - 1981	Active
!	30	34.00	20 - 06 - 1982	Active
-	31	36.10	18 - 04 - 1983	Active
	32	27.40	26 - 05 - 1984	Active
	33	34.80	18 - 05 - 1985	Active Active
!	34	32.20	15 - 06 - 1986	•
1	35	26.40	26 - 06 - 1987	Active
1	36 37	39.50	29 - 06 - 1988	Active Active
	37 39	24.90	28 - 06 - 1989	Active Active
-	38	30.40	25 - 06 - 1990 12 - 05 - 1991	Active Active
- [39 40	28.20		Active Active
	40	43.00		Active Active
1	41 42	34.80 59.20	4 - 05 - 1993 29 - 06 - 1994	Active
l	42	39.20	14 - 04 - 1995	Active Active
I	43	31.70		

Titre de l'étude : CHUTE DU DIABLE, 0104-3006, 3J

Numéro	Données	Identificateur	Active/Désactive
1	23.70	9 - 06 - 1953	Active
2	34.00	6 - 06 - 1954	Active
3	26.70	29 - 05 - 1955	Active
4	24.20	13 - 05 - 1956	Active
5	30.00	28 - 06 - 1957	Active
6	44.20	14 - 06 - 1958	Active
7	38.30	8 - 06 - 1959	Active
8	39.60	24 - 06 - 1960	Active
9	35.70	20 - 06 - 1961	Active
10	32.00	3 - 05 - 1962	Active
11	52.40	20 - 06 - 1963	Active
12	46.30	9 - 05 - 1964	Active
13	30.90	16 - 05 - 1965	Active
14	23.10	19 - 05 - 1966	Active
15	33.70	6 - 06 - 1967	Active
16	26.20	25 - 04 - 1968	Active
17	29.60	18 - 06 - 1969	Active
18	32.60	1 - 06 - 1970	Active
19	28.00	19 - 06 - 1971	Active
20	36.40	2 - 06 - 1972	Active
21	38.10	7 - 06 - 1973	Active
22	35.20	11 - 05 - 1974	Active
j 23 j	36.40	31 - 05 - 1975	Active
24	45.70	12 - 05 - 1976	Active
25	27.20	30 - 06 - 1977	Active
j 26 j	50.50	12 - 06 - 1978	Active
i 27 i	42.90	11 - 06 - 1979	Active
28	25.90	26 - 06 - 1980	Active
29 j	49.20	23 - 06 - 1981	Active
30 j	38.30	20 - 06 - 1982	Active
i 31 i	35.60 j	18 - 04 - 1983	Active
32	31.60	24 - 05 - 1984	Active
j 33 j	38.60	19 - 05 - 1985	Active
j 34 j	20.90	16 - 06 - 1986	Active
i 35 i	17.40	10 - 05 - 1987	Active
i 36 i	33.40	28 - 06 - 1988	Active
i 37 i	27.30	28 - 06 - 1989	Active
38	30.00	25 - 06 - 1990	Active
39	25.00	7 - 05 - 1991	Active
40	33.90	21 - 04 - 1992	Active
41	31.00	4 - 05 - 1993	Active
i 42 i	60.30	29 - 06 - 1994	Active
i 43 i	33.90	14 - 04 - 1995	Active

Titre de l'étude : CHUTE A LA-SAVANE, 0104-3006, 3J

Numéro	Données	Identificateur	Active/Désactive
1	25.50	9 - 06 - 1953	Active
2	35.80	6 - 06 - 1954	Active
3	29.20	14 - 04 - 1955	Active
4	24.30	13 - 05 - 1956	Active
1 5 1	29.70	28 - 06 - 1957	Active
6	44.10	14 - 06 - 1958	Active
7 !	38.90	8 - 06 - 1959	Active
8	27.80	16 - 06 - 1960	Active
9 1	37.20	20 - 06 - 1961	Active
10	34.00	31 - 05 - 1962	Active
11	51.20	30 - 06 - 1963	Active
12	44.90	9 - 05 - 1964	Active
13	30.80	16 - 05 - 1965	Active
14	22.20	19 - 05 - 1966	Active
15	33.40	6 - 06 - 1967	Active
16	20.10	2 - 06 - 1968	Active
17	37.60	18 - 06 - 1969	Active
18	47.40	1 - 06 - 1970	Active
19	24.00	19 - 06 - 1971	Active
20	30.10	21 - 06 - 1972	Active
21	40.70	22 - 04 - 1973	Active
22	38.80	10 - 05 - 1974	Active
23	37.60	31 - 05 - 1975	Active
24	39.10	11 - 05 - 1976	Active
25	27.60	30 - 06 - 1977	Active
26	24.10	12 - 06 - 1978	Active
27	42.60	10 - 06 - 1979	Active
28	25.50	9 - 04 - 1980	Active
29	62.10	23 - 06 - 1981	Active
30	39.40	20 - 06 - 1982	Active
31	44.60	8 - 05 - 1983	Active
32	37.90	24 - 05 - 1984	Active
33	39.80	19 - 05 - 1985	Active
34	23.60	20 - 05 - 1986	Active
35	23.50	27 - 06 - 1987	Active
36	41.90	26 - 06 - 1988	Active
37	25.80	7 - 05 - 1989	Active
38	38.00	17 - 06 - 1990	Active
39	27.10	7 - 05 - 1991	Active
40	55.70	21 - 04 - 1992	Active
41	27.50	10 - 06 - 1993	Active
42	42.70	29 - 06 - 1994	Active
43	27.80	16 - 05 - 1995	Active

Titre de l'étude : LAC ST-JEAN, 0104-3006, 3J

Numéro	Données	Identificateur	Active/Désactive
1	19.20	28 - 04 - 1953	Active
2	30.50	10 - 05 - 1954	Active
] 3	25.10	28 - 05 - 1955	Active Active
4 5	25.90 32.10	16 - 04 - 1956 28 - 06 - 1957	Active
5	32.10 30.50	26 - 06 - 1958	Active
1 7	30.30 39.70	8 - 06 - 1959	Active
, , 8	30.00	16 - 06 - 1960	Active
9	27.50	18 - 06 - 1961	Active
10	28.70	30 - 05 - 1962	Active
11	47.40	20 - 06 - 1963	Active
12	46.60	9 - 05 - 1964	Active
13	37.00	16 - 05 - 1965	Active
14	25.30	19 - 05 - 1966	Active
15	28.10	6 - 06 - 1967	Active
16	19.20	2 - 06 - 1968	Active
17	27.20	18 - 06 - 1969	Active
18	30.30	1 - 06 - 1970	Active
19	24.20	19 - 06 - 1971	Active
20	30.40	21 - 06 - 1972	Active
21	34.40	3 - 05 - 1973	Active
22	37.80	11 - 05 - 1974	Active
23	30.40	21 - 05 - 1975	Active
24	27.90	18 - 05 - 1976	Active
25	30.30	30 - 06 - 1977	Active
26	40.30	11 - 06 - 1978	Active
27	43.30	9 - 06 - 1979	Active
28	23.30	9 - 04 - 1980	Active
29	44.40	12 - 05 - 1981	Active
] 30	31.90	20 - 06 - 1982	Active
31	26.70	16 - 04 - 1983	Active
32	27.90	25 - 05 - 1984	Active
33	27.20	31 - 05 - 1985	Active
34	23.20	20 - 05 - 1986	Active
35	22.40	30 - 05 - 1987	Active
36	35.30	26 - 06 - 1988	Active
37	25.70	27 - 06 - 1989	Active
38	33.90	18 - 06 - 1990	Active
39	23.60	24 - 05 - 1991	Active
40	40.80	21 - 04 - 1992	Active
41	29.20	4 - 05 - 1993 29 - 06 - 1994	Active
42	38.10 30.40	16 - 05 - 1994	Active Active
1 43	30.40	10 - 00 - 1995	ACCIVE

Titre de l'étude : BASSIN D'AVAL, 0104-3006, 3J

Numéro	Données	Identificateur	Active/Désactive
1	20.00	28 - 04 - 1953	Active
2	31.20	10 - 05 - 1954	Active
3	25.00	28 - 05 - 1955	Active
4	25.10	16 - 04 - 1956	Active
5	31.60	28 - 06 - 1957	Active
6	31.80	14 - 06 - 1958	Active
7	39.40	8 - 06 - 1959	Active
8	28.90	16 - 06 - 1960	Active
9	29.00	18 - 06 - 1961	Active
10	27.70	31 - 05 - 1962	Active
11	47.80	20 - 06 - 1963	Active
12	46.50	9 - 05 - 1964	Active
13	35.80	16 - 05 - 1965	Active
14	24.90	19 - 05 - 1966	Active
15	29.20	6 - 06 - 1967	Active
16	19.30	2 - 06 - 1968	Active
17	27.80	18 - 06 - 1969	Active
18	31.00	1 - 06 - 1970	Active
19	24.90	19 - 06 - 1971	Active
20	30.00	14 - 06 - 1972	Active
21	35.10	3 - 05 - 1973	Active
22	37.40	11 - 05 - 1974	Active
23	29.30	31 - 05 - 1975	Active
24	26.90	11 - 05 - 1976	Active
25	29.70	30 - 06 - 1977	Active
26	40.90	11 - 06 - 1978	Active
27	41.50	9 - 06 - 1979	Active
28	23.70	9 - 04 - 1980	Active
29	44.30	12 - 05 - 1981	Active
30	33.20	20 - 06 - 1982	Active
31	27.90	16 - 04 - 1983	Active
32	28.10	24 - 05 - 1984	Active !
33	27.30	19 - 05 - 1985	Active
34	22.20	15 - 06 - 1986	Active
35	21.40	30 - 05 - 1987	Active
36	34.30	26 - 06 - 1988	Active
37	25.70	27 - 06 - 1989	Active
38	32.10	18 - 06 - 1990	Active
39	23.50	24 - 05 - 1991	Active
40	39.90	21 - 04 - 1992	Active
41	29.30	4 - 05 - 1993	Active
42	41.90	29 - 06 - 1994	Active Active
43	28.40	16 - 05 - 1995	I VCCTAG

Titre de l'étude : BASSIN TOTAL, 0104-3006, 3J

Numéro	Données	Identificateur	Active/Désactive
1	19.90	28 - 04 - 1953	Active
2	30.60	10 - 05 - 1954	Active
3	25.20	29 - 06 - 1955	Active
4	24.70	16 - 04 - 1956	Active
5	30.70	28 - 06 - 1957	Active
6	32.70	14 - 06 - 1958	Active
7	37.90	8 - 06 - 1959	Active
8	28.60	16 - 06 - 1960	Active
9	28.70	18 - 06 - 1961	Active
10	26.20	31 - 05 - 1962	Active
11	52.70	20 - 06 - 1963	Active
12	45.50	9 - 05 - 1964	Active
13	34.20	16 - 05 - 1965	Active
14	24.80	19 - 05 - 1966	Active
15	30.30	6 - 06 - 1967	Active
16	21.30	2 - 06 - 1968	Active
17	27.00	18 - 06 - 1969	Active
18	31.70	10 - 06 - 1970	Active
19	26.30	19 - 06 - 1971	Active
20	30.00	14 - 06 - 1972	Active
21	36.90	3 - 05 - 1973	Active
22	35.40	11 - 05 - 1974	Active
23	30.70	31 - 05 - 1975	Active
24	29.30	12 - 05 - 1976	Active
25	29.50	30 - 06 - 1977	Active
26	44.80	12 - 06 - 1978	Active
27	42.10	11 - 06 - 1979	Active
28	22.50	9 - 04 - 1980	Active
29	40.70	12 - 05 - 1981	Active
30	33.50	20 - 06 - 1982	Active
31	29.40	16 - 04 - 1983	Active
32	27.60	26 - 05 - 1984	Active
33	28.90	19 - 05 - 1985	Active
34	24.40	15 - 06 - 1986	Active
35	21.90	26 - 06 - 1987	Active
36	31.60	26 - 06 - 1988	Active
37	25.40	27 - 06 - 1989	Active
38	27.30	18 - 06 - 1990	Active
39	24.30	24 - 05 - 1991	Active
40	33.00	21 - 04 - 1992	Active
41	30.60	4 - 05 - 1993	Active
42	45.90 j	29 - 06 - 1994	Active
43	24.20	16 - 05 - 1995	Active

Titre de l'étude : BAGOTVILLE-A, 0104-3006, 3J

11016 00 1			
Numéro	Données	Identificateur	Active/Désactive
1	23.90	27 - 04 - 1953	Active
<u> </u>	38.40	4 - 06 - 1954	Active
3	34.50	27 - 05 - 1955	Active
4	28.60	30 - 05 - 1956	Active
5	36.90	19 - 04 - 1957	Active
6	57.40	13 - 06 - 1958	Active
i 7	44.90	7 - 06 - 1959	Active
j 8	32.30	15 - 06 - 1960	Active
j 9	39.70	19 - 06 - 1961	Active
10	42.90	30 - 05 - 1962	Active
11	52.00		Active
12	59.20	4 - 06 - 1964	Active
j 13	23.10	11 - 05 - 1965	Active
j 14	28.00	27 - 05 - 1966	Active
15	46.50	23 - 06 - 1967	Active
j 16	16.00	1 - 06 - 1968	Active
. i 17	20.10	10 - 05 - 1969	Active
18	33.00	31 - 05 - 1970	Active
19	35.10	20 - 05 - 1971	Active
20	66.00	21 - 06 - 1972	Active
21	41.40	21 - 04 - 1973	Active
22	33.30	8 - 05 - 1974	Active
23	30.30	21 - 06 - 1975	Active
24	52.30		Active
25	39.10	5 - 06 - 1977	Active
26	47.30	12 - 06 - 1978	Active
27	37.50	11 - 06 - 1979	Active
28	26.60	24 - 06 - 1980	Active
29	59.00	11 - 05 - 1981	Active
30	39.40	18 - 06 - 1982	Active
31	40.60	7 - 05 - 1983	Active
32	39.90	23 - 05 - 1984	Active
33	66.70	18 - 05 - 1985	Active
34	80.80	19 - 05 - 1986	Active
35	44.40	27 - 06 - 1987	Active
36	39.40	25 - 06 - 1988	Active
37	32.40	2 - 06 - 1989	Active
38	42.20	17 - 06 - 1990	Active
39	21.50	22 - 05 - 1991	Active
40	56.00	21 - 04 - 1992	Active
41	37.40	20 - 06 - 1993	Active
42	48.80	28 - 06 - 1994	Active
43	32.60	15 - 05 - 1995	Active

Titre de l'étude : BONNARD, 0104-3006, 1J

Numéro	Donnée	s 	Identificateur		Active/Désactive
1	21.3	0	5 - 05 - 1962	-	Active
2	45.7		19 - 06 - 1963	1	Active
3	66.5		22 - 06 - 1964	- 1	Active
4	22.4	•	15 - 05 - 1965		Active
1 5	16.0		18 - 05 - 1966	1	Active
6	31.8	-	5 - 06 - 1967	-	Active
7	39.4	•	2 - 06 - 1968	- 1	Active
8	16.0		1 - 06 - 1969	1	Active
9	46.2	•	9 - 06 - 1970	-	Active
10	19.6	-	17 - 06 - 1971	}	Active
11	20.8		29 - 05 - 1972	1	Active
12	27.2		21 - 06 - 1973	-	Active
13	17.3		11 - 05 - 1974	1	Active
14	17.5		31 - 05 - 1975	1	Active
15	32.5	•	11 - 05 - 1976	1	Active
16	16.8		28 - 06 - 1977	1	Active
17	36.6		11 - 06 - 1978		Active
18	24.2	-	9 - 06 - 1979	1	Active
19	20.0		24 - 06 - 1980		Active
20	23.0	•	15 - 05 - 1981	ł	Active
21	26.4	•	7 - 05 - 1982	İ	Active
22	31.0	•	16 - 04 - 1983	1	Active
23	21.8		25 - 05 - 1984	١	Active
24	21.0	•	9 - 06 - 1985	1	Active
25	34.2		15 - 06 - 1986	- 1	Active
26	22.4		13 - 05 - 1987	1	Active
27	34.80	•	27 - 06 - 1988	I	Active
28	42.80	•	27 - 06 - 1989	1	Active
29	18.80	•	25 - 04 - 1990		Active
] 30	21.60		10 - 05 - 1991	ı	Active
31	30.40		26 - 06 - 1992		Active
32	21.80	•	27 - 06 - 1993	İ	Active
33	52.00		27 - 06 - 1994		Active
34	45.40)	23 - 06 - 1995	ı	Active

Titre de l'étude : BONNARD, 0104-3006, 3J

_						
	Numéro	Données	 	Identificateur	Active/Désactive	
1	1	33.00	1	4 - 05 - 1962	Active	
	2	82.30	1	19 - 06 - 1963	Active	1
-	3	71.80	- 1	22 - 06 - 1964	Active	
	4	26.80	l	21 - 06 - 1965	Active	- 1
1	5	22.90	1	19 - 05 - 1966	Active	
١	6	37.10	1	5 - 06 - 1967	Active	1
١	7	41.00	ł	2 - 06 - 1968	Active	- 1
1	8	23.60	1	8 - 05 - 1969	Active	ł
	9	63.20	1	17 - 06 - 1970	Active	-
	10	32.30	1	18 - 06 - 1971	Active	
1	11	27.40	1	28 - 05 - 1972	Active	-
1	12	43.90	-	21 - 06 - 1973	Active	İ
1	13	23.90	l	10 - 05 - 1974	Active	ŀ
١	14	37.80	1	30 - 05 - 1975	Active	
	15	42.41	1	10 - 05 - 1976	Active	
-	16	31.70	-	4 - 06 - 1977	Active	ł
1	17	64.00	l	11 - 06 - 1978	Active	
1	18	52.30	-	10 - 06 - 1979	Active	1
-	19	25.20	1	25 - 06 - 1980	Active	- 1
ı	20	35.00	i	9 - 06 - 1981	Active	1
- 1	21	38.00		19 - 06 - 1982	Active	
1	22	43.80	-	17 - 04 - 1983	Active	1
1	23	32.40	ļ	25 - 05 - 1984	Active	
-	24	48.20	1	18 - 06 - 1985	Active	ŀ
-	25	45.60	1	15 - 06 - 1986	Active	
1	26	36.40	1	25 - 06 - 1987	Active	1
-	27	51.80		28 - 06 - 1988	Active	
.	28	50.80	1	26 - 06 - 1989	Active	1
l	29	31.60	-	22 - 06 - 1990	Active	-
I	30	24.60	İ	22 - 05 - 1991	Active	-
- [31	52.20	-	19 - 06 - 1992	Active	-
1	32	43.40	1	26 - 06 - 1993	Active	1
1	33	69.00		28 - 06 - 1994	Active	Ĭ
-	34	45.40	1	22 - 06 - 1995	Active	-1

Titre de l'étude : CHUTE-DU-DIABLE, 0104-3006, 3J

Numéro	Données	Identificateur	Active/Désactive
1	32.80	8 - 06 - 1953	Active
2	41.70	9 - 05 - 1954	Active
3	49.00	12 - 04 - 1955	Active
4	27.90	6 - 06 - 1956	Active
5	24.10	27 - 06 - 1957	Active
6	43.50	13 - 06 - 1958	Active
7	37.90	7 - 06 - 1959	Active
8	28.30	15 - 06 - 1960	Active
9	41.90	19 - 06 - 1961	Active
10	37.80	30 - 05 - 1962	Active
11	61.90	29 - 06 - 1963	Active
12	47.50	4 - 06 - 1964	Active
13	32.00	16 - 05 - 1965	Active
14	18.50	18 - 05 - 1966	Active
15	34.80	5 - 06 - 1967	Active
16	20.30	31 - 05 - 1968	Active
17	43.00	17 - 06 - 1969	Active
18	47.70	31 - 05 - 1970	Active
19	24.90	18 - 06 - 1971	Active
20	27.70	30 - 05 - 1972	Active
21	38.70	21 - 04 - 1973	Active
22	38.60	8 - 05 - 1974	Active
23	33.50	26 - 05 - 1975	Active
24	35.30	10 - 05 - 1976	Active
25	23.70	23 - 05 - 1977	Active
26	25.10	26 - 05 - 1978	Active
27	38.10	9 - 06 - 1979	Active
28	29.70	16 - 05 - 1980	Active
29	71.00	22 - 06 - 1981	Active
] 30	53.00	19 - 06 - 1982	Active
31	60.00	7 - 05 - 1983	Active
32	41.00	23 - 05 - 1984	Active
33	43.00	18 - 05 - 1985	Active
34	24.00	5 - 05 - 1986	Active
35	24.00	29 - 05 - 1987	Active
36	49.00	25 - 06 - 1988	Active
37	34.00	5 - 04 - 1989	Active
38	33.00	16 - 06 - 1990	Active
39	30.00	6 - 05 - 1991	Active
40	56.00	20 - 04 - 1992	Active
41	35.00	8 - 06 - 1993	Active
42	34.00	28 - 06 - 1994	Active
43	29.00	22 - 05 - 1995	Active

Titre de l'étude : CHUTE-DES-PASSES, 0104-3006, 1J

Numéro	Données	 	Identificateur	Active/Désactive
1 1 2 3 4	53.80 27.40 30.50 23.60	1	23 - 06 - 1960 6 - 06 - 1961 3 - 05 - 1962 19 - 06 - 1963	Active Active Active Active Active Active
5 6 7 8 9	37.30 18.30 17.80 21.10 21.30		8 - 05 - 1964 6 - 06 - 1965 26 - 05 - 1966 2 - 05 - 1967 23 - 04 - 1968	Active Active Active Active Active Active Active
10 11 12 13 14	22.90 29.20 24.10 52.80 44.70		27 - 06 - 1969 9 - 06 - 1970 19 - 06 - 1971 2 - 06 - 1972 5 - 06 - 1973	Active Active Active Active Active Active Active
15 16 17 18 19	27.90 15.20 50.30 15.75 45.20		16 - 06 - 1974 31 - 05 - 1975 13 - 06 - 1976 28 - 06 - 1977 11 - 06 - 1978	Active Active Active Active Active Active Active
20 21 22 23 24	25.40 33.00 45.50 29.10 31.00		9 - 06 - 1979 24 - 06 - 1980 21 - 06 - 1981 16 - 04 - 1982 16 - 04 - 1983	Active Active Active Active Active Active Active
25 26 27 28 29	26.00 27.00 24.00 15.00 27.00		4 - 04 - 1984 11 - 05 - 1985 6 - 06 - 1986 5 - 05 - 1987 27 - 06 - 1988	Active Active Active Active Active Active Active
30 31 32 33	15.00 20.00 17.00 33.00		5 - 04 - 1989 23 - 06 - 1990 10 - 05 - 1991 16 - 05 - 1992	Active Active Active Active Active
34 35 36	25.00 34.00 21.00	1	10 - 04 - 1993 27 - 06 - 1994 12 - 04 - 1995	Active Active Active

Titre de l'étude : CHUTE-DES-PASSES, 0104-3006, 3J

Numéro	Données	Identificateur	Active/Désactive
1 1	62.20	23 - 06 - 1960	Active
2	35.80	19 - 06 - 1961	Active
3	44.00	2 - 05 - 1962	Active
4	57.20	19 - 06 - 1963	Active
5	53.00	8 - 05 - 1964	Active
6	31.60	16 - 05 - 1965	Active
7	22.10	18 - 05 - 1966	Active
8	36.00	5 - 06 - 1967	Active
9	36.50	23 - 04 - 1968	Active
10	32.30	28 - 06 - 1969	Active
11	36.80	8 - 06 - 1970	Active
12	24.90	21 - 04 - 1971	Active
13	53.80	1 - 06 - 1972	Active
14	63.80	6 - 06 - 1973	Active
15	33.30	10 - 05 - 1974	Active
16	33.50	30 - 05 - 1975	Active
17	68.60	13 - 06 - 1976	Active
18	33.79	28 - 06 - 1977	Active
19	72.10	11 - 06 - 1978	Active
20	39.10	10 - 06 - 1979	Active
21	41.60	25 - 06 - 1980	Active
22	51.10	11 - 05 - 1981	Active
23	44.30	19 - 06 - 1982	Active
24	49.00	16 - 04 - 1983	Active
25	33.00	5 - 04 - 1984	Active
26	39.00	18 - 05 - 1985	Active
27	27.00	6 - 06 - 1986	Active
28	23.00	9 - 05 - 1987	Active
29	33.00	20 - 06 - 1988	Active
30	28.00	5 - 04 - 1989	Active
31	41.00	22 - 06 - 1990	Active
32	24.00	6 - 05 - 1991	Active
33	44.00	20 - 04 - 1992	Active
34	38.00	3 - 05 - 1993	Active
35	66.00	28 - 06 - 1994	Active
36	39.00	13 - 04 - 1995	Active

Titre de l'étude : CHAPAIS-2, 0104-3006, 3J

Titre de l'étude : CHIBOUGAMAU-A, 0104-3006, 3J

Numéro		Données		Identificateur	 I	Active/Désactive
1 1		45.00		20 - 06 - 1972		Active [
į 2	i	68.90	i	7 - 06 - 1973	i	Active
j 3	Ĺ	39.30	i	12 - 05 - 1974	İ	Active
4	1	32.80	i	20 - 05 - 1975	j	Active
5	1	58.60	i	17 - 05 - 1976	- 1	Active
6		41.50	İ	29 - 06 - 1977	1	Active
7	1	90.40	Ì	10 - 06 - 1978	ł	Active
8	1	44.40	1.5	8 - 06 - 1979	1	Active
9	-	31.80	1	23 - 06 - 1980	- 1	Active
10	-	40.80	-	12 - 05 - 1981		Active
11	- 1	34.20	1	16 - 04 - 1982		Active
12	1	25.20	-	20 - 04 - 1983	-	Active
13	1	23.00	- 1	7 - 05 - 1984	1	Active
14	-	34.00	1	17 - 06 - 1985	-	Active
15		46.00		30 - 04 - 1986	1	Active
16		37.40	1	2 - 06 - 1987	1	Active
17		29.60	-	20 - 06 - 1988	-	Active
18	-	31.20	1 -	8 - 06 - 1989	1	Active
19	1	35.80	-	22 - 06 - 1990		Active
20	1	37.80	1	25 - 06 - 1991		Active
21	1	56.20	1	21 - 04 - 1992	-	Active
22	I	43.00	1	3 - 05 - 1993	. [Active
23	1	46.50	1	30 - 05 - 1994	1	Active
24	1	18.60		21 - 05 - 1995	1	Active

Titre de l'étude : ISLE-MLIGNE, 0104-3006, 3J

Numéro	Données	Identificateur	Active/Désactive
1	21.60	27 - 04 - 1953	Active
2	47.00	5 - 06 - 1954	Active
3	26.20	28 - 05 - 1955	Active
4	26.70	22 - 06 - 1956	Active
j 5 j	31.00	28 - 06 - 1957	Active
i 6	47.80	13 - 06 - 1958	Active
7	32.30	7 - 06 - 1959	Active
8	24.40	1 - 05 - 1960	Active
9	35.80	19 - 06 - 1961	Active
10	31.70	30 - 05 - 1962	Active
11	47.20 i	29 - 06 - 1963	Active
12	38.90 i	8 - 05 - 1964	Active
i 13 i	38.70 i	10 - 05 - 1965	Active
14	21.10	29 - 06 - 1966	Active
15	35.30	18 - 05 - 1967	Active
16	28.90 i	1 - 06 - 1968	Active
17	27.00	18 - 05 - 1969	Active
18	49.30	31 - 05 - 1970	Active
19	24.30	2 - 05 - 1971	Active
20	35.30	20 - 06 - 1972	Active
21	44.20	2 - 05 - 1973	Active
22	33.00	8 - 05 - 1974	Active
23	45.70	30 - 05 - 1975	Active
24	41.60	30 - 06 - 1976	Active
25	33.40	22 - 05 - 1977	Active
26	45.00	21 - 06 - 1978	Active
27	45.70	10 - 06 - 1979	Active
28	28.90	15 - 06 - 1980	Active
29	80.60	22 - 06 - 1981	Active
30	43.80	30 - 05 - 1982	Active
31	51.00	7 - 05 - 1983	Active
32	46.50	10 - 06 - 1984	Active
33	59.40	18 - 05 - 1985	Active
34	46.70	19 - 05 - 1986	Active
35	36.60	21 - 04 - 1987	Active
36	37.50	25 - 06 - 1988	Active
37	23.90	6 - 05 - 1989	Active
38	27.50	17 - 06 - 1990	Active
39	29.40	5 - 05 - 1991	Active
40	67.00	20 - 04 - 1992	Active
41	37.60	8 - 06 - 1993	Active

