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Abstract: The La Grande River watershed, located in the James Bay region (54°N, Quebec, 

Canada), is a major contributor to the production of hydroelectricity in the province. 

Peatlands cover up to 20% of the terrestrial environment in this region. Their hydrological 

behavior is not well understood. The present study is part of a multidisciplinary project 

which is aimed at analyzing the hydrological processes in these minerotrophic peatlands 

(fens) in order to provide effective monitoring tools to water managers. The objective of 

this study was to use VHR remote sensing data to understand the seasonal dynamics of the 

hydrology in fens. A series of 10 multispectral pan-sharpened GeoEye-1 images (with a 

spatial resolution of 40 cm) were acquired during the snow-free season (May to October) in 

2009 and 2010, centered on two study sites in the Laforge sector (54°06'N; 72°30'W). 

These are two fens instrumented for continuous hydrometeorological monitoring (water 

level, discharge, precipitation, air temperature). An object-based classification procedure 

was set up and applied. It consisted of segmenting the imagery into objects using the 

multiresolution segmentation algorithm (MRIS) to delineate internal structures in the 

peatlands (aquatic, semi-aquatic, and terrestrial). Then, the objects were labeled using a 

fuzzy logic based algorithm. The overall classification accuracy of the 10 images was 

assessed to be 82%. The time series of the peatland mapping demonstrated the existence of 

important intra-seasonal spatial dynamics in the aquatic and semi-aquatic compartments. It 

was revealed that the dynamics amplitude depended on the morphological features of the 
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fens. The observed spatial dynamics was also closely related to the evolution of the 

measured water levels.  

Keywords: remote sensing; peatland; fen; hydrology; GeoEye; multispectral; high 

resolution; water level; discharge; object-based analysis 

 

1. Introduction 

Hydroelectricity production in the province of Quebec is highly dependent on the hydrological 

conditions of the Mid-Northern region. The hydroelectric complex on the La Grande River covers a 

watershed of more than 177,000 km² [1]. The eight dams currently present on this river alone generate 

around 40% of the hydroelectricity in Quebec [2]. Since 1985, the water levels in these reservoirs have 

varied dramatically for reasons not currently understood [3]. One hypothesis involves variations in the 

storage of water by peatlands, which are strongly represented in the watershed. 

Peatlands, characterized by an accumulation of over 40 cm of peat [4], represent over 90% of 

Canadian wetlands [5]. They occupy about 20% of the terrestrial environment of the watershed of the 

La Grande River [6]. In this region, peatlands are mostly patterned, with alternating pools and 

vegetated strings. Previous studies have demonstrated that this fine-scale topography strongly 

influences the water balance of the peatland by reducing or delaying runoff, leading to the temporary 

storage of water in pools [7], and by increasing evapotranspiration and water storage capacity [8]. The 

buffer effect of peatlands (both bogs and fens) is inversely proportional to the water table level [9–11]. 

Strong seasonal variations of flow characterize peatlands. They generally have their maximum flows 

during the snow melt season, while the flow can be zero during long dry periods in the summer [12].  

In the past decade, there has been increasing interest in the use of remote sensing science to map 

wetlands and monitor their hydrological changes [13]. However, wetlands are inherently difficult to 

map: their boundaries exist along a wetland/upland continuum, and they are subject to regular changes 

in inundation that result in complex assemblages of vegetation and habitat types [14].  

Originally, due to the limited spatial resolution of optical and radar sensors (10–30m), studies 

focused on discrimination and inventorying of wetlands [15–17]. More recently, remote sensing has 

been used to study ecological and hydrological aspects of wetlands [18–22]. Aerial photographs were 

recently used to study the dynamics of peatland pools in the La Grande River watershed at a multi-

decadal scale [23]. The results showed that these pools are very sensitive to climate conditions, their 

size varying according to climate change. 

The emergence of new satellite sensors providing very high spatial resolution images (VHR) has 

raised new hopes for environmental and urban monitoring [24–26]. These images provide an attractive 

alternative to aerial photographs due to short satellite return intervals and digital data formats easily 

integrated into geographic information systems [13]. Recent studies have shown that VHR imagery is 

suitable for the detailed mapping of temporary water bodies at a local scale [26,27]. Dissanska et al. [26] 

developed a semi-automated approach for assessing the spatiotemporal development of terrestrial and 

aquatic compartments in patterned peatlands of the La Grande River watershed based on very high 

resolution panchromatic images. This study, which operated at a multi-decadal scale (1957–2006), 
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proposed a robust method of classification with an overall accuracy of 81% that was able to detect 

significant changes in the aquatic areas of the studied peatlands. 

These studies suggest that VHR multispectral imagery might be a good tool for monitoring the 

hydrological behavior of patterned fens, with the help of an object-based classification approach 

including specific rulesets. Our study covered two seasons (2009 and 2010) and involved comparison 

of imagery-derived statistics (through classification) with in situ hydrometric measurements. The 

results should help water managers to better model the specific hydrological regime of fens.  

This study had three objectives: (1) Test the potential of VHR multispectral images to delineate and 

classify the internal structure of the peatlands. (2) Use VHR imagery to verify the existence of seasonal 

dynamics of aquatic and semi-aquatic structures in patterned fens and quantify these dynamics. 

(3) Determine if the observed dynamics can explain the hydrological regime of fens. 

2. Material and Methods 

2.1. Study Area 

The study area is located in the middle part of the La Grande River watershed in the James Bay 

region (Quebec, Canada), 15 km south of the Laforge 1 hydroelectric dam (Figure 1). The region is 

characterized by a relatively flat relief. Woodlands with lichen and black spruce, lakes, and patterned 

fens prevail in the landscape. Climatic conditions are subarctic, with temperatures that range from  

−35 °C (January) to +20 °C (July), a mean annual temperature about −4.2 °C, and mean annual 

precipitation around 830 mm. The growing season is about 119 days long [28]. Two sub-basins were 

chosen based on their high proportion of water surface on the fens, their relatively easy access from the 

road, their small size, and their well-defined boundaries [29]. 

