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Estimation and validation of contemporaneous PARMA models

for streamflow simulation

Peter F. Rasmussen,! Jose D. Salas,? Laura Fagherazzi,? Jean-Claude Rassam,?

and Bernard Bobéel

Abstract. Seasonal streamflow series generally exhibit periodicity in the autocovariance
structure. Such periodicity can be represented by PARMA models, i.e., autoregressive
moving average (ARMA) models with parameters that vary with the seasons. Statistical
propetties of low-order models such as the PARMA(2,2) model are examined. The
periodic moment equations are derived; they can be used to compute the periodic
covariance structure of a given model. Simulation of streamflow at several sites can be
done using the contemporaneous PARMA model. The main problem in using such
models is to determine the covariance matrices of innovations. Traditionally, this has been
done by the method of maximum likelihood. However, this method generally leads to
significant underestimation of the cross correlation of flows. A moment estimator is
developed herein for the contemporaneous PARMA(2,2) model along with three
approximate moment-based estimators for those cases where a feasible moment solution
cannot be obtained. The applicability of the proposed methods is illustrated by fitting
PARMA models to weekly flow data for two catchments in the Ottawa River basin.

Introduction

Time series models are frequently used in hydrology to gen-
erate synthetic streamflow sequences which serve as irput to
the analysis of comiplex water resources systeris. Typical ap-
plications are the design of reservoirs, testing of reservoir pol-
icies, risk and reliability assessment, planning of hydropower
production, and flood and drought analysis. The timescale is an
important component of time series models. In some situa-
tions, only annual flows are of interest. This may be the case if
the purpose of the analysis is to design a large reservoir with
inflows that possess interannual persistenice. In other cases, it
may be desirable to use smaller timescales such as months or
weeks, when designing reservoirs for within-the-year regula-
tion, for instance.

When dealing with monthly or weekly flows, it may be nec-
essary to use a model that has seasonally varying properties. If
the seasonality of the flow data under consideration appears to
be only in the mean and the variance, then such seasonality can
be removed by simple seasonal standardization, and a station-
ary model can be applied. However, if the autocorrelation
structure of observed data exhibits significant periodicity, then
seasonal models that explicitly incorporate a petiodic depen-
dence structure must be used. In operational hydrology, two
approaches have gained popularity for modeling seasonal
streamflows. The first is a direct approach in which a model
with periodic parameters is fitted directly to the seasonal flows.
The periodic autoregressive moving average (PARMA) model
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is an example of this category [Salas et al., 1980, 1982; Vecchia
et al., 1983]. The second approach is disaggregation, in which
the seasonal flows are generated in two or more levels. For
instance, annual flows are modeled and generated first and
then disaggregated into seasonal flows based on a linear model
[Valencia and Shaake, 1973; Mejia and Rousselle, 1976; Lane,
1979; Hoshi and Burges, 1979; Santos and Salas, 1983, 1992;
Stedinger and Vogel, 1984; Stedinger et al., 1985a, b; Grygier and
Stedinger, 1988]. Comparisons of the two approaches have
been made by Curiy and Bras [1978), Srikanthar and McMahon
[1982], Stedinger et al. [1985a], and othiers.

This paper deals with contemporarieous PARMA models,
that is, simplified versions of the fully parameterized multivar-
iate PARMA model [Salas et al., 1980, 1985; Haltiner and
Salas, 1988]. The major difficulties pertaining to the applica-
tion of multivariate PARMA models are parameter estimation
and model validation, issues that we shall address in the fol-
lowing.

Figure 1 shows the lag-1 to lag-4 week-to-week correlations
of weekly flows from the northeast part of the Ottawa River
basin. The figute has been constructed from a flow record of 29
years. Although part of the observed fluctuations can be at-
tributed to samplitig variation, it is clear that the lagged cor-
relations vary within the hydrological year. While the lag-1 -
correlation is relatively high for the weekly timescale, there are
distinct drops in higher order lagged correlations in the spring
flood season. This characteristic can be readily explained. In
Quebec the largest annual flood usually occurs in spring,
around April-May, as a result of snowmelt, and it extends over
a period of a few days. Therefore the observed weekly means
in the spring season are based on flood and nonflood flows. In
the flood season of a given year, the week in which the spring
flood occurs will have a large flow compared to its historical
medn, while the remaining weeks will have relatively small
flows compared to their means. This effect leads to the nega-
tive correlations of weekly flows at higher lags in the flood
season. If a realistic generation of extrenie flows is desired,
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Figure 1. Week-to-week coirelation of flows from the north-

eastern part of the Ottawa River basin.

then care must be exercised when modeling the correlations
during the flood season. In fact, the negative correlations that
appear in the first lagged week-to-week correlations should be
reasonably well reproduced in order to gerierate realistic flood
scenarios. This may imply severe requirements to the flow
generation model. For example, certain low-order PARMA
models, such as PARMA(1,0), PARMA(2,0), or PARMA(L,1),
may not be able to reproduce satisfactorily the correlation
structure in the flood season. Thus the use of higher order
models, such as PARMA(2,1) and PARMA(2,2), may be nec-
essary to obtain an adequate reproduction of week-to-week
correlations beyond the first few lags.

When fitting a stochastic model, such as the ARMA model,
to actual data, three stages of model development can be
followed [Box and Jenkins, 1976; Hipel et al., 1977; McLeod et
al., 1977]: identification, estimation, and Verlﬁcatlon Hipel and
McLeod [1994] provide details on how to identify the appro-
priate model order when the ARMA class of models is con-
sidered. Essentially, the procedure is based on examining thie
shapes of the autocorrelation and the partial autocorrelation
functions which may suggest a particular model. However,
when dealing with the class of PARMA models, the problem of
model identification is more complex. Because of the period-
icity and the sampling variability, it would be very cumbersome
to deduce a certain model type from plots of periodic corre-
lations and partial correlations. Some periods of the year may
call for low-order models, while other periods call for higher
order models. In prmaple one could choose to let each period
have its. own model order [Vecchia, 1985], but the common
approach is to use the same model order throughout the year.
Because of these difficulties, a pragmatic approach to model
identification is usually adopted in practice. It must reflect
considerations to both the principle of parsimony and to sat-
isfactory reproduction of the periodic autocorrelations during
critical seasons such as the spring flood season (as referred to
in the foregoing example). A pragmatic approach for PARMA
model identification is by trial-and-error. One fixes the model
order, estimates the parameters, and verifies to what extent
selected historical statistics are reproduced by the model. The
verification also involves a test for the whiteness of the resid-
uals. One can examine various options and choose the sim-
plest, acceptable model. Usually, one would like the model to
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preserve the periodic means, variances, covariances, and cross
covariances. While traditionally, model characteristics are ob-
tained by simulation, certain statistics may be obtained in
closed form for PARMA models.