Titre de l'étude : LAC BOUCHETTE, 0104-3006, 3J

Numéro	Données		Identificateur	Active/Désactive
1 1 1	26.10		9 - 06 - 1953	Active
2	39.90	i	4 - 06 - 1954	Active
3	39.80	i	29 - 05 - 1955	Active
4	32.70	i	15 - 04 - 1956	Active
5 i	46.50	i	27 - 06 - 1957	Active
i 6 i	36.90	i	20 - 04 - 1958	Active
i 7 i	58.70	j	7 - 06 - 1959	Active
j 8 j	27.00	Ì	15 - 06 - 1960	Active
9 1	32.50	ı	19 - 06 - 1961	Active
10	32.50	1.	28 - 06 - 1962	Active
11	42.90	1	29 - 06 - 1963	Active
12	54.10	1	28 - 06 - 1964	Active
13	30.50	1	8 - 05 - 1965	Active
14	23.70	1	16 - 05 - 1966	Active
15	31.00	ĺ	5 - 06 - 1967	Active
16	21.60	1	1 - 06 - 1968	Active
17	33.60	İ	8 - 05 - 1969	Active
18	39.40	-	31 - 05 - 1970	Active
19	54.30	-	2 - 05 - 1971	Active
20	79.50		20 - 06 - 1972	Active
21	41.20	1	5 - 06 - 1973	Active
22	28.50	1	13 - 05 - 1974	Active
23	34.60	1	25 - 05 - 1975	Active
24	42.00	1	30 - 06 - 1976	Active
25	24.90	1	29 - 06 - 1977	Active
26	35.50	1	21 - 06 - 1978	Active
27	57.40	-	10 - 06 - 1979	Active
28	25.80	-	12 - 04 - 1980	Active
29	98.40	1	22 - 06 - 1981	Active
30	32.80	1	18 - 06 - 1982	Active
31	39.20		7 - 05 - 1983	Active
32	38.20	ı	23 - 05 - 1984	Active
33	42.20	1	18 - 05 - 1985	Active
34	56.20		19 - 05 - 1986	Active
35	42.00	l	29 - 05 - 1987	Active
36	43.20	1	25 - 06 - 1988	Active
37	38.60	Ì	26 - 06 - 1989	Active
38	27.80	1	17 - 06 - 1990	Active
39	20.80	ı	5 - 05 - 1991	Active

Titre de l'étude : MISTASSINI POST, 0104-3006, 3J

1	Numéro	<u> </u>	Données		Identificateur	1	Active/Désactive	1
-	1	 	17.30	 	28 - 06 - 1953		Active	
İ	2	İ	34.50	i	1 - 05 - 1954	Ì	Active	i
i	3	i	57.90	i	27 - 06 - 1955	i	Active	i
i	4	İ	32.30	i	12 - 05 - 1956	ĺ	Active	i
i	5	1	38.10	į	9 - 06 - 1957	İ	Active	i
ĺ	6	ĺ	30.40	İ	27 - 06 - 1958	İ	Active	ĺ
ĺ	7	1	31.00	1	29 - 04 - 1959	1	Active	1
Ì	8	1	37.00	İ	15 - 06 - 1960	Ì	Active	I
Ī	9	1	27.90	Ì	13 - 05 - 1961	1	Active	ı
1	10	1	40.10	1	29 - 05 - 1962	1	Active	
1	11		48.30	-	20 - 06 - 1963	1	Active	-
1	12	1	43.90	1	17 - 06 - 1964		Active	-
1	13	1	51.10	-	21 - 06 - 1965	1	Active	
1	14	1	24.40	-1	18 - 05 - 1966		Active	
1	15	1	30.50	-	4 - 06 - 1967		Active	1
1	16	1	31.50	1	1 - 06 - 1968		Active	
١	17	1	42.90	1	28 - 06 - 1969		Active	-
1	18	1	35.60	!	8 - 06 - 1970	1	Active	١
1	19	İ	23.70	1	18 - 06 - 1971	İ	Active	
	20	1	35.30	1	20 - 06 - 1972		Active	- 1
1	21	1	72.40	1	2 - 05 - 1973	1	Active	ŀ
-	22		31.70		23 - 05 - 1974		Active	1
1	23		23.30	-	20 - 05 - 1975		Active	1
1	24	1	34.00	-	17 - 05 - 1976	!	Active	-
1	25	1	43.50		6 - 06 - 1977	1	Active	1
l	26	1	64.50		6 - 06 - 1978		Active	1
	27	1	61.50	1	22 - 06 - 1979	1	Active	1
_								

Titre de l'étude : NITCHEQUON, 0104-3006, 3J

Numéro	Données	1	Identificateur		Active/Désactive
1	37.60 26.20 39.90 45.90 26.10 34.60 23.40		15 - 06 - 1953 20 - 06 - 1954 28 - 06 - 1955 25 - 06 - 1956 29 - 06 - 1957 27 - 05 - 1958 27 - 06 - 1959		Active Active Active Active Active Active Active Active Active
8 9 10 11 12 13 13	17.00 21.60 8.90 81.80 30.00 40.90		27 - 06 - 1960 14 - 05 - 1961 31 - 05 - 1962 26 - 05 - 1963 6 - 05 - 1964 22 - 06 - 1965	 	Active Active Active Active Active Active Active
14 15 16 17 18	40.40 28.40 38.90 49.80 35.50 15.20		18 - 06 - 1966 13 - 06 - 1967 10 - 06 - 1968 26 - 06 - 1969 17 - 06 - 1970 11 - 05 - 1971		Active Active Active Active Active Active Active
20 21 22 23 24 25	23.90 43.40 33.60 38.40 20.90		13 - 06 - 1972 26 - 06 - 1973 31 - 05 - 1974 17 - 06 - 1975 17 - 05 - 1976		Active Active Active Active Active Active
25 26 27 28 29 30	23.60 40.70 36.60 29.70 27.20 36.60 45.00	 	23 - 06 - 1977 27 - 06 - 1978 8 - 06 - 1979 12 - 06 - 1980 28 - 06 - 1981 14 - 06 - 1982 22 - 06 - 1983		Active Act
32 33	36.80 20.00	<u> </u>	16 - 06 - 1984 18 - 05 - 1985		Active Active

Titre de l'étude : NORMANDIN-CDA, 0104-3006, 3J

Numéro	Données	Identificateur	Active/Désactive
1	20.80	20 - 04 - 1953	Active
2	37.30	15 - 04 - 1954	Active
] 3	23.80	28 - 05 - 1955	Active
4	37.80	22 - 06 - 1956 27 - 06 - 1957	Active Active
5 6	49.50 26.40	27 - 06 - 1957 25 - 06 - 1958	Active
1 7	45.40	7 - 06 - 1959	Active Active
/ 8	•	10 - 05 - 1960	Active
0	40.40 35.00	17 - 06 - 1961	Active
1 10	31.50	6 - 04 - 1962	Active
10	35.80	29 - 06 - 1963	Active
1 12	51.40	8 - 05 - 1964	Active
13	1 41.80	15 - 05 - 1965	Active
1 14	33.30	12 - 06 - 1966	Active
1 15	27.40	18 - 05 - 1967	Active
16	20.30	30 - 06 - 1968	Active
1 17	25.90	18 - 05 - 1969	Active
18	45.20	31 - 05 - 1970	Active
19	26.40	2 - 05 - 1971	Active
20	30.20	30 - 05 - 1972	Active
21	34.10	21 - 04 - 1973	Active
22	52.10	10 - 05 - 1974	Active
23	43.10	12 - 06 - 1975	Active
24	43.70	30 - 06 - 1976	Active
25	12.90	4 - 06 - 1977	Active
26	37.90	10 - 06 - 1978	Active
27	82.00	19 - 05 - 1979	Active
28	33.00	8 - 04 - 1980	Active
29	59.40	22 - 06 - 1981	Active
30	33.10	18 - 06 - 1982	Active
31	36.20	30 - 05 - 1983	Active
32	30.40	24 - 05 - 1984	Active
33	23.20	30 - 05 - 1985	Active
34	36.80	5 - 05 - 1986	Active
35	24.80	28 - 05 - 1987	Active
36	42.70	25 - 06 - 1988	Active
37	27.00	5 - 05 - 1989	Active
38	41.60	17 - 06 - 1990	Active
39	32.00	5 - 05 - 1991	Active
40	-99999.0	1 - 01 - 1992	Non-active
41	-99999.0	1 - 01 - 1993	Non-active
42	50.30	28 - 06 - 1994	Active
43	50.20	15 - 05 - 1995	Active

Titre de l'étude : PERIBONCA, 0104-3006, 3J

 Numéro			Identificateur		Active/Désactive
Numero	Données			_	ACCIVE/Desactive
1	24.90	1	27 - 04 - 1953	1	Active
2	39.10	į.	9 - 05 - 1954	ĺ	Active
3	29.20	1	28 - 05 - 1955	1	Active
4	50.00	1	19 - 06 - 1956	1	Active
5	43.20	1	27 - 06 - 1957	1	Active
6	25.40	1	27 - 05 - 1958	1	Non-active
1 7	33.80	1	7 - 06 - 1959	ļ	Active
8	30.80	. [3 - 06 - 1960	1	Active
) 9	34.80		17 - 06 - 1961	1	Active
10	15.20	1	31 - 05 - 1962	1	Non-active
11	39.20	- [29 - 06 - 1963		Active
12	39.10	-	4 - 06 - 1964		Active
13	24.10	-	26 - 06 - 1965		Active
14	22.10	1	18 - 05 - 1966		Active
15	39.40		18 - 05 - 1967		Active
16	22.60	1	30 - 06 - 1968		Active
17	31.00	1	4 - 06 - 1969		Active
18	46.40	1	31 - 05 - 1970	- 1	Active
19	21.80	I	24 - 05 - 1971	1	Active
20	30.20	1	30 - 05 - 1972	- 1	Active
21	41.40	1	21 - 04 - 1973	- 1	Active
22	33.30	-1	13 - 04 - 1974		Active
23	36.80		19 - 05 - 1975	I	Active
24	47.30	ŀ	10 - 05 - 1976	1	Active
25	33.30	- 1	29 - 06 - 1977	-	Active
26	25.70	1	11 - 06 - 1978	-	Active
27	46.70	1	10 - 06 - 1979	ı	Active
28	29.00	!	8 - 04 - 1980	-	Active
29	70.00	-	22 - 06 - 1981	1	Active
30	29.60	1	13 - 06 - 1982		Active

Titre de l'étude : ROBERVAL HISTORIQUE, 0104-3006, 1J

Numéro	Données	Identificateur	Active/Désactive
1 1	45.00	20 - 06 - 1914	Active
2	19.00	30 - 04 - 1915	Active
3	29.00	4 - 06 - 1916	Active
4	33.00	21 - 06 - 1917	Active
5	27.00	12 - 06 - 1918	Active
1 6	101.00	17 - 04 - 1919	Active
7	23.00	22 - 05 - 1920	Active
1 8	25.00	9 - 04 - 1921	Active
9	19.00	8 - 05 - 1922	Active
10	62.00	27 - 06 - 1923	Active
11	48.00	29 - 06 - 1924	Active
12	21.00	1 - 04 - 1925	Active
13	22.00	2 - 05 - 1926	Active
14	18.00	10 - 06 - 1927	Active
15	27.00	23 - 06 - 1928	Active
i 16	16.00	12 - 06 - 1929	Active
i 17	31.00	6 - 06 - 1930	Active
18	32.00	23 - 05 - 1931	Active
19	12.00	12 - 04 - 1932	Active
20	25.00	3 - 05 - 1933	
21	15.00	22 - 05 - 1934	Active
22	33.00	13 - 06 - 1935	Active
23	48.00	11 - 06 - 1936	Active
24	20.00	15 - 05 - 1937	
25	30.00	27 - 04 - 1938	Active
26	40.00	27 - 05 - 1939	Active
27	39.00	18 - 06 - 1940	Active
28	17.00	26 - 06 - 1941	Active
1 29	17.00	23 - 05 - 1942	Active
30	17.00 26.00	24 - 06 - 1943	Active
•	•	7 ~ 05 - 1944	Active
31	39.00		Active
32	19.00	10 - 06 - 1945	
33	31.00	29 - 06 - 1946	Active
34	17.00	5 - 06 - 1947	Active
35	33.00	28 - 06 - 1948	Active
] 36	-99999.0	1 - 01 - 1949	Non-active
37	-99999.0	1 - 01 - 1950	Non-active
38	14.00	3 - 04 - 1951	Active
39	30.00	1 - 06 - 1952	Active
40	11.00	· · · · · · · · · · · · · · · · · · ·	
41	25.00	6 - 06 - 1954	Active
! 42	21.00	24 - 05 - 1955	Active
43	22.00	21 - 06 - 1956	Active
44	15.00	29 - 06 - 1957	Active
45	37.00	20 - 04 - 1958	Active
46	41.00	9 - 06 - 1959	Active
47	19.00	24 - 06 - 1960	Active
48	26.00	19 - 06 - 1961	Active
49	15.00	7 - 04 - 1962	Active
50	14.00	20 - 06 - 1963	Active
51	18.00	9 - 06 - 1964	Active
52	18.00	10 - 05 - 1965	Active
J 53	22.00	6 - 06 - 1966	Active

Titre de l'étude : ROBERVAL HISTORIQUE, 0104-3006, 3J

Numéro	Données	Identificateur	Active/Désactive
1 1	48.00	20 - 06 - 1914	Active
1 2	30.00	1 - 05 - 1915	Active
j 3 j	29.00	3 - 06 - 1916	Active
i 4 i	36.00	21 - 06 - 1917	Active
j 5 i	36.00	13 - 06 - 1918	Active
i 6 i	101.00	16 - 04 - 1919	Active
i 7 i	35.00	23 - 05 - 1920	Active
i 8 i	25.00	8 - 04 - 1921	Active
i 9 i	34.00	7 - 05 - 1922	Active
i 10 i	66.00	26 - 06 - 1923	Active
11	48.00	28 - 06 - 1924	Active
12	22.00	23 - 04 - 1925	Active
13	28.00	2 - 05 - 1926	Active
14	21.00	9 - 06 - 1927	Active
15	47.00	24 - 05 - 1928	Active
16	24.00	30 - 06 - 1929	Active
17	42.00	6 - 06 - 1930	Active
18	44.00	24 - 05 - 1931	Active
19	20.00	30 - 06 - 1932	Active
20	37.00	2 - 05 - 1933	Active
21	18.00	21 - 05 - 1934	Active
22	33.00	29 - 04 - 1935	Active
23	48.00	10 - 06 - 1936	Active
24	41.00	13 - 06 - 1937	Active
25	37.00	23 - 06 - 1938	Active
26	42.00	28 - 05 - 1939	Active
27	47.00	18 - 06 - 1940	Active
28	20.00	26 - 06 - 1941	Active
29	30.00	13 - 06 - 1942	Active
30	27.00	25 - 06 - 1943	Active
31	49.00	8 - 05 - 1944	Active
32	33.00	26 - 04 - 1945	Active
33	45.00	30 - 06 - 1946	Active
34	29.00	14 - 06 - 1947	Active
35	44.00	29 - 06 - 1948	Active
36	-99999.0	1 - 01 - 1949	Non-active
37	-99999.0	1 - 01 - 1950	Non-active
38	27.00	28 - 05 - 1951	Active
39	31.00	2 - 06 - 1952	Active
40	14.00		Active
41	31.00	6 - 06 - 1954	Active
42	34.00	29 - 05 - 1955	Active
43	22.00	16 - 04 - 1956	Active
44	29.00	28 - 06 - 1957	Active
45	52.00	21 - 04 - 1958	Active
46	58.00	8 - 06 - 1959	Active
47	34.00	4 - 06 - 1960	Active
48	33.00	20 - 06 - 1961	Active
49	27.00	30 - 05 - 1962	Active
50	42.00	30 - 06 - 1963	Active
51	23.00	24 - 05 - 1964	Active
52	27.00	9 - 05 - 1965	Active
53	26.00	18 - 05 - 1966	Active

Titre de l'étude : ROBERVAL-A, 0104-3006, 1J

Numéro	Données	Identificateur	Active/Désactive
1 1	30.70	19 - 04 - 1958	Active
2	46.20	8 - 06 - 1959	Active
i 3 i	35.80	23 - 06 - 1960	Active
4	24.90	18 - 06 - 1961	Active
i 5 i	26.90	30 - 05 - 1962	Active
i 6 i	16.80	19 - 04 - 1963	Active
7	24.90	3 - 06 - 1964	Active
. 1 8 1	20.30	10 - 05 - 1965	Active
j 9 i	21.60	18 - 05 - 1966	Active
10	16.50	6 - 06 - 1967	Active
11	11.20	1 - 06 - 1968	Active
1 12	20.30	7 - 05 - 1969	Active
13	19.60	1 - 06 - 1970	Active
14	21.30	3 - 05 - 1971	Active
15	16.80	1 - 06 - 1972	Active
16	21.60	20 - 04 - 1973	Active
17	21.80	10 - 06 - 1974	Active
18	17.80	12 - 06 - 1975	Active
19	21.10	22 - 05 - 1976	Active
20	16.00	28 - 06 - 1977	Active
21	16.20	12 - 06 - 1978	Active
22	41.50	10 - 06 - 1979	Active
23	17.20	17 - 05 - 1980	Active
24	83.20	21 - 06 - 1981	Active
25	26.20	18 - 06 - 1982	Active
26	27.00	7 - 05 - 1983	Active
27	24.60	22 - 05 - 1984	Active
28	15.90	17 - 05 - 1985	Active
29	27.40	6 - 05 - 1986	Active
30	25.00	29 - 05 - 1987	Active
31	34.90	24 - 06 - 1988	Active
32	28.20	9 - 06 - 1989	Active
33	19.00	3 - 04 - 1990	Active
34	24.00	5 - 05 - 1991	Active
35	32.10	21 - 04 - 1992	Active
36	17.40	31 - 05 - 1993	Active
37	31.40	27 - 06 - 1994	Active
38	20.40	14 - 05 - 1995	Active

Titre de l'étude : ROBERVAL-A, 0104-3006, 3J

Numéro	Données	Identificateur	Active/Désactive
1	52.10	20 - 04 - 1958	Active
2	65.80	7 - 06 - 1959	Active
3	37.10	23 - 06 - 1960	Active
4	34.80	19 - 06 - 1961	Active
5	40.60	30 - 05 - 1962	Active
6	40.90	29 - 06 - 1963	Active
7	34.90	8 - 05 - 1964	Active
8	24.90	10 - 05 - 1965	Active
9	35.80	17 - 05 - 1966	Active
10	26.70	18 - 05 - 1967	Active
11	15.00	23 - 04 - 1968	Active
12	35.00	8 - 05 - 1969	Active
13	38.10	31 - 05 - 1970	Active
14	28.40	24 - 05 - 1971	Active
15	37.20	21 - 06 - 1972	Active
16	33.50	21 - 04 - 1973	Active
1 17	31.70	10 - 05 - 1974	Active
18	35.10	12 - 06 - 1975	Active
19	37.10	21 - 05 - 1976	Active
20	33.90	6 - 06 - 1977	Active
21	29.70	12 - 06 - 1978	Active
22	51.50	10 - 06 - 1979	Active
23	22.20	9 - 04 - 1980	Active
24	87.40	21 - 06 - 1981	Active
25	42.00	19 - 06 - 1982	Active
26	34.80	6 - 05 - 1983	Active
27	38.60	23 - 05 - 1984	Active
28	20.50	16 - 05 - 1985	Active
29	44.80	19 - 05 - 1986	Active
30	32.20	29 - 05 - 1987	Active
31	46.50	25 - 06 - 1988	Active
32	38.90	5 - 05 - 1989	Active
33	22.70	17 - 05 - 1990	Active
34	25.00	5 - 05 - 1991	Active
35	52.50	21 - 04 - 1992	Active
36	31.40	31 - 05 - 1993	Active
37	48.80	28 - 06 - 1994	Active
38	26.30	15 - 05 - 1995	Active

Titre de l'étude : ROBERVAL HISTORIQUE, 0104-3006, 1J

Numéro	Données	Identificateur	Active/Désactive
1	45.00	20 - 06 - 1914	Active
1 2	19.00	30 - 04 - 1915	Active
3	29.00	4 - 06 - 1916	Active
4	33.00	21 - 06 - 1917	Active
5	27.00	12 - 06 - 1918	Active
6	101.00	17 - 04 - 1919	Active
1 7	23.00	22 - 05 - 1920	Active
8	25.00	9 - 04 - 1921	Active
9	19.00	8 - 05 - 1922	Active
10	62.00	27 - 06 - 1923	Active
11	48.00	29 - 06 - 1924	Active
12	21.00	1 - 04 - 1925	Active
13	22.00	2 - 05 - 1926	Active
14	18.00	10 - 06 - 1927	Active
15	27.00	23 - 06 - 1928	Active
16	16.00	12 - 06 - 1929	Active
17	31.00	6 - 06 - 1930	Active
18	32.00	23 - 05 - 1931	Active
19	12.00	12 - 04 - 1932	Active
20	25.00	3 - 05 - 1933	Active
21	15.00	22 - 05 - 1934	Active
22] 33.00	13 - 06 - 1935	Active
23	48.00	11 - 06 - 1936	Active
24	20.00	15 - 05 - 1937	Active
25	30.00	27 - 04 - 1938	Active
26	40.00	27 - 05 - 1939	Active
27	39.00	18 - 06 - 1940	Active
28	17.00	26 - 06 - 1941	Active
29	17.00	23 - 05 - 1942	Active
30	26.00	24 - 06 - 1943	Active
31	39.00	7 - 05 - 1944	Active
32	19.00	10 - 06 - 1945	Active
33	31.00	29 - 06 - 1946	Active
34	17.00	5 - 06 - 1947	Active
35	33.00	28 - 06 - 1948	Active
36	-99999.0	1 - 01 - 1949	Non-active
37	-99999.0	1 - 01 - 1950	Non-active
] 38	14.00	3 - 04 - 1951	Active
39	30.00	1 - 06 - 1952	Active
40	11.00	20 - 04 - 1953	Active
41	25.00	6 - 06 - 1954	Active
42	21.00	24 - 05 - 1955	Active
43	22.00	21 - 06 - 1956	Active
44	15.00	29 - 06 - 1957	Active
45	30.70	19 - 04 - 1958	Active
46	46.20	8 - 06 - 1959	Active
47	35.80	23 - 06 - 1960	Active
48	24.90	18 - 06 - 1961	Active
49	26.90	30 - 05 - 1962	Active
50	16.80	19 - 04 - 1963	Active

51											
53		51	1	24.90	-	3 -	06 -	1964	1	Active	1
54	1	52	1	20.30	l	10 -	05 -	1965		Active	1
55	1	53		21.60	1	18 -	05 -	1966	-	Active	
56	1	54	1	16.50	-	6 -	06 -	1967		Active	1
19.60		55	-	11.20	1	1 -	06 -	1968		Active	. 1
58		56	-	20.30	-	7 -	05 -	1969		Active	. 1
59		57		19.60	1	1 -	06 -	1970	l	Active	1
60		58	1	21.30	-	3 -	05 -	1971	1	Active	
61	1	59	}	16.80	- 1	1 -	06 -	1972	1	Active	
62	1	60	-	21.60	- [20 -	04 -	1973	1	Active	1
63	1	61		21.80	1	10 -	06 -	1974		Active	1
64	1	62	1	17.80	-	12 -	06 -	1975	1	Active	F
65	1	63		21.10	1	22 -	05 -	1976	1	Active	
66		64	t	16.00	1	28 -	06 -	1977	ł	Active	
67		65	-	16.20	1	12 -	06 -	1978	1	Active	
68	1	66		41.50	-	10 -	06 -	1979	- 1	Active	
69	1	67	-	17.20	1	17 -	05 -	1980		Active	l
70	1	68	-	83.20	1	21 -	06 -	1981		Active	
71	1	69	1	26.20	1	18 -	06 -	1982	1	Active	
72	1	70	-1	27.00	1	7 -	05 -	1983	- 1	Active	
73	1	71	1	24.60	1	22 -	05 -	1984	1	Active	. 1
74	1	72	1	15.90	-	17 -	05 -	1985		Active	
75	1	73		27.40	-	6 -	05 -	1986		Active	1
76	1	74	- 1			29 -	05 -	1987		Active	
77	l	75	-1	34.90	ł	24 -	06 -	1988		Active	1
78	1	76	1	28.20	1	9 -	06 -	1989		Active	. 1
79 32.10 21 - 04 - 1992 Active 80 17.40 31 - 05 - 1993 Active 81 31.40 27 - 06 - 1994 Active	į	77	1			3 -	04 -	1990	l	Active	
80 17.40 31 - 05 - 1993 Active 81 31.40 27 - 06 - 1994 Active	İ	78	-	24.00	-	5 -	05 -		. [Active	
81 31.40 27 - 06 - 1994 Active	1		1		1	21 -	04 -	1992	- 1		
	1		1	17.40	1	31 -	05 -	1993		Active	1
82 20.40 14 - 05 - 1995 Active	l		1	31.40	1	27 -	06 -	1994	- 1		1
	İ	82	1	20.40	ŀ	14 -	05 -	1995	1	Active	

Titre de l'étude : ROBERVAL HISTORIQUE, 0104-3006, 3J

Numéro	Données	Identificateur	Active/Désactive
1	48.00	20 - 06 - 1914	Active
2	30.00	1 - 05 - 1915	Active Active
] 3	29.00	3 - 06 - 1916	Active Active
4	36.00	21 - 06 - 1917	Active
5	36.00	13 - 06 - 1918	Active
6	101.00	16 - 04 - 1919	Active
1 7	35.00	23 - 05 - 1920	•
8	25.00	8 - 04 - 1921	Active
9	34.00	7 - 05 - 1922	Active
10	66.00	26 - 06 - 1923	Active
11	48.00	28 - 06 - 1924	Active
1 12	22.00	23 - 04 - 1925	Active
13	28.00	2 - 05 - 1926	Active
14	21.00	9 - 06 - 1927	Active
15	47.00	24 - 05 - 1928	Active
16	24.00	30 - 06 - 1929	Active
1 17	42.00	6 - 06 - 1930	Active
18	44.00	24 - 05 - 1931	Active
19	20.00	30 - 06 - 1932	Active
20	37.00	2 - 05 - 1933	Active
21	18.00	21 - 05 - 1934	Active
22	33.00	29 - 04 - 1935	Active
23	48.00	10 - 06 - 1936	Active
24	41.00	13 - 06 - 1937	Active
25	37.00	23 - 06 - 1938	Active
26	42.00	28 - 05 - 1939	Active
27	47.00	18 - 06 - 1940	Active
28	20.00	26 - 06 - 1941	Active
29	30.00	13 - 06 - 1942	Active
] 30	27.00	25 - 06 - 1943	Active
31	49.00	8 - 05 - 1944	Active
32	33.00	26 - 04 - 1945	Active
33	45.00	30 - 06 - 1946	Active
34	29.00	14 - 06 - 1947	Active
35	44.00	29 - 06 - 1948	Active
36	-99999.0	1 - 01 - 1949	Non-active
37	-99999.0	1 - 01 - 1950	Non-active
38	27.00	28 - 05 - 1951	Active
39	31.00	2 - 06 - 1952	Active
40	14.00	19 - 04 - 1953	Active
41	31.00	6 - 06 - 1954	Active
42	34.00	29 - 05 - 1955	Active
43	22.00	16 - 04 - 1956	Active
44	29.00	28 - 06 - 1957	Active
45	52.10	20 - 04 - 1958	Active
46	65.80	7 - 06 - 1959	Active
47	37.10	23 - 06 - 1960	Active
48	34.80	19 - 06 - 1961	Active
49	40.60	30 - 05 - 1962	Active
50	40.90	29 - 06 - 1963	Active

51	34.90	8 - 05 - 1964	Active
52	24.90	10 - 05 - 1965	Active
53	35.80	17 - 05 - 1966	Active
54	26.70	18 - 05 - 1967	Active
55	15.00	23 - 04 - 1968	Active
56	35.00	8 - 05 - 1969	Active
57	38.10	31 - 05 - 1970	Active
58	28.40	24 - 05 - 1971	Active
j 59	37.20	21 - 06 - 1972	Active
j 60	33.50	21 - 04 - 1973	Active
61	31.70	10 - 05 - 1974	Active
62	35.10	12 - 06 - 1975	Active
63	37.10	21 - 05 - 1976	Active
64	33.90	6 - 06 - 1977	Active
65	29.70	12 - 06 - 1978	Active
66	51.50	10 - 06 - 1979	Active
67	22.20	9 - 04 - 1980	Active
68	87.40	21 - 06 - 1981	Active
69	42.00	19 - 06 - 1982	Active
70	34.80	6 - 05 - 1983	Active
71	38.60	23 - 05 - 1984	Active
72	20.50	16 - 05 - 1985	Active
73	44.80	19 - 05 - 1986	Active
74	32.20	29 - 05 - 1987	Active
75	46.50	25 - 06 - 1988	Active
76	38.90	5 - 05 - 1989	Active
77	22.70	17 - 05 - 1990	Active
78	25.00	5 - 05 - 1991	Active
79	52.50	21 - 04 - 1992	Active
80	31.40	31 - 05 - 1993	Active
81	48.80	28 - 06 - 1994	Active
82	26.30	15 - 05 - 1995	Active

