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ABSTRACT
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The Canadian Regional Climate Model (CRCM5) Large Ensemble

(CRCM5-LE) consists of a dynamically downscaled version of the CanESM2

50-member initial-conditions ensemble (CanESM2-LE). The downscaling

was performed at 12-km resolution over two domains, Europe (EU) and north-

eastern North America (NNA), and the simulations extend from 1950 to 2099,

following the RCP8.5 scenario. In terms of validation, warm biases are found

over the EU and NNA domains during summer, while during winter, cold

and warm biases appear over EU and NNA respectively. For precipitation,

simulations are generally wetter than the observations but slight dry biases

also occur in summer. Climate-change projections for 2080-2099 (relative to

2000-2019) show temperature changes reaching 8◦C in summer over some

parts of Europe, while exceeding 12◦C in northern Québec during winter.

For precipitation, central Europe will become much dryer during summer (-

2 mm/day) and wetter during winter (>1.2 mm/day). Similar changes are

observed over NNA although summer drying is not as prominent. Projected

changes in temperature interannual variability were also investigated, gener-

ally showing increasing and decreasing variability during summer and win-

ter respectively. Temperature variability is found to increase by more than

70% in some parts of central Europe during summer, and to increase by 80%

in the northernmost part of Québec during the month of May as the snow

cover becomes subject to high year-to-year variability in the future. Finally,

CanESM2-LE and CRCM5-LE are compared with respect to extreme precip-

itation, showing evidence that the higher resolution of CRCM5-LE allows a

more realistic representation of local extremes, and especially over coastal

and mountainous regions.
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1. Introduction57

As the latest phase of the Bavaria-Québec long-term collaboration on climate change, the58

ClimEx (Climate change and hydrological Extremes) project investigates the implications of ex-59

treme hydrometeorological events on water management in Bavaria and Québec. In order to assess60

future hydrological impacts from climate change, a complex chain of interlinked processes needs61

to be taken into account, from how anthropogenic greenhouse gases and aerosols emissions affect62

the global climate, to the local impacts of climate variability on hydrological processes.63

In practice, local hydrological impacts of climate change are studied using a variety of impact64

models, which use state-of-the-art climate model simulations for inputs. For instance, Global Cli-65

mate Models (GCMs) (Earth System Models in their current generation) are commonly used to66

generate large scale climate-change projections over periods from decades to centuries (Collins67

et al. 2013). However, since GCMs are computationally expensive to run due to their high com-68

plexity, they typically use rather coarse spatial resolutions –ranging from 100 to 450 km in the69

Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble. These resolutions are of-70

ten too coarse for hydrological applications (Fatichi et al. 2014; Fowler et al. 2007; Wigley et al.71

1990). To fill the gap between GCMs and local scales, downscaling methods have been developed72

to refine GCM output before driving the hydrological model over a region of interest (Xu 1999;73

Fowler et al. 2007).74

Regional Climate Models (RCMs) offer a convenient approach to downscale GCM output at75

sufficiently high resolutions for impact modeling. RCMs represent an intermediate step that en-76

ables the concentration of computational power on a limited area (rather than on the entire globe77

as with a GCM) to obtain downscaled climate projections at spatial resolutions typically ranging78

from 12 to 50 km (Giorgi and Gutowski 2015). RCMs are essentially built as GCMs in terms of79
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dynamical core and parameterizations of sub-grid processes, but must be driven by either GCMs80

or reanalyses through their lateral and surface boundaries. With their higher resolution, RCMs81

provide a much better representation of the heterogeneity in surface forcings (e.g., land-sea con-82

trasts, orography, distribution of lakes and rivers, canopy types from vegetation to urban surfaces83

and soil properties), and an extended range of resolved atmospheric spatio-temporal scales toward84

finer processes (Lucas-Picher et al. 2016). For all these reasons, RCMs are excellent candidates for85

driving hydrological models since, compared to coarse-resolution GCMs, they can better account86

for processes relevant to the scale of many hydrological applications.87

Since they provide hydrologically relevant output variables such as precipitation, runoff and88

evapotranspiration, RCMs can already be used to assess some hydrological impacts from climate89

change without the need to run a hydrological model (e.g., Music et al. 2012). At the basin90

scale, however –where complex topography and heterogeneity in soil characteristics are impor-91

tant factors– applications using RCM-driven hydrological models are increasingly popular in the92

assessment of the hydrological impacts of climate change. It is a common practice to bias cor-93

rect RCM data to ensure that calibrated hydrological models are driven by realistic meteorological94

conditions (Muerth et al. 2013). However, there is some debate as to whether an RCM output95

should be, or not be, bias-corrected prior to drive a hydrological model, as bias correction may96

introduce further uncertainty into future hydrological simulations (Chen et al. 2017; Clark et al.97

