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[1] Metaelliptical copulas are introduced as a flexible tool for modeling multivariate data
in hydrology. The properties of this broad class of dependence functions are reviewed,
along with associated rank-based procedures for copula parameter estimation and
goodness-of-fit testing. A new graphical diagnostic tool is also proposed for selecting an
appropriate metaelliptical copula. Peak, volume, and duration of the annual spring flood
for the Romaine River (Québec, Canada) are used for illustration purposes.
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1. Introduction

[2] Copula modeling is quickly gaining in popularity for
the treatment of multivariate hydrologic data. Starting with
the papers of De Michele and Salvadori [2003] and Favre et
al. [2004], this approach has been used profitably, e.g., in
the study of storm rainfall characteristics and in flood
frequency analysis. See Salvadori and De Michele [2004,
2006], De Michele et al. [2005], Zhang and Singh [2006],
or Grimaldi and Serinaldi [2006] for additional examples of
applications, as well as Genest and Favre [2007] for a
review of inference techniques for copula modeling in a
hydrologic setting.
[3] Given a vector X = (X1,. . .,Xp) of p � 2 continuous

random variables, the copula approach hinges on the
representation

Pr X1 � x1; . . . ;Xp � xp
� �

¼ C F1 x1ð Þ; . . . ;Fp xp
� �� �

ð1Þ

for the joint distribution of X in terms of its marginal
distributions

Fk xð Þ ¼ Pr Xk � xð Þ; k 2 1; . . . ; pf g

and a copula C, i.e., the cumulative distribution function of
a vector (U1,. . .,Up) of dependent uniform random variables
on the interval (0, 1).
[4] From a theoretical point of view, copulas are attrac-

tive because of the flexibility they offer in the construction
of models for the vector X through the choice of margins
from different families of univariate distributions and, quite

separately, the selection of a suitable dependence structure
between the components of X, as represented by C.
[5] From a practical point of view, the interest in this

methodology stems from the observation that most hydro-
logic phenomena are multifactorial and that dependence
between variables must be accounted for in order to achieve
realistic modeling. For example, hydrologic engineers face
planning, design and management problems that require a
detailed knowledge of the three main flood characteristics:
peak, volume and duration. Such is the case, e.g., for
flooding and inundation management.
[6] Unfortunately, most frequency analysis applications

considered to date have focused either on one or two
variables at the time. As a result, they cannot provide a
complete assessment of the probability of flood occurrence.
As shown by De Michele et al. [2005], among others,
failure to take into account the dependence between all
relevant variables may lead to an overestimation or under-
estimation of the risk associated with a given event.
[7] To this date, copula modeling involving more than

two hydrologic variables has only been attempted by
Salvadori and De Michele [2006] and Grimaldi and
Serinaldi [2006] in the context of storm and flood analysis,
respectively. In the latter paper, the authors consider the use
of Archimedean copulas for joint modeling of flood peak,
volume and duration. These copulas are expressible in the
form

C u1; . . . ; up
� �

¼ f	1 f u1ð Þ þ � � � þ f up
� �� �

ð2Þ

in terms of a generator f: (0, 1]! [0,1) such that f(1) = 0
and other regularity conditions are satisfied, e.g., (	1)kdf	1 (t)/
dt k � 0 for every k 2 {1,. . .,p}.
[8] Many examples of Archimedean copulas are given,

e.g., in chapter 4 of Nelsen [2006]. Although this class is
broad, Grimaldi and Serinaldi [2006] argue that it is often
too restrictive for hydrologic applications. For, the symme-
try of (2) implies that all pairs of variables share the same
dependence structure and hence the same degree of associ-
ation as measured by margin-free coefficients such as
Spearman’s rho or Kendall’s tau.

1Département de mathématiques et de statistique, Université Laval,
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[9] Following Joe [1997], Grimaldi and Serinaldi [2006]
are thus led to consider nested classes of Archimedean
copulas, which may involve up to p 	 1 generators f1,
. . ., fp	1 that must then satisfy a wealth of regularity and
compatibility conditions. However, even in the simplest
example of this construction, namely,

C u1; u2; u3ð Þ ¼ f	1
1 f1 u3ð Þ þ f1 � f	1

2 f2 u2ð Þ þ f2 u1ð Þf g
� �

; ð3Þ

some pairs still have the same dependence structure, e.g.,
(U1, U3) and (U2, U3).
[10] The purpose of this paper is to show how greater

flexibility can be achieved in modeling trivariate hydrologic
data using metaelliptical families of copulas. These models
are not new: they were originally proposed by Fang et al.
[2002] and they are already beginning to find applications
in finance; see, e.g., Cherubini et al. [2004, and references
therein]. However, their properties are scattered in the
literature and inference procedures for this class of copulas
are still in their early stages of development.
[11] In this paper, metaelliptical copulas are used to

analyze flood peak, volume and duration data for the
Romaine River, located in the Basse-Côte-Nord area of
Québec (Canada). Beyond its intrinsic interest for hydrolo-
gists, this application is only one of a handful applications
(finance included) to illustrate the merits of metaelliptical
copulas for dependence modeling in a truly multivariate
(as opposed to bivariate) context. This paper is also among
the first to implement the goodness-of-fit tests of Genest
et al. [2006] and Genest and Rémillard [2007] to this
important class of copulas.
[12] The hydrologic data at the origin of this work

are presented in section 2. A review of the definition and
basic properties of metaelliptical copulas is then given in
section 3, along with a compendium of the most common
parametric families of this form. As mentioned earlier, this
material is gathered from scattered sources in the recent
statistical and financial literature; a unified treatment is
presented here with the end user in mind.

[13] General estimation and goodness-of-fit procedures
for copula models are adapted to the metaelliptical class in
section 4. To help analysts choose from a variety of
models from this class, an inference procedure is required
for selecting their generator. Estimation and graphical
diagnostic tools of this sort are presented here for the first
time; they rely on nonparametric techniques that prevail in
copula modeling methodology. These inference techniques
are then used in section 5 to analyze the Romaine River
annual spring flood data. Concluding comments may be
found in section 6.