Figure 1. Location map of the two study site watersheds in the James Bay region, Quebec, Canada. 
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The site 1 watershed (54°06′52″N, 72°30′02″W) has an area of 12.1 ha. This catchment area (Figure 1) 

was determined by a digital elevation model created from a grid of DGPS surveyed points [29]. The 

watershed contains a fen (31%) and a section of forest-covered land (69%). The fen, split into two 

wings, is patterned with a succession of elongated pools and narrow ridges that eventually discharge 

into a larger pool near the outlet [29]. The main slope of the fen was estimated to be 1.45% [29]. The 

fen is connected to a lake downstream by a single outlet with an elevation of 439 m above sea level. 

The site 2 watershed (54°06′41″N, 72°30′56″W) has an area of 3.7 ha
 
(Figure 1). The watershed 

contains a fen (51%) and a section of forest-covered land (49%). The fen is patterned mostly with a 

succession of wide pools and narrow ridges, along a single wing. The main slope of the fen was 

estimated to 1.5%. The western part of the fen is connected to a lake upstream. The eastern part of the 

fen is connected to a lake downstream by a single outlet with an elevation of 437 m above sea level. 

2.2. Hydrometeorological Measurements 

Wells equipped with hydrostatic pressure gauges were installed on sites 1 and 2 in 2009 (Figure 2). 

The wells were made of PVC pipe with slots along the entire length. Water level data were collected 

every 15 min by the hydrostatic pressure gauges (leveloggers, Solinst, model 3001, accuracy ±0.3 cm, 

http://www.solinst.com/). On site 1, well A was installed in a saturated ridge. On site 2, well B was 

installed in a pool. The measurements were corrected for atmospheric pressure. To do this, a barometer 

from a weather station installed at site 1 was used (Campbell Scientific, 61205 V, R.M. Young, 

accuracy ±0.5 hPa, http://www.campbellsci.ca/). Temperature and precipitation were also measured by 

this weather station (Figure 2). 

Figure 2. Location of the instruments used in the study at (a) site 1 (54°06′52″N, 

72°30′02″W) and (b) site 2 (54°06′41″N, 72°30′56″W). 

 

Two trapezoidal flumes (TRACOM, Large 60° V and SRCRC 12" 45° V models, accuracy ±0.1%, 

http://www.tracomfrp.com/flumes.htm) were installed in 2008 at the outlet of site 1 (Figure 2). Water 

flows to the outlet between two rock bands that define a 15-m-wide corridor. A small weir was 
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installed to ensure that the surface flow passed through a single outlet. The large flume (Flume A) was 

installed at the outlet of the weir to measure flood flows (1.4–220 L/s). The smaller flume (Flume B) 

was set 2 m downstream. It provided higher accuracy recording of the majority of seasonal flow  

(0.06–9.8 L/s). Both flumes were equipped with a stilling well. The water level in the well was 

measured every 15 min. Measurements were corrected for atmospheric pressure. The water levels were 

then transformed into flows (L/s) using rating curves supplied by the manufacturer [29].  

2.3. Satellite Imagery 

2.3.1. Acquisition 

To study the seasonal dynamics of the hydrology of the fens, 10 VHR multispectral satellite images 

were acquired during spring and summer 2009 and 2010 (Table 1). These images were recorded by the 

GeoEye-1 (GeoEye, Inc) satellite sensor, providing panchromatic spatial resolution of 0.41 m (0.5 m 

pixel resampling) and RGB/NIR spatial resolution of 1.65 m (2 m pixel resampling). Due to the 

frequent cloud cover in the study area, only 4 images out of the 10 were without a significant presence 

of clouds.  

Table 1. Features of the acquired GeoEye-1 images. 

GeoEye-1  

Images Features 

2009 2010 

Jun 20 Jul 23 Aug 8 Sep 5 Sep 13 May 18 Jun 9 Jun 28 Aug 3 Aug 30 

Ground coverage (km) 7.9 × 7.7  7.9 × 7.7  7.9 × 7.7 7.9 × 7.7 7.9 × 7.7 7.9 × 7.7 8.0 × 8.0 7.9 × 7.7 7.9 × 7.7  8.0 × 8.0 

Sensor tilt (°) 16.69 28.42 7.95 25.67 14.87 27.54 15.51 10.37 26.93 17.94 

Nominal collection azimuth (°) 303.54 338.17 170.00 306.89 265.75 225.28 277.69 317.95 244.80 25.08 

Solar zenith angle (°) 31.38 34.94 39.51 47.82 50.95 35.13 31.95 32.01 37.52 46.41 

Solar azimuth angle (°) 164.13 163.95 159.61 171.00 169.69 165.37 163.56 159.67 164.01 162.10 

Clouds coverage (%) 0 40 3 44 0 62 0 31 31 9 

Our first priority was to obtain images capturing the widest possible range of hydrological 

conditions, i.e., both very low and very high discharge events. This would have enabled us to cover the 

majority of the seasonal hydrological dynamics in the fens. However, we were unable to acquire 

images during periods of high discharge (Figure 3). Two major reasons explained this: cloud cover 

usually remains high when the discharge response to precipitation occurs (a few hours after the 

precipitation event), and the frequency and duration of high discharges are relatively low (Figure 3).  

2.3.2. Preprocessing 

The 10 images were georeferenced in the Universal Transverse Mercator (UTM) coordinate system, 

Zone 18 north, North American Datum for 1983 (NAD83). Every image was supplied with a 

mathematical model of the image geometry in the form of rational polynomial coefficients (RPC). 

