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ABSTRACT 

Understanding the spatial distribution of organic and/or inorganic contaminants is crucial to 

facilitate decision-making of rehabilitation strategies in order to ensure the most appropriate 

management of contaminated sites in terms of contaminant removals efficiencies and operating 

costs. For these reasons, various interpolation methods [Thiessen Polygon (TP) method, inverse 

of distance (IDW) method, ordinary kriging (OK), as well as sequential Gaussian simulations 

(SGS)] were used to better understand the spatial distribution of As, Cr, Cu, pentachlorophenol 

(PCP) and dioxins and furans (PCDD/F) found onto a specific industrial site. These methods do 

not only vary in complexity and efficiency but also lead to different results when using values 

coming from the same characterization campaign. Therefore, it is often necessary to evaluate 

their relevance by performing a comparative analysis. The results showed that ordinary kriging 

(OK) was a better estimator of the mean and more advanced compared to the two other methods 

of interpolation (TP and IDW). However, it appeared that SGS has the same power than OK but 

it also permitted to calculate a reliable value of the probabilities of exceeding regulatory cut-offs 

of contamination. 

 

 

Keywords: Contaminated site; heavy metals; PCDD/F; Ordinary kriging; Sequential Gaussian 

simulations; Risk assessment.  
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1 INTRODUCTION  

During the last decades, the amount of sites contaminated with inorganic and/or organic 

compounds dramatically increased. Therefore, challenges related to the rehabilitation of 

contaminated sites are becoming ubiquitous around the globe because of the serious health risks 

they represent as well as the significant costs involved (Guemiza et al., 2017). Treated wood 

storage sites are an example of areas of mixed contamination and are the subject of several 

studies. The coexistence of heavy metals and organic compounds in treated wood storage sites 

are the result of the use of preservative agents to protect wood against insects, fungi and 

weathering conditions (PCA, 2009). Over the last years, the most commonly used preservative 

agents were Pentachlorophenol (PCP) preservative agent mainly composed of PCP and some 

trace of dioxins and furans (PCDD/F) as well as Chromated Copper Arsenate (CCA) 

preservative agent mainly composed of As, Cr and Cu. Several studies demonstrated that the 

contents of As, Cr, Cu, PCP and/or PCDD/F found in soils are significantly higher near the 

pollution source (treated wood storage sites). Many factors can affect the amount of 

contaminants leached from treated wood. Such factors include how long the wood has been 

exposed to the environment, the size and type of wood that was treated and the type of soil 

(Coudert et al., 2013). Studies have shown that these contaminants are mainly distributed and 

immobilized during the first 30 cm and that the migration of PCP can be up to 60 cm 

(Khodadoust et al., 2005, Lespagnol, 2003) Despite the results of these studies, the spatial 

distribution of such contaminants in soils surrounding industrial activities is poorly understood. 

An incorrect estimate of the contamination’s situation of a site (volume of contaminated soil and 

level of contamination) can lead to a mismanagement of its efficiency and controllability as well 

as important increases of rehabilitation costs if the contamination is underestimated.  
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For this reason, it would be of interest to develop strategies to better evaluate the spatial 

distribution of both organic and inorganic contaminants through the combination a systematic 

sampling strategy with a geostatistical data processing.  

In fact, conventional statistical methods do not give an accurate description of the spatial 

variability of contaminants in soils, whose knowledge is necessary to efficiently treat values in 

terms of average values or probability and to have a limit value lower than a certain cut-off 

(Vauclin et al., 1982). Goovaerts (1999) reported that when the phenomena studied is complex, 

classical statistics are quickly abandoned in favor of the geostatistical models. Geostatistical data 

modeling has now virtually permeated all areas of oceanography, cartography, meteorology, 

agriculture, fisheries resources, civil engineering, finance (Ordoñez et al., 2018) as well as the 

environment, especially for the rehabilitation of contaminated soils (Lin et al., 2016, Shen et al., 

2017, Xie et al., 2011). During the past years, significant effort have been invested to improve 

the characterization of contaminated soils and to reduce the costs related to the rehabilitation of 

these sites by applying geostatistical techniques within the characterization phase. Indeed, 

rehabilitation of contaminated sites should be based on a precise and accurate characterization of 

soil contamination to avoid errors in the quantification of pollution, which can have serious 

consequences for both health and rehabilitation costs (Boudreault et al., 2016). Before starting 

any sampling campaign, it is important to use the information related to the history of the site, 

when available, because it provides historical information related to the nature and sometimes 

the potential location of the pollution (inorganic and/or organic) at a lower cost compared to a 

systematic characterization campaign on the entire site. A visit of the contaminated site is also 

very valuable in order to make an inventory of the infrastructures present on this site, to evaluate 

the zones of potential contamination and to define a more appropriate sampling plan (CCME, 
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1993). The history of site and the site visit allows to build a conceptual model of the 

contamination both spatially but also in time. This conceptual model will then guide the 

sampling strategy. The number of samples that will be collected usually depends on the sampling 

area and the allocated budget (Cui et al., 2016). In general, a more important number of samples 

will produce a more accurate description (map) of the pollution and its spatial distribution 

(Mueller et al., 2001). The choice of the sampling mesh, as well as the interpolation method, are 

considered as key factors since they strongly affect the pollution mapping (Kravchenko, 2003). 

In recent years, a growing number of studies have combined geographical information science 

(GIS) and multivariate statistical analysis techniques to examine the spatial distribution of heavy 

metals in soils at a regional scale (Hou et al., 2017, McGrath et al., 2004). GIS-based 

geostatistics were proved to be a powerful tool in studying soil contamination (Facchinelli et al., 

2001). Jin et al. (2019) showed through their study that a systematic combination of GIS with 

multivariate statistical analysis proved valuable for elucidating anthropogenic and natural 

sources of heavy metals in soil and dust at children's playgrounds in Beijing (China). In the same 

context, Zawadzki et al. (2016) demonstrated that it is possible to use a magneto-geochemical 

data set in order to discriminate the origins of soil contamination between natural and 

anthropogenic sources. Henriksson et al. (2013) successfully coupled GIS and multivariate data 

analysis (PCA) in order to assess the levels of PCDD/F contamination in soil from a sawmill site. 

