

2006-05

CONVERTING AND

GENERALIZING
MAPS INTO
COMPACT
SCALABLE

VECTOR
GRAPHICS
FORMAT

Valera PETKEVITCH
Philippe APPARICIO

INRS
Urbanisation, Culture et Société MARS 2006

Document de recherche / Working paper

Converting and generalizing
maps into compact

Scalable Vector Graphics format

Valera PETKEVITCH
and

Philippe APPARICIO

Spatial Analysis and Regional Economics Laboratory (LASER)
Institut national de la recherche scientifique

Urbanisation, Culture et Société

March 2006

Valera Petkevitch
valera.petkevich@ucs.inrs.ca

Philippe Apparicio
philippe.apparicio@ucs.inrs.ca

Inédits, collection dirigée par Richard Shearmur :
richard.shearmur@ucs.inrs.ca
Institut national de la recherche scientifique
Urbanisation, Culture et Société
3465, rue Durocher
Montréal (Québec) H2X 2C6

Téléphone : (514) 499-4000
Télécopieur : (514) 499-4065

www.inrs-ucs.uquebec.ca

© Tous droits réservés aux auteurs.

mailto:richard.shearmur@ucs.inrs.ca
http://www.inrs-ucs.uquebec.ca/

TABLE OF CONTENTS

ABSTRACT/RÉSUMÉ.. III

1. OVERVIEW... 3

2. DESCRIPTION OF THE SVG CONVERTER APPLICATION.. 5
2.1 Quantization .. 5
2.2 Preliminary reduction... 5
2.3 Generalization ... 7
2.4 Compression ... 10

3. RESULTS ... 11

CONCLUSION .. 14

REFERENCES.. 15

iv

List of figures

Figure 1 - Preliminary vertex reduction ... 6
Figure 2 - The problem of contiguous polygons during the generalization process 7
Figure 3 - The problem of different direction of polygon during the generalization process......... 7
Figure 4 - Douglas-Peuker algorithm .. 9
Figure 5 - Interface of SVG converter application... 11
Figure 6 - Results using combination of modified Douglas-Peuker and gzip algorithms............ 12

Table and Map

Table 1 - Results using combination of modified Douglas-Peuker and gzip algorithms............. 12

Map 1 - An example of Esri’s map conversion using the SVG converter tool 13

Abstract/Résumé

Vector formats for Internet, such as Flash and Scalable Vector Graphics (SVG),
represent good solutions to deploy rapidly interactive and dynamic maps on Internet.
However, without a good level of generalization, the size of vector web-maps can be
too large. To remedy this situation, we present, in this paper, a software utility called
SVG converter which converts and generalizes vector maps (ESRI shapefiles) into SVG
format. The conversion process is based on the combination of modified Douglas-
Peuker and dictionary based compression algorithms, and keeps the topology of
reduced geographical features. The high rates of compression obtained with the SVG
converter tool demonstrate that this software utility produces compact and high quality
web-maps in SVG format. Consequently, the SVG converter application could easily be
integrated into cartographic web-applications to generate “on-the-fly” medium and
small sizes maps.

Key words: cartography, interactive cartography, map generalization, Douglas-Peucker
algorithm, web-maps, web cartography.

* * *

Les formats vectoriels pour Internet tels que le Flash et le Scalable Vector Graphics
(SVG) permettent de produire rapidement des cartes interactives et dynamiques sur
Internet. Cependant, en l’absence d’un niveau de généralisation de la carte suffisant, la
taille des cartes vectorielles demeure trop grande pour une diffusion sur Internet. Pour
remédier à cette situation, nous présentons ici une application dénommée SVG
converter qui convertit et généralise les fichiers géographiques Shapefile (ESRI) au
format SVG tout en conservant la topologie des entités spatiales. Le processus de
conversion et de généralisation est basé sur une combinaison des algorithmes de
Douglas-Peucker et du dictionary based compression. Les taux de compression élevés
obtenus avec l’utilitaire SVG converter démontrent que cette application produit des
cartes pour le web compactes et de haute qualité au format SVG. Par conséquent, cette
application pourrait être facilement intégrée au sein d’applications cartographiques sur
Internet pour générer à la volée des cartes de taille réduite ou moyenne.

