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Abstract

Epi-macrobenthic species richness, abundance and composition are linked with type, assemblage and structural complexity
of seabed habitat within coastal ecosystems. However, the evaluation of these habitats is highly hindered by limitations
related to both waterborne surveys (slow acquisition, shallow water and low reactivity) and water clarity (turbid for most
coastal areas). Substratum type/diversity and bathymetric features were elucidated using a supervised method applied to
airborne bathymetric LiDAR waveforms over Saint-Siméon–Bonaventure’s nearshore area (Gulf of Saint-Lawrence, Québec,
Canada). High-resolution underwater photographs were taken at three hundred stations across an 8-km2 study area. Seven
models based upon state-of-the-art machine learning techniques such as Naı̈ve Bayes, Regression Tree, Classification Tree, C
4.5, Random Forest, Support Vector Machine, and CN2 learners were tested for predicting eight epi-macrobenthic species
diversity metrics as a function of the class number. The Random Forest outperformed other models with a three-discretized
Simpson index applied to epi-macrobenthic communities, explaining 69% (Classification Accuracy) of its variability by mean
bathymetry, time range and skewness derived from the LiDAR waveform. Corroborating marine ecological theory, areas
with low Simpson epi-macrobenthic diversity responded to low water depths, high skewness and time range, whereas
higher Simpson diversity relied upon deeper bottoms (correlated with stronger hydrodynamics) and low skewness and time
range. The degree of species heterogeneity was therefore positively linked with the degree of the structural complexity of
the benthic cover. This work underpins that fully exploited bathymetric LiDAR (not only bathymetrically derived by-
products), coupled with proficient machine learner, is able to rapidly predict habitat characteristics at a spatial resolution
relevant to epi-macrobenthos diversity, ranging from clear to turbid waters. This method might serve both to nurture
marine ecological theory and to manage areas with high species heterogeneity where navigation is hazardous and water
clarity opaque to passive optical sensors.
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Introduction

The biodiversity conservation strategy usually starts with the

characterization of landscapes and biological communities, then

focuses on habitats that support biodiversity positive anomalies

[1]. Ecological theory assumes that species distributions are

determined in part by environmental gradients and resources [2].

Defining a set of environmental variables which are recognized to

entail direct or indirect responses from presence/absence species

and linking them by an ecologically-relevant statistical model

enable the acquisition of significant information aimed at

conservation planning [2,3,4]. Therefore, spatial predictions of

suitable habitats for hotspots represent a proactive tool for

decision makers in the selection and evaluation of protected areas

[5,6]. Despite the rapidly growing use of ecological spatial

modelling within last decade [3,6,7,8,9], Austin [2] showed a

paucity of consistency between species predictive models and

ecological theory as well as little discussion about these

discrepancies. Statistical models based on linear regression such

as Generalized Linear Models (GLM), Multivariate Adaptative

Regression Splines (MARS) or Structural Equation Modelling

(SEM) are extensively used while being constrained by assump-

tions that ecological data is unlikely to meet, such as normality

and homoscedasticity in species’ response [2,3]. However, new

approaches calling upon nonparametric coefficients, especially

decision trees, have been demonstrated to outperform linear

models since both linear and nonlinear relationships between

biotic and abiotic components are well identified [6,10]. Pittman

et al. [6] equated three modelling techniques for predicting fish

species richness across shallow-water seascapes and concluded

that the tree-based model was more proficient than multiple

linear regression and neural networks, showing an overall map

accuracy of 75% for osteichthyes.

Traditional methods carried out to evaluate and conserve marine

biodiversity have mostly been supported by punctual and scattered

data derived from cursory surveys [11], likely hindering accurate

predictions of areas that should be sanctuarized. In addition to the

development of improved analysis techniques, two major advances

PLoS ONE | www.plosone.org 1 June 2011 | Volume 6 | Issue 6 | e21265



have occurred during the last ten years and have allowed to address

marine conservation issues: the progress of remote sensing and the

change of biological level. Firstly, despite the relative opacity of water

regarding electromagnetic waves, recent improvements have enabled

the acquisition of quasi-continuous measurements of environmental

predictors, either proximal or distal, over broad seascapes and

conduct species distribution or richness modelling through acoustic

methods and optical remote sensing over clear water [6,7,12,13].

Secondly, albeit usually the core of a conservation perspective, a

species-level approach is not appropriate for direct monitoring by

either the best echo-sounder or even the most valuable, spectrally and

spatially, spaceborne sensor. Adopting habitat-level surrogates for

underwater biodiversity both interfaces the resolution inherent to the

sensor with the size of the measured biotic unit and promotes the

conservation of common species complementary to species of interest

(e.g., keystone, umbrella or rare) which would not have received

much consideration otherwise [11].

Depth and structural complexity are indirect environmental

gradients which play fundamental roles in macrobenthic and fish

species richness and abundance [6,14,15]. This assertion is

especially intuitive for epi-macrobenthic species, whose adults are

sessile and communities strongly influenced by habitat selection

preferences of larvae, sensitive to depth-related temperature,

pressure, salinity and bottom structure [16]. Structurally-complex

habitats present larger surfaces than smooth ones, constitute

larger targets for potential colonizers, and can accordingly

receive more immigrants [17]. Robust predictions of species

features are closely dependent on the ability to match response

data resolution with more proximal predictors ( i.e. to accurately

monitor seafloor physical heterogeneity). Austin [2,4] duly

advocated that response data resolution should be consistent

with ecological theory and the predictors being used. However,

spaceborne sensors do not offer high enough resolution to

provide ecologically relevant structural information. Optically

passive airborne platforms are able to derive such resolution but

are limited by water clarity, whereas waterborne devices,

unrestricted by turbidity, cannot acquire data over shallow and

hazardous (strong currents and wind) waters [18].

The airborne bathymetric LiDAR (Light Detection And

Ranging) is the only technique capable of providing large datasets

over turbid and shallow water at an appropriate metricresolutionto

explain the spatial distribution of abiotic and biotic components.

The bathymetric LiDAR is an active laser-based pulsed altimeter

that allows for accurate depth measurements (up to three times the

Secchi depth) by generating Digital Depth Models (DDM) during

optimal environmental windows, making it a time and cost-effective

tool in support of coastal hydrography [18]. LiDAR has recently

been used towards benthic habitat mapping [15,19,20,21], as well as

the characterization of their structural complexity using full-

waveform data [22]. Using such an innovative technique to derive

seabed and bathymetric features in modelling species richness,

abundance and composition in opaque nearshore areas is a novel

approach and may considerably facilitate the delineation of areas

showing high levels of ecological importance.

This work’s objectives are to (1) establish the species richness,

abundance and composition of the epi-macrobenthic species within

the Baie des Chaleurs (Québec, Canada) , (2) retrieve seabed type

and diversity data as well as morphometric features from full-

waveform LiDAR data, (3) assess the amount of variability in biotic

indices that can be reliably predicted by LiDAR-derived controlling

factors by means of machine learning techniques, and (4) model the

spatial patterns of biotic information across the LiDAR-surveyed

whole area using GIS.