Their results showed that GIS and PCA are powerful tools in decision-making on future 

investigations, risk assessments and remediation of contaminated sites. 

Actually, interpolation methods are numerous and they vary in complexity and efficiency 

(Bobbia et al., 2001). Therefore, it is often necessary to evaluate the relevance of these methods 

by performing a comparative analysis of the various methods used. Indeed, Saito and Goovaerts 
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(2000) conducted a comparative study of four classical interpolation methods including ordinary 

kriging, log-normal kriging, multi-Gaussian kriging, and indicator kriging in order to accurately 

delineate a site highly contaminated with dioxins and furans in Michigan (USA). This study 

revealed that lognormal kriging gave the best results with smaller prediction errors as well as 

lower characterization costs compared to the other geostatistical algorithms. Fabijańczyk et al. 

(2017) studied the magnetometric assessment of soil contamination by using three advanced 

geostatistical methods, namely indicator kriging, empirical Bayesian kriging, and indicator 

cokriging. Their results showed that properly chosen geostatistical methods can greatly improve 

the effectiveness of magnetometric screening of soil pollution, even in problematic areas. 

Zawadzki et al. (2008) studied the spatial distribution of lead concentrations in soils by using 

ordinary kriging and sequential Gaussian simulation (SGS). According to these authors, the 

results showed that unlike kriging, the simulation reproduced the maximum values of lead 

concentrations in soils without smoothing effect. 

The most commonly used interpolation methods are: i) the Thiessien Polygon (TP) method and 

the inverse of distance (IDW) and the most used geostatistical method is ordinary kriging (OK). 

As long as the basic conditions of the random function under study are met, kriging will always 

be a better estimator of the mean than the other methods (Cui et al., 2016). This interpolator has 

been used in many cases of soils contaminated with metals. For example, Atteia et al. (1994) 

used OK to identify the distribution of seven potentially toxic metals (Cd, Co, Cr, Cu, Ni, Pb, 

and Zn) on a contaminated area of 14.5 km2 region of the Swiss Jura. Other authors like 

McGrath et al. (2004) have used kriging to measure the spatial variability of Pb in the 

Silvermines region of Ireland. Burgos et al. (2006) demonstrated that the kriging-interpolated 

maps are considered as very valuable tool in studying pollution and monitoring soil parameters 
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after amendment application at field scale. However, these linear interpolation methods do not 

allow the calculation of probabilities of exceeding contamination cut-offs. In this case, non-linear 

methods such as the indicator kriging or geostatistical simulations are recommended to be used 

(Juang et al., 2004; Lin et al., 2016). In recent years, many studies have focused on SGS to 

generate probability maps for assessment of soil pollution and to optimize of sampling plans 

during the characterization of contaminated sites (Boudreault et al., 2016, Demougeot-Renard et 

al., 2004). 

The main objective of this study is to determine if geostatistical techniques can be used to 

adequately determine the volumes of soils contaminated by both inorganic (As, Cr, Cu) and 

organic contaminants (PCP, PCDD/F) and to compare the predictive ability of these methods. 

Therefore, specific objectives of the present study were to: (1) map the spatial distribution of As, 

Cr, Cu, PCP, and PCDD/F initially present on an industrial contaminated site; (2) determine the 

volumes of soils contaminated using different interpolation methods (TP, IDW and OK) and by 

the SGS method and to compare their performances; and (3) quantify the risk assessment of the 

evaluation of spatial distribution of these contaminants. 

2 MATERIAL AND METHODS  

2.1 Investigation area and soil sampling  

The present study was conducted on an industrial site where treated wood samples where stored 

for different period of time, named S3 for confidentiality reasons, with a total area of 375 m2. 

The inappropriate management and/or disposal of treated wood led to heterogeneous soil 

contamination by As, Cr, Cu, PCP and PCDD/Fs. History of industrial activities on this site is 

poorly documented, increasing challenges related to the definition of an appropriate sampling 
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campaign to adequately identify contaminants spatial distribution. The geology, observed on the 

site, indicates the presence of an embankment (gravel) above a natural soil (clayey silt). 

In this study, two sampling methods (systematic and random) were coupled over the area. This 

approach was chosen in order to optimize the sampling quality and the representativeness of the 

data. Sampling was done on a grid of (15 m x 25 m), on two depths: P1 (depth 0 to 15 cm) and 

P2 (15 to 30 cm). A total of 27 exploration holes (1 m x 1 m each) were dug up on each depth 

(P1 and P2) on November, 2014 on the industrial site using a John Deer mini-excavator, model 

35D. Among the 27 samples collected on the site, 3 holes (B1, B2, and B3) were dug up outside 

of the industrial site to determine the background noise. The site plan and location of the 27 

exploration holes that have been completed are shown in Fig. 1. In each of the exploration holes, 

a first sample was taken from the surface up to 15 cm of depth (depth P1) and a second one was 

taken between 15 cm and 30 cm depth (depth P2). The sampling was done by excavating soil 

from the hole and collecting 200 g of soils using the “cone and quartering” method to ensure the 

representability of the sample. Between each soil samples, all the equipment used (dipper, 

manual showels, etc.) were rinsed with water using a Karcher or dichloromethane to avoid any 

contamination.  

Table 1 presents the different cut-offs defined for each contaminant (As, Cr, Cu, PCP and 

PCDD/F) that were used in the exploratory analysis of the data. These cut-off values (cut-off 1, 

cut-off 2, cut-off 3 and cut-off 4) have been defined according to regulatory criterion of 

industrialized countries, depending of the intended use of the site once rehabilitated. 