Mots-clés: cartographie, cartographie interactive, cartes sur Internet, généralisation
cartographique, algorithme de Douglas-Peucker.

.

For the last ten years, two elements have largely contributed to increase the number of
cartographic applications on Internet: the recent developments in interactive and
dynamic cartography and the development of Internet technologies such as DHTML,
Internet mapping technologies and vector formats for Internet.

The use of GIS and cartographic applications on the web and on smart mobile devices
requires map transmission over relatively low-bandwidth and latency media. In this
context the problem of transforming maps to a compact form emerges. Raster image
compression algorithms are well known (Li & Gray, 2000; Nelson & Gailly, 1995;
Redd, 2004; Vasudev & Konstantinos, 1997): however the development of interactive
and animated mapping functions is very limited within raster mode.

Scalable Vector Graphics (SVG) is a XML-based standard format elaborated by the
World Wide Web Consortium1, which allows the creation of interactive vector maps for
use on the web or on a variety of smart wireless devices. SVG interactivity includes
transformation of coordinate systems, panning and zooming, object selection and
clipping, animation and event handling, etc. Recently, Danzart et al. (2003) compared
three solutions for creating dynamic and interactive web-maps i.e. Scalable Vector
Graphics (SVG), Flash and MPEG-4. They conclude that SVG is the best solution for
the deployment of cartographic applications on the Internet. However, generally, the
conversion of geographic files into SVG without compression generates too large files.
This has led us to develop a software utility which converts and generalizes vector maps
(ESRI shapefiles) into a compact and high quality SVG format.

The aim of this paper is to present this application called SVG converter. First, we
describe the combination of compression and modified generalization algorithms that
produce high quality maps in SVG format. Next, we analyze the compression results
obtained with our SVG converter tool.

1 http://www.w3.org/Graphics/SVG/

http://www.w3.org/Graphics/SVG/

1. OVERVIEW

The primary goal of the SVG converter is to produce high quality scalable maps in a
compact form. This application can be downloaded free of charge from the Spatial
Analysis and Regional Economics Laboratory website of INRS Urbanisation, Culture et
Société (SAREL, or LASER2).

All source vector maps are represented by a set of polylines or a set of polygons which
could have a large number of points. Mathematically, the problem of reducing the size
of polygonal lines is equivalent to the problem of piecewise linear curve approximation.
This is a classic problem in computational geometry and compression.

In cartography, vector maps are usually simplified according to some geometric
tolerance, based on cartographic map scale (Weibel & Jones, 1998). This compression
technique is known as map generalization (Monmonier, 1991). Two generalization
algorithms are well known in the domain of cartography: vertex reduction (Hershberger
& Snoeyink, 1992), having O(n) complexity, and Douglas-Peucker (DP) (Douglas &
Peucker, 1973), having O(n2) complexity, where n is the number of points in the
polyline or polygon. The principal aim of these algorithms is to produce the same visual
representation of a map with a reduced number of polygonal points. According to this
perceptual criterion, the DP method produces better quality maps vertex reduction,
which gives fast, but coarser, results. However, due to web latency and to the O(n2)
complexity of the DP algorithm, its direct implementation cannot be used for “on-the-
fly” map generalization.

Another approach is to map compression is to reduce the size of maps by lossless
compression algorithms. Usually this is possible because of global redundancies such as
repeated chains of coordinates. However, this technique typically compresses source
maps by 60 to70 % which is not enough for fast visualization of detailed web-maps.

Thus, for high speed and high quality interactive web cartography it is necessary to use
a combination of generalization and lossless compression.

