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1 OBJECTIVES OF THE INVESTIGATION 

The general objectives of the investigation are: 

• Estimation of surface variables using data from a medium spatial resolution and high 

frequency remote sensing sensor in orbit. 

• Increased accuracy of spatial registration for multitemporal analysis of data. 

Derived from those are the following specifie objectives: 

• Estimation of physical variables of the surface, corresponding to each land cover within 

the pixel, the albedo for example. 

• Estimation at the sub-pixellevel of the spatial distribution of snow cover on the ground. 

• As accurate as possible registration of the images for multitemporal input into a spatially 

distributed hydrological model using geocoded data. 





2 APPROACH USED DURING THE PRE­

LAUNCH PHASE OF INVESTIGATION 

During the pre-Iaunch phase of investigation, the approach has consisted in simulating first VOT 

and HRVIR data from TM data, the differences in bandwidths being acceptable for our purposes. 

The other activities were on the development and testing of our methodology on the application of 

the spectral mixture theory, in order to meet the objectives ofthe investigation. Development and 

testing have been undertaken on small simulated VOT images obtained from TM data. 

2.1 Simulation of SPOT -4 HRVIR and VGT images 

2.1.1 Introduction 

Since we estimated that five of the TM bands could be considered as sufficiently good 

approximations of the bands that we will find for both sensors on SPOT -4 and that it was already 

a satellite borne sensor, we believed that it was a good basis for simulations of the future sensors. 

For the moment, we do not believe that small differences in bandwidth and other characteristics of 

the sensors, like radiometric sensitivity and noise and viewing geometry are crucial for the type of 

analysis that we intend to perform on the data. The TM2, TM3, TM4 and TM5 bands have been 

used to simulate the corresponding HRVIR bands, whereas the TMl, TM3, TM4 and TM5 bands 

were used for VOT. Another advantage ofusing a satellite borne sensor like TM is simulation of 

simultaneous data acquisition from the future HRVIR and VOT sens ors underthe same orbital and 

atmospheric conditions. On the other hand, simulated VOT images will be relatively small, but it 

should not be a problem for the type of investigation that we proposed, as actual VOT images will 

likely have to be subdivided into smaller images in order to respect relatively homogeneous 

physical variables on the considered area. For instance, any physical variable which is function 

of latitude will probably have to be estimated for subimages. 

2.1.2 Experimental sites 

The experimental sites are located in Southem Québec, on the South shore of the St. Lawrence 

river, and are representatives of the conditions encountered in that region (Fig. 2.1). Various land 

types can be found, including water surfaces, agricultural fields, waste and wet lands, forested areas 
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(both con if ers and deciduous) and urban areas. One of the image (Nicolet region, 9 May 1993) is 

taken in spring over a relatively flat area. Another one (Southem Québec, including the St-François 

to the Chaudière watersheds, 28 August 1995) is a summer image over a more hilly area, while the 

third one (St.François watershed, 2 April 1988), a little to the South-West of the second one, is an 

early spring image with partial snow coyer over the same type of terrain. 

2.1.3 Corrections of atmospheric and directional effects 

As anyone knows, reflected radiation from the earth surface in the visible and infrared is affected 

by various molecules and particules in the atmosphere. Then, for a number of applications, itis 

advisable, if not necessary,to make a correction for these effects on images from orbiting sensors. 

Various models have been developed to do that, in particularthe LOWTRAN (Kneizyset al., 1983), 

5S (Tanré et al., 1990)and SMAC (Rahman and Dedieu, 1994) methods. These models need 

parameters like the vertical visibility, the air temperature and standard air mass characteristics for 

various types of environments and climates. 

In this study, before making any resampling, the TM images have been corrected for atmospheric 

effects, using the procedure available in the Easy Pace software (Version 6.10 from PCI). This 

procedure is based on the LOWTRAN-7 (Kneizys et al., 1988) and SENSAT-3 (Richter, 1989) 

models and assumes that the reflectances from the various surfaces are lambertian and that the 

terrain is flat. One interesting feature of this procedure is the availability of files containing 

standard environmental conditions: aerosol types in the atmosphere, solar zenith angle and altitude 

of the earth surface. This is particularly useful if no actual atmospheric values are available. 

As shown in fig. 2.2, the first step consisted in estimating the ground visibility in the atmosphere 

of the region, using the available files. The US standard atmospheric characteristics for rural 

environment have been used for that purpose. The next step of the procedure was the 

transformation ofthe digital counts into reflectances, withouttaking into account adjacency effects. 

A 3 x 3 mean filter was then applied to the data in order to eliminate noise. Finally, an improved 

reflectance image taking adjacency effects was created. 



Figure 2.1 
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Figure 2.2 
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The TM images were georeferenced but not corrected for directional effects as the terrain is 

relatively flat or consists in rolling hills with small slopes and the image is small (narrow field of 

view). Other directional effects depending on the type of surface are more difficult to correct. For 

instance, tall vegetation, particularly in the infrared, may have a different reflectance on different 

images even if the sun and the sensor are in the same geometric position. That variation may come 

from wind speed and direction. AIso, ev en if one can count on good atmospheric parameters, their 

spatial representivity is not very large, so that it will be difficult to know if a sm aIl reflectance 

variation is due to directional effects or to differences in atmospheric characteristics. 

2.1.4 Simulation of HRVIR and VGT data 

After correcting the TM images for atmospheric effects, the next step was the simulation the 

HRVIR 20-m resolution images. This was made using a nearest neighbor resampling procedure to 

change the original 25-m geocoded TM data to simulated 20-m HRVIR data. Since both resolutions 

are approximately the same, it had the advantage of retaining the original digital counts. The 

simulated 20-m HRVIR data was subsequently used to prepare a land-use classification of the area. 

Two methods were retained at the beginning to simulate the 1150-m VGT data. The first one was 

a simple mean value of 46x46 TM pixel arrays. The second one consisted in modelling "the 

transfer function between the initial data and the desired data and derive a spatial filter and 

sampling mechanism to simulate the coarser resolution data from the finer resolution data" 

according to the procedure suggested by Justice et al.( 1989), in which both methods are described. 

As mentioned by Cherchali (1995), the procedure must, in princip le, take the MTF into account, 

as it represents the modifications made to the actual scene by the various components of the 

sensor in the image making process. On the other hand, it has been shown that for objects on the 

earth surface whose dimensions are larger than 60m, the MTF is close to 1 for TM and HRV 

sensors. One can thus assume, according to Cherchali (1995) and Aman et al.(1992) that if he 

applies "a mean filter to high spatial resolution pixels for a specific surface, he will obtain, for 

scales larger than IOOm a measure corresponding to a MTF practically equal to 1". Also, it can be 

assumed that environmental side effects become practically negligeable beyond those scales, 

specially if atmospheric corrections have been done previously. However, if such a filter is used, 

the noise will be reduced by smoothing offrequency distribution and occurrence ofboth high and 

low values will be reduced Aman et al.(1992). 
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Following aIl those considerations, a 46 x 46 mean filter has been applied to the TM data already 

corrected for atmospheric effects in order to simulate the VGT data considering that this choice 

should not affect our results. 

2.2 Processing of simulated VGT data for estimation 

of the mean reflectances of land use classes in a 

specifie geographical area 

2.2.1 The spectral mixture approach 

According to the spectral mixture theory, the reflectance of a pixel can be considered as thé linear 

weighted mean of the reflectances of the surface elements in the pixel. In our case, the relation 

between the reflectance of a VGT pixel and that of corresponding HRVIR pixels can be written, 

for each spectral band, as: 

n 

Ri= ~lJ;/j+ti 
J= 

O""r "" 1 j 
2.1 

where : Riis the reflectance of the VGT pixel i, (j is the fraction of pixel i occupied by land use 

class j, ri is the mean reflectance of land use class j in the considered spectral band, ti is an error 

term for the spectral band taking into account measurement errors and variability of rj, and n is the 

number of land use classes. 

In practice, we can be interested in finding either the r/ s, that is the mean reflectances in each of 

the considered spectral bands of the land use classes present on the image, or the (/ s, that is the 

fraction of pixel i occupied by each land use class within that pixel. In the first case we may want 

to estimate albedo, while, in the second, we might be interested in knowing the percentage of snow 

for each VGT pixel and if possible, for each land use class within that pixel. 
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2.2.2 General description of the chosen approach. 

It can be seen easily that by considering p (pz::n) pixels it is possible to construct an overdetermined 

equation system which can be solved using a least squares algorithm. The constraints are induced 

by the fact that the estimated reflectance must be in the interval[O, Il. The procedure "non-negative 

least squares" (nnls) available in MATLAB has been used to solve the system ofequations. 

It is also necessary to decide which pixels should be selected and, of course, on what criterion. One 

further question can be asked. Will the selection of only one group of pixels give the best answer 

or will it be necessary to develop a procedure to select more than one group and if so on what 

basis? 

A general description of the main steps of the proposed approach can be found in Fig. 2.3. The 

upper part of the figure deals with the simulation of the HRVIR and VGT data (section 2.1.4). 

Starting with the simulated HRVIR data, it is shown that a supervised classification is made in 

order to prepare a land use map. Mean reflectances of each land use class for each spectral band 

are obtained from the original simulated HRVIR image for further comparison purposes. AIso, the 

fractions of each land use class (j in the VGT pixels are obtained from the map. 

Knowing the fraction of each land use class in each VGT pixel, assuming perfect registration, and 

the reflectances of the VGT pixels, we have to select the pixels and the number of groups ofpixels 

that should furnish the best results using the least squares algorithm. For each group of pixels, 

VGT reflectances are estimated and, finally, a mean of the reflectances for aU groups. 
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Figure 2.3 Main steps of the proposed approach 
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2.2.3 Criteria used to evaluate the results 

A few criteria are used to evaluate the results. It seems appropriate to de scribe them immediately. 

Wh en mean reflectances of each land use class are known, as it is the case here, the relative error 

can be used to validate the results. The relative error ER.;}n % for band i and class jean be defined: 

If-ri 
ER - lJ lJ 100 

if r .. 
lJ 

2.2 

where ri; is the mean reflectance of land use class j for band i, obtained from the HR VIR 

reflectances and f'u is the estimated reflectance for land use class j and band i from the VGT pixels. 

If more than one group of pixels are used, the estimated reflectancef'u is the mean of an estimated 

values. 

K 
L f{k) 
k=l lJ 

f=---
il K 

2.3 

Where K is the number of groups and f'IJ is the estimated reflectance of land use class j for spectral 

band i, using group k. 

Also, in the case where more than one group are use d, the standard deviation Et,i of the estimated 

values by the various groups for land use class j and spectral band i can be given by: 

K 
L (f{k)-fi 
k=l lJ lJ 

K-1 

2.4 
ET. = 

lJ 
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Finally, in order to reduce the amount of results, it is interesting to compute mean values according 

to spectral bands or land use classes. More specifically, we can define the mean relative error by 

spectral band (ERMB" where i is the spectral band), the mean relative error by class (ERMCh 

where j is the land use class) and the mean standard deviation by band (ETMB i , where i is the 

spectral band): 

N 
LER.. 
. 1 lj 

j= 
ERMB. 

1 N 

B 

?:ERij 
ERMe. =_1 =_1 __ 

} B 

N 
LET 

ETMB =j=1 Il 

i N 

where N is the number of classes and B the number of spectral bands. 

2.2.4 Selection of pixels 

2.5 

2.6 

2.7 

As mentioned in section 2.2.2, our approach consists in selecting K groups ofpixels and estimating 

reflectances for each land use, using these groups and the spectral mixture theory. As slightly 

different results should be reached using data from these groups, taking the mean of these 

estimations should lead to even betler estimations. In any case, however, the fundamental problem 

lies in the selection of the pixels for each of the se groups. Various criteria can be used to select 

pixels: 
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a) Pixels within each group should be selected so that aIl groups of pixels lead to equally reliable 

estimations. Otherwise, one should rather consider a weighted mean according to the reliability 

of the estimations instead ofa simple arithmetic mean, when combining estimations coming from 

the various groups. 

b) Each land use class must be well represented in each group to lead to a reliable reflectance 

estimation, even if possible, for classes representing a sm aIl fraction of the image. IdeaIly, the 

selected pixels should contain approximately the same percentage of each of these classes. 

c) As surface characteristics may vary very much as a function of location in large images, it is 

advisable to define sub-images in which these characteristics will be sufficiently homogeneous to 

select pixels whose reflectances will not vary too much. One example ofthis would be melting 

snow in the southern portion of a VGT image while the snow is still dry in the northern portion, 

with temperatures under O°c. 