Materials and Methods

Study site
The study took place along a part of the north shore in the Baie

des Chaleurs (48uN, 65uW), southern Gulf of Saint-Lawrence,

Quebec, Canada (Fig. 1). The Baie des Chaleurs is a semi-enclosed

basin 130 km long, steadily widening and deepening towards the

opening, i.e., 40 km and 90 m, respectively. The coast of Saint-

Siméon – Bonaventure was selected based upon the broad range of

habitat diversity: a river delta, sand banks, boulders, pebbles, kelp

fields and an eelgrass meadow. The structural complexity inherent

to boulders and their surroundings offer refuges, whereas the

sedimentary crown is a suitable hunting-ground for lobsters. The

alternation and the adjacency of algae-covered boulders and sand

patches create a heterogeneous mosaic in this benthoscape, and are

therefore correlated with a high probability of lobster (Homarus

americanus) presence, as demonstrated by the monospecies-oriented

catch effort. Two spionidae polychaetes, Prionospio steenstrupi and

Spiophanes bombyx, the bivalve Spisula spp., the crustacean Corophium

bonelli, and the echinoderm Echinarachnius parma were sampled over

sandy-gravely seabed, while the macroalgae Laminaria spp. popu-

lated cobble and pebble bottoms [23].

Epi-macrobenthic diversity and abundance responses
The ecological model assumed that surveyed epi-macrobenthic

species distributions were determined at least in part by environ-

mental gradients, and that reasonable approximations for these

gradients could be estimated [2,4]. Despite the added theoretical

complexity, collective properties of the epi-macrobenthic popula-

tions, such as species richness, abundance and composition, were

investigated owing to their ecological significance.

Sampling design
Macrobenthic sampling surveys were carried out between the

25th June and the 3rd July 2006, with an underwater digital high-

resolution (5 megapixels) camcorder. The camera was mounted on

a tetrapod frame, and dropped over the seabed. Face to the field of

view, a reference ruler was added on the frame in order to evaluate

the size of objects of the seafloor. Each image was captured from a

continuous video and monitored 0.16 m2 (0.460.4 m). A total of

300 images were collected and their position accurately recorded

by a Differential GPS (DGPS), meeting a submetric horizontal

accuracy. Constrained by the draught-imposed limit landward and

the loss of the LiDAR bottom signal seaward, which a posteriori

corresponded to the 16 m isobath, the sampled area covered

8 km2. Point-observations were spread across the entire study

area, without a priori knowledge of the distribution of substrata.

The analysis of the seabed image allowed the computing of

diversity and abundance indices at each point.

Diversity and abundance indices
Biological diversity and abundance indices associated to epi-

macrobenthic features were derived from a species-sediment matrix.

Each row of this matrix corresponded to the percentage of the

surface covered by epi-macrobenthos and sediment variables. The

quantification of the surface occupied by each benthic component

was facilitated by the superimposition of a grid of 100 uniformly

distributed squares on each photograph [24]. The identification of

both the lowest possible taxonomic level and the grain size

constituted 12 biotic and 4 abiotic variables: Crustacea, Echinoidea,

Annelida (and/or burrows), Gastropoda, Asteroidea, Dead shells,

Fucus spp., Zostera marina, Chondrus crispus, Laminaria spp., Chorda

tomentosa, Polysiphonia spp., Boulders .256 mm with encrusting

algae, Cobbles.64 mm, Pebbles.4 mm, Fine-sand.0.06 mm.

Coastal Biodiversity Using LiDAR, Machine Learners
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The a-diversity was defined as the species richness (S) of

epi-macrobenthos within each station. Since the observed number

of species in the survey is a biased estimator of the true species

richness in the area, and since the observed species number

increases non-linearly with sampling effort, the species richness of

the observed epi-macrobenthic species richness was referred to as

species density (d) per m2. The abundance and composition of

biotic components were examined by means of seven indices: the

overall abundance (A), i.e., sum of the percentages of the colonized

surface, and its log transformation, the Simpson diversity index

applied to the percentages of the surface (D), expressed as one

minus the sum of the squares of the ratio of the image covered by

the ith biotic variable with overall abundance, and its log

transformation, the Shannon diversity index applied to the

percentages of the surface (H’), corresponding to the opposite of

the sum of the fraction of the image covered by the ith biotic

variable multiplied by the natural logarithm of this same fraction,

and its log (X+1) transformation, as well as a modified Pielou

evenness (mJ’), computing the ratio between the previous Shannon

index and the natural logarithm of the species richness +1.

The data model used in this work was clearly underpinned by

both the purpose of the paper and the scale, which is consistent

with the underlying ecological theory. In addition, the selection of

biotic variables, namely various measures of diversity and

abundance data, was incorporated within the data model. The

last salient part of the data model relied upon the selection of

environmental variables. Albeit indirect, the bathymetry and

derived features, as well as the seafloor nature and diversity, were

recognized to be robust proxies for modelling spatial distribution

of benthic species [5].

Seafloor structure and diversity predictors
The bathymetric variability and related spatial configuration

structuring the neritic benthoscape at fine-scale as well as the seafloor

structure and diversity were quantified using the Scanning Hydro-

graphic Operational Airborne LiDAR Survey (SHOALS) system.

Bathymetric LiDAR
The SHOALS system is an airborne, scanning, pulse-based laser

altimeter that measures accurately and reliably the distance from the

aircraft to the surface and the sea bottom. Unlike passive sensors

constrained by solar irradiance, the active bathymetric LiDAR has

the capabilities to acquire bathymetry and seafloor data in only

accounting for its own energy source, thus providing data over water

bodies considered too turbid for any optical passive sensors. Other

conspicuous reasons for integrating this state-of-the-art technology to

Figure 1. Location of the study area along Bonaventure’s nearshore area (South of Gapsesia Peninsula, Quebec, Canada) and the
underlying LiDAR bathymetric map based upon a 2 m grid. Water depths ranged from 2.05 to 10.91 m.
doi:10.1371/journal.pone.0021265.g001
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marine ecology are i) the ability to complete rapid high-resolution

surveys over large areas in very short periods (relevant for monitoring

seasonal or storm-induced change), increasing the cost-effectiveness

[18], ii) the capacity to map habitats where it would be hazardous to

use waterborne techniques [25], and iii) the facility to simultaneously

survey the subtidal, intertidal and supratidal ecological structures

[26]. The SHOALS measurements are accurate to IHO Order 1

standards, i.e., 60.15 m vertically and 62 m horizontally [25]. Each

sounding was precisely positioned by the recording of the aircraft

(using a differential and kinematic GPS) and its roll, pitch, and yaw at

200 Hz by an Inertial Measurement Unit (IMU). The system emits

the 532 nm wavelength (green) from a Nd-YAG laser, allowing the

detection of bottom characteristics because of its high water

transmission. In addition, the SHOALS system is a full-waveform

system which allows the digitization and recording of the entire

backscattered signal as a function of time for each laser pulse. A

typical waveform may be divided into three distinguished parts: water

surface, water column, and the benthic return (Figure 2). The

SHOALS scanning operated at 3 KHz, and the study area was

covered by a series of 8 NW-SE overlapping flight lines at

269.369.6 m altitude inducing a swath width of 198.164.4 m and

a spot spacing of 2 m, i.e., 2 548 536 soundings covering a 7.982 km2

seafloor area. The maximum depth penetration matched the 16 m

isobath owing to water clarity of this bay at this time.