2 http://www.ucs.inrs.ca/default.asp?p=grlaser. Note that LASER is the French acronym for the laboratory

(Laboratoire d’analyse spatiale et d’économie urbaine).

http://www.ucs.inrs.ca/default.asp?p=grlaser

2. DESCRIPTION OF THE SVG CONVERTER APPLICATION

The SVG Converter application was developed in C#, a language that works with the
Microsoft.Net platform. The development of this application followed four steps which
will be discussed in detail below:

− Quantization: polygonal lines or polygon coordinates are transformed to the integer
Cartesian coordinate system;

− Preliminary reduction: elimination of small segments by fast vertex reduction
algorithm.

− Generalization: vertex elimination by Convex Hull Speed-Up of DP algorithm
(Hershberger & Snoeyink, 1992), having O(n log n) complexity in the worst case;

− Compression: use of lossless general-purpose LZ77 dictionary-based compression
algorithm (Nelson & Gailly, 1995).

2.1 Quantization

Depending on hardware and web specific factors, there are several possibilities for map
size reduction. Usually, each vertex of a polygon is represented by two floating point
numbers as coordinates, but monitor screens, printers and plotters are all based on
integer resolution. This is why, in a web environment, one must use an integer
coordinate system to reduce map size up to sizeof(float)/sizeof(int). For most operational
systems this ratio is 2. This simplification is easy to implement during SVG conversion
as shown in the following pseudo-code:

Scale = (int)Min(Display.Width / (Polygon.BoundBox.maxX - Polygon.BoundBox.minX),
 Display.Height / (Polygon.BoundBox.maxY - Polygon.BoundBox.minY));

for (i = 0; i < Polygon.numberOfPoints; i++)
{
 OutPoints[i].X = (int)((Polygon.Point[i].X - Polygon.BoundBox.minX) * Scale);
 OutPoints[i].Y = (int)((Polygon.BoundBox.maxY - Point[i].Y) * Scale));
}

2.2 Preliminary reduction

Often, segments of a polyline are too close together and successive vertices may be
displayed by the same screen pixel. Thus, vertices that are clustered on one pixel in web
resolution may be reduced to a single vertex. We eliminate such vertices by fast O(n)

6

vertex reduction algorithm and then we use slower, but high-quality, Douglas-Peucker
generalization.

Vertex reduction is a brute force algorithm for polyline simplification. For this
algorithm, we choose an initial vertex. All vertices which are located close to the initial
vertex at less than the minimum tolerance ε are eliminated. The next, not eliminated,
vertex becomes the new initial vertex for further simplification of the polyline. We
repeat elimination until we reach the end vertex of the polyline (see figure 1):

i = 0;
OutPoints[i++] = Polygon.Points[0]; // Copy the first point
currentPoint = Polygon.Points[0];
for (j = 1; j < Polygon.numberOfPoints-1; j++)
{
 // implemented comparing squares of distances with the squared tolerance
 // to avoid expensive square root calculations
 if (currentPoint.DistanceTo(Polygon.Points[j]) > Eps)
 {
 OutPoints[i++] = Polygon.Points[j];
 currentPoint = Polygon.Points[j];

}
}
OutPoints[i] = Polygon.Points[Polygon.numberOfPoints-1]; // Copy the end point

Figure 1 - Preliminary vertex reduction

7

2.3 Generalization

The principal goal of generalization is to produce the same visual representation of a
map with a reduced number of polygonal points. Douglas-Peuker and vertex reduction
algorithms work well for polyline reduction; however they can’t be used directly for
polygon reduction. The problems of polygons generalization consists in:

− The requirement to keep start and end points within a shared border (see figure 2)
notwithstanding generalization tolerance.

− The requirement to have the same direction of generalization for polygons sharing a
border (see figure 3).

Figure 2 - The problem of contiguous polygons during the generalization process

Figure 3 - The problem of different direction of polygon during the generalization process

8

To avoid the first problem we have to split polygons into chains of polygonal lines.
Every polygon is split at start and end common points with every adjacent polygon (see
pseudo-code below) (Weibel and Jones, 1998).