When modeling seasonal streamflow processes, one gener-
ally needs to transform the original flow data 1nt0 norinally
distributed data. Herice one may consider statistical properties
in the original data space and properties in the transformed
data space. However, for model identification it may be suffi-
cient to examine only statistical properties of the transformed
data. Generally, one cannot expect a model to perform well in
real space if it fails to pefform well in the transformed space
[Stedinger, 1981]. Once a model has been identified, it should
be thoroughly validated by considering its statistical properties
in the real space.

The first part of the paper deals with the deterniination of
periodic properties, in particular, seasonal variances atid auto-
correlations, of single-site PARMA models. Analytical results
based on theé periodic moment (Yule-Walker) equations aré
presented, and various issues related to model building are
discussed. In the second part of the paper, the problem of
estimating the cross covatiances of residuals in multisite con-
témporaneous PARMA models is addressed. In a study on
contemporaneous ARMA(l 1) models; Stedinger et al. [1985a]
found that maximum likelihood estimates of the cross covari-
ances of innovations, G, lead to downward bias in the cross
covariance of flows and recommended instead the use of the
method of moments. However, in the case of contemporane-
ous PARMA models, estimation of G by the method of mo-
ments is not straightforward, and a solution is not guaranteed.
In this paper the mathematical framework for moment ésti-
mation of the cross covariances of infiovations for the contem-
porancous PARMA(2,2) model is presented. Approximate
moment estimiators are suggested for the case where an exact
solution does not exist.

Univariate PARMA Models

Let us consider a periodic dependent process, X, ,, which
has mean zero and variance m .. Such a process may be
represented by a univariate PARMA(p,q) model; which can
be expressed as

¢(B)X,.= 0.(B)s,, (1)
where X, . is the flow, possibly transformed, in season 7 of year
v, and ¢_(B) and 0_(B) are periodic polynomials in the back-
ward shift operator B:

¢(B) =1~ ¢1,B—¢,,B’—---—¢,.B" (2a)

8{B)=1-60,.B—60,,B*—---—4,,B* (2b)
For periodic processes, the backward shift operator is defined

as B'X, . = X, . . Throughout the paper, it is understood
thatif + — j = 0, then X, ., = X,_;, ,4,_; Where [ =
[(j — 7)/®»] + 1 and w is the number of seasons per year. The
constants p and g are the number of autoregressive and mov-
ing average terms, respectively. The ¢ and the 0 are periodic
dutoregressive and moving average coefficients, respectively,
and £, is a normally distributed iioise term with mean zero
and periodic variance ¢,. The above model may alternatively

be written as
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P q
Xv,'r = E (bl',TXV,T*i +e v E .0/',7 81},7*/‘ (3)
i=1 j=1

Popular models are the PARMA(1,0), PARMA(2,0), and
PARMAC(1,1), which in many cases provide a satisfactory de-
scription of the statistical properties of seasonal streamflows.
However, when the timescale is short, such as in the case of
weekly flows, the periodic autocorrelation structure may ex-
hibit variations that cannot be adequately captured by these
low-order models. In such cases, higher order models like
PARMA(2,1), PARMA(1,2), and PARMA(2,2) should be
considered. Moreover, these models may be able to accommo-
date dependence structures at timescales beyond weeks, e.g.,
months, seasons, and years [Bartolini and Salas, 1993]. In ad-
dition to the stochastic compatibility at various timescales,
there are also conceptual (physically based) reasons for choos-
ing these models, especially the PARMA(2,1) and
PARMA(2,2) models [e.g., Salas and Obeysekera, 1992].
Therefore, in the following we adopt and elaborate on the
PARMA(2,2) model and its submodels, ie., we consider
PARMA(p.q) models with {p,q} = 2.

Estimation of PARMA Model Parameters

Thé moment equations (periodic Yule-Walker equations)
for the PARMA(2,2) model read (see the appendix)

mO,T = d)lJml,‘r + ¢2,rm2,7 + gT - 01,79‘!‘*1(‘1’],1’ - 91,7)

= 02,9 o1, B1s1 = D101 st Do~ 0y) (4a)
My, = 1Mo, 1+ Gy — 019 .1
= 02, g2 by = 01, 0) (4b)
My, = Gy Myq+ Gy, s~ 0.0, (4c)
M= b1 Moyt oy g,y k>2  (4d)

where the periodic autocovariance function is defined as
my . =E(X, X, ._,),since X, . has mean zero. Note that in
the case where X. .. has standard deviation one for every 7
(seasonally standardized process), the periodic autocovariance
function is equal to the periodic autocorrelation function p .
The above equations are also valid for any model of lower
order than PARMA(2,2) by setting appropriate parameters
equal to zero. For instance, the periodic moment equations
corresponding to a PARMA(2,1) model are obtained by set-
ting 6, ., equal to zero. In the case of a PARMA(2,2) model,
there are Sw parameters to be estimated, namely, 2w autore-
gressive parameters, 2w moving average parameters, and o
noise variances. The parameters of PARMA models may be
estimated by either the method of moments or by the method
of least cquares, which is approximately equivalent to the
method of maximum likelihood. Moment estimators of
PARMA model parameters may be obtained from the above
equations. However, they may not be feasible solutions, since
there is no guarantee that moment-based estimates of the
noise variances are positive. The autoregressive parameters
can generally be obtained without much difficulty; the trouble-
some components are the moving average parameters and the
noise variances. For a discussion of moment estimators of
low-order PARMA models, see Salas et al. [1982] and Bartolini
and Salas [1993].