Titre de l'étude : SHIPSHAW, 0107-3112, 3J

Numéro	Données	Identificateur	Active/Désactive
1	30.70	8 - 06 - 1953	Active
2	43.50	5 - 06 - 1954	Active
3	34.50	5 - 05 - 1955	Active
4	33.80	20 - 06 - 1956	Active
5	36.80	26 - 06 - 1957	Active
j 6	57.20	13 - 06 - 1958	Active
j 7	45.70	8 - 06 - 1959	Active
j 8	33.30 i	15 - 06 - 1960	Active
j 9	31.60 i	1 - 06 - 1961	Active
j 10	36.80 i	22 - 06 - 1962	Active
i 11	55.70	29 - 06 - 1963	Active
12	48.30 j	4 - 06 - 1964	Active
13	25.40	10 - 05 - 1965	Active
14	25.20	27 - 05 - 1966	Active
15	28.40	1 - 05 - 1967	Active
16	33.30	1 - 06 - 1968	Active
1 17	28.40	9 - 05 - 1969	Active
18	40.10	31 - 05 - 1970	Active
19	46.70	19 - 05 - 1971	Active
20	93.50	20 - 06 - 1972	Active
21	37.90	21 - 04 - 1973	Active
22	35.00	15 - 06 - 1974	Active
23	22.10	20 - 06 - 1975	Active
24	44.70	11 - 05 - 1976	Active
25	34.90	4 - 06 - 1977	Active
26	49.60	31 - 05 - 1978	Active
1 27	38.50	10 - 06 - 1979	Active
28	23.70	15 - 06 - 1980	Active
29	61.50	11 - 05 - 1981	Active
30	47.50	19 - 06 - 1982	Active
31	61.70	7 - 05 - 1983	Active
32	40.00	23 - 05 - 1984	Active
33	53.80	18 - 05 - 1985	Active
34	65.60	19 - 05 - 1986	Active
35	63.30	28 - 06 - 1987	Active
36	41.40 .	25 - 06 - 1988	Active
37	35.40	6 - 05 - 1989	Active
38	73 . 90	17 - 06 - 1990	Active
39	36.40	5 - 05 - 1991	Active
40	54.00	20 - 04 - 1992	Active
41	39.20	8 - 06 - 1993	Active

Titre de l'étude : LAC MANOUANE, 0107-3112, 3J

Numéro	Données	Identificateur	Active/Désactive
1 1	28.60	13 - 09 - 1953	Active
2	27.70	19 - 11 - 1954	Active
3	49.20	22 - 07 - 1955	Active
4	33.60	23 - 08 - 1956	Active
5	53.00	4 - 09 - 1957	Active
6 1	38.70	9 - 10 - 1958	Active
7	36.40	18 - 07 - 1959	Active
8	49.80	27 - 07 - 1960	Active
9 1	43.10	11 - 08 - 1961	Active
10	51.30	3 - 08 - 1962	Active
11	59.70	19 - 07 - 1963	Active
12	47.20	13 - 08 - 1964	Active
13	39.70	22 - 09 - 1965	Active
14	55.10	3 - 08 - 1966	Active
15	54.60	17 - 10 - 1967	Active
16	34.30	25 - 08 - 1968	Active
17	31.10	8 - 08 - 1969	Active
18	59.00	20 - 07 - 1970	Active
19	59.50	9 - 08 - 1971	Active
20	30.70	28 - 07 - 1972	Active
21	56.10	10 - 07 - 1973	Active
22	35.60	22 - 08 - 1974	Active
23	35.90	16 - 07 - 1975	Active
24	30.40	4 - 09 - 1976	Active
25	46.90	19 - 07 - 1977	Active
26	28.00	26 - 07 - 1978	Active
27	53.30	24 - 07 - 1979	Active
28	44.40	11 - 07 - 1980	Active
29	33.90	20 - 07 - 1981	Active
30	30.40	25 - 07 - 1982	Active
j 31 j	58.90	28 - 07 - 1983	Active
32	30.60	17 - 07 - 1984	Active
33	28.90	27 - 09 - 1985	Active
j 34 j	46.80	11 - 09 - 1986	Active
j 35 j	47.10	13 - 07 - 1987	Active
i 36 i	31.10	5 - 09 - 1988	Active
j 37 j	33.70 j	21 - 10 - 1989	Active
i 38 i	106.30 j	14 - 09 - 1990	Active
39	54.20	16 - 08 - 1991	Active
i 40 i	33.50	25 - 08 - 1992	Active
41	81.00	14 - 09 - 1993	Active
42	37.10	29 - 08 - 1994	Active
39 40 41	54.20 33.50 81.00	16 - 08 - 1991 25 - 08 - 1992 14 - 09 - 1993	Active Active Active

Titre de l'étude : CHUTE DES PASSES, 0107-3112, 3J

Numéro	Données	Identificateur	Active/Désactive
1	28.40	13 - 09 - 1953	Active
2	27.40	19 - 11 - 1954	Active
3	48.40	22 - 07 - 1955	Active
4	34.40	23 - 08 - 1956	Active
5	52.00	4 - 09 - 1957	Active
6	38.20	9 - 10 - 1958	Active
1 7	36.20	18 - 07 - 1959	Active
8	52.30	27 - 07 - 1960	Active
9	40.10	11 - 08 - 1961	Active
10	49.10	3 - 08 - 1962	Active
11	53.70	19 - 07 - 1963	Active
12	45.80	13 - 08 - 1964	Active
13	39.10	22 - 09 - 1965	Active
14	57.30	3 - 08 - 1966	Active
15	54.90	17 - 10 - 1967	Active
16	33.20	25 - 08 - 1968	Active
17	32.70	8 - 08 - 1969	Active
18	57.80	20 - 07 - 1970	Active
19	52.80	9 - 08 - 1971	Active
20	32.00	28 - 07 - 1972	Active
21	51.80	10 - 07 - 1973	Active
22	36.60	22 - 08 - 1974	Active
23	33.40	16 - 07 - 1975	Active
24	31.10	4 - 09 - 1976	Active
25	48.30	19 - 07 - 1977	Active
26	28.70	26 - 07 - 1978	Active
27	53.10	24 - 07 - 1979	Active
28	42.40	11 - 07 - 1980	Active
29	35.00	21 - 07 - 1981	Active
30	27.00	25 - 07 - 1982	Active
31	50.00	28 - 07 - 1983	Active
32	31.20	15 - 07 - 1984	Active
33	27.70	6 - 07 - 1985	Active
34	47.20	11 - 09 - 1986	Active
35	46.00	13 - 07 - 1987	Active
36	31.30	5 - 09 - 1988	Active
37	33.00	21 - 10 - 1989	Active
38	107.20	14 - 09 - 1990	Active
39	53.70	16 - 08 - 1991	Active
40	34.10	25 - 08 - 1992	Active
41	75.60	14 - 09 - 1993	Active
42	39.90	22 - 07 - 1994	Active

Titre de l'étude : BASSIN D'AMONT, 0107-3112, 3J

1	1
3	·
4	
5 52.10 4 - 09 - 1957 Active 38.40 9 - 10 - 1958 Active 7 36.30 18 - 07 - 1959 Active 8 51.50 27 - 07 - 1960 Active 9 41.00 11 - 08 - 1961 Active 10 49.70 3 - 08 - 1962 Active 11 55.50 19 - 07 - 1963 Active 12 46.10 13 - 08 - 1964 Active 13 39.20 22 - 09 - 1965 Active 14 56.60 3 - 08 - 1966 Active 15 54.70 17 - 10 - 1967 Active 16 33.50 25 - 08 - 1968 Active 17 32.10 8 - 08 - 1969 Active 18 58.00 20 - 07 - 1970 Active 19 54.70 9 - 08 - 1971 Active 20 31.60 28 - 07 - 1972 Active 21 53.10 10 - 07 - 1973 Active 22 36.20 22 - 08 - 1974 Active	
6	
7	
8	
9 41.00 11 - 08 - 1961 Active 10 49.70 3 - 08 - 1962 Active 11 55.50 19 - 07 - 1963 Active 12 46.10 13 - 08 - 1964 Active 13 39.20 22 - 09 - 1965 Active 14 56.60 3 - 08 - 1966 Active 15 54.70 17 - 10 - 1967 Active 16 33.50 25 - 08 - 1968 Active 17 32.10 8 - 08 - 1969 Active 18 58.00 20 - 07 - 1970 Active 19 54.70 9 - 08 - 1971 Active 20 31.60 28 - 07 - 1972 Active 21 53.10 10 - 07 - 1973 Active 22 36.20 22 - 08 - 1974 Active	
10 49.70 3 - 08 - 1962 Active 11 55.50 19 - 07 - 1963 Active 12 46.10 13 - 08 - 1964 Active 13 39.20 22 - 09 - 1965 Active 14 56.60 3 - 08 - 1966 Active 15 54.70 17 - 10 - 1967 Active 16 33.50 25 - 08 - 1968 Active 17 32.10 8 - 08 - 1969 Active 18 58.00 20 - 07 - 1970 Active 19 54.70 9 - 08 - 1971 Active 20 31.60 28 - 07 - 1972 Active 21 53.10 10 - 07 - 1973 Active 22 36.20 22 - 08 - 1974 Active	1
11 55.50 19 - 07 - 1963 Active	1
12 46.10 13 - 08 - 1964 Active 13 39.20 22 - 09 - 1965 Active 14 56.60 3 - 08 - 1966 Active 15 54.70 17 - 10 - 1967 Active 16 33.50 25 - 08 - 1968 Active 17 32.10 8 - 08 - 1969 Active 18 58.00 20 - 07 - 1970 Active 19 54.70 9 - 08 - 1971 Active 20 31.60 28 - 07 - 1972 Active 21 53.10 10 - 07 - 1973 Active 22 36.20 22 - 08 - 1974 Active	1
13 39.20 22 - 09 - 1965 Active 14 56.60 3 - 08 - 1966 Active 15 54.70 17 - 10 - 1967 Active 16 33.50 25 - 08 - 1968 Active 17 32.10 8 - 08 - 1969 Active 18 58.00 20 - 07 - 1970 Active 19 54.70 9 - 08 - 1971 Active 20 31.60 28 - 07 - 1972 Active 21 53.10 10 - 07 - 1973 Active 22 36.20 22 - 08 - 1974 Active	1
14	· •
15	1
16 33.50 25 - 08 - 1968 Active 17 32.10 8 - 08 - 1969 Active 18 58.00 20 - 07 - 1970 Active 19 54.70 9 - 08 - 1971 Active 20 31.60 28 - 07 - 1972 Active 21 53.10 10 - 07 - 1973 Active 22 36.20 22 - 08 - 1974 Active	1
17	1
18	ŀ
19	1
20 31.60 28 - 07 - 1972 Active 21 53.10 10 - 07 - 1973 Active 22 36.20 22 - 08 - 1974 Active	1
21 53.10 10 - 07 - 1973 Active 22 36.20 22 - 08 - 1974 Active	ŀ
22 36.20 22 - 08 - 1974 Active	1
1	I
23 34.00 16 - 07 - 1975 Active	- 1
24 30.90 4 - 09 - 1976 Active	l
25 47.80 19 - 07 - 1977 Active	I
26 28.40 26 - 07 - 1978 Active	I
27 53.10 24 - 07 - 1979 Active	ı
28 42.90 11 - 07 - 1980 Active	l
29 34.70 21 - 07 - 1981 Active	1
30 28.00 25 - 07 - 1982 Active	- 1
31 52.60 28 - 07 - 1983 Active	1
32 30.70 15 - 07 - 1984 Active	ŀ
33 27.70 6 - 07 - 1985 Active	. 1
34 47.10 11 - 09 - 1986 Active	1
35 46.40 13 - 07 - 1987 Active	ŀ
36 31.20 5 - 09 - 1988 Active	I
37 33.10 21 - 10 - 1989 Active	I
38 106.90 14 - 09 - 1990 Active	1
39 53.90 16 - 08 - 1991 Active	1
40 33.90 25 - 08 - 1992 Active	1
41 77.20 14 - 09 - 1993 Active	1
42 38.40 22 - 07 - 1994 Active	1

Titre de l'étude : CHUTE DU DIABLE, 0107-3112, 3J

Numéro	Données	Identificateur	Active/Désactive
1 1	36.60	6 - 09 - 1953	Active
2	34.60	19 - 11 - 1954	Active
3	66.20	22 - 07 - 1955	Active
4	29.10	15 - 07 - 1956	Active
5	69.60	4 - 09 - 1957	Active
6	55.40	9 - 10 - 1958	Active
7	37.30	18 - 07 - 1959	Active
8	50.80	31 - 07 - 1960	Active
9	51.70	11 - 08 - 1961	Active
1 10	47.10	9 - 07 - 1962	Active
11	36.20	2 - 07 - 1963	Active
12	38.40	25 - 12 - 1964	Active
13	34.70	8 - 08 - 1965	Active
14	63.10	2 - 08 - 1966	Active
15	68.70	17 - 10 - 1967	Active
16	36.40	18 - 07 - 1968	Active
1 17	33.70	12 - 11 - 1969	Active
18	66.00	20 - 07 - 1970	Active
19	47.40	24 - 08 - 1971	Active
20	35.10	28 - 07 - 1972	Active
j 21	57.10	28 - 07 - 1973	Active
i 22	36.30	23 - 08 - 1974	Active
23	33.50	10 - 09 - 1975	Active
24	32.20	29 - 08 - 1976	Active
25	48.00	19 - 07 - 1977	Active
26	28.20	30 - 09 - 1978	Active
27	58.60	25 - 07 - 1979	Active
28	41.40	11 - 07 - 1980	Active
29	39.50	20 - 07 - 1981	Active
30	38.70	4 - 11 - 1982	Active
j 31	37.60	20 - 09 - 1983	Active
32	29.60	17 - 07 - 1984	Active
33	41.10	25 - 07 - 1985	Active
34	50.10	11 - 09 - 1986	Active
35	46.90	13 - 07 - 1987	Active
36	28.50	4 - 09 - 1988	Active
37	41.40	23 - 09 - 1989	Active
38	51.20	14 - 09 - 1990	Active
39	44.90	8 - 07 - 1991	Active
1 40	37.50	4 - 08 - 1992	Active
41	63.20	14 - 09 - 1993	Active
42	33.80	22 - 07 - 1994	Active
1 72			1100100

Titre de l'étude : CHUTE A LA-SAVANE, 0107-3112, 3J

Numéro	Données	Identificateur	Active/Désactive
1	39.30	6 - 09 - 1953	Active
2	35.90	19 - 11 - 1954	Active
3	65.70	22 - 07 - 1955	Active
4	30.00	15 - 07 - 1956	Active
5	73.70	4 - 09 - 1957	Active
6 1	54.20	9 - 10 - 1958	Active
7	36.20	18 - 07 - 1959	Active
8	45.80	8 - 09 - 1960	Active
9	50.90	11 - 08 - 1961	Active
10	61.70	13 - 07 - 1962	Active
11	62.40	2 - 07 - 1963	Active
12	49.30	25 - 12 - 1964	Active
13	36.60	8 - 08 - 1965	Active
14	73.50	2 - 08 - 1966	Active
15	74.90	17 - 10 - 1967	Active
16	31.50	18 - 07 - 1968	Active
17	44.60	3 - 11 - 1969	Active
18	63.90	4 - 09 - 1970	Active
19	63.90	23 - 08 - 1971	Active
j 20 j	57.90 j	30 - 09 - 1972	Active
21	53.00	28 - 07 - 1973	Active
22	59.90	12 - 09 - 1974	Active
23	29.40	16 - 07 - 1975	Active
j 24 j	42.40	29 - 08 - 1976	Active
25	40.10	19 - 07 - 1977	Active
26	24.60	26 - 09 - 1978	Active
27	36.70	25 - 07 - 1979	Active
28	43.60	14 - 08 - 1980	Active
29	39.80	20 - 07 - 1981	Active
30	47.80	3 - 11 - 1982	Active
31	38.00	10 - 09 - 1983	Active
32	26.70	17 - 07 - 1984	Active
33	59.00	26 - 07 - 1985	Active
34	54.70	11 - 09 - 1986	Active
35	46.50	14 - 07 - 1987	Active
j 36 j	40.10	14 - 08 - 1988	Active
37	62.30	22 - 09 - 1989	Active
38	27.60	22 - 09 - 1990	Active
j 39 j	36.30	8 - 07 - 1991	Active
j 40 j	44.00	21 - 09 - 1992	Active
1 41 1	42.50	17 - 10 - 1993	Active
42	35.30	6 - 07 - 1994	Active

Titre de l'étude : LAC ST-JEAN, 0107-3112, 3J

Numéro	Données	Identificateur	Active/Désactive
1 1	29.00	6 - 09 - 1953	Active
1 2 1	28.40	1 - 09 - 1954	Active
3	46.40	22 - 07 - 1955	Active
4	31.10	23 - 08 - 1956	Active
5	55.50	4 - 09 - 1957	Active
6 1	43.10	9 - 10 - 1958	Active
7	35.60	18 - 07 - 1959	Active
8	43.90	27 - 07 - 1960	Active
9	36.40	14 - 09 - 1961	Active
10	47.00	13 - 07 - 1962	Active
1 11	34.70	19 - 07 - 1963	Active
1 12	33.70	16 - 07 - 1964	Active
1 13	35.10	2 - 08 - 1965	Active
14	58.40	2 - 08 - 1966	Active
15	63.10	17 - 10 - 1967	Active
16	29.70	20 - 08 - 1968	Active
17	38.40	7 - 09 - 1969	Active
18	58.60	4 - 09 - 1970	Active
19	35.00	20 - 09 - 1971	Active
20	27.50	14 - 07 - 1972	Active
21	37.70	2 - 08 - 1973	Active
22	31.90	12 - 09 - 1974	Active
23	36.70	17 - 07 - 1975	Active
24	36.20	14 - 08 - 1976	Active
25	43.30	19 - 07 - 1977	Active
26	26.30	26 - 07 - 1978	Active
27	46.40	25 - 07 - 1979	Active
28	40.50	14 - 08 - 1980	Active
29	39.20	21 - 07 - 1981	Active
30	34.80	3 - 11 - 1982	Active
31	38.00	21 - 09 - 1983	Active
32	24.90	17 - 07 - 1984	Active
33	55.10	26 - 07 - 1985	Active
34	49.10	11 - 09 - 1986	Active
35	40.80	13 - 07 - 1987	Active
36	38.90	13 - 08 - 1988	Active
37	48.30	22 - 09 - 1989	Active
38	63.40	14 - 09 - 1990	Active
39	28.30	16 - 08 - 1991	Active
40	36.10	29 - 08 - 1992	Active
41	51.20	14 - 09 - 1993	Active
42	29.20	27 - 08 - 1994	Active

Titre de l'étude : BASSIN D'AVAL, 0107-3112, 3J

Numéro	Données	Identificateur	Active/Désactive
1	30.50	6 - 09 - 1953	Active
2	29.20	19 - 11 - 1954	Active
3	50.30	22 - 07 - 1955	Active
4	29.10	23 - 08 - 1956	Active
5	58.30	4 - 09 - 1957	Active
6	45.50	9 - 10 - 1958	Active
7	36.00	18 - 07 - 1959	Active
8	44.50	27 - 07 - 1960	Active
9	38.10	11 - 08 - 1961	Active
10	44.60	13 - 07 - 1962	Active
11	34.60	1 - 07 - 1963	Active
12	32.80	27 - 07 - 1964	Active
13	32.80	2 - 08 - 1965	Active
14	59.70	2 - 08 - 1966	Active
15	64.30	17 - 10 - 1967	Active
16	30.00	20 - 08 - 1968	Active
17	36.70	7 - 09 - 1969	Active
18	57.70	20 - 07 - 1970	Active
19	35.50	20 - 09 - 1971	Active
20	29.20	30 - 09 - 1972	Active
21	40.60	2 - 08 - 1973	Active
22	30.80	12 - 09 - 1974	Active
23	35.30	17 - 07 - 1975	Active
24	34.40	14 - 08 - 1976	Active
25	44.00	19 - 07 - 1977	Active
26	26.10	26 - 07 - 1978	Active
27	48.30	25 - 07 - 1979	Active
28	39.00	7 - 08 - 1980	Active
29	39.20	21 - 07 - 1981	Active
30	35.50	3 - 11 - 1982	Active
31	37.90 j	21 - 09 - 1983	Active
32	25.80	17 - 07 - 1984	Active
33	52.60	26 - 07 - 1985	Active
34	49.30	11 - 09 - 1986	Active
35	41.90	13 - 07 - 1987	Active
j 36	36.40	13 - 08 - 1988	Active
37	47.40	23 - 09 - 1989	Active
38	60.50	14 - 09 - 1990	Active
i 39 i	30.10	16 - 08 - 1991	Active
40	35.10	27 - 07 - 1992	Active
41	53.00	14 - 09 - 1993	Active
42	28.80	27 - 08 - 1994	Active

Titre de l'étude : BASSIN TOTAL, 0107-3112, 3J

Numéro	Données	Identificateur	Active/Désactive
1	29.90	6 - 09 - 1953	Active
2	28.80	19 - 11 - 1954	Active
3	50.10	22 - 07 - 1955	Active
4	30.30	23 - 08 - 1956	Active
5	57.00	4 - 09 - 1957	Active
6	44.00	9 - 10 - 1958	Active
7	36.10	18 - 07 - 1959	Active
8	46.10	27 - 07 - 1960	Active
9	38.80	11 - 08 - 1961	Active
10	37.40	13 - 07 - 1962	Active
11	39.30	19 - 07 - 1963	Active
12	35.40	13 - 08 - 1964	Active
13	34.30	22 - 09 - 1965	Active
14	58.10	2 - 08 - 1966	Active
15	62.20	17 - 10 - 1967	Active
16	30.60	20 - 08 - 1968	Active
17	33.50	7 - 09 - 1969	Active
! 18	57.70	20 - 07 - 1970	Active
19	35.30	20 - 09 - 1971	Active
20	28.40	14 - 07 - 1972	Active
21	40.50	2 - 08 - 1973	Active
22	30.50	22 - 08 - 1974	Active
23	35.00	16 - 07 - 1975	Active
24	31.50	14 - 08 - 1976	Active
25	44.90	19 - 07 - 1977	Active
26	26.70	26 - 07 - 1978	Active
27	48.90	25 - 07 - 1979	Active
28	39.50	7 - 08 - 1980	Active
29	38.20	21 - 07 - 1981	Active
] 30	32.10	4 - 11 - 1982	Active
31	38.50	21 - 09 - 1983	Active
32	26.90	17 - 07 - 1984	Active
33	46.10	25 - 07 - 1985	Active
34	48.90	11 - 09 - 1986	Active
35	43.00	13 - 07 - 1987	Active
36	31.70	13 - 08 - 1988	Active
37	42.50	23 - 09 - 1989	Active
38	70.70	14 - 09 - 1990	Active
39	35.50	16 - 08 - 1991	Active
40	33.40	29 - 08 - 1992	Active
41	58.40	14 - 09 - 1993	Active
42	30.10	29 - 08 - 1994	Active

Titre de l'étude : BAGOTVILLE-A, 0107-3112, 3J

41.70	5 - 09 - 1953	Active
36.90	29 - 09 - 1954	Active
59.10	18 - 09 - 1955	Active
36.90	13 - 07 - 1956	Active
40.60	21 - 09 - 1957	Active
54.20	9 - 10 - 1958	Active
36.80	15 - 08 - 1959	Active
50.80	12 - 09 - 1960	Active
38.00	25 - 08 - 1961	Active
53.30	13 - 07 - 1962	Active
41.10	1 - 07 - 1963	Active
43.00	12 - 08 - 1964	Active
37.60	19 - 09 - 1965	Active
104.60	22 - 09 - 1966	Active
50.00	2 - 08 - 1967	Active
53.60	17 - 07 - 1968	Active
50.50	3 - 11 - 1969	Active
53.60	4 - 09 - 1970	Active
65.50	22 - 08 - 1971	Active
84.30	5 - 07 - 1972	Active
51.10	5 - 07 - 1973	Active
51.00	30 - 07 - 1974	Active
48.60	7 - 07 - 1975	Active
32.60	29 - 08 - 1976	Active
58.10	24 - 07 - 1977	Active
40.80	21 - 07 - 1978	Active
36.30	14 - 09 - 1979	Active
42.10	14 - 08 - 1980	Active
30.80	15 - 08 - 1981	Active
•	3 - 11 - 1982	Active
	20 - 09 - 1983	Active
·		Active
	25 - 07 - 1985	Active
•	10 - 09 - 1986	Active
37.70	12 - 07 - 1987	Active
		Active
·	21 - 09 - 1989	Active
•		Active
•	7 - 07 - 1991	Active
		Active
	· · · · · · · · · · · · · · · · · · ·	Active
•		Active
	59.10 36.90 40.60 54.20 36.80 50.80 38.00 53.30 41.10 43.00 37.60 104.60 50.50 53.60 50.50 53.60 65.50 84.30 51.10 51.00 48.60 32.60 58.10 40.80 36.30 42.10 30.80 88.80 34.60 34.00 72.60 41.10	59.10 18 - 09 - 1955 36.90 13 - 07 - 1956 40.60 21 - 09 - 1957 54.20 9 - 10 - 1958 36.80 15 - 08 - 1959 50.80 12 - 09 - 1960 38.00 25 - 08 - 1961 53.30 13 - 07 - 1962 41.10 1 - 07 - 1963 43.00 12 - 08 - 1964 37.60 19 - 09 - 1965 104.60 22 - 09 - 1966 50.00 2 - 08 - 1967 53.60 4 - 09 - 1970 65.50 22 - 08 - 1971 84.30 5 - 07 - 1972 51.10 5 - 07 - 1973 51.00 30 - 07 - 1974 48.60 7 - 07 - 1975 32.60 29 - 08 - 1976 58.10 24 - 07 - 1977 40.80 21 - 07 - 1978 36.30 14 - 08 - 1980 30.80 <td< td=""></td<>

Titre de l'étude : BONNARD, 0107-3112, 1J

Numéro	Données	Identificateur	Active/Désactive
1	33.50	13 - 09 - 1961	Active
1 2	35.60	3 - 08 - 1962	Active
3	18.20	14 - 07 - 1963	Active
4	45.00	13 - 07 - 1964	Active
5	30.50	27 - 08 - 1965	Active
6	33.00	14 - 10 - 1966	Active
7	38.60	17 - 10 - 1967	Active
8	30.20	26 - 07 - 1968	Active
9	25.10	1 - 08 - 1969	Active
10	46.20	2 - 07 - 1970	Active
11	61.50	9 - 08 - 1971	Active
12	30.70	30 - 07 - 1972	Active
13	65.30	10 - 07 - 1973	Active
14	25.90	25 - 07 - 1974	Active
15	30.20	16 - 08 - 1975	Active
16	21.60	15 - 07 - 1976	Active
17	29.50	19 - 07 - 1977	Active
18	22.20	1 - 09 - 1978	Active
19	36.00	24 - 07 - 1979	Active
20	41.40	5 - 08 - 1980	Active
21	23.20	10 - 08 - 1981	Active
22	32.60	24 - 07 - 1982	Active
23	66.60	27 - 07 - 1983	Active
24	18.60	14 - 08 - 1984	Active
25	26.00	18 - 09 - 1985	Active
26	38.80	11 - 09 - 1986	Active
27	30.20	13 - 07 - 1987	Active
28	21.80	9 - 07 - 1988	Active
29	31.10	19 - 10 - 1989	Active
30	102.40	13 - 09 - 1990	Active
31	29.40	16 - 08 - 1991	Active
32	27.40	2 - 08 - 1992	Active
33	57.00 j	12 - 09 - 1993	Active
34	24.20	20 - 07 - 1994	Active

Titre de l'étude : BONNARD, 0107-3112, 3J

Numéro	Données	1	Identificateur	Active/Désactive
1	68.10		2 - 08 - 1962	Active
2	37.40	1	7 - 07 - 1963	Active
3	63.00	- 1	13 - 07 - 1964	Active
4	41.50		21 - 09 - 1965	Active
1 5	48.20		23 - 08 - 1966	Active
6	52.60	-	21 - 09 - 1967	Active
1. 7	44.90	-1	12 - 08 - 1968	Active
8	31.20	-	15 - 07 - 1969	Active
9	62.30	-1	19 - 07 - 1970	Active
10	85.90	1	8 - 08 - 1971	Active
11	31.70	1	29 - 07 - 1972	Active
12	72.40	1	10 - 07 - 1973	Active
13	46.50	1	24 - 07 - 1974	Active
14	46.00	-	15 - 07 - 1975	Active
15	31.00	1	12 - 10 - 1976	Active
16	39.70	1	18 - 07 - 1977	Active
17	32.50	1	6 - 07 - 1978	Active
18	56.40	-1	23 - 07 - 1979	Active
19	51.40	-	10 - 07 - 1980	Active
20	35.00	1	8 - 09 - 1981	Active
21	43.60	ł	23 - 07 - 1982	Active
22	91.80	1	27 - 07 - 1983	Active
23	31.60	1	16 - 07 - 1984	Active
24	35.60	1	18 - 09 - 1985	Active
25	45.80	ı	10 - 09 - 1986	Active
26	50.00	1	12 - 07 - 1987	Active
27	35.80		5 - 09 - 1988	Active
28	45.60	ı	8 - 09 - 1989	Active
29	153.00	İ	13 - 09 - 1990	Active
30	59.30	İ	15 - 08 - 1991	Active
31	39.00	i.	2 - 08 - 1992	Active
32	116.20	ĺ	12 - 09 - 1993	Active
33	36.60	Ì	19 - 07 - 1994	Active

