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[1] In this paper, two new Bayesian change point techniques are described and compared
to eight other techniques presented in previous work to detect inhomogeneities in climatic
series. An inhomogeneity can be defined as a change point (a time point in a series
such that the observations have a different distribution before and after this time) in the
data series induced from changes in measurement conditions at a given station. It is
important to be able to detect and correct an inhomogeneity, as it can interfere with the real
climate change signal. The first technique is a Bayesian method of multiple change point
detection in a multiple linear regression. The second one allows the detection of a
single change point in a multiple linear regression. These two techniques have never been
used for homogenization purposes. The ability of the two techniques to discriminate
homogeneous and inhomogeneous series was evaluated using simulated data series.
Various sets of synthetic series (homogeneous, with a single shift, and with multiple shifts)
representing the typical total annual precipitation observed in the southern and central
parts of the province of Quebec, Canada, and nearby areas were generated for the purpose
of this study. The two techniques gave small false detection rates on the homogeneous
series. Furthermore, the two techniques proved to be efficient for the detection of a single
shift in a series. For the series with multiple shifts, the Bayesian method of multiple
change point detection performed better. An application to a real data set is also provided
and validated with the available metadata.
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1. Introduction

[2] The increasing interest in climate modeling has trig-
gered the development and testing of more performing
homogenization techniques. These techniques are intended
to identify and sometimes correct inhomogeneities in data
series that do not reflect the real climate variations. An
inhomogeneity can be defined as a change point (a time
point in a series such that the observations have a different
distribution before and after this time) in the data series
induced from changes in measurement conditions at a given
station. These changes include relocations, instrument
replacements, changes in observation procedures or mod-
ifications in the immediate environment of the site. There is
a difference between an inhomogeneous series and a series
that is nonstationary, as a series can be nonstationary and

homogeneous at the same time (the change points are only
caused by real climatic variations). The user of climatic data
series is often unaware of the presence or absence of
inhomogeneities in the series, which is why the homogeni-
zation techniques are needed. The inhomogeneities can
interfere with the real climate change signal and lead to
poor climatic or hydrological model calibration or biased
studies of climate trends and variability. Therefore, the
detection and correction of these inhomogeneities is impor-
tant before undertaking any kind of climate analysis.
[3] Several techniques have been developed for the

detection of inhomogeneities in climate series. For a com-
plete review, the reader is referred to Peterson et al. [1998],
World Meteorological Organization [2003], Beaulieu et al.
[2007], and Reeves et al. [2007]. Most of the homogeniza-
tion techniques are addressed in classical or Bayesian
statistical frameworks, supported by parametric or nonpara-
metric models. The change point model often represents a
shift in the mean of the base series (the series that is tested
for a potential inhomogeneity) and that does not occur in the
neighbor series. Some techniques allow to identify the
position of the shift and to determine its significance using
a procedure based on the likelihood ratio test [Maronna and
Yohai, 1978; Potter, 1981; Alexandersson, 1986]. The
change point analysis can also be performed with a regres-
sion model which represents a change in the mean and/or in
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the trend of the series [Easterling and Peterson, 1995;
Vincent, 1998; Lund and Reeves, 2002; Wang, 2003]. The
neighbor series are used to identify shifts in the base series
that are not reproduced in the immediate neighborhood.
These shifts are assumed to be artificially caused and not
representative of the regional climatic signal. Hence, the
neighbor series are climatically similar to the base series and
must be homogeneous. Otherwise, an inhomogeneity in a
neighbor series could be allocated to the base series.
However, there are a few techniques developed for isolated
stations that do not rely on neighbor series. For more details
on these techniques, the reader is referred to Peterson et al.
[1998].
[4] Most homogenization techniques were developed for

data series which contain at most one change point. In
general, for the detection of multiple changes, a segmenta-
tion procedure is applied. The drawback with the segmen-
tation approach is that the same test applied several times on
the same observations can increase the risk of false detec-
tion. Furthermore, the size of the segments is reduced
during the analysis, each time diminishing the detection
power of the method. To avoid these inconveniences, a few
techniques were developed to detect multiple shifts in
several series [Szentimrey, 1999; Caussinus and Mestre,
2004]. The series are mutually compared to each other by
switching the role (neighbor or base) of the series at
each step of the procedure. The technique proposed by
Szentimrey [1999] allows the inference on the number of
shifts by minimizing the variance of the difference series.
The technique of Caussinus and Mestre [2004] allows the
determination of the number of change points with a
criterion developed by Caussinus and Lyazrhi [1997]. These
techniques are suitable for cases with several neighbor
series, but they are less efficient with few series (less than
six) [Slonosky et al., 1999].
[5] Several change point detection techniques have been

presented in the literature. For a complete review of the
different approaches, the reader is referred to Chen and
Gupta [2001]. Bayesian linear regression models were
addressed among others by Bacon and Watts [1971], Smith
and Cook [1980], Holbert [1982], Solow [1988], and
Rasmussen [2001]. Seidou et al. [2007] presented a tech-
nique which has a general formulation and that allows
testing the hypothesis of no change. In the case of multiple
shifts, Bayesian techniques that infer the positions of the
changes when the number of shifts is known were proposed
by Stephens [1994]. Barry and Hartigan [1992, 1993]
developed a technique to detect multiple change points with
a product partition models–based algorithm. Green [1995]
proposed the use of reversible jump Markov chain Monte
Carlo (MCMC) methods for multiple change point analysis.
Chib [1998] and Lavielle and Lebarbier [2001] used a new
formulation for the change point problem and proposed to
solve it with MCMC methods. Seidou and Ouarda [2007]
applied the algorithm on the basis of recursions proposed by
Fearnhead [2006], to detect an unknown number of shifts
in a multiple linear regression model. Change point linear
regression models can be used to detect inhomogeneities
in climatic series by setting the base series as the depen-
dent variable and the neighbor series as the independent
variables.

[6] Few Bayesian change point techniques have been
specifically applied to homogenization problems. The tech-
nique proposed by Lee and Heghinian [1977] and extended
by Perreault et al. [1999, 2000] was applied in comparison
studies to detect inhomogeneities in synthetic temperature
series. This technique performed well to detect a single
shift, but tends to combine the sequential shifts in the
presence of multiple inhomogeneities [Ducré-Robitaille et
al., 2003; DeGaetano, 2006]. Beaulieu et al. [2008] applied
the Bayesian technique proposed by Rasmussen [2001] to
identify inhomogeneities in synthetic precipitation series.
This technique performed well to detect a single or multiple
shifts, but lead to a very high percentage of false detections
when the series are homogeneous. Bayesian techniques
that were compared in simulation studies, such as Ducré-
Robitaille et al. [2003], DeGaetano [2006], and Beaulieu
et al. [2008], did not lead to better results than popular
techniques such as the standard normal homogeneity test
[Alexandersson, 1986] or the bivariate test [Potter, 1981].
[7] The objectives of this work are to introduce two new