Least squares (LS) estimators are based on the minimization
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of the sum of squared residuals (prediction errors). For models
involving moving average components, the LS method seems
to be the most straightforward approach for parameter esti-
mation, although in the case of w large (e.g., weekly data) and
for high-order PARMA models, the search for a minimum may
require considerable computer time. Moreover, the parameter
estimates may be unstable, that is, sensitive to starting values
and stop criteria used in the optimization program, mainly due
to the flatness of the objective function around the optimum.
The instability of the solution naturally raises the concern
whether the properties of the corresponding model (periodic
moments and autocorrelations) also are unstable.

Evaluation of the Model Covariance Structure

In addition to defining the method-of-moment estimators of
PARMA parameters, the periodic moment equations (4a)—
(4d) serve for calculating the periodic variance and periodic
autocorrelation structure of a given model. Combining (4a)
and (4c), and rearranging (4b) lead to the following equations:

_4)%,77"0,7—2 + my,— d)],fd’z,.—ml,f—l - ¢1,7m1,7

= gT - 01,79771((1)1,7 - 01,7) - 02,797*2((#],7(1)],74]

= b1 01m1 + 20, — 62) (5a)
_‘i)l,rmOJ—l - &72,7’”1,7—1 t+tm,,
= _él,rgf—l - éz,fﬁf—z(a)m—l - él,;—l) (Sb)

which, for known parameter estimates, constitute a linear sys-
tem of 2w equations with 2w unknowns, namely, my . andm, .
for r =1, 2,-++, . This system is readily solved, and the
complete periodic autocovariance function can then be com-
puted from (4c) and (4d). It constitutes a means to quickly test
and compare different models. For example, one may wish to
compare the PARMA(1,1), PARMA(2,1), and PARMA(2,2)
models for modeling weekly data at a given location. The first
step would be to obtain parameter estimates for each model
considered. Then the periodic variances and autocovariances
could be determined from (5a) and (5b) and compared with
historical properties. Figures 2 and 3 show such results for two
catchments in the Ottawa River basin. The various PARMA
models were estimated by the method of least squares.

Multivariate PARMA Models

Frequently, one is interested in generating concurrent flows
at several sites. Multivariate periodic autoregressive (PAR)
models and multivariate disaggregation models have been sug-
gested for this kind of problem [Salas et al., 1980; Loucks et al.,
1981; Bras and Rodriguez-Iturbe, 1985]. Multivariate PARMA
models have also been considered for multisite streamflow
generation [Salas et al., 1980], but relatively little experience
with this class of models is available today. In the following,
various issues related to parameter estimation and testing of
multivariate PARMA models are discussed.

The univariate PARMA model in (3) can be generalized to
an m site model as

P q
Xv,'r = Z Qi,TXV,T*l. + SV,’T - E ®f,78 v, 7—j (6)
=1

i=1

where X, . is a (m X 1) vector of flows, ®, . and O, . are

(m X m) matrices of autoregressive and moving average pa-

;
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Figure 2. Observed moments and moments of PARMA models of order (1,1), (2,1), and (2,2) for the NE
region of the Ottawa River basin, (a) Variance and periodic correlations of (b) lag 1, (c) lag 2, and (d) lag 3.

rameters, respectively, and €, is a (m X 1) vector of inno-
vations, independent in time, but correlated in space with co-
variance matrix denoted by G.. As before, v denotes the year
and 7 denotes the period. Variables and parameters in bold
indicate vectors or matrices. In its most general form, the
model parameters are considered to be full matrices. However,
except for very simple cases, the estimation problem becomes
overwhelming if full matrices are considered. A substantial
simplification is obtained if the two parameter matrices, @, _
and @, ,, are considered to be diagonal. This implies decom-
posing the problem into that of calibrating m univariate mod-
els, followed by the determination of the cross-covariance ma-
trix of residuals G.. This latter approach, suggested by Salas et
al. [1980], is called contemporaneous modeling because inno-
vations at different sites are assumed to be cross correlated
only at lag zéro. While several papers have dealt with contem-
porancous models in the stationary case [e.g., Matalas, 1967,
Pegram and James, 1972; Camacho et al., 1985, 1987; Salas et
al., 1985; Stedinger et al., 1985a], only a few have addressed
contemporaneous PARMA models [Haltiner and Salas, 1988;
Bartolini et al., 1988]. In the next section, we consider the
problem of estimating G, in the case of the contemporaneous
PARMA(2,2) model, that is, we assume univariate
PARMA(2,2) models at each of the m sites. It is understood
that the derivations and procedures also apply to any model of
order smaller than (2,2).

Estimation of G_

Generally, two methods can be used to estimate the cross-
covariance matrices of the innovations: the method of maxi-
mum likelihood (ML) and the method of moments (MOM). In
the ML method the estimated autoregressive and moving av-
erage parameters of the single-site models, i.e., the ®; . and
the @; . matrices in (6), are first used to derive the series of
residuals at each site. Since Box and Jenkins’ [1976] back fore-
cast method cannot be applied to PARMA models, the first g
residuals are usually set to zero. This introduces a' transient
error in the first few residuals, and it may be preferable to
disregard them in the subsequent computations. The concur-
rent series of residuals at each site are then used to estimate
the matrices of residual cross covariances G, 7= 1,2,°-, w.
However, the ML estimator of G, does not ensure that the
corresponding model will produce (transformed) flows whose
cross covariances are equal or even close to the observed cross
covariances. On the other hand, the method of moments is
designed to yield G, matrices that will lead to exact reproduc-
tion of the observed cross covariance I\A/IO’T. (In the following, it
will be necessary to make a clear distinction between moments
estimated from the data and moments associated with a given
model. Hence sample moments are provided with a circum-
flex.)