2. Motivation: Data

[14] Peak (m3/s), volume (hm3) and duration (days) of the
annual spring flood are available from 1957 to 2004 for the
Romaine River located in the Basse-Côte-Nord area of
Québec (Canada). The series consist of n = 47 observations,
as the data for 1960 are missing.
[15] Figure 1 shows the evolution of the three variables

during the study period. As will be shown in section 5.1, the
individual time series are stationary and exhibit no autocor-
relation; accordingly, they can be assimilated to random
samples from univariate distributions whose form will be
determined later. A careful look at Figure 1 suggests that
while the variables may not depend on time, they are related
to one another. To confirm this suspicion, scatterplots of
each pair of variables could be drawn. However, as argued
by Genest and Favre [2007], among others, dependence
between variables is best revealed by plotting the ranks of
the data, rather than the original variables. This is done in
Figure 2 for each of the pairs (peak, volume), (peak,
duration), and (volume, duration).
[16] The rank plots in Figure 2 clearly suggest the

presence of positive dependence in the pair (peak, volume)
and negative dependence in the pair (peak, duration). This
conforms to intuition. There is also a hint of positive
association in the pair (volume, duration).

Figure 1. Time series plot of peak (m3/s), volume (hm3),
and duration (days) for the Romaine River.

Figure 2. Scatterplots of pairs of ranks for peak (R) versus
volume (S), peak (R) versus duration (W), and volume (S)
versus duration (W) for the Romaine River, Québec
(Canada), based on annual data collected between 1957
and 2004.
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[17] To confirm these findings, one might compute Pear-
son’s correlation, rn, and base a test of independence
thereupon. Although the results are reported in Table 1 for
the three pairs of variables, the conclusions are somewhat
dubious because they are based on the assumption of
bivariate normality, which turns out to be inappropriate in
this case.
[18] A better way to proceed consists of computing

Spearman’s correlation, rn, or Kendall’s coefficient of
concordance, tn, and to base a test of independence on
either one of these statistics. Because they are rank based,
these procedures are known to be robust to departures from
normality, while remaining powerful; see, e.g., Genest and
Verret [2005] for a recent discussion.
[19] Empirical values of rn and tn are also reported in

Table 1, along with the P values of the corresponding tests
of independence. Although volume, peak and duration may
be construed as continuous attributes of the annual spring
flood, some tied observations occurred among the latter two
because of the coarseness in the scales on which the data
were recorded. At the cost of a small bias, the estimates in
Table 1 are thus based on Spearman’s rs and Kendall’s tb
coefficients as defined, e.g., by Kendall [1955].
[20] Archimedean copulas (2) are clearly inadequate for

modeling the dependence between the three variables, given
that different pairs exhibit wildly varying degrees of depen-
dence. Copulas of the form (3) would not be of any help
either, because the regularity conditions imposed by Joe
[1997] and Grimaldi and Serinaldi [2006] imply that
negative degrees of association cannot be modeled between
the variables [see, e.g., Marshall and Olkin, 1988].
[21] While it may be argued that the dependence in the

pair (volume, duration) is not significant, this does not imply
that they are independent. (Recall that zero correlation and
independence are not equivalent, except under normality.)
Furthermore, the option of treating, say, duration as inde-
pendent of the other pair (peak, volume) is not viable,
because of the demonstrated dependence between peak

and duration. Trivariate modeling thus imposes itself in this
case.

3. Metaelliptical Copulas

[22] The class of metaelliptical copulas was originally
introduced by Fang et al. [2002]. It is derived from the
well-known family of elliptical distributions, which is itself
an extension of the classical multivariate normal distribu-
tion. For a detailed overview on elliptical distributions [see,
e.g., Fang et al., 1990].
[23] Specifically, a p variate vector X* = (X*1,. . .,X*p)

is said to have an elliptical distribution Ep(m, S, g) with
mean vector m 2 Rp, covariance matrix S = (sij) and
generator g: [0, 1) ! [0, 1) if it can be expressed in
the form

X* ¼ mþ RAU; ð4Þ

where AA: = S is the Cholesky decomposition of S, U is a
p variate random vector uniformly distributed on the sphere
Sp = {(u1,. . .,up) 2 Rp: u1

2 + � � � + up
2 = 1} and R is a

nonnegative random variable with density

fg rð Þ ¼ 2pp=2

G p=2ð Þ r p	1g r2
� �

; r > 0:

The representation (4) is such that when it exists, the
multivariate density of the vector X* is given by hg(x) =
jSj	1/2g{(x 	 m) :S	1 (x 	 m)}.
[24] When g (t) / e	t/2, for instance, X* is multivariate

normal, and R2 has a chi-square distribution with p degrees
of freedom. Other common examples of g are given in
Table 2; they lead, e.g., to the multivariate Student or
Pearson type II distributions.
[25] Through an appropriate choice of parameters, the

generators listed in Table 2 provide added flexibility in
modeling p variate data. In particular, they allow for fatter
tails than under normality and, more importantly, for the
possibility of tail dependence [Joe, 1997].
[26] Tail dependence, say between components k and ‘ of

X*, can be represented by the probability that X*k exceeds its
quantile of order a, given that X*‘ exceeds its own quantile
of order a. The limiting probability as a ! 1 is called the
upper tail dependence coefficient. When the vector X* is
elliptically distributed, Schmidt [2002] shows that

l X*
k ;X

*
‘

� �
¼
Z sk‘

0

tbffiffiffiffiffiffiffiffiffiffiffiffi
1	 t2

p dt
.Z 1

0

tbffiffiffiffiffiffiffiffiffiffiffiffi
1	 t2

p dt;

Table 1. Dependence Measures for the Pairs of the Romaine

River, Québec, Canada, Based on Annual Data Collected Between

1957 and 2004a

Peak and Volume Peak and Duration Volume and Duration

rn 0.5832 [<0.0001] 	0.4756 [0.0007] 0.2124 [0.1516]
rn 0.5892 [<0.0001] 	0.3943 [0.0075] 0.2259 [0.1255]
tn 0.4070 [<0.0001] 	0.2812 [0.0058] 0.1471 [0.1491]

aP values are given in brackets.