The second problem may be solved by using the same orientation for each polygon. In
this case, generalization will give us the same results for adjacent polygons.

for (int i = 0, k = 0; i < ShapeFile.numRecords; i++)
{
 for (int j = i+1; j < ShapeFile.numRecords; j++)
 {
 if (ShapeFile.ConnectivityMatrix[i,j] == true)
 {
 FromToTable[k++] =
 GetStartAndEndCommonPoints(ShapeFile.Records[i], ShapeFile.Records[j]);
 }
 }
}

We can now generalize polygons in the same manner as polylines. According to the
perceptual criteria, the DP method produces better quality maps than the vertex
reduction algorithm. The DP method uses the proximity of a vertex to an edge. The DP
algorithm starts with a crude initial guess at a simplified polyline - a single edge joining
the first and last vertices of the polyline (see figure 4). Then the remaining vertices are
tested for closeness to that edge. If there are vertices further than a specified tolerance,
then the vertex furthest from it is added in the simplification. This creates a new guess
for the simplified polyline. Using recursion, this process continues for each edge of the
current guess until all vertices of the original polyline are within tolerance of the
simplification (see figure 4 and pseudo-code below).

In the worst case the time taken by the DP algorithm is O(nm), with an expected time of
O(n log m), where m is the size of the simplified polyline. This is acceptable for a
stand-alone converter, but for “on-the-fly” conversion on the web it is too slow.
Fortunately, there is the Convex Hull Speed-Up version of DP (Douglas & Peucker,
1973) which has an O(n log n) complexity in the worst case. The improvement is
achieved by speeding up selection of the farthest intermediate vertex from the current
segment. Because the farthest vertex must be on the convex hull of the polyline chain
between current segment nodes, we can compute this hull in O(n) time using Melkman's
algorithm (Laszlo, 1996) and find the farthest vertex using an O(log n) binary search on
the hull vertices. The Convex Hull Speed-Up version of DP only works for simple 2D
planar polylines, but for maps it is sufficient. C++ implementation of this accelerated
DP algorithm is described in detail in Sunday (2005).

9

Figure 4 - Douglas-Peuker algorithm

void DouglassPeucker(int Start, int End, double Eps, ref BitArray keptPoints)
{
 keptPoints.Set(Start, true); // keep the first point
 keptPoints.Set(End, true); // keep the last point

 maxDistance = double.MinValue;
 int MaxPosition = Start; // initial index for furthest vertex from [StartPoint, EndPoint] segment
 StartPoint = Polygon.Points[Start];
 EndPoint = Polygon.Points[End];

for (int i = Start + 1; i < End; i++) // find the furthest vertex from [StartPoint, EndPoint]
segment

 {
 Distance = Polygon.Points[i].DistanceToSegment(StartPoint, EndPoint);
 if (Distance > maxDistance)
 {
 MaxPosition = i;
 maxDistance = Distance;
 }
 }

 if (maxDistance > Eps)
 {
 DouglassPeucker(Start, MaxPosition, Eps, ref restedPoints);
 DouglassPeucker(iMaxPos, End, Eps, ref restedPoints);
 }
}

10

At the end of the generalization process we have to assemble the generalized polygonal
lines back into polygons:

for (i = 0; i < ShapeFile.numRecords; i++)
{
 StartEndPositions = GetStartEndPositions(FromToTable, i);
 ShapeFile.Records[i].Generalize(StartEndPositions, Eps);
 SVGWriter.Write(ShapeFile.Records[i]);
}

2.4 Compression

After these simplifications have taken place, there may still be a lot of room for map
size reduction. Simplification could be achieved by using relative instead of absolute
coordinates (see pseudo-code below).
for (i = 1; i < Polygon.numberOfPoints; i++)
{
 Polygon.Point[i].X -= Polygon.Point[i-1].X;
 Polygon.Point[i].Y -= Polygon.Point[i-1].Y;
}

Usually, this produces many redundancies such as repeated chains of relative
coordinates, which allows high efficiency use of lossless dictionary-based compression
algorithms, such as LZ77 (Ziv & Limpel, 1977) or LZW (Nelson & Gailly, 1995).