Haltiner and Salas [1988] considered the moment estimator
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Figure 3. Observed moments and moments of PARMA models of order (1,1), (2,1), and (2,2) for the NW
region of the Ottawa River basin. (a) Variance and periodic correlations of (b) lag 1, (¢) lag 2, and (d) lag 3.

of G, for the contemporaneous PARMA(1,1) model. Their
estimation of G, is briefly discussed below, before the estima-
tion of the contemporanecous PARMA(2,2) model is ad-
dressed. By considering p = g = 1 in (6), multiplying each
side by itself, and taking expectation, one obtains

E[XX|=E[(®X. +e.~ 0%, )
(DX, it e O, )]
= ®E(X,_ X )®] + ®.E(X, &)
— ®,E(X, el )0 + E(e XL )®! + E(e.¢7)
~ E(eel )07 - ©,E(e, X )®’
~ @,E(e, &) + ©,E(e,e7 )07 @

where the year index has been omitted for notational conve-
nience. Note that the diagonal matrices @, and @, are as-
sumed to have been already estimated. Since E[X._,eZ] = 0
and E[e,€7_,] = 0, the previous equation simplifies to

G,=M,,— ®M,, &+ &G, 0
+ ®’TGT*1¢17"_ ®7G'rfl®:

(8)

in which only the G, matrices are unknown. Note that G,
depends on G,_,, etc. Haltiner and Salas [1988] devised an

iterative procedure for solving this equation. However, as will
be shown below, (8) can be written as a linear system of
equations for which a solution (not necessarily feasible) can be
readily obtained. If a feasible solution exists, then the model
will exactly reproduce the variance of the (transformed) flows
at each site. However, there is a potential risk in combining LS
estimators of the autoregressive and moving average parame-
ters with moment estimators of the residual variances. A com-
bined solution can in some cases lead to periodic autocorrela-
tions that deviate more from the observed correlations than
those corresponding to the classical LS estimation. It is there-
fore important to compute each site’s periodic autocovariance
structure using the approach described in the previous section.
If the moment solution from (8) combined with LS estimates
of the autoregressive and moving average parameters produces
unsatisfactory results at some sites, one may choose to preserve
only the cross correlations between sites exactly, i.e., the off-
diagonal elements of MO’T, and let the diagonal elements of G,
be equal to the estimates obtained from the LS estimation.
This approach will be described below in more detail. First, we
consider the problem of estimating G, by the method of
moments when the individual sites are represented by
PARMA(2,2) models.

The derivation of (8) was fairly straightforward because G,
could be expressed, although implicitly, as a function of the
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property to be preserved, 1\7[0,,. However, in the case of the
contemporaneous PARMA(2,2) model, note that if the left-
and right-hand sides of (6), withp = g = 2, are squared, then
lagged cross correlations will appear. Contemporaneous
PARMA models do not preserve lagged cross correlations
explicitly. Preservation of the symmetric M0 , matrices imposes
om(m + 1)/2 constraints, which is exactly the number of
degrees of freedom in the w G, matrices. To estimate G, we
shall make use of the periodic multivariate moment equations.
First define E(X,X7_,) = M, . Note that for k¥ # 0,
E(XX] ;) # E(X,_X]), ie, M, is nonsymmetric. The
multivariate moment equations are (see appendix)

M0,7 = E(XTXZ)

= M1,7‘I)1T,T + Mz,rq)g,f + G, — (P, — ®1,T)G7—1®1T,1
(9, @, 1P, 0, ,+P,, — ®2,1)G772®2T,r (9a)
M1TT = E(XT—1XZ)
=M,, @, +M,, ®I -G, 0,
— (@11~ 0,,.)G,,0], (9b)
Mzr,f = E(XT—2XD
=M ®{, + M, , @], — G, ,0], (9¢)
where the parameter @, and ©; , matrices are assumed di-

agonal. Inspection of the above equations shows that the re-
lationships corresponding to the diagonal elements are simply
the univariate cases given in (4a)—(4c). In fact, the variance
terms of G, can be estimated one at a time, and the covari-
ances, i.e., the off-diagonal elements, can be estimated inde-
pendently of the variances. Moreover, since the particular el-
ements of G, that correspond to site i and site j are unaffected
by the parameters associated with other sites, one can deter-
mine the elements of G, sequentially, considering all different
pairs of sites. Hence in the following, the estimation procedure
is developed for any two sites i and j.

First, (9c) is used to eliminate M, , from (9a). Then, after
some manipulations, one can write the off-diagonal elements
of MO,, and M1,T of (9a) and (9b), respectively, as

LG bs — @80 + b= 0868, + 0.6£1G Y,
ot oo, + 9 SOBLME., + o MY)
— 1)~ GG (100)
OB — B IGY, + 00GHE, — GMEL, + MY
— S0P (100)

As noted above, the circumflex is used to distinguish sample
moments from model moments, i.e., the terms that are to be
estimated from the above equations. G is the covariance
between the innovations of sites / and j at time 7, and M§”) =
M (f 2 is the lag zero cross covariance at time 7, estimated from
the data For standardized data, the cross covariances are
equal to the cross correlations. M{%) = E(X®X) ) is the
lag-1 cross covariance between flows at sites i and j where, in
general, M{¥) # M{2. The above expressions have been
obtained from (9a) and (9b) by considering the entry (i, j).

