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[r] Because of their impact on hydraulic structure design as well as on floodpl

À'*ug"-"nt, flood quantil", -.rti be estimated with the highest precision given.available

inforÀation. If the site of interest has been monitored for a sufftciently long period

(rnore than 30*40 years), at-site frequency analysis can be used to estimate flood quantile-s

i,lttr a fair precisioï. OiÉerwise, regionaiestimâtion may be used to mitigate the lack of

àatu, Uut lofal information is thén ilnored. A commonly used approach to combine at-site

unJ .egio"ut information is the linàr empirical Bayes estimation; Under the assumption

that bJth local and regional flood quantilè estimators have a normal distribution, the

eÀpirical Bayesian es'iimator of thé true quantile is the weighted average of both

estirnations. ihe weighting factor for each estimator is conversely proportional to its

variance. We propose"in thî pup.t an alternative Bayesian method for combining local and

regional infoimaiion which provides the full probabitity densify of quantiles and

paiameters. The application of th" method is made with the generalized extreme values

tCgVl distribution, but it can be extended to other lypes of extreme value distributions'

in this method the prior distributions are obtained using a regional log linear regression

model, and then loàal observations are used within a Markov chain Monte Carlo

algoriihm to infer the posterior distributions of parameters and quantiles' Unlike the

eripirical Bayesian approach the proposed methôd works even with a single local ...
observation. It also relaxes the hypothesis of normality of the local quantiles probability

distribution. The perf,ormanc" ofiire proposed methodology is compared to that of local,

i"lionut, and e*iirical Bayes estimàtors on three generated regional data sets with

dilferent statisticâl charactéristics. The results show that (1) when the regional log,-

linear model is unbiased, the proposed method gives better estimations of the GEV

quantiles and parameters than 
-the- 

local, regional, and empirical Bayes estimators;

(Z; "u"n when the regional log linear model displays a severe relative bias when

èsimating the quantilËs, the pioposed method still gives the best estimation of the

GEV shape paràmeter and outpérforms the other approa"!:1. ol higher quantiles

provided ihe'relative bias is thé same for all quantiles; and (3.) the gain in performance

with the new approach is considerable for sites with very short records'

citation: Seidou, o., T. B. M. J. Ouarda, M. Barbet, P. Bruneau, antl B. Bobée (2006), A parametric Bayesian combination o{ local

and regional information in floocl frequency analysis, LYuter Resour' Res,42, Wll408' doi:10'1029/2005WR004397'

concept was continuously developed since, -and new

approâches were regularly developed by researchers [e'g',
Bénton, 1962; Matalas and Gilrolt, 7968; Vicens et al',

1975', Rttusselle and Hindie, 1916; National Environment

Research Council (NERC),1975; Tasker,7980; Greiss and

Ilood, 1981; Kuczera, 1982; Hosking et al', 1985;

Lettenmaier et al., 1987; Stedinger and Lu,1995; Madsen

et a1..1994,1995; Madsen and Roisberg,1997; Fi l l  and

Stetlinger, 1998; Burn, 1990; Groupe de recherche en

hydroîogie statistique (GREHY\, 1996a, 1996b; Ouarda

it ot., ùooo,200l; Chokrnani antl Ouarda,2004l' Region-

alizatior-r also results in more precise estimates of quantiles

and oammeters in sites with short records' It is however

diffrcïlt to decide whether the local data series are long enough

to discard regional information. To deal with this issue,

Matalas and Gitroy llg6Slrecommend choosing the estlmator

that has the smallest variance. It would however make more

sense to combine systematically all available and relevant

1. Introduction

[z] Depending of the availability of data, flood quantiles

can-be eitimated using local liequency analysis' regional

frequency analysis or à combination of both' Much effort

have been spent during the last decades on the study ofthe

statistical pioperties of flood distributions, but the lack of

sufliciently long data series continues to limit the precision

of tlre resirlts (Bobée and Rttsmussen, 1995]' The region-

alization concept, introduced by Dalrymple [1960], allows

us to mitigate ihe lack of data by transposing information

from gaugld sites toward ungauged sites of interest' The
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information to have a better knowledge of the hydrological
quantities to be estimated. Attention should be paià to the fact
that, in a highly heterogeneous region, the addition of the
regional information may be counterproductive.

[3] We present in this paper a parametr.ic Bayesian
method for combining local and regional informatiôn fur
the CEV dishibution. In this method, the prior information
is specified from the regional data by the probability
distribution of a quantile and two quantile differences q71,
Qtz - 4n, Qn - Qn (where q7 is the T_year annual flood
quantile). Guidelines for its extension to other extreme
value distributions are also provided.

{+] The paper is divided into six parts. Section 2 presents
a literahrre review on the Bayesian approaches for combin-
ing local and regional information. In section 3 the proposed
Bayesian model is presented and the approaches for region_
al estimation and for prior specification are developed. The
MCMC algorithm that was used to make inference on
parameters and quantiles is also presented. ll'he validation
methodology is presented in section 4. The case study is
presented in section 5, and the results are cliscussed in
section 6. A conclusion is finally presented in section 7.

2. Literature Review

[s] The need to combine regional and local infonnation
was perceived early and several authors tried to address
the issue using various approaches. These approaches can
be classified in two groups: (1) mixed approaches which
consist in estimating some parameters with the local data
and the others with the regional dara and (2) approactres
that simultaneously use both information sôurces to
estimate all parameters and quantiles. A _Bayesian ap_
proach can be used in both cases, br.rt to the knowledÀe
ofthe authols, all approaches that are classified in grouf2
arc Bayesian. Bayesian approaches can consist .ith.i in
the coushuction of an enrpirical estimator, or the com_
plete inference .of the postedor distributions. Depending
on the distributions of local and regional estimators. thé
parametric Bayesian inferencc can be conducteci either
analytically or numerically.

2.1, Mixed Approaches

[o] The index flood method fDalrymple, 1960; NERC,
1975] represents a mixed approach when it is applied to a
gauged site because the average at-site flow is estimated
with local data, while the parameters of the distribution of
the normalized quantile are estimated with the resional
data. Lettewnaier et al. [1987] used Monte Carlo silmula_
tion to show that, if the underlying regional distribution in
the index flood approach is the generalized extreme value
distribution (GEV), and if the parameters of this <tistribu-
tion arc estimated with the L rnoments or the probabilifv
weighted moments (PWM), thcn the index tlood resional
estimation is more effective than the local estimation-evcn
in case of moderate regional heterogeneity.

[:] Another example of a mixed approach is the ..two
pararncter" GEV/PWM method in which the shaoe
parameter of the GEV distribution is estimated by a reeional
approach and the hvo other parameters with the locaf data.
This method showed to be superior to the three parameter
GEV/PWM regional index floo<i method for the estimation
of the i00-year flood when the size of local data ser.ies

increases, or when the regional heterogeneousness is
significant fLettenmaier et al., 1987; Stedinger and Lu,
1995; Fill and Stedinger, 19981.

[t] The procedure recommended by the Interagency
Advisory Committee on Llqter Data Ll9g2l is also a mixed
approach since it uses a weighted skew (shape ofthe Lp3
distribution) in order to improve the at-site estirnator. The
weighted skew may be computed through regression
analysis, with the at-site skew.

[e] More recently, regional flood f-requency analysis
using canonical correlation analysis (CCA) has been
extended to account for local data in neiehborhood
delineation lOuarda et al., 2o0ll. CCA is a riultivariate
statistical technique which is used to express hydrological
and physiographical variables in two special canonical
spaces with special intercorrelation features. Distance in
the hydrological space allows the delineation of the
neighborhood of a given station using the approach of
confidence level ellipsoid IGREHYS, 1996a, 1996b;
Ouarda et al. 2000; Girard et al., 20001. Short local
data series can then be helpful to position a station in the
hydrological space, and thus to define a more adeouate
neighborhood. It is a mixed approach to regionalization in
the sense that local data iufluence parameter estimation
through the identi f icat ion of neighborhood l imits. A
nrixed approach can also be Bayesian: for instance, a
Bayesian approach was used by Rer.s et al. [2003, 2005]
to infer the skew coefficient of the Lp3 distribution while
using local data to compute the two other parameters.

