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[1] Over the last 10 years, downscaling techniques, including both dynamical (i.e., the
regional climate model) and statistical methods, have been widely developed to provide
climate change information at a finer resolution than that provided by global climate models
(GCMs). Because one of the major aims of downscaling techniques is to provide the
most accurate information possible, data analysts have tried a number of approaches to
improve predictor selection, which is one of the most important steps in downscaling
techniques. Classical methods such as regression techniques, particularly stepwise
regression (SWR), have been employed for downscaling. However, SWR presents some
limits, such as deficiencies in dealing with collinearity problems, while also providing
overly complex models. Thus, the least absolute shrinkage and selection operator (LASSO)
technique, which is a penalized regression method, is presented as another alternative for
predictor selection in downscaling GCM data. It may allow for more accurate and clear
models that can properly deal with collinearity problems. Therefore, the objective of the
current study is to compare the performances of a classical regression method (SWR) and
the LASSO technique for predictor selection. A data set from 9 stations located in the
southern region of Québec that includes 25 predictors measured over 29 years (from 1961 to
1990) is employed. The results indicate that, due to its computational advantages and
its ease of implementation, the LASSO technique performs better than SWR and gives
better results according to the determination coefficient and the RMSE as parameters
for comparison.
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1. Introduction

[2] Increasing attention is being devoted to the estima-
tion of plausible scenarios of future climate evolution. The
main source of information used for this purpose is derived
from climate change scenarios developed using global cli-
mate models (GCMs). Because the resolution of GCMs is too
coarse for regional and local climate studies, downscaling
methods are one of the best alternatives for investigating
GCM data in local impact studies. A number of approaches
are used for downscaling. Regression models are regularly
used due to their ease of implementation.
[3] Predictor selection is one of the most important steps in

downscaling procedures. It can be considered as the basic

step in realizing a successful climate scenario. Predictor
selection involves an attempt to find the best model and to
limit the number of independent variables when a number
of potential independent variables exist. One downscaling
technique is the stepwise regression (SWR) method. The first
widely used algorithm summarizing the idea of SWR was
proposed by Efroymson [1966] and developed by Draper
and Smith [1966]. It is termed a variable selection method,
which selects a particular set of independent variables.
[4] The first application of Efroymson’s algorithm was

reported by Jennrich and Sampson [1968] for non-linear
estimation. Lund [1971] applied the SWR procedure to the
problem of estimating precipitation in California. Cohen and
Cohen [1975] investigated the two forms of the SWRmethod
(forward and backward selection). Hocking [1976] described
the stepwise method as one of the most important tools used
for the analysis and selection of variables in linear regression.
Despite the common use of this method in variable selection,
Flom and Cassell [2007] expressed the limits of SWR and
recommended that this method should not be used due to its
weaknesses. In fact, the Fisher test and all other statistical
tests are normally based on a single hypothesis under exam-
ination; however, with SWR, this assumption is violated in
that it is intended for one to many tests.
[5] A possible alternative for overcoming the limits of

SWR was suggested by Tibshirani [1996]. Tibshirani [1996]
suggested a new method in variable selection and shrinkage
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that retains the positive features of the most commonly used
methods for improving ordinary least squares (OLS) esti-
mates, i.e., subset selection and ridge regression. The method
was named “Least Absolute Shrinkage and Selection Oper-
ator” (LASSO). A new algorithm for LASSO was proposed
by Fu [1998] in a study on the structure of bridge estimators.
Another algorithm for the LASSO method was suggested by
Grandvalet [1998] and Grandvalet and Canu [1999] using
the quadratic penalization, and they showed the outcomes of
this equivalence. Osborne et al. [2000a] treated the LASSO
method as a convex programming problem and derived its
dual. In addition, Osborne et al. [2000b] proposed a new
LASSO algorithm for solving constrained problems. Lasso
overcomes some of the drawbacks of the most common
methods currently used for the variable selection and
shrinkage problem.
[6] Because the LASSO function has some non-

differentiable points, Schmidt [2005] proposed assembling
different optimization strategies to solve this problem.
Different versions of the LASSO procedure have been
developed based on researchers’ different views of
Tibshirani’s theory. Kyung et al. [2010] proposed a LASSO
method using the Bayesian formulation that encompasses
most versions of LASSO.
[7] Despite its advantages, the LASSO approach remains

unutilized in hydro-climatology. The objective of the current
study is to present the suitability of the LASSO technique
for predictor selection in downscaling compared to the tra-
ditional approach, stepwise regression. The maximum and
minimum temperatures over 1961–1990 time window in the
Québec region, Canada were used to show and compare the
performances of the two models (LASSO and SWR).
[8] A mathematical description of the two methods is

presented in the next section. In section 3, the methodology
used for predictor selection in downscaling is explained. The
data set used for this case study is described in section 4.
In section 5, we present the results obtained for SWR and
LASSO along with a comparison of their performances.
In section 6, we discuss the results and provide an overview
of the accomplished work and our main conclusions and
recommendations concerning the two selection methods.

2. Theoretical Background

2.1. Stepwise Regression

[9] In statistical analyses, regression models are commonly
used to find the combination of predictors xi that best explains
the dependent variable y.Regression models are often used for
prediction [Copas, 1983]. The first model used is a simple
linear model that allows for an estimation of the response
variable y using a unique explanatory variable x, following a
model of the form:

ŷ ¼ axþ b ð1Þ

where ŷ is the estimation of the dependent variable and a and
b are the model parameters. However, this simple model is
often inefficient in estimating the dependent variable, espe-
cially when more than one explanatory variable contributes
to the dependent variable. In this case, multiple regression
models must be applied. SWR is mainly used in selecting
predictors from a large number of explicative variables. With