Two other sets of equations can be derived from (9a) and (9b)
by considering the entry (j, i). Due to symmetry, these equa-
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tions can be readily obtained by simply switching the site indi-
ces in (10a) and (10b); however, the element G%? remains the
same, since G = GUD. The above considerations lead to a
system of 4w linear equations with 3w unknowns, namely,
G, M), and M{), for 7 = 1,---, w. However, since
M (”) = M G . one set of equations is superfluous and can be
omxtted Eventually, it can be used to check that the matrices
of cross covariances are indeed symmetric as they should be, or
if errors have occurred during the computations. The system of
linear equations can be readily solved for G, M{”), and
M(}l)

If the variance at each site is not preserved exactly by the
individual univariate models (this will typically be the case if
one uses the LS estimator of noise variances), then M§7) on
the right-hand side of (10a) and (10b) should be adjusted with
a factor (M§2, M§YY2/(M{DMG) 2, where the terms in
the nominator are the variances obtained from the individual
models, and M) and M§%) in the denominator are observed
variances. This adjustment is necessary in order to reproduce
the correlation of flows. More specifically, we want p§7) =
M(t])/(M(u)M(u))l/Z to be equal to p(u) = M(‘f)/
(M(”)M(JJ))l/2 hence M(”) = M(”)(M(”)M(”))l/z/
(]\/[(11)1\4(/1))1/2

It should be emphasized, however, that the complex struc-
ture of the individual site models may impose constraints on
each series so that the exact preservation of the spatial cross
correlation of flows may not be feasible. For example, some of
the estimated correlations between innovations may fall out-
side the range (—1; 1). The general requirement is that the G,
matrices be at least positive semidefinite. Hence, if a given G,
matrix is nonpositive definite, an adjustment must be made.
Adjustments generally imply that the cross correlation of flows
will no longer be preserved exactly. Although the problem of
nonpositive definite matrices frequently arises when modeling
multivariate data, the literature on the subject is rather limited,
and there seems to be no standard solution to the problem.
The disaggregation softwares SPIGOT [Grygier and Stedinger,
1990] and LAST [Larne, 1979] propose different procedures for
dealing with nonpositive definite ‘matrices. Other references
are Crosby and Maddock [1970] and Bras and Rodriguez-Iturbe
[1985]. Adjustment procedures often depend on the type of
problem being considered. In the following, we present three
techniques to overcome the problem of nonpositive definite
matrices. The three options represent different degrees of
complexity. Their performances are illustrated by an example
in a subsequent section.

Method 1;: MOMI1. In this approach, initial moment esti-
mates of G, 7 = 1, 2, -, o, are obtained by solving (10) for
all possible combinations of sites. A G matrix which is non-
positive semidefinite (i.e., has one or more negative eigenval-
ues) is made positive semidefinite through the following steps.

1. Decompose the G matrix into eigenvectors and eigen-
values, P and A, where the columns of P contain the eigenvec-
tors and A is a diagonal matrix with the eigenvalues on the
diagonal. Hence G = PAPT.

2. Set all negative eigenvalues in A equal to zero. This
defines a new matrix A*.

3. Compute the matrix G* = PA*PT, which is positive
semidefinite.

4. In order to preserve the variance terms of the original G
matrix (i.e., the diagonal elements), perform the following
computation:




-
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Gadj = UG*U

where U = diag (GU0/G*(D)1/2,

The implication of this adjustment is best understood by
considering the two-site case. If a (2 X 2) G matrix, estimated
from (10), is negative definite, then GG 32 — (G12)2 <
0, implying that the correlation between the innovations of the
two sites exceeds the feasible range (—1, 1). The above adjust-
ment procedure essentially sets the correlation equal to 1 or
—1, depending on the sign of the original moment estimate of
the cross correlation. For the two-site case, this represents the
minimum adjustment needed to obtain a feasible G matrix
without changing the diagonal elements. -

Method 2: MOM2. The MOMI method can be criticized
for decoupling the initial moment estimation and the subse-
quent adjustments. When a matrix for a particular period is
adjusted, there is no compensation for this in the estimation of
the remaining matrices. It is obvious that the correction of
matrix G at time 7 will imply that the cross correlation of fiows
in that period will not be preserved exactly. However, since
there is an interaction between consecutive G matrices, the
correction in period 7 is likely to also deteriorate the preser-
vation of cross correlations in subsequent periods.

In order to preserve as many periodic cross correlations of
flows as possible, one may, in the two-site case, proceed as
follows. First, obtain an initial moment solution from (10a) and
(10b) and find the first period, 7 = k, with nonpositive definite
G matrix. Use the MOMI1 technique to adjust that matrix, i.e.,
set GO = (G{'VG22)2, This implies that there will be at
least one period, for example, period &, in which flows at the
two sites will not have the specified cross correlation. Consider
(10a) and (10b) with the additional constraint G{'? =
(GEDEGEDYV2 that is, the cross correlation of innovations in
period k is assumed known. The number of constraints now
exceeds the number of degrees of freedom by 1. To obtain a
feasible solution of the system of equations, one may slack the
requirement that all flow cross correlations be exactly pre-
served, which anyway is impossible within the model frame-
work. Specifically, we remove the constraint that M§'2) equal
its historical value. Hence we solve (10) again, but con51der this
time G{'® known and M{'?> an unknown model property to
be estimated. In practice, this is done by moving the terms
which correspond to G{!?’ (including coefficients) to the right-
hand side of (10a) and (10b), and those corresponding to
M2, now representing a degree of freedom, to the left-hand
side. This allows for a unique solution to be obtained. The
procedure is repeated until all the G{1? matrices are positive
semidefinite. The generalization of the MOM?2 estimation pro-
cedure to the case of more than two sites is straightforward.

Method 3: LS-MOM. The result of applying the MOM?2
approach for correcting for nonpositive definite G matrices is
that in the periods where an adjustment is made, the cross
correlation of flows will be badly preserved, while in the re-
maining periods it will be preserved exactly. One may find it
desirable to sacrifice the exact preservation of cross correla-
tions in certain weeks to obtain a better overall agreement of
historical and simulated statistics, for example, measured in
terms of average mean square error. Such considerations nat-
urally lead to suggesting a least squares moment (LS-MOM)
estimator. In the two-site case, we define the LS-MOM esti-
mator of the cross correlations of innovations to be the solu-
tion to the constrained optimization problem defined by
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min f(G?) = X (M7 — M2 (11)
G2 =1
subject to |G{'?| = (G'VGPNY2 7 =1, -+, w, where

GUD = (G, G{P, -+, GU?), M'? is the historical
cross correlation of flows, possibly corrected for unpreserved
variances, and M§'2 is the cross covariance of flows obtained
from the model. The latter property can be obtained as de-
scribed in the next section. Standard algorithms are available
for solving this kind of optimization problem. In the general
case of n sites, the objective function must be modified to
include the average squared error for all n(n — 1)/2 combi-
nations of sites. The constraints should be formulated so as to
ensure that no G, matrix is nonpositive definite. It should be
noted that if an exact moment solution exists, the LS-MOM
estimator should, in principle, converge to the MOM solution.