2016). Therefore, raw RCM outputs may be preferred to drive hydrological models for some ap-98

plications, as when Lucas-Picher et al. (2015) reconstructed the Richelieu River flooding of spring99

2011, one of the most important flood that occurred in Québec over the last years.100

The use of a hydro-modelling chain including a GCM, an RCM and a hydrological model ap-101

pears to be necessary for the proper assessment of hydrological impacts driven by climate change.102

This approach, however, requires the various sources of uncertainty that may affect climate-change103
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projections be considered. The World Climate Research Programme’s (WCRP) Coupled Model104

Intercomparison Project (CMIP) multi-model datasets CMIP3 (Meehl et al. 2007), CMIP5 (Taylor105

et al. 2012) and the upcoming CMIP6 (O’Neill et al. 2016) are vast multi-model ensembles that106

allow to sample the three main sources of uncertainty: 1) future pathway (scenario) of greenhouse-107

gas and aerosol (GHGA) emissions; 2) climate sensitivity (structural uncertainty) to fixed GHGA108

emissions scenario; 3) natural climate variability. These uncertainties are sampled using an “en-109

semble of opportunity” framework: modelling centres around the world voluntarily generate simu-110

lations (based on their own resources and interests) using different GHGA-emission scenarios and111

GCM models. Some modelling centres also generate multiple realizations of the same experiment112

(i.e. a specific GCM model driven by a specific GHGA scenario), by adding slight perturbations to113

the model’s initial conditions to sample the effect of natural climate variability (Deser et al. 2014)114

–an approach that reflects the intrinsic chaotic nature of the climate system. Ensembles involving115

multiple RCMs are also increasingly common, as they are built upon CMIP-like ensembles of116

GCMs, such as the CORDEX-coordinated project (Giorgi and Gutowski 2015), which consists of117

a multi-scenario, multi-GCM, multi-RCM ensemble.118

Given the large amount of resources involved in the production of climate model simulations,119

the multi-model ensemble framework does not generally provide every possible combination of120

scenarios and models. In addition, models are often represented by a single realization, leading121

to a weak sampling of natural climate variability. In this sense, it is important to note that, for122

short-term climate projections, the contribution from natural climate variability to uncertainties123

is often more important than the contributions from the other factors (Hawkins and Sutton 2009,124

2011). Moreover, as extreme events are by definition rare, multiple realizations from one model are125

important to more robustly assess how climate change may affect their occurrence and intensity.126
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For extremes floods, for instance, short-term data records translate into large uncertainties for127

100-year return-level estimates (Schulz and Bernhardt 2016).128

To better understand the role of natural variability and extreme events in current climate pro-129

jections, it has become increasingly popular in recent years to use the large-ensemble framework,130

consisting of using a single GCM to generate several realizations of a same experiment. Re-131

cent examples are the Community Earth System Model Large Ensemble (CESM-LE) (Kay et al.132

2015), which now contains at least 40 members of transient climate-change projections under the133

RCP8.5 emissions scenario, or its 15-member RCP4.5 version (Sanderson et al. 2015). Similarly,134

the CanESM2 Large Ensemble (CanESM2-LE) (Fyfe et al. 2017) was produced by the Canadian135

Centre for Climate Modelling and Analysis (CCCma) at Environment and Climate Change Canada136

(ECCC), and consists of 50 members under the RCP8.5 scenario. Two 40-member ensembles use137

the CESM model driven by historical radiative forcing, one using a dynamical ocean model, and138

the other one observed sea-surface temperatures (Mudryk et al. 2013). The Dutch Challenge139