Bayesian techniques [Seidou and Ouarda, 2007; Seidou et
al., 2007] for the homogenization of climate series and to
verify their capacity to discriminate homogeneous and
inhomogeneous (with a shift in the mean) series having
the statistical characteristics of precipitation data series
observed in the southern and central parts of the province
of Quebec and nearby areas, Canada. These two techniques
were applied to various types of synthetic precipitation
series: a set of homogeneous series, a set of series with a
single shift and a set of series with multiple shifts, to
evaluate their performances. For each type of synthetic
series (homogeneous, one change point, two change points
or three change points), the performances of these two new
Bayesian techniques were compared to those of the best of
eight techniques reviewed by Beaulieu et al. [2008]. These
two methods were not included in the comprehensive
intercomparison study of Beaulieu et al. [2008] because
they were under development at the time the study was
carried out. However, they were shown to be applicable to
several practical problems that previously available methods
could not handle. An application to real world data series is
also presented.
[8] The paper is organized as follows: section 2 gives a

detailed description of the two techniques. The methodol-
ogy is described in section 3. The results of the simulation
study are presented in section 4. In section 5, an application
to series of total annual precipitation is presented. Finally,
the discussion and conclusions are presented in section 6.

2. Theoretical Background

[9] In this paper, the Bayesian approach to change point
detection is considered. Bayesian methods have a different
approach from classical techniques. Through a prior distri-
bution, they allow the integration of some knowledge
(informative prior distribution) or lack of information (non-
informative prior distribution) about the phenomenon being
studied. Then, the information provided by the prior distri-
bution and the information provided by the observations are
combined into a posterior distribution, which is used to
make inference about the parameters. Some advantages of
using Bayesian analysis over classical analysis is that it
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allows a formal use of nonexperimental sources of infor-
mation and it provides the full posterior probability distri-
bution for the parameter of interest [Berger, 1985]. For
example, Bayesian change point methods provide the full
posterior probability distribution of the position of the
shifts, which can be multimodal or skewed. After specifying
a loss function, an estimate of the shift’s position can be
obtained. This provides more information than an estimate
of the shift’s position and its significance level, which is
obtained with the classical change point techniques.
[10] In this section, the two techniques are presented. The

first technique proposed in the present work is a Bayesian
linear regression model designed to detect multiple change
points [Seidou and Ouarda, 2007]. Its main feature is that it
allows the detection of an unknown number of shifts. The
second technique proposed in the present work is a Bayes-
ian linear regression model which allows for the detection
of a single change [Seidou et al., 2007]. It improves the
model presented by Rasmussen [2001], which assumes the
presence of a change point and infers its position, by
extending it to the case for which a change point does not
occur with certainty. The two techniques are briefly de-
scribed in sections 2.1 and 2.2. For more details, the reader
is referred to Seidou and Ouarda [2007] and Seidou et al.
[2007].

2.1. Bayesian Multiple Change Point Detection
in Multiple Linear Regression (BAMS)

[11] This technique is an adaptation of Fearnhead [2006]
which presents a general procedure to detect the number and
positions of the change points in a data series with a
nonparametric approach. The procedure was adapted by
Seidou and Ouarda [2007] to multiple linear regression.
The response variable is noted by yj(j = 1, . . . , n), or ynx1 in
vectorial form, while xij(i = 1, . . . , d*; j = 1, . . . , n) represents
the jth observation of the ith explanatory variable (Xd*xn

in matricial form). There are n observations and d* explan-
atory variables. For homogenization problems, the response
variable is the base series, while the neighbor series are the
explanatory variables. The relationship between the base
series and the neighbor series can be represented by

yj ¼
X

d*

i¼1

qixij þ ej; j ¼ 1; . . . ; n: ð1Þ

The response variable is normally distributed with the mean
P

d*

i¼1

qixij and variance s2. Given the parameter vector F = [q1,

q2, . . ., qd*, s], the density of the response variable is

f yi Fjð Þ ¼ 2ps2
! "%1=2

exp %
yi %

P

d*

j¼1

qjxij

 !2

2s2
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: ð2Þ

Let m be the number of change points and t0 = 0,t1, . . ., tm,
tm + 1 = n the positions of the change points. The prior

probability distribution for the position of the change is uni-
form, given the preceding change point:

p tiþ1 tijð Þ ¼ 1% p

n% ti
; ð3Þ

where p represents the prior probability for no change.
Uniform priors are assumed for q. Therefore, the prior
distribution of F depends only on s (p(F) = p(q1, . . .,
qd*, s) / p(s)). It is assumed that the prior distribution of F
has this particular form:

p Fð Þ ¼ p sð Þ ¼ p s a; cjð Þ ¼
s%a exp % c

2s2

# $

2
a%3
2 c%

a%1
2 G

a% 1

2

% & ; a > 1; c > 0; ð4Þ

where a and c are the hyperparameters and G represents the
Gamma function. The positions of the change points are
inferred on the basis of the coherence P(t, s) of all segments
[t, s], where P(t, s), s & t is the probability that t and s
(representing the lower and upper limits of a given segment)
are in the same segment and where t varies from 1 to n and s
varies from t to n. The posterior probability that t and s (s &
t) are in the same segment is given by

P t; sð Þ ¼ 2
d*
2 p

d*%tþs%1
2

eTs:tes:t þ c
! "% t%sþað Þ

2

c%
a%1ð Þ
2 XT

s:tXs:t

'

'

'

'

1=2

G
t % sþ a

2

# $

G
a% 1

2

% & ; ð5Þ

where et:s is a part of the vector of random errors between t
and s and Xt:s represents the rows between t and s of the
explanatory variables. The superscript T indicates the trans-
pose.
[12] The hyperparameter a was chosen after a sensitivity

analysis. The level of information in the prior can be
controlled by changing the value of a. It was noticed, after
a few trials, that with the noninformative prior a = 1 + e, this
technique performed well on homogeneous series with a
weak percentage of false detection. When an informative
prior (a & 3) was used, the technique had a high percentage
of false detection on the homogeneous series and a high
percentage of detection on series with real shifts. For the
present study, a different approach was used. It consists in
applying the technique with a noninformative prior (a = 1.1)
to determine if the series is homogeneous or not. If the
series is considered inhomogeneous, the technique is reap-
plied with informative priors (a = 5) to detect the position and
magnitude of the shifts. The parameter c, representing the
dimension of the variance, was set to the variance obtained
by least square estimates of the linear regression equations,
(c = e1:nT e1:n = y1:n

T y1:n % X1:nX1:n
T (X1:n

T X1:n)
%1y1:n

T y1:n).
More details concerning the development of BAMS and
the inference of the number and position of the change
points are presented in Appendix A.