Evaluation of the Model Cross-Covariance Structure

In order to verify to what degree the cross covariance of the
transformed flows are reproduced given the estimates of G,
(9a) and (9b) (with M, eliminated from (9a) by means of
(9¢)) may be reformulated as a system of 4w linear equations
in which M§7), M§2, M{7), and M{’? are the unknowns. The
resulting equations are

~SLIMY) + M)~ GLSIMY. .~ SYMY
= —09G08 + G — (ol ~ 60)GY460)
— (Bl = BU60 . + 60— 09IGD0Y,  (122)
d) M(t}) + d)(/)T[w(lJ) M(/t) G(t/) 0(]) + (¢
- 00, G0, (120)

Two additional equations result by reversing site indices. Since
M§7) = M9, only three equations are needed. However, the
fourth equation can be used to check that M§”) is indeed equal
to M§?. Otherwise, this could indicate a programming error
or lack of precision in the computations.

With known M, . and M, ,, the matrix M,  is readily ob-
tained from (9c). Furthermore, one can generalize (4d) to the
multivariate case as

M., =EXXL)=® M, + P, M, (13)

k>2

which can be used to determine cross correlations beyond lag
2. The extent to which a given model yields lagged cross cor-
relations that resemble the observed correlations can be eval-
uated by comparing M, . with the corresponding observed
matrices I\A/Ik,f.

Example

To illustrate the use of the various tools described above, we
consider two catchments located in the Ottawa River basin
northwest of Montreal. Twenty-two years of concurrent weekly
flows in the two catchments have been analyzed. The data used
in the example were obtained by aggregating observed daily
flows to weekly flows and by transforming them so as to con-
form to the hypothesis of normality. The two watersheds are
neighboring and of similar size, so one would expect a signif-
icant cross correlation of weekly flows. A specific objective
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Figure 4. Correlation of innovations required to reproduce
the cross correlation of transformed flows. The univariate
PARMA models are of order (2,1) for the NE catchment and
(2,2) for the NW catchment. '

pursued in this illustration was to identify a multivariate model
that reproduces the observed periodic autocorrelation struc-
ture and the periodic cross correlation of transformed flows in
the two catchments satisfactorily. Less priority was given to
model parsimony.

The first step in the analysis was to estimate the parameters
of potential PARMA models (considering normally trans-
formed data) for the two sites. Three univariate PARMA mod-
els, namely, PARMA(1,1), (2,1), and (2,2), were considered.
For both sites and for all models considered, the method of
moments, which by definition should reproduce the historical
moments used in the estimation, led to negative estimates of
the noise variances in one or more weeks, indicating that no
exact moment solution exists. Hence the LS method was used
in all cases. For each model considered, the system of equa-
tions given by (5a) and (5b) was applied to obtain the corre-
sponding model variance m,, . and model periodic autocorre-
lation correlation function (ACF), defined by p, , =
my [mo mo . ]~ "'?. The results are presented in Figures 2
and 3. '

For the northeast (NE) region, the observed periodic vari-
ance (equal to 1 because of the seasonal standardization) is
well reproduced by the PARMA(1,1) model, but it is not so
well reproduced by the higher order models, which exhibit
significant fluctuations around 1. As for the periodic ACF, the
PARMA(2,2) shows some instability in many weeks through-
out the year, while the PARMA(1,1) model fails to reproduce
the important drop in correlations observed during the spring
season. Hence, overall the PARMA(2,1) model seems to yield

the most satisfactory reproduction of sample statistics. For the -

northwest (NW) region, the PARMAC(1,1) yields the best re-
production of the variance, while the PARMA(2,2) seems
slightly better than the PARMA(2,1) model. The periodic
ACF is equally well preserved by the PARMA(2,1) and
PARMA(2,2) models, whereas the PARMA(1,1) fails to re-
produce the spring drop in lagged correlations. Overall, the
PARMA(2,2) model seems best.

The method of moments was used to estimate the correla-
tion of innovations. First, the periodic cross correlation of
flows, M§!2, estimated from the two concurrent data sets was
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corrected by a factor (MS'PM§?2)!? (assuming standardized
data), where M{) is the periodic model variance for site i
(denoted m, , in the univariate case). As previously men-
tioned, this adjustment is needed if the noise variances from
the single-site LS estimation are maintained. The solution to
(10) is shown in Figure 4 in terms of required periodic corre-
lation of innovations. It is seen that for several weeks the
required cross correlations fall outside the feasible range (—1,
1), indicating that no exact moment estimator is available. In
fact, 18 out of the 52 cross-correlation matrices turned out to
be nonpositive definite.

The MOMT1 adjustment technique was used to make all
nonpositive definite matrices positive semidefinite. For the
two-site case the adjustment essentially corresponds to setting
the correlation between innovations equal to 1, that is,
G = (GODGEDY2 where GEP is the estimated vari-
ance of innovations for site i in period 7. The system of equa-
tions given by (12) was then solved with the corrected moment
estimates as input. The result is shown in Figure 5. Owing to
the adjustment of nonpositive definite matrices, the observed
periodic cross correlation is not exactly reproduced by the
model. However, as compared with the maximum likelihood
estimates, the MOM!1 solution yields cross correlations that
are substantially closer to the observed correlations of flows. A
closer examination of Figures 4 and 5 reveals that in periods
following the weeks where an adjustment was made, the cross
correlations of flows are not well reproduced. Changing the
value of G'? in period 7 introduces a transient error in the
cross correlation of flows, which in most cases only slowly dies
out. This effect is produced by the autocorrelation structure of
the univariate models. For example, with two univariate
PARMA(1,0) models there would be no difficulty in preserving
the cross correlation of flows.