Bathymetry and derived morphometric indices
The influence of the bathymetry and related structural

complexity on benthic community ecology has been well docu-

mented [27], and is what prompted the use of these continuous

variables as robust environmental predictors. The bathymetric

LiDAR points, containing easting, northing and ellipsoidal height,

were processed into IDL-ENVI 4.2 [28] so that different surfaces

were constructed. Triangular Irregular Networks (TIN) were

constructed based on the ellipsoid-corrected height that was linearly

interpolated to a 2 m resolution Digital Depth Model (DDM) with a

very high resolution accuracy of 15 cm. In addition to the mean

bathymetry, the complexity of the benthic structure was examined

in extracting 12 bathymetric features, such as Absolute Roughness,

Local Roughness, Slope, Aspect, Shaded Relief, Profile Convexity,

Plan Convexity, Longitudinal Convexity, Cross Sectional Convex-

ity, Minimum Curvature, Maximum Curvature, Root Mean

Square Error (Table 1). Each morphometric index of the fine-

grained benthoscape was quantified and then spatially rendered by

building a 2 m grid. Based upon these macrohabitat-related

measurements, two bathymetric feature classification images were

created at two spatial scales (6 m and 12 m), and each pixel of the

output was assigned according to the following terrain types: peak,

ridge, pass, plane, channel or pit [29].

Seafloor nature
The seafloor nature may be deemed as habitat type in this study’s

context. This nominal environmental predictor has long been linked

to macrobenthic assemblages [30,31,32]. The bathymetric LiDAR

has recently been used to discriminate benthic habitats through

waveform-retrieved statistical parameters from the benthic part

[20]. Briefly, the designed methodology consisted of retrieving the

benthic waveform, computing 12 statistics, non-linearly regressing

them on depth, keeping the first Principal Components (PC) and

classifying them (detailed in [20]). The same authors then added the

quantiles of the benthic waveform and tested the enhanced LiDAR-

derived dataset as a surrogate for the benthic type [22]. We

proposed here to refine the methodology in synthesizing the deciles’

information, 10 intensity-related bands, into a band corresponding

to the Shannon diversity index.

A greater diversity of deciles within the benthic waveform

returned a high H’dec value. In addition to the H’dec variable, other

descriptive statistical variables were computed - namely mean,

variance, skewness, kurtosis, median, mean absolute deviation,

area under curve, maximum, minimum, time and intensity ranges

between 0% and 100% of the benthic waveform, as well as mean,

variance, skewness, kurtosis, quantifying the curve stretching from

the end of the water column to the start of the benthic signal. The

dataset, composed of 16 variables and 2548536 soundings was

then constrained by the methodology designed by Collin et al.

[20,22]. A 2 m62 m seafloor map was achieved using a supervised

classification, performed by the Support Vector Machine (SVM).

Given that LiDAR soundings were accurately located to within

2 m, no post-classification resampling was proceeded. Accuracy

assessment of the seafloor map was conducted based on a

confusion matrix confronting the resulting map, derived from

training polygons (2/3 ground-truth pixels), and validation

polygons (1/3 ground-truth pixels).

Seafloor diversity
In addition to the seafloor categorization, the seafloor b-

diversity was calculated using special codes written in IDL 6.2

[28]. Applied to the thematic seafloor map (raster grid of pixels),

two algorithms returned the composition of seafloor types, in the

form of metrics, around one pixel within a kernel of a given radius.

The Bray-Curtis dissimilarity [33] value reflected the dissimi-

larity between the species compositions of two locations. A score

near 0 was obtained between similar regions, while a maximum

score of 100 described two entirely different locations. The Pielou

evenness index [7] was comprised into 0-1 boundaries, where 0

meant a single substratum type covering the kernel, and 1 referred

to an equal proportion of all substratum types within the kernel.

Machine learners
Habitat suitability and species distribution predictions require

reliable and robust modelling techniques. Because of the

widespread variety of interactions between species individuals

with their biotic and abiotic environment, it is well admitted that

traditional statistical models mostly provide relationships between

the contextual realized niche of a species rather than the

fundamental one [3,34,35]. However, recent research advance-

ments in statistics, called machine learning, enable to overcome

overly simplistic species-habitat modelling by automatically

recognizing complex patterns based upon improvements and in

making decisions based on these improvements [36]. In addition

Figure 2. Chart of the bathymetric LiDAR full-waveform
monitored by the green (532 nm) channel. This signal was
acquired at 4.50 m depth and the oblique dashed line consisted of a
linear fit of the water column return.
doi:10.1371/journal.pone.0021265.g002

Coastal Biodiversity Using LiDAR, Machine Learners

PLoS ONE | www.plosone.org 4 June 2011 | Volume 6 | Issue 6 | e21265



Table 1. Description of the LiDAR-derived environmental predictors.

Predictors Description Unit

Bathymetry Bathymetry Average bathymetry Meters

Absolute Roughness Standard Deviation of bathymetric values between pixel and eight neighbours Meters

Local Roughness Slope-corrected Absolute Roughness Meters

Slope Average rate of change in slope between pixel and eight neighbours Degrees

Aspect Horizontal direction to which the pixel slope faces Degrees

Shaded relief Computed cast shadow thrown upon raised bathymetric DEM (Lambertian surfaces) Lux [0-1]

Profile Convexity Intersection between the plane of the bathymetry axis and aspect direction (rate of
change of slope along the profile)

+:convex-
:concave

Plan Convexity Intersection between the latitutde-longitude (rate of change of aspect along the plan) +:convex-
:concave

Longitudinal Convexity Intersection between the plane of the slope normal and aspect direction Degrees

Cross-sectional Convexity Intersection between the plane of the slope normal and perpendicular aspect direction Degrees

Minimum Curvature Minimum overall surface curvature Degrees

Maximum Curvature Maximum overall surface curvature Degrees

Root Mean Square Error Residuals between the quadratic surface and the actual digital elevation data Meters

Bathymetric features (6 m) Classification of morphometric features at 6 m scale: ridge, pass, channel Class

Bathymetric features (12 m) Classification of morphometric features at 12 m scale: ridge, pass, channel Class

Substratum Substratum type Classification of substratum type relied upon 16 waveform-based statistics and
camera-driven photos

Class

Substratum Dissimilarity Bray-Curtis Dissimilarity applied to substratum type map Percent

Substratum Evenness Pielou Evenness applied to substratum type map [0–1]