2.2 Analytical methods 

Several parameters were used to characterize the contaminated soil samples collected on the 

industrial site. For example, pH was determined according to the method described by the 
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Quebec Expertise Center for Environmental Analysis (CEAEQ) (MA. 100 - pH 1.1) by using a 

pH-meter (Accumet Research AR25 Dual Channel pH/Ion meter, Fischer Scientific Ltd., 

Nepean, Canada) equipped with a double junction Cole-Parmer electrode with an Ag/AgCl 

reference cell. Organic matter content was analyzed according to CEAEQ method (MA. 1010 – 

PAF 1.0) (CEAEQ, 2003). The particle size distribution of the fine fraction (less than 0.125 µm) 

of the X11 Y12 sample was determined using a laser particle sizer (Partica Laser Scattering LA-

950V2-Laser Particle Size Analyser, ATS Burlington, ON, Canada). The cation exchange 

capacity (CEC) was determined according to Metson method (AFNOR X 31-130) (Metson, 

1956). 

2.2.1 Metal analysis 

Metal and metalloid analyses were performed in triplicate in our laboratories using an 

inductively coupled plasma - atomic emission spectroscopy (ICP-AES) (Varian, Mississauga, 

ON, Canada), after partial digestion performed according to the Method 3030I (APHA, 1999). 

The detection limits (LOD) and limit of quantification (LOQ) were estimated at 0.15 and 0.50 

mg As.kg-1, 3.00 and 10.0 mg Cr.kg-1, 1.00 and 3.33 mg Cu.kg-1. For each series of experiments, 

the quality of the results was controlled using certified soil samples (CNS 392-050, PQ-1, lot # 

7110C513, CANMET, Canadian Certified Reference Materials Project (CCRMP)) and certified 

standard solutions (Multi-elements standard, Catalogue No.C00-061-403, SCP Science, Lasalle, 

QC, Canada). 

2.2.2 PCP analysis 

PCP analysis was performed in triplicate according to the CEAEQ method MA. 400 – Phe. 1.0 

(CEAEQ, 2013) using gas chromatography with mass spectroscopy (GC-MS) (Perkin Elmer, 

model Clarus 500, column type RXi-17, 30 m x 0.25 mm x 0.25 µm). The LOD and LOQ are 
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estimated at 0.003 and 0.009 mg PCP.kg-1. Contaminants present in soil samples were extracted 

using Soxhlet extraction in the presence of methylene chloride, followed by liquid/liquid 

extraction using sodium hydroxide. Then, a derivatization step of PCP was performed overnight 

using anhydrous acetate and carbonate calcium. Finally, PCP-acetates were extracted from the 

aqueous solution using methylene chloride. Certified soil samples (CMR 143, BNAs-Sandy 

Loam) were also analyzed to confirm the adequacy of the extraction and analytical methods. 

Internal and recovery standards were also used to follow the behavior of PCP during the 

preparation and/or analysis steps. 

2.2.3 PCDD/F analysis 

The determination of PCDD/F content was done in our laboratories according to the CEAEQ 

method MA. 400-D.F. 1.1.(CEAEQ, 2011) using GC-MS (Thermo Scientific, model Trace 1310 

Gas Chromatograph coupled with mass spectrometer detector ISQ, column type ZB Semi-

volatile, 60 m × 0.25 mm × 0.25 µm). The LOD vary between 0.1 and 3 ng.kg-1 while the LOQ 

vary between 0.3 and 9 ng/kg-1 according to the congeners of PCDD/F. In order to validate the 

PCDD/F analysis method and results, recovery standards were used and some samples were sent 

to accredited laboratories for analyses checking. 

2.3 Interpolation methods 

Once sampling was done and contaminant concentrations determined, an exploratory analysis of 

the data was performed to: (1) validate the available data, (2) establish baseline levels of data for 

consistent data support (number of samples, minimum, maximum and mean content values, 

variance or standard deviation, symmetry, etc.), (3) study the spatial distribution of the data and  

understand their degree of homogeneity (Arnaud et al., 2000). 
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2.3.1 Thiessen Polygon (TP) 

The Thiessen polygons (TP) method consists on dividing the geographical space into polygons 

by plotting at the turn of each sampling point a polygon containing all the points of the plane. 

These polygons are obtained by plotting bisecting lines perpendicularly to the lines, connecting 

all sampling points for which the sample considered is the nearest sample. The clustered data 

will have small-area influence polygons, whereas the isolated data will have larger polygons 

(Mu, 2009). Supposing that one wants to estimate the value at a point S0 of a site D, this point 

necessarily belongs to one of the influence polygons. The value estimated at point S0 will then 

be identical to the value that has been assigned to the polygon to which it belongs. The TP 

method was performed using ArcGIS software. 

2.3.2 Inverse Distance (IDW)  

The inverse of distances (IDW) is one of the most applied and deterministic interpolation method 

(Bhunia et al., 2016). For each point to be estimated, it consists on calculating the average of the 

values of the points situated in the neighborhood weighted by the inverse of the distance (1 / d) at 

the calculated point (Bartier et al., 1996). The estimator (Ẑ (S0)) is calculated according to 

Eq. (1). 

 

Ẑ�S0�=
∑

Z(Si)

|Si-S0|

n0
i=1

∑
1

|Si-S0|

n0
i=1

       Eq. 1 
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Where Ẑ���� is the interpolated value at location S0, n representing the total number of 

neighbour data values, Z(Si) represents the known samples at the points Si; |Si - S0| represents 

the distances between the points i and 0.  