Let us assume, at the beginning, that only one group of pixels has to be selected and that 

registration of both information planes (VGT image and land use map from HRVIR data) is 

perfect. The idea is to select pixels so that we obtain the best possible estimations using only one 

group of pixels. Of course, we have to select at least as much pixels as there are classes. 

Before presenting the chosen selection method, we must define terms that will be used. The best 

VGT pixel J\1;
l
representing land use class j can be defined as the pixel for which (j is maximum, that 

is the pixel which "contains" the greatest number of HRVIR pixels of land use class j ( if more 

than one VGT pixel contain the same number of HRVIR pixels for the selected class, a random 

choice is made between them). The second best pixell\1\n land use class j is the VGT pixel 

containing the largest number ofHRVIR pixels ofthat class after pixel11~ In the same way, the 

rn-th best pixel M;"for class j is the VGT pixel containing the largest number ofHRVIR pixels of 
• • 1 2 m-l 

class J after pixels J\1;,J\1;, ... ,M j • 

When only one group of pixels is chosen, the pixel selection procedure consists in choosing first 

the best pixels in each land use class, Mi,M~, ... ,N(, and then n other pixels randomly among the 

pixels of the VGT image. Thus, 2n pixels are used to solve the system of equations. Completing 
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the group of n best pixels by n randomly chosen pixels leads to more stable results and to a good 

reflectance estimation even for less represented classes. 

One could discuss the selection of n randomly chosen pixels to complete the group rather than 

choosing the n second best pixels. Tests were made and the gain in accuracy was not considered 

significant. Other pixel selection methods have also been tested but lead to less accurate results. 

For instance, we have considered a method in which aIl the pixels were randomly chosen while 

making sure that aU classes were relatively weIl represented by requiring that the chosen pixels had 

a number ofHRVIR pixels higher than a predefined threshold. The selection of pixels in the group 

was modified until that condition was met. The results were not very satisfying and were very 

unstable. 

To obtain even betler results, using the chosen procedure, ten trials are done, keeping the n best 

pixels but reselecting the random pixels each time. The resulting relative errors are thus mean 

values of the ten trials. 

2.2.5 Optimization of the number of groups 

Instead of selecting only one group of pixels, one can consider simultaneously K groups ofVGT 

pixels and proceed to the estimation of the reflectances using each ofthese groups. Then, the mean 

of the estimated values in each ofthese groups will be considered as the estimated reflectance for 

each class and each spectral band. Taking the mean value helps to reduce the estimation errors 

made by anyone group. But, how many groups should be chosen to get the best results? 

Let us consider the N (number of land use classes) vectors containing the following best pixels 

(one for each class): 
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As pixels within each group should be selected so that all groups of pixels lead to equally reliable 

estimations, the elements of these vectors are randomly swapped, prior to the addition of randomly 

selected pixels, so that all best pixels are not in the same group. An example will be helpfull. Let 

us assume that we have four groups and three classes and that the vectors containing the best pixels 

are: 

(al>aZ,a3,a4),(b" bz,b3, b4),( c"cZ'C3'C4) 

An acceptable permutation wou Id be: 

This would results in the following four groups ofbest pixels: 

In order to find out the optimal number of groups, the procedure consists in selecting various 

numbers of groups, from 2 to K, and then, using each one of these k (k=2,K) groups, in proceeding 

to ten trials with both a new selection of the random pixels and a new permutation of the best 

pixels. Since the mean reflectances of each class are known it is possible to compare the estimated 

reflectances to these values and find out how many groups gives the best results. 

2.3 Deterioration of estimations with registration 

errors and possible improvement of geometric 

accuracy 

It is considered in the pre-flight specifications that the multispectral and multitemporal registration 

errors should be less than O.lkm and O.3km, if possible. The objective, as far as the absolute 

location is concerned, is O.5km. With this in mind, we have looked at the degradation of the results 

as the registration error goes from 0 to 300m. Also, as k groups of pixels should furnish more and 

more relatively identical reflectance estimations as the registration becomes more and more 
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accurate, we tried to find a way to have more accurate registration as a side product of the 

reflectance procedure, using an optimal number of pixel groups. 

2.3.1 Deterioration of estimations with registration errors 

In order to analyse the deterioration of estimations with registration errors, we assumed that there 

was a shift between the actuallocation of the VGT image and that of the land use map obtained 

from HRVIR data. More precisely, we considered shifts of -300m,-200m, -1 ~Om, Om, 1 ~Om, 200m, 

300m in the East-West direction as weIl as in the North-South direction. New VGT images 

corresponding to these shifts were generated. The estimated reflectances for each land use class and 

each spectral band, as obtained from the shifted VGT images, were compared to the estimated 

reflectances assuming perfect registration, in order to analyse how the relative error grew with 

increasing distance from the assumed true position. That type of analysis has been done only on 

the first simulated images, that of the Nicolet region. 

2.3.2 Possible improvement of geometric accuracy in an operational 

procedure 

In an operational context, the registration errors will be unknown but should be within the expected 

values. AIso, normally it will not be possible to compare the reflectances estimated from mixed 

VGT pixels to those of pure HRVIR pixels taken at the same time. One exception will be the area 

covered by both VGT and HRVIR images when both images are taken at the same time, but even 

in that case there is the possibility of a colocation error of 300m. 

There is still a possibility to find out a best match between the land use map and a VGT image for 

which the registration error is unknown. As it is not possible to modify the reflectances of the VGT 

image, in that case, we will shift the grid superimposed on the classified HRVIR image for 

estimation of the percentages of each land use class in the VGT pixels. By doing so it will be 

possible to create percentages of land use classes for various shifts, one of these shifts being that 

of the VGT image. The reflectances for each land use class and each spectral band are then 

computed in the same way as in 2.2.2, using k groups ofVGT pixels. In practice, the true shift will 

be unknown. However, it should be remembered that our method consists in taking the mean of 

the estimations made by each of the k groups. Then, it is possible to compute the standard 
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deviation of these estimations. The most probable shift should be the one for which the standard 

deviation is the smallest. Using that criterion, it should be possible to obtain a better registration 

accuracy. 

In practice, two methods were used to perform the search for the best accuracy. The first one 

consists in an exhaustive procedure similar to the one used in 2.3 .1. As mentioned above, the grid 

superimposed on the classified HRVIR image is shifted in both directions, this time with a distance 

Increment of 50 m, to find out the location where the lowest standard deviation for reflectance 

estimation is reached. It should be understood that as the fit between the position of the classified 

HRVIR image and the VGT image becomes more and more accurate the values of the reflectances 

estimated from any of the K groups of pixels should become more and more identical, such that 

the standard deviation between estimations becomes sm aller and smaller. 

The second one is an heuristic hill-climbing procedure. As in the previous procedure, both a search 

distance and distance increment have to be defined. As, the 300m colocation error does not le ad 

in practice to a square but to a circle, the estimated 300m colocation error has been taken as the 

radius of that circle and a distance Increment of 20m has been chosen. In that procedure, the 

standard deviation is first estimated at five locations: at the center of the circle (perfect registration 

assumed) and at the center of the four quadrants obtained by dividing the circle in the North-South 

and East-West directions by lines crossing each other at the center of the circle. The location 

corresponding to the lowest standard deviation is selected at the end of this first round. N ext, using 

that location as the center of a new search, estimations of the standard deviations are made at 

locations 20m from that new center along the four directions. Again, the location corresponding 

to the lowest standard deviation is selected and the process is repeated as long as it is still possible 

to reduce the standard deviation. Normally, this procedure is less time consuming than the first one, 

but one should be aware of the possibility ofreaching a local minimum, thus missing the desired 

minimum and registration accuracy. However, it is possible to verify if the minimum reached is 

local or not and solutions to find out the needed minimum are available. In the case of VGT 

images, four spectral bands will be available. The estimated misregistration between bands for a 

specifie image being not more than 100m , the locations estimated for each of the four spectral 

bands should be relatively close to each other. If this is not so, the possibility of at least one 
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location being that of a local minimum is there. The first solution consists in rerunning the program 

to find out a new solution, based on the random selection of pixels. This cou Id be a good way to 

verify the first results and make any necessary correction. A second solution consists in selecting 

new starting locations to initiate the procedure. 

2.4 Processing of simulated VGT data for the 

estimation of the percentages of snowcover 

present in each broad land use class of any VGT 

pixel in a specifie geographical area 

2.4.1 The spectral mixture approach in the case of a VGT image with 

partial snow coyer 

In the general case where the needed variable is the percentage Pij of occupation of each land use 

class in each pixel rather than the mean reflectance ofthose classes, as it was the case in section 

2.2, equation 1 is still applicable (Simpson et al., 1998). However, in that case the number N of 

possible land use classes, or endmembers, is limited by the number ofuncorrelated spectral bands 

available, that is more uncorrelerated bands than endmembers are required (Kerdiles and Grondona, 

1995; Shimabukuro et al., 1997; Novo and Shimabukuro, 1997). Kerdiles and Grondona (1995) 

explain that it is possible to incorporate various dates to obtain more bands than endmembers. 

However, they mention that the percentages Pu must be constant over the selected dates and that 

the endmember reflectances must be known. 

Let us now consider a VGT image with a partial snow coyer. Because ofthe dimensions of a VGT 

pixel, more than one or two land use classes can be present on it at the same time. Is it possible to 

estimate the percentages of snow coyer over each of the land use classes present on a specific 

pixel? Theoretically, the answer is yes, provided that the above conditions are respected. On the 
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other hand, if problems arise to find out a solution to the above question, is it possible to find out 

at least the total percentage of snow coyer on that pixel? 

A possible solution to the first question could come from one of our objectives which is to use the 

resulting snowcover map as input to hydrological models, and more specifically to our distributed 

model,HYDROTEL. For snow accumulation and melt, the actualland use classes present on a 

watershed are integrated into only three broad classes: coniferous forests, deciduous forest and 

open areas. A fourth class cou Id be added to the first three, that of water bodies. On the other hand, 

only four spectral bands are available on a VGT image and the VGTl and VGT2 bands are 

relatively highly correlated. As the number of sufficiently uncorrelated spectral bands limits the 

number of land use classes to three, an approach making use of more than one spring image should 

normally be developed. 

We first need to know the percentages of the above classes under snow free conditions and the 

corresponding spectral signatures under the same conditions. We further need to know the spectral 

signatures of those classes under the snow coyer conditions possible during the melt period. If 

HRVIR images are used, the percentages of these classes under snow free conditions can be known 

from either images taken in fall after the leaves are fallen in deciduous forests and before there is 

any snow on the ground in the region of interest or spring images taken after complete snowmelt. 

It cou Id also be possible to use HRVIR images with partial snow coyer. Then, those percentages 

will be obtained by adding together the percentages of the same class with and without snow for 

the specific date on which the image was taken. The percentages could also come from combined 

VGT and HRVIR images according to the procedure that will be outlined for operational purposes, 

in chapter 7 of this report. 

As far as spectral signatures are concerned, HRVIR or VGT images taken in fall or in spring to 

determine the percentages occupied by each of the needed land use classes cou Id also be used to 

estimate spectral signatures for snow free conditions. HRVIR images allowing estimation of 

spectral signatures of snow covered areas at the beginning and during the melt period but also of 

fresh new snow during that period, should also be taken, if possible, at appropriate dates. It should 

be mentioned that the spectral signatures of various types of snow covered open areas would likely 
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be relatively similar, due to the reflectance of snow. That will not be the case for the same open 

areas under snow free conditions, as bare fields and pastures, for instance, will not have the same 

signatures. 