Project produced another ensemble, consisting of 62 members from the Community Climate Sys-140

tem Model (CCSM1) driven by a business-as-usual scenario (Selten et al. 2004). Also worth141

noting is the “Essence” project (Sterl et al. 2008), a 17-member ensemble of climate-change sim-142

ulations using the ECHAM5/MPI-OM climate model forced by the “Special report on Emissions143

Scenarios” (SRES) A1B pathway. All of these large ensemble projects use many initial-condition144

members to filter the effects of internal variability to better detect the climate-change signal re-145

lated to a phenomenon of interest and to estimate the ranges of natural variability, an important146

information for impacts and adaptations studies.147

As natural climate variability can highly depend on the spatial scale under consideration (Giorgi148

2002), a better assessment of local climate-change impacts from natural variability and extreme149

events implies that the regional climate modelling community also began to follow the large-150
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ensemble framework (Deser et al. 2014). An important recent example is “Database for Policy151

Decision-Making for Future Climate Change” (d4PDF) (Mizuta et al. 2016), which involved the152

dynamical downscaling of a GCM large ensemble at a spatial resolution of 20 km over Japan. Also,153

the Canadian Regional Climate Model version 4 (CanRCM4) was used to perform a 35-member154

ensemble over North America on a 50-km grid mesh (Fyfe et al. 2017). Another example is the155

16-member ensemble performed over western Europe and the Alps using the Royal Netherlands156

Meteorological Institute’s regional model KNMI-RACMO2 at 12-km resolution driven by the EC-157

EARTH global model (Aalbers et al. 2017).158

In the scope of the ClimEx project, a 50-member ensemble of climate-change projections at159

12-km resolution was produced to assess hydrological impacts from climate change in Bavaria160

and Québec. This paper presents initial results from this new dataset –the Canadian Regional Cli-161

mate Model (CRCM5) Large Ensemble (CRCM5-LE; Ouranos 2017, unpublished data)– which162

is characterized by continuous simulations from 1950 to 2099 under the RCP8.5 GHGA emission163

scenario and was produced over two domains, Europe and northeastern North America. CRCM5-164

LE consists of a dynamically downscaled version of CanESM2-LE, which was used to drive the165

CRCM5 through its boundary conditions.166

This paper is organized as follows. Section 2 describes the experimental framework of CRCM5-167

LE, which builds on CanESM2-LE. In section 3a, a preliminary analysis of the CanESM2-LE168

initialization is proposed. Sections 3b to e present the main results for CRCM5-LE as follows:169

model validation with observations (section 3b) and climate-change projections of mean climate170

(section 3c) and natural variability (section 3d). In section 3e, CRCM5-LE is compared with its171

driving ensemble (CanESM2-LE) regarding the representation of precipitation extremes. Finally,172

Section 4 provides a discussion and conclusions.173
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2. The ClimEx experimental framework174

Figure 1 shows the general framework of the ClimEx experiment. The Canadian Earth System175

Model version 2 (CanESM2; Arora et al. 2011), developed at the CCCma, was used to generate176

a large initial-condition ensemble of climate-change projections at 2.8◦ resolution. This dataset,177

namely the CanESM2 Large Ensemble (CanESM2-LE; Sigmond et al. 2018; Fyfe et al. 2017),178

is based on a 1,000 years equilibrium simulation (CMIP5 piControl run) forced by pre-industrial179

conditions (i.e. constant 284.7 ppm atmospheric CO2 concentration). Random atmospheric per-180

turbations (in the cloud-overlap value) were then applied to this simulation to obtain five historical181

runs starting on 1 January 1850. Applying new random atmospheric perturbations in 1950, each182

historical run was used to generate ten members, resulting into 50 members from five “families”,183

which differ by a 100-year spin-up from 1850 to 1949. All members were forced with observed184

emissions (CO2 and non-CO2 GHGs, aerosols and land use) including observed explosive volca-185

noes and solar-cycle forcings during the historical period up to year 2005, while simulations were186

extended from 2006 to 2099 following radiative forcing from the representative concentration187

pathway RCP8.5. From 2006, simulations are forced by a repetition of roughly the last observed188

solar cycle (prior to 2006) without volcanic aerosol forcing. As will be shown in section 3a, this189

approach leads to 50 simulations that can be assumed as independent realizations of the modelled190

climate system after a few years from their initialization in 1950.191

The Canadian Regional Climate Model version 5 (CRCM5; Martynov et al. 2013; Separovic192

et al. 2013) is developed by the ESCER Centre (Centre pour l’Étude et la Simulation du Climat à193

l’Échelle Régionale) of l’Université du Québec à Montréal in collaboration with Environment and194