2.2. Bayesian Change Point in Multiple Linear
Regression (BARE)

[13] This technique is presented by Seidou et al. [2007].
The model was designed to infer the position of a single
change point in the parameters of a multiple linear regres-
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sion equation. The model can be represented in matrix form
by

yt ¼ Xtq
pð Þ

t þ ut ; ð6Þ

where yt represents the response vector (r ' 1), Xt is the
matrix of explanatory variables matrix (r ' d*) of the
neighbor series, ut represents the vector of residuals that are
independent and identically normally distributed (N[0,

P

y])
and qt(p) is the parameter vector, where

q pð Þ
t ¼

b1
*; 1 ( t < p;

b2
*; p ( t ( n;

8

<

:

ð7Þ

under the following constraints:

b1
* ¼ b1;b0ð ÞT and b2

* ¼ b2;b0ð ÞT : ð8Þ

The dimensions of the vectors qt(p), b1*, b2*, b0, b1, b2

are (d* ' 1), (d* ' 1), (d* ' 1), (d0* ' 1), (d1* ' 1) and
(d1* ' 1), respectively. The constraints imply that d* =
d0* + d1*. The model infers a change in the vector qt(p) at the
position p. The vector of parameters b0 is assumed constant
before and after the change point. The vectors b1 and b2

contain the values of the remaining parameters before and
after the change point. Finally, the vectors b1* and b2*
represent the regression parameters before and after the
change. Hence, the model represents a change point in
the vector qt(p), from the subvector b1 to the subvector b2.
The subvector b0 remains part of qt(p). When this model is

applied to detect inhomogeneities in a climate series, the
base series is represented by yt, and Xt is the matrix of the
neighbor series.
[14] Seidou et al. [2007] considered noninformative prior

distributions for the regression parameters and the variance.
The prior for the change point position is a uniform distri-
bution. The posterior distributions were obtained by Gibbs
sampling [Gelfand and Smith, 1990]. The method was
developed to detect at most one change point, but it can be
applied for multiple change points using a segmentation
approach. As the Gibbs sampling is used, the model can
take into account missing observations.

3. Simulation Study

3.1. Synthetic Series

[15] The two techniques were applied to synthetic series
of precipitation that were generated for previous compara-
tive studies of several homogenization techniques. The
statistical properties reproduced in these series are (1) a
mean total annual precipitation of 1089 mm, (2) a standard
deviation of 142 mm and (3) a lag one autocorrelation of
0.02. These values are the average characteristics of a set of
selected stations located in central Quebec and surroundings
having long time series with few missing data (Figure 1).
For each base series, three correlated neighbor series are
generated to reproduce a spatial cross correlation of 0.55.
This value is the mean spatial cross correlation in the set
of selected stations that are located at a distance less than
300 km. Different data sets are used here: homogeneous

Figure 1. Locations of the stations used to generate the synthetic series.
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series and series with a single or multiple shifts in the mean.
New synthetic series were also generated for the purpose of
this work to verify the performance of the two techniques in
the presence of autocorrelation: homogeneous series with a
lag one autocorrelation of 0.2 and 0.4 (according to the set
of selected stations, an autocorrelation higher than 0.4 for
total annual precipitation data is unlikely to be observed). A
total number of 15,000 homogeneous series, 25,000 series
with a single shift, 15,000 series with two shifts and 15,000
series with three shifts was generated. All the synthetic series
are 100 years long. The magnitude and positions of the shifts
were generated randomly to represent asmany configurations
as possible. The detailed generation scheme of the synthetic
series is presented in Beaulieu et al. [2008]. An example of
series with two shifts is presented in Figure 2.

3.2. Application of the Techniques

[16] The two techniques were applied to the synthetic
series. The mode of the posterior distributions was used as
the Bayes parametric estimator for the presence and posi-
tions of the shifts. In practice, it is common to apply
sequentially a technique developed for a single shift, to be
able to detect multiple shifts. This procedure was used to
detect multiple shifts in the comparative studies of Ducré-
Robitaille et al. [2003] and Beaulieu et al. [2008]. To detect
multiple shifts with BARE, this procedure was used. When
a shift is detected, the series is divided into two segments,
the technique is reapplied to each segment, and this
procedure is repeated until all segments of the series are
considered homogeneous or too short to be tested. For both
techniques, the magnitudes were estimated by computing
the difference of the means of the segments preceding and
following a shift. The estimated magnitudes are then
compared to the real magnitudes introduced in the synthetic
series. A prior probability of change of 0.5 was used with
both techniques, to be able to compare the results with
classical techniques. It can be considered as noninformative
as it represents the case for which the user has no
information concerning the presence or absence of a shift
in the series. The minimal length between two consecutive
shifts was set to 10 observations and the shifts identified in
the first ten or last ten observations in the series were

ignored to make the results comparable to those obtained by
Beaulieu et al. [2008].

3.3. Evaluation of the Detection Skills

[17] The detection skills of the techniques were assessed
on all the synthetic series. Once again, the detection skills
are evaluated using the same thresholds that were used by
Beaulieu et al. [2008] to have comparable results. For all
types of synthetic series, the number of shifts detected is
compared to the real number of shifts without taking into
account the position or the magnitude of the shifts detected.
[18] For the homogeneous series (with and without auto-

correlation), the performance is verified by computing the
false detection (type I error) rate. It is the percentage of
cases for which the null hypothesis is rejected (homogene-
ity) when it is true.
[19] For the series with a single shift, the errors in

position and magnitude were computed (real position/mag-
nitude minus estimated position/magnitude). The absolute
errors were also calculated. When a shift is not detected, the
position error and the absolute position error are fixed to
the length of the series (100) and the magnitude error and
the absolute magnitude error are fixed to 3 standard devia-
tions (highest generated magnitude). The numbers of cor-
rectly identified, well-identified and well-positioned shifts
were also computed. A shift is correctly identified when
the estimated position is exact and the relative difference
between the estimated magnitude and the real magnitude is
less than 20% of the real magnitude. A shift is considered
well identified when it is located within ±2 years of the true
location and the absolute error on the estimation of the
magnitude is lower or equal to 50% of the real magnitude.
A shift is well positioned when it is located within ±2 years
of the true position without any measure of accuracy for the
magnitude.
[20] For the series with multiple shifts, the ability of the

techniques to correctly position all the shifts, without
omission or false detection is evaluated with a performance
criterion proposed by Beaulieu et al. [2008]. This criterion
measures a distance between the locations of the true shifts
and the detected shifts. It can be expressed as follows:

C ¼

1

nd

X

nd

i¼1

pdi % pi
! "2

; nr ¼ nd

1

nr

X

nd

i¼1

pdi % pi
! "2þ nr % ndj j n% 1ð Þ2

" #

; nr > nd

1

nd

X

nr

j¼1

pdj % pj

# $2
þ nr % ndj j n% 1ð Þ2

" #

; nr < nd;

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

ð9Þ

where pi
d, i = 1, . . ., nd and pj, j = 1, . . ., nr represent the

positions of the detected and real shifts, respectively; nd is
the number of detected shifts; nr is the number of real shifts;
and n is the length of the series. The pairs (pi

d, pj) are chosen
to minimize the criterion. When the exact number of shifts
is detected (nr = nd), the criterion is the sum of squares of
the differences between the pairs which minimize the
criterion. When nr < nd or nr > nd, (n % 1)2 is added each
time that a true shift is neglected or that a false shift is
detected. This value corresponds to the square of the
maximum possible distance between two shifts. C is equal

Figure 2. Example of synthetic series with two shifts (the
dashed line represents the mean of each segment).