Table 2. Useful Functions for the Simulation of Four Metaelliptical Copulas

Copula Distribution of R2 g(t) Qg

Normal R2 � c(p)
2 (2p)	p/2 exp (	t/2) N (0, 1)

Student R2/p � F (p, n) ��ð Þ	p=2� pþ�
2ð Þ

� �=2ð Þ (1 + t/n)	(p+n)/2 Student (n)

Cauchy R2/p � F (p, 1)
�ð Þ	p=2� pþ1

2ð Þ
� 1=2ð Þ (1 + t)	(p+1)/2 Cauchy

Pearson type II R2 � Beta(p/2, n + 1)
G p=2þnþ1ð Þ
pp=2G nþ1ð Þ (1 	 t)n,

t2[	1, 1], n > 	1

Pearson type II
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where sk‘ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ rk‘ð Þ=2

p
with

rk‘ ¼
sk‘ffiffiffiffiffiffiffiffiffiffiffiffiffi
skks‘‘

p ; k; ‘ 2 1; . . . ; pf g

and b > 0 is such that for arbitrary x > 0, g(xt)/g(t) !
x	(p+b)/2 as t ! 1.
[27] In this case as in general, the upper tail coefficient l 2

[0, 1] is independent of the marginal distributions. As
illustrated by Frahm et al. [2003], among others, it is nonzero
for many metaelliptical copula models; a contrario, it van-
ishes for the multivariate normal distribution unless rk‘ = 1
for all k, ‘ 2 {1,. . .,p}. Refer to Poulin et al. [2007] for a
discussion of tail dependence and its importance in the
context of bivariate frequency analysis.
[28] One inconvenient limitation of elliptical distributions

is that the scaled components X*1/
ffiffiffiffiffiffiffi
s11

p
,. . .,X*p/

ffiffiffiffiffiffiffispp
p

are
identically distributed. Thus for every k 2 {1,. . .,p},

Qg xð Þ ¼ Pr
X*kffiffiffiffiffiffiffi
skk

p � x

 !

¼ 1

2
þ p p	1ð Þ=2

G p	1
2

� � Z x

0

Z 1

u2
y	 u2
� � p	1ð Þ=2	1

g yð Þdydu: ð5Þ

However, models based on the unique metaelliptical copula
CS,g associated with X* do not suffer from this defect, as
their margins are arbitrary.
[29] Formally CS,g is the joint distribution of the vector

(U1,. . .,Up) with Uk = Qg(X*k/
ffiffiffiffiffiffiffi
skk

p
) for k 2 {1,. . .,p}.

The cumulative distribution function of an elliptical vector
X* (and hence of its components) is typically not available
in closed form. Consequently, its inverse is not explicit and
an expression for CS,g(u1,. . .,up) is neither useful nor
enlightening.
[30] A better understanding of the structure of elliptical

distributions can be derived from representation (4) which
justifies the following random generation algorithm.
[31] Algorithm 1. To generate a p variate observation X*

from Ep(m, S, g), proceed as follows:
[32] 1. Generate R according to distribution fg.
[33] 2. Generate U uniformly on Sp, as per, e.g.,Marsaglia

[1972].
[34] 3. Compute the square root A of S via the Cholesky

decomposition.
[35] 4. Deliver X* = m + RAU.
[36] To see what this does, consider the special case

where m = 0 and S = Ip is the identity matrix. An
observation of X* is then obtained by determining at what
distance R it will be from the origin, and in which direction.
This is what steps 1 and 2 of the algorithm do. Given that all
directions are equally likely, the resulting distribution is
spherical, meaning that its lines of isodensity are concentric
circles centered at 0 in Rp.
[37] For example, it was mentioned earlier that when

g(t) / e	t/2, R2 is chi-square with p degrees of freedom and
that as a consequence, RU has a standard p variate normal
distribution. The introduction of A = S1/2 in step 3 of the
algorithm makes it possible to transform these concentric
circles into ellipses, and ARU is then multivariate normal
with covariance matrix S. Step 4 then moves the center of
the distribution to m.

[38] Now suppose that an observation X = (X1,. . .,Xp)
from a copula model of the form (1) is desired, where C is
metaelliptical with functional parameter g. The procedure
then consists of generating X* = (X*1,. . .,X*p) according
to algorithm 1, after which the margins are transformed to
F1,. . .,Fp by setting Xk = Fk

	1 � Qg (X*k/
ffiffiffiffiffiffiffi
skk

p
) for all k 2

{1,. . .,p}. Given that the effect of translation and scaling
of the individual components is canceled in this operation,
no loss in generality incurs from taking m = 0 and s11 =
� � � = spp = 1. Consequently, S is assumed to represent a
correlation matrix in the sequel.
[39] Algorithm 2. To generate a p variate observation X

from copula CS,g, proceed as follows:
[40] 1. Carry out steps 1–4 of algorithm 1 resulting in a p

variate vector X* = (X*1,. . .,X*p).
[41] 2. Deliver X = (X1,. . .,Xp), where Xk = Fk

	1 � Qg (X*k/ffiffiffiffiffiffiffi
skk

p
) for all k 2 {1,. . .,p}.

[42] The main properties of metaelliptical copulas are
described by Fang et al. [2002] and Abdous et al. [2005],
among others. Of particular importance here is a result of
Hult and Lindskog [2002] to the effect that for every k, ‘ 2
{1,. . .,p},

corr X*k ;X
*
‘

� �
¼ rk‘ ¼

sk‘ffiffiffiffiffiffiffiffiffiffiffiffiffi
skks‘‘

p

is linked to the population value of Kendall’s tau between
X*k and X*‘ through the relation

tk‘ ¼ t X*k ;X
*
‘

� �
¼ 2

p
arcsin rk‘ð Þ; k; ‘ 2 1; . . . ; pf g: ð6Þ

[43] Given that Kendall’s tau is invariant by monotone
increasing functions of the margins, equation (6) also
describes the connection between rk‘ and t(Xk, X‘) = tk‘
for every choice of k, ‘ 2 {1,. . .,p}. One point worth
stressing is the fact that unless g is the generator of the
multivariate normal distribution, tk‘ = rk‘ = 0 never corre-
sponds to independence, either between Xk and X‘ or
between X*k and X*‘.