SWR, the number of explicative variables is reduced
by selecting the best performing variables. A comparison
between different combinations of independent variables is
generated step by step and validated by Fisher’s test based on
a comparison of the sum of the residual squares. However,
other alternatives can also be used, such as the AIC and BIC
criteria. SWR is considered to be a familiar, easily explained
method and is widely used and implemented. Thus, it can
easily be extended to other regression problems. It provides
good results, especially for large data sets, and can be
improved by complex stopping rules [Weisberg, 2010].
[10] There are three different SWR algorithms: (1) the

addition of variables one by one according to a specific cri-
terion (forward selection, FS), (2) the deletion of variables
one by one according to another criterion (backward elimi-
nation, BE) and (3) the combined criteria of the two previous
methods (SWR itself). See Efroymson [1966] or Draper and
Smith [1966] for more details.
2.1.1. Forward Selection
[11] This method starts without the independent variable in

the equation and adds the explanatory variables one by one
until all explanatory variables are added or a stopping crite-
rion is satisfied [Hocking, 1976]. The selection of the added
variables is determined by a well-defined criterion because
each predictor is evaluated according to its correlation with
the dependent variable. In fact, FS first chooses the predictor
that is most correlated to the dependent variable and then
chooses among the remaining variables with the highest
partial correlation, keeping the already selected variable
constant. A succession of Fisher’s tests is applied by adding
variable i to the model if

Fi ¼ max
RSSp � RSSpþi

� �
s2
pþi

≥ Fin ð2Þ

where F in denotes the Fisher value limit determined from
Fisher tables, RSSp denotes the residual sum of squares of
the selected variables, RSSp+i denotes the residual sum of
squares obtained when variable i is added to the current
p-term equation and sp+i

2 denotes the variance of the model
when variable i is added to the current p-term equation.
2.1.2. Backward Elimination
[12] BE is the reverse of FS. All of the explicative variables

are included from the start in the model, and variables are
eliminated one at a time. In each step, the variable with the
smallest F-ratio is eliminated if the F-ratio is less than a
specified threshold Fout. A succession of Fisher’s tests is
applied by eliminating variable i from the model if

Fi ¼ min
RSSp�i � RSSp
� �

s2
p

≤ Fout ð3Þ

where RSSp-i denotes the residual sum of squares obtained
when variable i is eliminated from the current equation and
Fout denotes the limit value for determining whether a vari-
able should be eliminated from the current equation.
2.1.3. Stepwise Regression
[13] This method combines the FS and BE algorithms.

It consists of adding variables one at a time according to
the criterion of partial correlation while checking whether
the pre-selected variables are still significant in each step.
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This variant uses two stopping criteria, which determine the
introduction of a new variable and the elimination of an
existing one.

2.2. LASSO

2.2.1. Introduction to LASSO
[14] The development of penalized regression has been the

concern of many studies. In traditional regression, the ordi-
nary least squares method (OLS) is used to minimize the
residual squared errors, but these estimates have some critical
drawbacks. If the number of independent variables is large or
if the regressor variables are highly correlated, then the var-
iance of the least squares coefficient estimates may be
unacceptably high, which leads to a lack in interpretation and
prediction accuracy; see Tibshirani [1996] for more details.
Thus, for a large number of predictors, there could be
problems with regard to multicollinearity and the selection
of smaller subsets that include both the most important
predictors that can fit and the whole set of variables [Kyung
et al., 2010]. For these reasons, OLS estimates may not
always satisfy data analysts. Such concerns have led to the
development of methods with different penalties to obtain
more interpretable models and more accurate prediction
methods. Hoerl and Kennard [1970] proposed ridge regres-
sion with an L2 quadratic penalty of the following form:

Xp

i¼1
b2
i ≤ t ð4Þ

where p denotes the number of independent variables,
bi denotes the regression coefficient of each variable and
t denotes the tuning parameter, which is also called the
shrinkage parameter. Ridge regression is a stable method
that improves the prediction performance by overcoming the
multicollinearity problem.
[15] Frank and Friedman [1993] introduced bridge regres-

sion, which minimizes the RSS subject to

Xp

i¼1
bj jgi ≤ t ð5Þ

where g denotes some number greater than or equal to 0. This
constraint is called an Lg norm. Tibshirani [1996] introduced
the LASSO method which allows both continuous shrinkage
and variable selection and minimizes the RSS subject to an
L1 penalty corresponding to g = 1.
[16] The most commonly used techniques for improving

OLS estimates are subset selection and ridge regression.
First, subset selection can give interpretable models, but
because of its nature as a discrete process that can be influ-
enced by the smallest change in the data set, it cannot give
highly accurate prediction models. Second, ridge regression
is considered to be a more stable technique but does not set
any coefficients to 0; hence, it does not provide easily inter-
pretable models. Thus, Tibshirani [1996] proposed a new
technique (LASSO) that can retain the advantages of both
subset selection and ridge regression.
2.2.2. Definition of LASSO
[17] Consider a data set(xi, yi), i = 1, 2, …, n, where

yi are the response variables, n is the sample size and xi =
(xi1, …, xip) is the matrix of standardized regressors. Most
penalized regression methods are used in the case where n > p.

[18] Considering b̂ ¼ b̂1;…; b̂p

� �T
, the LASSO estimate

â; b̂
� �

is defined by

â; b̂
� �

¼ argmin
Xn
i¼1

yi � a�
X

j
bjxij

� �2( )

subject to
X
j

bj

�� �� ≤ t ð6Þ

where t is a positive constant called the tuning parameter,
which basically determines the balance between model fit-
ting and sparsity in the solution. To omit the parameter a, we
can assume that â ¼ �y and �y ¼ 0 without loss of generality.
Using this formulation, the LASSO technique can provide
values of exactly zero for some coefficients bj, which results
in interpretable models that are more stable than those
obtained by subset selection using a low variance. The sum-
mation of squared difference between observations and its
estimates (RSS) in equation (6) creates elliptical contours for
the solution without constraints and the center of the con-
tours is on the OLS estimates. The constraint in equation (6)
illustrates the rhombus shape of the constraint region. The
LASSO solution corresponds to the first point at which the
contours intersect with the rhombus; this will sometimes
occur at a corner, corresponding to a zero coefficient
[Tibshirani, 1996].
[19] The parameter t ≥ 0 is a shrinkage parameter used to

control and limit the amount of shrinkage and elimination

applied to the estimates. Let b̂
0

j be the full least squares

estimates and t0 ¼
X

b̂
0

j

��� ���. Note that all t < t0 will cause the

set of the coefficients to move towards 0, and some of these
coefficients may be exactly equal to 0. For example, if t =
t0 /2, the effect is roughly similar to finding the best subset
of size p/2. Note also that the design matrix need not be of
full rank [Tibshirani, 1996].
[20] The motivation for the LASSO technique came from