Benthic Waveform Mean Mean of the probability distribution of the benthic waveform intensity Photo
counts

Variance Squared deviation of the probability distribution of the benthic waveform
intensity

Photo
counts

Skewness Asymmetry of the probability distribution of the benthic waveform intensity Photo
counts

Kurtosis Flattening of the probability distribution of the benthic waveform intensity Photo
counts

Median Median of the benthic waveform intensity Photo
counts

Mean Absolute deviation Average deviation from the Mean Photo
counts

Minimum Minimum value of the benthic waveform intensity Photo
counts

Maximum Maximum value of the benthic waveform intensity Photo
counts

Area Under Curve Integration of the tabulated waveform on the closed benthic interval Photo
counts2

Intensity Range Intensity Difference between the maximum and the minimum values of the
benthic waveform

Photo
counts

Time Range Time Difference between the maximum and the minimum values of the
benthic waveform

Nano-
second

Intensity Shannon Shannon diversity index applied to benthic waveform intensity deciles [0–1]

Transition Waveform Mean Mean of the probability distribution of the water column-end/benthic-start
waveform intensity

Photo
counts

Variance Squared deviation of the probability distribution of the water column-end/benthic-start
waveform intensity

Photo
counts

Skewness Asymmetry of the probability distribution of the water column-end/benthic-start
waveform intensity

Photo
counts

Kurtosis Flattening of the probability distribution of the water column-end/benthic-start
waveform intensity

Photo
counts

doi:10.1371/journal.pone.0021265.t001
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to being clearer in terms of ecological interpretation (decision

rules), supervised learners can elucidate very complex underlying

relationships even though the mathematical form of the depen-

dencies are unknown. Thus, their systematic superiority of

performance over linear models is even generalized [10]. Model

performance, however, has commonly been assessed by a single n-

class combination, which might lead to questionable outputs.

While developing a series of seven statistical models, such as Naı̈ve

Bayes, Regression Tree, Classification Tree, C 4.5, Random

Forest, Support Vector Machine, and CN2 learners, we analyzed

their performance against the number of categories (or classes)

within each of the eight biotic responses (Figure 3).

The Naı̈ve Bayes is a simple probabilistic classifier based on

applying Bayes’ theorem with strong independence assumptions.

Relative frequency was the method used for estimating prior class

probabilities from the data, and the classification threshold was

fixed at 0.5.

Decision trees are constituted of leaves representing predicted

outcomes and branches representing conjunctions of features that

lead to those outcomes [37]. The Regression Tree gives a numeric

(e.g., real number) value as the output, and is built by using a data-

analysis method that most effectively and recursively partitions

data into sets each of which are simply modeled using regression

methods. Settings specified to the regressor were the binarization,

i.e., the splitting of values within multivalued variables into two

groups in the particular node, the pruning during the induction,

i.e., prohibiting the splitting with less samples than 10, and finally,

the pruning after the induction with 5-estimate of error. Unlike

Tree Regression, leaves of Classification Tree are composed of

classes (categorical values) to which data belong. However, settings

assigned to Classification Tree were rigorously similar to those of

Regression Tree, with the addition of a variable selection criterion

based upon the information gain (difference in entropy) as well as a

recursive merge of leaves with same majority class within the post-

pruning. Overfitting of decision trees can thus be avoided by

halting tree growth when no more significant information can be

gained. The originality of the C 4.5 algorithm relies on the gain

ratio (variable selection criterion) that results from choosing the

variable with the highest gain ratio for splitting the data and

making the decision [38]. The pre and post-prunings were defined

by 10 samples minimum for splitting and a confidence level of 25,

respectively. Random Forest is a classifier that builds a set of

classification trees [37]. Each tree growth is developed from a

bootstrap sample from data, and an arbitrary (or randomly) subset

of variables (n = 6, i.e., square-root of the number of predictors)

from which the best variable regarding splitting is adopted. The

classification is founded on the majority vote from individually

developed tree learners in the forest (constituted, here, of 10 trees).

Although Brieman [37] advocated letting trees grow without any

pre-pruning, we set at 10 the minimum number of samples within

a node before splitting, for the sake of unequivocal comparisons.

The Support Vector Machine classifier constructs a separating

Figure 3. Workflow summarizing the statistical analysis. Blue tabs indicated initial datasets and the discretization procedure; orange tabs
highlighted machine learners used; green tab represented the models’ evaluators and red tabs represented analytical evaluators.
doi:10.1371/journal.pone.0021265.g003

Coastal Biodiversity Using LiDAR, Machine Learners

PLoS ONE | www.plosone.org 6 June 2011 | Volume 6 | Issue 6 | e21265



hyperplane or set of hyperplanes in the variable-dimensioned

space which has the largest distance to the nearest samples of

different classes. In order to create non-linear classifiers, we chose

a Radial Basis Function kernel that efficiently (less complex and

fewer numerical difficulties than a polynomial kernel) transforms

variable space to a new feature space supporting the margin-

maximized hyperplane [39]. Furthermore, even if it slowed down

the algorithm, the dataset was normalized for better classification

performance. The CN2 classifier produces an ordered list of if-

then rules from data. Rules induced by CN2 each have the form

‘‘if complex then predict class’’, where complex is the conjunction of

variable tests [40]. The iteratively-searched complex was optimally

both predictive and reliable according to Laplace’s evaluation

function [41]. Carrying out a pre-pruned general-to-specific

search, we set two parameters of Likelihood Ratio Statistics,

namely Alpha ( = 0.05) and Stopping Alpha ( = 0.2). Alpha

determined required significance of a rule when compared to

the default rule, and Stopping Alpha verified whether the last

specialization of the rule was significant enough. The best rules,

whose number was set at 5, were, in each step, further specialized,

while other rules were discarded. Finally, the algorithm was

implemented so that all covered samples were removed and

learning on remaining samples was continued (i.e., exclusive

covering).

Spatial autocorrelation
Spatial autocorrelations of the selected diversity response (initial

and predicted) were evaluated using the univariate Moran’s I. The

Moran’s I looks for an overall pattern between the proximity and

similarity of samples, in comparing the differences between

neighboring samples and the mean to provide a measure of local

homogeneity. This index indicates high positive and negative

spatial autocorrelation when tending to 1 and 21, respectively,

while it reveals that data are spatially uncorrelated when near 0.

Moran’s I was computed using the open-source GeoDa 0.9.5

software intended for exploratory spatial data analysis [42].