 

2.3.3 Ordinary Kriging method (OK) 

Ordinary Kriging (OK) is a method interpolating regionalized random variables. It is defined as 

an optimal and unbiased linear estimation method (Lin et al., 2001). It predicts the value of a 

variable at non-sampled sites by a linear combination of point values of a regionalized variable 

or averages on blocks of a regionalized variable using the structural properties of the semi-

variogram and the data of the considered parameters (Armstrong et al., 1997). First step of OK 

consists in computing an experimental semivariogram to measure the spatial correlation of the 

variable under study. The semivariogram is then modeled using a variogram function 

parametrized with three parameters consisting of a sill (C0 + C), a range (R) and a nugget effect 

(C0). The sill represents the spatial variance of the random field. The range is a distance at which 

data is no longer autocorrelated and the nugget effect represents the micro-scale variation or 

measurement error.  

Several standard models are available to fit the experimental semivariogram, e.g., spherical, 

exponential, Gaussian, linear and power models (Liu et al., 2008). In the present study, after the 

cross validation, the semivariograms of As, PCP and PCDD/F have been modeled using a 

combination of a small nugget effect and spherical models, using Istatis software. Information 

generated through variogram was used to calculate sample weighing factors for spatial 

interpolation by OK, using nearest 15 sampling points and a maximum searching distance equal 

to the range distance of the variable (Lark et al., 2004).  
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The interpolated value (Ẑ (S0)) of the regionalised variable z at the point S0 is given by Eq (2).  

 

Ẑ�	S�� = 	∑ λ�	
�
�� 	Z�S�	�      Eq. 2 

 

Where Ẑ�	���	��	the predicted value at location �� , Z (Si) is the measured value of a soil 

attribute at position xi.	��	is the corresponding weight obtained from the OK system with 

∑ ��	
�
�� = 1; and N is the number of sample data within the neighborhood. 

 

Kriging estimates are calculated as weighted sums of the adjacent sampled concentrations. These 

weights depend on the exhibited correlation structure. That is, if data appear to be highly 

continuous in space, the points closer to those estimated receive higher weights than those farther 

away. These weights are selected based upon a minimization of the estimation variance. 

By construction, OK is an estimator of the mean. It thus won’t reproduce the histogram and the 

variogram of the measured data. It is then not mathematically consistent to apply cut-off or non-

linear manipulation of the kriged maps in order to infer probabilities or reliable decision maps. 

2.3.4 Sequential Gaussian simulation (SGS) 

A simulation is a possible realization of the contaminant contents on the field of interest, which 

reproduces the spatial variability of the studied phenomenon while respecting the histogram and 

the variogram of the measured contents (GeoSIPOL, 2005). SGS is one of the most used 

simulation algorithms because its ease to be conditioned to measured data values. 

The SGS is based on multi-Gaussianary assumption of a random function variable (Delbari et al., 

2009). It consists on defining a regulatory spaced grid, covering the region of interest and 

establishing a random path through all grid nodes, such that each node is visited only once in 
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each sequence (Delbari et al., 2009). This approach can produce a large number of possible 

realizations (equally probable solutions) of pollution distribution through original sampling data 

from the considered site contaminated by organic and inorganic compounds. However, the 

number of realizations to calculate is debatable. In this case, we simulated realizations until we 

obtained a stabilization of the variance of the simulated blocks (300 realizations for all the 

contaminants). Similarly to OK, the same semi-variograms must be computed and modeled 

before the calculation of SGS. Nevertheless, the SGS often requires more assumptions, in 

particular a multigaussian framework: each variable must be transformed into a normal 

distribution beforehand and the simulation result must be back-transformed to the raw 

distribution afterwards. So the data that were not normally distributed were transformed 

(Gaussian anamorphosis transformation) in this study. By using a gaussian transformed data set, 

an experimental, an omni-directional semi-variograms of As, PCP and PCDD/F have been 

calculated and then modelled. In this case, the model was composed of two structures, nugget 

effect and spherical model. Thereafter, the conditional simulation step using SGS can be 

performed. A conditional simulation corresponds to a grid of values having a normal distribution 

and obeying the model. Moreover, it honors the data points as it uses a conditioning step based 

on kriging which requires the definition of a neighborhood. In this study, SGS have been 

performed on a grid of (15 m x 25 m), the same pollution neighborhood parameters as in the 

kriging was chosen. The number of 300 realizations has been fixed and the Gaussian back 

transformation has been done using the anamorphosis function. The determination of the cut-off 

maps giving the probability PCDD/F exceeds different thresholds has been done using 

Simulation Post processing on Isatis software. 
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3 RESULTS AND DISCUSSION 

3.1  Physico-chemical characterization of the soil S3 

Table 2 presents some parameters of the sample X11Y12 of soil S3 and the initial concentrations 

of both organic and inorganic contaminants. This sample contained 0.5% of organic matter and 

its CEC was estimated at 8.5 meq.100g-1. The pH value of this soil was quite neutral (pH = 7.4). 

The elemental analysis of this sample revealed relatively low calcium, phosphorus, potassium 

and sodium contents with values reaching 3,524; 0.017; 0.107 and 0.017 mg.kg-1, respectively, 

and a concentration in iron and aluminum of 416 mg.kg-1 and 387 mg.kg-1, respectively. This 

entire soil sample was chosen because it contained a low concentration of organic contaminants. 

Indeed, it contained 9 mg As.kg-1, 22 mg Cr.kg-1, 23 mg Cu.kg-1, 0.09 mg PCP.kg-1 and 

340 ng TEQ.kg-1 (PCDD/F). The distribution study of the particles' size by laser granulometry of 

the fraction less than 0.125 µm of the X11 Y12 sample, revealed that 14% of these particles were 

less than 2 µm, 69% were between 2 and 50 µm and 17% were between 50 and 2,000 µm. The 

texture of entire soil is silty loam (CEPP, 1987) . 