W08410 BEAULIEU ET AL.: HOMOGENIZATION WITH BAYESIAN CHANGE POINT

5 of 15

W08410



to zero when all shifts are correctly positioned (pi
d = pi, i =

1, . . ., nd = nr). When C is close to zero, the detected shifts
are located near the true positions (pi

d pi, i = 1, . . ., nd = nr).
A high value of C indicates that some shifts in the series are
not detected or are wrongly detected (nd 6¼ nr). The
performance criterion C was computed for all series with
two and three shifts and the overall performance is the mean
of the criterion over each set of synthetic series.
[21] The performances of the two techniques are com-

pared with those of the techniques that were found the best
to identify each type of synthetic series by Beaulieu et al.
[2008]. These techniques are: the Jaruskova’s technique
[Jaruskova, 1996], the bivariate approach [Maronna and Yohai,
1978; Potter, 1981] and a Bayesian technique [Rasmussen,
2001]. In the remainder of the text, these techniques are
named JARU, BIVT and BAYE, respectively.
[22] The criteria used to assess the detection skills were

chosen in order to be able to compare the results with those
of Beaulieu et al. [2008]. However, from a Bayesian point
of view, the use of these criteria could be contested, as the
information given by the posterior probability distribution is
not used in its full potential. However, to be able to compare
Bayesian methods with classical methods, some criteria
have to be used. In the comparative studies of homogeniza-
tion techniques which involved Bayesian and classical
techniques [see Ducré-Robitaille et al., 2003; DeGaetano,
2006] similar criteria were used to assess the performance of
the different techniques.

4. Results

4.1. Ability to Identify the Exact Number of Shifts

[23] For all synthetic series, the number of shifts detected
was compared with the true number of shifts that were

introduced in the series. Figure 3 presents the percentage of
series for which 0, 1, . . ., 5 shifts were detected for the
homogeneous series (0 shift) and the series with 1, 2 and 3
shifts. The position and magnitude of the detected shifts are
not the focus here. For the homogeneous series and the
series with a single shift, both techniques detected, in a large
majority, the exact number of shifts (0 and 1). For the series
with two and three shifts, BAMS detected, almost system-
atically, the exact number of shifts, but BARE detected one
shift in most cases.

4.2. False Detection Rates in the Homogeneous Series

[24] Table 1 presents the false detection rates obtained
with the two techniques. The best results observed in the
work of Beaulieu et al. [2008] are also presented in Table 1
for comparison purposes. Both techniques gave a percen-
tage of falsely detected shifts significantly smaller than 5%,
the same as for JARU. Figure 4 presents the magnitude and

Figure 3. Percentage of series for which 0, 1, . . ., 5 shifts were detected by the two techniques when
there are zero (homogeneous without autocorrelation), one, two, or three true shifts. BAMS represents the
Bayesian technique for multiple shifts of Seidou and Ouarda [2007], and BARE represents the Bayesian
technique for a single shift of Seidou et al. [2007].

Table 1. Falsely Detected Shifts in the Homogeneous Series
According to the Estimated Magnitude of the Shift

Magnitude Standard
Deviation BAMSa (%) BAREb (%) JARUc (%)

0–0.25 1.04 0.18 0.08
0.25–0.5 0.96 0.16 0.46
0.5–1 0.44 0.16 0.64
1–2 0.06 0.00 0.00
>2 0.00 0.00 0.00
Total 2.50d 0.50d 1.18d

aBayesian technique for multiple shifts [Seidou and Ouarda, 2007].
bBayesian technique for a single shift [Seidou et al., 2007].
cJaruskova’s technique [Jaruskova, 1996].
dSignificantly smaller than the expected percentage of type I error

obtained with a classical technique (5% critical level).
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position of the falsely detected shifts on the homogeneous
series. It can be seen in Figure 4 that the number of falsely
detected shifts tends to increase at the beginning or end of
the series as well as their magnitudes. It is also interesting to
note that the magnitudes of the falsely detected shifts rarely
exceed 1 standard deviation. Figure 5 presents the percent-
age of falsely detected shifts obtained with the two tech-
niques as a function of the autocorrelation coefficient. It
can be seen that the presence of autocorrelation increases
the risk of false detection.

4.3. Ability to Identify a Series With a Single Shift

[25] Table 2 presents the descriptive statistics of the
absolute errors in position and magnitude for the two
techniques. The mean absolute errors in position/magnitude
are 12.7/0.4 and 19.2/0.6 for BAMS and BARE, respec-
tively. The results were compared with those obtained by the
three techniques (BIVT, JARU and BAYE) that led to the
best performances in the work by Beaulieu et al. [2008].
The results are also presented in Table 2. The mean absolute
errors in position/magnitude obtained with the various
techniques were significantly different (Kruskal-Wallis test,
5% critical level). The Conover-Inman procedure was used
(5% critical level) to make multiple pairwise comparisons
between the mean absolute errors in position/magnitude
obtained with the five techniques. The ranking of the
absolute errors in position can be expressed as follows:

BAYE BIVT JARU < BAMS < BARE: ð10Þ

The techniques on the left are not significantly different.
The same ranking was obtained for the absolute errors in

magnitude. The techniques BIVT, JARU and BAYE remain
those with the smallest errors. The absolute errors in
position and magnitude obtained with BAMS and BARE
are significantly different, BAMS having a better perfor-
mance than BARE. Consequently, the two Bayesian
techniques have a good capacity to detect series with a

Figure 4. Falsely detected shifts by the two techniques when applied to the homogeneous series:
(a) BAMS, the Bayesian technique for multiple shifts of Seidou and Ouarda [2007], and (b) BARE, the
Bayesian technique for a single shift of Seidou et al. [2007].

Figure 5. Falsely detected shifts by the two techniques
when applied to the homogeneous series with different
autocorrelation coefficients. BAMS represents the Bayesian
technique for multiple shifts of Seidou and Ouarda [2007],
and BARE represents the Bayesian technique for a single
shift of Seidou et al. [2007].
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single shift, but some classical techniques perform slightly
better. The type II error rates (failure to reject the
homogeneity hypothesis when it is false) are 11.5% and
17.1% for BAMS and BARE, respectively.
[26] Table 3 presents the rates of correctly identified,

well-identified and well-positioned shifts for the two tech-
niques as well as BAYE, BIVT and JARU. BAMS and
BARE do not give the best performances. Nevertheless, the
two techniques are able to well position a shift (75% and
more). The percentage of well-identified shifts is similar to
the percentage of well-positioned shifts. Hence, when the
detected shift is well positioned (±2 years of the true
location), the magnitude is well estimated most of the time.
However, there is a large gap between the rates of correctly
identified shifts and the well-identified or well-positioned
shifts (between 23% and 28%). Figure 6 presents the
percentages of well-identified shifts for various classes of
magnitude and position obtained on series with a single
shift. The two techniques have a high percentage of well-
identified shifts when the magnitude is larger than two
standard deviations (almost 100%). When the magnitude
is less than a standard deviation, the percentage of well-
identified shifts decreased quickly (50% and less). The
percentage of well-identified shifts does not seem to be
affected by the position of the shift.