Climate Change Canada. This RCM was used by the Ouranos Consortium on Regional Climatol-195

ogy and Adaptation to Climate Change to dynamically downscale CanESM2-LE from 2.8◦ (≈310196
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km) to 0.11◦ (≈12 km) resolution over the 1950-2099 period. The downscaling experiment was197

performed for two domains, Europe (EU) and northeastern North America (NNA), both using an198

integration domain of 380 x 380 grid points (Figure 2). In order to validate the performance of the199

CanESM2 driven CRCM5, ERA-Interim driven runs covering the period from 1979 to 2013 were200

also performed over both domains and at the same resolution (12 km).201

CRCM5 lateral boundary conditions are updated every six hours and linearly interpolated to the202

five-minute time step of the model. GCM output fields of temperature, surface pressure, specific203

humidity and horizontal wind components are used to drive the RCM with a one-way nesting204

procedure over a 10 grid points surrounding blending zone (Davies 1976). A smooth spectral205

nudging of large scales (Riette and Caya 2002; Separovic et al. 2012) was applied to the horizontal206

wind component within the RCM domain interior. The spectral nudging configuration consists of207

large-scale features being defined with a half-response wavelength of 3,113 km and a relaxation208

time of 13.34 hours. These large scales are imposed inside the RCM domain and vary along the209

vertical: the nudging strength is set to zero from the surface to a height of 500 hPa and increases210

linearly onward to the top of the model’s simulated atmosphere (10 hPa). In the ERA-Interim211

driven run, the cut-off length was set slightly shorter due to the higher spatial resolution of ERA-212

Interim compared to CanESM2. In comparison, the current spectral nudging configuration was213

much weaker than that used in Liu et al. (2016), where the nudging was applied to all geopotential,214

horizontal wind, and temperature fields, with shorter relaxation time, and linearly increasing from215

the top of the planetary boundary layer to a full strength fifth level above. At the bottom boundary,216

the sea surface temperature and sea ice fraction are prescribed from the driving dataset (CanESM2217

or ERA-Interim).218

Removing both the 10 grid point wide Davies’ blending zone and the 10 point halo (which219

provides upstream data in the semi-Lagrangian interpolation) included in the periphery of the220
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integration domain results into a 340 x 340 “free domain”, where the model is technically free221

from direct imposition of lateral boundary conditions. However, RCM applications are known222

to suffer from boundary effects inside their free domain because small-scale features –which are223

absent from the lateral boundary conditions– need space (Leduc and Laprise 2009; Leduc et al.224

2011; Matte et al. 2016) and time (de Elı́a et al. 2002) to develop from the coarse-resolution225

boundary conditions. For this reason, an additional 30 grid point wide security zone was removed226

within the free domain to favour the development of fine-scale features over the region of interest,227

corresponding to a 280 x 280 grid points analysis domain (Figure 2) over which all CRCM5228

outputs were archived.229

The CRCM5 Large Ensemble (CRCM5-LE) dataset will be made available to the scientific230

community. More information about data access and the complete list of archived variables with231

corresponding time frequencies (e.g., one hour for precipitation, three hours for surface-air tem-232

perature) are posted at www.climex-project.org.233

3. Results234

a. Spin-up time from initial conditions in CanESM2-LE235

The fact that large ensembles allow to thoroughly quantify natural climate variability relies on236

the assumption that the ensemble members consist of independent realizations of the model’s237

climate system. While climate models are expected to forget their initial conditions after some238

spin-up time from the beginning of a simulation, it is not clear how much time is required before239

all members from the five families (see Figure 1) become completely independent. This question240

is important since a longer spin-up time means a shorter simulated period available for climate241

analysis. In addition, a lack of independence between ensemble members could undermine fur-242
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ther statistical assessments (e.g., extreme values) from both CanESM2-LE and CRCM5-LE by243

reducing the effective number of independent members.244

In order to assess the length of the spin-up time in the current experiment, the time evolution of245

the inter-member spread is analyzed using various five-member ensemble combinations that may246

belong to one of the following two categories: 1) runs sharing the Same Ocean Initial Conditions247