2,2. Sintultaneous Estimation Using Bayesian
Approaches

[ro] In the Bayesian flamework (which will be pre-
sented in rnore detail in section 3), the prior knowledge
on the unknown quantities (parameters or quantiles of the
local distribution) is described by probability densities. ln
the hydrological literature dealing with the combination of
local and regional information, these prior probability
clensities are usually obtained from a regional analysis
le.g., Vicens et al., 1975; Madsen and Rojsberg, 1997; Fill
and Stedinger, t9981. The prior probability distributions
are then used with the local observations to infer posterior
distributions using the Bayes theorem.
2.2.1. Empirical Bayes Approach

[rr] When the probability distributions of both regional
and local quantile estimators are normal, it is easily
shown [e.g.. GREHYS, 1996b] rhat the quantile posterior
distribution is normal with the following parameters:

o,oqlt') + fi4\!)--) ,--) -
u  

R  T  t '  
L

vo r (a ' - L ' ; $  ) :  
" ' ^o2 t. .., 1", .Çi ) : A;A e)

wherc 47 is thc f lood quanti lc rve wish to estirnate, qfz)
(qf ' � )  the local (rcgional) est imation of qv and oi @i),
its local (regional) estimation variance. The estirnator
presented in equation (l) is also called linear empirical
Bayes estimator and was used by ncens et al, ll975l,

( l )n(taaf),aP) :
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Figure l. Hydrographic regions in the province ofQuebec
and hydrornetric stations of the region 05.

Kuczera U9821, Fill and Stedinger [1998], and Madsen and
Rojsberg 119971.

Itzl Yicens et al. [19151 assumed that the annual mean
flows of Nerv England rivers could be described by a
normal distribution and obtained the average and the
variance of the prior distribution of the mean annual
flows with a rnultiple linear regression on physiographic
variables. They then discussed the variation of the shape
of the posterior distributions of flows with respect to the
precision of the local and regional distributions. This
analysis showed that the combination of the fwo sources
of information reduced thc estirnation variance of the
parametcrs and that of the mean annual flow. The
posterior distribution of streamflows was dominated by
the estimator which had the smailest variance.

Irsl Kuczera [1982] used an empirical Bayesian method
to stabi l ize the estimation of the variance of f lood
records, which were assumed to have a lognomral distri-
bution. He obtained the prior inlbrmation by fitting a
galnma distribution to the estirnated local vatiances. He
used this model on a sirnulated data set without intersite

w l l408

correlation and showed that the relative root mean square
enor (RRMSE) of the estimated 1O0-year flood is reduced.
The reduction becomes however less important as the
regional heterogeneousness increases. Kuclaera's }982)
approach was later shown to be sensitive to violations of
distributional assumptions fLettenmaier and Potter, 19951.
The computation of the RRMSE by Kuczera [982] was
possible only because the true values of the quantiles of the
simulated flood data were known. In a second application,
Kuczera [1982] used real data from selected New England
basins. Since the true values of the quantiles were not
available, he was only able to show that the combination
ofthe regional and local information stabilizes the estimation
ofquantiles, i.e., the posterior distribution ofquantiles has a
smaller variance.

lal Fill and Stedinger [998] used the empirical
Bayesian method to combine the result of normalized
quanti les regression (NQR) with the two-paran.reter
GEV/PWM regional estimator. The NQR rnethod, intro-
duced by Koenker and Bassett [1978] and applied in
hydrology by Stedinger [1989], consists in estimating
the nonnalized quantile (the flood quantile divided by
the average at-site flow) by linear regression on physio-
graphic variables. Fill and Stedinger [i998] showed by
simulation that the empirical Iilayesian estimator was more
robust and, in terms of root mean square error, performs
as well or better than the NQR method or the two-
parameter GEVIPWM method.

fis) Madsen and Rojsberg [1997] used two Bayesian
estimators of the T-year event in a study that was
conducted on {lood data from New Zealand. They used
the index flood approach for regional estimation and the
generalized Pareto distribution (CP) as the distribution of
flood peaks above a given threshold. The first estimator is the
empirical Bayesian estimator given in çquation (l) whereas
the second is the rnean of the posterior distribution of the
quantile obtained with a parametric Bayesian approach. In
both cases, the prior information about the parameters of the
GP was obtained by linear regression on physiographic
variables, and then used to calculate the quantile estimation.
Their results indicated that the parametric Bayesian estimator
leads to posterior quantile estimation and variance that are

SEJDOU ET AL.: BAYESIAN COMBINATION OF INFORMATION

Table 1� Characteristics of the Stations of the Ilydrographic Region 05 of the Province of Quebec, Canada

Pammeter Standard Deviation

qro, ml/s
q,uo, -t{l
Ç19s9,  lT l - /S

Catchment are4 kmz
Mean slope of the catchment, m./km
Percentage of the area covered by

lakes, %
Mean annual solid and liquid

prccipitation, mm
Average annual accumulation of

degree-days belorv zero
Matrix of regression parameten

(including the intercept parameter)

243.34
333.40
42s.09
I  I 14 .49

2 .88
3.27

I I 82.84

l48 l  . 29

- 1 r , 8 5 0

0 ,914
0 , 5 7 6
0 ,  6 1 8
0 , 2 5 8

0 . 8 8 7

219.26
300.83
400. l7
n60.24

I . 0 t
2.48

217 .62

173.99

* 1 0 , 4 9 4  
\

0,979 |
0 ,750  |
0 ,119  |

- 0 ,335  
I

1 , 1 4 6  /

f -r3,802

|  0 ,e74
|  0 , 363

I  r , t 27
I  - - 0 ,178
\  o , 6 l l

3  o f  2 t
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respectively 5o/o and I i% higher than those obtained with the
empirical Bayesian approach. They explained this result
with the positive asymmetry introduced by the choice of the
prior distribution.
2.2.2. Parametric Bayesian Approaches

[to] Less often used because of its complexity, the
parametric (or fully) Bayesian inference for nonnormal
distributions consists in inferring the posterior probability
density of the parameters and the quantiles and generally
leads to numerical integration. A common approach to
avoid or reduce numerical integration consists in attrib-
uting to both local and regional estimators mutually
compatible probability distribr.rtions (called conjugate dis-
tributions) so that the posterior of the unknown quantities
distribution can be written in a closed analytical fbrm.

Irr] Parametric Bayesian approaches to regionalization
were used by Shane and Gaver [1970], Rorsselle and
Hindie [19761, Rasmussen and Roisberg [1991], Madsen
et al. 11994, 19951, and Madsen and Rojsberg [997] fbr
PDS models for which the exceedances are assumed to
have a generalized Pareto or an exponential distribution.

[tt) Shane and Gaver [1970] assumed that the exceed-
ances above a given threshold follow an exponential
d i s t r i b u t i o n .  T h e y  d e r i v e d  t h e  e q u i v a l e n t s  o f
equations (1) and (2) for this distribution while searching

wl l408

for the linear cornbination of regional and local estima-
tions which gives the smallest root mean square eror.
They also considered a Bayesian approach where the prior
information about the parameter of the exponential distribu-
tion describing the magnitude ofexceedances is represented
by a Gamma distribution. The mean and variance of the
prior distribution were obtained by regional multiple linear
regression. Shane and Gaver |9701 then compared the
implication of both estimators on the optirnal height of a
protection dike and found that both methods give essen-
tially the same result.

fts] Rousselle and Hindie [1976] and Rasmussen and
Rojsberg [1991] considered the classical PDS model with
exponentially distributed exceedances and derived the
posterior distribution of the T-year event. Rousselle and
Hindie 11976l considered an intbrmative gamma prior
distribution for all the parameters while Rasmussen and
Rojsberg [991] assumed a non infbrmative prior for the
parameter of the exponential distribution of exceedances.

lzol Madsen et al. |994, 19951 generalized the model
of Rasmussen and Rojsberg [991] to the case where thc
distribution of the exceedances is the Generalized Pareto
distribution and applied it to extrerne rainfalls. The model
of Madsen et al.11994, i9951 was later adapted to index
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Figure 2, Histograms of relative effor on quantiles Qto, Qroo, and q16se and histograms of the GEV
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flood regional estirnation in the work by Madsen and
Rojsberg [1997] which was described in section 2.2.1.

3. Bayesian Estimation

[:r] In the Bayesian approach, the imperfect knowledge
of the exact parameter values is accounted for through
probability distributions. As stated by Jaynss [985]. the
width of tirese probability distributions should be seen
rather as a representation of the range of values that are
consistent with observed data and the knowledge than as
indicators of the range of variability of the parameter. The
specification of prior information requires that belief or
knowledge about the parameters is expressed in terms of
a prior distribution, which must be formulated indepen-
dently of the observations. This probability density is
then used with the obserryations to obtain the posterior
distribution using the well known Bayes theorem:

p(0lx)  - f $le)r@)

w|l408

chain Monte Carlo (MCMC) algorithms [e.g-, Gilks et al.,
19961. Example studies using Bayesian methodologies with
the GEV distributions are those by Coles and Powell 11996l,
Coles and Tawn 11996l, or Huerta and Sansù 120051.