Fortunately, SVG documents automatically support all SVG interactivity features for
zipped SVG files. To compress SVG files we use the open source Gzip compression
utility3 which is designed to be a free, general-purpose, legally unencumbered (not
covered by any patents), lossless data-compression utility for use on virtually any
computer hardware and operating system.

Gzip uses the LZ77 which is the "sliding window" compression algorithm also used in
ZIP and PKZIP. The LZ77 algorithm works by keeping a history window of the most
recently seen data and comparing the current data being encoded with the data in the
history window. What is actually placed into the compressed stream are references to
the position in the history window, and the length of the match. If a match cannot be
found in the character itself, it is simply encoded into the stream after being flagged as a
literal3.

The compression ratio of LZ77 depends on the distribution of repeated chains of
relative coordinates. In our experience, generalized maps may be reduced an additional
5 to10 times. The compression ratio of LZ77 is generally much better than that achieved
by LZW, Huffman coding, or adaptive Huffman coding (Nelson & Gailly, 1995).

3 http://www.gzip.org/

http://www.gzip.org/

3. RESULTS

To give an idea of the results which can be obtained with the SVG converter tool, we
use it to convert and generalize a map of Canadian census divisions from ESRI
shapefile format (ESRI, 1998) into SVG. Input map size is 4989 K and contains 507
polygonal regions. The application interface which is available in English and French is
shown on figure 5. It is worth noting that the Color Ramp can be used to color the
output map according to values in selected data fields and that the clear small features
option is used to eliminate small regions that haven’t a common border with other
regions (islands, lakes, etc).

Figure 5 - Interface of SVG converter application

The quantization step (use of integer coordinate system) produces 2557 K of output
SVG map (1.951 compression ratio). Preliminary generalization by vertex reduction
gives 490 K of SVG file (10.182 compression ratio). The stage of DP generalization
depends on selected geometric tolerance expressed in number of screen points. The
results of DP generalization followed by LZ77 compression are shown in table 1 and on
figure 6.

12

Table 1 - Results using combination of modified Douglas-Peuker and gzip algorithms
Tolerance
in points

Output size
(Kb)

Compression
ratio

Output size
after gzip (Kb)

Compression ratio
after gzip

1 289 17.263 43 116.023
2 260 19.188 33 151.182
3 251 19.876 29 172.034
4 247 20.198 28 178.179
5 244 20.447 27 184.778
6 243 20.531 26 191.885
7 242 20.616 25 199.560
8 241 20.701 25 199.560
9 241 20.701 25 199.560

10 240 20.788 25 199.560
15 239 20.874 24 207.875
20 239 20.874 24 207.875
30 239 20.874 24 207.875
40 239 20.874 24 207.875
50 239 20.874 24 207.875

Figure 6 - Results using combination of modified Douglas-Peuker and gzip algorithms

Figure 6, shows that after a certain level of tolerance it is impossible to increase
compression ratio, because map generalization can’t remove points without breaking the
map’s topology. Also, high levels of tolerance lead to map disproportion in
archipelagos. This happens because there are no limits for point reduction in
archipelagos; however points of continental areas can’t be removed because they are
maintaining map topology. With fixed tolerance, the quality of the compressed map
depends on the initial map’s topology, but for most maps a tolerance of 4-8 points is
recommended.