Images were orthorectified using these RPCs and a DEM of the area at 1/50,000 scale, supplied by 

Geobase (http://www.geobase.ca). Two accurate 3D ground control points were added to each image 

to improve orthorectification. This led to an accuracy of about a pixel size for each image channel, 

0.5 m and 2 m for the panchromatic and multispectral channels respectively. 
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Figure 3. GeoEye-1 image acquisitions and hydrological conditions during: (a) spring and 

summer 2009; (b) spring and summer 2010. 

 

After these geometric corrections, radiometric calibrations were performed to standardize each 

image. First, digital number (DN) values were converted to at-sensor radiances using prelaunch gain 

and offset coefficients [30]. Then, at-sensor radiances were converted to at-sensor reflectances using 

the acquisition geometry following [31]. 

The panchromatic (0.5 m pixel resolution) and multispectral (2 m pixel resolution) channels of the 

images were then fused using the PCI Geomatics® pan-sharpening algorithm [32]. This algorithm was 

used because it produces good results without changing the statistical parameters of the original 

images [33]. The resulting “pan-sharpened” images retained the spectral features of the low resolution 

multispectral image while integrating the spatial details of the high resolution panchromatic image 

(0.5 m pixel resolution). 

Many parameters (e.g., visibility, atmosphere composition) are needed to perform an absolute 

atmospheric correction of the satellite imagery to obtain surface reflectances from at-sensor 

reflectances. Unfortunately, we did not have the requisite data for these images. Thus, a multiple-date 

image normalization using regression was performed between a reference image and the remaining 

images [34].  



Remote Sens. 2012, 4                            

 

1893 

2.4. Object-Based Image Classification 

2.4.1. Procedure 

An object-based classification procedure was set up and applied to delineate internal structures in 

the peatlands (aquatic, semi-aquatic, and terrestrial) using VHR multispectral imagery. This would 

enable the seasonal spatial evolution of the hydrology of the fens to be monitored. An approach by 

region (object-based image analysis) [35] was chosen because it uses not only the spectral information 

contained in the image but also spatial and topological information. The procedure was inspired by 

the semi-automated approach developed by Dissanska et al. [26] using panchromatic images at a  

multi-decadal scale.  

The eCognition 8.64.0® software was used to build the procedure. A hierarchical approach was 

utilized to enable better adaptation to the diversity, complexity, and patterned structure of the natural 

ecosystems [36]. First, a coarse-scale analysis was performed on a reference image (9 June 2010) to 

delineate the major landscape units. A fine-scale analysis was then performed on the 10 images to 

create a classification map of the study sites. The scheme of the object-based analysis procedure is 

presented in Figure 4. 

Multiresolution segmentation (MRIS) [37] was used in the study. MRIS is a region-growing 

segmentation algorithm that groups adjacent pixels to create objects (polygons) that later will be 

assigned to a class. These groupings are based on the internal heterogeneity criteria of the resulting 

objects, which cannot exceed a user-defined scale parameter. Higher values for the scale parameter 

result in larger image objects, and smaller values result in smaller ones [38]. The first and second 

principal component (PC) bands derived from the pan-sharpened imagery were used as input bands in 

the segmentation process. A weight was assigned to both input bands, reflecting the amount of 

variance of the initial four bands contained in the derived PC bands, i.e., more than 80% for PC1 and 

less than 15% for PC2. Regarding the coarse-scale analysis, a high scale parameter value of 30 was 

chosen to delineate the major landscape units (forest, water, peat...). To create homogeneous objects 

within the scene, weights of 90% for color and 10% for shape were used. This ratio was chosen 

because natural environments, with no specific shape, were being monitored. To specify the shape, a 

relationship of 70 to 30 between compactness and smoothness was selected. We expected that this 

segmentation would provide a good distinction between peatlands and forests. Regarding the fine-scale 

analysis, a scale parameter of 10 was chosen to precisely delineate the internal structures of peatlands. 

The same ratios as those used in the coarse-scale analysis were applied between the shape and color 

parameters and between the compactness and smoothness parameters.  

Eco-hydrological classes were defined (Table 2), based on literature [26,39–41] and knowledge 

of the field. Once classes are defined, classification rules have to be determined. Membership 

functions and the nearest neighbor algorithm are the main classification tools used in the eCognition 

software [38]. The nearest neighbor algorithm needs training sites. To improve separation between the 

defined classes by adding meaningful features in the nearest neighbor classification process, bands 

were derived from the pan-sharpened images. First, Intensity–Hue–Saturation (IHS) transformation of 

the RGB channels was undertaken [42]. Then the following band ratios and indices were calculated: 

Ratioblue (Blue/(Blue+Green+Red)) [36], Chlorophyll Index ((Red/Green)–1) [43], and NDVI index 



Remote Sens. 2012, 4                            

 

1894 

((NIR–Red)/(NIR+Red)) [44]. Textures, often used as an additional tool for wetland mapping, were 

also calculated [16,26]. However, tests of these features showed that the NDVI and textures channels 

did not provide any improvement in the discrimination of classes. 

Figure 4. Scheme of the object-based analysis procedure. 
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Table 2. Description of the classes used in the object-based analysis. 