3.2 Spatial distribution and descriptive statistics 

An implementation map (Fig. 2) as well as a descriptive table (Table 3) of the exploratory 

statistics have been established for each contaminant (As, Cr, Cu, PCP and PCDD/F) present on 

the site by using MATLAB Software. A quick visualization of the data on the implantation maps 

established for the different contaminants gave a first idea of the spatial distribution of the 

contaminants. For the samples B1, B2 and B3 (background noise), the results highlighted a 

contamination inferior than cut-off 2 for the five contaminants, supporting the choice of their 

location. High contamination of PCP and of PCDD/F, exceeding cut-off 3 could be detected in 
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the northwestern part of the site as well as a slight contamination of As (> cut-off 2). Moreover, 

it appeared that the concentration of both organic and inorganic contaminants were more 

important in the first 15 centimeters in almost location (except X8Y0P1 for PCP) and had 

tendency of decreasing with the depth, which is in accordance with the results obtained by 

Lespagnol (2003).  

Following As contamination, the results indicated that As contents varied from 8.85 to 

86.4 mg.kg-1 for P1 and from 6.02 to 25.1 mg.kg-1 for P2. Average contents and standard 

deviation were estimated at 23.3 ± 15.4 mg.kg-1 for P1 and 10.6 ± 4.4 mg.kg-1 for P2. The 

implementation map indicated an excess of the cut-off 3 (50 mg.kg-1) for a single sample 

(X10Y4P1) and an excess of the cut-off 2 (30 mg/kg) for only 4 samples among the 54 samples 

collected (X9Y1P1, X0Y3P1, X4Y8P1 and X11Y11P1). Moreover, no contamination was 

observed for the depth 2 (15-30 cm), indicating that the mobility of As was restricted to the first 

15 cm, which is in accordance with the results obtained by Lespagnol (2003). The established 

implementation maps for the Cr and the Cu revealed a contamination superior to the cut-offs 2 

(250 mg.kg-1 for Cr and 100 mg.kg-1 for Cu) for both depths P1 and P2, with average contents of 

33.2 mg Cr.kg-1 for P1 and 23.1 mg Cr.kg-1 for P2. For Cu, average contents were estimated at 

40.5 mg.kg-1 and 23.6 mg.kg-1 for P1 and P2, respectively, indicating that the contamination was 

more important at the surface (0-15 cm).  

The PCP implantation map showed an excess of the cut-off 4 (74 mg.kg-1) of PCP for samples 

X4Y2P1 and X8Y0P2 and an excess of the cut-off 3 (5 mg.kg-1) for 6 samples derived from P1 

and for 1 sample derived from P2, with average contents estimated at 7.89 mg.kg-1 for P1 and 

5.71 mg.kg-1 for P2. According to the PCDD/F implementation map, an important contamination 

of the northwestern part of the site was observed. Indeed, 5 samples found in P1 revealed 
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contents above the cut-off 4 (5,000 ng TEQ.kg-1) for P1 and several samples in P1 and P2 

revealed levels above cut-off 3 (750 ng TEQ.kg-1). According to the results presented in Table 3, 

PCDD/F contents varied from 295 to 12,620 ng TEQ.kg-1 for P1 and from 29.5 to 1,716 ng 

TEQ.kg-1 for P2, indicating a huge heterogeneity of PCDD/F contamination on the considered 

site.  

Considering that the contamination of As, of Cr and of Cu come from the CCA-treated wood and 

that the PCP and PCDD/F contamination come from the PCP-treated wood, correlation studies 

have been performed on the following variables: (As-Cr), (As-Cu), (Cr-Cu), (PCP- PCDD/F) for 

both depth P1 and P2. The scatterplots between the variables (As, Cr and Cu), illustrated in Fig. 

3, showed a satisfactory correlation between (As-Cr), (As-Cu) and (Cr-Cu) in P1 with respective 

correlation coefficients of 0.885 - 0.889 and 0.897. These results also highlighted a slight 

decrease in the correlations existing between these contaminants with depth. Considering 

contamination coming from PCP-treated wood, the scatterplots obtained between PCP and 

PCDD/F variables showed a good correlation level for P1 (Fig. 3). This correlation level 

decreases by 50.9% in P2. This decrease of correlation between the contaminants with the 

observed depth in both clouds of points can be explained by the fact that the contaminants do not 

migrate in the same way in soils. In fact, several studies have demonstrated that the As, Cr, Cu 

and PCDD/F are distributed and immobilized during the first 30 cm, unlike PCP can migrate up 

to 60 cm (Khodadoust et al., 2005; Lespagnol, 2003; Subramanian, 2007). Besides, these studies 

have shown that these organic and inorganic contaminants are significantly higher near the 

source of pollution and tend to decrease rapidly with the depth. 
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Based on these results, interpolations were computed for As, PCP and PCDD/F as the 

contamination of the site by Cr and Cu was very low (cut-off 2) compared to As (cut-off 3), PCP 

(cut-offs 3 and 4) and PCDD/F (cut-offs 3 and 4).  

3.3 Geostatistical analysis 

The parameters of the semivariograms and variogram models chosen for As, PCP and PCDD/F 

that were used for OK and SGS methods, are presented in Table 4 (a) and (b), respectively. 

Unlike for OK method, a Gaussian transformation of the data was performed for SGS method 

before the semi-variogram calculation and back-transformed to original space after simulation in 

Gaussian space. The absence of contamination by As in P2 and by Cr and Cu in P1and P2 is 

noticed in Table 4 (a) and (b). This absence is due to the low contents of these contaminants 

(contents < cut-off 3). All experimental variograms for either OK or SGS were adjusted to a 

spherical model for each of the contaminants in P1 and P2. Besides, in all the variograms of 

contaminants, a nugget effect was observed (a discontinuity at the origin of the variograms 

representing noise level or short spatial structures not sampled). This nugget effect is probably 

due to the fact that soil pollution generally develops in a complex and heterogeneous 

environment (Jeannée, 2001). The ratio (Nugget / Sill) is considered as a criterion for classifying 

the spatial dependence of contaminant content (Chang et al., 1998; Chien et al., 1997). This ratio 

ranged from 9 to 56% for OK (Table 4 (a)) and from 30% to 39% for SGS (Table 4 (b)). 