Titre de l'étude : CHUTE-DU-DIABLE, 0107-3112, 3J

Numéro	Données	Identificateur	Active/Désactive
1 1	51.80	6 - 09 - 1953	Active
2	51.30	9 - 09 - 1954	Active
3	60.70	16 - 08 - 1955	Active
4	38.60	11 - 09 - 1956	Active
5	89.80	3 - 09 - 1957	Active
6	47.50	8 - 10 - 1958	Active
7	41.70	31 - 12 - 1959	Active
8	59.90	7 - 09 - 1960	Active
9	65.30	25 - 08 - 1961	Active
10	69.40	12 - 07 - 1962	Active
11	77.00	1 - 07 - 1963	Active
12	59.90	24 - 12 - 1964	Active
13	39.90	1 - 10 - 1965	Active
14	84.80	21 - 09 - 1966	Active
15	66.80	16 - 10 - 1967	Active
16	28.80	24 - 10 - 1968	Active
17	52.60	2 - 11 - 1969	Active
18	70.30	3 - 09 - 1970	Active
19	77.20	21 - 08 - 1971	Active
20	74.60	28 - 09 - 1972	Active
21	82.10	27 - 07 - 1973	Active
22	78.50	11 - 09 - 1974	Active
23	34.50	24 - 07 - 1975	Active
24	55.70	28 - 08 - 1976	Active
25	38.20	18 - 07 - 1977	Active
26	27.50	25 - 09 - 1978	Active
27	29.90	24 - 07 - 1979	Active
28	35.50	12 - 08 - 1980	Active
29	32.60	4 - 11 - 1981	Active
30	80.00	3 - 11 - 1982	Active
31	47.00	9 - 09 - 1983	Active
32	32.00	18 - 07 - 1984	Active
33	67.00	25 - 07 - 1985	Active
34	60.00	10 - 09 - 1986	Active
35	64.00	14 - 07 - 1987	Active
36	35.00	13 - 08 - 1988	Active
j 37 j	45.00	14 - 08 - 1989	Active
38	44.00	15 - 08 - 1990	Active
j 39 j	35.00	10 - 10 - 1991	Active
1 40 1	69.00	20 - 09 - 1992	Active
1 41	45.00	20 - 07 - 1993	Active
1 42 1	45.00	8 - 09 - 1994	Active

Titre de l'étude : CHUTE-DES-PASSES, 0107-3112, 1J

.	Numéro	Données		Identificateur	Active/Désactive
-	1	61.00	1	26 - 07 - 1960	Active
- 1	2	37.10	1	13 - 09 - 1961	Active
-	3	34.80	1	9 - 09 - 1962	Active
-	4	21.60	1	19 - 08 - 1963	Active
-	5	41.10	1	25 - 07 - 1964	Active
-	6	29.00	1	21 - 08 - 1965	Active
-	7	54.10	1	1 - 08 - 1966	Active
-	8	46.50	1	17 - 10 - 1967	Active
	9	45.70	i	17 - 07 - 1968	Active
1	10	40.60	1	11 - 11 - 1969	Active
-	11	68.80		19 - 07 - 1970	Active
ı	12	51.10		23 - 08 - 1971	Active
-	13	38.10	-	27 - 07 - 1972	Active
-	14	57.20	-1	26 - 07 - 1973	Active
	15	43.40	1	22 - 08 - 1974	Active
- 1	16	27.90	1	10 - 09 - 1975	Active
1	17	29.50	1	29 - 07 - 1976	Active
	18	21.08	-	25 - 09 - 1977	Active
	19	27.70		1 - 09 - 1978	Active
.	20	83.80	-	24 - 07 - 1979	Active
	21	48.30	1	10 - 07 - 1980	Active
	22	33.20	1	19 - 07 - 1981	Active
	23	20.40	1	3 - 11 - 1982	Active
- 1	24	30.00	1	20 - 09 - 1983	Active
- [25	28.53	1	5 - 08 - 1984	Active
- [26	26.00	1	5 - 07 - 1985	Active
1	27	29.00	-	11 - 09 - 1986	Active
-	28	31.00	1	13 - 07 - 1987	Active
-	29	27.00	1	30 - 09 - 1988	Active
-	30	35.00		19 - 10 - 1989	Active
1	31	21.00	- }	3 - 10 - 1990	Active
1	32	39.00	1	7 - 07 - 1991	Active
-	33	35.00	ı	4 - 08 - 1992	Active
-	34	47.00	1	10 - 08 - 1993	Active
-	35	25.00	1	20 - 07 - 1994	Active

Titre de l'étude : CHUTE-DES-PASSES, 0107-3112, 3J

Numéro	Données	Identificateur	Active/Désactive
1 1	73.90	30 - 07 - 1960	Active
2	53.30	10 - 08 - 1961	Active
3	70.30	8 - 07 - 1962	Active
4	39.10	7 - 07 - 1963	Active
5	49.70	26 - 07 - 1964	Active
6	46.50	7 - 08 - 1965	Active
7	73.60	1 - 11 - 1966	Active
8	70.40	16 - 10 - 1967	Active
9	58.40	17 - 07 - 1968	Active
10	52.10	11 - 11 - 1969	Active
11	72.30	19 - 07 - 1970	Active
1 12	58.20	23 - 08 - 1971	Active
13	72.90	27 - 07 - 1972	Active
14	82.10	27 - 07 - 1973	Active
15	70.60	22 - 08 - 1974	Active
16	36.10	9 - 09 - 1975	Active
1 17	38.70	29 - 07 - 1976	Active
18	25.90	18 - 07 - 1977	Active
19	37.60	29 - 09 - 1978	Active
20	88.10	24 - 07 - 1979	Active
21	54.70	10 - 07 - 1980	Active
22	56.10	20 - 07 - 1981	Active
23	42.30	3 - 11 - 1982	Active
24	40.00	19 - 09 - 1983	Active
25	43.00	3 - 07 - 1984	Active
26	45.00	6 - 07 - 1985	Active
27	48.00	10 - 09 - 1986	Active
28	48.00	12 - 07 - 1987	Active
29	32.00	26 - 08 - 1988	Active
30	46.00	20 - 10 - 1989	Active
31	35.00	4 - 10 - 1990	Active
32	58.00	7 - 07 - 1991	Active
j 33	53.00 i	3 - 08 - 1992	Active
34	60.00	13 - 09 - 1993	Active
35	46.00	21 - 07 - 1994	Active

Titre de l'étude : CHAPAIS-2, 0107-3112, 3J

1	Numéro		Données		Identificateur		Active/Désactive	_
	1 2 3 4		69.10 70.80 74.40 56.60		11 - 09 - 1962 2 - 08 - 1963 16 - 07 - 1964 5 - 08 - 1965	 	Active Active Active Active	
1	5 6 7		48.10 53.10 44.40		1 - 08 - 1966 31 - 10 - 1967 14 - 10 - 1968		Active Active Active	1
	8 9 10		34.30 48.20 55.20		31 - 07 - 1969 6 - 07 - 1970 26 - 07 - 1971		Active Active Active	
1	11 12 13		32.50 75.20 27.50		16 - 09 - 1972 7 - 08 - 1973 14 - 09 - 1974		Active Active Active	
	14 15 16 17		41.70 39.62 40.30 45.70		17 - 07 - 1975 10 - 07 - 1976 21 - 08 - 1977 29 - 09 - 1978		Active Active Active Active	
	18 19 20	-	64.00 71.00 44.00	1	23 - 07 - 1979 28 - 07 - 1980 7 - 09 - 1981		Active Active Active	
; 	21 22 23		52.00 44.00 31.00	 -	5 - 07 - 1982 5 - 09 - 1983 14 - 08 - 1984	-	Active Active Active	
1	24 25 26		45.00 40.00 42.00		13 - 07 - 1985 19 - 07 - 1986 22 - 07 - 1987		Active Active Active	
	27 28 29 30		49.60 37.60 129.00 33.60	-	13 - 08 - 1988 1 - 08 - 1989 13 - 09 - 1990 13 - 08 - 1991		Active Active Active Active	

Titre de l'étude : CHIBOUGAMAU-A, 0107-3112, 3J

1	Numéro		Données		Identificateur		Active/Désactive
1	1	1	51.80		20 - 09 - 1971		Active
ĺ	2	i	59.70	İ	25 - 08 - 1972	i	Active
1	3	1	52.30	Ì	6 - 08 - 1973	ĺ	Active
1	4	1	36.70	1	15 - 09 - 1974	- 1	Active
1	5	- 1	55.40	1	16 - 07 - 1975	1	Active
1	6		33.10	ı	14 - 08 - 1976	1	Active
1	7		44.20	1	18 - 07 - 1977	1	Active
1	8		37.00	1	29 - 09 - 1978	i	Active
1	9	1	74.00	1	24 - 07 - 1979	1	Active
	10	1	74.20	1	13 - 08 - 1980	1	Active
	11		52.70	1	7 - 09 - 1981	1	Active
1	12	ł	42.60	-	6 - 07 - 1982	-	Active
1	13	-	58.20	-	5 - 09 - 1983	- 1	Active
	14		34.60	1	30 - 10 - 1984	1	Active
1	15	-	53.70	1	24 - 07 - 1985	- 1	Active
1	16	-	61.40	ł	11 - 09 - 1986	1	Active
1	17	-	36.40	1	7 - 09 - 1987	1	Active
	18	-1	60.60	1	4 - 09 - 1988	1	Active
1	19	-	49.80	1	1 - 08 - 1989		Active
1	20	1	127.90	1	13 - 09 - 1990	- 1	Active
	21		41.80	1	3 - 10 - 1991	_1	Active
	22	1	57.70	1	26 - 08 - 1992	-	Active
1	23	1	68.70		13 - 09 - 1993	1	Active
1	24	-	66.60	1	30 - 07 - 1994	1	Active

Titre de l'étude : ISLE-MALIGNE, 0107-3112, 3J

Numéro	Données	Identificateur	Active/Désactive
1	38,10	19 - 09 - 1953	Active
2	35.00	10 - 08 - 1954	Active
3	96.60	21 - 07 - 1955	Active
4	51.50	23 - 07 - 1956	Active
5	67.80	3 - 09 - 1957	Active
6	70.00	8 - 10 - 1958	Active
7	44.20	25 - 08 - 1959	Active
8	45.80	7 - 09 - 1960	Active
9	45.70	10 - 08 - 1961	Active
10	59.20	12 - 07 - 1962	Active
11	60.00	1 - 07 - 1963	Active
12	55.60	4 - 07 - 1964	Active
13	33.50	1 - 08 - 1965	Active
14	84.80	21 - 09 - 1966	Active
15	55.10	1 - 07 - 1967	Active
16	36.60	29 - 07 - 1968	Active
17	35.30	3 - 11 - 1969	Active
18	64.50	3 - 09 - 1970	Active
19	79.20	21 - 08 - 1971	Active
20	64.00	25 - 08 - 1972	Active
21	49.50	4 - 09 - 1973	Active
22	80.50	27 - 07 - 1974	Active
23	40.90	17 - 07 - 1975	Active
24	43.40	14 - 08 - 1976	Active
25	36.00	16 - 07 - 1977	Active
26	40.10	26 - 09 - 1978	Active
27	65.60	5 - 08 - 1979	Active
28	79.10	13 - 08 - 1980	Active
29	36.20	4 - 11 - 1981	Active
30	66.40	2 - 11 - 1982	Active
31	53.50	3 - 10 - 1983	Active
32	27.50	16 - 07 - 1984	Active
33	50.60	25 - 07 - 1985	Active
34	56.00	22 - 08 - 1986	Active
35	66.80	12 - 07 - 1987	Active
36	52.00	13 - 08 - 1988	Active
37	66.40	21 - 09 - 1989	Active
38	47.00	16 - 08 - 1990	Active
39	35.90	10 - 10 - 1991	Active
1 40	47.80	21 - 09 - 1992	Active
41	75.80	28 - 07 - 1993	Active

Titre de l'étude : LAC BOUCHETTE, 0107-3112, 3J

Numéro	Données	Identificateur	Active/Désactive
1	48.50	19 - 09 - 1953	Active
2	53.30	29 - 08 - 1954	Active
3	55.40	14 - 07 - 1955	Active
4	39.60	7 - 08 - 1956	Active
5	70.30	3 - 09 - 1957	Active
6	66.60	8 - 10 - 1958	Active
7	59.40	25 - 08 - 1959	Active
8	45.60	7 - 09 - 1960	Active
9	56.90	24 - 08 - 1961	Active
10	82.60	12 - 07 - 1962	Active
11	45.70	1 - 07 - 1963	Active
12	47.00	24 - 12 - 1964	Active
13	27.70	20 - 10 - 1965	Active
14	64.50	1 - 08 - 1966	Active
15	75.70	16 - 10 - 1967	Active
16	48.00	22 - 07 - 1968	Active
17	60.70	6 - 09 - 1969	Active
18	107.40	3 - 09 - 1970	Active
19	57.40	21 - 08 - 1971	Active
20	55.90	13 - 07 - 1972	Active
21	56.40	31 - 07 - 1973	Active
22	58.70	27 - 07 - 1974	Active
23	58.70	14 - 08 - 1975	Active
24	63.50	13 - 08 - 1976	Active
25	44.20	1 - 10 - 1977	Active
26	43.40	27 - 09 - 1978	Active
27	44.70	24 - 07 - 1979	Active
28	40.80	3 - 07 - 1980	Active
29	54.40	14 - 08 - 1981	Active
] 30	62.60	2 - 11 - 1982	Active
31	44.50	3 - 10 - 1983	Active
32	31.20	14 - 07 - 1984	Active
33	104.60	24 - 07 - 1985	Active
34	83.00	22 - 08 - 1986	Active
35	44.20	23 - 10 - 1987	Active
36	65.20	7 - 08 - 1988	Active
37	77.80	21 - 09 - 1989	Active
1 38	31.80	18 - 07 - 1990	Active
39	47.50	9 - 08 - 1991	Active

Titre de l'étude : MISTASSINI POST, 0107-3112, 3J

 	Numéro	 	Données	 	Identificateur	 	Active/Désactive
1	1	1	52.60	1	28 - 08 - 1953	ı	Active
-	2	1	37.10	I	21 - 09 - 1954	-	Active
1	3	ł	41.80	-	29 - 08 - 1955		Active
1	4	- {	66.90	1	22 - 08 - 1956	- }	Active
1	5	ı	35.30	1	28 - 07 - 1957	-1	Active
1	6	1	22.90	1	13 - 08 - 1958		Active
1	. 7	1	32.30	- 1	23 - 10 - 1959	-	Active
1	8	-	33.50	. [30 - 07 - 1960	1	Active
1	9,	1	45.20	-	12 - 09 - 1961	- 1	Active
1	10	1	35.20	1	2 - 08 - 1962	- 1	Active
	11	1	27.40	- 1	28 - 07 - 1963	-	Active
1	12	1	55.40		21 - 09 - 1964	1	Active
	13	1	71.60	-	1 - 08 - 1965		Active
1 .	14	1	83.60		1 - 08 - 1966	-	Active
	15	i	60.90		2 - 08 - 1967		Active
1	16	1	46.00		20 - 07 - 1968	1	Active
1	17	-	48.80	.	7 - 08 - 1969	1	Active
1	18		54.20	.]	30 - 07 - 1970	1	Active
	19	1	49.80	1	19 - 09 - 1971	1	Active
	20	1	29.90		31 - 12 - 1972	1	Active
1	21	İ	46.20	- 1	12 - 08 - 1973	1	Active
1	22	ł	77.00	1	16 - 07 - 1974	1	Active
	23	l	51.60	I	7 - 09 - 1975	1	Active
1	24	ı	43.70	ı	15 - 08 - 1976	1	Active
1	25	1	29.20	I	31 - 12 - 1977	1	Active
	26	1	31.30	ı	29 - 09 - 1978	1	Active
1	27	1	65.00	1	1 - 07 - 1979	ļ	Active
1	28	I	52.60	1	30 - 09 - 1980	I	Active

Titre de l'étude : NITCHEQUON, 0107-3112, 3J

Numéro	Données	-	Identificateur	I	Active/Désactive
1	50.10		12 - 09 - 1953	 I	Active
j 2	45.00	i	14 - 08 - 1954	i	Active
3	35.10	i	23 - 10 - 1955	i	Active
. 4	49.30	i	12 - 07 - 1956	i	Active
j 5	41.70	i	9 - 07 - 1957	i	Active
6	39.30	İ	30 - 07 - 1958	i	Active
7	83.10	İ	23 - 10 - 1959	Ì	Active
8	40.70	ĺ	8 - 08 - 1960	1	Active
9	29.30	İ	25 - 09 - 1961	İ	Active
10	31.30	1	12 - 09 - 1962		Active
11	47.50	- 1	27 - 07 - 1963	- 1	Active
12	68.60	1	28 - 07 - 1964	- [Active
13	1 60.20	-	29 - 09 - 1965	- 1	Active
14	77.00	1	9 - 08 - 1966	-	Active
15	56.90	1	6 - 08 - 1967	-	Active
1 16	37.40	- 1	25 - 08 - 1968	- 1	Active
17	47.20	- 1	21 - 09 - 1969	1	Active
18	37.10	- 1	29 - 08 - 1970	1	Active
19	33.60	- 1	6 - 09 - 1971	1	Active
20	40.70	1	19 - 08 - 1972		Active
21	35.10	- 1	11 - 07 - 1973	- 1	Active
22	54.60		28 - 09 - 1974		Active
23	43.00		17 - 08 - 1975	İ	Active
24	20.50		2 - 08 - 1976	1	Active
25	48.80		8 - 09 - 1977	- 1	Active
26	73.90	-	15 - 08 - 1978		Active
27	40.80	-	4 - 10 - 1979	-1	Active
28	94.40	-	29 - 07 - 1980	ı	Active
29	62.20	1	11 - 08 - 1981		Active
30	88.40	I	11 - 07 - 1982	ĺ	Active
31	37.60	l	5 - 09 - 1983		Active
32	61.10	ł	14 - 07 - 1984		Active
33	31.20	1	18 - 09 - 1985		Active

Titre de l'étude : NORMANDIN-CDA, 0107-3112, 3J

Numéro	Données	Identificateur	Active/Désactive
1 1	33.80	4 - 07 - 1953	Active
2	31.50	9 - 08 - 1954	Active
j 3	53.60	17 - 09 - 1955	Active
4	38.90	23 - 07 - 1956	Active
5	66.80	3 - 09 - 1957	Active
6	56.40	8 - 09 - 1958	Active
7	46.70	16 - 07 - 1959	Active
8	49.30	25 - 07 - 1960	Active
j 9	31.50	8 - 07 - 1961	Active
10	84.60	12 - 07 - 1962	Active
11	34.50	31 - 12 - 1963	Active
12	42.50	15 - 08 - 1964	Active
13	45.20	1 - 08 - 1965	Active
14	85.60	21 - 09 - 1966	Active
15	84.80	16 - 10 - 1967	Active
16	34.00	17 - 07 - 1968	Active
17	67.30	26 - 07 - 1969	Active
18	90.10	3 - 09 - 1970	Active
19	35.80	4 - 10 - 1971	Active
20	41.60	2 - 09 - 1972	Active
21	46.50	31 - 07 - 1973	Active
22	67.90	11 - 09 - 1974	Active
23	42.20	31 - 08 - 1975	Active
24	39.10	14 - 08 - 1976	Active
25	12.90	1 - 12 - 1977	Active
26	33.80	13 - 07 - 1978	Active
27	41.40	24 - 07 - 1979	Active
28	63.30	13 - 08 - 1980	Active
29	33.60	19 - 07 - 1981	Active
30	48.00	2 - 11 - 1982	Active
31	34.40	20 - 09 - 1983	Active
32	54.80	18 - 07 - 1984	Active
33	76.70	25 - 07 - 1985	Active
34	63.20	22 - 08 - 1986	Active
35	32.40	11 - 09 - 1987	Active
36 i	43.50	3 - 08 - 1988	Active
j 37 j	83.60	21 - 09 - 1989	Active
38	48.00	5 - 08 - 1990	Active
j 39 j	37.20	9 - 08 - 1991	Active
j 40 j	-99999.0	1 - 01 - 1992	Non-active
41	47.50	16 - 10 - 1993	Active
42	55.50	4 - 11 - 1994	Active

Titre de l'étude : PERIBONCA, 0107-3112, 3J

Numéro	Données	Identificateur	Active/Désactive
1	36.80	19 - 09 - 1953	Active
2	40.40	1 - 09 - 1954	Active
3	53.40	17 - 09 - 1955	Active
4	27.50	6 - 10 - 1956	Active
5	72.60	3 - 09 - 1957	Active
6	71.60	10 - 07 - 1958	Active
1 7	37.80	1 - 07 - 1959	Active
8	58.20	26 - 07 - 1960	Active
9	39.90	25 - 08 - 1961	Active
10	65.10	26 - 07 - 1962	Active
11	53.30	28 - 11 - 1963	Active
12	43.40	15 - 08 - 1964	Active
13	42.20	7 - 08 - 1965	Active
14	75.90	21 - 09 - 1966	Active
15	79.80	16 - 10 - 1967	Active
16	27.20	15 - 08 - 1968	Active
17	37.00	6 - 09 - 1969	Active
18	76.70	3 - 09 - 1970	Active
19	47.50	21 - 08 - 1971	Active
1 20	49.00	29 - 09 - 1972	Active
21	51.60	27 - 07 - 1973	Active
22	77.50	11 - 09 - 1974	Active
23	46.20	22 - 07 - 1975	Active
24	49.80	13 - 08 - 1976	Active
25	47.20	18 - 07 - 1977	Active
26	40.40	14 - 07 - 1978	Active
1 27	50.00	24 - 07 - 1979	Active
1 28	66.00	25 - 09 - 1980	Active
29	53.30	24 - 07 - 1981	Active
30	40.20	24 - 07 - 1982	Active

Titre de l'étude : ROBERVAL HISTORIQUE, 0107-3112, 1J

Numéro	Données	Identificateur	Active/Désactive
1	18.00	11 - 08 - 1914	Active
2	58.00	26 - 09 - 1915	Active
j 3	33.00	19 - 10 - 1916	Active
i 4	24.00	30 - 09 - 1917	Active
j 5	32.00	6 - 09 - 1918	Active
j 6	20.00	28 - 07 - 1919	Active
j 7	49.00	22 - 08 - 1920	Active
8	31.00	21 - 10 - 1921	Active
9	73.00	12 - 09 - 1922	Active
10	35.00	22 - 08 - 1923	Active
11	53.00	30 - 09 - 1924	Active
1 12	36.00	6 - 12 - 1925	Active
13	23.00	9 - 11 - 1926	Active
14	32.00	3 - 11 - 1927	Active
15	36.00	13 - 09 - 1928	Active
16	43.00	4 - 08 - 1929	Active
17	30.00	16 - 08 - 1930	Active
18	29.00	30 - 10 - 1931	Active
19	38.00	17 - 09 - 1932	Active
20	32.00	13 - 08 - 1933	Active
21	21.00	13 - 07 - 1934	Active
22	34.00	28 - 07 - 1935	Active
23	28.00	24 - 09 - 1936	Active
24	43.00	12 - 08 - 1937	Active
25	25.00	15 - 08 - 1938	Active
26	33.00	4 - 09 - 1939	Active
27	21.00	17 - 08 - 1940	Active
28	26.00	7 - 07 - 1941	Active
29	29.00	19 - 07 - 1942	Active
30	28.00	28 - 10 - 1943	Active
31	43.00	12 - 07 - 1944	Active
32	23.00	11 - 09 - 1945	Active
33	62.00	30 - 09 - 1946	Active
34	55.00	13 - 08 - 1947	Active
35	17.00	8 - 09 - 1948	Active
36	-99999.0	1 - 01 - 1949	Non-active
37	37.00	13 - 10 - 1950	Active
38	30.00	21 - 08 - 1951	Active
39	49.00	13 - 07 - 1952	Active
40 .	26.00	11 - 09 - 1953	Active
41	30.00	30 - 09 - 1954	Active
42	25.00	18 - 09 - 1955	Active
43	13.00	22 - 08 - 1956	Active
44	33.00	4 - 09 - 1957	Active
45	50.00	15 - 07 - 1958	Active
1 46	24.00	1 - 07 - 1959	Active
1 47	20.00	12 - 09 - 1960	Active
48	36.00 32.00	18 - 07 - 1961	Active
49	32.00	23 - 10 - 1962	Active
50	39.00	1 - 07 - 1963	Active
51	24.00	28 - 07 - 1964	Active
52	31.00	18 - 07 - 1965 23 - 09 - 1966	Active Active
53	36.00 	23 - 09 - 1966 	Active

Titre de l'étude : ROBERVAL HISTORIQUE, 0107-3112, 3J

Numéro	Données	Identificateur	Active/Désactive
1	18.00	10 - 08 - 1914	Active
2	58.00	25 - 09 - 1915	Active
3	41.00	19 - 10 - 1916	Active
4	30.00	4 - 10 - 1917	Active
5	44.00	8 - 07 - 1918	Active
6	29.00	28 - 07 - 1919	Active
1 7	55.00	4 - 07 - 1920	Active
8	41.00	18 - 07 - 1921	Active
9	102.00	11 - 09 - 1922	Active
10	55.00	24 - 10 - 1923	Active
11	103.00	30 - 09 - 1924	Active
12	42.00	5 - 12 - 1925	Active
13	29.00	24 - 10 - 1926	Active
14	1 43.00	3 - 11 - 1927	Active
15	41.00	14 - 09 - 1928	Active
16	1 49.00	5 - 08 - 1929	Active
17	34.00	16 - 08 - 1930	Active
18	32.00	1 - 07 - 1931	Active
19	50.00	17 - 09 - 1932	Active
20	32.00	1 12 - 08 - 1933	Active
21	25.00	18 - 08 - 1934	Active
22	34.00	27 - 07 - 1935	Active
23	38.00	23 - 09 - 1936	Active
24	44.00	12 - 08 - 1937	Active
25	38.00	14 - 08 - 1938	Active
26	35.00	5 - 09 - 1939	Active
27	40.00	18 - 08 - 1940	Active
28	51.00	7 - 07 - 1941	Active
29	43.00	18 - 07 - 1942	Active
30	51.00	16 - 10 - 1943	Active
31	53.00	11 - 07 - 1944	Active
32	28.00	8 - 10 - 1945	Active
33	106.00	30 - 09 - 1946	Active
34	57.00	13 - 08 - 1947	Active
35	26.00	20 - 07 - 1948	Active
36	-99999.0	1 - 01 - 1949	Non-active
1 37	51.00	12 - 10 - 1950	Active
38	56.00	23 - 09 - 1951	Active
39	87.00	13 - 07 - 1952	Active
40	30.00	12 - 09 - 1953	Active
41	33.00	30 - 09 - 1954	Active
1 42	33.00	19 - 09 - 1955	Active
43	26.00	23 - 07 - 1956	Active
44	38.00	4 - 09 - 1957	Active
1 45	52.00	15 - 07 - 1958	Active
46	24.00	1 - 07 - 1959	Active
47	27.00	8 - 09 - 1960	Active
48	39.00	26 - 08 - 1961	Active
1 49	42.00	22 - 10 - 1962	Active
50	46.00	1 - 07 - 1963	Active
51	29.00	25 - 12 - 1964	Active
52	35.00	17 - 07 - 1965	Active
53	80.00	22 - 09 - 1966	Active

Titre de l'étude : ROBERVAL-A, 0107-3112, 1J

Numéro	Données	Identificateur	Active/Désactive
1	23.10 48.80 33.00 30.70 42.40 42.40 38.90 31.20 24.60 65.00 45.20 24.10 38.40 102.60 24.10 31.20 49.50 36.60 45.20 28.40 27.40 37.60 56.60 54.00	23 - 10 - 1957 14 - 07 - 1958 31 - 12 - 1959 11 - 09 - 1960 7 - 07 - 1961 12 - 07 - 1962 31 - 12 - 1963 24 - 12 - 1964 4 - 07 - 1965 22 - 09 - 1966 9 - 08 - 1967 24 - 10 - 1968 5 - 09 - 1969 3 - 09 - 1970 22 - 08 - 1971 14 - 07 - 1972 31 - 07 - 1973 10 - 09 - 1974 23 - 07 - 1975 11 - 07 - 1976 13 - 09 - 1977 22 - 07 - 1978 25 - 07 - 1979 14 - 08 - 1980	Non-active Active
23	56.60	25 - 07 - 1979	Active

Titre de l'étude : ROBERVAL-A, 0107-3112, 3J

Numéro	Données	Identificateur	Active/Désactive
1	35.50	14 - 11 - 1957	Non-active
2	57.60	9 - 10 - 1958	Active
3	33.80	1 - 07 - 1959	Active
4	32.80 i	11 - 09 - 1960	Active
5	j 58.10 j	25 - 08 - 1961	Active
6	j 88.60 j	13 - 07 - 1962	Active
7	48.00	31 - 12 - 1963	Active
8	34.20	24 - 12 - 1964	Active
9	43.00	18 - 07 - 1965	Active
10	82.50	21 - 09 - 1966	Active
11	81.50	16 - 10 - 1967	Active
12	31.40	17 - 07 - 1968	Active
13	62.30	6 - 09 - 1969	Active
14	116.00	3 - 09 - 1970	Active
15	41.70	22 - 08 - 1971	Active
16	61.20	26 - 08 - 1972	Active
17	57.70	1 - 08 - 1973	Active
18	57.90	11 - 09 - 1974	Active
19	47.00	23 - 07 - 1975	Active
20	38.50	11 - 07 - 1976	Active
21	30.30	2 - 10 - 1977	Active
22	43.60	26 - 09 - 1978	Active
23	63.80	26 - 07 - 1979	Active
24	66.10	13 - 08 - 1980	Active
25	38.60	15 - 08 - 1981	Active
26	60.20	3 - 11 - 1982	Active
27	49.90	3 - 10 - 1983	Active
28	26.20	4 - 08 - 1984	Active
29	77.20	25 - 07 - 1985	Active
30	68.40	22 - 08 - 1986	Active
31	44.20	23 - 10 - 1987	Active
32	67.80	13 - 08 - 1988	Active
33	65.40	20 - 09 - 1989	Active
34	56.60	15 - 08 - 1990	Active
35	57.80	9 - 08 - 1991	Active
36	60.30	25 - 07 - 1992	Active
37	35.80	16 - 10 - 1993	Active
38	55.70	5 - 07 - 1994	Active