Then, in the case where the percentages of snow covered areas are needed for each of the four 

selected land use classes and the reflectances are known, the spectral mixture equation can be 

written: 

N 

R. = R. + L p Cr - r) + E. 
1 If J=l Ij s } s } f 1 

where: 

and: 

Ri = reflectance ofVGT pixel i with a possible snow cover from 0 to 100%; 

Rif = reflectance ofVGT pixel i under snow free faIl conditions; 

rjs = reflectance of land use class j under snow cover conditions; 

rjf = reflectance of land use class j under snow free faIl conditions; 

Pijs = percentage of pixel i occupied by land use class j, with snow cover conditions; 

Pijf = percentage of pixel i occupied by land use class j, under snow free conditions; 

2.8 

2.9 

lOi = error term for the spectral band taking into account measurement errors and variability of r; 

N = number of land use classes. 
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ln practice, problems willlikely be encountered as both reflectances of land use classes and the 

percentages of snow covered area over each of the total area occupied by each land use class 

change rapidly during the snowmelt period. It is unlikely that HRVIR images could be obtained 

every few days, particularly if cloud cover is taken into account. So, they cannot be used alone to 

monitor snowmelt. In the case of VGT images, it should be possible to monitor the variation of 

reflectance of the land use classes while the snow cover is still complete, as the percentage of each 

land use will remain constant for that period. VGT images could also permit monitoring of the 

reflectance ofthe land use classes during the melt period, as long as only a few classes are present 

at the same time on a specific pixel and the percentages of snow cover on each land use class is 

known. As far as finding the percentages of snow cover for each land use class, it is likely that at 

least a few images will be necessary. A "co Id" period with no or very little snowmelt, during which 

the percentage of snow cover does not change very much over each of the land use classes, could 

allow such estimation. The variation of reflectance during that short period could then come from 

a model. 

Another solution can, however, be put forward as a single spring image could be used to find out 

the total percentage of snow cover on each pixel with a relatively good accuracy. Once that 

percentage is done, it could be possible to distribute that percentage among the various land use 

classes, knowing that snow will disappear first in open areas, then in deciduous forested areas and 

finaIly in coniferous forests. As the resulting partial snow cover map will, at least in a few 

applications, be used to update the snow cover in a hydrological model for snowmelt forecasting, 

the informations furnished by that model could, in turn, help to distribute the total snow covered 

area on each pixel among the land use classes present on that pixel. 

Two indices are suggested to find out the total snow covered areas on each pixel. Both are based 

on the effect of the snow reflectance on the ground cover as compared to snow free reflectances 

of the various land uses. Let us first remember that equation 2.9 gives the relation between the 

endmember reflectances and the VGT pixel reflectance for snow free conditions, either in faIl of 

in spring. A similar equation can be written for complete snow cover conditions for the same land 

use classes. 
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Ris = reflectance of VGT pixel i un der snow cover conditions; 

rjs = reflectance of land use class j under snow cover conditions; 

Pijs = percentage of pixel i occupied by landuse class j, with snow cover conditions; 

N = number of land use classes. 

2.10 

FinaIly, the reflectance of pixel i under partial snow cover conditions is given by equation 2.8. It 

is then possible to suggest a first relation: 

F 2.11 
R - R 

Is 'f 

It can be seen rapidly that, for a given pixel, F will go from a value of 1, when the snow cover is 

complete and the reflectances of the land use classes are identical to those used at the denominator, 

to a value of 0, under snow free conditions identical to those used for the faIl or spring reference 

image. The value ofF between those two extremes will be a function of the amount of snow cover 

on each of the land use classes present on the pixel, as it can be understood from equation 2.8. 

A relation similar to the NDVI, which we will calI the normalized difference snow index, NDSI, 

can also be derived: 

R - R. 
NDSI 

1 'f 
2.12 

R. + R 
1 if 



Chapter 2, Approach used during the pre-Iaunch phase of investigation 23 

The effective relation between those two indices and the total snow cover on each pixel will be 

shown in chapter 6. 

2.4.2 Description of the chosen approach 

In the case of partial snow cover when the needed variable is the fraction of snow cover on each 

individual pixel or, if possible, the fraction ofsnow cover for each of the land use classes present 

on the pixel, the chosen approach is simiJar to that shown in figure 2.3. In practice, we still have 

to find out first the true position of the VGT image as accurately as possible. For this purpose, we 

use the same procedure as described before, but with a modification. Remembering that we have 

a VGT image with a partial snow cover, we use 2 x K groups of pixels, K groups on the 

completely snow covered portion of the image and K groups on the completely snow free portion 

of the image. These portions will normally be determined by visual inspection of the image, 

knowing the effects of snow cover on reflectances. In practice, one can also use histograms for 

each land use classes and/or informations coming from a simultaneous HRVIR image. Completely 

snow covered or snow free pixels should be chosen in order to be able to apply the procedure 

shown in figure 2.3, which rely on the estimation ofreflectances ofland use classes, knowing the 

percentages of these classes on each of the chosen pixels. 

Once the position of the VGT image will be known as accurately as possible, it will be possible to 

proceed to the estimation of percentages of snow cover on a pixel by pixel basis. 





3 SIMULATIONS TECHNIQUES AND THEIR 

IMPACT ON DATA QUALITY, RELATIVELY 

TO EXPECTED VGT DATA QUALITY 

As mentioned previously, TM data have been used to simulate both HRVIR and VGT data, as it 

was considered a good compromise to simulate simultaneous data acquisition from those sensors, 

when in orbit. The respective spectral bands are presented in Figure 3.1 and Table 3.1 (together' 

with a few more informations on the sensors).The pre-flight specifications are that "the spectral 

bands of the two instruments should be as similar as possible, the relative difference between 

measurements on the same object being not more than 3%". The spectral bands are thus assumed 

identical in Fig. 3.1, in agreement with the more recent informations on the WWWVGT site. 

Table 3.1 TM, HRVIR and VGT characteristics 

Landsat-TM HRVIR VGT 

spectral bands 0.45- 0.52 -- 0.43-0.47 

(um) 0.52- 0.60 0.50-0.59 --

0.63- 0.69 0.61-0.68 0.61-0.68 

0.76- 0.90 0.79-0.89 0.79-0.89 

l.55- l.75 l.58-l.75 l.58-l.75 

10.4-12.50 

2.10- 2.35 0.61-0.69 (p) 

Spatial resolution 30 m TMI-TM5 et 20 m XS 2,3,4 1150m 

TM7 10 mXS 1 

120m TM6 

Local hours 9 h 30 10 h 30 10 h 30 

Swath width 185 km 60 Km 2250 km 

117Km 

Temporal 18 days 26 days 1 or 2 1 day(s) 

resolution 
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The following comments will be made in relation to the objectives of our project. As seen in Figure 

3.1, the TMI band is shifted toward longer wavelengths in comparison with the VGTl band, as is 

the TM2 band compared to the HRVIRI band. The other three TM bands are more similar to the 

corresponding HRVIR and VGT bands. The TM5 band, however, is larger than the HRVIR4 and 

VGT4 bands. A comparison, made by Guyot and Gu (1994),ofSPOT-HRV and LANDSAT-TM 

data taken on the same day,indicates that the TM2 band leads to reflectances higher than those 

estimated for XS 1 (HRVIR1) data for aIl targets in the image, the largest difference being obtained 

for bare soils at around 3%, most differences being lower than 1 %. In the red, the shift of the TM3 

band leads to reflectances of water surfaces being lower than those of the corresponding XS2 

(HRVIR2) band, whereas the reflectances are practically the same for bare soils and other surfaces. 

Finally, the TM4 and XS3 (HRVIR3) bands give relatively similar results. They add that the 

dynamic range of the TM sensor in the green is lowerthan that of SPOT, which means that it might 

be more difficult to discriminate sorne surface features with the TM sensor than with the SPOT 

sensor in that band. The dynamic range is better in the red but still a little lower than that of SPOT. 

ln the infrared, the TM sensor is a little better than the SPOT sensor. 

Spectral reflectances of vegetation, soil and snow that we have seen in the TM5, VGT4 range seem 

to lead to a conclusion that the use of the TM5 band to simulate the VGT4 and HRVIR4 data 

should not affect very much the discrimination of such surface characteristics, as weIl as 

reflectance estimations. 

AIso, since we are simulating both VGT and HRVIR data from TM images, we did not encountered 

significant directional effects. However, we expect to find out such effects on real VGT images. 

ln short, we do not believe that the discrepancies between the TM spectral bands and those of the 

HRVIR and VGT sensors will be a problem for the methodology that we are developing. AIso, 

normally, the real data should give even better results. 
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Figure 3.1 Relative spectral responses of TM, HRVIR and VGT bands 





4 ESTIMATION OF LAND USE 

REFLECTANCES FOR THE NICOLET -

TROIS-RIVIÈRES REGION 

4.1 Visual and statistical evaluation of the simulated 

HRVIR and VGT images 

The experimental site is located in the Nicolet - Trois-Rivières region, half-way between Quebec 

City and Montreal, on both sides of the St. Lawrence river (Fig. 4.1) and includes the types and 

spatial distribution of land use classes found in Southem Quebec. The TM image has been taken 

on the 9th of May 1993 at 9:30 a.m.(local time) and covers a 75km x 50km relatively flat 

agricultural region. Soil types are mainly sand and clay. Peat bogs can also be found, together with 

wet lands. On the north shore, the region is crossed by rivers, in particular the Petite rivière du 

Loup, the Yamachiche and the St. Maurice river, the largest. On the south shore, the main rivers 

are the St. François, the Nicolet and the Bécancour rivers. 

The simulated HRVIR image is shown in Fig. 4.2, while the simulated VGT image is presented 

in Fig. 4.3. Color composites ofbands 2, 3 and 4 are presented for both HRVIR and VGT data on 

Fig. 4.3. Ifwe have a look at the St. Lawrence river tributaries on the north shore as well as on the 

south shore, we can easily see that for the HRVIR image, the "Petite rivière du Loup, the 

Yamachiche and the St.Maurice rivers can be identified on the north shore, while the St.François, 

the Nicolet and the Bécancour rivers can be identified on the south shore. Of course, it is much 

easier to identify the rivers on the HRVIR4 band than on the shorter wavelength bands, as the 

contrast between water and other surfaces is higher in this band. The rivers can also be seen on the 

HRVIR color composite. 

The VGT image has much larger pixels but still, on bands VGT3 and VGT4, it is possible to 

identify the St.Maurice River on the north shore and the St.François on the south shore. The same 

is true on the color composite. 
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Figure 4.1 
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Original TM image (TM5, TM4, TM3 - May 9, 1993) for the Nicolet - Trois­

Rivières region 
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Looking now at the St.Lawrence river, we can see that its width seems to increase from VGTI to 

VGT4, as a function of the contrast between water and other surfaces. As a matter offacts, its width 

on VGT4 corresponds more to that which can be estimated on the HRVIR data, no matter what 

band. AIso, in the VGTl and VGT2 bands, it is possible to distinguish various types ofwater, 

particularly in Lake St.Pierre. More specifically, along the shore of the lake, the waters of the 

St.François river, as well as those of two more rivers flowing into the lake in the extreme south­

west corner of the image, can be cleary distinguished. 

Urban and industrial areas can also be identified, mostly due to their higher reflectance properties. 

It is also possible to identify sandy and clay soils. The sandy soils have reflectances higher than 

the clay soils and are probably drier. 

As it can be seen on the HRVIR image, a few clouds can be noticed over Lake St.Pierre. 

Finally, as shown in Table 4.1, the mean reflectance and standard deviation values for the original 

TM image, corrected for atmospheric effects, and for the simulated VGT image, behave as assumed 

in each spectral band. The mean values are practically identical, while the standard deviations for 

the simulated data are smaller than those of the original data. As mentioned previously, this is a 

consequence of the simulation process. We should find out less extreme values in the simulated 

data than in the original. However, ev en with a much better simulation process, the extreme values 

would still be sm aller than those from the high resolution sensor, because they would be the result 

of sorne sort of averaging process. 