Evaluation of learners’ accuracy
Predictions of the 8 biotic responses stemming from the 7

learners were evaluated by means of a 34%-random test dataset

(n = 100), as well as 4 performance scores. We chose a high dataset

size (relatively to the training dataset) in order to avoid

overestimated performance measures, as smaller size, cross-

validation or leave-one-out methods would run. The Classification

Accuracy (CA) of a learner is the ratio of the number of samples

correctly classified (true positives + true negatives) divided by the

total number of sample cases. As a summary statistic, the Area

Under receiver-operating characteristics Curve (AUC) was equal

to the probability that a learner ranked a randomly-chosen

positive sample higher than a randomly-chosen negative one. A

high-quality test had an AUC approaching 1. The Information

Score (IS), i.e., information-based evaluation criterion, was the

average amount of information per classified sample, as defined by

Kononenko and Bratko [43]. It excluded the influence of prior

probabilities (which might enable a completely uninformed learner

to trivially achieve high classification accuracy), and dealt with

various types of imperfect or probabilistic answers. The IS’s upper

limit equaled to the entropy (best) of the class and the lower limit is

0 (worse). Brier score measured the accuracy of probability

assessments, which measured the average deviation between the

predicted probabilities of events and the actual events. The Brier

score was a proper score function (0: perfect prediction, and 1:

completely false prediction) that measured the accuracy of a set of

probability assessments, which computed the average squared

deviation between predicted probabilities of events and the actual

events [44]. In addition to calculations of those performance

measures, we tested the evolution of the learners’ predictions in

respect to the number of responses’ class. Based upon the equal-

width discretization process of the response variable [41],

performance accuracy was evaluated for 2 to 10 classes with a

1-class step.

The confusion matrix and the Receiver Operating Character-

istics (ROC) were exclusively employed for the best learner with

the best number of class, and allowed to support finer assessments

of performance.

The statistical distributions for each biotic response was

analyzed with the software JMP 8 [45], and models were

developed using the open-source Orange software [41].

Results

Biological responses
The eight biotic indices showed both uni- and multimodal Gaussian

distributions (Figure 4 and Table 2). As a categorical index, Species

Density (d) displayed the most well-defined multimodal distribution,

i.e., a fourfold one. This index was significantly correlated with

Shannon index (H’), 0.8322 with p,0.05, as well as Log(Shannon+1),

i.e., Log(H’+1), 0.8262 with p,0.05. The abundance appraisal,

Overall Abundance (A), might be depicted as tri- or bimodal

distributions. The distribution of its Log transformation (Log(A)) was

much closer to a single leptokurtic mode with negative skew. While A

was significantly correlated with Simpson index (D), 0.913 with

p,0.05, and Log(Simpson), or Log(D), 0.9238 with p,0.05, Log(A)

was significantly correlated with Log(D), 0.9799 with p,0.05. The

Simpson index (D) distribution matched a positive-skewed leptokurtic

unimode, and the distribution of its Log transformation (Log(D))

exhibited a negative-skewed leptokurtic bimode. The histogram of

Shannon index (H’) revealed a positive-skewed platykurtic bimode.

While the pattern of Log(H’+1) distribution basically matched that of

H’, lowered variance and skewness characterized it. Both latter

distributions were significantly correlated with modified Pielou

Evenness (mJ’), 0.8772 with p,0.05 and 0.8875 with p,0.05,

respectively. As for mJ’, its distribution followed a strongly negative-

skewed platykurtic unimode.

Learners and evaluators
Along the increasing gradient of the number of classes, the four

evaluators basically indicated a performance reduction for most of

the learners (Figure 5). The best performance was therefore

attained when the discretization was only binary (i.e., 2 classes),

except for the evaluator Information Score (IS). The maximum of

the Classification Accuracy (CA) met 0.83 with both the Support

Vector Machine (SVM) and C4.5 while classifying Species

Diversity (d) and Log(A), respectively, into 2 classes. The Area

Under receiver-operating characteristics Curve (AUC) also topped

with 2 classes at 0.78 resulting from the d classification by Naı̈ve

Bayes (NB). The best performance of Brier score (Bs), i.e., 0.28,

also emerged with 2 classes stemming from the d classification by

SVM. As for IS, the maximum, i.e., 0.56, was met with 7 classes

resulting from the C4.5-clustered A. For all learners, the decrease

of the CA performance across the number of classes strongly

matched a number of classes-inversed model (Table 3). Although

the best model depicting the decline of the AUC and the IS as a

function of the number of classes was also an inverse model, the

scores were lowly significant and even insignificant. Since a good

prediction amounts to zero-neighboured Brier index, the loss of

performance across the number of classes was satisfactorily

modeled by a growing inverse adjustment, whose R2adj. reached
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sizeable values. Since binary classifications oversimplified the

current ecological modelling, we excluded it from the selection of

the best algorithm. Hence newly-highlighted maxima of CA, AUC

and Bs were systematically found with the Random Forest (RF)

learner related to a tercile discretization, and D (0.69), A (0.73) and

D (0.49). The classification involving D with the RF and three

classes have hence been chosen according to both CA and Bs

indices.

Selected model
Neither the initial Simpson diversity dataset nor modelled

Simpson values displayed significant spatial autocorrelation

(Moran’s I = 0.13 and 0.36, respectively). Those results assumed

that the contribution of the spatial autocorrelation was sufficiently

low to not bias the predictions. The selected Random Forest Tree

consisted of 7 nodes with 4 leaves including bathymetry, time range

and skewness predictors (Figure 6); two latter ones were derived

from LiDAR benthic waveform (Figure 2). The contributions of

these 3 splitting variables explained 62.83% of the total variation in

epi-macrobenthic Simpson diversity. The first split was based upon

mean bathymetry, and the learner computed a threshold value of

6.25 m depth to discriminate deeper habitats from habitats closer to

the shoreline. On one side, deeper habitats were divided into high

and medium Simpson diversity (i.e., .0.6667 and [0.3334, 0.6667),

respectively) according to the time range split evaluated at 3.83 ns.

On the other side, shallower habitats were distinguished between

Table 2. Descriptive statistics of the eight biotic indices.

Biotic indices Mean Variance Skewness Kurtosis
Coefficient of
Variation

Species Density (d) 11.83 25.68 0.58 20.3 42.83

Overall Abundance (A) 274.83 29594.71 0.36 20.98 62.59

Log(Overall Abundance) 2.31 0.15 21.14 1.17 16.6

Simspon (D) 0.21 0.07 1.35 0.68 121.87

Log(Simpson) 21.17 0.59 20.79 0.58 268.98

Shannon (H’) 0.19 0.009 0.17 20.8 51.48

Log(Shannon +1) 0.07 0.001 0.028 20.86 48.1

Modified Pielou Evenness (mJ’) 0.41 0.02 20.63 20.17 36

doi:10.1371/journal.pone.0021265.t002

Figure 4. Distributions of the eight biotic indices in the form of shadowgrams statistically analyzed by quantile box plots, and
augmented by the photograph of the station corresponding to the maximum of the related index.
doi:10.1371/journal.pone.0021265.g004
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medium and low Simpson diversity ([0.3334, 0.6667) and ,0.3334,

respectively) supporting from the splitting of the skewness variable

optimized at 23.44 ns (Figure 6).