[:z] [n our application. 0: (p, o, {) wlrere p, o and { are
respectively the position, scale and shape parameters of the
GEV distribution. The PDF of the GEV distribution is siven
by

I r  , r , - , r 1 1 - $  (  / .  ^ / r , - r , ) ) i If t x , : 0 ) : ; ( ' - { ( ï , ) , )  '  *o t - ( r  f  i ( ï , ,  )
r4)

Its CDF is given by
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Figure 3. Éiistograms of relative error on quantiles 8ro, Qtoo, and q1000 and histograrns of the GEV
parameters at target sites for the second simulated set ofregions (no bias on quantiles, variance factor of
the regional regression equal to 50%): (a) qro, (b) rlroo, (c) qrooo, (d) p, (e) o, and (f) {.

where x : (xt, xz,. . ., r:,,) is the vector of observatious, r (0)
the prior probability density of the parameters, ,(xl9) the
likelihood of the observations, and p(9lx) the posterior
probability density of the parameters given the observations.
The posterior distribution is obtained either analytically or
numerically using sophisticated techniques such as Markov

/ .. _ ,,. -i\
F (x ; ;o ) :  *p ( - ( ,  *  €T)  

)  
, ,

The quantiles are given by

(3)
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Because the observations are independent, the likelihood of
an observed sample x : (rt, xz, . . ., x,,) is given by

n

L, (x ; ï '1 : f f f  $ , ;0 )  (7 )
t = l

The specilication of the prior information via r (0) canbe
made in several manners, for example, (1) by attributing a
probability distribution to the ratios f; ana f; given the
quantiles Q n, Q n and q v lC row d er, | 9921, (2) by specifying
the joint distribution of the parameters €, /r and o lColes and
Powell,l 9961, and (3) by using a quantile and two differences
of quantiles (e.9., qn - 4n, Qrz - Ç71 arrd q71) to which we
attribute a probability dish-ibution lColes and Tatvn, 1996; A.
Stephenson and M. Ribatet, A users's guide to the evdbayes
package (version 1.1), the Comprehensive R Archive
Network, http ://cran.r-proj ect. org/, herein ft er refened to as
Stephenson and Ribatet, evdbayes user's guide, 20061.

[z:] The last method was selected in this study because
of its simplicity, and ease of implernentation since Qn - Qn,
4r'z * Qrr and q1 are hydrological quantities readily obtained
using regional multiple linear legression. The estimation of
hydrological cluantities using rnultiple linear regression is
straightforward. It was used in several studies le.g., Matalas
and Gilroy, 1968; Stedinger and Ta,sker, 1985; Taslcer and

wlt408

Stedinger, 1989; Thomas and Benson, 1970; GREHYS,
1996a, 1996b; Otrarda et al., 200ll an<1 provides a {itted
(normal) distribution for the explained variable. To the
knowledge of the authors, there is no published work in the
hydrological literature tl'lat can orient the choice of a given
class ofdistribution for (, pt, o or for quantile ratios. The use
of the first two methods would thus involve much more
subjective elements than tlte application of the well known
multiple linear regression model. Indeed, the parameters
could have been obtained using multiple regression on
physiographical variables, but this would have been a naive
approach because ofthe observed interdependence between
the GEV parameters (Stephenson and Ribatet, evdbayes
user's guide, 2006): increasing ( or o leads to a heavier tailed
distribution, so a priori negative correlation between these
pammeters is expected lColes and Tawn, 1996). This inter-
dependence between parameters is taken into account with a
fewer hyperparameters when working in the quantile space
(Stephenson and Ribatet, evdbayes user's guide, 2006).

[zr] In sections 3.1 -3.3. nrore detai ls wi l lbe provided on
the regional model, prior speciïication with regional infor-
rnation, and the MCMC algorithrn used to infer the posterior.

3.1. Regional Model

[zs] A regional model contains two parts IGREHYS,
1996a): (1) a method of determination of homogeneous
regions and (2) a regional estimation method. Homogeneous

SEIDOU ET AL.: BAYESIAN COMBINATION OF INFORMATION

Figure 4, Histograms of relative error on quantiles Qrc, Qrco, and q1666 and histograms of the GEV
pammett:rs at target sites for the third simulated set of regions (100% positive relative bias on quantiles,
variance factor of the regional regression equal to 10%): (a) qr o, (b) q roo, (c) q r ooo, (d) p., (e) o, and (f) {.
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regions are subsets of stations having similar hydrologic
behavior. Several methods have been proposed in the hydro-
logical literature to delincate homogeneous regions such as
the regions of influence method fBurn, 19901, colrespon-
dence analysis and hierarchical ascending classification

IGREHYS, 1996a, 1996b1, canonical correlation analysis

lCavadias, 1989', Ouarda et a1.,2000,20011, and the L
moments rnethod lHosking and Ilallis, 19931. Regional
estimation can be carried out for instance with the index flood
rnethod lDalrymple, 19601 or the direct rnultiple rcgression
method lMatalas and Gilroy, 1968; Thomas and Benson,
r9701.

[zo] Tl.e notion of similar hydrological behavior (and thus
the concept of regional homogeneity) is relatively vague
since it depeuds on what the modeler considers as being the
key interactions between hydrological variables. For
instance, a region for which the logarithms of quantiles are
grossly linear combinations of sorne physiographical varia-
bles is homogeneous from the point of view of the users of
the regional log linear multiple regression model, but not
necessarily for the users of the index flood regional rnodel
for which the similarity of the shape parameter at all sites is
essential. The two approaches can thus lead to different
conclusions from the sarne data set.

[zr] ln this paper, the first definition of homogeneity
(linear relation between the logarithm of quantiles and
covariates) is consideled. This is irnportant for the valida-
tion phase which will involve the generation of regional

\ryn408

data sets. To be consistent with the latter choice, the
regional estimation method that will be used is direct
multiple regression. There will be no need for a regional
delineation rnethod in the validation process since the
generation algorithm is designed to directly provide hydro-
logical regions with user-defined characteristics.

3,2. Prior Specification Using the Regional Model

[zr] Prior information is specilied from the regional
model as follows: given three quantiles Qrt, 4n, r1p such
as pr = 

* 
.  pt-* ï .  pr: {  and their dif l 'erences Aqn,

Lqn, Lq'3 defrned by

Lqr r  :  q r t  :  tL -  ( - log( l  -p , ) ) - {  
[  

t s l

A , t n :  q r 2  -  q r t :  ( ( -  r o e i r  - p r ) )  (  -  ( -  l o g ( r  - p , ) ) - { ) :

(e)

Lqr .  :  q73 *  q I \ :  ( ( -  ros( r  *p , ) ) -€  -  ( -  log( t

SEIDOU ETAL,: BAYESIAN COMBINATION OF INFORMATION

Figure 5. Examples of MCMC chains and real values of quantiles and parameters for tirst region of the
first generated data set: (a) qr,,0) 4'on, (c) qrooo, (d) p, (e) o, and (f) {.
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The log linear rnodel is used to describe the relationship
between the hydrologica! quantities and physiographic
variables. If we denote Aq.i'; the regional estimation of
Aqn, the regional regression model is given by

Iog(aq$) : : uttrtr (xp,>:) (l 1)

where

wi t l r  r J ' '  -  ( ù : " . 81ù . . . .  - ' �  \
'0i '  ) '  

ht equation (11)' Ml/N
(x,6, X) stands for -the rnultivariate nonnal distribution
with mean vector xB and variance-covariance matrix D.
Ak represents the value of the Âth physiographic or
meteorological variable at the site of interest, Bf) is a

wl l408

regression coefficient, and m is the nurnber of physio-
graphic variables.

[ze] We assume that the errors in model (11) do not
display intersite conelation but that there may be some
correlation between the error series corresponding to
difl'erent quantiles. Model (l l) is thus a case of the
classical multivariate normal distribution with independent
realizations. Its location parameters as well as its variance-
covariance matrix can thus be obtained using ordinary least
squares. More complex procedures such as generalized least
squarcs lStedinger and Tasker, 1985, 1986; Tasker and
Stedinger, 1989] which account tbr intersite correlations
could have been considered. However, this would have
complicated the already diiTlcult simulation of the validation
data set (see section 4). Such procedures can improve the
precision ofthe regional model when used on real data and
deserue consideration in future work.