HRVIR1 HRVIR2 
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Figure 4.2 Simulated VGT bands - May 9, 1993 
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Figure 4.3 Simulated VGT bands - May 9, 1993 



a) HRVIR bands (HRVIR1, HRVIR2, HRVIR3) 

b) VGT bands (VGT3, VGT2, VGTl) 

Figure 4.4: Simulated faIse color composites ofHRVIR and VGT bands - May 9, 1993 
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Table 4.1 Comparison of mean reflectance values of TM and VGT bands, with standard 

deviation 

LandsatTM VGT 

TMl VGTl 
Mean 14.44 14.12 
Standard deviation 07.43 06.23 

TM3 VGT2 
Mean 29.30 29.31 
Standard deviation 13.02 09.66 

TM4 VGT3 
Mean 69.29 69.07 
Standard deviation 27.48 23.10 

TM5 VGT4 
Mean 70.61 70.51 
Standard deviation 32.27 26.72 

4.2 Classification results 

In order to define the percentages of each land use class present in each VGT pixel, the HRVIR 

image has been classified according to the Maximum Likelyhood algorithm, using training sites 

and the simulated HRVIR bands (figure 4.5). As it was covered by clouds or cloud shadows, 1.5% 

of the image was masked for the classification. A few statistical results on the classification are 

presented in Table 4.2. Ten land use classes have been selected, of which two are not weIl 

represented: wet lands (0.9% of the image) and peat bogs with alders (0.4%). AlI other classes 

occupyat least 2.5% of the image, the highest percentage being for pastures, alfalfa and hay with 

21.5%. The statistics for the "cloud" class should be taken into account as that class is made out 

of cloud, cloud shadows and a few surface features attenuated by thin clouds. Both the mean 

reflectance and standard deviation values seem to be generally correct. 

The coefficient of variation (standard deviation/mean) is greater than 0.5 for "water". This can be 

explained. As mentioned above, various types of water are present in Lake St. Pierre, but no 

distinction was made among them. 
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Table 4.2 Mean reflectance and standard deviation values of simulated HRVIR data for each 

land use class 

%of Reflectance Reflectance Reflectance Reflectance 
Land use total HRVIRI HRVIR2 HRVIR3 HRVIR4 

classes land use mean std dev. mean std dev. mean std dev. mean std dev. 

Water 13.2 2.8 1.4 4.1 2.1 3.8 2.3 2.4 1.4 

Dry bare soifs 12.0 6.3 1.4 13.0 2.0 21.4 2.3 26.9 3.1 

Wet bare soifs 6.7 4.9 l.l 9.8 l.5 15.7 l.8 18.7 2.3 

Pastures, alfalfa and 
hay 21.5 4.1 0.9 8.7 l.5 25.7 2.9 25.4 2.5 

Forested areas 16.6 2.0 0.7 4.6 l.l 18.5 l.9 14.1 2.9 

Wet lands 0.9 3.3 0.9 5.9 l.2 12.3 2.4 10.4 l.8 

Peat bogs with spruces 2.5 1.8 0.4 4.7 0.4 19.4 l.7 14.7 0.9 

Peat bogs with alders 0.4 2.2 0.5 5.0 0.6 11.4 1.5 15.3 3.2 

Herbaceous fallow lands 
and bushes 15.6 2.6 0.7 6.3 l.2 17.9 1.9 21.2 2.6 

Urban areas and roads 10.6 4.6 1.7 9.1 2.3 18.1 3.2 19.6 3.1 

Clouds 1.5 8.6 4.0 12.4 4.6 16.7 5.8 16.5 7.0 

4.3 Estimation of class reflectances from one group of 

pixels 

Using the pixel selection procedure described previously in 2.2.4, ten trials were made with a new 

selection of random pixels each time, assuming perfect registration between the high resolution 

land use classification and the VGT image. Thus, the relative errors presented in Table 4.3 are the 

mean values of these ten trials. 
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Figure 4.5 
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Table 4.3 Relative error for reflectance estimation using one group only, mean value for ten 

trials using 10 best pixels, plus 10 random pixels 

Mean by 
Land use classes VGTI VGT2 VGT3 VGT4 class 

Water 26.9 13.2 6.4 7.7 13.5 

Dry bare soils 16.9 12.2 1.1 6.7 9.2 

Wet bare soils 10.8 3.2 2.2 5.7 5.5 

Pastures, alfalfa and 
hay 7.2 3.2 7.0 1.2 4.7 

Forested areas 41.3 26.2 1.6 19.4 22.1 

Wet lands 49.6 32.1 39.3 42.7 40.9 

Peat bogs with spruces 16.0 1.1 2.7 1.6 5.3 

Peat bogs with alders 45.3 27.8 28.6 8.7 27.6 

Herbaceous fallow lands 
and bushes 20.1 9.7 7.5 2.4 9.9 

Urban areas and roads 39.5 19.4 7.1 4.4 17.6 

Mean by spectral 
bands 27.4 14.8 10.4 10.0 15.6 

Let us look first at the relative errors for each band. We can readily notice that the errors are larger 

for the VGTl band and decrease with increasing wavelength. This can be explained by the 

definition of the relative error and the values of the reflectances in the various bands. Reflectances 

in the simulated VGTl band are the lowest and increase from that band to the VGT3 and VGT4 

bands. A same absolute error will thus correspond to a larger relative error for the VGTl band than 

for the VGT3 or VGT4 bands. In practice, the estimated values are normally within one standard 

deviation from the mean HRVIR reflectances for each class. 

As expected, the relative errors by class vary as a function of the area occupied by that class on the 

image. The errors are larger for classes occupying only a sm aIl percentage of the image, for 

instance the classes wet lands and peat bogs with alders. For these classes, the estimations are 

outside the standard deviations of the high resolution data. Otherwise, they are normally within one 

standard deviation, which is acceptable. 
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4.4 Optimal number of groups for the estimation of 

class reflectances 

When more than one group of pixels are chosen, more than one best pixels have to be identified 

for each class, as explained in 2.2.5. A maximum often groups was considered. Table 4.4 presents 

the percentages of land use classes present in each of those pixels. As seen in the table, with the 

exception of the two less represented classes on the image, the "wet land" and "peat bogs with 

alders", the percentages of occupation are an relatively high, ev en for the IOth best pixel. 

Table 4.4 Percentages of the land use classes in the ten best VGT pixels for each class 

Land use 

Max Max Max Max Max Max Max Max Max Max 
classes 1 2 3 4 5 6 7 8 9 10 

Water 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Dry bare soifs 83% 80% 79% 79% 76% 76% 74% 72% 72% 71% 

Wet bare soils 94% 80% 76% 74% 73% 70% 69% 66% 62% 61% 

Pastures, alfalfa 
and hay 89% 89% 87% 86% 84% 84% 83% 82% 81% 80% 

Forested areas 92% 91% 89% 89% 89% 89% 88% 88% 87% 84% 

Wet lands 36% 34% 32% 30% 30% 29% 29% 28% 26% 26% 

Peat bogs with 
spruces 95% 85% 82% 79% 66% 55% 52% 48% 48% 47% 

Peat bogs with 
alders 44% 40% 36% 33% 28% 17% 14% 12% 12% 12% 

Herbaceous fallow 
lands and bushes 92% 92% 89% 88% 86% 83% 83% 83% 81% 81% 

Urban areas and 
roads 78% 75% 74% 73% 73% 71% 68% 68% 67% 66% 

In order to find out the optimal number of groups of pixels, ten trials have also been made, each 

time with a new selection ofrandom pixels and a new permutation of the best pixels in the vectors 

defined by the number of groups. The mean relative errors resulting from the ten trials, for each 

of the bands, are presented in fig. 4.6. 
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Figure 4.6 

Estimation of surface variables at the sub-pixellevel for 
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Relative error (%) for each VGT band, as a function of the number of pixel 

groups. Mean on the land use classes and ten trials. 
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It can be seen that the relative errors diminish rapidly at the beginning as the number of groups is 

increased, reach a minimum and increase again if the number of groups is further increased. The 

optimal number of groups is found to be 4 for the VGTl and VGT2 bands and 3 for the VGT3 and 

VGT4 bands. As the improvement is greater for the first two bands, the mean relative error 

considering the four bands, leads to 4 as the optimal number of groups, if aIl bands are processed 

atthe same time. Whereas the mean relative errors by band were 27.4%,14.8%, 10.4% and 10.0% 

for bands VGTl to VGT4, using only one group, they fell to 17.5%,8.9%,5.8% and 5.7% using 

four groups, a mean decrease of 39%. 

One could ask why the mean relative error does not continue to diminish as the number of groups 

is increased? In order to answer, it is necessary to come back on the best pixel selection procedure. 

As the number of groups is increased, the supplementary best pixels that have to be identified are 

bound to contain lower percentages of the specified land use class than the previously identified 

pixels, as shown in Table 4.4. As pixels within each group should be selected so that aIl groups of 

pixels lead to equally reliable estimations, the elements ofthese vectors are randomly swapped,as 

explained in 2.2.5. So, permutation of the best pixels will have as a consequence, as the number 

of groups increases, that pixels containing a lower percentage of a specified class will be included. 

This willlead to an overalliower quality of the groups as their number increases. 

For a sm aIl number of groups, as the identified best pixels should still represent relatively high 

percentages of the specified land use class (they do in the present case), taking the mean of the 

values will more than compensate the use ofnth best pixels (n is 2,3 and 4 in our case). However, 

as the number of groups increases that will not be the case forever. Taking the mean value will not 

compensate for the overalliower quality of the groups. So, an optimal number of groups can be 

found. 
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4.5 Deterioration of reflectance estimations with 

decreased registration accuracy 

A total of 49 simulated V GT images, corresponding to East -West and N orth-South shifts of -3 ~Om, 

-200m, -1 ~Om, Om, 1 ~Om, 200m and 300m, were used to estimate the relative error averaged over 

the classes to analyse the deterioration of reflectance estimation with decreased registration 

accuracy for each spectral band. Again, four groups of pixels were selected and ten trials were 

made. The mean of the estimated values by each of these groups was then computed. 

As seen in fig. 4.7, the relative error estimated for a perfect registration (no shift) is generally 

increased as the shift is increased for aIl bands, the greatest increase being a little less than 7% for 

the VGT2 band. Except on the VGTI band, the greatest gradient is in the North-West - South-East 

direction, that is in a direction perpendicular to the St.Lawrence River. This is not surprising since 

the difference in reflectances between water and the other surfaces is greater for the three longer 

wavelength bands than for the VGTl band. AIso, the general pattern of land use classes is 

characterized by NW -SE gradients greater than SW -NE ones. Then, for these bands, errors in the 

estimated reflectances will be more affected by misregistration along this direction than along the 

other one. 

FinaIly, it can be seen that the relative error does not vary very much for shifts between -1 ~Om and 

100m and ev en between -150m to 150m. 

It is also possible to analyse the deterioration of the error for each of the land use classes. Table 

4.5 shows that the increase is generally less than 3 %, except for the less represented classes on the 

image which have maximum errors much greater, as expected. The deterioration of the relative 

error for the "wet lands" class is presented in fig. 4.8, as an example. Again, a strong NW-SE 

gradient can be noticed. 
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Table 4.5 Maximum relative error for a shift up to 300 m and relative error corresponding to 

perfect registration 

Maximal relative 
Land use error Relative error 

for shift up to 300 
classes m no shift Difference 

Water 11.1% 8.1% 3.0% 

Dry bare soifs 9.6% 9.6% 0.0% 

Wet bare soifs 8.2% 4.8% 3.4% 

Pastures, alfalfa and hay 4.4% 4.4% 0.0% 

F orested areas 21.1% 21.1% 0.0% 

Wet lands 36.5% 6.5% 30.1% 

Peat bogs with spruces 5.6% 5.2% 0.5% 

Peat bogs with alders 22.1% 12.6% 9.5% 

Herbaceous fallow lands 
and bushes Il.4% 9.7% 1.7% 

Urban areas and roads 15.7% 15.5% 0.2% 

In conclusion, it can be considered that if it is possible to locate the image within let us say 150m 

from the expected location, the error resulting from misregistration would not change very much 

our estimations. 
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for the sm aIl land use class "wet bands". Mean on spectral bands and ten trials. 
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4.6 Search of optimal location 

ln an operational context, as explained in section 2.3.2, the exact position of the image is not 

known, but it is possible to recompute the percentage of occupation of each land use class on each 

VGT pixel, assuming various shifts. As four groups are used, the location for which the estimated 

reflectances by each of these four groups are the more similar, should be the seeked location. In 

practice, we will look for the lowest standard deviation estimated from the values furnished by each 

of the groups. 