4. Inference Procedures

[44] In order to model the dependence between p � 2
random variables using a metaelliptical copula, appropriate
choices of S and g must be made. Estimation methods for
both of these parameters are discussed in turn.
[45] Given that the copula of a random vector is unaf-

fected by monotone increasing transformations of the
margins, it is taken for granted here that copula inference
should be based on the maximally invariant statistic of
the initial random sample X1 = (X11,. . .,X1p),. . .,Xn =
(Xn1,. . .,Xnp). As explained, e.g., by Genest and Favre
[2007], this implies that estimators and tests for copula
structures should be functions of the set of rank vectors
R1 = (R11,. . .,R1p),. . .,Rn = (Rn1,. . .,Rnp), where for each
i 2 {1,. . .,n} and k 2 {1,. . .,p},

Rik ¼
Xn
j¼1

1 Xjk � Xik

� �
:

4.1. Estimation of S
[46] Because S is a correlation matrix, it is symmetric and

hence one need only estimate the vector q of its p(p 	 1)/2
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supradiagonal elements. Given a choice of g, the most
efficient way to proceed consists of maximizing the log-
pseudo likelihood

‘ qð Þ ¼
Xn
i¼1

log cq F̂1 Xi1ð Þ; . . . ; F̂p Xip

� �� �� �

¼
Xn
i¼1

log cq
Ri1

nþ 1
; . . . ;

Rip

nþ 1

� �� �
:

[47] Here, cq is the density corresponding to the meta-
elliptical copula

Cq u1; . . . ; up
� �

¼
Z Q	1

g u1ð Þ

	1
� � �
Z Q	1

g upð Þ

	1

1

jSj1=2
g z>S	1z
� �

dzp � � � dz1; ð7Þ

where z = (z1,. . .,zp)
: and Qg

	1 denotes the inverse of Qg

defined in (5). Furthermore,

F̂k tð Þ ¼ 1

nþ 1

Xn
i¼1

1 Xik � tð Þ

is the rescaled empirical distribution function associated
with variable Xk, for k 2 {1,. . .,p}.
[48] The division by n + 1 rather than n in the definition

of F̂k is standard in the copula modeling literature. It
ensures that F̂k (Xik) = Rik/(n + 1) < 1 for all i 2 {1,. . ., n}
and k 2 {1,. . .,p}. As a consequence, each summand in
‘(q) is finite, which might not be the case if the density
cq were evaluated at a point on the boundary of [0,1]p.
[49] As shown by Genest et al. [1995] and Shih and Louis

[1995], the value of q that maximizes the rank-based pseudo
likelihood is asymptotically normal under weak regularity
conditions. It is also semiparametrically asymptotically
efficient in specific circumstances [see Genest and Werker,
2002].
[50] In the present context, however, it is numerically

more convenient to use another rank-based estimator, which
is also consistent [see, e.g., Genest and Rémillard, 2007].
The latter is based on the inversion of Kendall’s tau; it may
be construed as a nonparametric analogue of the celebrated
method of moments. In the present case, this approach is
facilitated by identity (6). It was exploited in the case of
metaelliptical copulas, e.g., by Breymann et al. [2003] and
by Lindskog et al. [2003]. Recalling that S is taken here to
be a correlation matrix, the method consists of setting

ŝk‘ ¼ sin pt̂k‘=2ð Þ;

where for each k, ‘ 2 {1,. . .,p}, t̂k‘ is the sample version of
Kendall’s tau.
[51] Specifically, for given k, ‘ 2 {1,. . .,p},

t̂k‘ ¼
Ck‘ 	 Dk‘

Ck‘ þ Dk‘
;

where Ck‘ and Dk‘ represent the number of concordant and
discordant pairs, respectively. Distinct pairs (Xik, Xi‘) and

(Xjk, Xj‘) are said to be concordant whenever (Xjk	 Xik)(Xj‘	
Xi‘) > 0 or equivalently if (Rjk 	 Rik)(Rj‘ 	 Ri‘) > 0; they
are said to be discordant otherwise. As t̂k‘ is a U statistic, it
is well known to be asymptotically normal and unbiased.
See, e.g., Genest and Rivest [1993] for a consistent estimate
of its limiting variance. For additional information about U
statistics and their distributional properties, see, e.g., Lee
[1990].

4.2. Estimation of g

[52] The estimation of g is more complex, considering
that it is a functional parameter. Indeed, a rigorous approach
to this problem has yet to be developed. Financial
applications to date have simply treated g as fixed; however,
several possible choices of g have often been considered to
assess the robustness of the conclusions derived from the
model.
[53] An informal graphical tool is proposed below for

assisting in the selection of an appropriate generator g.
Goodness-of-fit tests for metaelliptical copula models are
then described in the following subsection. Validating the
choice of g is of paramount importance, given that it
determines tail dependence in metaelliptical copula models
[Schmidt, 2002].
[54] It is well known that if X* is a p variate normal

vector with mean m = 0 and covariance matrix S, then
(X*):S	1X* follows a chi-square distribution with p
degrees of freedom [see, e.g., Rao, 1981]. More generally
if X* is distributed as an Ep(0, S, g), it then follows from
representation (4) that

X*
� �>

S	1X* ¼ R2 AUð Þ>S	1 AUð Þ ¼ R2 ð8Þ

since A = S1/2 and U :U = 1. Hence if X is a p variate
random vector with metaelliptical copula C with parameters
S and g and margins F1,. . .,Fp, equation (8) then holds for
the vector X* with components X*k = Qg

	1 � Fk (Xk) for k 2
{1,. . ., p}.
[55] Now suppose independent copies X1,. . .,Xn of X

have been observed. Let F̂k represent the consistent
estimator of Fk defined in section 4.1, and set Y*i =
(Y*i1,. . .,Y*ip), where

Y*ik ¼ Q	1
g � F̂k Xikð Þ

¼ Q	1
g

Rik

nþ 1

� �
; i 2 1; . . . ; nf g; k 2 1; . . . ; pf g:

The vectors Y*1,. . .,Y*n are then dependent random variables,
from which an empirical process can be constructed. In the
light of results by Ghoudi and Rémillard [1998, 2004]
concerning the asymptotic behavior of such processes, there
is every reason to think that when S is estimated by Ŝ =
(ŝk‘), Zi = (Y*i )

:Ŝ	1Y*i has the same distribution as R2 for
each i 2 {1,. . .,n}, namely,

h zð Þ ¼ pp=2

G p=2ð Þ zp=2	1g zð Þ; z > 0;
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with corresponding cumulative distribution function H. This
fact is stated here as a conjecture; a formal proof would go
well beyond the scope of the present paper.
[56] Assuming that the conjecture is true, a useful proce-

dure for checking that a specific G is a viable choice would
then consist of comparing the empirical distribution of the
pseudo observations Z1,. . .,Zn to its theoretical counterpart,
h. The simplest way to accomplish this visually is to draw a
PP plot, whose construction is described next.
[57] A diagnostic PP plot for g: First compute the order

statistics Z(1) < � � � < Z(n) associated with the pseudo
observations Z1,. . .,Zn. Let also zi = (i 	 0.5)/n for i 2
{1,. . .,n}. A PP plot for g then consists of the pairs
(zi, H

	1(Z(i))) for i 2 {1,. . .,n}. The plot should be close
to a line with unit slope if g is an appropriate choice of
metaelliptical copula for the data at hand, and if n is
sufficiently large. The zi are the common Hazen plotting
positions. This choice could possibly be refined in
subsequent work.