[:o] Since there is no intersite correlation, p(D is obtained
by solving the following equation with the ordinary least
squares method (OLS):

log(Aqfi) :  tB( ')  + e( ')7, e 1,T,.Tr,Tr1 12)
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Lergth of local data series

c) L€rEthof local data series

Figure 6, RMSE of the estimators of pr according to the length of local data series: (a) first generated
data set, (b) second generated data set, and (c) third generated data set.
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c) I*ngth oflocal data series

Figure 7. RMSE of the estimators of o according to the length of local data series: (a) first generated
data set, (b) second generated data set, and (c) third generated data set.
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I lz] For the.. comparison,.with thc ernpir ical Baycsian
cstimator, Eçql) and Var(fù are also estirnated from the
solut ions of the lbl lowing cquation:

tog(sf,) : xBii) I u(r) (16)

The bias introduced by the logarithmic transformation in
( I 6) is also corrected:

é , -  u  (a ; . *p ( *B( t r )  |  b i .4 , \  (17)\ '  ' \ '  /  '  " /

where bi and ô',,' are the relative and absolute biases, and af,
the quantile estimation variance. The relative and absolute
biases are estimated by ordinary least squares using observed
values of qn and those simulated with equation (16).

3,3. Infercnce on Parameters and Quantiles

[::] Infèrence on parameters and quantiles was caried out
with the Metropolis-Hasting algorithm following Stephenson
and Ribatet (evdbayes user's guide, 2006). The goal ofthe
Metropolis-Hastings algorithm is to construct a Markov
chain lbr which the equilibrium distribution is the posterior
detined in (3). The generic Metropolis-Hasting algorithrn can
be written as {bllows.

wliere e(j) is the random en'or tenn. The elements of ! are
directly computed from the data:

ru : cov (ut ir  ,  ,rrr) (13)

ft t l  We deduce from (11) and (12) that

I
r ( p, o. {) x J ;=-;-=;--

Aq rt l lqTz^qrl

/ (rog(Aq') - B')'D-' (log1aqt.; - Bx)\" .0\* r  /
(  l 4 )

where -/ is the Jacobian of the transformation of (A'q71,
Lqn, Lqù toward (p, o, {). The expression of-Iis derived
by Stephenson and Ribatet (evdbayes user's guide, 2006):

(  |  . , 1
|  : l  f  1 - r 1 r - / 1 x , r , )  ' , " r ( l ) l  s i € > o

,  I  ç  l i , / . t 1 . 2 . r 1 . r . ,  * " ' l' -  1 - r  , - . 1
l i l  I  ( r r ' ' r r o g ( x , 1 r o g ( - r ; ) r o g ( I ) l  " , e  0
(  -  

1 , . , :1 r .2 . . r1 : i ' r  
r ^ ' '  I

( 1 5 )

where x; - -log (1 - p).
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') 
l*ngth of local data series

Figure 8. RMSE of the estimators of { according to the length of 1ocal data series: (a) first generated
data set, (b) second generated data set, and (c) third generated data set.

Tablc 2, RMSE, Bias, and Stanclard Deviation of the Estimators of p

wlt408

Iængth of local dûta series

A

A

ù 6

I*ngth of local data serles

First Generated Data Set Second Generated Data Set Third Generated Data Set

MdlrtMoMdM Mo M Md Iulo

RMSE
RMSE
RMSE
RMSE
RMSE
RMSE
Bias
Bias
Bias
tsias
Bias
Bias
St4ndard deviation
Strandard deviation
Standard deviation
Standard deviation
Standard deviation
Standard deviation

5  17 .86
10 14.41
2 0  l l . 2 l
40 7.33
60 6.22^
80 5.52
5 0.1 07"
l0 0.694"
20 0.632"
40  0 .183 "
60 0.050
80 0.020
5 r  7.86
r  0  14 .39
20 11 .20
40 7.33
60 6.22"
80 s.52

l't .45^ 18.76
14.38'  15.96
't '1.21" t7.29
7.33'  8.32
6 .23  7 .10
5.49^ 6. t7
0.67 |  1.07 4
0.901 1.488
0.729 1.023
0.201 0.323
0.046 -0.  I  16
0.02.1 0.047
17.44" l 8.73
14.35'  I  5.90
I  l .  19 "  t 2 . 25
7.32^ 8.3 I
6.23 7.09
5,49" 6.17

25.81 34.51
19 .15  23 .04
13.96 15.61'
8.84 9.25"
7.05 7.84
6 .12  6 .35

2.891 -0.071'�
1 . 835  1 .265 "
0.945 0.472
0. I 88 ,-.0.056"
0.034" -0.348
0.003" -0.032'
25.65 34.5 t
19.06 23.00
13.93 15.60' �
8.83 9.25^
1.05 7.83
6 .12  6 .35

35.35 37.36
17 .90 17.38
10.96 r0.8r
6.35 6.29
4.84 4.80
3.90 3.86

18. 180 t7 .837
t2.027 I  1.783
6.829 6.123
3.58s 3.s21
2.303 2.260
t .594 1.564
30.32 32.83
13.26 12.77
8.57 8.47
5.25 5.21
4.25 4.24
3.56 3.53'

25.93 14.92"
17 .91  10 .01 "
l | .07 7.05^
6.30 4.82'
5.06 4.16^
4.29 3.64"

17.421 0.579^
tl.292 0.487"
6.43 I 0.1 89"
3.2s9 0.003'
2.  l  89 -0.078'
1 .508  -0 . t 72 "
19.20 14.91"
13.90 10.00"
9.01 7.05"
_5.39 4.82^
4.56 4.16'
4.02 3.64

33.50' 3-7.40 42.27
23.00" 24.30 26.03
15.66 16.90 16.85
9.25 10.05 9.82
7 .89 8.87 7.74^
6.37^ 7.12 6.54
2.315 2.s24 7.528
|  .402 | .294 3.336
0.419'  0.551 t .375
, 0.084 0.265 0.522

0.3ti6 -0.543 0.022"
-0.047 -0.365 0.240
33.42'  37.31 41.59
22.96" 24.27 25.81
1.5.66 16.90 16.79
9.25 10.05 9.80
7.88 8.85 7.74^
6.32" 7.n 6.54

'Snrallest value for a given data set and a given length o1l the local data series,

t0  o f  2 l
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Table 3. RMSE. Bias. and Standard Deviation of the Estimators of o

wn408

First Generated Daia Set Second Cenerated Datâ Sel Third Generated Data Set

MdMlrldM Mo Mo

RMSE
RMSE
RMSE
I{MSË
RMSE
RMSE
Bias
Bias
Bias
Bias
Bias
Biâs
Standard deviation
Standard deviation
Standard deviation
Standard deviation
Standard deviation
Standard deviation

5 8.58 8.26"
l0 7.2t  7.09"
20 6.36 6.30"
40  5 .17  5 .13 "
60 4.51 4.50"
tto 4.03 4.02'
5 0.859 -0.001"
l0 0.546 -0.015"
z0 0.381 -0.028"
40 0.286 0.018
60 0. l 78 -0.03 l
80 0.073 -0.085
5 8.53 8.26"
l0 7. t9 7.09"
20 6.35 6.30"
40  5 .16  5 .13 "
60 4.51 4.50"
80 4.03 4.02^

9.87 23.43
8 .18  15 .89
7. t2 10.74
5.55 7.54
5 . t 2  5 .92
4.58 5.02

-0.1 56 -  1.837
-0.255 -0.534
-0.358 -0. I 36
*0.247 0.005"
-0, t20 0.012"
*0.723 *0.049"
9.86 23.3s
8 .18  t 5 .88
7.n 10.74
5.55 7.54
5 . t 2  5 .92
4.5 ' t  5.02

26.2t  25.2t '
16.35" 16.62
I L86 12.09
8.01 

't 
.99"

6.01 5.92"
5.04 5.02'

t.634" -3.089
-0.566" -2.383
-0.622" -  1.505
0.190 *0.22s

-0.033" -0.33 r
-0.015" -0.232
26.16 25.02^
16.34' 16.45
I  l � 84  12 .00
8.01 7 .99^
6.01 5.91'
5.04 5.02'

30.08 30.00 49.79
18.5s 17.92 13.89
13 .16  I  t . 84 '  8 . 91
9.85 8.57 5.39
6.73 6.53 4.02
5.77 5.46 3.34

-6.712 -2.185 15.090
-4.056 -1.682 9.840
-1.982 - t .256 6.033
-0.rs2 0.05r" 3.372
-0.470 -0.12t 2.284
-0.148 -0.  105 1.791
29.32 29.92 47.45
18.10 17.84 9.80
13.01 l  1.78'  6.56
9.85 8.57 4.20
6.71 6.53 3.31
5.77 5,46 2.81

56.73 17.59 t2.49^
t2.73 t2.92 7.50"
8.39 8.59 5.06"
5. t5 5.29 3.59"
3.87 3.93 2.9s"
3.23 3.50 7.64^

14.079 11.899 -1.648'
9.032 8.696 -0.081'
5.610 5.364 *0.146"
3 .150  3 .010  -0 .091 "
2.134 r.920 -0.064"
1.686 t.632 0.020"
54.95 t2.96 12.39^
8.97 9.55 7.50"
6.24 6.7 | 5.05"
4.07 4.35 3.59"
3.23 3.43 2.95"
2.76 3.09 2.64^

"Smallest value for a given data set and a given length of the local data series.

l. Start with some initial parzmeter value ds and set I
to zefo.