A perfect registration has been assumed for the VGT image. Ideally, the lowest standard deviation 

should then be at (0,0). Let us look at the results on fig. 4.9, for each of the spectral bands. 

With the exception of the VGT2 band, a closed polygon corresponding to the lowest standard 

deviation can be found. For the VGT2 band, the polygon is closed by the limit of the graph. So, 

in each case, it is possible to estimate, at least approximately, the location of the centers ofthese 

polygons. They are, from VGTl to VGT4, (-30,-25),(-250,-75), (-50,90), (-10,150). We can go 

one step further and consider that taking the mean of these four values will give a location that 

could be a good approximation of the true location of the image. The result is (-116,6). If the VGT2 

value is rejected, then the result is (-3,72). 

ln conclusion, it seems possible to locate the individual bands within 100 to 150m from the true 

location. The accuracy on the mean position of the four bands could be even better. These results 

are encouraging, but, of course, we will have to check on other images to see if these accuracies 

can be reproduced. However, as the image was representative of the land use patterns and types 

that can be fOUl1d in Southern Quebec, we are confident that its results should be as good with other 

images. The confirmation ofthese resuIts will effectively be given in the analysis ofthe simulated 

VGT image over Southern Québec, between the St-François and the Chaudière rivers, to be 

presented in chapter 5. 
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5 ESTIMATION OF LAND USE 

REFLECTANCES FOR SOUTHERN QUEBEC, 

BETWEEN THE ST-FRANÇOIS AND THE 

CHAUDIÈRE RIVERS 

5.1 Visual evaluation of the simulated HRVIR and 

VGT images 
The original image is a 185km by 185km Landsat TM image of Southern Québec, which has been 

taken on the 28th of August 1995 at 9:30 a.m. local time. Whereas the image used in chapter 4 was 

a spring image, this image is a summer one. Prior to any other processing, a 5980 pixels x 5980 

lines sub-image the original TM image has been created diminishing the dimensions of the image 

to 149.5km x 149.5 km. As seen in figure 5.l, the North-West portion of the original image has 

been kept. The experimental site goes from the Trois-Rivières/Nicolet area in the North-West 

portion of the image to just South of Québec city in the North-East part. Along the southern limit, 

we can see, from West to East, the city of Sherbrooke, Mount Megantic and Lake Megantic. Apart 

from Lake Megantic, we can also notice, to the NNW of this lake, two more lakes, Lake 

St. François and Lake Aylmer (to the left of the previous one). The St.François river is clearly seen 

tlowing to the SW from Lake Aylmerto the city of Sherbrooke and then to the NW towards the St. 

Lawrence river. Also, in the Eastern part of the image, the Chaudière river tlows in a Northerly 

direction from Lake Megantic to the St.Lawrence river. The region is characterized by various 

topographic features from the St. Lawrence Lowlands in the North-West to the Appalachian range 

in the South-East. F orested as well as agricultural and humid areas, rivers and open-sky mines can 

also be found. Soils vary within the region, going from marine deposits in the St. Lawrence plain 

to peat, till and rocky outcrops. 

For that summer TM image, we had only the TM3,TM4 and TM5 bands. This means that the 

HRVIRI and VGTl bands were not simulated. Considering our objectives, this is not crucial. 

Simulation and further processing of the simulated bands have lead to very good results, as will be 

seen in this chapter. 
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Figure 5.1: 

Estimation of surface variables at the sub-pixellevel for 
use as input to climate and hydrological models 

Original TM image (TM5, TM4, TM3 - August 28, 1995) for Southem Quebec. 
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As in the case of the previous image, before simulating the HRVIR and VGT images, atmospheric 

corrections have been applied to the original image, whose acquisition had been done under ideal 

cloudless meteorological conditions. As the simulation procedure is the same as that used to 

simulate the HRVIR and VGT images presented in chapter 4, we will not repeat it here. 

The simulated HRVIR2, HRVIR3 and HRVIR4 images are shown in figure 5.2. The Chaudière 

river has been added to the rivers already seen on the Nicolet image of chapter 4. So, from West 

to East, we can identify, on the South shore of the St. Lawrence river, the St. Francois, Nicolet (two 

branches), Bécancour and Chaudière rivers. Of course, these can be seen much easier on the 

HRVIR4 band. Agricultural areas can also be distinguised from forested areas by their field 

patterns and higher reflectances, particularly in the HRVIR2 and HRVIR4 bands. 

A total of six VGT images have been simulated, in order to verify if the results obtained with the 

previous image could be obtained with this image, with due care for the possible pre-Iaunch 

estimated shi ft of the image relative to the assumed position. The first one corresponds to perfect 

fit with the HRVIR image. The next four correspond to shifts of (-250m, 1 ~Om), (250m, -150m), 

(-50m, -275m), (200m, 200m) for aIl spectral bands relative to the assumed HRVIR position. 

FinaIly, a sixth one corresponds to shifts between spectral bands as weIl as between those and the 

assumed exact HRVIR position: (200m, - 200m) for VGT2, (175m,-225m) for VGT3 and (225m, 

-150m) for VGT4. Those images have been obtained in practice by shifting the mean 46 x46 filter 

on the original TM image. The VGT images corresponding to the three spectral bands and position 

(0,0) are presented in figure 5.3. Not much more than for the previous spring VGT images can be 

said about the features se en on the images. Again, rivers and lakes can be distinguished on the 

VGT3 and VGT4 images, whereas forested areas are more identified on the VGT2 image than on 

the other two. 

FinaIly, color composites ofbands 2,3 and 4 for both HRVIR and VGT images are shown in figure 

5.4. As mentioned for the single- band images, agricultural areas can be distinguished from forested 

areas. The main lakes and rivers can also be identified on the VGT color composite. 
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Figure 5.4: 

Estimation of surface variables at the sub-pixel level for 
use as input to c1imate and hydrological models 

a) HRVIR bands (HRVIR4, HRVIR3, HRVIR2) 

b) VGT bands (VaT4, VGT3, VGT2) 

Simulated false color composites ofHRVIR and VaT bands - August 28, 1995 
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Again, the Maximum Likelyhood algorithm has been used to prepare a classification of the 

simulated HRVIR image in order to obtain the percentage of each land use class present in each 

VGT pixel (figure 5.5). As seen in table 5.1a, a total often land use classes have been identified 

. on the image. The percentages of occupation range from 3.9 % for corn to 23.5 % for mixed forest 

with deciduous species prevailing. It can be seen that the standard deviations for water in bands 3 

and 4 are relatively high compared to the mean reflectance, but this is not surprising considering 

the low reflectances of water in these bands. Otherwise, the standard deviations are relatively 

normal, knowing the possible variability of reflectance from pixel to pixel for a specific land use 

class. 

Due to limitations in the MA TLAB program enabling to find out the most accurate location of the 

VGT images together with the estimations ofreflectances, a 3000 pixels by 2000 lines sub-image 

of the image appearing on figure 5.5 has been used for that purpose. The statistics of the sub-image 

have been computed and appear in table 5.1b. In that case, the percentages of occupation range 

from 1.2 for corn to 32.4 for mixed fore st with deciduous species prevailing. Small variations of 

the reflectance values can be noticed between tables 5. la and 5.1b, but weIl below the standard 

deviations. 

5.3 Optimal number of groups for the estimation of 

class reflectances 

It was shown in chapter 4 than an optimal number of groups of pixels could be found to proceed 

to the estimation of class reflectances. That number was four. It was interesting to verify how many 

groups would lead to the best estimation in the case of a new image. Again, the procedure for pixel 

selection and determination of the optimal number of groups is that explained in sections 2.2.4 and 

2.2.5. 
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Table 5.1 Mean reflectance, standard deviation and percentage of occupation for each of the 
identified land use classes. (a) complete image (b) sub-image used for reflectance and 
registration accuracy estimation (rectangle in figure 5.5) 

A) 
Land use classes % of land Reflectance (%) 

use 
occupation HRVIR2 HRVIR3 HRVIR4 

Mean Standard Mean Standard Mean Standart 
(%) Deviation (%) Deviation (%) Deviation 

(%) (%) (%) 
Out of the image 1,1 -- -- -- -- -- --

Urban areas and roads 5,8 6,9 3,2 27,1 6,3 17,6 4,1 
Pastures and alfalfa 14,1 4,4 0,9 44,6 5,7 21,8 2,1 

Cereals 5,5 5,4 0,9 37,0 2,5 24,5 7,1 
Corn 1,2 4,8 0,4 41,1 2,5 18,9 1,1 
Water 2,9 1,8 1,1 1,7 2,6 0,7 1,5 

Wet lands 3,0 5,4 1,0 28,6 3,8 17,9 2,2 
Bare soils 5,0 9,2 3,5 31,1 5,2 26,8 3,5 

Herbacious fallow 16,2 3,3 0,9 32,7 3,3 17,7 2,5 
landsand bushes 

Mixed forest (mostly 32,4 2,2 0,4 35,4 5,1 15,0 2,5 
deciduous) 

Coniferous forest 13,4 2,0 0,5 24,3 3,1 9,9 1,6 
B) 

Land use classes % of land Reflectance (%) 
use 

occupation HRVIR2 HRVIR3 HRVIR4 

Mean Standard Mean Standard Mean Standart 
(%) Deviation (%) Deviation (%) Deviation 

(%) (%) (%) 
Out of the image ° ° ° ° ° ° ° 

Urban areas and roads 4,6 7,4 3,1 27,2 6,5 18,3 4,3 

Pastures and alfalfa 14,56 4,6 0,9 45,0 5,8 21,9 2,0 

Cereals 8,8 5,5 0,9 36,9 2,5 24,8 1,9 

Corn 3,9 4,8 0,4 42,1 2,4 19,2 1,0 

Water 3,9 2,7 0,7 2,7 3,4 0,7 1,5 

Wet lands 6,0 5,4 1,0 28,7 3,7 18,2 2,1 

Bare soils 8,6 9,6 3,2 31,2 5,0 27,1 3,4 

Herbacious fallow 15,9 3,3 0,9 32,7 3,1 17,5 2,2 
landsand bushes 

Mixed forest (mostly 23,5 2,3 0,4 34,6 4,1 14,9 2,0 
deciduous) 

Coniferous forest 10,4 2,3 0,4 24,6 2,8 10,4 1,5 
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Figure 5.5: Classified HRVIR image - August 28, 1995 
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The variation of the relative error (%) as the number of groups is increased is presented in figure 

5.6. It can be seen that, in agreement with the results presented in figure 4.5, the relative error is 

lowest when the number of groups is increased to four (4) in bands 2 and 4. This not the ease in 

band three (3), but there is not much variation between 3 and 10 groups, in that case. If the land 

use class "water" is excluded from the computation, the mean relative error considering aIl three 

bands together is 4, . It can also be noticed that a larger number of groups would not deteriorate the 

error very much. More precise values of the relative errors (%) for one and four groups are also 

presented in table 5.2. 

As there were no reasons to change the number of groups for the estimations of the reflectances of 

the land use classes from the VGT images, we kept the optimal number of groups to four. 

5.4 Determination of the actual position of a VGT 

image relative to the expected position 

Let us recall here that in an operational context, the exact position of a specifie VGT image is not 

known, but that it is possible to recompute the percentages of occupation of each land use class on 

each VGT pixel, assuming various shifts. Again, as four groups of pixels are used, the position for 

which the estimated reflectances by each of these four groups are the more similar should be the 

seeked position. In practice, we will look for the lowest standard deviation estimated from the 

values furnished by each of the groups. 

In the present case, two methods of estimation have been used: detailed standard deviation mapping 

and heuristic search. 