Titre de l'étude : ROBERVAL HISTORIQUE, 0107-3112, 1J

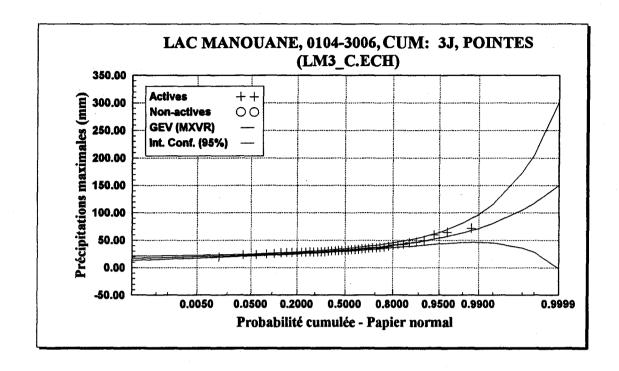
Numéro	Données	Identificateur	Active/Désactive
1	18.00	11 - 08 - 1914	Active
2	58.00	26 - 09 - 1915	Active
3	33.00	19 - 10 - 1916	Active
4	24.00	30 - 09 - 1917	Active
5	32.00	6 - 09 - 1918	Active
1 6	20.00	28 - 07 - 1919	Active
7	49.00	22 - 08 - 1920	Active
8	31.00	21 - 10 - 1921	Active
9	73.00	12 - 09 - 1922	Active
10	35.00	22 - 08 - 1923	Active
11	53.00	30 - 09 - 1924	Active
12	36.00	6 - 12 - 1925	Active
13	23.00	9 - 11 - 1926	Active
14	32.00	3 - 11 - 1927	Active
15	36.00	13 - 09 - 1928	Active
16	43.00	4 - 08 - 1929	Active
17	30.00	16 - 08 - 1930	Active
18	29.00	30 - 10 - 1931	Active
1 19	38.00	17 - 09 - 1932	Active
20	32.00	13 - 08 - 1933	Active
21	21.00	13 - 07 - 1934	Active
22	34.00	28 - 07 - 1935	Active
23	28.00	24 - 09 - 1936	Active
24	43.00	12 - 08 - 1937	Active
25	25.00	15 - 08 - 1938	Active
26	33.00	4 - 09 - 1939	Active
27	21.00	17 - 08 - 1940	Active
28	26.00	7 - 07 - 1941	Active
29	29.00	19 - 07 - 1942	Active
30	28.00	28 - 10 - 1943	Active
31	43.00	12 - 07 - 1944	Active
32	23.00	11 - 09 - 1945	Active
33	62.00	30 - 09 - 1946	Active
34	55.00	13 - 08 - 1947	Active
35	17.00	8 - 09 - 1948	Active
36	-99999.0	1 - 01 - 1949	Non-active
37	37.00	13 - 10 - 1950	Active
38	30.00	21 - 08 - 1951	Active
39	49.00	13 - 07 - 1952	Active
40	26.00	11 - 09 - 1953	Active
41	30.00	30 - 09 - 1954	Active
42	25.00	18 - 09 - 1955	Active
43	13.00	22 - 08 - 1956	Active
44	33.00	4 - 09 - 1957	Active
45	48.80	14 - 07 - 1958	Active
46	33.00	31 - 12 - 1959	Active
47	30.70	11 - 09 - 1960	Active
48	42.40	7 - 07 - 1961	Active
49	42.40	12 - 07 - 1962	Active
50	38.90	31 - 12 - 1963	Active

1	51	-	31.20	1	24 -	12	-	1964	1	Active	1
1	52	1	24.60		4 -	07	-	1965	- 1	Active	1
	53	- 1	65.00	-	22 -	09	-	1966	- 1	Active	1
	54	1	45.20		9 -	80	_	1967	- 1	Active	. 1
	55	- 1	24.10	1	24 -	10	-	1968	-	Active	
}	56	l	38.40	1	5 -	09	-	1969	-	Active	l
1	57	İ	102.60	1	3 -	09	-	1970	1	Active	
ĺ	58	1	24.10	1	22 -	80	-	1971	-	Active	1
İ	59	1	31.20	İ	14 -	07	-	1972	Ì	Active	
İ	60	ĺ	49.50	İ	31 -	07	_	1973	İ	Active	
Ì	61	Ì	36.60	İ	10 -	09	-	1974	Ì	Active	
İ	62	ĺ	45.20	i	23 -	07	_	1975	Ì	Active	l
i	63	İ	28.40	i	11 -	07	_	1976	i	Active	i
i	64	i	27.40	i	13 -	09		1977	i	Active	i
i	65	i	37.60	i	22 -	07	_	1978	i	Active	İ
i	66	- i	56.60	i	25 -	07	_	1979	i	Active	i
i	67	i	54.00	i	14 -	08		1980	i	Active	i
i	68	i	35.10	i	15 -	08	_	1981	i	Active	i
i	69	i	35.40	i	3 -	11		1982	i	Active	·i
i	70	i	33.60	i	20 -	09		1983	i	Active	i
i	71	i	17.20	i	4 -	08		1984	i	Active	i
i	72	i	50.00	i	26 -	09		1985	i	Active	i
j	73	i	46.00	i	5 -	07	_	1986	i	Active	i
i	74	i	36.40	i	13 -	07	_	1987	i	Active	i
i	75	i	46.00	i	13 -	08		1988	i	Active	i
i	76	i	60.00	i	21 -	09		1989	i	Active	i
ŀ	77	i	53.60	i	16 -	08		1990	i	Active	i
i	7.8	i	35.20	i	9 -	08		1991	i	Active	i
i	79	i	33.00	i	8 -	07	_	1992		Active	1
1	80	1	27.20	i	30 -	08	_	1993	ľ	Active	· i
1	81	i	38.40	i	4 -	07	_	1994	İ	Active	r I
1	. 0 1	1	30.40	1	-4	٠,			ľ	1100100	

Titre de l'étude : ROBERVAL HISTORIQUE, 0107-3112, 3J

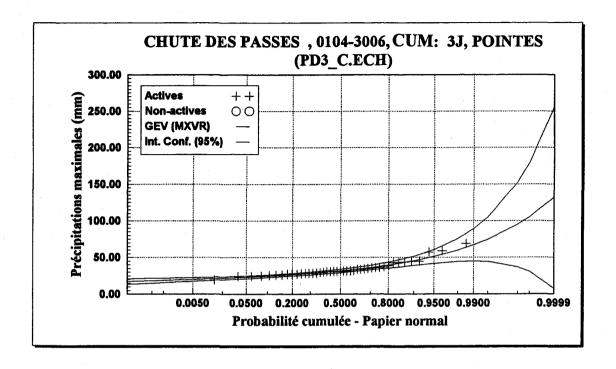
Numéro	Données	Identificateur	Active/Désactive
1	18.00	10 - 08 - 1914	Active
2	58.00	25 - 09 - 1915	Active
3	41.00	19 - 10 - 1916	Active
4	30.00	4 - 10 - 1917	Active
5	44.00	8 - 07 - 1918	Active
6	29.00	28 - 07 - 1919	Active
7	55.00	4 - 07 - 1920	Active
8	41.00	18 - 07 - 1921	Active
9	102.00	11 - 09 - 1922	Active
10	55.00	24 - 10 - 1923	Active
11	1 103.00	30 - 09 - 1924	Active
12	42.00	5 - 12 - 1925	Active
13	29.00	24 - 10 - 1926	Active
14	43.00	3 - 11 - 1927	Active
15	41.00	14 - 09 - 1928	Active
16	49.00	5 - 08 - 1929	Active
17	34.00	16 - 08 - 1930	Active
18	32.00	1 - 07 - 1931	Active
19	50.00	17 - 09 - 1932	Active
20	32.00	12 - 08 - 1933	Active
21	25.00	18 - 08 - 1934	Active
22	34.00	27 - 07 - 1935	Active
23	38.00	23 - 09 - 1936	Active
24	44.00	12 - 08 - 1937	Active
25	38.00	14 - 08 - 1938	Active
26	35.00	5 - 09 - 1939	Active
27	40.00	18 - 08 - 1940	Active
28	51.00	7 - 07 - 1941	Active
29	43.00	18 - 07 - 1942	Active
30	51.00	16 - 10 - 1943	Active
31	53.00	11 - 07 - 1944	Active
32	28.00	8 - 10 - 1945	Active
33	106.00	30 - 09 - 1946	Active
34	57.00	13 - 08 - 1947	Active
35	26.00	20 - 07 - 1948	Active
36	-99999.0	1 - 01 - 1949	Non-active
37	51.00	12 - 10 - 1950	Active
38	56.00	23 - 09 - 1951	Active
39	87.00	13 - 07 - 1952	Active
40	30.00	12 - 09 - 1953	Active
41	33.00	30 - 09 - 1954	Active
42	33.00	19 - 09 - 1955	Active
43	26.00	23 - 07 - 1956	Active
44	38.00	4 - 09 - 1957	Active
45	57.60	9 - 10 - 1958	Active
46	33.80	1 - 07 - 1959	Active
47	32.80	11 - 09 - 1960	Active
48	58.10	25 - 08 - 1961	Active
49	88.60	13 - 07 - 1962	Active
50	48.00	31 - 12 - 1963	Active

ı	51	34.20	I	24 - 1	2 -	1964	1	Active	1
ı	52	43.00		18 - 0	7 –	1965	1	Active	1
Ì	53	82.50	1	21 - 0	9 –	1966	1	Active	1
Ì	54	81.50	1	16 - 1	o –	1967	1	Active	
Ì	55	31.40	i	17 - 0	7 –	1968	1	Active	-
1	56	62.30		6 - 0	9 -	1969	1	Active	
1	57	116.00	١	3 - 0	9 –	1970	1	Active	
1	58	41.70	1	22 - 0	8 -	1971	1	Active	- 1
1	59	61.20		26 - 0	8 -	1972	-	Active	
Ì	60	57.70		1 - 0	8 -	1973	-	Active	-
1	61	57.90		11 - 0	9 -	1974	1	Active	
I	62	47.00		23 - 0	7 –	1975	1	Active	- 1
1	63	38.50		11 - 0	7 –	1976	1	Active	-
1	64	30.30	1	2 - 1	0 -	1977	1	Active	
1	65	43.60	1	26 - 0	9 –	1978	1	Active	.
1	66	63.80	1	26 - 0	7 -	1979	-	Active	l
-	67	66.10	1	13 - 0	8 -	1980	1	Active	1
1	68	38.60	1	15 - 0	3 -	1981	1	Active	1
1	69	60.20	1	3 - 13	1 -	1982	1	Active	1
-	70	49.90	1	3 - 1	0 -	1983	1	Active	1
-	71	26.20		4 - 0	3 -	1984	1	Active	
-	72	77.20		25 - 0	7 –	1985	1	Active	١
	73	68.40	1	22 - 0	8 -	1986		Active	
1	74	44.20		23 - 1) -	1987	. [Active	
1	75	67.80	1	13 - 0	8 -	1988	1	Active	1
1	76	65.40	1	20 - 0	9 -	1989	1	Active	
-	77	56.60		15 - 0		1990	1	Active	ŀ
-	78	57.80	1	9 - 0	8 -	1991	1	Active	ł
1	79	60.30		25 - 0	7 -	1992	1	Active	1
1	80	35.80	1	16 - 1	o –	1993	-	Active	1
1	81	55.70	1	5 - 0	7 –	1994	!	Active	1


Titre de l'étude : SHIPSHAW, 0107-3112, 3J

Numéro	Données	Identificateur	Active/Désactive
1	44.20	5 - 09 - 1953	Active
2	49.30	29 - 09 - 1954	Active
3	93.70	21 - 07 - 1955	Active
4	36.60	13 - 07 - 1956	Active
5	64.80	21 - 09 - 1957	Active
1 6	97.80	9 - 10 - 1958	Active
1 7	43.20	15 - 08 - 1959	Active
8	47.80	12 - 09 - 1960	Active
9	59.90	25 - 08 - 1961	Active
10	56.40	13 - 07 - 1962	Active
11	66.50	1 - 07 - 1963	Active
12	49.80	4 - 07 - 1964	Active
13	45.20	7 - 08 - 1965	Active
14	100.10	21 - 09 - 1966	Active
15	44.70	16 - 10 - 1967	Active
16	50.50	17 - 07 - 1968	Active
1 17	73.20	16 - 08 - 1969	Active
18	73.70	3 - 09 - 1970	Active
19	62.50	21 - 08 - 1971	Active
20	45.70	8 - 08 - 1972	Active
21	40.92	9 - 07 - 1973	Active
22	94.80	11 - 09 - 1974	Active
23	36.40	12 - 08 - 1975	Active
24	36.10	14 - 08 - 1976	Active
25	51.00	24 - 07 - 1977	Active
26	i 42.90 i	26 - 09 - 1978	Active
27	40.00	9 - 09 - 1979	Active
28	56.20	13 - 08 - 1980	Active
29	i 34.00 i	5 - 11 - 1981	Active
30	73.40	2 - 11 - 1982	Active
31	42.90	9 - 09 - 1983	Active
32	33.80	10 - 11 - 1984	Active
33	66.60	25 - 07 - 1985	Active
34	47.40	10 - 09 - 1986	Active
35	46.20	13 - 09 - 1987	Active
36	44.50	12 - 09 - 1988	Active
37	48.30	6 - 08 - 1989	Active
38	53.00	15 - 07 - 1990	Active
39	57.90	7 - 07 - 1991	Active
40	65.10	25 - 07 - 1992	Active
41	32.90	20 - 07 - 1993	Active Active
1 3.7	1 32.30	20 - 01 - 1993	VCCTAG

ANNEXE B


Résultats des ajustements aux précipitations maximums de printemps

- B1 Lac Manouane (3 jours)
- B2 Passes-Dangereuses (3 jours)
- B3 Bassin amont (3 jours)
- B4 Chute du Diable (3 jours)
- B5 Chute à la Savane (3 jours)
- B6 Lac St-Jean (3 jours)
- B7 Bassin aval (3 jours)
- B8 Bassin total (3 jours)
- B9 Bagotville-A (3 jours)
- B10 Bonnard (1 jour)
- B11 Bonnard (3 jours)
- B12 Chute du Diable (3 jours)
- B13 Chute-des-passes (1 jour)
- B14 Chute-des-passes (3 jours)
- B15 Chapais-2 (3 jours)
- B16 Chibougamau-A (3 jours)
- B17 Isle-Maligne (3 jours)
- B18 Lac Bouchette (3 jours)
- B19 Mistassini Post (3 jours)
- B20 Nitchequon (3 jours)
- B21 Normandin-CDA (3 jours)
- B22 Péribonca (3 jours)
- B23 Roberval-A (Série A 1 jour)
- B24 Roberval-A (Série A 3 jours)
- B25 Roberval-A (Série B 1 jour)
- B26 Roberval-A (Série B 3 jours)
- B27 Roberval-A (Série C 1 jour)
- B28 Roberval-A (Série C 3 jours)
- B29 Shipshaw (3 jours)

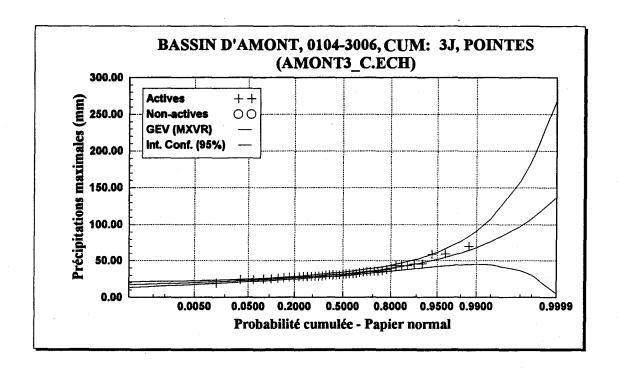

Paramètres	T	P	\hat{x}_{T}	Écart-type	Intervalle à 95%
	10000	0.0001	150.45	77.683	-1.840 - 302.738
$\alpha = 6.54153$	2000	0.0005	117.21	45.294	28.420 - 206.009
k = -0.137	1000	0.0010	105.00	35.076	36.238 - 173.763
u = 29.891	200	0.0050	80.71	17.982	45.455 - 115.959
	100	0.0100	71.76	12.938	46.400 - 97.125
	50	0.0200	63.60	9.017	45.922 - 81.276
	20	0.0500	53.85	5.299	43.462 - 64.238
	10	0.1000	47.12	3.424	40.410 - 53.836
	5	0.2000	40.78	2.216	36.435 - 45.123
	3	0.3000	37.13	1.748	33.706 - 40.558
	2	0.5000	32.35	1.305	29.790 - 34.908

Figure B1. Résultats de l'ajustement de la loi GEV aux précipitations maximums printanières du bassin lac Manouane (3 jours).

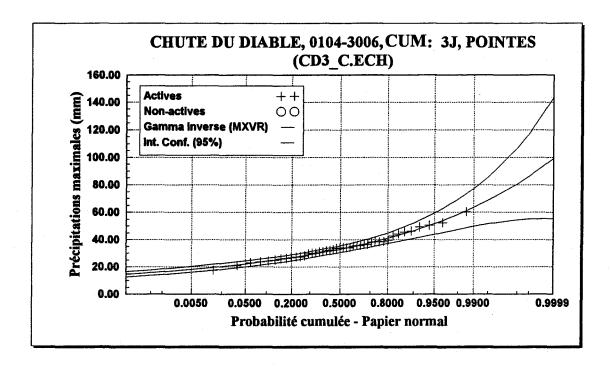

Paramètres	T	P	\hat{x}_{T}	Écart-type	Intervalle à 95%
	10000	0.0001	131.98	63.540	7.419 - 256.545
$\alpha = 6.158$	2000	0.0005	105.20	37.879	30.937 - 179.453
k = -0.118	1000	0.0010	95.14	29.609	37.091 - 153.180
u = 29.394	200	0.0050	74.71	15.506	44.309 - 105.104
	100	0.0100	67.02	11.258	44.950 - 89.090
	50	0.0200	59.92	7.920	44.390 - 75.441
	20	0.0500	51.30	4.717	42.055 - 60.548
	10	0.1000	45.27	3.086	39.217 - 51.317
	5	0.2000	39.50	2.028	35.523 - 43.474
	3	0.3000	36.14	1.615	32.978 - 39.311
	2	0.5000	31.70	1.220	29.308 - 34.092

Figure B2. Résultats de l'ajustement de la loi GEV aux précipitations maximums printanières du bassin Passes-Dangereuses (3 jours).

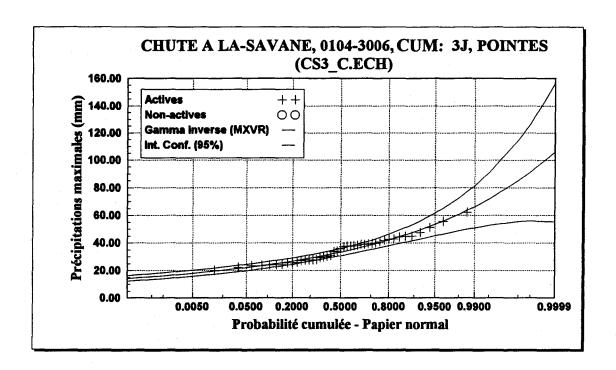

Paramètres	T	P	$\hat{x}_{\scriptscriptstyle T}$	Écart-type	Intervalle à 95%
	10000	0.0001	136.82	67.414	4.664 - 268.980
$\alpha = 6.210$	2000	0.0005	108.25	39.870	30.088 - 186.408
k = -0.125	1000	0.0010	97.60	31.060	36.710 - 158.491
u = 29.540	200	0.0050	76.14	16.142	44.495 - 107.784
	100	0.0100	68.13	11.681	45.228 - 91.028
	50	0.0200	60.76	8.190	44.701 - 76.812
	20	0.0500	51.87	4.854	42.352 - 61.384
	10	0.1000	45.67	3.162	39.476 - 51.873
	5	0.2000	39.78	2.066	35.733 - 43.835
	3	0.3000	36.37	1.640	33.158 - 39.587
-	2	0.5000	31.87	1.234	29.451 - 34.288

Figure B3. Résultats de l'ajustement de la loi GEV aux précipitations maximums printanières du bassin Amont (3 jours).

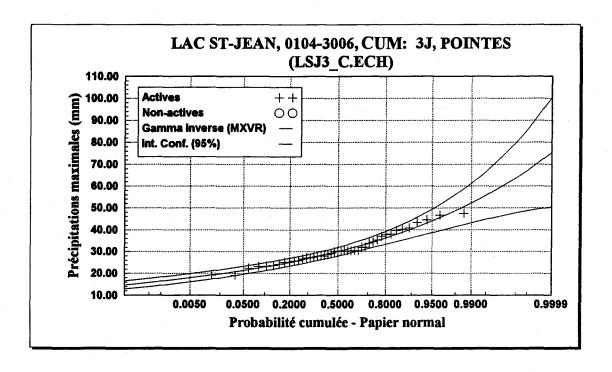

Paramètres	T	P	\hat{x}_{T}	Écart-type	Intervalle à 95%
	10000	0.0001	99.38	22.476	55.315 - 143.440
$\alpha = 502.619$	2000	0.0005	86.20	15.799	55.231 - 117.175
$\lambda = 15.621$	1000	0.0010	80.78	13.389	54.534 - 107.029
	200	0.0050	68.62	8.705	51.553 - 85.684
	100	0.0100	63.51	7.038	49.708 - 77.303
	50	0.0200	58.42	5.563	47.519 - 69.330
	20	0.0500	51.69	3.894	44.055 - 59.323
	10	0.1000	46.50	2.845	40.919 - 52.075
	5	0.2000	41.08	1.996	37.169 - 44.996
	3	0.3000	37.69	1.610	34.537 - 40.848
	2	0.5000	32.87	1.270	30.378 - 35.360

Figure B4. Résultats de l'ajustement de la loi gamma inverse aux précipitations maximums printanières du bassin Chute du Diable (3 jours).

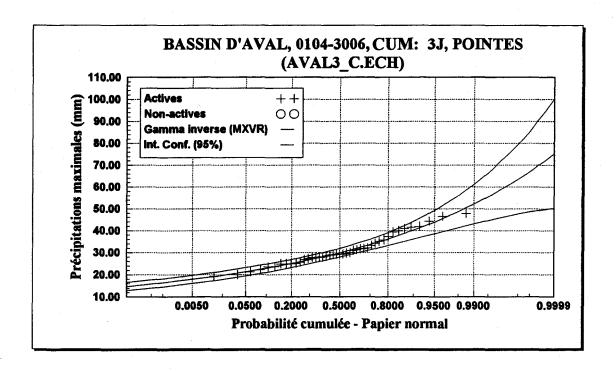

Paramètres	T	P	\hat{x}_{T}	Écart-type	Intervalle à 95%
	10000	0.0001	106.04	25,880	55.301 - 156.772
$\alpha = 470.973$	2000	0.0005	91.29	17.945	56.109 - 126.467
$\lambda = 14.472$	1000	0.0010	85.26	15.116	55.628 - 114.895
	200	0.0050	71.84	9.685	52.851 - 90.823
	100	0.0100	66.23	7.777	50.988 - 81.482
	50	0.0200	60.70	6.103	48.730 - 72.660
	20	0.0500	53.39	4.229	45.104 - 61.684
	10	0.1000	47.80	3.063	41.798 - 53.807
	5	0.2000	42.01	2.129	37.836 - 46.183
	3	0.3000	38.40	1.707	35.057 - 41.749
	2	0.5000	33.30	1.338	30.681 - 35.925

Figure B5. Résultats de l'ajustement de la loi gamma inverse aux précipitations maximums printanières du bassin Chute à la Savane (3 jours).

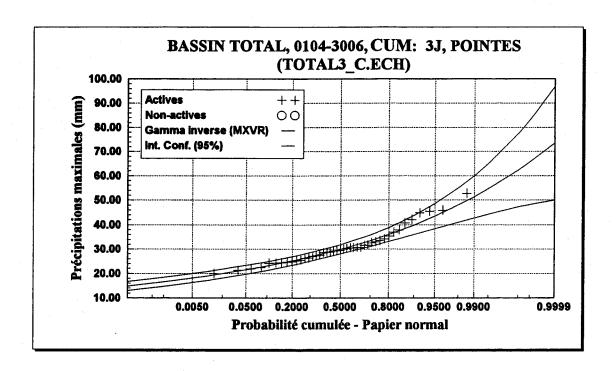

Paramètres	T	P	\hat{x}_{T}	Écart-type	Intervalle à 95%
	10000	0.0001	75.40	12.753	50.397 - 100.400
$\alpha = 632.208$	2000	0.0005	67.14	9.396	48.719 - 85.560
$\lambda = 21.385$	1000	0.0010	63.66	8.131	47.717 - 79.598
	200	0.0050	55.65	5.566	44.740 - 66.564
	100	0.0100	52.20	4.610	43.161 - 61.235
	50	0.0200	48.71	3.738	41.380 - 56.037
	20	0.0500	43.98	2.716	38.660 - 49.308
	10	0.1000	40.26	2.047	36.244 - 44.270
	5	0.2000	36.28	1.486	33,363 - 39,190
	3	0.3000	33.73	1.223	31.332 - 36.128
	2	0.5000	30.03	0.991	28.082 - 31.969

Figure B6. Résultats de l'ajustement de la loi gamma inverse aux précipitations maximums printanières du bassin lac St-Jean (3 jours).

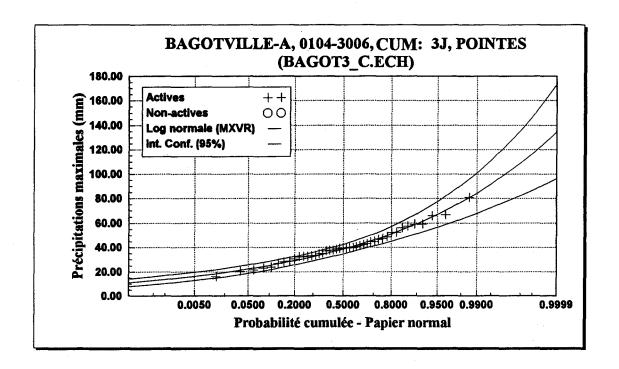

Paramètres	T	P	\hat{x}_{T}	Écart-type	Intervalle à 95%
	10000	0.0001	75.26	12.733	50.300 - 100.223
$\alpha = 630.830$	2000	0.0005	67.02	9.381	48.627 - 85.407
$\lambda = 21.380$	1000	0.0010	63.54	8.118	47.626 - 79.455
	200	0.0050	55.55	5.557	44.654 - 66.442
	100	0.0100	52.10	4.602	43.079 - 61.122
	50	0.0200	48.62	3.732	41.302 - 55.933
	20	0.0500	43.90	2.711	38.587 - 49.216
	10	0.1000	40.18	2.043	36.174 - 44.186
	5	0.2000	36.21	1.483	33.299 - 39.115
	3	0.3000	33.67	1.221	31.272 - 36.059
	2	0.5000	29.97	0.990	28.027 - 31.907

Figure B7. Résultats de l'ajustement de la loi gamma inverse aux précipitations maximums printanières du bassin Aval (3 jours).

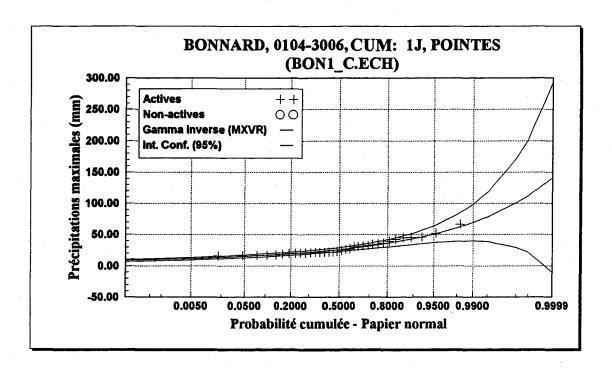

Paramètres	T	P	$\hat{x}_{\scriptscriptstyle T}$	Écart-type	Intervalle à 95%
	10000	0.0001	73.52	11.989	50.017 - 97.021
$\alpha = 657.704$	2000	0.0005	65.66	8.880	48.256 - 83.074
$\lambda = 22.305$	1000	0.0010	62.34	7.704	47.242 - 77.446
	200	0.0050	54.69	5.305	44.287 - 65.088
	100	0.0100	51.37	4.406	42.737 - 60.012
	50	0.0200	48.02	3.584	40.995 - 55.046
	20	0.0500	43.47	2.615	38.343 - 48.595
	10	0.1000	39.87	1.978	35.989 - 43.746
	5	0.2000	36.01	1.442	33.184 - 38.838
	3	0.3000	33.54	1.190	31.205 - 35.870
	2	0.5000	29.93	0.968	28.032 - 31.825

Figure B8. Résultats de l'ajustement de la loi gamma inverse aux précipitations maximums printanières du bassin Total (3 jours).