4.3. Goodness-of-Fit Tests

[58] Now suppose that a metaelliptical copula with
parameters S and g has been selected from a p variate data
set. How could one then check the overall quality of the fit
with a formal test? Several goodness-of-fit procedures have
recently been proposed to this end. They can be divided into
three broad classes: (1) tests based on the probability
integral transformation of Rosenblatt [1952] [e.g.,
Breymann et al., 2003; Dobrić and Schmid, 2007], (2) tests
that involve kernel smoothing [e.g., Fermanian, 2005;
Panchenko, 2005; Scaillet, 2007], and (3) omnibus tests
derived from continuous functionals of the empirical copula
process [Genest et al., 2006; Genest and Rémillard, 2007].
In this paper, however, the focus is limited to goodness-of-
fit tests of the third group. Two reasons motivate this choice:
[59] 1. Tests based on Rosenblatt’s transformation involve

conditioning on successive components of the random
vector and depend on the order in which this conditioning
is done.
[60] 2. Although Scaillet [2007] has recently streamlined

the process, kernel-based goodness-of-fit testing procedures
described by Fermanian [2005] involve many arbitrary
choices (kernel type, window length, weight function, etc.)
that make their application cumbersome. Similar criticisms
apply to the work of Panchenko [2005].
[61] The two tests retained for the present study are

described below in separate subsections.
4.3.1. Test Based on the Empirical Copula Process
[62] The first test, originally proposed by Fermanian

[2005] and implemented by Genest and Rémillard [2007],
is based on a comparison of the distance between the
estimated metaelliptical copula CŜ,g and a rank-based
estimate of the underlying copula C requiring no parametric
assumption on its form. The latter, according to Deheuvels
[1979], is defined by

Cn uð Þ ¼ 1

n

Xn
i¼1

1
Ri

nþ 1
� u

� �

¼ 1

n

Xn
i¼1

1
Ri1

nþ 1
� u1; . . . ;

Rip

nþ 1
� up

� �
; ð9Þ

for every u = (u1,. . .,up) 2 Rp. Specifically, the test statistic
considered here is based on the Cramér–von Mises distance

Sn ¼ n

Z
0;1ð Þp

Cn u1; . . . ; up
� �

	 CŜ;g u1; . . . ; up
� �n o2

dCn u1; . . . ; up
� �

¼
Xn

i¼1
Cn

Ri1

nþ 1
; . . . ;

Rip

nþ 1

� �
	 CŜ;g

Ri1

nþ 1
; . . . ;

Rip

nþ 1

� �� �2

:

An alternative test based on a Kolmogorov-Smirnov type
distance could also be envisaged but is left aside, as it often
turns out to be less powerful [see, e.g., Genest and
Rémillard, 2004; Genest et al., 2006].
[63] An advantage of the goodness-of-fit statistic Sn is

that its computation is straightforward, provided that one
can rely on an appropriate numerical integration routine for
the determination of CŜ,g(u1,. . .,up) for any choice of
u1,. . .,up 2 (0, 1). As the asymptotic distribution of Sn is
unwieldy, however, it is preferable to rely on a parametric
bootstrap procedure in order to associate a P value to this
statistic.
[64] Algorithm 3. To compute the P value associated

with an observed value of the statistic Sn, fix some large
integer N (the larger the better, but N = 100,000 was taken
in the application) and repeat the following steps for every
m 2 {1,. . .,N}:
[65] 1. Generate a random sample X*1,m,. . .,X*n,m from

distribution Ep(0, Ŝ, g) and compute their associated rank
vectors R*1,m,. . .,R*n,m.
[66] 2. For every u 2 Rp, let

Cn;m uð Þ ¼ 1

n

Xn
i¼1

1
R*i;m

nþ 1
� u

 !

¼ 1

n

Xn
i¼1

1
R*i1;m

nþ 1
� u1; . . . ;

R*ip;m

nþ 1
� up

 !
:

[67] 3. Determine the sample value t*k‘,m of Kendall’s tau
associated with the pairs (X*1k,m, X*1‘,m),. . .,(X*nk,m, X*n‘,m) and
set Ŝm = (ŝ*k‘,m), where ŝ*k‘,m = sin(pt*k‘,m/2).
[68] 4. Compute the value of

S*n;m ¼
Xn
i¼1

Cn;m

R*i1;m

nþ 1
; . . . ;

R*ip;m

nþ 1

 !(

	 CŜm ;g

R*i1;m

nþ 1
; . . . ;

R*ip;m

nþ 1

 !)2

:

[69] An approximate P value for the test based on the
Cramér–von Mises statistic Sn is then given by

1

N

XN
m¼1

1 S*n;m > Sn

� �
:

[70] The work of Genest and Rémillard [2007] guarantees
that this parametric bootstrap procedure provides an
adequate approximation of the distribution of Sn under the
null hypothesis H0:C 2 (CS,g).
4.3.2. Test Based on Kendall’s Process
[71] The second test is adapted from the work of Genest

et al. [2006]. It is based on a Cramér–von Mises distance
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between the distribution of the probability integral trans-
formation H(X*) of any p variate vector X* with cumulative
distribution function H, namely,

K wð Þ ¼ Pr H X*
� �

� w
n o

; w 2 0; 1ð Þ;

and an empirical estimation Kn thereof. Specifically, a
goodness-of-fit test statistic of H0 that avoids the numeri-
cally involved computation of dKŜ,g(w)/dw takes the form