5.4.1 Detailed standard deviation mapping. 

As previouly, a maximum shift of300 m has been assumed in each direction, defining a seach area 

of 600m x 600m centered on the expected true position. In order to map the variation of the 

standard error with position within the search are a, the latter has to be computed using a grid size 

suffieiently small. In the present case, a grid size of 50 m has been selected, giving 169 values from 
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Table 5.2 Relative error (%) for each land use class, using 1 and 4 groups of pixels. Mean value 

of ten trials using 10 best pixels, plus 10 random pixels 

CLASSbS VUTl vun VU14 

1 group 4 groups 1 group 4 groups 1 group 4 groups 
Urban areas and roads 49,4 39,3 33,52 23,0 11,1 5,9 

Pastures and alfalfa 12,3 5,6 10,04 9,8 1,4 2,0 
Cereals 2,0 2,3 7,48 4,0 1,8 3,9 
Corn 5,4 4,5 1,61 1,4 5,3 3,2 
Water 30,3 21,4 18,40 63,9 95,6 97,7 

Wet lands 14,3 16,5 11,02 2,8 0,8 4,1 
Bare soils 3,1 2,1 3,84 4,3 6,3 4,1 

Herbacious fallow 11,6 15,0 37 1,9 1,7 1,7 
landsand bushes 

Mixed forest (mostly 17,3 14,9 444 3,2 1,9 1,9 
deciduous) 

Coniferous fore st 16,9 25,6 9,63 11,8 14,0 14,0 
Mean on classes 14,7 14,0 9,11 6,9 4,9 4,5 

(excludin!! water) 
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which a map could be drawn. This exhaustive computation was performed for each of the 6 

simulated VGT images and the resulting maps are shown in appendix A. It can be seen readily that 

most of the maps have relatively smooth gradients, allowing a slow degradation ofthe results as 

the distance between the estimated position and the "true" position increases. This means that a 

perfect fit between the VGT image and the classified HRVIR image is not a must within certain 

limits, as found out in the preceeding chapter for the first image. 

The subjectively estimated positions from the standard deviation maps for the six simulated VGT 

images are presented in table 5.3. It can be noticed that for any of the "true shifts", the estimated 

shift is normally weIl below IOOm, and as low as 10m for shift no. 3, when the mean of the shifts 

with regards to the individual bands is computed. But, even for individual bands, most of the 

distances between the estimated and "true" positions are weIl below 1 OOm. In particular, for the last 

image, for which each of the band is taking a different "true" position, the distances are respectively 

25,25 and 46m, which is an excellent result. 

If thus seems quite clear that the developed methodology allows determination ofthe "true" 

position of the portion of a VGT image of interest for a specifie region with an aeeuraey of 

better th an lOOm. 

5.4.2 Heuristic search 

As mentioned in section 2.3.2, it is also possible to use an heuristic hill-climbing procedure to find 

out the "true position" of a VGT image. The search was done according to the procedure outline 

in that section and the results are shown in table 5.4. The mean distances between the "true 

positions" and the estimated positions are larger than with the detailed mapping of the standard 

deviation values, but still acceptable, the smallest distance being 27m and the largest 153m. One 

should remember that the gradients are often low in the vicinity of the "true position" so that trying 

to find an optimal position with that type of gradients can easily lead to the estimations discussed 

above. 
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Table 5.3 Estimated X-y shifts of the VGT2, VGT3 and VGT4 bands as compared to the actual 
simulated shifts with respect to the HRVIR image. Values estimated from detailed 
standard deviation mapping 

VGT image 1 (no shift: X=O m, Y=O m) 

VGT2 VGT3 
Estimated shift in X (m) 0 0 
Estimated shift in Y (m) -100 -75 
Distance from the simulated location (m) 100 75 

VGT image 2 (Simulated shift: X=-250 m, Y=100 m) 

VGT2 VGT3 
Estimated shift in X (m) -230 -250 
Estimated shift in Y (m) 50 80 
Distance from the simulated location (m) 54 20 

VGT image 3 (Simulated shift: X=250 m, Y= -150 m) 

VGT2 VGT3 

Estimated shift in X (m) 250 240 
Estimated shift in Y (m) -235 -185 
Distance from the simulated location (m) 85 36 

VGT image 4 (Simulated shift: X=-50 m, Y= -275 m) 

VGT2 VGT3 

Estimated shift in X (m) -110 -20 
Estimated shift in Y (m) -280 -230 
Distance from the simulated location (m) 60 54 

VGT image 5 (Simulated shift: X=200 m, Y=200 m) 

VGT2 VGT3 

Estimated shift in X (m) 225 85 
Estimated shift in Y (m) 215 105 
Distance from the simulated location (m) 29 149 

VGT image 6 (Simulated shift: 

VGT2 VGT3 

Estimated shift in X (m) 225 150 
Estimated shift in Y (m) -195 -230 
Distance from the simulated location (m) 25 25 

VGT4 Average 

-65 22 
-150 92 
119 96 

VGT4 Average 

-210 -230 
35 55 
76 49 

VGT4 Average 
175 222 
-150 -190 
75 48 

VGT4 Average 

-25 -52 
-285 -265 
27 10 

VGT4 Average 

245 185 
225 182 
51 23 

VGT2: X=200 m, Y=-200 m; 
VGT3: X=175 m, Y=-225 m; 
VGT4: X=225 m, Y=-150 m) 

VGT4 Average 

170 --
-160 --
46 --
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Table 5.4 Estimated X-Y shifts of the VGT2, VGT3 and VGT4 bands as compared ta the actual 
simulated shifts with respect ta the HRVIR image. Values estimated from heuristic 
research algorithm 

VGT image 1 (no shift: X=O m, Y=O m) 

VGT2 VGT3 VGT4 Average 
Estimated shift in X (m) 0 0 0 0 
Estimated shift in Y (m) -20 -60 0 -27 
Distance from the simulated location (m) 20 60 0 27 

VGT image 2 (Simulated shift: X=-250 m, Y=100 m) 

VGT2 VGT3 VGT4 Average 
Estimated shift in X (m) -200 -180 -200 -193 
Estimated shift in Y (m) 160 160 180 167 
Distance from the simulated location (m) 78 92 94 88 

VGT image 3 (Simulated shift: X=250 m, Y=-150 m) 

VGT2 VGT3 VGT4 Average 
Estimated shift in X (m) 160 160 140 153 
Estimated shift in Y (m) -160 -160 -160 -160 

Distance from the simulated location (m) 91 91 110 98 

VGT image 4- Trial 1 (Simulated shift: X=-50 m, Y=-275 m) 

VGT2 VGT3 VGT4 Average 

Estimated shift in X (m) -160 180 0 7 

Estimated shift in Y (m) -200 -180 -20 -133 

Distance from the simulated location (m) 133 249 260 153 

VGT image 4- Trial 2 (Simulated shift: X=-50 m, Y=-275 m) 

VGT2 VGT3 VGT4 Average 

Estimated shift in X (m) -160 -160 -100 -140 

Estimated shift in Y (m) -200 -120 -160 -160 

Distance from the simulated location (m) 133 190 125 146 
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Tableau 5.4 (cont.) 

VGT image 5- Triall (Simulated shift: X=200 m, Y=200 m) 

VGT2 VGT3 VGT4 
Estimated shift in X (m) -20 160 160 
Estimated shift in Y (m) 40 180 160 
Distance from the simulated location (m) 133 45 57 

VGT image 5- Trial 2 (Simulated shift: X=200 m, Y=200 m) 

VGT2 VGT3 VGT4 
Estimated shift in X (m) 180 180 160 
Estimated shift in Y (m) 200 160 180 
Distance from the simulated location (m) 20 45 45 

Average 
100 
127 
124 

Average 
173 
180 
34 

VGT image 6 (Simulated shift: VGT2: X=200 m, Y=-200 m; 
VGT3: X=l75 m, Y=-225 m; 
VGT4: X=225 m, Y=-l50 m) 

VGT2 VGT3 VGT4 Moyenne 
Estimated shift in X (m) 140 160 160 153 
Estimated shift in Y (m) -160 -160 -200 -173 
Distance from the simulated location (m) 72 67 82 74 
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The positions estimated by each of the two approaches are compared to the "true shifts" in figure 

5.7. It can be seen rapidly that none of the approaches is systematically more accurate than the 

other, butthat both methods give generally good results. Again, as the estimation of the reflectances 

does not vary very much as long as the distance between the estimated position and the "true 

position" is sm aller than approximately 1 OOm, the achieved location accuracy is quite satisfactory 

as it will be shown in the next section. 

5.5 Accuracy of estimated reflectances 

Knowing that it is possible to locate the VGT images with a very good accuracy, it remains to 

verify if the mean reflectances of the various land use classes can be estimated also with a very 

good accuracy. The answer is yeso The reflectances estimated from the VGT images for each of 

the land use classes and for each spectral band are presented in table 5.5 and in Figure 5.8. It can 

be noticed that no matter the method to position the image, most of the resulting reflectances are 

very close to the mean reflectances estimated from the HRVIR image. AIso, the accuracy increases 

from VGT2 to VGT4. 

The above results show clearly that it is possible, on an operational basis, to monitor the variation 

of the reflectances of the land use classes present in a specific region, provided that their 

percentages of occupation are known. 
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Table 5.5 Estimated land use reflectances from the VGT spectral lands vs HRVIR reflectances, 
at location (0,0) 

VGT-2 Band 
Estllllatea renectances trom vu 1 

Land use classes HRVIR Standard error Heuristic 
Reflectances mapping Research 

Urban areas and roads 7.36 10.3 10.29 
Pastures and alfalfa 4.62 4.35 4.32 
Cereals 5.52 5.41 5.4 
Corn 4.79 5.15 5 
Water 2.73 2.08 2.02 
Wet lands 5.43 4.45 4.48 
Bare soils 9.61 9.74 9.68 
Herbacious fallow lands and hushes 3.28 2.8 2.74 
Mixed fore st 2.38 2.01 2 
Coniferous forests 2.28 1.77 1.79 

VGT-3 Band 
bstlmatea retlectances trom v lJ 1 

Land use classes HRVIR Standard error Heuristic 
Reflectances mapping Research 

Urban areas and roads 27.l8 21.16 20.86 
Pastures and alfalfa 44.99 49.17 49.24 
Cereals 36.86 35.69 35.38 
Corn 42.07 43.45 42.69 
Water 2.7 1.19 1.56 
Wet lands 28.72 27.73 28.01 
Bare soils 31.23 29.48 29.89 
Herbacious fallow lands and hushes 32.66 32.5 31.94 
Mixed forest 34.61 35.61 35.8 
Coniferous forests 24.61 21.64 21.68 

VGT-4 Band 
bstlmatea renectances trom v lJ 1 

Land use classes HRVIR Standard error Heuristic 
Reflectances mapping Research 

Urban areas and roads 18.34 17.48 17.25 
Pastures and alfalfa 21.87 22.16 22.21 
Cereals 24.75 25.73 25.79 

Corn 19.2 19.18 18.79 

Water 0.71 0.07 0.06 
Wet lands 18.15 17.4 17.44 
Bare soils 27.06 27.9 28.05 

Herbacious fallow lands and hushes 17.53 17.5 17.3 

Mixed forest 14.87 14.88 15.04 

Coniferous forests 10.4 9.09 8.93 
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6 ESTIMATION OF THE PERCENTAGE OF 

SNOW COYER ON EACH VGT PIXEL, FOR 

THE ST.FRANÇOIS WATERSHED 

6.1 Visual evaluation of the simulated HRVIR and 

VGT images 

The original TM image for partial snow cover over the southern portion of the St. François 

watershed (fig. 6.1) was taken on the 3rd of April 1988 at 9:30 a.m. local time. It corresponds to 

a quarter of a full TM image. 

The St. François river is clearly seen, in the North-West corner of the image, flowing to the SE 

down to the city of Sherbrooke and then to the North-East toward lake Aylmer (which could be 

seen on fig. 5.1). To the South-West of the image, lake Magog is mostly frozen, whereas lake 

Massawipi is unfrozen. The characteristic rounded shape of mount Mégantic can be clearly 

identified along the easthern border of the image. Snow free areas, mostly in the South-West part 

of the image, appear in yellow to reddish colors, whereas snow covered areas appear in blue. Green 

patches appearing mostly in snow covered areas correspond to coniferous forests. 