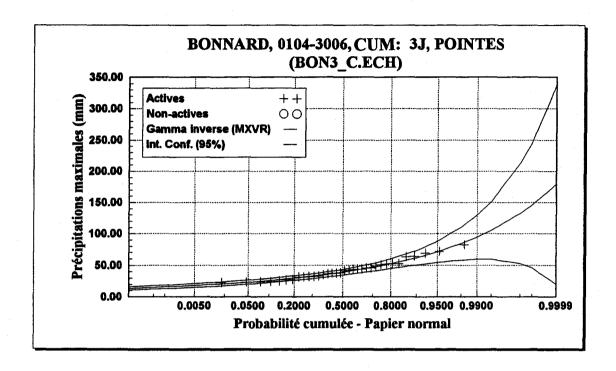

Paramètres	T	P	\hat{x}_{T}	Écart-type	Intervalle à 95%
	10000	0.0001	134.78	19.681	96.200 - 173.365
$\mu = 3.651$	2000	0.0005	116.67	15,331	86.618 - 146.727
$\sigma^2 = 0.113$	1000	0.0010	109.06	13.596	82.410 - 135.716
	200	0.0050	91.72	9.880	72.347 - 111.083
	100	0.0100	84.32	8.412	67.833 - 100.814
	50	0.0200	76.93	7.024	63.155 - 90.696
	20	0.0500	67.03	5.318	56.601 - 77.451
	10	0.1000	59.30	4.133	51.199 - 67.405
	5	0.2000	51.13	3.066	45.119 - 57.138
	3	0.3000	45.94	2.520	41.002 - 50.884
	2	0.5000	38.51	1.978	34.631 - 42.387

Figure B9. Résultats de l'ajustement de la loi log normale à 2 paramètres aux précipitations maximums printanières de la station Bagotville-A (3 jours).

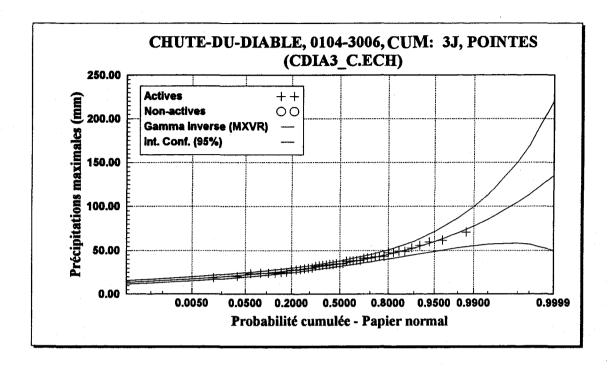

Paramètres	T	P	\hat{x}_{T}	Écart-type	Intervalle à 95%
	10000	0.0001	141.37	77.574	- 10.708 - 293.445
$\alpha = 203.144$	2000	0.0005	112.01	46.135	21.563 - 202.447
$\lambda = 8.032$	1000	0.0010	100.93	36.387	29.598 - 172.265
	200	0.0050	78.11	19.954	38.995 - 117.230
	100	0.0100	69.33	14.945	40.029 - 98.626
	50	0.0200	61.06	10.907	39.679 - 82.444
	20	0.0500	50.80	6.822	37.430 - 64.178
	10	0.1000	43.44	4.542	34.536 - 52.344
	5	0.2000	36,26	2.883	30.612 - 41.914
	3	0.3000	32.03	2.188	27.744 - 36.322
	2	0.5000	26.37	1.602	23.234 - 29.514

Figure B10. Résultats de l'ajustement de la loi gamma inverse aux précipitations maximums printanières de la station Bonnard (1 jour).

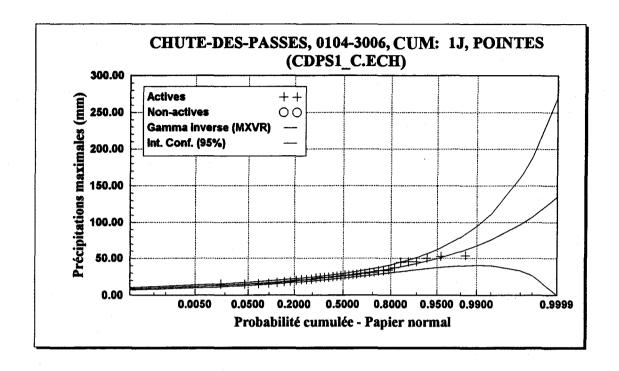

Paramètres	T	P	$\hat{x}_{\scriptscriptstyle T}$	Écart-type	Intervalle à 95%
	10000	0.0001	179.50	81,284	20.149 - 338.846
$\alpha = 349.295$	2000	0.0005	145.94	50.731	46.483 - 245.389
$\lambda = 9.284$	1000	0.0010	132.95	40.833	52.905 - 213.000
	200	0.0050	105.55	23.470	59.537 - 151.557
	100	0.0100	94.73	17.945	59.553 - 129.913
	50	0.0200	84.41	13.378	58.179 - 110.631
	20	0.0500	71.36	8.618	54.466 - 88.256
	10	0.1000	61.82	5.878	50.297 - 73.344
	5	0.2000	52.36	3.828	44.854 - 59.865
	3	0.3000	46.70	2.951	40.913 - 52.485
<u> </u>	2	0.5000	39.01	2.202	34.690 - 43.325

Figure B11. Résultats de l'ajustement de la loi gamma inverse aux précipitations maximums printanières de la station Bonnard (3 jours).

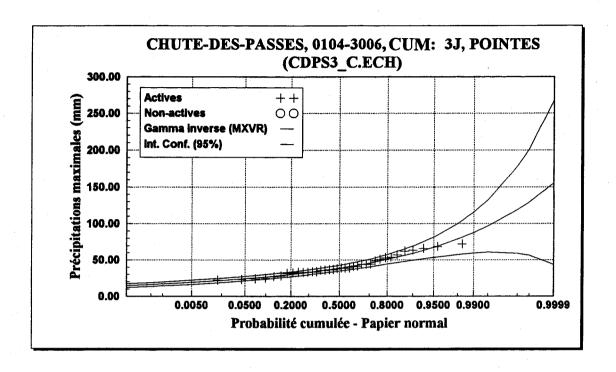

Paramètres	T	P	$\hat{x}_{\scriptscriptstyle T}$	Écart-type	Intervalle à 95%
	10000	0.0001	135.68	43.552	50.304 - 221.061
$\alpha = 381.295$	2000	0.0005	113.40	28.607	57.322 - 169.486
$\lambda = 11.213$	1000	0.0010	104.55	23.535	58.413 - 150.690
	200	0.0050	85.38	14.246	57.448 - 113.303
	100	0.0100	77.60	11.148	55.749 - 99.457
	50	0.0200	70.06	8.513	53.368 - 86.744
	20	0.0500	60.33	5.673	49.210 - 71.453
	10	0.1000	53.07	3.979	45.266 - 60.865
	5	0.2000	45.71	2.670	40.478 - 50.948
	3	0.3000	41.23	2.096	37.125 - 45.343
	2	0.5000	35.04	1.600	31.900 - 38.172

Figure B12. Résultats de l'ajustement de la loi gamma inverse aux précipitations maximums printanières de la station Chute du Diable (3 jours).

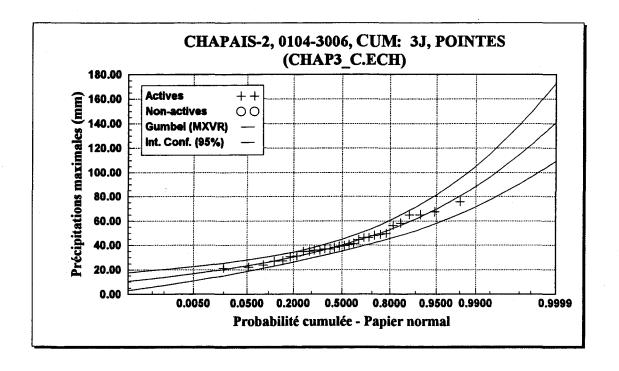

Paramètres	T	P	$\hat{x}_{\scriptscriptstyle T}$	Écart-type	Intervalle à 95%
	10000	0.0001	135.26	68.913	0.161 - 270.356
$\alpha = 208.738$	2000	0.0005	107.85	41.475	26.540 - 189.153
$\lambda = 8.303$	1000	0.0010	97.44	32.874	32.997 - 161.890
	200	0.0050	75.88	18.235	40.132 - 111.628
	100	0.0100	67.53	13.726	40.620 - 94.437
	50	0.0200	59.64	10.069	39.903 - 79.380
	20	0.0500	49.81	6.342.	37.380 - 62.246
	10	0.1000	42.73	4.247	34.400 - 51.051
	5	0.2000	35.79	2.712	30.473 - 41.106
	3	0.3000	31.69	2.066	27.637 - 35.738
	2	0.5000	26.18	1.519	23,200 - 29.157

Figure B13. Résultats de l'ajustement de la loi gamma inverse aux précipitations maximums printanières de la station Chute-des-passes (1 jour).

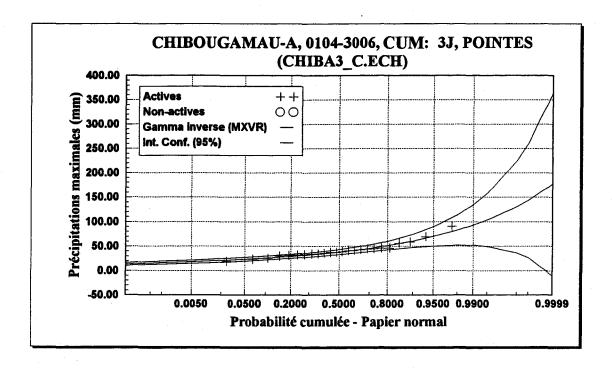

Paramètres	T	P	\hat{x}_{T}	Écart-type	Intervalle à 95%
· · · · · · · · · · · · · · · · · · ·	10000	0.0001	180.37	56.899	68.826 - 291.916
$\alpha = 618.596$	2000	0.0005	152.80	38:311	77.697 - 227.907
$\lambda = 12.495$	1000	0.0010	141.71	31.859	79.249 - 204.162
	200	0.0050	117.36	19.787	78.570 - 156.152
	100	0.0100	107.36	15.665	76.652 - 138.073
	50	0.0200	97.57	12.110	73.833 - 121.313
	20	0.0500	84.83	8.212	68.733 - 100.929
	10	0.1000	75.21	5.843	63.751 - 86.659
	5	0.2000	65.36	3.983	57.553 - 73.170
	3	0.3000	59.31	3.156	53.120 - 65.494
	2	0.5000	50.85	2.437	46.071 - 55.626

Figure B14. Résultats de l'ajustement de la loi gamma inverse aux précipitations maximums printanières de la station Chute-des-Passes (3 jours).

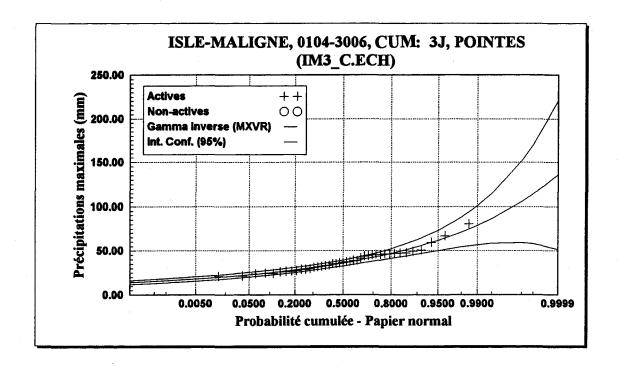

Paramètres	T	P	\hat{x}_{T}	Écart-type	Intervalle à 95%
	10000	0.0001	141.09	16.194	109.346 - 172.839
u = 35.750	2000	0.0005	122.68	13.528	96.162 - 149.203
$\alpha = 11.437$	1000	0.0010	114.75	12.383	90.475 - 139.028
	200	0.0050	96.32	9.737	77.233 - 115.409
	100	0.0100	88.36	8.604	71.497 - 105.231
	50	0.0200	80.38	7.476	65.722 - 95.035
	20	0.0500	69.72	5.995	57.969 - 81.475
	10	0.1000	61.49	4.884	51.913 - 71.064
	5	0.2000	52.91	3.788	45.480 - 60.331
	3	0.3000	47.54	3.163	41.341 - 53.742
	2	0.5000	39.94	2.441	35.157 - 44.728

Figure B15. Résultats de l'ajustement de la loi Gumbel aux précipitations maximums printanières de la station Chapais-2 (3 jours).

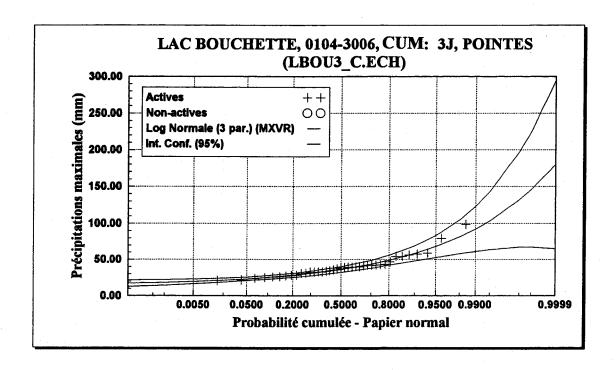

Paramètres	T	P	$\hat{x}_{\scriptscriptstyle T}$	Écart-type	Intervalle à 95%
	10000	0.0001	176.80	95.753	-10.917 - 364.512
$\alpha = 341.395$	2000	0.0005	143.65	59.693	26.630 - 260.673
$\lambda = 9.249$	1000	0.0010	130.84	48.022	36.694 - 224.979
	200	0.0050	103.80	27.571	49.753 - 157.852
	100	0.0100	93.14	21.070	51.836 - 134.447
	50	0.0200	82.96	15.699	52.187 - 113.739
	20	0.0500	70.11	10.106	50,302 - 89,926
	10	0.1000	60.72	6.889	47.215 - 74.225
	5	0.2000	51.41	4.484	42.619 - 60.199
	3	0.3000	45.84	3.455	39.066 - 52.613
	2	0.5000	38.28	2.577	33.224 - 43.328

Figure B16. Résultats de l'ajustement de la loi gamma inverse aux précipitations maximums printanières de la station Chibougamau-A (3 jours).

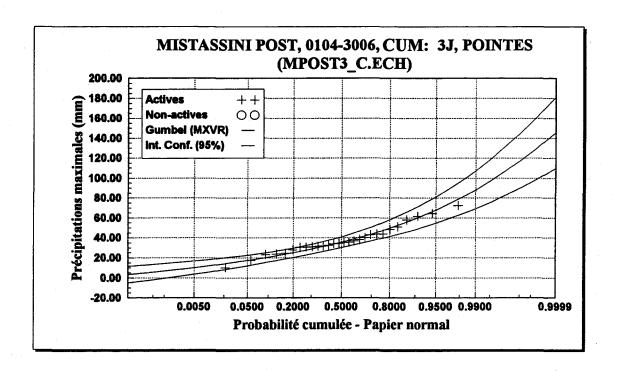

Paramètres	T	P	$\hat{x}_{_T}$	Écart-type	Intervalle à 95%
	10000	0.0001	136.34	43.241	51.571 - 221.110
$\alpha = 406.428$	2000	0.0005	114.42	28.618	58.319 - 170.524
$\lambda = 11.573$	1000	0.0010	105.68	23.621	59.371 - 151.985
	200	0.0050	86.66	14.410	58.416 - 114.913
	100	0.0100	78.93	11.315	56.744 - 101.109
	50	0.0200	71.39	8.673	54.393 - 88.397
	20	0.0500	61.66	5.810	50.270 - 73.050
	10	0.1000	54.36	4.092	46.340 - 62.385
	5	0.2000	46.95	2.760	41.545 - 52.364
	3	0.3000	42.43	2.172	38.170 - 46.687
	2	0.5000	36.15	1.663	32.887 - 39.409

Figure B17. Résultats de l'ajustement de la loi gamma inverse aux précipitations maximums printanières de la station Isle-Maligne (3 jours).

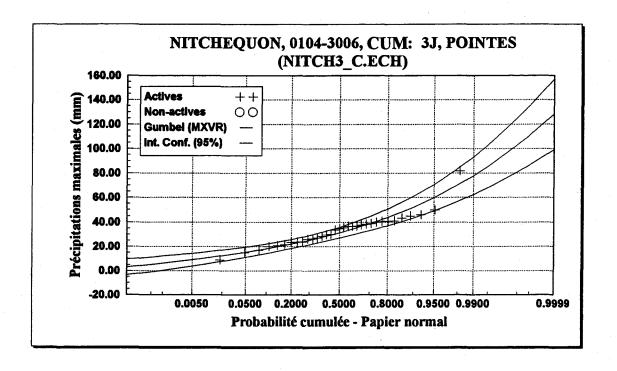

Paramètres	T	P	$\hat{x}_{\scriptscriptstyle T}$	Écart-type	Intervalle à 95%
	10000	0.0001	180.18	58.700	65.104 - 295.255
m = 14.363	2000	0.0005	145.71	39.992	67.314 - 224.114
$\mu = 3.088$	1000	0.0010	132.16	33.229	67.016 - 197.301
$\sigma = 0.544$	200	0.0050	103.41	20.263	63.690 - 143.137
	100	0.0100	92.11	15.781	61.177 - 123.052
	50	0.0200	81.40	11.926	58.019 - 104.779
	20	0.0500	68.03	7.766	52.803 - 83.254
	10	0.1000	58.40	5.326	47.959 - 68.843
	5	0.2000	49.02	3.513	42.135 - 55.909
	3	0.3000	43.53	2.744	38.147 - 48.904
	2	0.5000	36.29	2.027	32.320 - 40.266

Figure B18. Résultats de l'ajustement de la loi log normale à 3 paramètres aux précipitations maximums printanières de la station Lac Bouchette (3 jours).

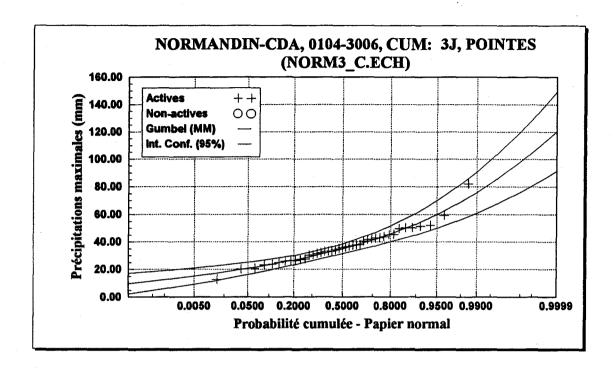

Paramètres	T	P	\hat{x}_{T}	Écart-type	Intervalle à 95%
	10000	0.0001	129.12	15,683	98.375 - 159.864
u = 32.591	2000	0.0005	112.25	13.100	86.569 - 137.931
$\alpha = 10.481$	1000	0.0010	104.98	11.991	81.476 - 128.490
	200	0.0050	88.09	9.427	69.614 - 106.574
	100	0.0100	80.80	8.329	64.476 - 97.131
	50	0.0200	73.49	7.236	59.300 - 87.671
	20	0.0500	63.72	5.801	52.348 - 75.093
	10	0.1000	56.18	4.724	46.915 - 65.438
	5	0.2000	48.31	3.662	41.133 - 55.490
	3	0.3000	43.40	3.056	37.405 - 49.387
	2	0.5000	36.43	2.356	31.813 - 41.052

Figure B19. Résultats de l'ajustement de la loi Gumbel aux précipitations maximums printanières de la station Mistassini Post (3 jours).

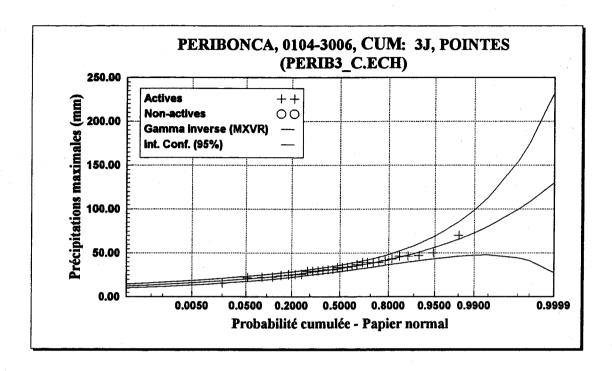

Paramètres	T	P	$\hat{x}_{\scriptscriptstyle T}$	Écart-type	Intervalle à 95%
	10000	0.0001	128.35	14.771	99.392 - 157.305
u = 27.357	2000	0.0005	110.70	12.340	86.507 - 134.891
$\alpha = 10.965$	1000	0.0010	103.10	11.297	80.950 - 125.241
	200	0.0050	85.43	8.884	68.010 - 102.841
	100	0.0100	77.80	7.851	62.407 - 93.188
	50	0.0200	70.14	6.822	56.767 - 83.517
	20	0.0500	59.93	5.472	49.197 - 70.653
	10	0.1000	52.03	4.460	43.289 - 60.775
	5	0.2000	43.80	3.460	37.020 - 50.587
	3	0.3000	38.66	2.891	32.994 - 44.328
	2	0.5000	31.38	2.232	27.000 - 35.751

Figure B20. Résultats de l'ajustement de la loi Gumbel aux précipitations maximums printanières de la station Nitchequon (3 jours).

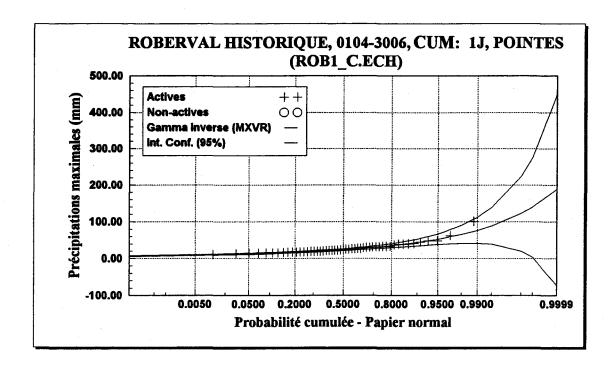

Paramètres	T	P	\hat{x}_{T}	Écart-type	Intervalle à 95%
	10000	0.0001	120.40	14.824	91.344 - 149.465
u = 31.296	2000	0.0005	104.83	12.291	80.735 - 128.927
$\alpha = 9.675$	1000	0.0010	98.12	11.203	76.160 - 120.085
	200	0.0050	82.53	8.684	65.508 - 99.557
	100	0.0100	75.80	7.604	60.895 - 90.709
	50	0.0200	69.05	6.528	56.250 - 81.844
	20	0.0500	60.03	5.111	50.013 - 70.052
	10	0.1000	53.07	4.046	45.136 - 61.000
	5	0.2000	45.81	2.995	39.935 - 51.680
	3	0.3000	41.27	2.406	36.554 - 45.986
	2	0.5000	34.84	1.779	31.355 - 38.329

Figure B21. Résultats de l'ajustement de la loi Gumbel aux précipitations maximums printanières de la station Normandin-CDA (3 jours).

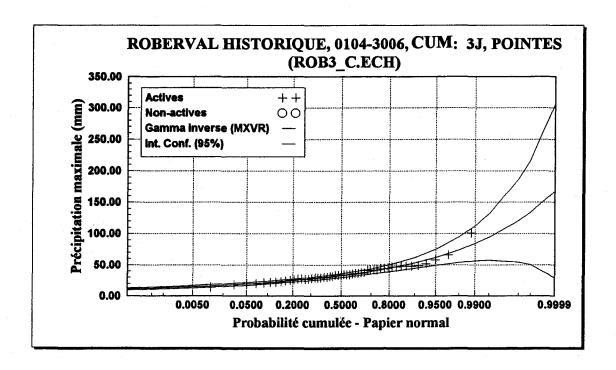

Paramètres	T	P	\hat{x}_{r}	Écart-type	Intervalle à 95%
	10000	0.0001	133.10	55.612	24.081 - 242.124
$\alpha = 335.359$	2000	0.0005	110.38	36.007	39.794 - 180.968
$\lambda = 10.585$	1000	0.0010	101.42	29.439	43.708 - 159.133
	200	0.0050	82.15	17.558	47.731 - 116.572
	100	0.0100	74.40	13.648	47.645 - 101.157
	50	0.0200	66.91	10.350	46.620 - 87.201
	20	0.0500	57.31	6.830	43.925 - 70.704
	10	0.1000	50.19	4.751	40.875 - 59.504
	5	0.2000	43.02	3.161	36.824 - 49.219
	3	0.3000	38.68	2.468	33.839 - 43.517
	2	0.5000	32.70	1.871	29.031 - 36.368

Figure B22. Résultats de l'ajustement de la loi gamma inverse aux précipitations maximums printanières de la station Péribonca (3 jours).

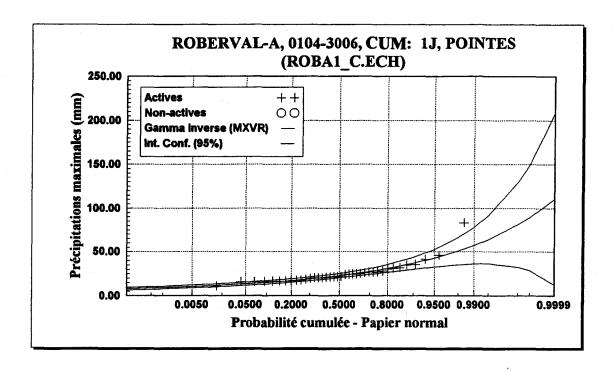

Paramètres	T	P	\hat{x}_{T}	Écart-type	Intervalle à 95%
	10000	0.0001	189.61	134.005	-73.093 - 452.313
$\alpha = 136.652$	2000	0.0005	139.87	69.607	3.413 - 276.329
$\lambda = 5.988$	1000	0.0010	122.43	51.976	20.533 - 224.320
	200	0.0050	88.73	25.218	39.296 - 138.172
	100	0.0100	76.58	17.931	41.428 - 111.734
	50	0.0200	65.57	12.418	41.224 - 89.912
	20	0.0500	52.49	7.230	38.314 - 66.660
	10	0.1000	43.51	4.544	34.600 - 52.415
	5	0.2000	35.10	2.711	29.789 - 40.420
	3	0.3000	30.32	1.984	26.436 - 34.213
	2	0.5000	24.15	1.389	21.427 - 26.872

Figure B23. Résultats de l'ajustement de la loi gamma inverse aux précipitations maximums printanières de la station Roberval-A (1 jour - série A).

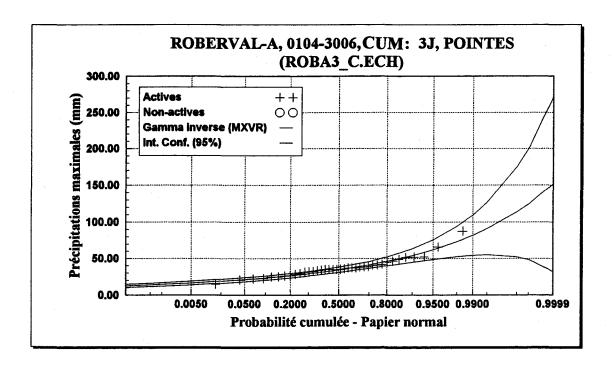

Paramètres	T	P	$\hat{x}_{\scriptscriptstyle T}$	Écart-type	Intervalle à 95%
	10000	0.0001	167.83	70.806	29.019 - 306.636
$\alpha = 264.965$	2000	0.0005	134.08	42.773	50.231 - 217.934
$\lambda = 8.393$	1000	0.0010	121.25	33.956	54.682 - 187.818
	200	0.0050	94.60	18.903	57.545 - 131.659
	100	0.0100	84.26	14.251	56.324 - 112.200
	50	0.0200	74.49	10.471	53.959 - 95.013
	20	0.0500	62.29	6.610	49.328 - 75.245
	10	0.1000	53.48	4.435	44.784 - 62.171
	5	0.2000	44.84	2.837	39.282 - 50.407
	, 3	0.3000	39.73	2.164	35.491 - 43.976
	2	0.5000	32.86	1.594	29.737 - 35.986

Figure B24. Résultats de l'ajustement de la loi gamma inverse aux précipitations maximums printanières de la station Roberval-A (3 jours - série A).

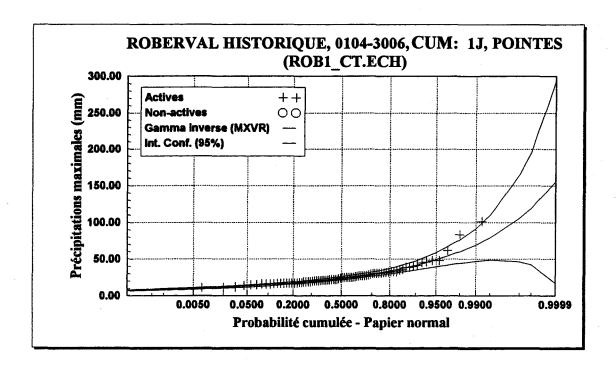

Paramètres	T	P	$\hat{x}_{\scriptscriptstyle T}$	Écart-type	Intervalle à 95%
	10000	0.0001	110.76	50.019	12.704 - 208.817
$\alpha = 198.135$	2000	0.0005	89.43	30.821	29.013 - 149.855
$\lambda = 8.910$	1000	0.0010	81.24	24.673	32.871 - 129.607
	200	0.0050	64.05	14.003	36.600 - 91.504
	100	0.0100	57.31	10.647	36.442 - 78.188
	50	0.0200	50.91	7.892	35.435 - 66.377
	20	0.0500	42.85	5.043	32.964 - 52.737
	10	0.1000	36.99	3.417	30.290 - 43.688
	5	0.2000	31.20	2.210	26.872 - 35.536
	3	0.3000	27.76	1.696	24,431 - 31.082
	2	0.5000	23.09	1.259	20.625 - 25.561

Figure B25. Résultats de l'ajustement de la loi gamma inverse aux précipitations maximums printanières de la station Roberval-A (1 jour - série B).