2. Given the parameter vector d;, draw a candidate value
d;'.1 from some proposal distribution.

3. Compute the ratio ,R of the posterior density at the
candidate and irritial points, R: P(0trlx)lP(0;lx).

4. With probability min(r?, 1), accept the candidate
parameter vector, else set 0;.e1 : 0;.

5. Set i: ; + 1 and retum to step 2.

[r+] Many versions of this algorithm have been proposed
depending on the proposal distribution and the order in rvhich
the pararneters are updated. In this study, the three parameters
of the CEV distribution are updated successively with normal
proposal distributions for p, 1og (o) and ( as proposed by
Stephenson and Ribatet (edvbayes user's guide, 2006). The
steps to generate the pamrneters at step i + I (i.e p; * r, 6., - r ând

€i * r ) given lt ;,o i and (; are the following.

1. Propose p* - N(p+ o, ) where N represents the
normal distribution.

?  Q p r A - P ( P " o r ' € , i x )
P ( p , . o , , ( , i r ) '

3. Set,u;*1 : p* with probabil ity min {1, A}, else set
Fi+t = &i'

4. Propose o* - LN(oi, oo) where IN represents the
lognormal distribution.

5 .  S e t  A :

6. Set o;ç1 : a* with probability rnin {1,4}, else set
t r i + l  -  u i .

7. ProPose {* - N(€i, oe).
e Sor  A  _ t , tp , .o , .€ ' l x \

P( / , , . i , { i  r )

9. Set {t*1 :  {* with probabil i ty min {1, A}, else set

equality of the means of the first part and the last part of a
Markov chain.

4. ValidationMethodology

[:e] Simulation is an attractive way to validate the
proposed methodology of combination of local and
regional information. However. generating regional data
is not a trivial task. It involves reproducing (1) at-site
frequency distributions, (2) the relation between at-site
flood features and explanatory physiographical and me-
teorological variables, (3) the dependence between the
various explanatory variables at a given site, (4) the
relation between explanatory variables at different sites,
and (5) the regional heterogeneity characteristics. Unfor-
tunately, most of these aspects are still not well under-
stood, and even if they were, it would be hard to
generate data sets which respect all the above mentioned
constraints. Nevertheless, a sirnulation study was per-
formed in which an effort was made to preserve as
much as possible of the elements mentioned above. This
simulation study was perfomed in four steps: (l) define
tlre data struchrres to be generated, (2) set up a gener-
ation procedure which respects the maximum of above
mentioned constraints, (3) generate the data sets, and
(4) evaluate the studied parameters and quantile estima-
tion methods on the data sets. All these steps will be
described in detail in the following sections.

pr] It is obvious that the performance of the combination
method will be influenced by the size of local data series as
well as the bias and precision of the regional model.
Another intuitive fàctor is the number of stations within
the region, but its effects are not direct: it plays a role
through its linkage with the bias and precision of the
regional model. For this reason, several cases were consid-

[:s] Thevarianceparameters ct",odandoloftheproposal ered in the validation study, comesponding to different
distributions are tuned using a trial-emor method to irnprove values of the bias and precision of the regional model.
convergence speed and acceptiance rates. The Getveke [19921 For each of these cases, the perfotmance of the studied
testwaschosentoassesstheconvergenceoftheMCMCchain combination methodology were assessed for dif tèrent
because of its ease of interpretation. It is based on a test of lengths of the local data series, The data structure for each

l l o f  2 l



Table 4. RMSE, Bias, and Standard Deviation of the Estimators of (
5

æFirst Generated Data Set Secùnd Generà1ed D.rLa Set Third Generâtçd Data Set

RMSE 5
RMSE IO
RMSE 20
RMSE 40
RMSE 60
RMSE 80
Slas l

Bias 10
Bias 20
Bias 40
Bias 60
Bias 80
Stædard deviation 5
Standard deviation 10
Standard deviation 20
Standard deviation 40
Stmdard deviation 60
Standard deviation 80

3 .3 t8  2
3.028-2
2.948-2
: -  t 6 L - t

2.608-2
2.628-2

- 1 1.508-04"
34.36E-06'
6.048-04"

-5.04E-06'

-4.658-04'
a  )  t L - z

3.028-2
2.94L-2
2.768-7
2.608-2
2.67E-7

2.91L-2
2.688-2"
2.56E-2^
2.37F.-2
2.308-2
2.278-Z

-22.t8E-04
- I 6.63E-04
- l4.l5E-04
*t2.2tE-04
-14.218-04
-t2.238-04

2.90E-2
2.67E 2"
2.558-2"
2.37E-2"
2.30F.-2
2.278-2

2.90F.-2"
2.698-2
2.56E-2
2.37F.-2^
2.308-2'
7.27F.-z'�

- l4.6lE-04
-t0.22F.04
-9.81E-04
-9.168-t4
- I L238-04
-9.88E-04
2.898-2^
2.68E-2
2.56F.-2
z- -1  |  E-Z

2.308-2"
2.278-2"

54,18F.-2
29.33F,-2
|  | . ) 4 8 - Z

n.978-2
9.568-2
8.208-2

- 1 1.53Ë-02
-4.63F.02
- t.73E-02
-92.39F-04
*77.59F.-04
-36.89E-04

)  J . i ) t - l

28.968-2
17.458-2
I  1.938-2
9.53F-2
8.  I  9E-2

53.t78-2
30.29E-2
19.588-2
l3.568-2
t0.738-2
9.06Ê,-2

- 13.05E-02
-4.688-02
-2.628-t2
-2.198-02
- 1.358-02
-t.028-07
5t.548-2
29.92F.-2
19.408-2
t3.398-2
t0.648-2
9.00E-2

7.82E.-2
3.688-2"
2.398-2"
2.528-2'
2.52Ê.-2^
2.488-2'

-tl.77E-04
71.20E-O4a
1.38E-02
1.'t7E-02
1.878-02
1.90E-02
7.828-2
3.61E-2'
t.95F.-2"
1.808-2"
1.688-2"
1.60E-2'

52.608-2
28.71F.-2
18.62E-2
t2.33E-2
t - t  t L - l

8.33E-2
-8.73E{2
-3.80E-02

-59.288-04"
2 I .59E-04"
- I .33E-04"
-3.75844'

51.878-2
28.468-2
18.61E-2
t2.338-2
9.778-2
8.33E-2

8.66E-2 8.548-2" 9.63F.-2
6.96F'2^ 6.988-2 7.8 r E-2
6.278-2" 6.288-2 7.068-2
5.758-2^ 5.768-2 6.548-2
5.388-2' 5.39E.-2 5.798-2
4.948-2^ 4.958-2 5.55E-2

33.488-04' 70.26Ë.04 t.668-tZ
64.55E-04' 86. l5E-04 t.4tE-02
73.318-04" 9t.22F.-04 t.178-02
49.99E.-04" 58.58E-04 76.298-04
52.45F.-04" 56.008-04 59.418-04
53.128-04^ 53.23E-04 60.27E-04

8.658-2 8.518-2" 9.49F.-2
6.938-2 6.928-2" 7.688-2
6.228-2 6.21F�-2' 696Ë-2
5 738-2 5.73È.2" 6.498-2
5.358-2" s.36F�-2 5.768-2
4.918-2" 4.978-2 5.5 rE-2

8.44F.-2 7.63E-2^
3.718-2 3.978-2
2.42E-2 2.758-2
2.558-2 2.94E-2
2.558-2 2.828-2
2.51E-2 2.85E-2

-8.45E-04" 12.27E44
78.75E-04 89.578-04
1.428-02 1.488-02
1.80E-02 1.87E{2
1.90E-02 t.93E-02
r.93E-02 2.08F.42
8.448-2 7.628-2'
3.628-2 3.878-2
1.96E-Z 2.318-2
l.8lË-2 2.268-2
t.698-2 2.068-2
l .6 lE-2 1.948-2

U)
tTI

c
-l

f.

v)

z
o
=
z
t
ôz
-
2

l

z

oSmallest value for a given tlata set anti a given length of the local data serics.p
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field data for the vector x of explanatory variables in
equation (18). The field data should come from a known
hydrological region, each column ofx representing a station
inside that region. The vector ofregression parameters B is
computed from the same data set. Tlre variance covariance
natrix is computed using the following equation:

In equation (20), rr is a parameter that allows to tune the
quali ty of the regional regression and rn a is the
correlation coefficient befween regional estimates of r77i
and q7, frorn the field data.