4.4. Ability to Identify a Series With Multiple Shifts

[27] Tables 4 and 5 present the descriptive statistics of the
positioning criterion C (equation (9)) obtained on the series

with two and three shifts with BAMS and BARE. The
results of the techniques that had the best performances in
the study of Beaulieu et al. [2008] are also presented. These
techniques are: BIVT for the series with two shifts (Table 4)
and BAYE for the series with three shifts (Table 5). The
most successful techniques are those with the lowest values
of the performance criterion. The criteria obtained with the
different techniques are significantly different (Kruskal-
Wallis test, 5% critical level). Hence, multiple pairwise
comparisons were used to rank the results obtained with the
different techniques (Conover-Inman procedure, 5% critical
level). For the series with two shifts, the multiple pairwise
comparison procedure gives

BAMS BIVT < BARE: ð11Þ

The techniques on the left are not significantly different.
BAMS led to the smallest criterion and its value is not
significantly different from the value obtained with BIVT.
For the series with three shifts, the ordering is

BAMS < BAYE < BARE: ð12Þ

BAMS led to the smallest criterion. The positioning
criterion obtained with BAMS is significantly smaller than
those obtained with all others techniques. It can be
concluded that, BAMS is the most performing technique
for the series with two and three shifts. In Table 5, the
median criterion is very low. It means that in half of the

Table 2. Descriptive Statistics of the Absolute Errors in Position and Magnitude Obtained When the Techniques Are Applied to Series
With a Single Shifta

Absolute
Error Statistic BAMSb BAREc BAYEd BIVTe JARUf

Position mean 12.7 19.2 5.2 7.5 9.2
median 0 1 0 0 0

standard deviation 32.0 38.4 19.6 24.7 27.6
Magnitude mean 0.4 0.6 0.1 0.2 0.3

median 0 0 0 0 0
standard deviation 1.0 1.1 0.6 0.7 0.8

aThe absolute errors in position and magnitude obtained with all techniques differ significantly (Kruskal-Wallis test, 5% critical level).
bBayesian technique for multiple shifts [Seidou and Ouarda, 2007].
cBayesian technique for a single shift [Seidou et al., 2007].
dBayesian technique for a single shift [Rasmussen, 2001].
eBivariate approach [Maronna and Yohai, 1978; Potter, 1981].
fJaruskova’s technique [Jaruskova, 1996].

Table 3. Correctly Identified, Well-Identified, and Well-Positioned Shifts Obtained When the Techniques Are Applied to Series With a
Single Shift

Identification
of the Shift BAMSa (%) BAREb (%) BAYEc (%) BIVTd (%) JARUe (%)

Correctly identified 56.5 46.2 57.8 62.7 63.0
Well identified 79.2 74.3 83.2 83.9 83.4
Well positioned 80.3 74.3 85.2 84.3 83.6

aBayesian technique for multiple shifts [Seidou and Ouarda, 2007].
bBayesian technique for a single shift [Seidou et al., 2007].
cBayesian technique for a single shift [Rasmussen, 2001].
dBivariate approach [Maronna and Yohai, 1978; Potter, 1981].
eJaruskova’s technique [Jaruskova, 1996].
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series with two shifts, BAMS well positioned all the shifts
without detecting nonexistent shifts or omitting real ones. In
Table 6, the median criterion is higher. Indeed, the difficulty
to identify all the shifts increases with the number of real
shifts. The maximum criterion is 9801 and corresponds to
the case for which all the real shifts were not detected.

5. Example of Application to Real Data

[28] In this section, an application of BAMS and BARE
to detect a shift in the mean of a precipitation series is
presented. A comparison is also made with some classical
techniques which already proved their efficiency. The
purpose of this application was to assess the appropriateness
of the methods for practical use.
[29] The total annual precipitation series of Quebec City

(station 7016294), Quebec, Canada, was tested for homo-
geneity. This station was chosen among 35 stations located
in southern and central Quebec and nearby areas (Canada)
with high-quality data (few missing values, long observa-
tion series) that were extracted from Environment Canada’s

database. The Quebec station was chosen as the base series
because of the availability of neighbor series and of meta-
data (station history) for this station. The metadata are used
to identify the cause of an inhomogeneity.
[30] The base station is located at latitude 46.8, longitude

%71.38 and at an altitude of 70 m. Two neighbor stations,
Shawinigan Falls (7018000) and La Pocatière (7054095),
were identified in the set of 35 stations by considering the
distance from the base station, the elevation difference, the
observation period, the correlations and the correlations
computed from the first difference series (Table 6). The
two neighbor series are used as explanatory variables in
the two regression models (BAMS and BARE), while the
dependent variable is the base series. The neighbor series
allow searching for a change which occurs only in the base
series. When the neighbor series are too far from the base
series or have a high elevation difference, the inhomogene-
ities in the base series may be hidden by the discordance
between the series because of the large spatial variability of
the precipitation series. The correlations are computed for
the period 1944–1982, the common observation period for

Table 4. Descriptive Statistics of the Positioning Criterion C
Obtained When the Techniques Are Applied to Series With Two
Shiftsa

Statistic BAMSb BAREc BIVTd

Mean 1702 5625 1730
Median 3 4901 2
Standard deviation 2508 2928 2789
Minimum 0 0 0
Maximum 9801 9801 9801

aThe positioning criterion (equation (9)) obtained with all techniques
differs significantly (Kruskal-Wallis test, 5% critical level).

bBayesian technique for multiple shifts [Seidou and Ouarda, 2007].
cBayesian technique for a single shift [Seidou et al., 2007].
dBivariate approach [Maronna and Yohai, 1978; Potter, 1981].

Figure 6. Percentage of well-identified shifts according to their position and magnitude obtained by the
two techniques when applied to series with a single shift: (a) BAMS, the Bayesian technique for multiple
shifts of Seidou and Ouarda [2007], and (b) BARE, the Bayesian technique for a single shift of Seidou
et al. [2007].