Tn ¼ n

Z 1

0

Kn wð Þ 	 KŜ;g wð Þ
n o2

dKn wð Þ;

where in general

KS;g wð Þ ¼ Pr CS;g Xð Þ � w
� �

is the distribution induced by CS,g, whose computation must
usually rely on a numerical integration routine. As for the
empirical analogue Kn, it is given by

Kn wð Þ ¼ 1

n

Xn
i¼1

1 Wi � wð Þ;

where for each i 2 {1,. . .,n},

Wi ¼ Cn

Ri

nþ 1

� �
¼ 1

n

Xn
j¼1

1 Rj � Ri

� �

¼ 1

n

Xn
j¼1

Yp
k¼1

1 Rjk � Rik

� �
:

Accordingly,

Tn ¼
Xn
i¼1

fKn Wið Þ 	 KŜ;g Wið Þg2

¼
Xn
i¼1

Kn � Cn

Ri1

nþ 1
; . . . ;

Rip

nþ 1

� ��

	 KŜ;g � Cn

Ri1

nþ 1
; . . . ;

Rip

nþ 1

� ��2

:

The computation of Tn is thus barely any harder than that of
Sn, provided that one can rely on an appropriate numerical
integration routine for the determination of KŜ,g(w) at
arbitrary w 2 (0, 1). Here again, the use of a parametric
bootstrap is recommended for finding the P value associated
with the test statistic.
[72] Algorithm 4. To compute the P value associated

with an observed value of the statistic Tn, fix some large
integer N (again, the larger the better, but N = 100,000 was
taken in the application) and repeat the following steps for
every m 2 {1,. . ., N}:
[73] 1. Generate a random sample X*1,m, . . .,X*n,m from

distribution Ep(0, Ŝ, g) and compute their associated rank
vectors R*1,m,. . .,R*n,m.
[74] 2. For each i 2 {1,. . .,n}, let

Wi;m ¼ 1

n

Xn
j¼1

1 R*j;m � R*i;m

� �

¼ 1

n

Xn
j¼1

Yp
k¼1

1 R*jk;m � R*ik;m

� �
:

[75] 3. Compute

Kn;m wð Þ ¼ 1

n

Xn
i¼1

1 Wi;m � w
� �

; w 2 0; 1ð Þ:

[76] 4. Determine the sample value t*k‘,m of Kendall’s tau
associated with the pairs (X*1k,m, X*1‘,m), . . ., (X*nk,m, X*n‘,m) and
set Ŝm = (ŝ*k‘,m), where ŝ*k‘,m = sin (pt*k‘,m/2).
[77] 5. Compute the value of

T*n;m ¼
Xn
i¼1

n
Kn;m Wi;m

� �
	 KŜm ;g

Wi;m

� �o2

:

[78] An approximate P value for the test based on the
Cramér–von Mises statistic Tn is then given by

1

N

XN
m¼1

1 T*n;m > Tn

� �
:

[79] Once again, the validity of this parametric bootstrap
procedure under the null hypothesis H0:C 2 (CS,g) is
guaranteed by the work of Genest and Rémillard [2007].
These authors also suggest a double parametric bootstrap
procedure that may prove a useful substitute to the
numerical integration of CŜ,g or KŜ,g. This technique is
described next.
[80] Double-bootstrap procedure. Algorithm 3 requires

the evaluation at various points of the cumulative distribu-
tion function C~S,g, either with ~S = Ŝ or Ŝm. Instead of
computing these functions by numerical integration,
approximate them by empirical distribution functions of
the form

Ĉ ~S;g u1; . . . ; up
� �

¼ 1

R

XR
r¼1

1 ~Xr1 � u1; . . . ; ~Xrp � up
� �

;

where ~X1 = (~X 11,. . .,~X 1p),. . .,~XR = (~XR1,. . .,~XRp) is a
random sample of size R from C~S,g, for some suitably large
integer R, say 100,000.
[81] Similarly, algorithm 4 requires the evaluation at

various points of the cumulative distribution function
K~S,g, with ~S = Ŝ or Ŝm. Instead of proceeding by numerical
integration, approximate them by suitable empirical
distribution functions. In other words, begin as above by
generating a random sample of size R from metaelliptical
copula C~S,g. Then set

~Wr ¼
1

R

XR
r0¼1

Yp
k¼1

1 ~Xr0k � ~Xrk

� �

for each r 2 {1,. . .. . .. . .. . .. . .. . ., R} and let

K̂~S;g wð Þ ¼
1

R

XR
r¼1

1 ~Wr � w
� �

; w 2 0; 1ð Þ:

5. Analysis of the Romaine Data

[82] It has already been argued in sections 1 and 2 that a
trivariate model is required for the analysis of the data on
peak, volume and duration of the annual spring flood for
the Romaine River. This section shows how metaelliptical
copulas and the associated rank-based inference techniques
can be used to this end. A univariate analysis of each of
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the three marginal distributions is described in section 5.1.
Copula modeling of the dependence structure between
the three variables is then detailed in section 5.2 and
finally, simple consequences of the model are drawn in
section 5.3.

5.1. Univariate Analysis

[83] Figure 1 shows the evolution of the three main
characteristics of the annual spring flood for the Romaine
River in the period 1957–2004. Recall that the series
comprise only n = 47 data points, because no information is
available for 1960. The plots for peak and volume suggest a
change of hydrologic regime around 1985; flood duration is
apparently unaffected by the latter, however. These
observations may be confirmed by comparing data before
and after 1985 using Wilcoxon’s rank-sum test; P values are
0.0355, 0.0355 and 0.0702 for peak, volume and duration,
respectively.
[84] Breaking points in the peak and volume series of the

Romaine River have been observed on most streams in the
Northern Québec/Labrador region east of the Bersimis
(or Betsiamites) River [see, e.g., Perreault et al., 2000;
Rousseau and Slivitzky, 2003]. This phenomenon, which is
possibly a reflection of recent climatic changes, cannot be
modeled by traditional univariate distributions. Mixtures
provide a suitable alternative; they are used in the sequel.
Note in passing that their introduction in the model
precludes the use of standard multivariate distributions,
thereby providing added motivation for the copula
approach. Refer to Favre et al. [2004] for further discussion
on this point.
[85] For the application at hand, peak and volume were

respectively modeled using mixtures of gamma and normal
distributions, namely,

p1 G a1;b1ð Þ þ 1	 p1ð Þ G a2;b2ð Þ and

p2 N m1;s
2
1

� �
þ 1	 p2ð Þ N m2; s

2
2

� �
;

where the G(a, b) density is parameterized in such a way
that its expectation is a/b. To guide this selection process,
the univariate data were analyzed using the software Hyfran
[Chaire en Hydrologie Statistique, 2002], which uses
Akaike and Bayesian information criteria to choose among
16 different distributions.
[86] Because they are particularly well suited for infer-

ence in mixture models, Bayesian methods were employed
for parameter estimation [see, e.g., Titterington et al., 1985].