Group Class Description Picture Group Class Description Picture 

WATER 

Water 

(coarse 

scale 

analysis 

only) 

Lake, river and 

pool objects 

 

PEAT 

Upper 

lawn 

Lawn objects 

dominated by 

herbaceous and 

possible 

presence of 

sphagnum and 

bryophytes, deep 

water table  

Open 

water 

(fine 

scale 

analysis 

only) 

Lake, river and 

big pool objects, 

high water depth 

 

Hummock 

and forest 

edge 

1) Hummock 

objects 

dominated by 

Sphagnum, 

bryophytes and 

ericaceous 

shrubs , deep 

water table  

Shallow 

water 

(fine 

scale 

analysis 

only) 

1) Pool objects, 

possible 

presence of 

vegetation, low 

water depth 

 

2) Forest edge 

objects 

dominated by 

shrubs and 

conifers, deep 

water table 

 

PEAT 

Lawn 

and 

water 

1) Pools edge 

objects , mix of 

lawn and water, 

water table at 

surface 

 

FOREST 

Forest 

Forest objects 

dominated by 

conifers 

 

2) Flark objects, 

water table at 

surface 

 

Lichen 

Mineral 

substrate 

objects, covered 

by lichen 

 

Low 

lawn 

1) Lawn objects 

dominated by 

sphagnum with 

possible 

presence of 

herbaceous, 

water table near 

surface  

OTHER Other 

Cloud, road, 

gravel and rock 

objects 

 

2.4.2. Classification Accuracy Assessment 

Classification accuracy assessment requires two phases: collection of field data and comparison of 

mapped conditions with known conditions [45]. However, the greenness of vegetation and the 

hydrological conditions in the study area change rapidly during the season. During the field campaigns 

of summer 2009 and 2010, many ground-truth photographs were acquired, providing precious land-

cover information. In addition, the resolution of the GeoEye-1 imagery was high enough to provide a 

good indication of the true nature of classified objects. It was possible to identify validation objects 

with good confidence using photo-interpretation techniques.  

Validation of the classifications was concluded using a traditional statistical method (confusion 

matrix). The matrices summarized errors of omission (producer’s accuracy) and commission (user’s 

accuracy) per class. Overall accuracy and Kappa coefficient of agreement were also calculated. The 
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validation set was created following the method suggested by Congalton et al. [46]. The samples used 

were randomly distributed across the entire classification map derived from all the satellite images. A 

stratified random sampling procedure was chosen to ensure an equal proportion of validation samples 

in each class. An equation based on multinomial distribution determined the sample size (N) required 

to accurately assess classification [46]:  

   
         

  
  (1)  

where ∏i is the proportion of a population in the i
th

 class out of k classes that has the proportion closest 

to 50%, bi is the desired precision for this class, B is the upper (α/k) × 100
th

 percentile of the chi square 

(χ
2
) distribution with one degree of freedom, and k is the number of classes. 

A desired precision of 95% was defined. Eight classes were evaluated in Step 2 and Step 8. The 

dominant classes were “forest” (43%) in Step 2 and “dry lawn” (22%) in Step 8. With these parameter 

values, the optimal number of validation samples to obtain was 93 (Step 2) and 65 (Step 8) for 

each class. 

3. Results and Discussion 

3.1. Object-Based Image Classification 

Two GeoEye-1 image subsets centered on site 1 are shown in Figure 5 with their respective  

fine-scale classifications. These subsets were chosen because the hydrological conditions (in particular, 

the discharge values) they recorded, differed greatly. The white and grey zones in the 23 July 2009 

image were caused by sunglint, which separated the “shallow water” and the “lawn and water” from 

the other environments (Figure 5(a,c)). Visual correspondence between the two classifications and the 

two RGB images was very good. Most of the errors appeared on the border of the site 1 fen (caused by 

non-restrictive rule sets applied to the “transition” class), where they had no effect on the results of the 

hydrological study (Figure 5(a–d)). Misclassifications appeared also on the 18 May 2010 image due to 

the phenological stage of shrub vegetation. Many hummocks were classified as “upper lawn” or “low 

lawn”, (Figure 5(b,d)) since shrubs on these hummocks were not green at this season and discriminant 

features were based on greenness indices. 

Classification accuracy was assessed using the confusion matrix method. The classification accuracy 

results of the 9 June 2010 image (coarse scale: Step 2), used as the reference image, are given in Table 3 

and Table 4. The confusion matrix in Table 3 shows the accuracy results of the original classes, while the 

matrix in Table 4 shows the accuracy results of environmental groupings (Table 2) of the original 

classes. The overall accuracy of the original classes was 86% and the Kappa coefficient was 84% 

(Table 3). The majority of misclassifications appearing in this first matrix were not relevant. The 

confusion matrix based on environmental groupings gave better results, showing an overall accuracy of 

93% and a Kappa coefficient of 90%. This ensured high accuracies for the subsequent fine classifications 

of all 10 images, avoiding most of the error propagation due to class-related hierarchical features. The 

most important issue was confusion between objects in the FOREST group and objects in the PEAT 

group (32 out of 554 objects in these groups). To manage this imperfect delineation of peatlands, a 
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“transition” class was created (coarse scale: Step 3) after the first classification of the 9 June 2010 image. 

The transition area was then reclassified at a finer scale (Step 8) as either forest or peatland. 

Figure 5. Comparison between (a) 23 July 2009 and (b) 18 May 2010 RGB images (subsets 

centered on site 1: 54°06′52″N, 72°30′02″W), and their respective fine-scale classifications 

(Step 8) (c,d). Areas of sunglint and of major misclassifications are expanded. 

 

Table 3. Confusion matrix for 9 June 2010 image coarse-scale classification (Step 2), 

considering the original classes of the validation objects. 

 Validation 

Sum Classification W LW LL UL HF F L O 

W 81 9 0 0 0 3 0 0 93 

LW 3 57 6 0 12 15 0 0 93 

LL 0 2 67 1 18 4 0 1 93 

UL 0 0 1 87 2 0 3 0 93 

HF 0 1 3 1 86 1 1 0 93 

F 0 1 0 0 5 87 0 0 93 

L 0 0 0 0 2 6 85 0 93 

O 0 0 0 0 0 1 1 91 93 

Sum 84 70 77 89 125 117 90 92 744 

Producer’s accuracy 0.96 0.81 0.87 0.98 0.69 0.74 0.94 0.99 
 

User’s accuracy 0.87 0.61 0.72 0.94 0.92 0.94 0.91 0.98 
 

Overall accuracy 0.86 

        Kappa 0.84                 

W, water; LW, lawn and water; LL, low lawn; UL, upper lawn; HF, hummock and forest edge; F, forest; L, lichen 

Deep water

Shallow water

Lawn and water Upper lawn

Low lawn Hummock and forest edge

Forest

Lichen

Other ±0 40 80 120 16020
Meters

b

dc
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Table 4. Confusion matrix for 9 June 2010 image coarse-scale classification (Step 2), 

considering the environmental groups of the validation objects. 