Contaminant contents for As - P1, PCP - P1 and PCDD/F - P1 from OK had a strong spatial 

dependence since the ratio (Nugget / Sill) is less than 25%. However, for PCP - P2 and PCDD/F 

- P2, this ratio was moderate with values between 25 and 75%. For SGS, this ratio ranged from 

30 to 39%, indicating that the spatial dependence of the contents was moderate for each 

contaminant in both P1 and P2.  
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In contaminated site characterization, geostatistical methods have been used to estimate the 

volumes of soils whose concentration exceeds a regulatory criterion, to calculate the probabilities 

of exceeding regulatory criteria and to evaluate the uncertainty of these estimations (Boudreault 

et al., 2016). 

In the present study, soil volumes contaminated by As, PCP and PCDD/F were estimated from 

three interpolation methods (TP, IDW, OK) versus SGS, for both P1 and P2, except for As - P2 

because the contamination was proven to be non-existent. Actually, these interpolation methods 

were chosen since they are the most commonly used to estimate volumes of contaminated sites.  

Table 5 presents the volume of soils contaminated by As, PCP or PCDD/F calculated using these 

methods. Table 5 (a) shows the volume of soil contaminated with values between cut-off 3 and 

cut-off 4 whereas Table 5 (b) shows the volume of soil contaminated with values that are above 

cut-off 4. According to the guide we referred to, the management of these soils is different 

depending on the cut-off value considered. In fact, beyond the cut-off 4 defined in Table 1, soils 

must be managed as dangerous residual materials, or treated to reach one of the cut-offs 1, 2, 3 

or 4. Nowadays, the only available option for the remediation of these sites dealing with mixed 

contamination includes thermal treatment to destroy organic contaminants (PCP, PCDD/F) 

followed by immobilization of inorganic contaminants (As, Cr, Cu) through 

stabilization/solidification or landfilling (Kumpiene et al., 2016, Metahni et al., 2017). The cost 

of managing volumes of contaminated soils exceeding the cut-offs 4 is very expensive compared 

to volumes of contaminated soils between the cutt-offs 3 and cut-offs 4. A good estimation of 

volumes of contaminated soils allows for deciding about areas to be excavated and/or treated. 

Consequently, the cost of treatment can be accurately estimated. Results presented in Table 5 

showed that PCDD/F contamination in P1 is the most problematic in this case, with volumes 
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ranging from 26 to 45 m3 for P1 when the cut-off is between 750 and 5,000 ng TEQ.kg-1 and 

from 6.65 to 8.55 m3 when the cut-off is greater than 5,000 ng TEQ.kg-1. These results also 

showed that the contamination tends to decrease with depth (volume of contaminated soils less 

important in P2 compared with P1). These results can be explained by the fate and transport of 

metals, PCP and PCDD/F when they are released to the environment, due to the different 

physical and chemical properties of these contaminants and their different degree of affinity for 

the intrinsic components of soils (Guemiza et al., 2017). Besides, the results showed similarities 

in the estimations of the amounts of contaminated soils obtained by OK and SGS for PCP and 

PCDD/F unlike the other interpolation methods. Indeed, OK is considered as a better estimator 

of the mean and is more advanced than other interpolation methods such as TP and IDW (Cui et 

al., 2016), since kriging considers two sets of distances (the distance between two sample 

locations and the distance between a location of interest and a sample location) (Ha et al., 2014, 

Hou et al., 2017). However, the estimations of volume of soils contaminated by As was proven 

to be different depending on the method used, varying from 0.30 to 0.90 m3 and this can be 

explained by a very strong variation in the contents of As, which is often smoothed by the OK 

method. This smoothing effect can be observed when comparing kriged map of As, PCP and 

PCDD/F with the simulated map in the depth P1 (Supplementary Fig. 1). Both interpolations 

methods TP and IDW gave different volume estimations than OK and SGS considering the 

limitations of each of these methods. Even if TP estimation method is considered as a very 

simple method since it takes into account the content of a sample as block content, it neglects an 

extremely important factor which is the support effect (Armstrong et al., 1997), which often 

leads to an underestimation or an overestimation of contaminated soil volumes. Considering the 

IDW method, it is one of the most used spatial interpolation methods due to its fast 
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implementation, ease of use and straightforward interpretation (Bhunia et al., 2016). However, it 

is indifferent to the geometric configuration of the observation sites. Indeed, only the distance 

with respect to the point counts, which results in the overweighting of the data groups. Unlike the 

OK in the case of regionalized variables, this method allows the estimation of the variable 

studied at each point of the considered field from the experimental data, the variogram and 

provides a variance of the error of the associated estimate (Juang et al., 2004). If the baseline 

conditions of the random function are met, OK will always be a better estimator of the mean than 

the other methods previously described (Cui et al., 2016). Numerous studies have demonstrated 

the performance of kriging compared to IDW for mapping soil properties (Kravchenko and 

Bullock, 1999, Mueller et al., 2004). However, OK tends to smooth out local details of the 

spatial variation in contaminant concentration. This is the reason why these linear interpolation 

methods do not allow the calculation of probabilities of exceedance of contamination thresholds. 

Indeed, smooth interpolated maps of soil contamination might cause unnecessary remediation of 

clean areas or overlook health hazards in contaminated areas. This smoothing effect has been 

clearly demonstrated in the study of Zawadzki et al. (2008), which was conducted for 

reassessment of soil contamination with lead. According to their results, the lead content maps 

showed that kriged values were smoothed from the range of 1-286 mg.kg-1 to the range of 

1-90 mg.kg-1, unlike simulated map who reproduced better the range of variability of lead 

contents in soils. In this case, non-linear methods such as indicator kriging or simulations can 

and should be used. Indeed, the interpolators are estimators of the mean. Therefore, they are not 

suitable for reproducing the upper and lower quantiles. While a simulation is a possible 

realization of the contaminant contents on the studied field, which reproduces the spatial 

variability of the studied phenomenon while respecting the histogram and the variogram of the 
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measured contents. Applying a concentration threshold to a conditional simulation provides an 

unbiased estimator of contaminant levels above the defined threshold (Boudreault et al., 2016). 