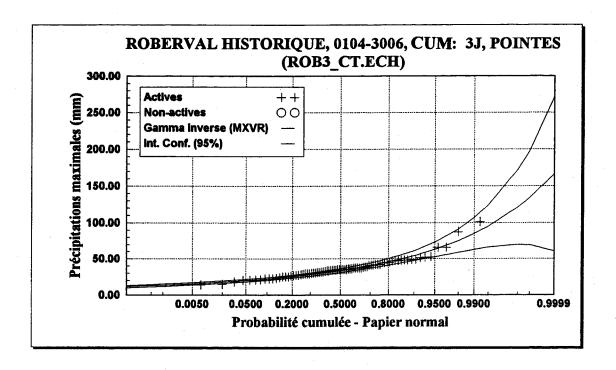

Paramètres	T	P	$\hat{x}_{\scriptscriptstyle T}$	Écart-type	Intervalle à 95%
	10000	0.0001	151.84	61.004	32.248 - 271.432
$\alpha = 327.461$	2000	0.0005	124.46	38.652	48.682 - 200.228
$\lambda = 9.773$	1000	0.0010	113.78	31.310	52.397 - 175.157
	200	0.0050	91.07	18.269	55.251 - 126.881
	100	0.0100	82.03	14.063	54.466 - 109.602
	50	0.0200	73.37	10.556	52.672 - 94.060
	20	0.0500	62.36	6.867	48.894 - 75.817
	10	0.1000	54.25	4.721	44.998 - 63.508
	5	0.2000	46.17	3.101	40.093 - 52.252
	3	0.3000	41.31	2.403	36.602 - 46.023
	2	0,5000	34.68	1.805	31.138 - 38.213

Figure B26. Résultats de l'ajustement de la loi gamma inverse aux précipitations maximums printanières de la station Roberval-A (3 jours - série B).

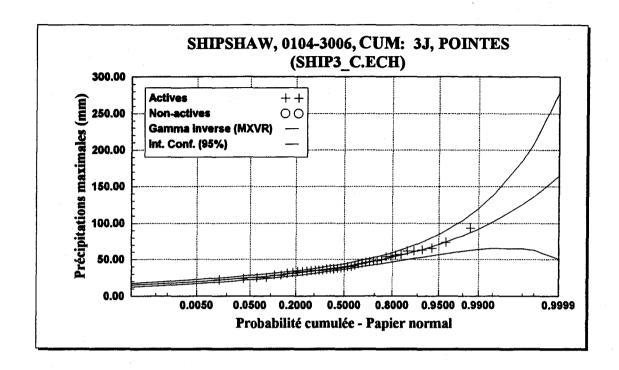

Paramètres	T	P	$\hat{x}_{_T}$	Écart-type	Intervalle à 95%
	10000	0.0001	156.07	70.687	17.492 - 294.641
$\alpha = 156.100$	2000	0.0005	119.39	39.348	42.251 - 196.526
$\lambda = 6.842$	1000	0.0010	106.04	30.203	46.827 - 165.245
	200	0.0050	79.39	15.574	48.861 - 109.922
	100	0.0100	69.46	11.360	47.194 - 91.733
	50	0.0200	60.30	8.071	44.476 - 76.119
	20	0.0500	49.18	4.864	39.641 - 58.713
	10	0.1000	41.38	3.143	35.214 - 47.539
	5	0.2000	33.93	1.932	30.145 - 37.720
	3.	0.3000	29.63	1.439	26.806 - 32.447
·	2	0.5000	23.97	1.029	21.953 - 25.987

Figure B27. Résultats de l'ajustement de la loi gamma inverse aux précipitations maximums printanières de la station Roberval-A (1 jour - série C).

Paramètres	T	P	\hat{x}_{T}	Écart-type	Intervalle à 95%
	10000	0.0001	166.44	53.910	60.755 - 272.127
$\alpha = 279.525$	2000	0.0005	133.68	32.891	69.202 - 198.163
$\lambda = 8.642$	1000	0.0010	121.16	26,221	69.757 - 172.564
	200	0.0050	95.03	14.738	66.134 - 123.920
	100	0.0100	84.84	11.159	62.960 - 106.710
	50	0.0200	75.17	8.234	59.027 - 91.312
	20	0.0500	63.07	5.230	52.812 - 73.318
	10	0.1000	54.29	3.526	47.378 - 61.203
	5	0.2000	45.66	2.268	41.216 - 50.108
	3	0.3000	40.54	1.735	37.135 - 43.939
	2	0.5000	33.62	1.283	31.110 - 36.140

Figure B28. Résultats de l'ajustement de la loi gamma inverse aux précipitations maximums printanières de la station Roberval-A (3 jours -série C).

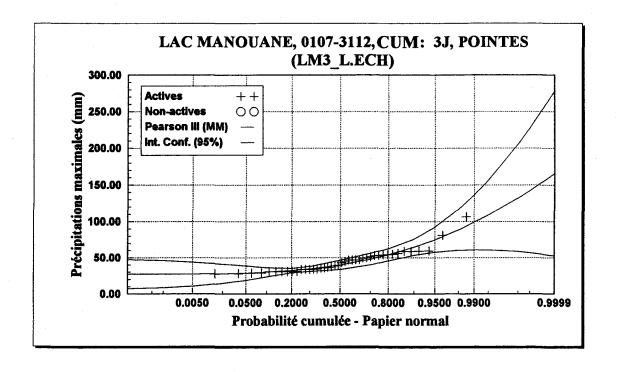
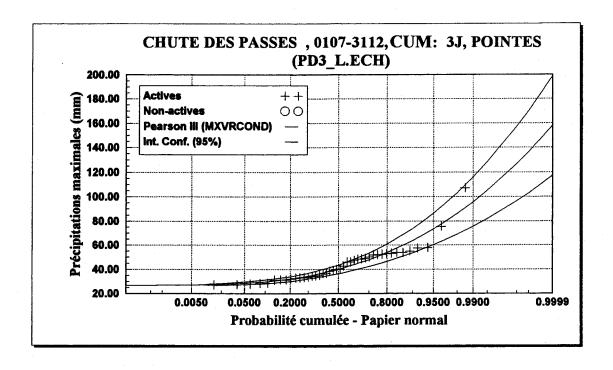

Paramètres	T	P	$\hat{x}_{\scriptscriptstyle T}$	Écart-type	Intervalle à 95%
	10000	0.0001	164.84	58.273	50.604 - 279.079
$\alpha = 411.282$	2000	0.0005	136.60	37.679	62.738 - 210.470
$\lambda = 10.532$	1000	0.0010	125.48	30.789	65.116 - 185.835
	200	0.0050	101.56	18,339	65.611 - 137.512
	100	0.0100	91.95	14.246	64.021 - 119.877
	50	0.0200	82.66	10.797	61.498 - 103.829
	20	0.0500	70.77	7.118	56.820 - 84.729
	10	0.1000	61.95	4.948	52.250 - 71.652
	5	0.2000	53.08	3.290	46.631 - 59.529
	3	0.3000	47.71	2.567	42.673 - 52.739
	2	0.5000	40.31	1.945	36.501 - 44.128

Figure B29. Résultats de l'ajustement de la loi gamma inverse aux précipitations maximums printanières de la station Shipshaw (3 jours).

ANNEXE C


Résultats des ajustements aux précipitations maximums d'été-automne

- C1 Lac Manouane (3 jours)
- C2 Passes-Dangereuses (3 jours)
- C3 Bassin amont (3 jours)
- C4 Chute du Diable (3 jours)
- C5 Chute à la Savane (3 jours)
- C6 Lac St-Jean (3 jours)
- C7 Bassin aval (3 jours)
- C8 Bassin total (3 jours)
- C9 Bagotville-A (3 jours)
- C10 Bonnard (1 jour)
- C11 Bonnard (3 jours)
- C12 Chute du Diable (3 jours)
- C13 Chute-des-passes (1 jour)
- C14 Chute-des-passes (3 jours)
- C15 Chapais-2 (3 jours)
- C16 Chibougamau-A (3 jours)
- C17 Isle-Maligne (3 jours)
- C18 Lac Bouchette (3 jours)
- C19 Mistassini Post (3 jours)
- C20 Nitchequon (3 jours)
- C21 Normandin-CDA (3 jours)
- C22 Péribonca (3 jours)
- C23 Roberval-A (Série A 1 jour)
- C24 Roberval-A (Série A 3 jours)
- C25 Roberval-A (Série B 1 jour)
- C26 Roberval-A (Série B 3 jours)
- C27 Roberval-A (Série C 1 jour)
- C28 Roberval-A (Série C 3 jours)
- C29 Shipshaw (3 jours)

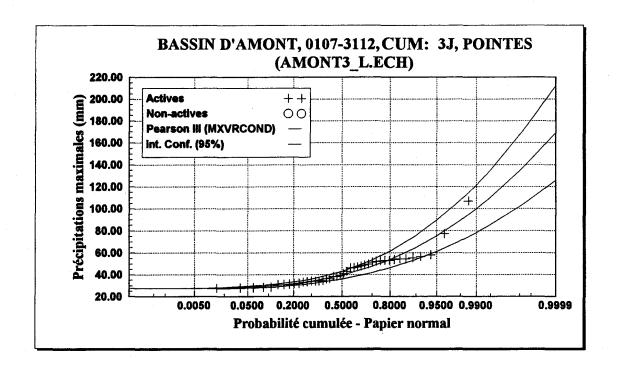

Paramètres	T	P	$\hat{x}_{\scriptscriptstyle T}$	Écart-type	Intervalle à 95%
	10000	0.0001	165.52	57.496	52.809 - 278.238
$\alpha = 0.071$	2000	0.0005	142.32	43.349	57.341 - 227.303
$\lambda = 1.203$	1000	0.0010	132.30	37.452	58.881 - 205.722
m = 27.449	200	0.0050	108.94	24.411	61.089 - 156.798
	100	0.0100	98.83	19.189	61.212 - 136.449
	50	0.0200	88.67	14.328	60.585 - 116.762
	20	0.0500	75.15	8.774	57.952 - 92.353
	10	0.1000	64.82	5.750	53.547 - 76.093
	5	0.2000	54.34	4.389	45.736 - 62.945
	3	0.3000	48.10	4.139	39.986 - 56.215
	2	0.5000	40.03	3.328	33.504 - 46.551

Figure C1. Résultats de l'ajustement de la loi Pearson type 3 aux précipitations maximums d'été-automne du bassin lac Manouane (3 jours).

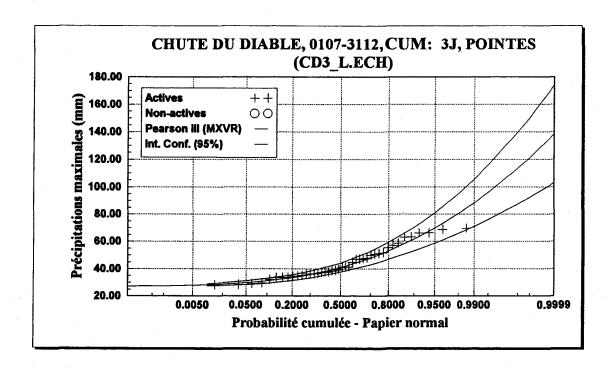

Paramètres	T	P	$\boldsymbol{\hat{x}_{\scriptscriptstyle T}}$	Écart-type	Intervalle à 95%
	10000	0.0001	158.10	20.819	117.290 - 198.916
$\alpha = 0.077$	2000	0.0005	136.44	17.126	102.868 - 170.016
$\lambda = 1.300$	1000	0.0010	127.07	15.539	96.612 - 157.538
m = 27.000	200	0.0050	105.20	11.867	81.941 - 128.469
	100	0.0100	95.72	10.293	75.537 - 115.894
	50	0.0200	86.17	8.726	69.061 - 103.275
	20	0.0500	73.42	6.672	60.343 - 86.500
	10	0.1000	63.64	5.138	53.568 - 73.715
	5	0.2000	53.67	3.640	46.532 - 60.804
	3	0.3000	47.69	2.795	42.208 - 53.167
	2	0.5000	39.87	1.799	36.345 - 43.398

Figure C2. Résultats de l'ajustement de la loi Pearson type 3 aux précipitations maximums d'été-automne du bassin de Passes-Dangereuses (3 jours).

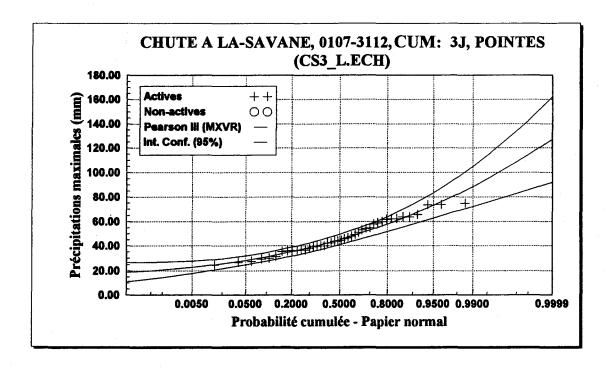

Paramètres	T	P	$\hat{x}_{\scriptscriptstyle T}$	Écart-type	Intervalle à 95%
	10000	0.0001	169.13	22.142	125.724 - 212.539
$\alpha = 0.068$	2000	0.0005	144.99	18.249	109.210 - 180.761
$\lambda = 1.124$	1000	0.0010	134.57	16.574	102.076 - 167.059
m = 27.500		85.440 - 135.195			
	100	0.0100	99.84	11.020	78.234 - 121.443
	50	0.0200	89.33	9.354	70.993 - 107.669
	20	0.0500	75.38	7.159	61.343 - 89.413
	10	0.1000	64.75	5.509	53.954 - 75.554
	5	0.2000	54.03	3.875	46.437 - 61.630
	3	0.3000	47.69	2.934	41.937 - 53.442
	2	0.5000	39.56	1.785	36.058 - 43.057

Figure C3. Résultats de l'ajustement de la loi Pearson type 3 aux précipitations maximums d'été-automne du bassin Amont (3 jours).

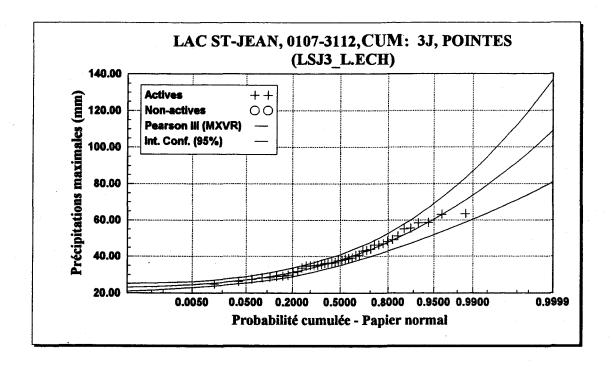

Paramètres	T	P	$\hat{x}_{\scriptscriptstyle T}$	Écart-type	Intervalle à 95%
	10000	0.0001	138.69	18.059	103.286 - 174.090
$\alpha = 0.098$	2000	0.0005	121.27	14.804	92.245 - 150.290
$\lambda = 1.645$	1000	0.0010	113.71	13.409	87.419 - 139.993
m = 27.454	200	0.0050	95.96	10.192	75.982 - 115.941
	100	0.0100	88.21	8.819	70.922 - 105.501
	50	0.0200	80.37	7.459	65.748 - 94.994
	20	0.0500	69.82	5.689	58.663 - 80.970
	10	0.1000	61.62	4.386	53.023 - 70.221
	5	0.2000	53.13	3.141	46.975 - 59.289
	3	0.3000	47.94	2.462	43.117 - 52.769
	2	0.5000	40.97	1.704	37.627 - 44.310

Figure C4. Résultats de l'ajustement de la loi Pearson type 3 aux précipitations maximums d'été-automne du bassin Chute du Diable (3 jours).

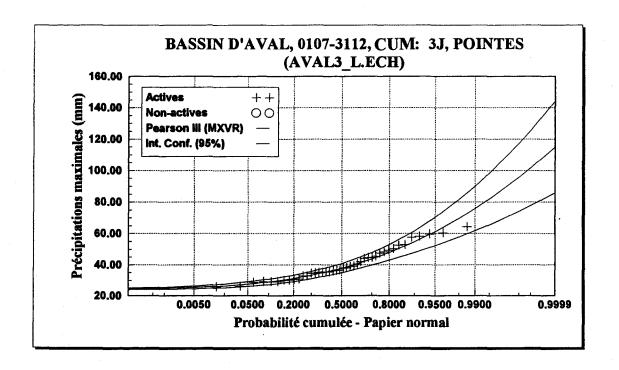

Paramètres	T	P	\hat{x}_{r}	Écart-type	Intervalle à 95%
	10000	0.0001	127.25	17.942	92.074 - 162.420
$\alpha = 0.159$	2000	0.0005	114.26	14.498	85.835 - 142.679
$\lambda = 4.950$	1000	0.0010	108.52	13.036	82.960 - 134.073
m = 16.091	200	0.0050	94.73	9.712	75.690 - 113.767
	100	0.0100	88.53	8.321	72.215 - 104.842
	50	0.0200	82.11	6.969	68.451 - 95.773
	20	0.0500	73.18	5.266	62.851 - 83.500
	10	0.1000	65.91	4.085	57.905 - 73.921
	5	0.2000	57.95	3.067	51.937 - 63.960
	3	0.3000	52.75	2.592	47.671 - 57.834
	2	0.5000	45.13	2.163	40.887 - 49.369

Figure C5. Résultats de l'ajustement de la loi Pearson type 3 aux précipitations maximums d'été-automne du bassin Chute à la Savane (3 jours).

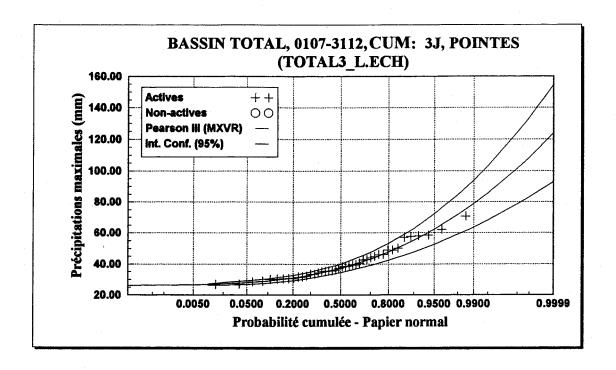

Paramètres	T	P	\hat{x}_{T}	Écart-type	Intervalle à 95%
	10000	0.0001	108.87	14.245	80.944 - 136.795
$\alpha = 0.153$	2000	0.0005	96.88	11.598	74.149 - 119.621
$\lambda = 2.619$	1000	0.0010	91.64	10.468	71.122 - 112.165
m = 23.037	200	0.0050	79.22	7.880	63.771 - 94.669
	100	0.0100	73.72	6.787	60.419 - 87.030
	50	0.0200	68.11	5.713	56.910 - 79.308
	20	0.0500	60.43	4.336	51.932 - 68.932
	10	0.1000	54.34	3.348	47.780 - 60.909
	5	0.2000	47.87	2.446	43.070 - 52.660
	- 3	0.3000	43.78	1.987	39.883 - 47.672
	2	0.5000	38.04	1.522	35.052 - 41.021

Figure C6. Résultats de l'ajustement de la loi Pearson type 3 aux précipitations maximums d'été-automne du bassin lac St-Jean (3 jours).

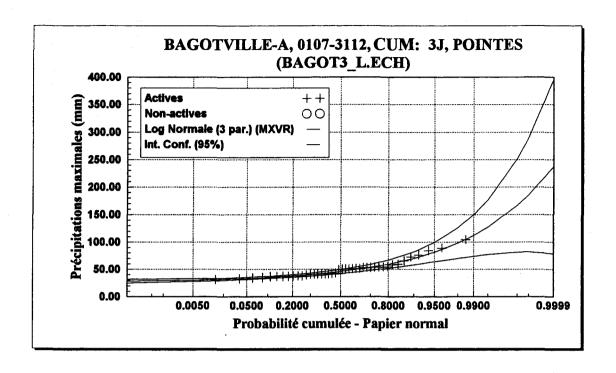

Paramètres	T	P	\hat{x}_{T}	Écart-type	Intervalle à 95%
	10000	0.0001	115.03	14.888	85.847 - 144.218
$\alpha = 0.131$	2000	0.0005	101.61	12.164	77.760 - 125.453
$\lambda = 2.051$	1000	0.0010	95.76	10.999	74.196 - 117.321
m = 24.659	200	0.0050	81.97	8.321	65.657 - 98.282
	100	0.0100	75.91	7.184	61.827 - 89.995
	50	0.0200	69.75	6.062	57.867 - 81.635
	20	0.0500	61,40	4.613	52.355 - 70.440
	10	0.1000	54.84	3.559	47.867 - 61.820
	5	0.2000	47.96	2.572	42.919 - 53.005
	3	0.3000	43.69	2.052	39.665 - 47.711
	2	0.5000	37.81	1.499	34.875 - 40.753

Figure C7. Résultats de l'ajustement de la loi Pearson type 3 aux précipitations maximums d'été-automne du bassin Aval (3 jours).

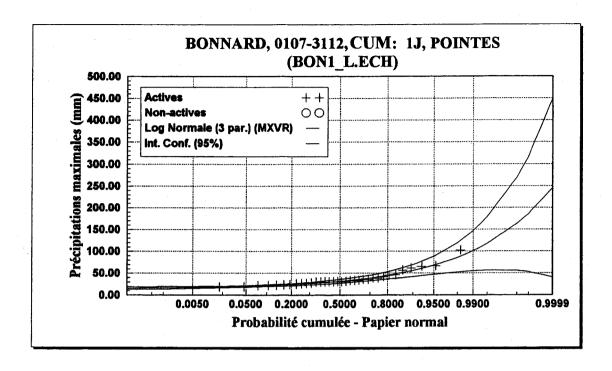

Paramètres	T	P	\hat{x}_{T}	Écart-type	Intervalle à 95%
	10000	0.0001	123,95	15.719	93.132 - 154.761
$\alpha = 0.108$	2000	0.0005	108.31	12.905	83.015 - 133.611
$\lambda = 1.495$	1000	0.0010	101.54	11.697	78.608 - 124.469
m = 26.315	200	0.0050	85.67	8.908	68.209 - 103.135
	100	0.0100	78.76	7.716	63.635 - 93.888
	50	0.0200	71.79	6.533	58.979 - 84.591
	20	0.0500	62.43	4.988	52.647 - 72.203
	10	0.1000	55.19	3.844	47.656 - 62.727
	5	0.2000	47.74	2.741	42.372 - 53.118
	3	0.3000	43.23	2.131	39.050 - 47.404
	2	0.5000	37.22	1.435	34.407 - 40.035

Figure C8. Résultats de l'ajustement de la loi Pearson type 3 aux précipitations maximums d'été-automne du bassin Total (3 jours).

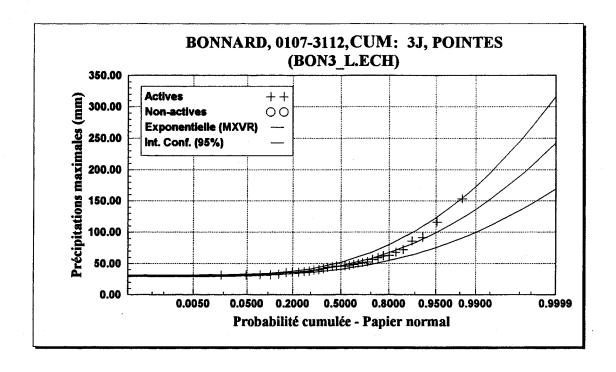

Paramètres	T	P	$\hat{x}_{_T}$	Écart-type	Intervalle à 95%
-	10000	0.0001	237.57	81.148	78.487 - 396.652
m = 26.972	2000	0.0005	186.33	53.291	81.860 - 290.803
$\mu = 2.929$	1000	0.0010	166.86	43.541	81.502 - 252.218
$\sigma = 0.651$	200	0.0050	127.07	25.457	77.163 - 176.974
	100	0.0100	112.07	19.434	73.970 - 150.167
	50	0.0200	98.23	14.371	70.062 - 126.407
	20	0.0500	81.58	9.051	63.839 - 99.324
	10	0.1000	70.08	6.008	58.298 - 81.856
	5	0.2000	59.34	3.783	51.921 - 66.754
	3	0.3000	53.30	2.846	47.718 - 58.875
	2	0.5000	45.69	1.982	41.805 - 49.574

Figure C9. Résultats de l'ajustement de la loi log-normale à 3 paramètres aux précipitations maximums d'été-automne de la station Bagotville-A (3 jours).

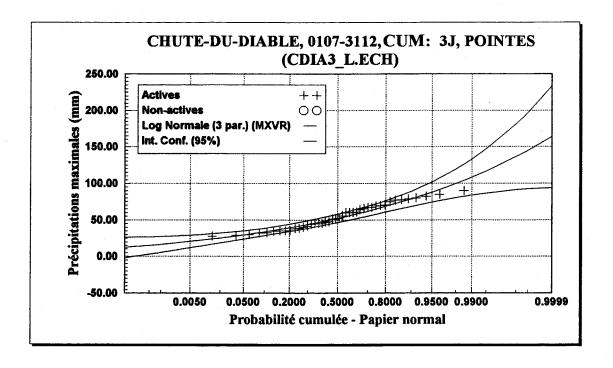

Paramètres	T	P	$\hat{x}_{_T}$	Écart-type	Intervalle à 95%
	10000	0.0001	245.42	104.378	40.795 - 450.041
m = 14.814	2000	0.0005	185.14	67.185	53.426 - 316.844
$\mu = 2.810$	1000	0.0010	162.64	54.391	56.013 - 269.270
$\sigma = 0.707$	200	0.0050	117.56	31.076	56.638 - 178.480
	100	0.0100	100.94	23.466	54.936 - 146.941
	50	0.0200	85.83	17.148	52.218 - 119.450
	20	0.0500	67.99	10.606	47.201 - 88.785
	10	0.1000	55.94	6.921	42.369 - 69.504
	5	0.2000	44.93	4.253	36.593 - 53.270
	3	0.3000	38.87	3.137	32.724 - 45.024
	2	0.5000	31.42	2.116	27.273 - 35.571

Figure C10. Résultats de l'ajustement de la loi log-normale à 3 paramètres aux précipitations maximums d'été-automne de la station Bonnard (1 jour)

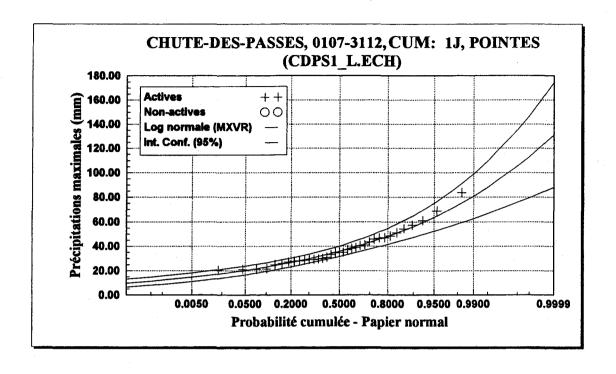

Paramètres	T	P	\hat{x}_{T}	Écart-type	Intervalle à 95%
	10000	0.0001	242.89	37.463	169.444 - 316.329
$\alpha = 23.081$	2000	0.0005	205.74	30.898	145.167 - 266.311
m = 30.301	1000	0.0010	189.74	28.070	134.711 - 244.769
	200	0.0050	152.59	21.506	110.432 - 194.753
	100	0.0100	136.59	18.680	99.974 - 173.213
	50	0.0200	120.59	15.854	89.515 - 151.675
	20	0.0500	99.45	12.120	75.686 - 123.205
	10	0.1000	83.45	9.298	65.220 - 101.674
	5	0.2000	67.45	6.481	54.743 - 80.154
	3	0.3000	58.09	4.840	48.602 - 67.577
	2	0.5000	46.30	2.794	40.823 - 51.776

Figure C11. Résultats de l'ajustement de la loi exponentielle aux précipitations maximums d'été-automne de la station Bonnard (3 jours).

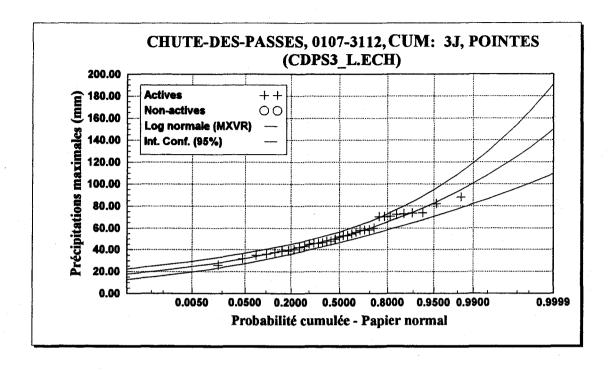

Paramètres	T	P	$\hat{x}_{_T}$	Écart-type	Intervalle à 95%
	10000	0.0001	163.89	35.749	93.805 - 233.971
m = -10.086	2000	0.0005	144.46	26.498	92.515 - 196.410
$\mu = 4.131$	1000	0.0010	136.14	22.882	91.285 - 180.999
$\sigma = 0.276$	200	0.0050	116.77	15.367	86.641 - 146.892
	100	0.0100	108.32	12.533	83.747 - 132.884
	50	0.0200	99.72	9.964	80.188 - 119.257
	20	0.0500	87.99	7.034	74.198 - 101.774
	10	0.1000	78.61	5.239	68.341 - 88.884
	. 5	0.2000	68.45	3.901	60.803 - 76.097
	, 3	0.3000	61.85	3.351	55.284 - 68.421
	2	0.5000	52.15	2.853	46.561 - 57.746

Figure C12. Résultats de l'ajustement de la loi log-normale à 3 paramètres aux précipitations maximums d'été-automne de la station Chute du Diable (3 jours).