 

Validation 

 Classification WATER PEAT FOREST OTHER Sum 

WATER 81 9 3 0 93 

PEAT 3 344 24 1 372 

FOREST 0 8 178 0 186 

OTHER 0 0 2 91 93 

Sum 84 361 207 92 744 

Producer’s accuracy 0.96 0.95 0.86 0.99 
 

User’s accuracy 0.87 0.92 0.96 0.98 
 

Overall accuracy 0.93 

    Kappa 0.9         

The fine-scale classification accuracy results of the 10 images (Step 8) are given in Tables 5 and 6. 

Table 5 shows the accuracy results of the original classes. Table 6 shows those of hydrological groupings 

of the original classes. The groupings were functions of the saturation degree (aquatic, semi-aquatic, 

terrestrial) of the classes. These groupings were very helpful for monitoring the seasonal spatial 

dynamics of the hydrology at the study sites. The “open water” and “shallow water” classes were 

included in the AQUATIC group, the “lawn and water” class was included in the SEMI-AQUATIC 

group, and the remaining classes were included in the TERRESTRIAL group.  

The classifications of the original classes had an overall accuracy of 82% and a kappa coefficient of 

79% (Table 5). This high level of accuracy indicates the robustness of the specific object-based 

rulesets developed in order to investigate the hydrological dynamics at an intra-seasonal scale with 

multispectral imagery. The “open water”, “upper lawn”, and “lichen” classes were well-classified since 

their spectral features were easily distinguishable. However, some significant confusion can be 

observed between the other classes. The producer’s accuracies of the “forest” and “hummock and 

forest edge” classes were under 70%. Moreover, the user’s accuracies of the “shallow water”, “lawn 

and water”, and “low lawn” classes were under 75%. Since the transition area between peatland and 

forest was reclassified at a fine scale, it was considered in the confusion matrices. This transition area 

is a highly heterogeneous environment (containing peat, shrubs, trees, and their shadows) with  

non-restrictive applied rulesets. Thus, very small objects were generated, which sometimes caused 

classification problems. For example, objects corresponding to tree shadows were easily misclassified 

as “shallow water” since they were spectrally homogeneous and dark. 

The accuracy results of the hydrological groupings were higher, with an overall accuracy of 92% 

and a kappa coefficient of 83% (Table 6). The accuracy of the SEMI-AQUATIC group was lower than 

those of the AQUATIC and TERRESTRIAL groups. This can be explained by the nature of the  

SEMI-AQUATIC group, which was created from a single class and represents a transitory 

environment. The producer’s accuracies of the AQUATIC and SEMI-AQUATIC groups were 97% 

and 84%, respectively. These results indicate a low level of omission error, which means that the 

majority of the aquatic and semi-aquatic compartments of the peatlands were detected effectively in 

the satellite images. Such accuracies were necessary in order to study the spatial dynamics of these 

compartments (see Section 3.2). The user’s accuracies of the AQUATIC and SEMI-AQUATIC groups 

were 87% and 64%, respectively. These results indicate a higher level of commission error, leading to 

overestimation of the area of the aquatic and semi-aquatic compartments. A significant number of 

TERRESTRIAL objects were misclassified as SEMI-AQUATIC (216 objects) or AQUATIC objects 
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(116 objects). These TERRESTRIAL objects were most often “forest” or “hummock and forest edge” 

objects (Table 5). The overestimation of the area of the aquatic and semi-aquatic compartments was 

not critical for our further study of the spatial dynamics of these compartments. Indeed, the 

heterogeneous environment of the transition area, where most of the confusion appeared, remains 

outside the limits of the later defined saturation area (see Section 3.2). 

Table 5. Confusion matrix for fine-scale classification of the 10 images (Step 8), 

considering the original classes of the validation objects. 

 

Validation 

 Classification OW SW LW LL UL HF F L Sum 

OW 601 36 3 2 0 0 8 0 650 

SW 10 482 52 7 3 9 86 1 650 

LW 2 19 413 18 6 70 113 9 650 

LL 0 1 12 470 7 81 72 7 650 

UL 0 0 3 13 522 44 14 54 650 

HF 0 0 2 13 4 566 55 10 650 

F 3 5 6 1 0 24 610 1 650 

L 0 0 0 0 8 22 18 602 650 

Sum 616 543 491 524 550 816 976 684 5200 

Producer’s accuracy 0.98 0.89 0.84 0.9 0.95 0.69 0.63 0.88 
 

User’s accuracy 0.92 0.74 0.64 0.72 0.8 0.87 0.94 0.93 
 

Overall accuracy 0.82 

        Kappa 0.79                 

OW, open water; SW, shallow water; LW, lawn and water; LL, low lawn; UL, upper lawn; HF, hummock and forest edge; F, 

forest; L, lichen 

Table 6. Confusion matrix for fine-scale classification of the 10 images (Step 8), considering 

the hydrological groups (aquatic, semi-aquatic, and terrestrial) of the validation objects. 