AlI TM bands were available so that the four HRVIR and VGT bands have been simulated. As for 

the previous images, atmospheric corrections have been applied to the original image, whose 

acquisition had been done under cloudless meteorological conditions. Again, as the simulation 

procedure is the same as that used before, it will not be repeated here. 

The simulated HRVIR bands are presented in figure 6.2. Their general appearances are quite 

different from those in figure 5.2, which corresponds to summer. Snow reflectance in the first three 

bands is noticeable, particularly for the HRVIRI and HRVIR2 bands. On the contrary, the pixels 

with lighter shades of grey in the first three bands have very dark shades of grey in the HRVIR4 

band, because of snow absorption at that wavelenght. It is now easier to identify the river network 

on the HRVIR3 than on the HRVIR4 band, again because of snow absorption. 
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Figure 6.1: 

Estimation of surface variables at the sub-pixellevel for 
use as input to climate and hydrological models 

15km 

Original TM image (TM5, TM4, TM3 - April 2, 1988) for the Saint-François 

Watershed 
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HRVIRI HRVIR2 

HRVIR3 HRVIR4 

Figure 6.2 Simulated HRVIR bands - April 2, 1988 
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YGTl 

YGT3 

Figure 6.3 

Estimation of surface variables at the sub-pixellevel for 
use as input to climate and hydrological models 

YGT2 

YGT4 

Simulated YGT bands - April 2, 1988 
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As it was shown in the previous chapters that it was possible to locate the VGT images normally 

with an accuracy of better than 100m, the emphasis was put essentially on the information that 

could be obtained from VGT images, assuming that it was possible to locate them with an 

acceptable accuracy. The simulated VGT image is thus assumed perfectly fitted to the HRVIR 

image for that particular application. The four VGT bands are presented in figure 6.3. The St. 

François river can still be identified on the first three bands, but not on the VGT4 band. On the 

other hand, it is easier to identify lakes Magog and Massawipi on the VGT4 band than on the other 

bands. AIso, as for the HRVIR bands, the reflectance of snow is quite noticeable on the first three 

bands, whereas absorption by snow characterizes the VGT4 band. 

Color composites of bands 2, 3 and 4 for both HRVIR and VGT images are shown in figure 6.4. 

For the HRVIR color image, the same details as described for the original TM image can be 

noticed. On the VGT image, again, the St.François river can be identified in the North-West 

portion of the image, together with the two lakes in the South-West portion. AIso, snow free areas 

are quite distinguishable from snow covered areas. Pixels that have not a full snow coyer appear 

in colors that are between those characterizing either snow free and snow covered areas. 

6.2 Classification results 

As with the previous images, the Maximum Likelyhood algorithm has been used to prepare a 

classification of the simulated HRVIR image in order to obtain the percentage of each land use 

class present in each VGT pixel (figure 6.5). As seen in figure 6.5 and table 6.1, seven classes were 

selected on the image: frozen and unfrozen water surfaces, snow covered and snow free open areas, 

snow covered and snow free deciduous forests and snow covered coniferous forests. It was 

impossible to clearly identify snow free coniferous forests. Water surfaces occupy less than 3% 

of the area, whereas open areas occupy 43.5%, ofwhich 19.1% are covered by snow. Deciduous 

forests occupy26.8%, ofwhich21.1 % are covered by snow, and, finallyconiferous forests occupy 

27.1 % of the image and are completely covered by snow, according to the classification. 
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Figure 6.4: 

Estimation of surface variables at the sub-pixellevel for 
use as input to climate and hydrological models 

a) HRVIR bands (HRVIR4, HRVIR3, HRVIR2) 

b) VGT bands (VGT4, VGT3, VGT2) 

Simulated false color composites of HRVIR and VGT bands - April 2, 1988 
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Water (frozen) 

Water (unfrOlen) 

Open area (with snow) 

Open area (wlthoot snow) 

Deciduous forest (with snow) 

Declduous forest (without snow) 

Coniferous forest (wlth snow) 

Classified HRVIR image - April 2, 1988 
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Table 6.1 Mean reflectances (standard deviation) and percentage of occupation of each 

identified land use classes on the spring image (April 2, 1988). 

Land use classes % of Reflectances (%) 
land use HRVIRI HRVIR2 HRVIR3 HRVIR4 

occupation Mean (%) SD Mean (%) SD Mean SD Mean 

(%) (%) (%) (%) (%) 
Coniferous forest 27.1 10.8 5.3 10.5 4.9 26.5 4.6 8.8 

(with snow) 

Coniferous forest 0.0 

(without snow) 

Deciduous forest 2l.l 26.1 7.2 28.0 7.1 35.7 5.6 9.7 

(with snow) 

Deciduous forest 5.7 9.4 3.0 10.6 2.9 26.9 3.7 19.1 

(without snow) 

Open areas 19.1 32.5 13.2 34.6 13.1 44.4 10.2 11.3 

(with snow) 

Open areas 24.4 13.8 4.4 17.0 4.6 29.7 7.4 28.9 

(without snow) 

Lakes and rivers 0.7 50.4 11.5 47.8 11.0 33.2 10.0 1.9 

(frozen) 

Lakes and rivers 1.9 12.7 8.3 12.7 7.8 12.9 6.8 5.5 

(unfrozen) 

SD 

(%) 
1.5 

1.6 

5.0 

5.1 

9.0 

0.8 

3.8 
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6.3 Sub-pixel estimation of snow cover 

The difficulties that would likely be encountered for the estimation of snow cover on each 

individualland use class present on a single VGT pixel have been discussed in section 2.4.1. In 

particular, it was mentioned that the estimation ofthose percentages would be possible only if the 

reflectances were known and the number of endmembers, that is of land use classes, wou Id be in 

agreement with the number of independent bands. In practice, those conditions were not satisfied 

with the image that we had and no worthwhile results could be obtained. There were more land use 

classes than bands. AIso, open areas, which could be integrated into only one snow covered class, 

were sub-divided into more classes for snow free conditions. At the moment, no final conclusion 

can be reached concerning the possibility of estimating the percentages of snow cover on each land 

use class present in a specific pixel, using the mixing theory and only one VGT image. Areas with 

only one or two land use classes could possibly be considered. Also, there is the possibility of 

using more than one VGT image during a cold spell occuring in the melt period and keeping the 

percentages of snow covered and snow free areas constant for a few days. 

There is however the possibility of finding the total percentage of snow cover on each pixel using 

either equation 2.11 or 2.12. Let us look mostly at the results from equation 2.11. Equation 2.11 

is based on the assumption that the reflectance of a partially snow covered pixel wi11lie somewhere 

between that corresponding to snow free conditions and that corresponding to snow covered 

conditions. In normal operations, single VGT images or mosaics corresponding to those conditions 

wou Id be available. In our case, no such images were of course available, so we have created them 

using the mean class reflectances oftab1e 6.1 (figure 6.6) and the mixing theory. It should be clear 

that these images represent only an approximation of the images that should be used to apply 

equation 2.11 and that approximation should be felt on the results. 

In figure 6.7 a, the total percentage of snow cover on each pixel as obtained from equation 2.11, that 

is the value ofF, is compared to the total percentage of snow cover on the same pixel as obtained 

from the HRVIR pixels corresponding to that VGT pixel. It can be seen that equation 2.11 

underestimates the "true" percentage of snow cover on each pixel, but that a relation could be 

obtained with a coefficient of determination of 0.8377. Other relations could be obtained by not 
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Figure 6.6: 

Estimation of surface variables at the sub-pixellevel for 
use as input to climate and hydrological models 

.. lIIl __ .. 

a) Simulated snow free VGT image (VGT4, VGT3, VGT2) 

b) Simulated snow covered VGT image (VGT4, VGT3, VGT2) 

Simulated false color composite images of the VGT bands. 
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forcing the relation to go through (0,0) and/or using higher degree polynomials. It should be 

mentioned that 3672 points are on that figure and that the use of actual VGT images and not of 

images created from mean reflectances values, should normally lead to a sm aller spread of the 

points on both sides of the relation. 

The relation between the normalized difference snow index (NDSI) obtained from equation 2.12 

and the total percentage of snow cover on the same pixel, as estimated from the HRVIR pixels 

corresponding to that VGT pixel, is presented in figure 6.7b. It can be seen that it is linear and has 

a coefficient of determination of 0.8473, which is very close to that of the previous relation. As a 

temporary conclusion, it can be said that both relations willlikely fumish total snow cover on each 

pixel with approximately the same accuracy and that accuracy should be betler with actuel VGT 

Images. 

It is however possible to try to distribute that total snow cover on each pixel among each of the 

mean land use classes, namely coniferous forests, deciduous forest and open areas. It is clear from 

observations and simulation of the melt process that snow disappears first in open areas, then in 

deciduous forests and finally in coniferous forests. It is thus likely that, for a given percentage of 

snow cover on a pixel, the remaining percentage of snow in forested areas will be greater than that 

in open areas. This is effectively shown in figures 6.7c and 6.7d. 

In figure 6.7c, the percentage of snow cover in open areas on a specific VGT pixel is shown as a 

fun ct ion of the total percentage of snow cover on that same pixel.. If ail VGT pixels would 

correspond to only one class, namely open areas more or less at the same elevation, then ail points 

would lie on the y = x curve. Since, in our case, a large number ofVGT pixels are likely to include 

the three main land use classes, for each of these pixels, the percentage of snow covered HR VIR 

pixels corresponding to the open areas class will be lower than that corresponding to the total 

percentage of snow covered HRVIR pixels corresponding to a VGT pixel. This is what is shown 

in figure 6.7c. As an example, if the total snow cover on a pixel is 40%, than the snow cover in 

open area is down to 20%. 
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Let us look now at the relation between the snow cover in deciduous forests as compared to that 

in open areas, which is shown in figure 6.7d. It should be remembered here that itwas impossible 

to find out snow free coniferous forests. One can notice readily that as the percentage of snow cover 

in open areas diminishes from 100% to, let us say, 50%, the percentage of snow cover in deciduous 

forested areas remains practically between 100% and 90% and, then, drops to zero as the 

percentage of snow cover continues to diminish in open areas. This behaviour confirms our 

assumptions. A fifth degree polynomial has been fit to the data as an example of a possible 

relation, but a number of other relations could be possible. For instance, we cou Id have the 

percentage of snow cover in deciduous forested areas stay at 100% as long as the percentage of 

snow cover in open areas is greater than 50%, followed by a linear decrease to 0% from then on. 

It should be mentioned, finally , that a number of percentages of snow cover in deciduous forested 

areas are lower than the corresponding percentages in open areas. That should not be the case. The 

most probable reason for that is that pixels were improperly classified either in one class or the 

other. Fallow lands and bushes would probably be in that case. 

It is finally interesting to present the information contained in figure 6.7a on a map rather than on 

a graph. Figure 6.8a represents the total percentage of snow cover on each VGT pixel, from 0 to 

100%, as estimated from HRVIR pixels corresponding to each VGT pixel. It can be seen that 

complete snow cover correspond to the blue pixels in figure 6.4b, whereas the snow free areas are 

shown in reddish colors in that same figure. The total snow cover estimated by equation 2.11 is 

presented in figure 6.8b. It was mentioned previously that equation 2.11 was underestimating the 

percentage of snow cover on each VGT pixel and that is noticeable in figure 6.8b, as the grey 

shades are darker than in figure 6.8a. One can also mention that underestimation tends to occur 

mostly where the percentage of snow is relatively low. If the relation between total snow cover 

from equation 2.11 and total snow cover from HRVIR pixels, as determined in figure 6.7a, is 

applied, then the resulting map is shown in figure 6.8c. It can be se en that this latter map is much 

more similar to that of figure 6.8a. The absolute estimation error of the snow cover mapping in 

figure 6.8c in relation to the value of figure 6.8a is shown in figure 6.8d. It can seen that most of 

the snow cover estimations are within 10% of the HRVIR estimated values. More precisely, we 

have: 

• Underestimation greater than 25% for 4.1 % of the pixels; 

• Underestimation between -25% and -10% for 10.3% ofthe pixels; 

• Estimation within -10% and +10% for 70.1% of the pixels; 



a) Estimated snow coyer from HR VIR 

c) Estimated snow coyer from VGT2 (relation of fig. 6.7a) 

Figure 6.8: Snow coyer estimation - April 2, 1988 
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• Overestimation between +10% and +25% for 10.3% of the pixels; 

• Overestimation greater than 25% for 1.4% of the pixels. 