This is why SGS is the most appropriate method to use in order to estimate the volumes of 

contaminated soil. 

3.4 Risk assessment  

The SGS interest lies in the fact of calculating a large number of scenarios, allowing a reasoning 

in probabilities. In each estimated mesh, we have a histogram of the possible values (equi-

probable), whose average converges towards the kriging. By calculating point by point, the 

proportion of realization exceeds a certain cut-off. As a result, it produces a map estimating the 

probability of exceeding the risk cut-offs, which will be used for risk assessment and decision-

making. Actually, Fig. 4 illustrates the post-treatment of surfaces whose PCDD/F concentrations 

exceed the cut-off 3 (750 ng TEQ/kg) and the cut-off 4 (5,000 ng TEQ/kg) for both P1 and P2. 

Fig. 4a proved that in the case where the PCDD/F concentrations exceed cut-off 3, the P50 

shows reasonable surfaces to be treated were estimated at 330 m2 for P1 and 116 m2 for P2, with 

a 90% confidence interval between 310 and 346 m2 for PCDD/F-P1 and between 86 and 148 m2 

for PCDD/F-P2. However, when PCDD/F concentrations exceed cut-off 4, it is expected to treat 

an area of approximately 49 m2 only for P1 with a 90% confidence interval between 30 and 73 

m2 (Fig. 4b). This information is critical for decision-makers to determine which contaminated 

areas can be disposed directly in a sanitary landfill (areas between cut-off 3 and cut-off 4), and 

which areas require treatment by thermal desorption to destroy organic contaminants (PCP, 

PCDD/F) followed by solidification/stabilization of inorganic contaminants (As, Cr, Cu – areas 

exceeding cut-off 4) or landfilling (areas exceed cut-off 3).   



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

23 
 

Once defined, these risk curves will be used to assess the financial risks associated with the 

rehabilitation of this site. These risks will be estimated by applying a cost function to 

geostatistical estimates of soil volumes to be treated and their accuracy. Then, a sorting scheme 

has to be defined considering that only the blocks showing concentrations of contaminants above 

the cut-offs will be sent to a treatment channel or to be disposed in landfills. 

4 CONCLUSION 

Nowadays, soil characterization is a major challenge for the rehabilitation of contaminated sites. 

In fact, an erroneous interpretation of the state of contamination of a site may have serious 

consequences such as health issues and/or financial losses. This study aims to show the relevance 

of the geostatistics application in the case of industrial soils contaminated by both organic (PCP 

and PCDD/F) and inorganic (As, Cr, Cu) contaminants. 

The exploratory analysis of the experimental data using the geostatistical tool revealed a perfect 

correlation between (As-Cr), (As-Cu) and (Cr-Cu) in P1, which slightly decreased with depth 

and a good level of correlation between PCP and PCDD/F for P1, which decreased by 50.9% in 

P2. Experimental variograms showed a nugget effect related to the heterogeneity of contaminant 

levels in the studied site. 

In this project, a comparative study of two conventional interpolation methods versus 

geostatistical OK and SGS methods was conducted in order to evaluate the performance of each 

of these methods in estimating volumes of contaminated soils. The TP and IDW methods are 

interpolation methods that predict the value of a point only on the basis of the values of the 

points in the neighborhood and do not take into account the spatial structure of the data. For this 

reason, OK always remains a better estimator of the mean comparing to both other methods of 
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interpolation if the variable under study shows a spatial correlation. However, OK provides a 

smoothed image of reality while also not allowing the calculation of probabilities of exceeding 

regulatory cut-offs of contamination. SGS had been proved to be the most suitable method for 

estimating volumes of soils contaminated with As, PCP and PCDD/F, and to quantify the 

uncertainty of estimates associated with the volumes calculations. These estimates will be 

relevant to select the most appropriate treatment in our case and to accurately assess the financial 

risk of this rehabilitation project.  

Sample density by SGS depends on the sampling area and allocated budget. In the case of mixed 

contamination by organic (PCP, PCDD/F) and inorganic (As, Cr, Cu) compounds, the choice of 

the number of samples and the geostatistical approach is often guided by the budget allocated to 

the analysis of PCDD/F. The industrials are often forced to adopt other approaches than SGS like 

TP, to minimize the number of samples and to avoid the costly analyzes of organic contaminants.  

Supplemental research will be done to optimize the location and the number of sampling holes 

during a sampling campaign in order to reduce the cost of PCDD/F analysis and to establish the 

best strategy for the rehabilitation of these sites. It would also be interesting to combine GIS with 

multivariate data analysis in this case of contamination, because GIS and PCA represent 

powerful tools in decision-making on future investigations, risk assessments and remediation of 

contaminated sites. 
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FIGURE CAPTIONS LIST 

 

Fig. 1. Location of the 27 exploration holes at the treated wood storage site 

Fig. 2. Implantation maps of As (a.), Cr (b.), Cu (c.), PCP (d.) and PCDD/F (e.) 

samples in P1 (0 to 0.15 m – value in blue) and in P2 (0.15 to 0.30 m – value 

in red) (As, Cr, Cu and PCP concentrations are expressed in mg.kg-1 and 

PCDD/F content expressed in ng TEQ.kg-1) 

Fig. 3. Correlation between (As-Cr), (As-Cu) and (Cr-Cu) at P1 from 0 to 0.15 m 

(a.) and P2 from 0.15 to 0.3 m (b.), Correlation between (PCP-PCDD/F) (c.) 

Fig. 4. Post-treatment of areas with PCDD/F concentrations exceeding 

750 ngTEQ.kg-1 at P1 (a.) and P2 (b.) or 5,000 ngTEQ.kg-1 at P1 (c.) and P2 

(d.) 