Table 5. Descriptive Statistics of the Positioning Criterion C
Obtained When the Techniques Are Applied to Series With Three
Shiftsa

Statistic BAMSb BAREc BAYEd

Mean 2056 7198 2216
Median 2453 6534 2451
Standard deviation 2210 2156 2488
Minimum 0 0 0
Maximum 9801 9801 9801

aThe positioning criterion (equation (9)) obtained with all techniques
differs significantly (Kruskal-Wallis test, 5% critical level).

bBayesian technique for multiple shifts [Seidou and Ouarda, 2007].
cBayesian technique for a single shift [Seidou et al., 2007].
dBayesian technique for a single shift [Rasmussen, 2001].
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all series. The correlations computed from the first differ-
ence series are high (0.89 and 0.88), which indicates a
strong relationship between the neighbor series and the base
series without inhomogeneities. The correlations are lower
(0.72 and 0.53); hence the base or the neighbor series may
be inhomogeneous. The disagreement between the correla-
tions and the correlations computed from the first difference
series is an indicator of the presence of potential inhomo-
geneities in the base or in the neighbor series [Vincent,
1998]. Figure 7 presents the time series of the base and the
two neighbor stations.
[31] BAMS and BARE were applied to the base series

with the neighbor series as the explanatory variables. Both
techniques assume IID Gaussian time series. All the series
seemed normally distributed (Shapiro-Wilks test, 5% criti-
cal level). Since annual series were used, the independence
can be assumed. However, it must be noted that the
presence of a change point can bias the results of the
goodness of fit tests. If these tests are rejected when applied
to the entire series, it is important to apply them to each

segment of the series after the change point analysis. This
issue is discussed by Perreault et al. [1999]. As the two
techniques are applied along with classical techniques,
noninformative priors are necessary to allow a reliable
comparison. The prior probability of change was set to 0.5
and the minimal length between two shifts to 10 years. The
posterior probability distributions for the number of shifts
and for the positions of the shifts given the number of shifts
are presented in Figure 8. By using the mode as the Bayes
estimator, a single change point is detected with both
techniques. Given the presence of a single change point, the
change is detected in 1959 with BAMS. With BARE, the
change is detected in 1956.
[32] The posterior distributions of the date of change

obtained by the two techniques are bimodal; they both have
two peaks in 1956 and 1959. The two detected shifts are in
the same neighborhood. The two techniques could have
detected the same shift at 3 years’ interval. The presence of
two shifts in the series is also possible, but only one is
detected because of their proximity. When two change
points are too close in a time series, several homogenization
techniques may detect only one shift, which is in fact a
blend of the two change points [Menne and Williams, 2005].
If they have different magnitudes, the larger shift could
obliterate the smaller one. This is emphasized if the
magnitudes of the shifts have the same signs. Consecutive
shifts having the same signs are more difficult to detect than
successive shifts with alternate signs [Beaulieu et al., 2008].
[33] For comparison purposes, classical techniques that

were found efficient in previous work [Beaulieu et al.,
2008] were also applied at a 5% critical level: BIVT,
JARU and SNHT; the standard normal homogeneity test

Table 6. Distance, Elevation Difference and Correlation Between
the Base Series (Quebec City) and the Neighbor Series

Neighbor
Series

Distance
(km)

Elevation
Difference

(m) Correlation

Correlation, First
Difference
Series

Shawinigan
Falls (7018000)

105 23 0.72 0.89

La Pocatière
(7054095)

119 40 0.53 0.88

Figure 7. Total annual precipitation of the base station and the two neighbor stations: (a) Quebec city
(base), (b) Shawinigan Falls (neighbor), and (c) La Pocatière (neighbor).

10 of 15

W08410 BEAULIEU ET AL.: HOMOGENIZATION WITH BAYESIAN CHANGE POINT W08410



[Alexandersson, 1986]. All these techniques also detected a
single shift in 1959.
[34] The metadata was investigated to identify the cause

of the detected shifts. There is no information about a
potential cause of change for the years 1955–1956, but it
is indicated that the Quebec station was relocated around
1958, with a change in its elevation. For precipitation series,
a small change in the instrument height can induce a large
shift in the observed amount of precipitation [Heino, 1997].
Hence, this relocation could be the cause of the detected
shifts. The metadata could have been used to build the prior
distribution. As changes are documented in the metadata, a
higher prior probability of change could have been used. In
this case, it would not affect the results and the shift would
remain detected. However, shifts having a smaller magni-
tude could be more easily detected using an informative
prior distribution. The metadata could also be used to set the
minimum length between two segments as the minimum
length between two documented changes.

6. Discussion, Conclusions, and Future Work

[35] This work aimed to verify the capacity of the two
Bayesian techniques to discriminate homogeneous and
inhomogeneous series. This was verified by applying the
two techniques to several sets of synthetic series represent-
ing the typical total annual precipitation of the southern and
central regions of the province of Quebec (Canada) and
nearby areas. The synthetic series were also used in a
previous comparative study aiming to identify the most
appropriate techniques to homogenize precipitation series.
The use of the same synthetic series allowed the comparison
of the two Bayesian techniques with other techniques that
were found to be the most suitable in the previous work.

The performance observed with the two techniques is
summarized here.
[36] First, a weak percentage of false detection is very

important in the homogeneous series. The two techniques
presented in this work gave false detection rates smaller
than 5%, which is the usual critical level used with classical
techniques. Furthermore, the magnitudes of the falsely de-
tected shifts rarely exceed 1 standard deviation (Table 1).
Hence, the probability to introduce large artificial shifts is
very low.
[37] Second, the techniques should be able to identify a

single shift in a series. The percentages of positioned shifts
were around 80% (BAMS) and 74% (BARE) for the series
with a single shift (Table 3). The large shifts (magnitudes of
2 standard deviations and more) were well identified most
of the time (Figure 5). The probability to identify a shift
with a small magnitude is lower. The absolute errors in
position and magnitude obtained from each technique were
also studied (Table 2). In the comparative study of Beaulieu
et al. [2008], some techniques had mean absolute errors in
position and magnitude smaller than the two Bayesian
techniques. The two techniques have shown to be efficient
for the detection of series with a single shift, but some
techniques are more powerful (BAYE, BIVT and JARU).
[38] Third, the techniques should be able to detect mul-

tiple shifts in a series, without omission or false detection.
BARE seems disadvantaged in the presence of multiple
shifts and BAMS gave the best performance. In the series
with two and three shifts, BAMS gave the smaller criteria
(Tables 4 and 5). Even though the mean criterion obtained
with BAMS was the smallest for the series with two shifts,
it was not significantly different from BIVT, the technique
that was identified as the best in this case by Beaulieu et al.
[2008]. For the series with three shifts (Table 5), BAMS was