More specifically, Gibbs sampling was used to estimate
parameters in a Hidden Markov Chain Model formulation
where the latent variables correspond to the distributions
envisaged. As for duration, it can be represented adequately
by a simple gamma distribution, whose parameters were
estimated by standard maximum likelihood.
[87] Point estimates for the parameters of the three

marginal distributions are summarized in Table 3. As can
be seen from Figure 3, the fit of the selected mixtures for
peak and volume is adequate (though not ideal). Goodness
of fit was confirmed using the classical Kolmogorov-Smirnov
test. For peak, volume and duration, the P values were
0.1221, 0.7577 and 0.7657, respectively.

5.2. Dependence Analysis

[88] Statistical analysis usually begins with appropriate
graphics, and dependence modeling is no exception. When
looking for a copula representation of association, it was
mentioned in section 2 that the most telling graphs are rank
scatterplots for pairs of variables taken two at a time. One
reason is that when these graphs are rescaled through
division by n + 1, their points correspond to the supports
of the various bivariate margins of Deheuvels’ empirical
copula (9), which is a consistent estimator of the true
underlying copula. (Whether for an empirical or a
theoretical copula, bivariate margins are found by setting
all but two components of the vector u equal to 1.)
[89] Rank scatterplots (although unscaled) are displayed

in Figure 2 for peak, volume and duration of the annual
spring flood for the Romaine River data. They suggest that
while the pairs (peak,volume) and (volume, duration) are
positively associated, the margin-free dependence between
peak and duration is negative. As already discussed in
section 2, the same conclusions can be derived from the
nonparametric, rank-based dependence measures reported
in Table 1.
[90] Given the observed asymmetry in the dependence

relation between peak, volume and duration, Archimedean

Table 3. Parameter Estimates for Peak, Volume, and Duration of

Spring Flood of the Romaine River, Québec, Canada, 1957–2004

Variable
Mixing
Weight

First Component
of the Mixture

Second Component
of the Mixture

Peak p1 = 0.23 a1 = 15.86 a2 = 3.85
b1 = 0.01 b2 = 0.01

Volume p2 = 0.60 m1 = 4478.51 m2 = 5719.20
s1
2 = 823.16 s2

2 = 489.32
Duration p1 = 1 a1 = 0.45 —

b1 = 41.63 —

Figure 3. Superposition of histograms and mixtures of
normal and gamma densities for peak (m3/s) and volume
(hm3). The thick lines indicate the gamma mixtures, while
the thin lines illustrate the normal mixtures.
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copula models are clearly ruled out in this case. Metaellip-
tical structures of the form (7) may constitute a viable
alternative, provided that the parameters g and S are
suitably chosen.
[91] For the Romaine River data, the procedure described

in section 4.1 involves computing sin (ptk‘/2) for k, ‘ 2
{1, 2, 3} with the values of Kendall’s tau reported in Table 1
for peak (X1), volume (X2) and duration (X3). This leads to
the following estimation of S:

Ŝ ¼
1:0000 0:5966 	0:4275
0:5966 1:0000 0:2290

	0:4275 0:2290 1:0000

0
@

1
A: ð10Þ

This estimate, which is independent of the choice of g,
happily turns out to be positive-definite. Its eigenvalues
l1 = 1.6390, l2 = 1.2142, l3 = 0.1467 are nonnegative.
[92] As a methodological aside, the following correction

proposed by Rousseeuw and Molenberghs [1993] could be
applied in case Ŝ is negative-definite:
[93] 1. Write Ŝ in the form PLP:, where P is orthonormal

and L = diag(l1,. . .,lp) is a diagonal matrix whose entries

are the eigenvalues of Ŝ.
[94] 2. Replace the defective Ŝ by Ŝ* = PL*P:, where

L* = diag(jl1j,. . .,jlpj).
[95] Note that Ŝ* = Ŝ whenever the li are positive, so

that this procedure has no effect when Ŝ is positive-definite
to start with.
[96] To choose the generator g, the graphical tool

described in section 4.2 may be used. For illustration

purposes, eight different choices of g were considered, as
per Table 2. They are the trivariate normal, Cauchy and
Student with n = 2, 3, 4 degrees of freedom, as well as the
Pearson type II with n = 2, 4, 6 degrees of freedom.
[97] PP plots for the eight metaelliptical copula models

are displayed in Figure 4. They suggest that all models are
adequate, except perhaps the Cauchy copula. This observa-
tion is vindicated by Table 4, which reports P values for the
goodness-of-fit tests Sn and Tn described in section 4.3.
Results for Tn are based on 5,000 or 10,000 bootstraps
replications, depending on the choice of g; see Béliveau
[2006] for details.
[98] On the basis of the tests, it is clear that none of

the eight copula models considered could be rejected at the
1% level. Only one of them (the Student with n = 4 degrees
of freedom) fails at the 5% level and then again, this occurs
only for the test based on Tn.
[99] Unfortunately, such lack of discrimination between

dependence structures is typical of small data sets. While
distinctions may be introduced as more data are gathered,
there is no indication at present, say, that a multivariate
normal copula structure (but not a multivariate normal
distribution) is inadequate.
[100] As a result, no firm conclusion can be drawn either

concerning the existence or not of a tail dependence
phenomenon. If the normal copula were selected, for
instance, then one would find l12 = l13 = l23 = 0 as
population values of the upper tail dependence between
peak (X1), volume (X2) and duration (X3). Should the
Student copula model with n degrees of freedom were
preferred, however, a formula reported by Frahm et al.