 

SUPPLEMENTARY FIGURE CAPTIONS LIST 

Fig. 1. Maps of As, PCP and PCDDF concentrations in soils obtained by OK and 

SGS methods at P1 from 0 to 0.15 m: (OK) As P1 (a.), (SGS) As P1 (b.), (OK) 

PCP P1 (c.), (SGS) PCP P1 (d.), (OK) PCDDF P1 (e.), (SGS) PCDDF P1 (f.) 
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Table 1 Cut-offs defined for the estimation of soil contamination in 
rehabilitation scenario 

Contaminants As 
(mg.kg-1) 

Cr 
(mg.kg-1) 

Cu 
(mg.kg-1) 

PCP 
(mg.kg-1) 

PCDD/F 
(ng TEQ.kg-1) 

Cut-off 1 6 85 40 0.1 - 

Cut-off 2 30 250 100 0.5 15 

Cut-off 3 50 800 500 5 750 

Cut-off 4 250 4,000 2,500 74 5,000 
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Table 2 Soil parameters measured in the sample X11 Y12 P1 of soil S3 

Soil Values 

Parameters  

CEC (meq.100 g-1) 8.5 

pH in water at 25°C 7.4 

Organic Matter (%) 0.5 

Elements (mg.kg-1)  

Ca 3,524 

P    0.017 

K   0.107 

Na  0.017 

Al  416 

Fe  387 

Contaminants (mg.kg-1)  

As 9 

Cr 22 

Cu 23 

PCP 0.09 

PCDD/F (ng TEQ.kg-1) 340 

Textural class Silt loam 

Clay (%) 14 

Sand (%) 17 

Silt (%) 69 

X: Easting; Y: Northing; Depth P1 (0 to 0.15m); S3: Name of studied soil 
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Table 3 Descriptive statistics of investigated data of As, Cr, Cu PCP and 

PCDD/F contents measured in contaminated soils  

Contaminants Depth Min Max Mean CV* 

As (mg.kg-1) P1 8.85 86.4 23.3 15.4 

 P2 6.02 25.1 10.6 4.40 

Cr (mg.kg-1) P1 20.9 66.1 33.2 9.70 

 P2 18.5 31.7 23.1 3.20 

Cu (mg.kg-1) P1 21.1 87.6 40.5 15.7 

 P2 17.7 41.5 23.6 6.10 

PCP (mg.kg-1) P1 0.02 79.9 7.89 16.5 

 P2 0.01 112 5.71 22.2 

PCDD/F (ng TEQ.kg-1) P1 295 12,620 3,410 0.99 

 P2 29.5 1,716 663 0.89 

      
*CV : Coefficient of Variation 
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Table 4   Variogram models of As, PCP and PCDD/F: (a) OK method, (b) SGS 

method 

(a)  

Contaminant - Depth Model Nugget effect  
(C0) 

Sill 
 (C0+C) 

Nugget/Sill 
C0/ (C0+C) 

Range 
 (a) 

As - P1 Spherical 25.1 273 0.09 9.75 

PCP - P1 Spherical 23.5 256 0.09 5.39 

PCDD/F - P1 Spherical 1.22 7.44 0.16 3.59 

PCP - P2 Spherical 107 330 0.32 15.6 

PCDD/F - P2 Spherical 1.66 2.97 0.56 3.86 

 

 

(b)  

Contaminant - Depth Model Nugget effect  
(C0) 

Sill  
(C0+C) 

Nugget/Sill 
C0/ (C0+C) 

Range  
(a) 

As - P1 Spherical 0.225 0.708 0.31 4.65 

PCP - P1 Spherical 0.149 0.440 0.38 3.79 

PCDD/F - P1 Spherical 0.149 0.393 0.39 3.48 

PCP - P2 Spherical 0.152 0.506 0.30 4.05 

PCDD/F - P2 Spherical 0.170 0.476 0.36 3.31 
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Table 5     Volumes of contaminated soil estimated with TP. IDW. OK and SGS. with values (a) between cut-off 3 and cut-off 4. 
or (b) > cut-off 4  

(a)  

Volume of contaminated 
soils (m3) 

TP IDW OK SGS  P(50) SGS P(90) 

As - P1 0.90 0.45 0.30 0.75 0.00 

PCP - P1 9.25 13.6 15.1 16.9 13.3 

PCP - P2 1.05 7.20 7.50 8.25 5.70 

PCDD/F - P1 26.0 35.0 43.8 44.5 44.7 

PCDD/F - P2 15.3 10.9 11.1 17.7 13.5 

 

(b)  

Volume of contaminated 
soils (m3) 

TP IDW OK SGS  P(50) SGS P(90) 

As - P1 0.00 0.00 0.00 0.00 0.00 

PCP - P1 1.35 0.15 0.15 0.00 0.00 

PCP - P2 1.05 0.15 0.15 0.00 0.00 

PCDD/F - P1 6.75 8.55 7.80 7.35 5.10 

PCDD/F - P2 0.00 0.00 0.00 0.00 0.00 
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e. 

  Sampling points; samples in P1 (0 to 0.15 m – value in blue) and in P2 (0.15 to 0.30 m – value in red) 

 

Fig 2. 
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c. 

Fig 3. 
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                                                                            c.       d. 

 

Fig. 4. 
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Fig. 1. 

Sampling points; Easting (X); Northing (Y); P1 (depth 0 to 0. 15 m); P2 (depth 0.15 to 0.30 m) 
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HIGHLIGHTS 

• Fate and behavior of PCP, PCDD/F, As, Cr and Cu on an treated wood storage 

site 

• Mapping the spatial distribution of (in-)organic contaminants on an industrial site 

• Comparison of interpolation and SGS method to assess volume of contaminated 

soils 

• SGS was the most suitable method for risk assessment of contaminated soil 

 