Breiman’s non-negative garotte method, as proposed by
Breiman [1995]. It minimizes

XN

i¼1
yi � a�

X
j

cjb̂
0

j xij

 !2

subject to cj ≥ 0;
X

cj ≤ t:

ð7Þ

[21] The method begins with the OLS estimates and
shrinks them by the non-negative factors cj, whose sum is
constrained. The work of Breiman [1995] showed that the
garotte method behaves better than subset selection in terms
of prediction error. It can be very competitive with regard
to ridge regression in extensive simulation cases, except
when the true model has many small non-zero coefficients.
However, the garotte method presents some drawbacks. It
depends closely on the sign and the magnitude of the OLS
estimates [Tibshirani, 1996]. In fact, in some cases in which
the settings are strongly correlated and the OLS estimates are
inefficient, the garotte may be inaccurate as a result. In con-
trast, this is not the case with LASSO, which avoids the
explicit use of OLS estimates. Briefly, the garotte function is
very similar to the LASSO function but is significantly dif-
ferent when the design is not orthogonal [Tibshirani, 1996].
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[22] Two kinds of LASSO formulations are possible: the
constrained formulation shown above (equation (6)) and the
unconstrained one. A matrix form of the unconstrained
expression can be presented as follows:

Min kxb � yk22 þlkbk1 ð8Þ

where x is the matrix of the standardized regressors, y
represents the matrix of the response variables and l rep-
resents a parameter equivalent to the tuning or shrinkage
parameter t. Note that denotes the L1 norm and that k . k1
denotes the L1 norm and that k . k2 denotes the L2 norm.
2.2.3. Computation of the LASSO
[23] To compute the LASSO, Fan and Li [2001] proposed

an efficient alternative including the unconstrained LASSO
formulation based on the following approximation:

bj j ≈ b2
i

bij j ð9Þ

[24] Perkins et al. [2003] proposed an optimization approach
that computes the LASSO based on the unconstrained prob-
lem using the definition of the function gradient that gives
coefficients exactly equal to 0 [Perkins et al., 2003; Schmidt,
2005].
[25] Efron et al. [2002] proposed the least angle regression

selection (LARS) method for a model selection algorithm.
They showed that this method has a short computation time
when implementing the LASSO. Osborne et al. [2000a,
2000b] proposed an active set method based on local line-
arization. A compact descent algorithm (as described in
Kyung et al. [2010]) can solve the selection problem for a
particular tuning parameter based on the constrained LASSO
formulation [Osborne et al., 2000a; Schmidt, 2005].
[26] In the current study, the active set method is used

because it does not require the number of variables in the
problem to be doubled, does not require an exponential
number of constraints, does not give degenerate constraints,
has fast convergence properties and because the iteration
cost can be kept relatively low through efficient implemen-
tation [Schmidt, 2005]. The basis of the implementation of
Osborne’s algorithm includes local linearization about b and
the active set method operating only on non-zero variables
and a single zero-valued variable. A new optimization prob-
lem is presented as follows, assuming that q = sign (b) and
that t simply denotes members of the active set:

minht f bt þ htð Þ
s:t: qTt bt þ htð Þ ≤ t

ð10Þ

where ht corresponds to the zero-valued elements outside the
active set. The active set is initially empty, and the algorithm
starts by assigning 0 to all of the elements. At the end of each
iteration, one zero-valued element is added to the active set
(one that is not already in t) corresponding to the element
with the largest violation. Using b+ = b + h and r+ = y� xb+,
the violation function is defined as follows:

vþ ¼ xT rþ

kxTt rþk∞
ð11Þ

where k . k∞ denotes the infinite norm. The solution to the
KKT conditions of this problem is then

m ¼ max 0;
qTt xTt xt
� ��1

xTt y� t

qTt xTt xt
� ��1qt

 !

ht ¼ xTt xt
� ��1

xTt y� xtbtð Þ � mqt
� � ð12Þ

[27] Because sign (0) is not well defined, the sign of the
variable that will be introduced into the active set is the sign
of its violation. Optimality is achieved when the magnitude
of the violation for all elements outside the active set is less
than 1.
[28] The cost in terms of iterations is small because the

active set is small. However, the active set grows propor-
tionally to the number of variables. The basis for maintaining
efficient iterations with a large number of variables involves
the maintenance and updating of a QR factorization of xt

Txt.
For more details concerning the algorithm, the reader is
referred to Schmidt [2005].
2.2.4. Standard Errors
[29] According to the original paper describing the LASSO

technique, the manner for obtaining an accurate estimate of
the standard errors of the LASSO is not straightforward due
to its nature as a non-linear and non-differentiable function.
An assessment of the standard errors can be performed using
a bootstrap technique, by (1) fixing t, which requires one to
select the best subset and then use the least squares error for
that subset, or (2) proceeding by optimizing over t for each
bootstrap sample.
2.2.5. Choice of the Tuning Parameter
[30] Typical approaches for estimating the tuning param-

eter include cross-validation; generalized cross-validation
and analytical unbiased estimates of risk [Tibshirani, 1996].
Theoretically, cross-validation and generalized cross-
validation methods are used for a random distribution of
predictors. The analytical unbiased estimate of risk method
is applicable when the distribution of the predictors is well
known (the X-fixed case) [Tibshirani, 1996]. However, in
real problems, there are often no clear differences between
the results of the three methods; the most convenient method
can be chosen. In the current study, we chose to work with
the cross-validation method.