Despite the best overall performance among learners, the rate of

good prediction depended upon the target class, as both confusion

matrix and ROC curves demonstrated it (Figure 7). The low

Simpson cluster (,0.3339) was highly satisfactorily classified

(78.3% and 88.5% of predicted and true proportions, respectively)

by RF as both the upper left position of the red ROC curve,

relatively to other coloured curves, and the optimal threshold

Figure 5. Three-dimensional scatterplots of the eight biotic indices representing the values taken by four evaluators in respect to
the seven machine learners and to nine numbers of classes. The four coloured envelopes correspond to the four nonparametric density
contours (each one associated with one evaluator group), drawing a 50% kernel contour shell around the points.
doi:10.1371/journal.pone.0021265.g005
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given 500/500 costs, indicated it. The confusion matrix summa-

rized a moderate performance (50% and 36% of predicted and

true proportions, respectively) concerning the medium Simpson

class [0.3339, 0.6667). However, the RF-related envelope still

encompassed the tangential point of the iso-performance line, and

outperformed the other learners from a sensitivity neighbouring

0.58 to 1. Note that Regression, Classification and C4.5 classifiers

displayed negative predictive power. Finally, even if the confusion

matrix showed moderately-scored classification (46.1% and 42.8%

of predicted and true proportions, respectively) into the high

(.0.6667) Simpson class, the RF ROC curve revealed a non-

random classification (above the diagonal), as well as best-

emphasized convexity (distance regarding the diagonal) together

with Naı̈ve Bayes and Regression Tree learners.

Relationships between Simpson index and best
predictors

Even if values are low, Simpson index displayed significant

correlations with bathymetry (Pearson correlation r = 0.1194,

p = 0.0394*), time range (Spearman correlation r= 20.1771,

p = 0.0021*), and skewness (Pearson correlation r = 20.0794,

p = 0.1718; and Hoeffding correlation DH = 0.0210, p#

0.0001*). Simpson index therefore decreased with the vicinity

of coastline, benthic waveform spreading as well as benthic

waveform skewed to the right (visual support from Figure 2).

The Simpson index and the three predictors were averaged per

20 stations in order to determine trends of the Simpson diversity

across the three gradients (Figure 8). Highest values of

bathymetry, time range and skewness (3.86 m, 4.39 ns and

0.92 ns, respectively) were associated with the lowest value of

Simpson (0.006). Both time range and skewness gradients

exhibited a constant decrease against Simpson index classes,

as witnessed by their trendlines in the form of a natural

logarithmic regression (R2 = 0.62 and R2 = 0.48, respectively).

However, the bathymetry did not follow a clear decline against

Simpson index, but fitting a 2-degree polynomial model

properly matched their relationships (R2 = 0.56). The ‘‘syncli-

nal’’ model relied upon deep bottoms linked with both the

lowest and highest Simpson classes, as well as shallow bottoms

related to medium Simpson classes.

Table 3. R2 adjusted of the model describing the evolution of the eight biotic indices against the inversed number of classes as a
function of the four evaluators.

Biotic indices Classification Accuracy Area Under Curve Information Score Brier score

Species Density (d) 0.44 0.12 0.16 0.28

Overall Abundance (A) 0.85 0.05 0.09 0.46

Log(Overall Abundance) 0.83 0.15 0.27 0.65

Simspon (D) 0.23 20.02 0.19 20.51

Log(Simpson) 0.88 0.23 0.17 0.63

Shannon (H’) 0.88 0.15 20.000045 0.36

Log(Shannon +1) 0.91 0.08 0.006 0.35

Modified Pielou Evenness (mJ’) 0.87 20.009 0.48 0.43

doi:10.1371/journal.pone.0021265.t003

Figure 6. Random Forest tree model for Simpson index (D) discretized into three classes across a neritic benthoscape located north
of the Baie des Chaleurs (Québec, Canada). Within each node are mentioned the label of the class (1st line), the probability of belonging to the
target class (2nd line) and the splitting variable. Above the node is indicated the threshold value related to the splitting variable inherent to the
previous node. Pie plots associated with each node show the number of training samples belonging to the ,0.3334 (green), [0.3334, 0.6667) (yellow),
and .0.6667 (red) classes.
doi:10.1371/journal.pone.0021265.g006
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Predictive map
The modelled spatial distribution of epi-macrobenthic

Simpson index highlighted both a diversified elongated offshore

band to the west of the survey, scattered patches to the south,

and a taxa-homogeneous area landward (Figure 9). The

Simpson pattern of distribution was strongly influenced by

bathymetry, as corroborated by its hierarchical status within the

Random Forest splitting. Shallower-mapped pixels mostly

appeared as belonging to the low class, except scarce and

disseminated soundings. Otherwise, deeper-mapped pixels

benefited much more from sample-balanced splitting, regarding

the time range. While the high-labeled space units (i.e., low time

range) were situated seaward, the medium-classified pixels (i.e.,

high time range) chiefly resulted over contours squeezed

between low and high classes.

Discussion

Explicitly comparing competitive machine learners enabled to

select the Random Forest algorithm (Classification Accuracy: 0.69)

and to capture an efficient combination of predictors of epi-

macrobenthic Simpson diversity, despite their low Pearson’s

correlations. Through only three variables derived from bathy-

metric LiDAR waveform (bathymetry, time range and skewness),

efficient predictive mapping of the biotic index was fully driven

across turbid nearshore ecosystems.

Revealing the depth and the structure of epi-
macrobenthos habitat

The positive correlation linking Simpson index and bathymetry

could be interpreted as a consequence of the hydrodynamic

Figure 7. Receiver Operating Characteristics curves of the three final Simpson index (D) classes. The diagonal line (black thin) represents
the behaviour of a random classifier. The iso-performance line (black bold) embodies all the points subject to trade-off between true positive
(benefits) and false positive (costs), in the ROC space. The confusion matrix is depicted on the bottom right corner.
doi:10.1371/journal.pone.0021265.g007
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influence. Parallel to the coastline, a 50–100 m slice of sandy-

gravely area was well nourished by meso- and microscale

sedimentary dynamics (regional alongshore current and closeness

to both an estuary and a tidal marsh), hindering an increase in the

bottom structural complexity, correlated to the available amount

of microhabitats. A little more seaward, substrata seemingly

remained equivalent as in shallower areas regarding their niche-

diversified properties, but actually lay on bedrock [23], which

provided an augmented array of epi-macrobenthic refuges. Such

added information stemmed from an acoustic survey, whose

backscatter released meaningful products regarding the hardness/

smoothness of the seabed. The evaluation of such parameters with

LiDAR is an ongoing research, but has already been demonstrated

at fine-scale (surface density of sand ripple correlated with a

532 nm LASER, [46]). Many biological and ecological processes

within temperate coastal oceanic provinces are recognized to be

driven by light, temperature, nutrients and currents, all of which

are influenced by bathymetry [6,12]. Although water depth did

not directly act on benthic communities’ structure and dynamics,

bathymetry exerted an important control, or at least was a reliable

proxy for proximal variables of Simpson diversity in shallow

marine systems, considering the level of surrogacy inherent to

these processes. Based upon the recurrent explanatory power of

bathymetry among the wide range of environmental predictors

available, the sea level rising could be assumed to induce landward

shifts of controlling gradients, thus dramatic changes with which

coastal and marine epi-macrobenthic organisms will have to cope.