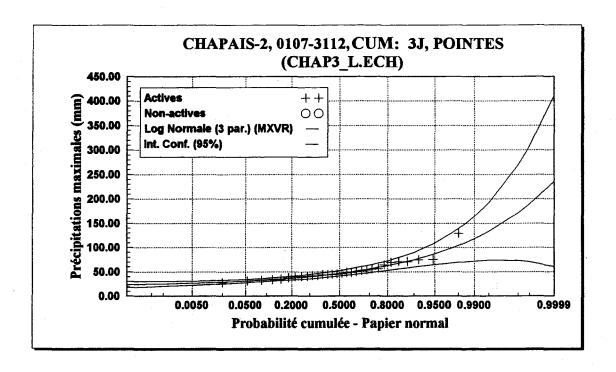

Paramètres	T	P	\hat{x}_{T}	Écart-type	Intervalle à 95%
	10000	0.0001	131.37	22.077	88.086 - 174.645
$\mu = 3.580$	2000	0.0005	113.13	17.107	79.591 - 146.664
$\sigma^2=0.122$	1000	0.0010	105.49	15.134	75.826 - 135.161
	200	0.0050	88.16	10.927	66.743 - 109.586
	100	0.0100	80.82	9.275	62.633 - 98.998
	50	0.0200	73.48	7.719	58.351 - 88.614
	20	0.0500	63.71	5.813	52.315 - 75.106
	10	0.1000	56.12	4.497	47.306 - 64.937
	5	0.2000	48.13	3.316	41.629 - 54.630
	3	0.3000	43.08	2.715	37.761 - 48.405
	2	0.5000	35.88	2.116	31.735 - 40.033

Figure C13. Résultats de l'ajustement de la loi log normale à 2 paramètres aux précipitations maximums d'été-automne de la station Chute-des-Passes (1 jour).

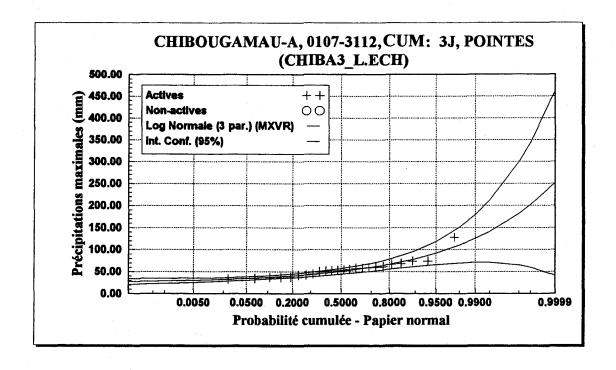

Paramètres	T	P	$\hat{x}_{\scriptscriptstyle T}$	Écart-type	Intervalle à 95%
	10000	0.0001	150.07	20.765	109.363 - 190.778
$\mu = 3.943$	2000	0.0005	132.69	16.521	100.306 - 165.081
$\sigma^2 = 0.083$	1000	0.0010	125.28	14.797	96.269 - 154.283
	200	0.0050	108.07	11.028	86.450 - 129.688
	100	0.0100	100.60	9.506	81.961 - 119.230
	50	0.0200	93.02	8.045	77.248 - 108.789
	20	0.0500	82.71	6.213	70.527 - 94.887
	10	0.1000	74.51	4.915	64.871 - 84.142
	5	0.2000	65.65	3.724	58.354 - 72.955
	3	0.3000	59.93	3.109	53.836 - 66.027
	2	0.5000	51.56	2.504	46.648 - 56.464

Figure C14. Résultats de l'ajustement de la loi log normale à 2 paramètres aux précipitations maximums d'été-automne de la station Chute-des-Passes (3 jours).

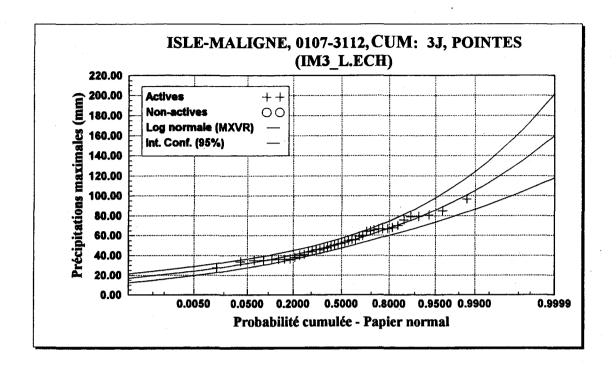

Paramètres	T	P	\hat{x}_{T}	Écart-type	Intervalle à 95%
	10000	0.0001	236.17	89.705	60.317 - 412.030
m = 20.747	2000	0.0005	189.56	60.597	70.771 - 308.358
$\mu = 3.256$	1000	0.0010	171.38	50.154	73.060 - 269.702
$\sigma = 0.569$	200	0.0050	133.16	30.287	73.782 - 192.531
	100	0.0100	118.28	23.479	72.250 - 164.307
	50	0.0200	104.26	17.654	69.653 - 138.872
	20	0.0500	86.92	11.407	64.557 - 109.282
	10	0.1000	74.55	7.764	59.334 - 89.773
	5	0.2000	62.63	5.064	52.699 - 72.555
	3	0.3000	55.70	3.920	48.020 - 63.389
	2	0.5000	46.69	2.856	41.091 - 52.289

Figure C15. Résultats de l'ajustement de la loi log-normale à 3 paramètres aux précipitations maximums d'été-automne de la station Chapais-2 (3 jours).

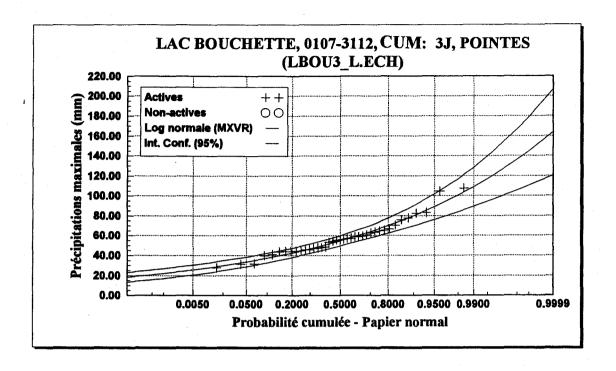

Paramètres	T	P	\hat{x}_{T}	Écart-type	Intervalle à 95%
	10000	0.0001	251.58	107.280	41.265 - 461.886
m = 24.734	2000	0.0005	201.49	72.143	60.064 - 342.920
$\mu = 3.258$	1000	0.0010	182.04	59.587	65.221 - 298.850
$\sigma = 0.582$	200	0.0050	141.32	35.798	71.144 - 211.501
	100	0.0100	125.56	27.683	71.288 - 179.828
	50	0.0200	110.76	20.760	70.060 - 151.455
	20	0.0500	92.53	13.359	66.337 - 118.714
	10	0.1000	79.59	9.055	61.840 - 97.344
	5	0.2000	67.18	5.873	55.672 - 78.698
	3	0.3000	60.02	4.525	51.149 - 68.889
	2	0.5000	50.74	3.273	44.323 - 57.155

Figure C16. Résultats de l'ajustement de la loi log normale à 3 paramètres aux précipitations maximums d'été-automne de la station Chibougamau-A (3 jours).

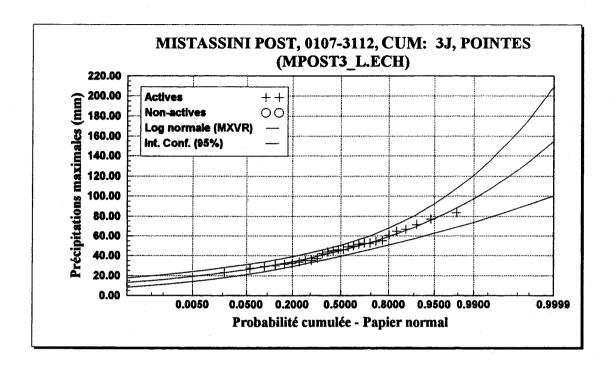

Paramètres	T	P	$\hat{x}_{\scriptscriptstyle T}$	Écart-type	Intervalle à 95%
	10000	0.0001	159.84	21.331	118.023 - 201.656
$\mu = 3.957$	2000	0.0005	140.54	16.877	107.452 - 173.621
$\sigma^2 = 0.090$	1000	0.0010	132.33	15.076	102.776 - 161.886
	200	0.0050	113.39	11.162	91.504 - 135.267
	100	0.0100	105.20	9.590	86.398 - 123.998
	50	0.0200	96.93	8.088	81.070 - 112.781
	20	0.0500	85.72	6.214	73.536 - 97.901
	10	0.1000	76.85	4.894	67.256 - 86.444
	5	0.2000	67.33	3.688	60.098 - 74.558
	3	0.3000	61.20	3.067	55.190 - 67.216
	2	0.5000	52.29	2.453	47.478 - 57.098

Figure C17. Résultats de l'ajustement de la loi log-normale à 2 paramètres aux précipitations maximums d'été-automne de la station Isle-Maligne (3 jours).

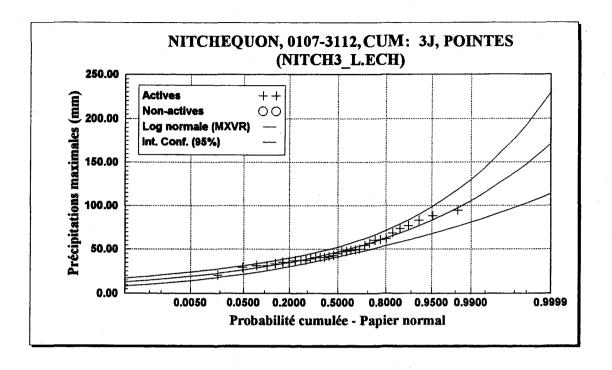

Paramètres	T	P	$\hat{x}_{_T}$	Écart-type	Intervalle à 95%
	10000	0.0001	163.94	22.058	120.695 - 207.177
$\mu = 4.00$	2000	0.0005	144.46	17.490	110.171 - 178.746
$\sigma^2 = 0.087$	1000	0.0010	136.16	15.640	105.504 - 166.825
	200	0.0050	116.98	11.610	94.221 - 139.740
	100	0.0100	108.67	9.988	89.094 - 128.254
	50	0.0200	100.27	8.435	83.734 - 116.805
	20	0.0500	88.86	6.494	76.132 - 101.595
	10	0.1000	79.82	5.124	69.776 - 89.864
	5	0.2000	70.09	3.869	62.504 - 77.675
	3	0.3000	63.82	3.223	57.500 - 70.136
	2	0.5000	54.67	2.585	49.602 - 59.737

Figure C18. Résultats de l'ajustement de la loi log-normale à 2 paramètres aux précipitations maximums d'été-automne de la station Lac Bouchette (3 jours).

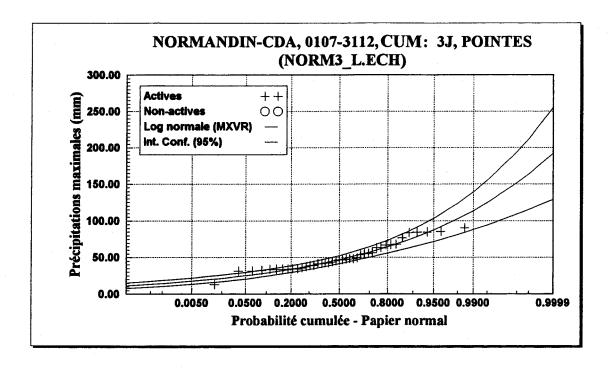

Paramètres	T	P	\hat{x}_{T}	Écart-type	Intervalle à 95%
	10000	0.0001	154.81	27.801	100.307 - 209.310
$\mu = 3.806$	2000	0.0005	134.26	21.693	91.735 - 176.790
$\sigma^2 = 0.110$	1000	0.0010	125.62	19.253	87.873 - 163.360
	200	0.0050	105,88	14.017	78.398 - 133.356
	100	0.0100	97.45	11.945	74.034 - 120.869
	50	0.0200	89.01	9.984	69.437 - 108.581
	20	0.0500	77.70	7.567	62.861 - 92.529
	10	0.1000	68.85	5.886	57.313 - 80.391
	5	0.2000	59.48	4.369	50.914 - 68.043
	3	0.3000	53.52	3.594	46.477 - 60.567
	2	0.5000	44.97	2.825	39.428 - 50.503

Figure C19. Résultats de l'ajustement de la loi log-normale à 2 paramètres aux précipitations maximums d'été-automne de la station Mistassini Post (3 jours).

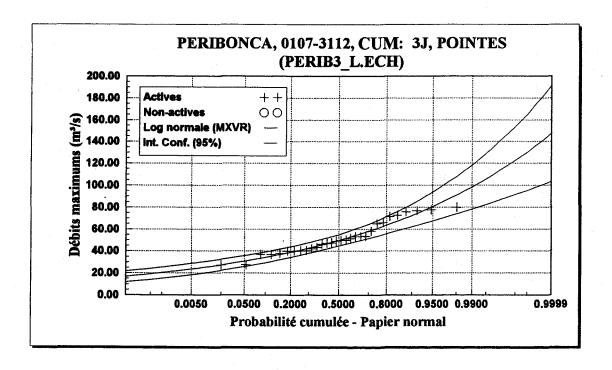

Paramètres	. T	P	$\hat{x}_{\scriptscriptstyle T}$	Écart-type	Intervalle à 95%
	10000	0.0001	171.27	29.607	113.226 - 229.309
$\mu = 3.848$	2000	0.0005	147.53	22.948	102.546 - 192.521
$\sigma^2 = 0.121$	1000	0.0010	137.60	20.303	97.794 - 177.399
	200	0.0050	115.03	14.664	86.286 - 143.783
	100	0.0100	105.46	12.449	81.059 - 129.868
	50	0.0200	95.91	10.361	75.600 - 116.225
	20	0.0500	83.18	7.805	67.880 - 98.481
	10	0.1000	73.29	6.038	61.453 - 85.128
	5	0.2000	62.87	4.453	54.143 - 71.603
	3	0.3000	56.29	3.646	49.145 - 63.440
	2	0.5000	46.90	2.843	41.329 - 52.477

Figure C20. Résultats de l'ajustement de la loi log-normale à 2 paramètres aux précipitations maximums d'été-automne de la station Nitchequon (3 jours).

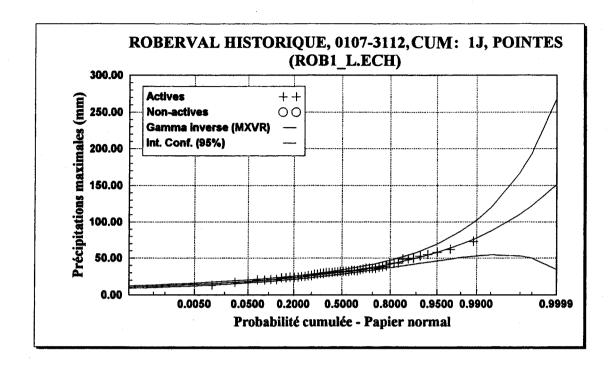

Paramètres	T	P	$\hat{x}_{\scriptscriptstyle T}$	Écart-type	Intervalle à 95%
	10000	0.0001	192.27	32.336	128.882 - 255.664
$\mu = 3.851$	2000	0.0005	163.49	24.741	114.984 - 211.988
$\sigma^2 = 0.143$	1000	0.0010	151.55	21.758	108.895 - 194.203
	200	0.0050	124.73	15.474	94.399 - 155.070
	100	0.0100	113.49	13.038	87.932 - 139.053
	50	0.0200	102.36	10.764	81.261 - 123.465
	20	0.0500	87.68	8.010	71.975 - 103.382
	10	0.1000	76.41	6.132	64.385 - 88.426
	5	0.2000	64.67	4.465	55.921 - 73.426
	3	0.3000	57.35	3.622	50.249 - 64.449
	2	0.5000	47.03	2.781	41.577 - 52.480

Figure C21. Résultats de l'ajustement de la loi log normale à 2 paramètres aux précipitations maximums d'été-automne de la station Normandin-CDA (3 jours).

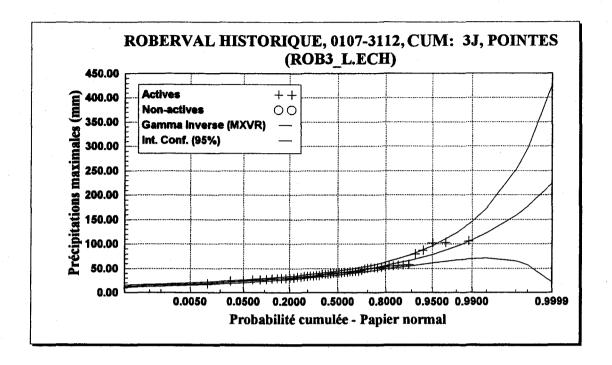

Paramètres	T	P	$\hat{x}_{_T}$	Écart-type	Intervalle à 95%
	10000	0.0001	147.31	22.371	103.450 - 191.164
$\mu = 3.909$	2000	0.0005	130.03	17.767	95.196 - 164.857
$\sigma^2 = 0.085$	1000	0.0010	122.66	15.899	91.490 - 153.828
	200	0.0050	105.59	11.824	82.415 - 128.773
	100	0.0100	98.19	10.180	78.236 - 118.151
	50	0.0200	90.70	8.605	73.828 - 107.567
	20	0.0500	80.51	6.633	67.507 - 93.516
	10	0.1000	72.42	5.238	62.153 - 82.692
	5	0.2000	63.71	3.960	55.942 - 71.469
	3	0.3000	58.08	3.301	51.608 - 64.550
	2	0.5000	49.86	2.652	44.659 - 55.055

Figure C22. Résultats de l'ajustement de la loi log-normale à 2 paramètres aux précipitations maximums d'été-automne de la station Péribonca (3 jours).

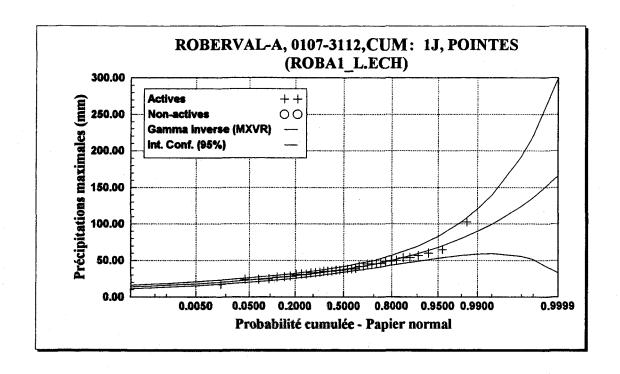

Paramètres	T	P	\hat{x}_{T}	Écart-type	Intervalle à 95%
	10000	0.0001	151.52	59.736	34.411 - 268.624
$\alpha = 262.154$	2000	0.0005	122.00	36.617	50.218 - 193.787
$\lambda = 8.767$	1000	0.0010	110.69	29.249	53.353 - 168.032
	200	0.0050	87.03	16.516	54.655 - 119.412
	100	0.0100	77.78	12.530	53.221 - 102.347
	50	0.0200	69.00	9.265	50.836 - 87.164
	20	0.0500	57.98	5.902	46.410 - 69.550
	10	0.1000	49.98	3.988	42.158 - 57.796
	5	0.2000	42.09	2.572	37.051 - 47.136
	3	0.3000	37.40	1.971	33.540 - 41.268
	2	0,5000	31.07	1.460	28.208 - 33.932

Figure C23. Résultats de l'ajustement de la loi gamma inverse aux précipitations maximums d'été-automne de la station Roberval-A (1 jour - série A).

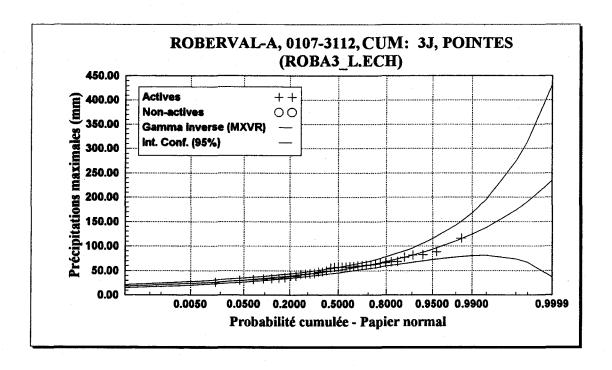

Paramètres	T	P	$\hat{x}_{_T}$	Écart-type	Intervalle à 95%
	10000	0.0001	223.71	102.922	21.943 - 425.478
$\alpha = 303.872$	2000	0.0005	176.34	60.622	57.493 - 295.180
$\lambda = 7.827$	1000	0.0010	158.56	47.623	65.203 - 251.921
	200	0.0050	122.11	25.877	71.379 - 172.837
	100	0.0100	108.14	19.304	70.298 - 145.986
	50	0.0200	95.04	14.031	67.531 - 122.544
	20	0.0500	78.83	8.726	61.725 - 95.939
	10	0.1000	67.24	5.784	55.900 - 78.577
	5	0.2000	55.98	3.653	48.816 - 63.137
	3	0.3000	49.36	2.764	43.940 - 54.777
	2	0.5000	40.53	2.016	36.577 - 44.482

Figure C24. Résultats de l'ajustement de la loi gamma inverse aux précipitations maximums d'été-automne de la station Roberval-A (3 jours - série A).

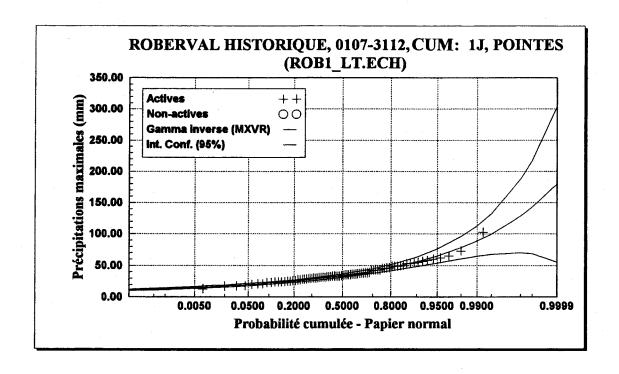

Paramètres	T	P	\hat{x}_{T}	Écart-type	Intervalle à 95%
	10000	0.0001	166.30	68.183	32.638 - 299.968
$\alpha = 354.668$	2000	0.0005	136.19	43.131	51.638 - 220.746
$\lambda = 9.718$	1000	0.0010	124.46	34.915	56.014 - 192.907
	200	0.0050	99.53	20.340	59.655 - 139.403
	100	0.0100	89.62	15.645	58.952 - 120.293
	50	0.0200	80.12	11.735	57.115 - 103.126
	20	0.0500	68.06	7.626	53.108 - 83.007
	10	0.1000	59.19	5.238	48.918 - 69.456
	5	0.2000	50.34	3.438	43.605 - 57.085
	3	0.3000	45.03	2.662	39.811 - 50.250
·	. 2	0.5000	37.78	1.998	33.859 - 41.693

Figure C25. Résultats de l'ajustement de la loi gamma inverse aux précipitations maximums d'été-automne de la station Roberval-A (1 jour - série B).

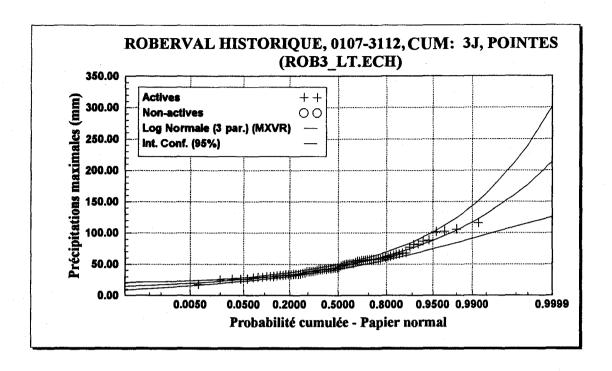

Paramètres	T	P	\hat{x}_{r}	Écart-type	Intervalle à 95%
	10000	0.0001	234.71	101.111	36.491 - 432.928
$\alpha = 462.346$	2000	0.0005	191.01	63.221	67.074 - 314.951
$\lambda = 9.341$	1000	0.0010	174.09	50.925	74.259 - 273.924
	200	0.0050	138.34	29.324	80.855 - 195.828
	100	0.0100	124.22	22.439	80.232 - 168.212
	50	0.0200	110.73	16.742	77.908 - 143.550
	20	0.0500	93.68	10.798	72.507 - 114.844
	10	0.1000	81.19	7.372	66.742 - 95.645
	5	0.2000	68.81	4.806	59.386 - 78.230
	3	0.3000	61.39	3.707	54.124 - 68.660
	2	0.5000	51.31	2.768	45.883 - 56.737

Figure C26. Résultats de l'ajustement de la loi gamma inverse aux précipitations maximums d'été-automne de la station Roberval-A (3 jours - série B).

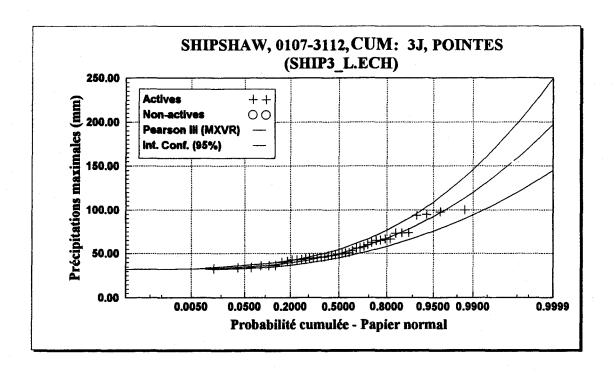

Paramètres	T	P	$\hat{x}_{\scriptscriptstyle T}$	Écart-type	Intervalle à 95%
	10000	0.0001	180.13	63.582	55.480 - 304.774
$\alpha = 264.294$	2000	0.0005	142.98	37.947	68.591 - 217.371
$\lambda = 8.110$	1000	0.0010	128.95	29.973	70.187 - 187.705
	200	0.0050	99.97	16.492	67.644 - 132.305
	100	0.0100	88.80	12.370	64.551 - 113.052
	50	0.0200	78.28	9.042	60.552 - 96.002
	20	0.0500	65.20	5.667	54.092 - 76.310
	10	0.1000	55.80	3.779	48.392 - 63.210
	5	0.2000	46.63	2.403	41.918 - 51.339
	3	0.3000	41.22	1.826	37.638 - 44.797
	2	0.5000	33.97	1.338	31.346 - 36.593

Figure C27. Résultats de l'ajustement de la loi gamma inverse aux précipitations maximums d'été-automne de la station Roberval-A (1 jour - série C).

Paramètres	T	P	$\hat{x}_{_T}$	Écart-type	Intervalle à 95%
	10000	0.0001	213.72	44.842	125.809 - 301.626
m = 7.839	2000	0.0005	177.28	31.462	115.599 - 238.956
$\mu = 3.636$	1000	0.0010	162.53	26.495	110.590 - 214.472
$\sigma = 0.455$	200	0.0050	130.27	16.709	97.515 - 163.029
	100	0.0100	117.14	13.223	91.219 - 143.066
	50	0.0200	104.40	10.170	84.463 - 124.336
	20	0.0500	88.01	6.806	74.671 - 101.354
	10	0.1000	75.80	4.797	66.395 - 85.201
	5	0.2000	63.47	3.291	57.015 - 69.919
	3	0.3000	55.99	2.653	50.789 - 61.190
	2	0.5000	45.78	2.057	41.748 - 49.813

Figure C28. Résultats de l'ajustement de la loi log normale à 3 paramètres aux précipitations maximums d'été-automne de la station Roberval-A (3 jours- série C).

Paramètres	T	P	\hat{x}_{T}	Écart-type	Intervalle à 95%
	10000	0.0001	197.28	26.691	144.955 - 249.603
$\alpha = 0.062$	2000	0.0005	170.50	21.933	127.499 - 213.495
$\lambda = 1.401$	1000	0.0010	158.90	19.890	119.909 - 197.895
m = 32.464	200	0.0050	131.79	15.168	102.051 - 161.521
	100	0.0100	120.00	13.147	94.223 - 145.769
	50	0.0200	108.11	11.138	86.279 - 129.947
	20	0.0500	92.21	8.509	75.525 - 108.887
	10	0.1000	79.95	6.556	67.101 - 92.806
	5	0.2000	67.39	4.661	58.257 - 76.531
	3	0.3000	59.82	3.603	52.752 - 66.879
	2	0.5000	49.82	2.378	45.156 - 54.480

Figure C29. Résultats de l'ajustement de la loi Pearson type 3 aux précipitations maximums d'été-automne de la station Shipshaw (3 jours).