The results obtained on snow cover estimation show that it is possible to estimate the total 

percentage of snow cover on each VGT pixel with a quite satisfactory accuracy, an accuracy than 

should be ev en better with actual data. It was also shown that it could be possible to go one step 

further in distributing that total snow cover among the main land use classes present on any VGT 

pixel. That possibility to estimate the spatial distribution of snow cover at the sub-pixellevel will 

be very useful for hydrological simulations. 





7 POST-LAUNCH ANALYSIS OF ACTUAL VGT 

AND HRVIR DATA 

The pre-Iaunch analysis of simulated V G T and HR VIR data has shown that it was possible to locate 

VGT images weIl within 100m, given a detailed land use map. It was further shown that 

estimating, thus monitoring, the mean reflectances of the land use classes present in a specific 

region from a VGT image was also possible, given a detailed land use map. Estimation of the total 

snow cover on each VGT pixel was also possible. 

In the post-Iaunch phase, we intend to test these findings with actual VGT and HRVIR data. 

7.1 Monitoring of mean land use reflectances un der 

snow free conditions 

Monitoring ofmean land use reflectances under snow free conditions needs the application of the 

procedure explained in chapter 2 and applied in chapter 5, on the area common to a VGT and a 

HRVIR image. Simultaneous acquisition ofboth VGT and HRVIR images is assumed at least once. 

Given simultaneously obtained VGT and HRVIR images, we will first proceed to the classification 

of the HRVIR image in order to get the reference land use map necessary for the remaining 

procedures that will be applied to the common area. Next, we will test if the optimal number of 

groups of pixel found in the pre-Iaunch phase does change or not. We will then be in a position to 

determine the location of the VGT image relative to the HRVIR image with an accuracy that we 

hope as good as in the pre-Iaunch phase. Once this will be done, it will remain to estimate the mean 

reflectances of each of the selected land use classes and compare them to the mean reflectances 

estimated from the HRVIR image, with the objective that the VGT estimated reflectances will be 

within the standard deviations characterizing the mean reflectances values. 

That procedure will be repeated for each of the VGT images that will be obtained to de scribe the 

variation of the reflectances with time as weIl as to prepare a data base of reflectances that will be 
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used in the next step. Spectrally integrated reflectances will subsequently be used as time varying 

albedo values of land use classes for our hydrological model HYDROTEL. 

That next step will consist in reversing the spectral mixing relation in order to find out the 

percentages ofland use classes on each of the VGT pixels in aregion largerthan the HRVIR image 

and including it, whereas still being relatively homogeeous as far as land class reflectances are 

concerned. This will need data from enough VGT images to be able to obtain as many equations 

as there are land use classes as explained in chapter 2. The result of this procedure will be an 

estimation of the percentages of each of the land use classes present in that larger region for each 

of the VGT pixels, but without knowledge of the position ofthese classes within the VGT pixels. 

In short, we will test the developed procedure on actual VGT and HRVIR data as far as the 

accuracy oflocation and reflectance estimations are concerned and, finally, we will determine the 

percentages of land use classes for a region larger than the HRVIR image. 

7.2 Monitoring of snow coyer 

Simulating the variation of snow cover both in time and space with an hydrological model, in order 

to be able to forecast snowmelt as accuratelyas possible, requires input data such as albedo. It 

should be remembered that albedo controls, at least partly, the flow of solar radiation into the snow 

cover. Also, albedo varies with time, old snow having a lower albedo than fresh snow. A ripe snow 

cover has a relatively low albedo. 

We want, first, to monitor reflectances of land use cover over complete snow covers until the 

beginning of melt in spring. In particular, we want to verity to what extent it is possible to 

distinguish between an old and cold snow cover and a ripe snow cover. For that purpose, we will 

use informations coming both from the VGT image and from our distributed hydrological model 

HYDROTEL (Fortin et al., 1995). 

Once the melting process is in progress, the snow cover will disappear following a pattern related 

to geographical location, altitude and land use. A distributed hydrological model like our can 

simulate this process from the available input variables. As these variables are not necessarily 
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perfectly representative of the conditions throughout a watershed and no hydrological model is 

perfect, it is likely that the simulation of the snow cover will benefit from an update of the state 

variable of the model. Then, it becomes important to be able to monitor partial snow cover on a 

watershed during the melt period. 

We intend to monitor total snow cover on each VGT pixel according to the procedure outline in 

chapter 2 and applied in chapter 6. We will also try to distribute the total snow cover on each VGT 

pixel among the land use classes present on that pixel also following the same procedure. This 

redistribution will need the acquisition of a HRVIR image to verify the resulting distribution. 

At the moment, we believe that it will be difficult to apply the spectral mixture theory to obtain 

directly the percentage of snow cover on each of the land use classes present on a watershed as this 

will be a function ofboth the actual melting conditions and of cloud cover. If the right conditions 

are obtained, we will test that theory. 

7.3 Data acquisition plan 

7.3.1 General informations for actual SPOT -4 data 

• Type ofproduct: VGT-P and HRVIR multispectral 

• Format: Standard SPOT format 

• Support: CD-ROM or exabyte 

• Maximum cloud cover: 20% (see below for details) 

• Viewing angle for HRVIR: normally quasi-vertical. 

7.3.2 Chosen site and region 

The chosen center of the HRVIR images is located in the region previously analysed in the pre­

launch phase ( long. 71 °46' W; lat. 45°38 N), that is the region of the St.François watersheds. As 

mentioned before, that region is representative of the types of land uses that can be encountered in 

southern Québec. We can count on a good meteorological network and the HYDROTEL model 

is already applied on the Chaudière and the Eaton watersheds. 
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The VGT images should have the same center as the HRVIR images (long. 71 °46' W) in the E-W 

direction in order to have a similar quasi-vertical view of the area. In the N-S direction, the 

southern limit should at least be 43°N, which is two degrees south of the US-Canada border in that 

region. For the northern limit ofthe VGT images, it would be pertinent if it can go as far north as 

56° N. That northern limit will allow coverage the James Bay watersheds in which we are 

developing a methodology for the estimation of the water equivalent and the extension of the snow 

cover using RADARS AT images. We already have a large coverage ofhigh resolution land use 

classes in that second region so that it would not be necessary to procced to the acquisition of 

HRVIR data. If possible, actual HR VIR data wou Id, of course, be very much appreciated to control 

our results but will not be asked within this project. We believe that the acquisition ofVGT images 

will complement the informations coming from RADARS AT data, so that both types of data will 

likely be used for operational purposes. This RADARSAT project is supported by the ADRO 

program (Canadian Space Agency) and Hydro-Québec. 

7.3.3 Number of images and temporal distribution 

From the informations that we have on the types of products that will be available and the 

procedures that we have developed in the pre-launch phase, we have considered that VGT-P 

products would satisfy our needs. This being said, we want to wait until the VGT -P products are 

in theirfinal status as far as both radiometry and geometry are concerned, since we need 

those to be as good as possible on the original images. The acquisition of the first VGT and 

HRVIR images will be conditionned by these needs. This is the reason why, in table 7.1, data 

acquisition starts in September 1998. 



Table 7.1 Data acquisition 

HRVIR 
Month Application 

number Center VGT 
number 

eEarly September 98 or e Reflectances over full summer vegetation 1 71°46'W; 1* 
August 99 45°38'N 
eLate September 98 or 99 eReflectances over colorfull fall vegetation 1* 
eLate October 98 or 99 e Reflectances over 1ate fall vegetation prior to the 1* 

first snowfall, with leaves fallen in deciduous 
forested areas. Reference fall image for partial snow 
cover relation. 

eJanuary to March 99 e Reflectance of snow cover (fresh and cold snow 1* 
conditions) 

eJanuary to March 99 e Reflectances of snow cover ( cold snow at least a 1* 
week old) 

eLate March-Early April 99 eReflectances of complete snow cover at the very 1* 
beginning of snowmelt 

eApril99 eTotal percentage of snow cover on each VGTpixel, 1 Either of 1* 
with partial snow cover in the region. Reflectances the other 
of snow cover ( melting or cold) and of snow free two 
areas. locations 

eLate April-Early May 99 eReflectances over snow free early spring 1* 
vegetation. Reference spring image for partial snow 
cover relation. 

eMidJune 99 eReflectances over summer vegetation. Test for 1* 
estimation of percentages of land use classes outside 1 71°29'W; 
the frrst HRVIR image 46°26'N 

Total number of images 3 9 

Note: The "*,, has two significations. First, in the E-W direction, the center should be 71°46' W. In the N-S direction, it should go from from 43°N to 56°N. 
More details on the number ofVGT images are given in section 7.3.3. 
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Normally, one VGT image will be sufficient for each indicated period. However, because of cloud 

coyer, it may be necessary to rely on more than one image to coyer the region of interest and 

prepare a mosaic of more than one image. AIso, although only one VGT image is asked over partial 

snow coyer, it wou Id be interesting to have more, if possible, for a better test of snow coyer 

monitoring in that crucial period. For snow free conditions, four or five VGT images would be a 

minimum, allowing to test the possibility to monitor reflectance variation over various land use 

classes, whereas, at the same time, providing the necessary data for the estimation of the 

percentages of land use classes outside ofthe areas covered by the first HRVIR image. The second 

HRVIR image (who se acquisition is planned for June 1999) would permit to check the accuracy 

of the percentages estimated from VGT images outside the first HRVIR image. Both that second 

image and the first one are located within the region covered by the TM image of 28th of August 

1995 (Fig. 5.1). 

Finally, a HRVIR image taken simultaneouly to a VGT image over partial snow coyer would allow 

to verify the accuracy of the developed procedure with actual data. We can just hope that such 

conditions will be possible, given the revisit frequency of SPOT-4 and cloud coyer. In order to 

make the realization of these conditions easier, the location of that HR VIR image could correspond 

to either of the two previous images. 

We will of course need to know in advance the exact dates of data acquisition of all images, in 

order to obtain the required field information. We assume that this subject will be discussed later 

on. 



8 CONCLUSION 

The specific objectives of our investigation were (a) the estimation of physical variables of the 

surface, corresponding to each land cover within the pixel, the albedo for example, (b) the 

estimation at the sub-pixel level of the spatial distribution of snow cover on the ground and (c) a 

positionning of the images as accurate as possible for multitemporal input into a spatially 

distributed hydrological model using geocoded data. 

These three specific objectives have been reached for the analysis of simulated VGT and HRVIR 

data in the pre-Iaunch phase of the project. As shown in the procceding chapters, it has been 

possible to locate the position of simulated VGT images well within 100m. Within that distance 

from the "true" position, the estimations of the mean reflectances of the land use classes are not 

significantly affected, so that it is quite acceptable to be able to get such a geometric accuracy. 

Also, it has been possible to estimate the total percentage of snow cover within each simulated VGT 

pixel, so that it was possible to map the spatial distribution of snow cover at the sub-pixellevel. 

As the actual VGT images shouldhave betterradiometric characteristics than those of the simulated 

images and we were ob liged to create synthetic images for the snow cover procedure, we consider 

that we should be able to reach as good, if not better, results with the actual VGT and HRVIR 

images. For that purpose, the procedure that we intend to follow, together with the data acquisition 

plan that we suggest, have also been explained in the pre cee ding chapter. 

The various results that will come from the analysis of the VGT and HRVIR data in southem 

Québec will be used as input to our distributed hydrological model HYDROTEL. The northem 

part of the VGT images will be used in the project that we have in northem Québec and may lead 

to operational use ofVGT images, together with RADARSAT and SSM/I images over the James 

Bay watersheds, for snow cover monitoring and input to HYDROTEL. 
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