Figure 4. PP plot for the Romaine River data.
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[2003] implies that in general, the upper tail dependence
between variables Xk and X‘ is

lk‘ ¼ 2	 2T nþ1

ffiffiffiffiffiffiffiffiffiffiffi
n þ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 rk‘
1þ rk‘

s !
; k; ‘ 2 1; . . . ; pf g;

where T n+1 is the cumulative distribution function of a
Student random variable with n + 1 degrees of freedom.
[101] For the Student copula with n = 2 degrees of

freedom, which provides the best overall fit, this would lead
to l12 = 0.448, l13 = 0.072, l23 = 0.264. The least one
could say therefore is that caution is advised.

5.3. Consequences of the Dependence Model

[102] In this final paragraph, the importance of taking into
account the presence of dependence between variables is
illustrated using the Student copula model with n = 2 degrees
of freedom for the Romaine River data.
[103] This model can form the basis for the estimation of

various quantities of use for risk analysis, such as conditional
probability distributions as well as conditional and joint
return periods. These concepts are thoroughly reviewed by
Yue and Rasmussen [2002] and illustrated by Salvadori and
De Michele [2004]. It is clear that incorrect use of these
notions will lead to a misinterpretation of frequency analysis
results.
[104] Consider for example the joint return period

T 0 x1; x2; x3ð Þ ¼ 1

Pr X1 > x1;X2 > x2;X3 > x3ð Þ

defined in terms of events involving the peak (X1), volume
(X2) and duration (X3) of an annual spring flood. Given that

Pr X1 > x1;X2 > x2;X3 > x3ð Þ ¼ 1	 F1 x1ð Þ 	 F2 x2ð Þ 	 F3 x3ð Þ
	 F123 x1; x2; x3ð Þ þ F12 x1; x2ð Þ
þ F13 x1; x3ð Þ þ F23 x2; x3ð Þ;

it is clear that an estimate of T0 (x1, x2, x3) does not depend
only on the marginal distributions F1, F2 and F3, but also
critically on

F123 x1; x2; x3ð Þ ¼ C F1 x1ð Þ;F2 x2ð Þ;F3 x3ð Þf g

and on the bivariate margins, namely, F12(x1, x2) =
C{F1(x1), F2(x2), 1}, etc.
[105] In the present case, the margins for peak, volume

and duration are as described in Table 3. As for the copula
C, a specific choice is more difficult to make, given that
none of the eight metaelliptical families could be rejected.
As it leads to the largest P value both in terms of Sn and Tn,
C is taken here to be the trivariate Student copula with n =
2 degrees of freedom and Ŝ given by (10).
[106] On the basis of this copula model, and using xi[T] to

denote the univariate quantile corresponding to Xi for a
return period of T years, i 2 {1, 2, 3}, one finds

T 0 x1 10�g½ �; x2 10�g½ �; x3 10�g½ �
� �

¼ 74:3; 109:5; 136:8 years

for g 2 {1, 2, 3}. In contrast, if a univariate frequency
analysis had been performed under the assumption that the
three variables are independent, the joint return period
would have been estimated at T 0 = g3�103 = 1000 years,
8000 years or 27,000 years for g 2 {1, 2, 3}, respectively.
As one can see, an inappropriate assumption of indepen-
dence leads in this case to a severe underestimation of the
risk associated to this particular event.
[107] As a second illustration, consider a conditional

probability of the type Pr(X2 > x2 jX1 � x1, X3 � x3).
Given x1, x2, x3, this quantity can be expressed as

Pr X2 > x2jX1 � x1;X3 � x3ð Þ ¼ Pr X2 > x2;X1 � x1;X3 � x3ð Þ
Pr X1 � x1;X3 � x3ð Þ

¼ F13 x1; x3ð Þ 	 F123 x1; x2; x3ð Þ
F13 x1; x3ð Þ

with the same notations as above. While

Pr X2 > x2 10�g½ �jX1 � x1 10�g½ �;X3 � x3 10�g½ �
� �

¼ 1

10g
; g 2 1; 2; 3f g

under the assumption of mutual independence, the copula
model leads to much more realistic estimates, namely .02,
.013 and .010 for g 2 {1, 2, 3}, respectively. This comes to
show, once again, the detrimental effects of taking for granted
stochastic independence in situations where this assumption
is clearly inappropriate.

6. Conclusion

[108] This paper has shown how metaelliptical copulas
can help in modeling the dependence structure of random
vectors when observed differences between their bivariate
margins preclude the use of exchangeable copula families,
e.g., the Archimedean class. Peak, volume and duration
of the annual spring flood for the Romaine River were
used to illustrate rank-based estimation and goodness-of-fit
techniques for this broad extension of the multivariate
normal distribution.
[109] The analysis of the data at hand suggests that in

view of the short length of the series, any of the eight
metaelliptical copula models considered here could be used
for prediction purposes. Only with additional evidence
could one hope to distinguish between these dependence
structures. At present, the P values reported in Table 4
suggest that the Student copula with n = 2 degrees of

Table 4. Approximate P Values Obtained by Parametric Boot-

strapping for Goodness-of-Fit Testing of Metaelliptical Copula

Models of the Romaine River Data

Metaelliptical Copula

P Value

Sn (CVM on Cn) Tn (CVM on Kn)

Normal 0.0892 0.1666
Cauchy 0.1188 0.1050
Student (n = 2) 0.1264 0.1978
Student (n = 3) 0.1263 0.1514
Student (n = 4) 0.1157 0.0450
Pearson (n = 2) 0.0671 0.1091
Pearson (n = 4) 0.0795 0.1253
Pearson (n = 6) 0.0826 0.1261
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freedom and Ŝ given by (10) would be the most sensible
choice for computing, e.g., joint return periods or condi-
tional probabilities of events of interest as computed in
section 4.3. Here as in many other statistical contexts,
however, the importance of performing a sensitivity analysis
(and in particular, not taking independence for granted)
cannot be overly emphasized.
[110] To the recent convert, the fact that the multivariate

normal copula is a realistic model for the dependence of the
Romaine River data may come as somewhat of a disap-
pointment. This may lead him/her to think that in this
specific application at least, the copula approach has not
provided a significant improvement over standard hydro-
logic modeling using the multivariate normal distribution.
On second thought, however, he/she will come to realize
that the combination of a normal copula with heterogeneous
margins, including mixture distributions!, is a far cry from
the traditional Gaussian model.
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