3. Predictor Selection

[31] The SWR and LASSO models for each station
and month were tested with NCEP/NCAR predictors (see
Table 3) over the 1961–1990 time window to select the best
fitting predictors to apply in a downscaling context. The
NCEP/NCAR reanalysis data constitute an updating gridded
data set that represents the state of the Earth’s atmosphere.
The data set incorporates both observations and numerical
weather prediction model outputs. These data were produced
by the National Center for Environmental Prediction (NCEP)
and the National Center for Atmospheric Research (NCAR).
[32] For each station, we investigated the predictors inter-

polated on the same grid-cell in which the station is located.
The data sets for the predictands, the maximum and mini-
mum temperature and predictors were divided by month to
avoid the effect of seasonality, and missing values were then
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removed. When applying the LASSO technique, many steps
are required for optimal results. For each month, a cross-
validation technique is used to choose the best tuning
parameter, i.e., the one corresponding to the minimum mean
square error (MSE).
[33] To find the best tuning parameter for the active set

method, we proceeded as in Tibshirani [1996]. We used 50
discrete t-values (t1 < t2 < … < t49 < t50) and 5-fold cross-
validation, which, in essence, randomly breaks all of the data
(y) up into 5 sets (y1, y2, y3, y4 and y5), then applies the
LASSO minimization using all of the data (y) except one set
(for example, y1, so y2, y3, y4 and y5 are used) with one t-value
(say t1) and obtains the regression coefficients (bi). With
the resulting coefficients, the values of the remaining set
(say y1) are estimates, and the MSE is computed separately
for yi,i=1,⋯,5, defined by

MSE ¼ mean yi � ŷið Þ2
� �

ð13Þ

where yi is the dependent variable and ŷi is the estimation of
the dependent variable. Then, after calculating the MSE for
each yi,i=1,⋯,5, the mean of the MSE for the 5 data sets
(y1 � y5) is computed. For the 50 t-values, the same proce-
dure was repeated, and graphs of the form MSE = f(t) were
plotted to obtain convex curves. The optimal penalty
parameter chosen (t) corresponds to the MSE minimum. To
avoid violating the choice of the penalty parameters obtained,
5-fold cross-validation was applied again with other ran-
domly chosen sets, but the results led to similar t-values. In
this case, the total number of optimization iterations is 50*5,
i.e., 250 optimizations. After finding the best performing
tuning parameter, LASSO minimization is applied, and the
determination coefficient R2 and the root mean square error
(RMSE) are computed to compare the performances of
LASSO and SWR. Thus, the best predictors were selected for
further comparison with the results obtained for SWR.
[34] The SWR and LASSO techniques were com-

pared using the following criteria: (1) the RMSE, which

incorporates the variance and the square of the bias of the
estimates:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mean yi � ŷið Þ2

� �r
ð14Þ

and (2) the model explained variance (R2), defined as

R2 ¼ 1�
X

yi � ŷið Þ2X
yi � �yið Þ2 ð15Þ

where �yi denotes the mean of the dependent variables.

4. Data Set for Case Study

[35] Figure 1 shows the area over southern Quebec,
Canada where the studied stations are located. We worked
with data sets issued from the following 9 stations located
near the Gulf of St. Lawrence: Cedars, Drummondville,
Seven Islands, Bagotville, Jean Lesage Intl., Sherbrooke,
Maniwaki Airport, La Pocatière and Mont-joli. For the pre-
dictor selection in statistical downscaling, the following data
were employed in the current study: 9 series of minimum
and maximum temperatures issued from the daily meteoro-
logical data from Environment Canada stations, which were
homogenized and rehabilitated by Vincent et al. [2002] as
predictands (see Table 1 for stations), and a series of daily
normalized predictors from the NCEP-NCAR reanalysis
spread over 6 grid-cells of longitude from �67.5�W to
�75�W and latitude from 46.39�N to 50.10�N (see Table 2
for the CGCM3 grid-cells). The NCEP/NCAR reanalysis
data have a grid spacing of 2.5� latitude by 2.5� longitude
[Gachon et al., 2008].
[36] The predictor data set for the period of 1961 to 1990

was employed. (The data set issued from the NCEP/NCAR
reanalysis was already standardized for the period of 1961–
1990, except for the wind direction.) A total of 25 normal-
ized predictors issued from the NCEP/NCAR reanalysis
were used in this study aiming to select the most important

Figure 1. Meteorological stations located around the Gulf of St. Lawrence.
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predictors that can fit as well as the whole data set using two
methods, SWR and LASSO; these variables are presented in
Table 3. We note that the relative humidity is absent from the
predictor list. Due to the high correlation between relative
humidity and specific humidity, the relative humidity could
be eliminated from the predictor data. However, it is difficult
to ensure that these two variables are interchangeable. The
predictors are issued from data collected every 6 hours and
then standardized on a daily basis using the average (m) and
the standard deviation (s) for the reference period of 1961–
1990 and at the end, the predictors are interpolated lin-
early on the CGCM3 grid-cells [Gachon et al., 2008]. The
CGCM3 data correspond to the third version of the Canadian
Center for Climate Modeling and Analysis (CCCma)-
coupled Canadian global climate model. The atmospheric
component of the CGCM3 has 31 vertical levels and a hori-
zontal resolution of approximately 3.75� latitude and longi-
tude (approximately 400 km).

5. Results

[37] For all stations, Tables 4, 5, 6 and 7 show the results
of the predictor selection obtained by SWR and LASSO for
the minimum and maximum temperatures from 1961 to 1990.
They present the most important predictors selected that
can be used in further downscaling procedures. The pre-
dictor selection can be described by a subjective judgment
depending on the analyzer. For all of the stations and for both
the minimum and maximum temperature, the mean sea level
pressure, the geopotential at 850 hPa, the geopotential at
500 hPa, the specific humidity at 850 hPa and the tempera-
ture at 2 m can be considered to be the most dominant vari-
ables. This seems plausible because these parameters are
strongly associated with significant modifications to the
temperature characteristics in the boundary layer [see
Hessami et al., 2008]. The selected predictors represent, at
some level of confidence, almost all of the information pro-
vided by the whole data set.