(SOIC) in 1950 (i.e. five members from a same ocean family); 2) runs with Mixed Ocean IC248

(MOIC) (i.e. five members, one from each ocean family). Ten five-run ensembles were constructed249

for each category.250

The Inter-Member Standard Deviation (IMSD) was calculated for each five-member ensembles251

and averaged over either land or ocean grid points for various time period. Figure 3a presents the252

ranges of land-averaged IMSD obtained for the SOIC and MOIC categories respectively during253

the first year of simulation. It can be seen that after about 100 days, the surface-air temperature254

over land appears to become independent from its initial conditions in the SOIC ensembles, as255

seen by the overlap with the MOIC distribution. However, over ocean (Figure 3b, first 1100 days256

shown), the SOIC ensembles completely overlap the MOIC distribution after a much longer period257

of time, namely around 800 days of simulation. In comparison, the spin-up period obtained for258

precipitation (Figure 3c and d) is around 25 and 150 days over land and ocean grid points respec-259

tively. It is clear that for slowly evolving processes such as the deep-ocean circulation, the spin-up260

period would range from hundreds to thousands years (Stouffer 2004) although these time scales261

are beyond the scope of the ClimEx ensemble framework. For the time scales, regions and vari-262

ables of interest here, it is reasonable to assume that the CanESM2-LE members are independent263

a few years after initialization, and therefore that they consist of independent boundary conditions264

for driving CRCM5-LE.265
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b. Validation of the historical climate266

In this section, the CRCM5 is evaluated in terms of its performance to reproduce the historical267

climatology. Since biases in the output of an RCM can originate both from inaccurate driving data,268

or due to the RCM itself, the performance of the ERA-Interim driven run is first compared with269

that driven by the first CanESM2 member to investigate the possible sources of bias. Here, only270

one member of the large ensemble (e.g., rather than the ensemble mean) is used to make a proper271

comparison with the single realization of the ERA-Interim run. Using a 32-year climate period272

for validation, the climates of the different members slightly differ due to internal variability, but273

the general conclusions drawn from this validation hold across the ensemble. While the following274

discussion focusses on the differences between CRCM5 output and the observed climatology,275

the simulated climatology of the different variables and domains can be found in Supplementary276

Figures S1 to S4.277

Figure 4 presents the seasonal mean surface-air temperature averaged over the 1980-2012 period278

from the E-OBS observational gridded dataset (0.22◦ resolution; Haylock et al. 2008) for the279

EU domain (first column), the difference between the ERA-Interim driven CRCM5 and E-OBS280

(second column) and the difference between the CanESM2 driven CRCM5 and E-OBS (third281

column). All data are linearly interpolated onto the CRCM5 grid for comparison purpose. It can282

first be seen that CRCM5 bias depends on geographical location and season, but systematic warm283

biases (especially in winter) appear over mountainous regions such as the Alps, Pyrenees, Balkans284

and the Carpathians (see also the CRCM5 topography in Figure 2). During winter, the reanalysis285

driven run (second column) shows a systematic cold bias larger than -1◦C over most regions and286

exceeding -3◦C in central Europe, while for the CanESM2 driven run, the bias is not systematically287

negative (generally between -1◦C and 1◦C). The fact that the CRCM5 winter bias is larger when288
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driven by ERA-Interim may appear counterintuitive, as a reanalysis is expected to provide a better289

representation of the observed climate than a GCM. While the cold bias is likely partly attributable290

to the CRCM5 itself, the improvement observed when the CRCM5 is driven by the GCM may be291

due to some sort of bias cancellations between these two models. For the other seasons, biases are292

relatively insensitive to the nature of the driving data, although as expected, the CanESM2 driven293

run always shows a slightly higher RMSD than the ERA-Interim driven run. The generalized294

cold bias also appears during fall and spring, although with about half of the magnitude of the295

winter bias obtained from the CanESM2 driven run. During summer, a warm bias exceeding 2◦C296

is observed for the eastern part of the domain.297

Figure 5 shows corresponding results for precipitation over the EU domain. Throughout the year,298

there is a wet bias appearing over most parts of Europe. During winter, the bias is relatively large299

for the CanESM2 driven run, exceeding 3 mm/day in western Europe. In comparison, bias from300