 

Validation 

 Classification Aquatic Semi-Aquatic Terrestrial Sum 

AQUATIC 1129 55 116 1300 

SEMI-AQUATIC 21 413 216 650 

TERRESTRIAL 9 23 3218 3250 

Sum 1159 491 3550 5200 

Producer’s accuracy 0.97 0.84 0.91 
 

User’s accuracy 0.87 0.64 0.99 
 

Overall accuracy 0.92 
   

Kappa 0.83       

3.2. Seasonal Spatial Dynamics of Aquatic and Semi-Aquatic Structures in Fens 

In order to study the evolution of the hydrology of the peatlands, the saturated zone was delineated 

for both peatlands. This zone includes the terrestrial, semi-aquatic, and aquatic compartments, which 

are spatially dynamic. The saturated zone is affected by the presence of water at or near the surface 

(<10 cm deep), which influences the composition of its vegetation cover [40]. The following classes 

were considered as saturated: “low lawn”, “lawn and water”, “shallow water”, and “deep water”. The 3 

August 2010 classification map was chosen to delineate the saturated zone in both fens under study. 

This map was chosen because green vegetation (high contrast with saturated peat) and wet conditions 

enabled precise delineation of the saturated zone (Figure 6). 

Within the site 1 saturated zone, the aquatic (“open water” and “shallow water” classes),  

semi-aquatic (“lawn and water” class), and terrestrial proportions were calculated from the 10 image 

classifications; these proportions are shown in Figure 7. The results demonstrate the existence of 
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significant seasonal spatial dynamics of the compartments. The aquatic proportion of the saturated 

zone varied between 18% at the driest conditions observed (23 July 2009: no precipitation, snowmelt 

ended, high evapotranspiration rate) and 32% at the wettest period observed (18 May 2010: snowmelt, 

low evapotranspiration rate), corresponding to an increase of 78%. The increase in the combined 

aquatic and semi-aquatic proportions of the saturated zone was 53% (from 32% to 49%). As shown in 

Figure 8 (encircled features), between the driest and the wettest conditions observed, strong spatial 

dynamics occurred upstream of the largest pool at the outlet of the site 1 fen. The north-eastern part of 

the fen (upstream) was also subject to significant spatial dynamics, with temporary pools appearing on 

the 18 May 2010 image. 

Figure 6. False colored composite (NIR, Red, Green) of two 3 August 2010 GeoEye-1 

subsets centered on (a) site 1 (54°06′52″N, 72°30′02″W) and (b) site 2 (54°06′41″N, 

72°30′56″W). The locations of the respective saturated zones of each fen appear in (c,d).  

 

a b

Saturated zone
0 40 80 120 16020

Meters ±

c d
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Figure 7. Aquatic, semi-aquatic, and terrestrial proportions of the site 1 saturated zone for 

each GeoEye-1 image acquisition date. The term N/A refers to missing data due to the 

presence of clouds over site 1. 

 

Figure 8. Comparison between (a) 23 July 2009 and (b) 18 May 2010 GeoEye-1 RGB 

images (subsets centered on site 1: 54°06′52″N, 72°30′02″W), and the respective aquatic, 

semi-aquatic, and terrestrial proportions of the site 1 saturated zone (c,d). Areas of major 

change are encircled in red. 
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Figure 9. Aquatic, semi-aquatic, and terrestrial proportions of the site 2 saturated zone for 

each GeoEye-1 image acquisition date. The term N/A refers to missing data due to the 

presence of clouds over site 2. 

 

Figure 10. Comparison between (a) 13 September 2009 and (b) 30 August 2010  

GeoEye-1 RGB images (subsets centered on site 2: 54°06′41″N, 72°30′56″W), and the 

respective aquatic, semi-aquatic, and terrestrial proportions of the site 2 saturated zone  

(c,d). Areas of major change are encircled in red. 
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Within the site 2 saturated zone, significant seasonal spatial dynamics of the compartments was also 

noticed (Figure 9), but of smaller magnitude. Unfortunately, there were clouds over site 2 on 23 July 

2009 and 18 May 2010, the respective dates on which the driest and the wettest conditions were 

observed at site 1. Thus, the amplitude of the seasonal spatial dynamics cannot be directly compared 

between the two sites. The aquatic proportion of the site 2 saturated zone varied between 31% at the 

driest conditions observed (13 September 2009: no precipitation, snowmelt ended) and 42% at the 

wettest period observed (30 August 2010: precipitation, low evapotranspiration rate), corresponding to 

an increase of 35%. The increase in the combined aquatic and semi-aquatic proportions of the 

saturated zone was 17% (from 52% to 61%). As shown in Figure 10 (encircled features), between the 

driest and the wettest conditions observed, strong spatial dynamics occurred on the edges of some of 

the main pools. The eastern part of the fen (downstream) was also subject to significant spatial 

dynamics, with temporary pools appearing on the 30 August 2010 image. 

3.3. Seasonal Spatial Dynamics in Relation to the Hydrological Regime of Fens 

Figure 11 shows the relationship between the water table level measured at well A and the discharge 

measured at the outlet of the site 1 fen. The water table data is of course derived from a local 

measurement, whereas discharge measure is the consequence of runoff in the whole fen watershed. We 

assumed, however, that water table changes were relatively homogeneous throughout each site. On 

Figure 11, each point corresponds to a pair of water table and discharge measurements taken at 15-min 

intervals during the 2009 and 2010 snow-free seasons. The range of measured values is displayed in 

percentages to facilitate comparison with subsequent graphs. These percentages were calculated 

relative to the maximal water table and discharge values during the two-year period.  

An exponential relation was found between water table and discharge values, similar to the one 

reported in previous hydrological studies on patterned peatlands [9,11,47], with a coefficient of 

determination of 0.63. Two phases can be distinguished in the evolution of discharge values relative to 

the water table. In the first phase, the water table rises rapidly but discharge remains low. For example, 

the water level may equal 60% of the maximal measured water level while the corresponding 

discharge is equal to only 5% of the maximal measured discharge. In this phase, the incoming water 

contributes to an increase in the water level in the fen but not to a significant evolution of the 

discharge: it is a storage phase. In the second phase, the water level is already high and does 

not increase much but there is a sharp increase in discharge from the fen: this phase is a runoff phase. 