The application of the MOM2 adjustment procedure to the
Ottawa River data led to the model cross correlations shown in
Figure 6. In 32 out of 52 weeks, the observed cross correlations
could be exactly reproduced. For the remaining weeks, where
exact preservation was not possible, one may observe that the
MOM2 estimated model generally yielded improved agree-
ment with historical values as compared with the MOM1 esti-
mated model.

Finally, the LS-MOM estimator was used to obtain estimates
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Figure 5. Cross correlation of flows corresponding to

MOMI1 estimation of the covariance matrices of innovations.
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of G{*?), Results are shown in Figure 7. It is seen that there is
an overall good agreement between observed and model-
produced cross correlations. Note that in the period of weeks
39-44, where both the MOM1 and the MOM?2 estimators
failed to preserve satisfactorily the cross correlations of flows,
a significant improvement is obtained. If the preservation of
cross correlations is particularly important in certain weeks, for
instance, during the flood season, then one may consider a
weighted LS-MOM estimator, which penalizes discrepancies
between observed moments and model moments more in cer-
tain weeks than in others.

Conclusions

This paper has focused on the ability of contemporaneous
PARMA models to preserve historical statistics, in particular,
periodic variance and autocorrelation, and periodic cross cor-
relations. Practitioners are often concerned with an adequate
preservation of observed statistics while also considering the
parsimony and corresponding robustness of stochastic models.
To obtain a satisfactory reproduction of sample statistics, it is
frequently necessary to adopt high-order models. The least
squares method permits us to estimate the parameters of any
PARMA model. However, care must be exercised when fitting
high-order models to series of small timescales, such as weekly
flows. Parameter estimates may be unstable and lead to poor
reproduction of some of the most important statistics, for ex-
ample, the periodic variance. It is therefore imperative to care-
fully examine the statistical properties of the model. A set of
analytical tools has been presented for computing the main
periodic statistics of the PARMA(2,2) model and any model of
lower order.

A critical element in the use of contemporaneous PARMA
models is the estimation of the covariance matrices of innova-
tions. The maximum likelihood estimator generally leads to a
substantial underestimation of the observed cross correlations
of flows. A moment estimator has been developed to improve
the reproduction of cross correlations. However, due to restric-
tions imposed by the univariate models, an exact moment
estimator may not always be obtainable. Three modifications
of the moment estimator have been proposed for the cases
where an exact solution is not feasible. In our two-site example,
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Figure 6. Cross correlation of flows corresponding to
MOM? estimation of the covariance matrices of innovations.
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Figure 7. Cross correlation of flows corresponding to LS-
MOM estimation of the covariance matrices of innovations.

overall best results were obtained with the LS-MOM estima-
tor, which minimizes the averaged (over periods) squared de-
viation between observed and model-produced cross correla-
tions of flows within the feasible parameter space.

Finally, it should be noted that when there are many sites
(more than four) and cross correlations are high (as is typically
the case for small timescales), then it may be impossible to
obtain a satisfactory reproduction of cross correlations with the
multivariate PARMA(2,2) model, even with the approximate
moment estimators of G, developed in this study. If the mul-
tivariate PARMA(2,2) model is deemed unacceptable in terms
of spatial correlations, one may consider simpler models such
as the multivariate PARMA(1,0), PARMAC(1,1), or disaggre-
gation models, which generally permit a good representation
of spatial correlations. This, however, may be at the expense of
a less satisfactory representation of the temporal correlations.

Appendix: Periodic Multivariate Moment
Equations for the PARMA(2,2) Model

The periodic multivariate covariance equations can be de-
rived as follows. By definition, we have

E(XX]) =M,,
EXX) =M, E[X_X]]=M]
E(e.e) =G,
EX._ D=0 i>0
The multivariate PARMA(2,2) model has the form
X, =9, X, ,+®,, X, ,+e,-0,¢6,,—0,¢e., (Al
Using the above definitions, it follows that
E(X.e7) =E(eX]) =G,
EX.er) = (P, ~ 0,)G,,
E(e, X)) = G,_,(®], - O])
E(X.e] ;)= (PP — 9O+ Py, — 0,)G,,

E(ST*ZXZ‘) = GT*Z(Q{T*IQ{:T - ®£T71®{T + (bg,'r - 05,1)
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The covariance matrix of X_and X, _; is obtained by multiply-
ing (A1) by X7_, and taking expectation:

MO,T = E(XTXD
=M, &, + M, &), + G,

- ((I)l,f - ®1,7)G7—1®1T,r - (‘1)1,;‘1)1,7—1 - ®1,f®1,7—1

+ @, — 0,)6,.,0], (A2)
M[, = E(X, X)) =M, ®],+ M;, @], — G0,
—(®,,, - 0,,.)G, .0}, (A3)
M, = E(X,,X])
— M7, @7, + M,, @, — G,_,0!, (A4)
M, = E(X, X)) = M{_;, @], + My, ,®7.  (A5)
k>2

The univariate cases (4a)-(4d) correspond to the diagonal
elements of the above matrices.

Acknowledgments. Financial support for the research documented
in this paper was provided by Hydro-Québec and the Natural Sciences
and Engineering Research Council of Canada through an Industrial
Chair in Statistical Hydrology. The authors are indebted to J.
Stedinger and three anonymous reviewers whose comments signifi-
cantly improved this paper.

References

Bartolini, P., and J. D. Salas, Modeling of streamflow processes at
different time scales, Water Resour. Res., 29(8), 2573-2587, 1993.
Bartolini, P., J. D. Salas, and J. T. B. Obeysekera, Multivariate periodic

ARMAC(1,1) processes, Water Resour. Res., 24(8), 1237-1246, 1988.

Box, G.E. P, and G. M. Jenkins, Time Series Analysis: Forecasting and
Control, rev. ed., Holden-Day, Merrifield, Va., 1976.

Bras, R. L., and L. Rodriguez-Iturbe, Random Functions and Hydrology,
'Addison-Wesley, Reading, Mass., 1985.