[+r] Even tough the same vector x is used for each
generated region and the same vector B is used for each
generated region, the 'true' quantiles and parameters are
different since the quantiles (and thus the parameters) are
linked to the realizations ofa random process (equations (1 8)
and (19)). Each generated region is thus different from the
others. Once x and B are obtained, the simulation study
proceeds using the following algorithm.

wl l408

l. Choose the number M of regions to generate (the
number of stations in a region is given by the number of
rows of x, plus one).

2. Choose the values of cr and b, to set the characteristics
of the regional model.

3. For each t € {1, .., M}, generate the fth legion
following these steps.

3a. Choose a target station I e {1, .., n }.
3b. For each ft  € {1, . .  t  -  l ,  t  + 1, . . ,  n} generate

(Qn, Qn, qz1) at the /*h station using equation (18).
3c. Generate (Qn, tln, qv) at the hl station using

equation (1 9).
3d. For each k € {1, . . ,  n}, compute the ' true'

pârameters /p, oI1, and {i using tbe procedure given in
Appendix A.

3 e .  F o r e a c h  Ë e  { 1 . . .  t  -  l , t +  1 , . . .  r }  p i c k  a  r a n d o m
number / between 15 and 70 and generate a /-year GEV
sample using the simulated pârameters p,1,, o'e and (j,.

3f. Generate an 80-year GEV sarnple at the target
site using p,i, oi, and (i.

4. For each I € {5,10,20,40,80}, consider /  f i rst
generated values at the target sites as the recorded stream
flows. Apply the different parameters and quantile
estirnation methods presented in this paper. To the regional
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data sets, and compute the perfonnance criteria as firnction
of /.

4.3. Performance Measures

[+:] The mode (Mo), tlre median (Md) and the mean (14)
of the posterior probability distribution of quantiles and
parameters obtained by the parametric Bayesian method
will be used as punctual estimators, along with the ernpirical
Bayesian estimator (EB), the regional estimator (R) and the
local estimator (I). The performance of these five estimators
will be assessed using the standard deviation (.s), the bias (à)
and the root-mean-square effor (RMSE) defined by

wl l408

anrJ y,6:*,,I dtthe mean of the estimations. We shall also

check whether the palameters 1t, o anrJ { obtained with the
complete Bayesian rnethod are closer to the 'real' parameters
than those estimated with the short series of data.

5. Application

[+r] As mentioned in section 4.2, a real data set was
required to extract realistic physiographical variables and
compute reliable parameters for equations (18) and (19).
The application cousisted in selecting a hydrologic region,
extracting physiographical variables, generating the remain-
ing characteristics and then applying successively all the
studied parameter and quantile estimation methodologies.

5 .1 .  F ie ld  Data

[a+] The data was extracted fiom a database of 168
hydrological stations provided by the Quebec Ministry of
the Environment (Province of Quebec, Canada) and for
which the following physiographic and meteorological var-
iables were available: the catchment area, the percentage of
the area covered by lakes, the mean slope ofthe catchment,
the mean annual precipitation and the average annual accu-
mulation of degree-days below zero.
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[+s] As the province of Quebec is cornmonly divided into
thirteen hydrographic regions (Figure l), a natural choice
was the hydrographic region which contains the largest
number of stations among those listed in the above men-
tioned database. Hydrographic region 05 was heuce selected
with 32 stations. These stations are illustrated in Figure l,
and their characteristics are listed in Table 1.

5.2. Characteristics of the Generated Regional Data
Sets

[ao] Three regional data sets corresponding to different
characteristics of the log linear regional relationship
were  genera ted .  Each reg iona l  da ta  se t  con ta ins
1000 regions (M = i000). Thc number of station in a
given region is the same as in the Quebec 05 hydrographic
region, frorn which the physiographic data is borrowed. The
first data set is generated using an unbiased linear relation-
ship between the explanatory variables and the logarithm of
the quantiles (b,:0), and a very 1ow variance ofthe error
colnporlent (a:0.10). The second data set also uses an
unbiased linear relationship between the explanatory vari-
ables and the logarithm of the quantiles, but with a largcr'
variance (a : 0.50). The third data set is similar to the Tirst

wIl408

one, but a bias tenn is introduced at target sites (ô,. = 100%).
To provide an idea of the range of values that have beeu
generated the local estimatious of 11,, o and ( as well as
the regional estimations of qrr, q72 and qB were
computed at the target site in each region and in each
regional data set. The histograms of the relative error of
the regional estimation ol qv, i: l, .., 3 are given in
Figures 2a, 2b, and 2c for the lirst generated data set.
The histograms of the local estimations of p, o and { are
also provided in Figures 2d, 2e, and 2f . Similar
histograms are provided for the second and third regional
data sets are provided in Figures 3 and 4, respectively.
Note that none of these histograms replesent a notmal
distribution because of the logarithmic transibrmation in
equations (18) and (19).

[+r] Thefwo values of c (0.1 and 0.5) are consistent with
observed values of the regional model error vadauce in

Quebec hydrographic regions. For instauce, the regional
model eror variance for the region 05 of Quebec was
0.0584 tbr qro, 0.0814 for q1e6 and 0.1108 tbr q1e6. I f  we
consider the set of all the hydrographic regions, the regional
model error variance ranges from 0.0176 to 0.0951 for q16,
from 0.0361 to 0.1231 for q1se, and f iorn 0.0534 to 0.2368
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Table 5. RMSE, Bias. and Standard Deviation of the Estimators of q1s
{
5

æ
Fint Genemted Data Set Second Generated Data Set Third Generated Data Set

RMSE
RMSE
RMSE
RlvlSE
RMSE
RMSE
Bias
Bias
Bias
Bias
Bias
Bias
Standard deviation
Standard devialion
Standad deviation
Standard devialion
Stmdild deviation
Standard deviation

5 20.47
10  18 .25
20 16.42
40 t2.98
60 11.68'
80 10.64
5  1 . 5 9
l0  1 .52
70  1 .14
40 o.sz
60  0 . t  8
80 -0.05"
5 70.41
1 0  1 8 . 1 9
z0 16.38
40 1?-.97
60 I  1.68'
80 10.64

2 t . 9 0  5 t . 7 5  3 3 . 1 6
19.02 36.66 33.20
t7 .19 27 .02 33.26
13.91 19.09 33.79
12.83 16.08 33.38
11.42 13.70 3i .37
-0.70 -6.84 0.1 t "
-0.60 --2.27 0.24"
-0.67 -0.89 0.25'
-0.84 -0.77 0.25
-0.75 -0.84 0.22
,0.6r  -0.73 0.22
2 t . 89  51 .30  33 .16
19 .01  36 .59  33 .19
17.18 27.ù1 33.26
13.89 19.08 33.29
12 .81  16 .05  33 .38
u.4l  13.68 33.37

33.81 50.87 50.42'
29.90 38.79" 38.98
25.47 76.81' 26.98
21.06 t7.67 t7 .57^
18.84 14.28 14.28"
16.88 12.93" 12.96
-8.70 1.75^ -3.78
-..-4.52 '-0.09" ,-.2.89
-2.43 -0.67^ -2.r8
-  1.60 0.41 -0.39
- 1.40 -0.  12" -0.67
- r . l  l  0.07'  -0.32
32.69 50.84 50.28"
29.s6 38.79" 38,88
2s.35 26.80'  26.89
21.00 t ' t  .66 11 .5 '1^
18.79 14.28 14.26"
I6.85 12.93" t2.96

78.68 65.76
56.92 47.03
49.95 30.38
29.59 18.31
23.00 13.74
18 .19  11 .20

-17.94 48.57
.-  10.99 33.93
-8.61 20.89
-4.56 r1.95
-3.20 8.29
-2.42 6.50
'16.60 M.33
) ) . 6 )  J Z - )  I

49.21 22.05
29.24 13.88
22.78 10.95
18 .03  9 . t 2

62.56 57.11
44.60 42.39
29.29 28.04
17.73 16.94
13.41 13.50
10.94 10.64
46.20 42.01
J Z - Z I  Z t - t J