For the purposes of modeling this regime, it is particularly important to identify the threshold on 

the relation where the regime phase changes. Since heavy rainfall can lead to heavy runoff in one 

phase and no runoff in the other phase, successful modeling of hydrological behavior in fens hinges 

on distinction of the two phases [47]. However, water table values often vary as much as 30% for a 

given value of discharge. This high dispersion of water table values may be explained by a hysteresis 

effect [11,48]. Depending on whether the runoff significantly increases or significantly decreases, the 

relation between water table and discharge reacts slightly differently. This creates some uncertainties 

for modeling of the regime phases and thus needs to be considered. 
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Figure 11. Discharge of the site 1 fen is related to the water table measured at well A. 

Discharge and water table data were collected every 15 minutes during the 2009 and 2010 

snow-free seasons. The range of measured values is displayed in percentages, 100% 

corresponding to the maximal measured value (0% to the minimal). Black diamonds show 

discharge and water table values corresponding to image acquisitions. 

 

In situ hydrometric measurements taken at the same time as the satellite images used in this project 

are highlighted in Figure 11. The GeoEye-1 images were acquired during varying hydrological 

conditions, at the beginning and the end of the storage phase. Among the acquired images, the driest 

hydrological conditions (corresponding to the beginning of the storage phase) occurred on 20 June
 

2009, 23 July
 
2009, 28 June 2010, and 9 June 2010. The dry hydrological conditions on these dates 

resulted from the long duration of the day and high temperatures experienced during the months of 

June and July [28]. These conditions imply a higher evapotranspiration rate in peatlands. By this time 

of year, the snowmelt had also ended. The remaining 6 images were acquired during wetter hydrological 

conditions corresponding to the end of the storage phase. These images were acquired in May, August, 

and September 2009 and 2010. In May, the snowmelt often produces wet hydrological conditions in 

peatlands [49]. In August and September, the days shorten and mean temperature falls [28], causing a 

relatively low evapotranspiration rate [40]. Unfortunately, for reasons explained in Section 2.3.1 no 

image was acquired during the runoff phase. Nevertheless, as seen in Section 3.2, our satellite image 

classifications showed that the seasonal spatial dynamics of aquatic and semi-aquatic structures in the 

fens was substantial. The lack of images of high discharge events was not an obstacle to observation of 



Remote Sens. 2012, 4                            

 

1905 

the seasonal hydrological dynamics. These dynamics were considerable during the storage phase and 

seemed to be related to the evolution of the water level.  

In the following analysis, links between the evolution of the measured water levels and the spatial 

dynamics of the aquatic and semi-aquatic compartments were assessed. The aquatic compartments of 

the saturated zone could have been chosen as the only indicators of the spatial dynamics of the 

hydrology of the sites. We chose to include the semi-aquatic compartments as well, as they play an 

integral part in these dynamics. We must remain cautious about this inclusion, however, since the 

results of the last confusion matrix (Table 6) showed that the SEMI-AQUATIC group was less 

precisely classified than the other groups. 

Figure 12 shows the water table variation measured in site 1 compared to the spatial variation of the 

aquatic and semi-aquatic compartments within site 1 (derived from eight GeoEye-1 classifications). 

Linear correlations were established in all cases. Over 60% of the water table variation was explained 

by the spatial variation of the aquatic and semi-aquatic compartments. These correlations were 

significant with a p-value < 0.05. The slope of the linear functions was always positive. This implies 

that higher “aquatic” and “aquatic and semi-aquatic” proportions of the saturated zone indicate a 

higher water table. This result enabled us to validate once more the precision of the performed 

classifications and their relevance for tracking real hydrological variations. 

Figure 12. (a) Water table measured at well A compared to corresponding aquatic 

proportion of the site 1 saturated zone (derived from GeoEye-1 image classifications). 

(b) Water table measured at well A compared to corresponding aquatic and semi-aquatic 

proportion of the site 1 saturated zone. The range of measured water table values is 

displayed in percentages, 100% corresponding to the maximal water table value (0% to the 

minimal). 

 

However, as noted above, the water table data are derived from a local measurement (a single 

point), while the classification-derived results describe the whole saturated zone of the fen. The 
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dynamics of the water table can vary at different locations in a single fen. This may explain why the 

points differ so much from the linear model on some dates (20 June 2009, 9 June 2010). 

Figure 13 shows the water level variation measured in site 2 compared to the spatial variation of the 

aquatic and semi-aquatic compartments within site 2 (derived from eight GeoEye-1 classifications). 

Linear correlations were established in all cases. Over 75% of the water level variation was explained 

by the spatial variation of the aquatic and semi-aquatic compartments. These correlations were 

significant with a p-value < 0.05. The slope of the linear functions was always positive. As for the site 

1 fen, this relation implies that higher “aquatic” and “aquatic and semi-aquatic” proportions of the 

saturated zone indicate a higher water level. This result also enabled us to validate the precision of the 

performed classifications and their relevance for tracking real hydrological variations. 

Figure 13. (a) Water level measured at well B compared to corresponding aquatic 

proportion of the site 2 saturated zone (derived from GeoEye-1 image classifications). 

(b) Water level measured at well B compared to corresponding aquatic and semi-aquatic 

proportion of the site 2 saturated zone. The range of measured water levels is displayed in 

percentages, 100% corresponding to the maximal water level value (0% to the minimal). 

 

There was a significant difference between the R
2
 values of the water levels measured in well A and 

those measured in well B. R
2
 was always lower in the first case than in the second case. This difference 

may be explained by the different types of measurements made. Groundwater level (under the lawn 

surface) was measured at well A, whereas open water level (at the pool surface) was measured at 

well B. The statistics derived from the classifications were related to hydrological variations at the 

surface of the fen and should therefore be better correlated with the evolution of pool water levels than 

with that of groundwater levels. 