the ERA-Interim run are generally smaller than 2 mm/day over the same region. The wet biases301

during spring and fall are as well less important for the ERA-Interim driven run. The CanESM2302

driven run shows a marked dry bias exceeding -1 mm/day in the eastern part of the domain during303

summer.304

Figure 6 presents the CRCM5 evaluation for surface-air temperature over the NNA domain305

using the Climatic Research Unit dataset (CRU; 0.5◦ resolution; Harris et al. 2013). The bias306

obtained for the ERA-Interim driven run generally ranges between -2◦C and 2◦C. RMSD values307

are approximately two times larger for the CanESM2 driven run than for ERA-Interim driven308

run. This is especially due to the important warm bias detected over most parts of the domain309

throughout the year for the CanESM2 driven run, which exceeds 4◦C in western regions during310

summer and in the central part of the domain during winter. The cold bias occurring during winter311

15



and spring over northern Québec persists independently of the lateral boundary conditions, which312

suggests that the bias may originate from the CRCM5 itself.313

Figure 7 shows the same analysis for precipitation over the NNA domain. A systematic wet bias314

around 1-2 mm/day exists for most parts of the domain and through the year for the ERA-Interim315

driven run. Biases are quite similar to those detected from the CanESM2 driven run for winter316

and spring, but for summer and fall, the CanESM2 driven run is characterized by a dry bias in the317

western (-2 mm/day) and southern (-1 mm/day) parts of the domain respectively.318

Finally, to place these results into a more general context, it is worth recalling that the per-319

formance of the CRCM5 in terms of reproducing the current climate when driven by the ERA-320

Interim reanalysis is comparable to other state-of-the-arts RCMs over Europe and North America321

(Kotlarski et al. 2014; Martynov et al. 2013; Diaconescu et al. 2016).322

c. Projected changes in climatological means323

Figure 8 presents the short-term projected changes (2020-2039 versus 2000-2019) in precipita-324

tion for December estimated from ensemble members 1 to 24 over both domains. Reminding that325

the ensemble members differ only by slight random perturbations in their initial conditions, these326

results clearly show how natural variability can lead to very different projections. Some regions327

with strong precipitation changes may even show opposite signs for different members (e.g., mem-328

bers 4 and 6 over both domains). This also demonstrates how the practical use of single-member329

ensembles of regional climate projections may lead to misleading recommendations for planning330

short-term adaptation strategies to climate change. To focus on climate-change features that are331

robust across the ensemble, the ensemble mean signal is analyzed in the following. The statis-332

tical significance of the signal will be quantified by applying a Student’s t test on the difference333
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between future and historical ensemble-mean climates, and the dependence of this measure to the334

time horizon and the ensemble size will be assessed.335

Ensemble mean climate-change signal between the 2000-2019 and 2080-2099 periods for the336

monthly mean surface-air temperature over the EU domain is first analyzed (Figure 9). The signal337

is stronger from June to September, with August showing temperature increases exceeding 8◦C338

in western and southeastern Europe. There is also an enhanced warming in the northeastern part339

of the domain during winter, partly attributable to the decreasing snow cover-albedo feedback340

(Fischer et al. 2010).341

Figure 10 shows the ensemble mean climate-change signal for monthly mean precipitation over342

the EU domain (2080-2099 versus 2000-2019). These simulations show that the climate in Europe343

will become dryer in summer and wetter in winter. Precipitation increase in December is as large344

as 2 mm/day on the west side of the Alps and along the west coast of the Balkan Peninsula. A large345

decrease of 2 mm/day in summer precipitation is detected during July and August on both the north346

and south sides of the Alps. However, the projected changes in precipitation are not significant347

everywhere, even for such a far horizon, as can be seen from the hatched regions, where the signal348

is not statistically significant. Notably, precipitation changes in winter over the Mediterranean Sea349

and the Iberian Peninsula are too weak to emerge from the noise of natural climate variability.350

In order to investigate the relative contribution of natural variability and climate-change signal,351

changes in temperature and precipitation over different future periods were estimated and com-352

pared to the ensemble mean of the 50 members and to the first five members ensemble mean.353

Figures 11a, b and c show the 50-member ensemble mean temperature change (for December354

only) for three different time horizons; 2020-2039 (short term), 2040-2059 (mid-term) and 2080-355