13

Initial map of canadian division regions (ESRI’s shapefile, 4,989 K size)

Generalized map of Canadian division regions using combinaison

of modified Douglas-Peucker and gzip algorithms (SVG file, 28 K size)

Map 1 - An example of Esri’s map conversion using the SVG converter tool

14

For example, the initial map of Canada (size of 4989 K) is depicted on the upper map of
map 1 and the SVG generalized output with the modified Douglas-Peucker algorithm (4
points in tolerance) and compressed using gzip is shown below it. This output map has a
size of 28 K: the compression ratio is 178, yet it looks very similar to the initial map.

CONCLUSION

Vector formats, such as Flash and Scalable Vector Graphics, are good solutions for
deploying rapidly interactive and dynamic maps on the Internet. However, without a
good level of generalization, the size of vector web-maps can be too large. The SVG
converter application, described in this paper, enables the conversion and generalisation
of ESRI shapefile maps into SVG format. The conversion process is based on the
combination of modified Douglas-Peuker and gzip algorithms and maintains the
topology of the reduced geographical features. Concretely, it contains four steps:
quantization, preliminary reduction, generalization and compression.

The high rates of compression obtained with the SVG converter tool demonstrate that
this software utility produces compact and high quality web-maps in SVG format. In
fact, this utility is useful as a stand alone application and can be used for “on-the-fly”
generation of medium and small sizes maps. Consequently, we hope that this open
software will be useful for the cartographic research community in the deployment and
development of web-cartographic applications.

References

DOUGLAS D., PEUCKER T., 1973, "Algorithms for the reduction of the number of points required
to represent a digitized line or its caricature", The Canadian Cartographer, Vol. 10, No. 2,
112-122.

ESRI, 1998, ESRI Shapefile Technical Description. An ESRI White Paper, Redlands
(California): Environmental Systems Research Institute Inc.

GATTASS M., FERREIRA C., VILAR A., GLASBERG M., 1999, "Efficient map visualization on the
Web", Workshop Brasileiro de GeoInformática, Campinas, SP, Brasil.

HERSHBERGER J., SNOEYINK J., 1992, "Speeding Up the Douglas-Peucker Line-Simplification
Algorithm", Proc 5th Symp on Data Handling, 134-143.

KRAAK M. J., 2001, "Web maps and atlases". In KRAAK M. J., BROON A. (Eds.), Web
Cartography. Developments and Prospects. New York: Taylor & Francis, p. 135-140.

LASZLO M., 1996, Computational geometry and computer graphics in C++, Prentice Hall.

LI J., GRAY R., 2000, Image Segmentation and Compression Using Hidden Markov Models,
Kluwer Academic Publishers.

MONMONNIER M., 1991, How to Lie with Maps, Chicago: The University of Chicago Press.

NELSON M., GAILLY J.-L., 1995, The Data Compression Book, M&T Books, Second Edition.

REED T., 2004, Digital Image Sequence Processing, Compression, and Analysis, CRC Press.

SUNDAY D., 2005, "Polyline simplification", In Geometry Algorithm website,
http://geometryalgorithms.com/Archive/algorithm_0205/algorithm_0205.htm

VASUDEV B., KONSTANTINOS K., 1997, Image and Video Compression Standards, Kluwer
Academic Publishers.

WEIBEL R., JONES C. B., 1998, "Computational perspectives on map generalization",
GeoInformatica, Vol. 2, No. 4, 307–314.

ZIV J., LEMPEL A., 1977, “A universal algorithm for sequential data compression”, IEEE
Transactions on Information Theory, Vol. 3, 337–343.

http://geometryalgorithms.com/Archive/algorithm_0205/algorithm_0205.htm

	
	TABLE OF CONTENTS
	 List of figures
	Table and Map
	.
	1. OVERVIEW
	2. DESCRIPTION OF THE SVG CONVERTER APPLICATION
	2.1 Quantization
	2.2 Preliminary reduction
	2.3 Generalization
	2.4 Compression
	1.
	3. RESULTS
	CONCLUSION

	Pagecouv2006_5.pdf
	INRS
	Urbanisation, Culture et Société MARS 2006