Otherwise, the negative relationships between Simpson index

and skewness showed that the shape of the LiDAR benthic

waveform could measure the biodiversity of such a shallow

Figure 8. 20 stations-averaged Simpson index in respect to the three 20 stations-averaged predictors highlighted by the Random
Forest learner: bathymetry (light blue), time range (light green) and skewness (light red). Trendlines correspond to 3-degree polynomial
fitting models and R2 stand for the coefficient of determination.
doi:10.1371/journal.pone.0021265.g008

Figure 9. Map predicted epi-macrobenthic Simspon index (D) model for a neritic benthoscape of north of the Baie des Chaleurs
(Québec, Canada) derived from the selected Random Forest Tree.
doi:10.1371/journal.pone.0021265.g009
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environment. The significant natural logarithmic fitting indicated

that a low Simpson index matched a right-skewed benthic

waveform distribution, while a high Simpson index corresponded

to a left-skewed benthic waveform distribution. The pseudo-angle

that could be drawn between the end part of the water column and

the beginning part of the benthic return (cf. Figure 2) tended to be

acute when photons related to the beginning of the benthic return

were reflected evenly and within a relative short temporal window.

This helped reveal the flatness of the benthic cover, hence the low

Simpson diversity (Figure 10a). Conversely, the less acute the

pseudo-angle was, the more widespread the distribution of the

beginning of the benthic return was. This result was highlighted as

a more complex benthic cover, providing a larger range of

ecological niches, hence the high Simpson diversity (Figure 10b).

Collin et al. [26] sought for assessing a bespoke ‘‘Habitat

Rugosity’’ by means of LiDAR abilities and found a negative

correlation (Pearson = 20.17) between the designed index and the

skewness stemmed from the LiDAR benthic return. This

corroborates with our last result and supports the assumption that

left/negative-skewed benthic return witnessed the vertical struc-

tural complexity of the benthic cover.

The negative relationship between Simpson index and time

range implied that a Simpson-diversified benthic cover was

related to a shortening of the benthic return distribution. Taking

into account the link between Simpson index and skewness, the

latter result could seem paradoxical as it is expected to see a

temporal increase of the benthic return. However, the following

scenario could suit the change of the benthic return against

Simpson index:

a. low Simpson diversity over the seabed = . photons were

reflected in a relative short period due to the flatness of the seabed

(i.e., acute angle between water column and benthic return),

elongated tail of the waveform due to significant noise (positive-

skewed benthic return)

b. increase of the Simpson diversity over the seabed = .

photons were reflected from and/or absorbed by an increasing

suite of horizontal targets-strata inherent to surfaces of the

structurally-complex seabed (i.e., less and less acute angle between

water column and benthic return), shortening of the tail of the

waveform due to the increasing reflection and absorption of

photons before the peak of the benthic return (null- and negative-

skewed benthic return)

c. high Simpson diversity over the seabed = . photons were

reflected from and/or absorbed by a wide range of horizontal

targets-strata inherent to surfaces of the structurally-complex

seabed (i.e., right or obtuse angle between water column and

benthic return), absence of the tail of the waveform due to

complete reflection and absorption of photons before the peak of

the benthic return (negative-skewed benthic return).

The joint increase of the left-skewed benthic return and the

Simpson index could be attributed to the increase in surface

area of the substratum and the habitat-macrophytobenthos,

which provide both an enhanced availability of ecological niches

as well as specific microhabitats to demanding marine organisms

[47]. By means of its capabilities to accurately detect seagrass/

kelp canopy and stand structure as well as its ability to estimate

above-bottom biomass, bathymetric LiDAR is emerging as a

powerful tool to rapidly survey benthic diversity over nearshores

ranging from the shoreline to threefold-Secchi-depth m. In

agreement with well established ecological processes, areas with

high epi-macrobenthic diversity were predicted for the most

structurally-complex bottoms with high variability of both

substrata and benthos, deduced by important left-skewed

benthic return. Substratum type and dissimilarity or the

Figure 10. Hypothetical scenario explaining the evolution of the shape of the benthic waveform against the increase of Simpson
diversity over seabed.
doi:10.1371/journal.pone.0021265.g010
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bathymetric variability in the seascape were of secondary

importance in this study.

Modelling techniques

The Random Forest (RF) algorithm was able to satisfactorily fit

relationships between epi-macrobenthic Simpson diversity and the

environment. The separation process of the three-dimensional

space, constituted by the three predictors, was sufficiently relevant

to maximize the volume between the three Simpson classes, while

minimizing the volume within each class, so that the other learners

were outperformed. The RF highlighted an ecologically-mean-

ingful threshold related to bathymetry. The 6-m isobath indeed

embodied a boundary over which an embayment occurred and

above which WE currents dominated. The relative protection of

the embayment might have facilitated the settlement of an eelgrass

(Z. marina) meadow and scattered macroalgae (Chorda tomentosa),

thus the low Simpson index, whilst deeper contours, benefiting

from nutrient supply driven by primary currents, might have

provided niches for Laminaria spp., thus the high Simpson index

spatially-modelled. This analysis testified the adequacy of using

such a modelling technique to characterize ecological patterns and

model them across significant areas.

As a summary of many decision trees, the RF found itself to be

the best learner within the Classification And Regression Tree

family, which is recognized to be highly efficient for predictive

habitat modelling (see [4]). However, a novel CART approach,

the Boosted Regression Tree (BRT), has repeatedly demonstrated

its power of ecological modelling through terrestrial and marine

studies [10,19]. This machine learning technique grows a suite of

regression trees (built from randomly-subset data) which predict

the residuals inherent to the previous tree to consistently boost the

overall predictive performance [48]. In the absence of this

technique in Orange software, we could not have been able to

integrate the BRT within comparisons of learners (lack of the

evaluators and discretization). However, the Classification Accu-

racy (2/3 training and 1/3 validation) has been computed, for the

sake of heuristics and completeness, with respect to the eight epi-

macrobenthic indices using the Gaussian BRT implemented in R

[49]: d = 0.45, A = 0.61, Log(A) = 0.63, D = 0.65, Log(D) = 0.65,

H’ = 0.54, Log(H’+1) = 0.56, mJ’ = 0.67. The analysis of the best

predictive model, i.e., the modified Pielou index, showed that the

three best predictors were bathymetry, skewness and kurtosis,

whose relative influence equaled 13.27%, 8.35% and 4.85%,

respectively. RF and BRT consist of new statistical strategies for

predictive habitat modelling which hold great promise to develop

marine ecological theory.