20.00 18.50
l  .47 I0.50
8.0 | 7.56
6.28 5.76

42 .18  38 .71
30.78 30.23
21.40 21.07
13.52 13.29
10 .75  11 .19
8.96 8.95

27.t5"  t57.29 93.17
20.62'� 157.15 82.7r
14.22^ r57 .t7 65.97
9.98' ï57.62 48.43
8.85' 157.94 38.61
7.55'  158.25 32.15

-4.39' 115.33 42.64
-0.75" 115.18 36.02
-0 .30 "  I 15 .17  27 .57
-0.08'  l  15.87 18.91
-0.13" I  16.32 t4. t4
-0.10'  116.79 n.42
26.79' 106.96 82.84
20.61" 106.91 74.16
14.22" 106.96 59.93
9.98' 106.86 44.59
8.85" 106.84 35.92
7.55" 106.79 30.05

20.17"
77.99"
r 6.33"
12.95'
I  1.70
10.59'
0.63
0.80
0.60
0 .16 "

-0.25
20.16^
17.97"
t6.32^
12.95^
I  1.70
10.59'

57 .18  68 .80  148 .0 t
41.99 44.47 148.01
28.26 29.44 1 48.0 I
18 .81  19 .40  t 48 .01
15.14 15.96 148.01
13.70 14.14 148.01

- 10.65 -2.82 -  I  1.49
-,7 .47 --  1,8 1 , ,1 1 .49
-4 .93  -1 .36  -11 .49
-1.77 -0.24" -n49
- t . 86  -0 .64  - i l . 49
-t  .23 -0.46 -  I  1.49
56.18 68.75 147.56
41.32 44.44 147 .56
27.83 29.41 ]47.56
18.7t  t9.40 t17.56
15.03 15.95 t47.56
t3.64 t4. t3 t47.56

a
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c
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z
(a

2

z
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z
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Tatrle 6. R*VISE, Bias, and Standard Deviation of the Estimators of 4166
5

æFirst Generated Dala Set Second Generated Data Set Third Generated Data Sel

RMSE
RMSE
RMSE
RMSE
fu\,ISE
RMSE
Bias
Bias
Bias
Bias
Bias
Bias
Standard deviation
Standard deviation
Stmdard deviation
Standard deviation
Stmdard deviation
Standard deviation

5 32,76
l0  29 .21
20 27.01
40 27.55
60 20.84
80 t9.32
5  3 .38
10  2 .69
20 2.02
40 1.26
60 0.72
80 0.17
5 32.58
10 29.08
70 26.93
40 22.51
60 20.83
ItO t9.32

32.14" 34.33
28. '76" 31.51
26,84^ 28.76
22.43^ 23.94
20.80'  22.11
19.22^ 20.81
l . s  I  -  1 . 35
1.39 - . .1.25
0.98 -  1.28
0.53 -  1.02
0.09 -  1.38

-0 .13  -1 .02
3? .1 r "  34 .31
28.73'  31.50
26.82" 28.73
22.47' 23.91
20.80" 22.10
t9.22' 20.78

186.20 47.93
n7.36 47.80
82.00 48.04
57.63 48.09
47.34 48,23
41.60 48.21
17 .39 -0.21"
6.34 ,0.03'
2.49 0.01"
0.64 0.04"
-0.72 0.03"
-0.40 0.03"
185.39 47.93
I  17 .19  47 .80
81.96 48.04
57.62 48.09
47.33 48.?3
4r.60 48.21

89.42 /25.31
7  | . 37  r33 .33
53.78 103.02
36.74 60.56
31.82 48.71
28.38 40.97
*2t .8" /  16.43
.  15 .19  8 .24
- 10 03 5.75
-4.42 t .57
-3.07 0.56
*3.26 -0.05'
86.70 224. ' t1
69.74 133.07
52.84 102.88
36.17 60.54
3 | .67 48.16
28. i9 40.97

199.94 155.81
199.94 121.98
t99.94 1r0.53
199.94 82.24
r 99.94 66.75
t99.94 55.19
- 8 , 8 8  * 4 1 . 3 t
.  8.88 . -  2 '7 .98

-8.88 -20.68
8,88 -  12.56

-8 .88  -8 .88
- 8.8 8 -7 .40
199.74 150.23
t99.74 120.78
199.74 108.58
t99.74 8l .28
199.74 66. t6
t99.74 54.69

6 1.60 80.87 79.64"
55 .45  64 .3 r '  65 .19
46.40 47.93" 48.35
42.38 33.87 13.41"
38.47 28.85 28.63^
35 .61  28 .28  28 .18 '

- 18 .20  3 .61 "  , 1 . 40
13.50 0.36" 5.39

-8 .58  0 .33 "  - 3 .37
,5.97 2.37 0.24"
*4 .71  2 .02  *0 .10 "
-3 .50  1 .70  *0 .17
58.85 80.79 79.30'
53.78 64.31" 64.91
45 .59 47 .93" 48.24
41.96 33.7 4 33.41^
38.18 28.78 28.63^
35.44 28.23 28.18"

t07.74 102.01 95.33"
81.37 77.26 73.59
55.80 53.75 51.43
35.65 34.49 33.93
27.57 26.78 26.95
23.22 22.58 22.39
78.46 74.21 67.80
5'7 .33 54.43 50.14
37 .25 35 .62 33.07
22.81 21.88 20.48
16 .80  16 .18  15 .41
13.87 13.37 12.47
73.83 69.92 67.02^
s7.74 54.83 53.86'
4r.s4 40.26 39.39"
77.40 26.67" 27.05
21.86 21.34" 22. t2
18.62 18.20'  18.60

104.48 213.52 155.6r
68.84" 2t3.33 140.57
44.44^ 2r3.35 t22.33
29.6t^ 213.97 98.7 r
24.60^ 214.40 83.41
21.33' 214.7 5 71.86
12.t5"  157.18 79.48
5.77'  156.96 66.52
3.47'  156.95 57.50
2.32" 157.93 43.34
1.58'  158.53 34.84
t .21" 159.13 28.90

103.77 tM.52 r33.78
68.60 144.45 123.83
4430 t44.52 107.97
79.57 t44.37 88.69
24.55 144.35 75.79
2t.29 t44.2t 65.79
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"Smallest value for a given dala set and a given lenglh of the local data series
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Table 7. Rlv{SE, Bias, and Standard Deviation of thc Estimators of 41666 à
æFirst Generated l)ata Set Second Generated l)ala Sst Third Generated Data Set

EB

RMSE
RMSE
RMSE
RMSE
RMSE
RMSË
Bias
Bias
Bias
Bias
Bias
Bias
Standard deviation
Standard deviation
Standard deviation
Standard deviation
Standard deviation
Standard deviation

5  5 r . 4 0
l0 45.97
20 42.75
40 37.20
60 35.50
80 33.84
5  6 .50
10  5 .15
20 4.14
40 3.23
60 2.48
80 2.06
5 50.99
10  45 .68
z0 42.55
40 37.06
60 35.4?
80 33.78

49 .87 '  51 .19
44.95" 46.30
42.23' 43.93
3 6.8 r '  37 .54
35.23'  36.55
31.45' 35.44
3.54 -0.65'
3.13 0.25"
2.49 -0.36"
1.96 -1.02"
1.34 -0.75"
1 .10  -0 .53 "

49.75" 51.18
44.84'� 46.29
42.15^ 43.93
36.76" 37.52
35.20^ 36.54
33.44' 35.44

850.55 73.35
380.31 72.9s
225.34 73.43
144.83 73.50
I12.63 73.72
100.89 73.69
t97 .s7 1.40
61.87 1.65
24.33 t.76
10.92 LsI
4.47 1.80
4 .30  1 .80

827.29 73.34
375.25 77.93
224.0? 73.41
144.42 73.48
I12 .55  73 .70
r00.80 73.66

92.42 242.44
90.79 9'r.52
7 8 . 9 3  8 1 . 1 7
74.t1 64.41
67.07 60.14
67.80 60.42
.20 .22  18 .16

-22 .37  6 .10
-15 .86  5 .71
- l l . 5 l  7 . 6 2
-8.74 7 .75
-6.05 6.45
90.18 241.76
87.99 91.33
77.32 tr0.97
73.21 63.98
66.50 59.64
62.50 60.07

258.18 230.42
258 .18  198 .45
258 .1  8  1  78 .34
258 .18  148 . r9
258 .18  124 .81
258 .18  106 .67
--4.34" -52.47
-4.34" -42.02
- t , J a  - J i . + J

- 4 .34  -  19 .01
-4.34 -13.27
-4.34 -  t  1.34
258.14 224.37
258.t4 i93.95
258 .14  175 .31
258.14 146.96
258 .14  t 24 . t 1
258.14 106.07