Figure 8. Posterior probability distributions for (left) the number of shifts and (right) the position of the
shift obtained with the techniques (a) BAMS, the Bayesian technique for multiple shifts of Seidou and
Ouarda [2007], and (b) BARE, the Bayesian technique for a single shift of Seidou et al. [2007].
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better than the best technique (BAYE) presented by
Beaulieu et al. [2008] for the same case.
[39] Finally, the number of shifts detected with the two

techniques versus the number of true shifts was analyzed.
For all synthetic series, BAMS often detected the exact
number of shifts. BARE generally detected the exact
number of shifts in homogeneous series and in the series
with a single shift. However, in the series with two and three
shifts, BARE detected a single shift in the majority of the
cases (Figure 3).
[40] An example of application to a real data set was

included to illustrate the homogenization procedures and to
compare the two approaches to other performing techniques.
The two Bayesian techniques were applied using non-
informative priors for the real example as well as for the
synthetic series to have results comparable to those obtained
with classical methods. In homogenization, the metadata,
some data not used in the analysis (the beginning or end
of the record) and regional information can be incorporated
in the prior distribution to give information about the pa-
rameters and to reduce the uncertainty. The metadata can
indicate the position of a potential shift as well as its
associated incertitude. Usually, the metadata is used to
validate and identify the cause of an inhomogeneity, as it
was done in the application presented in the present work
(section 5). The use of metadata in the choice of the prior
distribution is possible with Bayesian techniques and could
improve their performances. For example, if some modifi-
cations are documented, the prior probability for a change
could be set higher and if no shifts are documented, the
prior probability for a change could be set lower. The min-
imum distance between two consecutive shifts could be set
as the minimum length between two documented changes
in the metadata. It can be expected that the shifts having a
small magnitude will be more easily detected with informa-
tive prior distributions.
[41] The main advantage of BAMS is the simultaneous

detection of several shifts. Most homogenization techniques
were developed to detect at most one change point and are
applied iteratively to detect multiple shifts. It was shown
that it is advantageous to use a technique which allows the
simultaneous detection of several shifts, such as BAMS, as
it leads to best performances in this case. Furthermore, this
technique does not require a large number of neighbor series
to perform properly (in opposition to the technique devel-
oped by, e.g., Caussinus and Mestre [2004]). Another
advantage of this technique is that it allows the detection of
different types of inhomogeneities. It was tested for the
detection of one or multiple shifts in the mean, but trends
and shifts in the variance can also be detected with this
technique. Future work should focus on this subject.
[42] These two techniques were applied with neighbor

series to be able to compare the results with those obtained
with classical methods. An important benefit of the two
techniques is that it is also possible to apply them without
neighbor stations. Most homogenization techniques require
the presence of homogeneous neighboring series to repre-
sent the regional climate. The use of a neighbor series that is
inhomogeneous, could alter the detection and correction of
a shift. This issue is discussed by Menne and Williams
[2005] with simulated series and by Reeves et al. [2007]
with an example of application to real data series.

[43] A limitation of the two techniques, as well as most
other homogenization techniques, is that they require data to
be normally distributed. For the synthetic series and the case
study, this hypothesis was not problematic, as the normality
was respected. For the total annual precipitation series, the
normality assumption is reasonable. For monthly or daily
precipitation series, the normality hypothesis is less realistic
[Wilks, 2006]. The normality assumption can be contested
for several types of climatic series. Nevertheless, a Box-Cox
transformation [Box and Cox, 1964] can be used to
normalize the data. The robustness of the two techniques
to other distributions was not verified in the present work
and no existing work has been done in this direction. The
independence hypothesis is also made with these two
techniques. Once again, with a smaller time scale, this
assumption may be less realistic. It was shown that the two
techniques tend to detect more false shifts in the presence of
autocorrelation (Figure 5). These techniques could be
extended to accommodate series with autocorrelation with
an approach similar to the one used by Lund et al. [2007].
The extension of the two techniques to less restrictive
models is highly desirable.
[44] Wang et al. [2007] showed that the false detection

rates and the probabilities of detection according to the shift
positions generally have a U shape. For the false detection
rates, it can be seen in Figure 4 that the two techniques tend
to detect more false shifts at the beginning or the end of the
series. The magnitudes of the falsely detected shifts tend
also to increase at the extremities of the series. However, the
power of detection seems mainly affected by the magnitude
of the shift, and slightly affected by the position of the shift
(Figure 6). Wang et al. [2007] proposed a penalized statistic
to correct the U shape problem for a classic homogenization
technique. With this penalized statistic, the false detection
probabilities are the same for all positions in a homo-
geneous series and the confidence levels are the same for all
positions of the detected change points [Wang et al., 2007].
This issue was not addressed in the present work, but should
be the subject of a future study.
[45] These two techniques were applied under the specific

conditions of the province of Quebec, Canada, and nearby
areas. The results of this work may only be valid under
these conditions. The same techniques could lead to differ-
ent performances on series with a different length, more
than three shifts, other shift magnitudes, a different distri-
bution, a different autocorrelation structure and/or different
correlations with neighbor series. However, these techni-
ques will be useful to detect a single (BARE) or multiple
shifts (BAMS) in precipitation series similar to the synthetic
series generated. They can also be used with other climatic
variables (e.g., temperature), with hydrological variables
(e.g., streamflow) or more generally, to solve different
change point problems which can be expressed in a multiple
linear regression form as long as the hypotheses of the linear
regression are respected.

Appendix A: Detailed Presentation of BAMS

[46] Let y = (y1, y2, . . ., yn)
T be the sample, n the sample

size, m the number of change points, t0 = 0, t1,. . .,
tm, tm + 1 = n the positions of the change points and yi:j
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the observations from time i to time j. The superscript T
indicates the transpose. We also denote g(.) the probability
distribution of the time interval between consecutive change
points and g0(.) the probability distribution of the first
change point. The jth segment is then y(tj%1+1):tj with
parameter Fj. The posterior probabilities of the change
points positions were derived by Fearnhead [2006]:

Pr t1jy1:nð Þ ¼ P 1; t1ð ÞQ t1 þ 1ð Þg0 t1ð Þ=Q 1ð Þ

Pr tj tj%1; y1:n
'

'

! "

¼P tj%1þ1; t1
! "

Q tjþ1
! "

g tj%tj%1

! "

=Q tj%1þ1
! "

;

8

<

:

ðA1Þ

where P(t, s), s & t is the probability that t and s (repre-
senting the lower and upper limits of a given segment) are in
the same segment and

P t; sð Þ ¼ Pr yt:s; t; s in the same segmentð Þ

¼
R

Y

s

i¼t

f yi Fjð Þp Fð ÞdF ðA2Þ

and Q(t) is the likelihood of the segment yt:n given a change
point at t % 1. Q(t) t = 1,..,n and P(t, s), s & t are linked by
these recursive equations:

Q 1ð Þ ¼
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where G(t) =
P

t

i¼1

g(i) and G0(t) =
P

t

i¼1

g0(i). It is assumed that

the observations are independent conditional on the change
points and parameter values. The position of the change
point is inferred on the basis of the coherence P(t, s) of all
segments [t, s], where t varies from 1 to n and s varies from
t to n.
[47] The procedure was adapted by Seidou and Ouarda

[2007] to multiple linear regression. The response variable
is noted by yj( j = 1,. . ., n), or ynx1 in vectorial form,
while xij(i = 1,. . ., d*; j = 1,. . ., n) represents the jth
observation of the ith explanatory variable (Xd*xn in matrix
form). There are n observations and d* explanatory
variables. The relationship between the response variable
and the explanatory variables is

yj ¼
X

d*

i¼1

qixij þ ej; j ¼ 1; . . . ; n: ðA4Þ

The response variable is normally distributed N(
P

d*

i¼1

qixij, s2).