Implications to ecological theory

Albeit often neglected, there is an intimate relationship between

ecological theory and method, either acquisition- or statistics-

related [2,4]. Biotic responses, investigated in this study, all

represented diversity indices aiming at synthesizing the structural

composition of benthic communities (e.g., the presence and

abundance of benthic species). Modelling the spatial distribution

of epi-macrobenthic heterogeneity boiled down to figure out the

relationships between patterns of combined species responses

against the environment. Niche theory assumes that collective

properties, synthesized by Simpson diversity, do not show response

patterns along environmental gradients [4], mostly because of

differences in species growth forms inducing different response

patterns [50]. However, such responses have been demonstrated at

broad scale (.1 km) with vegetation communities in respect to

indirect gradients [51,52]. The novelty of our results evidenced for

emphasizing curvilinear responses of marine communities at fine-

scale (1 m) against an indirect gradient. The latter gradient,

namely, bathymetry, contained direct (e.g., light) and resource

(e.g., nutrient supply correlated with currents) gradients that led to

robust predictive models. The curve depicting the relationship

between Simpson index and bathymetry indicated that both low

and high values of species heterogeneity matched with deeper

bottoms in the study area, thus the ‘‘syncline-like’’ curve (Figure 8).

Stronger currents below 6-m depth might have resulted in greater

species heterogeneity than that of the embayment. Accounting for

LiDAR bottom detection and light absorption by a dense canopy

of Laminaria spp., the distribution of species heterogeneity could be

assumed to be truncated at the observed upper (i.e., deeper) limits

of the environmental predictor (i.e., bathymetry), since presence of

Laminaria spp. has been testified over deeper bottoms in this region

[23]. Knowing that species position along an environmental

gradient has been shown to shape the response [53], the species

heterogeneity distribution lying near its upper limits had to be

somewhat biased. However, the bathymetric gradient was

significantly steep given the difference between low depths of the

embayment and deeper bottoms inherent to the seaward current-

eroded slope. Being a distal variable encompassing the biodiversity

response near its limits and characterized by a significant steep

gradient (as advocated by [4]), the bathymetry can be considered

as a successful predictor to those benthic communities.

The spatial scale at which photographs were acquired played a

crucial role in those results. For instance, the species heterogeneity

at high depths would have been profoundly reworked (trend to

smooth differences) if the acquisition scale has been 10 m. The

method of acquisition, besides constraining the scale, filtered out

all cryptic and epiphytic macroorganisms. Large and wide thalli of

macroalgae have precluded the observation of those organisms

(e.g., asteroidea on thalli, echinoidea over seafloor, crustacea in

crevices), when the video device projected the volume of algae

onto the bottom surface. Both the size and behaviour of biological

material strongly conditioned the computed Simpson index.

The exclusive use of LiDAR-derived environmental predictors

constituted the main challenge of this modelling study, given the

rapid data acquisition. Although the survey of biotic processes

suffers from time-efficiency (hence cost-efficiency), it significantly

contributes to the spatial patterning of benthic communities, as

well as abiotic processes [3]. The optimization of data collecting

concerning predation, competition, dispersal, recruitment and

anthropogenic pressure needs greater consideration in order to

incorporate them into statistical models of communities’ distribu-

tions and to identify the ‘‘directness’’ of all these factors. The

volitional omission of biotic processes into modelling did not entail

low performance of the spatial prediction. We can assume that the

RF learning process incorporated non-linear interactions between

monitored environmental predictors and uncollected biotic

processes. RF spatially modelled Simpson index into three discrete

classes, impeding any continuous patterns between them. The

classification of benthic communities into categorical types

strongly fits with the traditional vision adopted by landscape

ecologists [54]. However, most of the ecological variables can be

deemed as fundamentally continuous, at least at the landscape

scale. This prompts in handling concepts of communities as biotic-

intricate superimpositions of continuous species responses to

habitat suitability, instead of considering them as a mosaic of

benthic ‘‘enclosed fields’’. A more transparent practice may be to

experimentally outline biotic and abiotic direct predictors,

optimize the cost-efficiency of their collection (already optimized

for LiDAR-derived geomorphic predictors), and analyze data with

machine learners and Generalized Additive Models for Location,
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Scale and Shape (GAMLSS) [55], so that results can be readily

interpreted from an ecological viewpoint.

Conclusions

The combination of moderate ground-truth effort (underwater

photographs), bathymetric LiDAR and the Random Forest

learner allowed to robustly predict the spatial distribution of the

Simpson diversity index related to epi-macrobenthic communities

over a relatively turbid nearshore area. Bathymetry, skewness and

time range were rapidly acquired by airborne LiDAR and had the

greatest explanatory power to determine the Simpson diversity

response. This species heterogeneity index showed an overall

increase in respect to water depth (with a maximum value related

to areas inherent to augmented hydrodynamics) and decreased

with skewness and time range, which testified the increase of the

structural complexity of the benthos/bottom. The degree of

species heterogeneity was thereafter linked with the degree of their

physical complexity.

This study displayed three major novelties within the realm of

marine habitat modelling: predicting marine communities’

diversity (rather than individual species), employing information

from the bathymetric LiDAR full-waveform (not only the

bathymetry and its related by-products), as well as confronting

the state-of-the-art machine learners.

This work underpins that fully-exploited bathymetric LiDAR

(not only bathymetrically-derived by-products), coupled with a

powerful machine learner, is able to rapidly predict habitat

characteristics at a spatial resolution relevant to epi-macrobenthos

diversity ranging from clear to turbid waters. This method might

serve both to nurture marine ecological theory and to manage

areas with high species heterogeneity where navigation is

hazardous and water clarity opaque to passive optical sensors.

Acknowledgments

Special thanks to M. Huot for English improvement of the manuscript.

This manuscript was greatly improved by the reviews and comments of two

anonymous reviewers, whom we deeply thank.

Author Contributions

Conceived and designed the experiments: AC BL PA. Performed the

experiments: AC BL PA. Analyzed the data: AC. Contributed reagents/

materials/analysis tools: AC BL PA. Wrote the paper: AC.

References

1. Myers N, Mittermeier R, Mittermeier CG, daFonseca GAB, Kent J (2000)
Biodiversity hotspots for conservation priorities. Nature 403: 853–858.

2. Austin MP (2007) Species distribution models and ecological theory: A critical

assessment and some possible new approaches. Ecological Modelling 200: 1–19.

3. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in
ecology. Ecological Modelling 135: 147–186.

4. Austin MP (2002) Spatial prediction of species distribution: an interface between

ecological theory and statistical modelling. Ecological Modelling 157: 101–118.

5. Harborne R, Mumby PJ, Zychaluk K, Hedley JD, Blackwell PG (2006)
Modeling the beta diversity of coral reefs. Ecology 87(11): 2871–2881.

6. Pittman SJ, Christensen JD, Caldow C, Menza C, Monaco ME (2007)

Predictive mapping of fish species richness across shallow-water seascapes in the
Caribbean. Ecological Modelling 204: 9–21.

7. Purkis SJ, Graham NAJ, Riegl BM (2008) Predictability of reef fish diversity and

abundance using remote sensing data in Diego Garcia (Chagos Archipelago).
Coral reefs 27: 167–178.
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