154.71 146.59
122.05 I 16.08
88.22 84.84
59.35 5't.26
47.47 45.92
41.08 39.73
108.s6 r02.s6
82.00 77.84
55.73 53.22
36.1 l 34.57
27.84 26.75
23.73 22.78
I10.2.3 104.74
90.39 86.12'
68.38 66.08
47.t0 45.6s
38.45 37.33
33.53 32.55"

t37.67' 526.48
n4.25" 213.s4
80.64'  125.18
55. l5 '  75.83
43.84' 59.47
39.09'  5 l  .48
93.63'  121.38
72.87 38.36"
49.t4 t5.43"
32.19 10.67'
24.70 7.34'
21.60 5.42"

100.92'  512.30
87.99 210.06
63.93" t23.67
44.78" 75.08
36.2t" 59.02
32 .58  5 r . r 9

281.60 232.76
281.34 204.23
28t.36 t84.64
282.t9 152.38
282.76 t33.42
283.18 t17 .20
202.80 130.01
202j5 98.56
202.49 86.57
203.76 66.04
204.55 54.43
205.29 45.72
t95.37 193.06
195.26 178.87
195.35 163.08
195.22 137.33
t95.22 12r.8 l
t95.07 t07 .92

l  r  1.62'  122.65 769.44
97 .33^ I I 0.29 402.71
80.32" 93.8t  ?80.00
62.49" 65.67 t72.25
57.96' 65.25 t37.66
58.36" 62.79 106.04
. . . ,8.74 - . .30.97 153.35
*5 .86  -23 .18  68 .63
-2.36" *14.76 41.93
1 .02" ,7 .53 13.02
l .96" -6.96 7.99
1.30" -7.04 4.91

t |  .21^ I  I8.67 754.00
97 .16'� t07 .82 396.82
80.29" 92.64 276.84
62.49" 65.24 t7 |.7 6
57.93^ 64.8rJ t37 .43
58.34" 62.40 105.92
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Table 8. Percentage of Reduction of RMSE due to the Change in the Length of Data Series (From 20 years to 40 years) or the

Application of Bayesian Combination Methods

h'irst Generated Data Set Second Generated Data Set Ilird Generated Data Sel

QlO 39.23% 39.s8%
Q 100 67 .060/o 67 .26%
Q 1000 81.03% 81.260/0

36.38% 29.34% 8.94%
64.93% 29.12% s3.4"t%
80.50% 35.73vo 71.01%

8.35% 4.01% 34.09%
53.06% 47.79% 4t.2tyo
7131% 66s0% 38.48%

-u3.57% -105.95% -97.15% 29.81%
-25.57% -2096yo -15.73% 33.370/o
29.53% 32.22% 3s.59% 39.42%

"S = Switching liom / = 20 to / = 40.

Ao and A{ are compgle4,rling the same procedure. Given
a regional data set, A,p,, A,o and A{ are measures of how
the pammeters at target sites differ from the pammeters in
their respective regions.

[et]  The results are plotted in Figure l2 and al low to
draw the following conclusions.

[oz] l .  As expected, regional heterogeneity increases
as 6.3 becomes very different from à,.1 and b,.2 (i..., Âlr,

A" gl4 A( become significantly different from zero). Ap
and A{ increase, while Ao decrease.

[o:] 2. As b4 (and thus regional heterogeneity) increases,
the RMSE of the Md estimator of q'ooo increases, which
means that the proposed method becomes less efficient for
this particular quantile. The RMSE of the estimator of q10
and q1e6 do not seem to be affected. The best performance
conesponds to b,1 - b,2: b4- 0.

0.5

b,t

0.5

b,s

0.5

b,,

Figure 12. Sensibility analysis of the statistical parameters of the
performances of the proposed methodology to the bias parameter b,t ( b,t
(c) A€ , and (d) RMSE of the Md estimator of qto, Qroo, and q1uoo.

generated samp_lgr and the
: b,z.:0 ):  (a) Ap., (b) Aa,
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[o+] lndeed, this sensitivity analysis does not cover all the
range of possible contigurations of ô"1, b"z, b,s, and further
investigation is desirable. However, the results strongly
suggest that the rnethodology may be counterproductive at
sites that are very different from the regional mean. This
potential problem should be circumvented by a careful
choice of the neighborhood delineation method.

6.5. Generalization to Other Extreme Value
Distributions

[os] In the specitication of the prior, only the Jacobian J
(equation (15)) depends of the distribution. Thus its
application to other extreme value distributions is straighf
fbrward if an expression of -/ can be derived for the new
distribution. The MCMC algorithm will also need to be
adapted to the target distribution. Other analytical expres-
sions for L,q7i may also be used provided that the
expression of -I does not take null values in the parameter
space.

7. Conclusions

[eo] A parametric Bayesian methodology to combine local
and regional information in order to improve the estimation
of llood quantiles is presented. The methodology is validated
on three simulated data sets representing different levels of
regional homogeneity. In this method, the prior information
is specified using multiple regressiorl on quantiles and
quantile differences. The developrnents are made with the
generalized extreme value distribution but guidelines are
provided lbr its extension to other distributions. The pro-
posed method relaxes the assumption of the local quantile
probability distribution and can be applied to very short data
series. It stabilizes the estimation of the GEV shape parameter
and improves significantly the estimation of the parameters
and the quantiles when relatively short sedes are used. The
method was shown to be superior in terms of RMSE to the
local and regional estimators, and to the empirical Bayesian
estimatorused by Kuczera [1982]. On two out of the three
simulated data sets, it was shown that the improvement
in quantile estimation due to the use of the parametric
Bayesian approach is at least equivalent to that obtained
with the use of at-site series that are twice as long. The
method presented in this paper is thus a promising
approach for the estimation of quantiles at sites with
short to medium length flood records.

Appendix A: Computation of p,, o, and { From
grr, \rz, and q7j

[or] These equations allow to compute p., o, and ( given
Lqn, Lqn and L.qry. From equations (8) and (9) we have

A.qn
Lqz q r 2 -  q r t  ( ( - r o s { r  * 7 , 2 ) )  € - ( - l o g ( r  - p , ) )  e )

:  sT l \ , r2 , r : ' )
( A l )

If g is a monotonic function of €, g-t exists and we have:

€ - g  
t ( q r r , q r r , q 7 l T 1 , T 2 , T 1 )  ( A 2 )

20 of21

ns number of samples.
p exceedance probability.

,r(0) prior probability density of the
parameters.

p@lx\ posterior probability density of the
parameters given the data.

Qr T-year flood.
Lqrt T1-year flood.

Lqn, i > 2 difference between the T;-year tlood

. , / ,  .  
arrt l  the. Ti 1-year f lood.

qi_l local est irnation of the T-year f lood.

A'f '  r 'cgional est irnation of the T-year
flood.

1? regional estimator.
t variance-covariance matrix.

o1. standard deviation of the local
estimation of the T-vear flood.

wil408

(A3)
g'' (q rr, q rz, q nlTr, Tz, Tt)@ rt - q n)
-
( ( -  roetr  -pr) ) - i - ( -  log(r  -p1)) - { )

tt: qrt + (* log(l - otD-e 
i

A simple plot of g
monotonic for f, =

Notation

o

ag:
L'1.t.

T;

A ç

b,

ô.1 (resp. b,z, b,)
Ak

(44)

versus { allows to confirm that g is
10, T2: 100 and 1"3 = 1000.

pammeters that allows to tune the
precision of the regional model.

rnatrix of regression coeffi cients.
ûh row of B.
mean difference between location

parameter at target sites and location
parameter at nontarget sites.

mean difference befween scale
parameter at target sites and location
parameter at nontarget sltes.

mean diflèrence between shape
parameter ât target sites and shape
parameter at nontarget sites.

commoll bias parameter for

4r r '  Qn '  Qn.
bias parameter for q71 (resp. Qn, Qn).
valuc of the kth physiographic or
meteorological variable at the site
of interest-

empir ical Bayes cst imator.
likelihood of the observatrons.
local estimator.
rnean of the quantile or pammeter

posterior probab il ity density.
rnedian of the quantile or parameter
posteri or probabiliry density.

mode of the quantile or parameter
posterior probabiliry dcusity.

location parameter of the GEV
distribution.

samole size.

EB
J'Glq)

L
M

Md

Mo

lr

n
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op standard deviation ofthe regional
estimation of the T-year flood.

T return period.
0 = (p, o, t) parameters vcctor.

0i ith estimation of the parameters vector.
x vector of observed data.
{ shape parameter of the GEV

distribution.
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