Camacho, F., A.- 1. McLeod, and K. W. Hipel, Contemporaneous
autoregressive-moving average (CARMA) modeling in water re-
sources, Water Resour. Bull., 21(4), 709-720; 1985. ’

Camacho, F., A. I. McLeod, and K. W. Hipel, Muitivariate contem-
poraneous ARMA model with hydrological applications, Stochastic
Hydrol. Hydraul., 1, 141-154, 1987.

Crosby, D. S., and T. Maddock III, Estimating coefficients of a flow
generator for monotone samples of data, Water Resour. Res., 6(4),
1079-1086, 1970.

Curry, K., and R. L. Bras, Theory and applications of the multivariate
broken line; disaggregation, and monthly autoregressive streamflow
generators to the Nile River, Technol. Adapt. Program Rep. 78-5, 416
pp., Mass. Inst, of Technol., Cambridge, 1978.

Grygier, J. C., and J. R. Stedinger, Condensed disaggregation proce-
dures and conservation corrections for stochastic hydrology, Water
Resour. Res., 24(10), 1574-1584, 1988.

Grygier, J. C,, and J. R. Stedinger, SPIGOT, A synthetic streamflow
generation software package, technical description, V2.6, Cornell
Univ., Ithaca, N. Y., 1990.

Haltiner, J. P., and J. D. Salas, Development and testing of a multi-
variate, seasonal ARMA(1,1) model, J. Hydrol., 104, 247-272, 1988.

Hipel, K. W., and A. 1. McLeod, Time Series Modelling of Water Re-
sources and Environmental Systems, Elsevier, New York, 1994.

Hipel, K. W., A. I. McLeod, and W. C. Lennox, Advances in Box-

RASMUSSEN ET AL.: PARMA MODELS FOR STREAMFLOW SIMULATION

Jenkins modeling, 1, Model construction, Water Resour. Res., 13(3),
567-575, 1977.

Hoshi, K., and S. J. Burges, Disaggregation of streamflow volumes, J.
Hydraul. Div. Am. Soc. Civ. Eng., 105(1), 27-41, 1979.

Lane, W. L., Applied stochastic techniques. LAST computer package,
User manual. Div. Plann. Tech. Serv., U.S. Bur. of Reclam., Denver,
Colo., 1979.

Loucks, D. P, J. R. Stedinger, and D. A. Haith, Water Resource Systems
Planning and Analysis, Prentice-Hall, Englewood Cliffs, N. J., 1981.

Matalas, N. C., Mathematical assessment of synthetic hydrology, Water
Resour. Res., 3(4), 937-945, 1967.

McLeod, A. 1., K. W. Hipel, and W. C. Lennox, Advances in Box-
Jenkins modeling, 2, Applications, Water Resour. Res., 13(3), 577~
586, 1977.

Mejia, J. M., and J. Rousselle, Disaggregation models in hydrology
revisited, Water Resour. Res., 12(2), 185-186, 1976.

Pegram, G. G. S., and W. James, Multilag multivariate autoregressive
model for generation in operational hydrology, Water Resour. Res.,
8(4), 1074-1076, 1972.

Salas, J. D., and J. T. B. Obeysekera, Conceptual basis of seasonal
streamflow time series models, J. Hydraul. Eng., 118(8), 1011-1021,
1992.

Salas, I. D., J. W. Delleur, V. Yevjevich, and W. L. Lane, Applied
Modeling of Hydrologic Time Series, Water Resour. Publ., Fort Col-
lins, Colo., 1980.

Salas, J. D., D. C. Boes, and R. A. Smith, Estimation of ARMA models
with seasonal parameters, Water Resour. Res., 18(4), 1006-1010,
1982.

Salas, J. D., G. Q. Tabios, and P. Bartolini, Approaches to multivariate
modeling of water resources time series, Water Resour. Bull., 21(4),
683-708, 1985. .

Santos, E. G., and J. D. Salas, A parsimonious step disaggregation
model for operational hydrology (abstract), Eos Trans. AGU, 64(45),
706, 1983.

Santos, E. G., and J, D. Salas, Stepwise disaggregation scheme for
synthetic hydrology, J. Hydraul. Eng., 118(5), 765-784, 1992.

Srikanthan, R., and T. A. McMahon, Stochastic generation of monthly
streamflows, J. Hydraul. Div. Am. Soc. Civ. Eng., 108(3), 419-441,
1982.

Stedinger, J. R., Estimating correlations in multivariate streamflow
models, Water Resour. Res., 17(1), 200-208, 1981.

Stedinger, J. R., and R. M. Vogel, Disaggregation procedures for
generating serially correlated flow vectors, Water Resour. Res., 20(1),
47-56, 1984. :

Stedinger, J. R, D. P. Lettenmaier, and R. M. Vogel, Multisite
ARMAC(1,1) and disaggregation models for annual streamflow gen-
eration, Water Resour. Res., 21(4), 497-509, 1985a.

“Stedinger, J. R., D. Pei, and T. A. Cohn, A condensed disaggregation

model for incorporating parameter uncertainty into monthly reser-
voir simulations, Water Resour. Res., 21(5), 665-675, 1985b..

Valencia, R. D, and J. C. Schaake, Disaggregation processes in sto-
chastic hydrology, Water Resour. Res., 9(3), 580585, 1973.

Vecchia, A. V., Periodic autoregressive-moving average (PARMA)
modeling with applications to water resources, Water Resour. Bull.,
21(5), 721-730, 1985.

Vecchia, A. V., J. T. B. QObeysekera, J. D. Salas, and D. C. Boes,
Aggregation and estimation of low-order periodic ARMA models,
Water Resour. Res., 19(5), 1297-1306, 1983.

B. Bobée and P. F. Rasmussen, INRS-Eau, 2800 Rue Einstein, C.P.
7500, Sainte-Foy, Quebec, Canada G1V 4C7.

L. Fagherazzi and J.-C: Rassam, Hydraulic Systems Division, Hydro-
Québec, Complexe Desjardin, Montreal, Quebec, Canada H5B 1H7.

J. D. Salas, Engineering Research Center, Colorado State Univer-
sity, Fort Collins, CO 80523.

(Received August 14, 1995; revised May 12, 1996;
accepted May 17, 1996.)