[38] Thus, depending on the location of a station relative to
the Gulf of St. Lawrence, the selection of the most influential
predictors can vary slightly. In fact, the selection of some
meteorological variables at some stations depends on the
location of the latter relative to the Gulf of St. Lawrence, such
as the specific humidity, which represents the amount of
water vapor in the air, defined as the ratio of water vapor to
dry air at a particular mass. Based on the presence of water in
a region, the specific humidity is highly related to tempera-
ture variations. In addition to the specific humidity, the
temperature at 2 m may be affected by the presence of dif-
ferent air masses influencing temperature variations.
[39] For the 9 stations presented in this work, the mean sea

level pressure appears as a common selected predictor for the
maximum temperature for both methods. It can be considered
to be the most effective predictor, which regroups almost all
of the predictors’ information needed for downscaling; this is
somewhat expected because of its great influence on local
climate.
[40] Furthermore, the selections by SWR and LASSO

included the same predictors for the La Pocatière and

Table 1. Geographical Information of Environment Canada
Stations

Station Name Latitude Longitude Elevation

1 Cedars 45.30 �74.05 47.00
2 Drummondville 45.88 �72.48 82.00
3 Seven Islands 50.22 �66.27 55.00
4 Bagotville 48.33 �71.00 158.00
5 Jean Lesage Intl 46.79 �71.38 74.00
6 Sherbrooke 45.43 �71.68 240.00
7 Maniwaki Airport 46.27 �75.99 200.00
8 La Pocatière 47.36 �70.03 31.00
9 Mont-joli 48.60 �68.22 52.00

Table 2. Longitude and Latitude of the CGCM3 Grid Cells

Box Number Longitude Latitude

77X, 11Y �75.00 50.10
77X, 12Y �75.00 46.39
78X, 11Y �71.25 50.10
78X, 12Y �71.25 46.39
79X, 11Y �67.50 50.10
79X, 12Y �67.50 46.39

Table 3. NCEP/NCAR Predictor Variables on CGCM3 Grid

Number Predictor

1 Mean sea level pressure
2 Surface airflow strength
3 Surface zonal velocity
4 Surface meridional velocity
5 Surface vorticity
6 Surface wind direction
7 Surface divergence
8 500 hPa airflow strength
9 500 hPa zonal velocity
10 500 hPa meridional velocity
11 500 hPa vorticity
12 500 hPa geopotential
13 500 hPa wind direction
14 500 hPa divergence
15 850 hPa airflow strength
16 850 hPa zonal velocity
17 850 hPa meridional velocity
18 850 hPa vorticity
19 850 hPa geopotential
20 850 hPa wind direction
21 850 hPa divergence
22 500 hPa specific Humidity
23 850 hPa specific Humidity
24 Near surface specific Humidity
25 Temperature at 2 m

Table 4. Results of the Most Important Predictors Selected for the
Maximum Temperature by SWR

Station Predictorsa

Cedars 1, 5, 19, 23, 24
Drummondville 1, 19, 23, 24, 25
Seven Islands 1, 19, 23, 24, 25
Bagotville 1, 19, 23, 24, 25
Jean Lesage Intl 1, 19, 23, 24, 25
Sherbrooke 1, 19, 23, 24, 25
Maniwaki Airport 1, 19, 23, 24, 25
La Pocatière 1, 12, 19, 23, 25
Mont-joli 1, 16, 19, 24, 25

aFor each predictor, the number refers to the atmospheric variable defined
in Table 3.
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Maniwaki Airport stations. Otherwise, there is a small dif-
ference in the predictor selection for the remaining sta-
tions between SWR (Table 4) and LASSO (Table 5). Despite
this difference, both methods give similar combinations of
selected variables, but LASSO has the advantage of its
automatic aspect of selection. In addition, LASSO did not
frequently select predictors 23 and 24 (see Table 3) at the
same time as the most effective predictors. Indeed, the
850-hPa specific humidity and the near-surface specific
humidity are highly correlated, and one of the specificities of
LASSO is that it is not affected by correlations between
predictors, which contributes to its robustness compared to
SWR and may improve the selection quality.
[41] According to the results for the minimum temperature,

there is a slight difference between the predictors selected by
SWR and those selected by LASSO. The predictors selected
by SWR and LASSO are the same for only the Bagotville
station: the mean sea level pressure, the geopotential at
850 hPa, the specific humidity at 850 hPa, the near-surface
specific humidity and the temperature at 2 m. Otherwise, the
predictors selected by SWR randomly differ between stations
due to the subjective aspect of the selection process, which
depends on the analyzer. Meanwhile, the LASSO selection
gives more accurate and interpretable models because the
most important predictors chosen for all of the stations are
nearly the same (see Tables 6 and 7). The most important
predictors selected by LASSO for the minimum temperature
are the mean sea level pressure, the geopotential at 850 hPa,
the near-surface specific humidity and the temperature at
2 m, which is consistent with the predictor combinations
found for the maximum temperature. The results found for
the minimum temperature demonstrate the strength of the

LASSO technique in dealing with correlations between pre-
dictors and in eliminating redundancy.
[42] The differences between the LASSO and SWR results

can be explained by the improved selection achieved by
LASSO compared to other methods [Grandvalet and Canu,
1999]; this improved selection arises from our use of a
large data set. Thus, LASSO is considered to be a method
with enormous potential for extensions and modifications.
[43] To compare the performances of SWR and LASSO, a

risk function was used (RMSE), incorporating the variance
and the square of the estimate bias as well as the explained
variance (R2). Note that lower RMSE values and higher R2

values imply better performance.
[44] For all stations over all months, LASSO has lower

RMSE and higher R2 values compared to SWR, as shown in
Tables 8 and 9 for the maximum temperature and Tables 10
and 11 for the minimum temperature. Table 8 summarizes
the RMSE results for LASSO and SWR for the maximum
temperature at all stations. The RMSE of the maximum
temperature varies from 2.01 (Cedars in July) to 4.39
(Bagotville in January) for SWR and from 1.95 (Cedars in
July) to 4.25 (Bagotville in January) for LASSO. Table 8
indicates that LASSO performs better in terms of the
RMSE for all stations and throughout all months. Figure 2
presents the RMSE for SWR and LASSO corresponding to
the maximum temperature at the Bagotville and the La
Pocatière stations, showing that the error found with SWR is
always higher than the one corresponding to LASSO. The
improved RMSE obtained by LASSO is quite clear for the La
Pocatière station, showing that the error achieved by LASSO
is consistently lower than that obtained with SWR.
[45] Table 9 presents the results of the explained variance

(R2) for LASSO and SWR for the maximum temperature at
all stations. The R2 value of the maximum temperature varies
from 0.39 (Seven Islands in July) to 0.75 (Maniwaki Airport
in March) for SWR and from 0.4 (Seven Islands in July) to
0.76 (Maniwaki Airport in March) for LASSO. For all sta-
tions and throughout all months, LASSO performs better
than stepwise regression in terms of R2. The improvement
achieved by LASSO is clearly shown in Figure 3, which
presents R2 for both LASSO and SWR for the maximum
temperature at the Cedars and Jean Lesage stations; the
R2 value for LASSO is always higher than the one
corresponding to SWR. Figure 4 shows a comparison
between LASSO and SWR in terms of R2 for the maxi-
mum temperature at the Bagotville station, emphasizing the
improvement obtained by LASSO.