The slopes of the linear relations in Figure 13 (site 2 fen) are around two times steeper than those in 

Figure 12 (site 1 fen), reflecting weaker spatial dynamics of the aquatic and semi-aquatic compartments 

in the site 2 fen. The internal structures of the fens undoubtedly influence these slopes. Morphological 

features such as pool area, pool depth, and pool outlines provide some indication of the structure of the 
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peatland [50]. We hypothesize that well-defined pool outlines indicate insignificant spatial dynamics in 

the aquatic and semi-aquatic compartments. Loose outlines, on the other hand, suggest major spatial 

dynamics in the aquatic and semi-aquatic compartments. In the latter case, the incoming water 

cannot be stored vertically in the pool, so it spreads horizontally, which explains why the aquatic and 

semi-aquatic spatial dynamics appear in the imagery. To assess this hypothesis, a comparison between 

the pools of the two sites was made. The pools are generally large on site 2 (Figure 10), whereas the 

proportion of large and small pools is more balanced on site 1 (Figure 8). White found a positive 

correlation between pool area and pool depth [50]. The same study also found that pools with a sharp 

contour were significantly larger than those with a loose outline [50]. Overall, small pools tended to be 

shallow and to have a loose outline, while large pools tended to be deep and to have a sharp outline. 

Our hypothesis suggests that these characteristics should lead to stronger aquatic and semi-aquatic 

spatial dynamics at site 1 than at site 2. However, the strong dynamics observed at site 1 were caused 

by more than just the presence of small pools with loose outlines. As noted above, a very large pool 

near the outlet of the site 1 fen also made major contributions (Figure 8). Water tends to be stored 

downslope in the fen [50]. Large amounts of water coming irregularly from the two wings of the fen 

induced the strong spatial dynamics upstream of the pool. To better understand the degree to which 

various morphological parameters (pool area, depth, outlines) influence the magnitude of increases in 

the proportion of aquatic and semi-aquatic compartments, more sites with very different morphological 

features should be monitored in the future. 

4. Conclusions 

The aim of this work was to investigate the seasonal hydrological dynamics of minerotrophic 

peatlands (fens) with the help of multi-date GeoEye-1 VHR imagery. This was done in order to answer 

the following questions: “Is it possible to delineate and classify the internal structures of peatlands with 

the help of VHR multispectral images?”; “Are there seasonal dynamics of aquatic and semi-aquatic 

structures in patterned fens and can this be quantified with these images?”; and “Can the observed 

dynamics be linked with the hydrological regime of fens?”.  

For these purposes, an object-based classification approach was set up and applied to 10 GeoEye-1 

images acquired during the snow-free seasons of 2009 and 2010 over two fens (site 1 and 2) located in 

the La Grande river basin (54°N, Quebec, Canada). In addition, continuous hydrometeorological 

monitoring was instigated in 2009 of these fens. 

The object-based classification approach provided a satisfactory level of accuracy both for the 

delineation of peatlands (overall accuracy of 93%) and for the distinction of the internal structures of 

peatlands (overall accuracy of 82%). Spectral quality and spatial resolution of GeoEye-1 fused 

imagery was sufficient to discriminate the ecohydrological features in a complex peatlands 

environment. The multispectral data has been particularly important in separating aquatic, semi-aquatic 

and terrestrial classes. Indeed, the vegetation presence and the saturation degree greatly influenced the 

spectral response of these bands. 

Moreover, the time series of the internal peatlands structures mapping demonstrated the existence of 

important intraseasonal spatial dynamics in the aquatic and semi-aquatic compartments of the 

peatlands under study (site 1: 53% of variation; site 2: 17% of variation). It was revealed that the 
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dynamics amplitude depended on the morphological features of the fens. The spatial dynamics appear 

stronger if pool outlines are indistinct than when they are well-defined. Even if the 10 images were 

acquired during low-flow conditions, almost all of the intraseasonal dynamics of the aquatic and semi-

aquatic compartments were captured by the imagery. 

The observed spatial dynamics were closely related to the evolution of the measured water levels. 

Indeed, when analyzing the relationship between peatland water level and discharge, two distinct 

hydrological regimes were observed. The first is the storage phase during which a high increase of the 

peatland water level does not result in significant increase of the outlet discharge. During this phase, 

the spatial extent of the aquatic and semi-aquatic compartments, extracted from the imagery, greatly 

increases. From a certain threshold, there is high increase of the discharge which does not result in 

significant increase of the water level. During this runoff phase, spatial extent of aquatic and semi-

aquatic compartments should not increase significantly. Thus, establishing the threshold of regime 

change by satellite imagery would allow determining the storage capacity of a fen. This is of great 

importance for understanding and modeling the hydrology of patterned peatlands. This study has 

demonstrated the possibility of a hydrological monitoring of peatlands at both intraseasonal and local 

scale. Previous studies were limited to hydrological monitoring at multi-decadal scale. 

This work was conducted over only two experimental sites. It would be interesting to repeat the 

experience on other peatlands with a morphological gradient. This would enable quantifying the 

storage capacity and detecting the position of the threshold of hydrological regime change, from the 

spatial variations of aquatic and semi-aquatic structures extracted from VHR multispectral imagery. In 

this case, care should be taken to measure the flow at the outlet of each fen (in the present study, only 

one fen outlet was instrumented). In addition, water table measurements should be located in strategic 

areas where spatial hydrological dynamics is important, for example in pools with indistinct outlines. 

Sites could be adequately identified and selected using imagery. This study is the primordial stage in 

the development of operational approaches of hydrological monitoring in patterned fens using VHR 

multispectral imagery. The synoptic view complements, or, offers even an alternative to, peatland field 

instrumentation, especially in remote areas. 
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