Given the parameter vector F = [q1, q2,. . .,qd*, s], the
density of the response variable is
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Following Rasmussen [2001],

Pr yt:s Fjð Þ ¼
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s
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From equations (A3) and (A6),

P t; sð Þ ¼ Pr yt:s; t; s in the same segmentð Þ ¼
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where P(t, s) is the posterior probability that t and s(s & t)
are in the same segment. The prior probability distribution
for the position of the change is uniform, given the pre-
ceding change point:

p tiþ1 tijð Þ ¼ 1% p

n% ti
; ðA8Þ

where p represents the prior probability for no change. Uni-
form priors are assumed for q. Therefore, the prior distri-
bution of F depends only on s (p(F) = p(q1,. . ., qd*, s) /
p(s)). It is assumed that the prior distribution of F has this
particular form:

p Fð Þ ¼ p sð Þ ¼ p s a; cjð Þ ¼
s%a exp % c

2s2

# $

2
a%3
2 c%

a%1
2 G

a% 1

2

% & ; a > 1; c > 0;

ðA9Þ

where a and c are the hyperparameters and G represents the
Gamma function. This prior was used instead of the inverted
gamma distribution, which is the standard prior for Bayesian
linear models, because it allows to obtain an analytic form for
P(t, s). The analytic expression of P(t, s) is obtained after
substituting equation (A8) in equation (A7) and integrating
out s and q in equation (A7):

P t; sð Þ ¼ 2
d*
2 p

d*%tþs%1
2

eTs:tes:t þ c
! "% t%sþað Þ

2
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G
t % sþ a

2

# $
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a% 1

2

% & ; ðA10Þ

where et:s is a part of the vector of random errors between t
and s and Xt:s represents the rows between t and s of the
explanatory variables.
[48] To infer on the positions of change points, a set of M

possible scatter schemes (E = {Sk, k = 1:M}) of the change
points on the segment using the posterior probability mass
of the first change point, and the conditional probability
mass of subsequent change points was simulated. The set
of scatter schemes is represented by E. Indeed, M should
be large enough to obtain a reliable distribution for the
positions of the change points. The kth element of E, Sk, is a
set of ~mk change points Sk = {~t1

k, ~t2
k,. . ., ~tk~mk

}. An efficient
simulation algorithm for E is given by Fearnhead [2006]:
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[49] 1. For a sample of size M, initiate M samples with a
change point at t = 0.
[50] 2. For t = 0,. . .,n % 2, repeat the following steps.
[51] Compute the number nt of samples for which the last

change point was at time t;
[52] If nt > 0, compute Pr(tjtj%1 = t, y1:n);
[53] Sample nt times from Pr(tjtj%1 = t, y1:n) and use the

values to update the nt samples of change points which have
a change point at time t;
[54] This algorithm is very efficient since Pr(tjtj%1 = t,

y1:n) has to be computed only one time regardless of the
number of samples required from it. Inference on the
number and positions of the change points is readily carried
out using the M samples. For instance, the probability of
having i change points is approximated by

Pr m ¼ ið Þ * card k cardj Skð Þ ¼ if gð Þ=M : ðA11Þ

The posterior probability of having the kth change point at
position t given m change points can be approximated by

Pr ti ¼ t mjð Þ *
card k card Skð Þ ¼ mð Þj & ~t

k
i ¼ t

# $n o# $

card k card Sð Þ ¼ mjf gð Þ
; ðA12Þ

where card(S) stands for the number of elements of the
set S. The estimators of the number and positions of change
points are the modes of their posterior distributions.

Notation

b1* regression parameters before the change point
(BARE).

b2* regression parameters after the change point
(BARE).

b0 component of the vector of regression parameters
that is constant before and after the change point
(BARE).

b1 component of the vector of regression parameters
that changes to b2 after the change point (BARE).

b2 component of the vector of regression parameters
that replaces b1 after the change point (BARE).

G Gamma function.
e vector of random errors in the linear regression

equation (BAMS).
et:s part of the vector of random errors between s and t

(BAMS).
q vector of regression parameters (BAMS).

qt(p) vector of regression parameters at time t given p
(BARE).

ut vector of residuals of the linear regression
(BARE).

p (F) prior of F (BAMS).
s2 variance (BAMS).
Sy variance-covariance matrix (BARE).
tk position of the kth change point (BAMS).
F vector of parameters of the linear regression

equation (BAMS).
a parameter of the prior distribution of F (BAMS).
c parameter of the prior distribution of F (BAMS).
C positioning criterion.
d* number of explanatory variables (including the

intercept if any).

d0* number of explanatory variables for which the
regression coefficients are constant before and after
the change (BARE).

d1* number of explanatory variables for which the
regression coefficients change (BARE).

E set of generated scatter schemes (BAMS).
f (yijF) conditional distribution of y given F (BAMS).

g(t) probability distribution of the time interval
between consecutive change points (BAMS).

g0(t) probability distribution of the first change point
(BAMS).

k number of generated scatter schemes (BAMS).
M number of scatter schemes to generate with the

posterior distributions of the positions of change
points (BAMS).

mu number of changes in the uth generated series
(BAMS).

m
_

u estimate of the number of changes in the uth
generated series (BAMS).

~mk number of changes in the kth generated scatter
scheme during the simulation of the change points.

n number of observations.
N Normal distribution.
nd number of shifts detected in the series.
nr number of true shifts in the series.
p position of the change point (BARE).
pi positions of the true shifts (i = 1,. . ., nr).
pi
d positions of the detected shifts (i = 1,. . ., nd).

P(t, s) probability that t and s are in the same segment s& t
(BAMS).

Q(t) likelihood of the segment Yt:n given a change point
at t % 1 (BAMS).

r number of response variables (BARE).
Sk kth scatter scheme generated with the posterior

distributions of the positions of change points
(BAMS).

t time.
~ti
k estimate of the ith change in the kth generated

scatter scheme (BAMS).
ti
k ith change in the kth generated scatter scheme

(BAMS).
u number of the generated series {Y}u in the

validation procedure (BAMS).
X matrix of explanatory variables (BAMS).
Xt tth row of the matrix of explanatory variables

(BARE).
Xt:s rows t to s of the matrix of explanatory variables

(BAMS).
Y vector of the response variable (BAMS).
Yt tth row of the vector of the response variable

(BARE).
Yt:s rows t to s of the vector of the response variable

(BAMS).
{Y}u uth generated series in the validation procedure

(BAMS).
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