Table 5. Results of the Most Important Predictors Selected for the
Maximum Temperature by LASSOa

Station Predictors

Cedars 1, 19, 23, 24, 25
Drummondville 1, 12, 19, 23, 25
Seven Islands 1, 3, 19, 24, 25
Bagotville 1, 12, 19, 23, 25
Jean Lesage Intl 1, 12, 19, 23, 25
Sherbrooke 1, 12, 19, 24, 25
Maniwaki Airport 1, 19, 23, 24, 25
La Pocatière 1, 12, 19, 23, 25
Mont-joli 1, 19, 23, 24, 25

aFor each predictor, the number refers to the atmospheric variable defined
in Table 3.

Table 6. Results of the Most Important Predictors Selected for the
Minimum Temperature by SWRa

Station Predictors

Cedars 1, 5, 23, 24, 25
Drummondville 5, 12, 23, 24, 25
Seven Islands 1, 12, 19, 24, 25
Bagotville 1, 19, 23, 24, 25
Jean Lesage Intl 4, 12, 23, 24, 25
Sherbrooke 1, 4, 19, 24, 25
Maniwaki Airport 1, 19, 23, 24, 25
La Pocatière 1, 7, 21, 24, 25
Mont-joli 1, 12, 19, 24, 25

aFor each predictor, the number refers to the atmospheric variable defined
in Table 3.

Table 7. Results of the Most Important Predictors Selected for the
Minimum Temperature by LASSOa

Station Predictors

Cedars 1, 4, 19, 24, 25
Drummondville 1, 7, 21, 24, 25
Seven Islands 1, 19, 21, 24, 25
Bagotville 1, 19, 23, 24, 25
Jean Lesage Intl 1, 19, 23, 24, 25
Sherbrooke 1, 19, 23, 24, 25
Maniwaki Airport 1, 12, 19, 24, 25
La Pocatière 1, 7, 19, 21, 24
Mont-joli 1, 5, 19, 24, 25

aFor each predictor, the number refers to the atmospheric variable defined
in Table 3.
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[46] For the minimum temperature, the same trends were
observed as for the maximum temperature. Table 10 presents
the RMSE results for LASSO and SWR for the minimum
temperature. The RMSE varies from 1.8 (Seven Islands in
July) to 5.67 (Sherbrook in January) for SWR and from 1.79
(Seven Islands in July) to 5.58 (Sherbrook in January) for
LASSO. Table 10 indicates that LASSO performs better in
terms of the RMSE for all stations and throughout all months.
In addition, Table 11 presents the R2 results for the minimum
temperature for LASSO and SWR. The R2 values vary from
0.48 (Seven Islands in July) to 0.72 (Seven Islands in March)
for SWR and from 0.49 (Seven Islands in July) to 0.73
(Seven Islands in March) for LASSO. The improvement
achieved by LASSO is clearly shown in Figure 5, which
presents R2 for both LASSO and SWR for the minimum
temperature at the Bagotville and the Maniwaki Airport sta-
tions; the R2 values obtained by LASSO are higher than those

found with SWR which emphasizes the improvement in the
selection achieved by LASSO in terms of R2. Thus, LASSO
performed well in all cases and for all stations.

6. Discussion and Conclusions

[47] Despite the positive features of the SWR method,
the LASSO technique performed better with the data set
employed herein for selecting predictors for downscaling of
the maximum and minimum temperature data issued from
9 stations located in eastern Canada near the Gulf of
St. Lawrence. Some limitations of SWR are overcome by
LASSO. SWR is based only on correlations and uses only
one model throughout treatment of the whole data set. Hence,
if the model does not perform well, the selection may not be
optimal. Furthermore, with SWR, if a variable has already
been eliminated, it cannot be reintroduced to the model, even
if it becomes significant. SWR is considered as a highly

Table 8. Results of the RMSE for LASSO and SWR for Maximum Temperaturea

Method

RMSE

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Cedars LASSO 4.01 3.51 3.21 3.02 2.89 2.34 1.96 2.10 2.53 2.71 3.00 3.64
Stepwise 4.14 3.58 3.27 3.06 2.95 2.37 2.01 2.12 2.56 2.77 3.07 3.69

Drummondville LASSO 4.18 3.52 3.36 3.19 3.12 2.70 2.33 2.31 2.81 2.84 2.99 3.63
Stepwise 4.22 3.58 3.40 3.25 3.16 2.74 2.38 2.34 2.81 2.88 3.02 3.67

Seven Islands LASSO 3.60 3.32 2.57 2.34 2.87 2.94 2.61 2.39 2.42 2.29 2.25 3.35
Stepwise 3.71 3.37 2.60 2.39 2.95 2.98 2.64 2.40 2.48 2.34 2.28 3.40

Bagotville LASSO 4.25 3.75 3.59 3.19 3.39 3.11 2.85 2.71 2.99 3.09 2.79 3.87
Stepwise 4.39 3.82 3.64 3.25 3.45 3.19 2.90 2.76 3.04 3.13 2.88 3.95

Jean Lesage Intl LASSO 3.86 3.19 2.78 3.06 3.26 2.93 2.43 2.34 2.56 2.66 2.62 3.29
Stepwise 3.74 3.24 2.85 3.12 3.35 3.00 2.48 2.40 2.61 2.69 2.66 3.36

Sherbrooke LASSO 3.96 3.59 3.17 3.18 3.13 2.56 2.08 2.26 2.68 2.99 3.17 3.67
Stepwise 4.03 3.64 3.20 3.22 3.19 2.59 2.10 2.28 2.70 3.06 3.26 3.72

Maniwaki Airport LASSO 3.78 3.27 2.98 3.15 3.03 2.58 2.16 2.38 2.53 2.74 2.79 3.45
Stepwise 3.82 3.34 3.01 3.24 3.13 2.62 2.21 2.31 2.64 2.78 2.84 3.53

La Pocatière LASSO 3.67 3.12 2.97 2.91 3.39 3.09 2.64 2.53 2.81 2.72 2.59 3.38
Stepwise 3.72 3.17 3.04 2.96 3.47 3.15 2.69 2.58 2.88 2.79 2.64 3.47

Mont-joli LASSO 3.73 3.47 2.99 2.72 3.34 3.06 2.58 2.42 2.78 2.87 2.62 3.30
Stepwise 3.79 3.51 3.03 2.76 3.43 3.11 2.61 2.46 2.83 2.90 2.69 3.37

aBold means better result with LASSO.

Table 9. Results of R2 for LASSO and SWR for Maximum Temperaturea

Method

R2

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Cedars LASSO 0.69 0.71 0.7 0.74 0.7 0.67 0.63 0.65 0.67 0.72 0.67 0.68
Stepwise 0.67 0.7 0.69 0.73 0.69 0.67 0.61 0.65 0.67 0.71 0.66 0.68

Drummondville LASSO 0.68 0.72 0.7 0.73 0.71 0.65 0.6 0.66 0.66 0.72 0.72 0.7
Stepwise 0.68 0.72 0.7 0.72 0.7 0.64 0.59 0.65 0.66 0.71 0.71 0.7

Seven Islands LASSO 0.68 0.69 0.74 0.6 0.53 0.51 0.4 0.47 0.52 0.59 0.71 0.72
Stepwise 0.67 0.68 0.73 0.59 0.5 0.5 0.39 0.46 0.5 0.57 0.7 0.72

Bagotville LASSO 0.66 0.7 0.7 0.7 0.7 0.63 0.58 0.63 0.65 0.67 0.71 0.68
Stepwise 0.64 0.69 0.69 0.69 0.69 0.61 0.57 0.62 0.64 0.66 0.7 0.67

Jean Lesage Intl LASSO 0.68 0.71 0.71 0.67 0.68 0.6 0.57 0.62 0.66 0.7 0.7 0.69
Stepwise 0.68 0.71 0.7 0.66 0.66 0.58 0.56 0.6 0.65 0.69 0.69 0.68

Sherbrooke LASSO 0.69 0.72 0.75 0.74 0.71 0.68 0.67 0.67 0.68 0.72 0.71 0.69
Stepwise 0.69 0.72 0.75 0.74 0.7 0.67 0.66 0.66 0.68 0.71 0.7 0.69

Maniwaki Airport LASSO 0.7 0.73 0.76 0.76 0.75 0.68 0.67 0.64 0.73 0.76 0.73 0.72
Stepwise 0.7 0.72 0.75 0.75 0.73 0.67 0.65 0.66 0.7 0.75 0.73 0.71

La Pocatière LASSO 0.69 0.72 0.68 0.66 0.63 0.59 0.56 0.59 0.6 0.68 0.71 0.68
Stepwise 0.68 0.72 0.67 0.65 0.61 0.58 0.55 0.58 0.59 0.67 0.7 0.67

Mont-joli LASSO 0.66 0.68 0.69 0.67 0.63 0.62 0.61 0.65 0.63 0.66 0.73 0.69
Stepwise 0.65 0.68 0.69 0.66 0.61 0.61 0.6 0.64 0.62 0.66 0.71 0.68

aBold means better result with LASSO.
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instable method because the selection can vary strongly if the
data are changed even slightly.
[48] The LASSO technique combines the positive features

of subset selection and ridge regression using stable algo-
rithms as ridge regression and by shrinking some coefficients
and setting others to zero as the subset selection. Lasso pro-
vides easily interpretable models and improves the prediction
accuracy.
[49] Moreover, this technique works well with large data

sets, mainly when p ≫ n (the number of predictors is much
higher than the predict and number). There are numerous
reports of extensions and modifications of this method,
which explains the existence of more than 8 formulations for
the LASSO technique [see Schmidt, 2005]. The usefulness of
the LASSO method depends on the choice of the tuning
parameter as the appropriate choice of t will allow to avoid

“over fitting” or “under fitting” of LASSO and successful
development of the statistical theory.
[50] Two different types of methods were presented in the

current study for selecting predictors to compare their per-
formances. Both methods appear to be appropriate to select
the smallest number of predictors that can fit the data as well
as if we had used the whole data set. Due to its sparseness
and its computational advantages, LASSO presented a better
alternative. It is an automated method that is unaffected by
collinearity problems, such as correlations between pre-
dictors in the regression model, unlike SWR, for which col-
linearity problems are exacerbated. Thus, LASSO achieved
lower errors and higher R2 values. SWR behaved well in this
case, but its results are strongly dependent on the data set
used, while LASSO can be considered as a more stable

Table 10. Results of RMSE for LASSO and SWR for Minimum Temperaturea

Method

RMSE

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Cedars LASSO 4.50 4.48 3.80 2.40 2.18 2.15 1.92 1.93 2.45 2.55 2.75 3.98
Stepwise 4.56 4.54 3.99 2.49 2.21 2.20 1.96 1.98 2.49 2.65 2.83 4.12

Drummondville LASSO 5.10 4.67 4.09 3.29 2.71 2.41 2.26 2.33 2.56 2.80 3.05 4.45
Stepwise 5.20 4.77 4.25 2.75 2.72 2.43 2.30 2.36 2.61 2.84 3.07 4.56

Seven Islands LASSO 4.10 4.05 3.74 2.43 1.85 2.00 1.79 1.94 2.25 2.55 3.10 4.00
Stepwise 4.15 4.13 3.82 2.48 1.88 2.03 1.80 1.96 2.27 2.57 3.15 4.12

Bagotville LASSO 4.89 4.78 4.40 2.81 2.45 2.53 2.21 2.32 2.58 2.60 3.50 4.72
Stepwise 4.99 4.94 4.48 2.86 2.50 2.59 2.26 2.36 2.68 2.65 3.59 4.80

Jean Lesage Intl LASSO 4.24 4.03 3.65 2.28 2.13 2.19 2.00 1.99 2.29 2.30 3.00 4.07
Stepwise 4.36 4.12 3.68 2.29 2.19 2.20 2.02 2.01 2.37 2.34 3.03 4.22

Sherbrooke LASSO 5.58 5.21 4.49 2.80 2.80 2.67 2.52 2.42 2.95 2.85 3.47 4.81
Stepwise 5.67 5.37 4.54 2.82 2.88 2.67 2.56 2.48 2.97 2.87 3.51 4.90

Maniwaki Airport LASSO 5.05 5.39 4.81 3.09 2.58 2.54 2.34 2.25 2.58 2.84 3.56 4.83
Stepwise 5.17 5.54 4.91 3.14 2.64 2.61 2.35 2.29 2.64 2.90 3.59 4.90

La Pocatière LASSO 4.20 4.14 3.98 2.58 2.75 3.07 2.61 2.61 2.90 2.72 2.89 4.10
Stepwise 4.31 4.21 4.07 2.66 2.79 3.11 2.65 2.68 2.95 2.77 2.96 4.18

Mont-joli LASSO 3.98 3.76 3.31 2.32 2.30 2.48 2.14 2.21 2.36 2.35 2.59 3.55
Stepwise 4.06 3.92 3.35 2.37 2.37 2.53 2.18 2.21 2.37 2.36 2.61 3.62

aBold means better result with LASSO.

Table 11. Results of R2 for LASSO and SWR for Minimum Temperaturea

Method

RMSE

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Cedars LASSO 0.62 0.62 0.64 0.68 0.71 0.64 0.65 0.70 0.67 0.66 0.66 0.67
Stepwise 0.61 0.62 0.61 0.66 0.70 0.62 0.64 0.68 0.66 0.64 0.64 0.65

Drummondville LASSO 0.60 0.64 0.64 0.48 0.66 0.65 0.60 0.67 0.68 0.64 0.66 0.65
Stepwise 0.59 0.63 0.62 0.63 0.66 0.65 0.59 0.66 0.67 0.63 0.66 0.63

Seven Islands LASSO 0.71 0.71 0.73 0.69 0.56 0.56 0.49 0.58 0.61 0.57 0.69 0.73
Stepwise 0.71 0.71 0.73 0.68 0.55 0.56 0.48 0.58 0.61 0.57 0.69 0.72

Bagotville LASSO 0.62 0.64 0.67 0.64 0.65 0.58 0.57 0.64 0.64 0.59 0.64 0.68
Stepwise 0.61 0.62 0.66 0.64 0.64 0.56 0.55 0.63 0.61 0.58 0.62 0.67

Jean Lesage Intl LASSO 0.66 0.69 0.69 0.68 0.68 0.61 0.62 0.69 0.70 0.67 0.67 0.69
Stepwise 0.64 0.68 0.69 0.68 0.67 0.61 0.62 0.69 0.68 0.66 0.66 0.67

Sherbrooke LASSO 0.61 0.63 0.64 0.63 0.66 0.62 0.59 0.67 0.65 0.64 0.62 0.65
Stepwise 0.60 0.60 0.64 0.63 0.65 0.62 0.58 0.66 0.64 0.64 0.61 0.64

Maniwaki Airport LASSO 0.69 0.65 0.66 0.63 0.70 0.65 0.63 0.70 0.70 0.63 0.62 0.70
Stepwise 0.67 0.63 0.65 0.62 0.69 0.63 0.63 0.69 0.69 0.61 0.62 0.69

La Pocatière LASSO 0.60 0.62 0.61 0.56 0.53 0.50 0.54 0.58 0.55 0.57 0.63 0.64
Stepwise 0.58 0.61 0.60 0.53 0.52 0.49 0.53 0.56 0.53 0.56 0.62 0.63

Mont-joli LASSO 0.60 0.65 0.69 0.61 0.54 0.55 0.51 0.57 0.56 0.60 0.67 0.68
Stepwise 0.59 0.62 0.69 0.60 0.51 0.54 0.50 0.57 0.56 0.60 0.67 0.67

aBold means better result with LASSO.
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method that provides accurate predictions and easily inter-
pretable models.
[51] Both methods obtained good results, but more confi-

dence can be placed in LASSO. Many researchers have

described the drawbacks of stepwise regression; for example,
the R2 values have a high bias, the Fisher and c2 test statistics
do not have the claimed distribution, and the standard errors
of the parameter estimates are low, causing the confidence
intervals around the parameter estimates to be too narrow.
Hence, LASSO presented a better alternative for predictor
selection: it can be implemented in statistical downscaling
models (SDSMs) that use SWR for predictor selection, so
LASSO may improve the accuracy of model outputs. The
limitations of LASSO include the difficulty encountered in
choosing the regularization parameter, which defines the
shrinkage rate as well as the set of some coefficients to zero.
This all depends on the development of the statistical theory.

Figure 2. RMSE for LASSO and SWR represented for
(top) Bagotville and (bottom) La Pocatière stations for max-
imum temperature.

Figure 3. R2 for LASSO and SWR represented for (top)
Cedars and (bottom) Jean Lesage stations for maximum
temperature.

Figure 4. R2 for LASSO and SWR represented for
Bagotville station for maximum temperature.

Figure 5. R2 for (top) LASSO and (bottom) SWR repre-
sented for Bagotville and Maniwaki Airport station for min-
imum temperature.
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Further work may be directed towards implementing this
technique in statistical downscaling models and applying
LASSO to other hydrological variables, such as precipitation.

Notation

OLS Ordinary Least Squares method.
AIC Akaike Information Criterion.
BIC The Bayesian Information Criterion.

GCM Global Climate Model
SWR Stepwise Regression

LASSO Least Absolute Shrinkage and Selection Operator
FS Forward Selection
BE Backward Elimination
R2 Determination coefficient

LARS Least Angle Regression Selection
NCEP National Center for Environmental Prediction
NCAR National Center for Atmospheric Research
MSE Mean Square Errors

RMSE Root Mean Square Errors
SDSM Statistical Downscaling Model
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