2099 (long term; as in Figure 9) respectively. Similarly, Figure 11d, e, and f show the five-member356

ensemble mean temperature over the same three future periods. The five-member mean results357
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are very similar to those of the full ensemble and the signal remains statistically significant ev-358

erywhere in the domain for both mid-term (2040-2059) and long-term (2080-2099) projections.359

However, when considering short-term projections (2020-2039), the 50-member ensemble still360

shows statistically significant changes (Figure 11a), while the signal has not emerged from natural361

variability over most land areas for the five-member ensemble (Figure 11d). Similar conclusions362

hold for other months (see Supplementary Figures S5, S9 and S10).363

Comparing the 50- and five-member ensemble mean precipitation change for July (Figure 11)g364

to l), the general features seen for the 50-member ensemble are still present for the five-member365

ensemble. Particularly, for long-term projections, the decrease in precipitation is statistically sig-366

nificant, although the intensity of the change is greater for this particular five-member ensemble.367

For short-term projections (2020-2039), the 50-member ensemble allows to detect small signifi-368

cant decreases in precipitation for western and southwestern Europe (Figure 11g), while the five-369

member ensemble mean displays practically no region with statistical significance changes in the370

short term, and very few statistically significant areas in the mid-term (Figure 11j). It is interest-371

ing to note that larger parts of the domain with statistically significant changes for the short-term372

period are reported for the 50-member ensemble than for the mid-term period for the five-member373

ensemble. These conclusions generally hold for the other months (see also Supplementary Figures374

S6, S11 and S12), and in several cases, even the long-term projections show very low statistical375

significance for the five-member ensemble while the 50-member ensemble generally allows to376

detect a signal over an appreciable fraction of the domain.377

Repeating the previous analysis for the NNA domain, the climate-change signal in 2080-2099378

for the monthly mean temperature is shown in Figure 12 based on the 50-member ensemble. A379

prominent maximum increase of temperature appears over the Hudson Bay. It exceeds 14◦C from380

January through March and attenuates in April. It is worth noting that this regional feature is381
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mostly inherited from the CanESM2 driving model, because its sea-surface temperature and sea-382

ice values are prescribed to the CRCM5. The positive ice-albedo feedback occurs as Hudson Bay383

becomes partially covered, instead of completely covered, by sea ice during winter by the end of384

the 21st century in the CanESM2 simulations (not shown). The important temperature change in385

winter extends into northern Québec and is influenced by the feedback from Hudson Bay sea ice,386

and by snow-albedo feedback as snow cover decreases.387

Figure 13 shows the projected changes in precipitation over the NNA domain. From Novem-388

ber through May, precipitation increases over land regions (exceeding 0.8 mm/day in northern389

Québec), Hudson Bay and Atlantic Ocean. In June, precipitation decreases by more than 0.4390

mm/day over most land regions with the exception of northern Québec, and this drying pattern391

slowly decays until August, when only a small drying area remains over Ontario. Over the At-392

lantic, minimal change is observed during December, while precipitation decreases slightly during393

April/May, to reach values exceeding -1.8 mm/day in July/August. The important decrease in394

summer precipitation occurs in the area of the North Atlantic storm track and might be related to395

the poleward shift of mid-latitude storm tracks (Woollings et al. 2012), as well as to the weaken-396

ing of the North Atlantic Meridional Overturning Circulation (Brayshaw et al. 2009) in CanESM2397

simulations.398

As for the EU domain, reducing the ensemble from 50 to 5 members does not significantly399

modify the patterns in temperature change (Figures 14a to f, results shown for December only).400

Short-term projections are also statistically significant for the 50-member ensemble (Figure 14a)401

while for the five-member ensemble (Figure14d) the southern half of the domain shows practically402

no statistically significant change during winter. Similar conclusions are obtained for the other403

months, namely that statistically significant changes are observed everywhere with the exception404
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of some regions in the short-term projection for the five-member ensemble (see also Supplemen-405

tary Figures S7, S13 and S14).406

Comparing the 50-member ensemble with a five-member ensemble for precipitation over the407

NNA domain (for July only), Figures 14j to l show that the fraction of the domain with statisti-408

cally significant changes is very small for the five-member ensemble. For short-term projections,409

however, the 50-member ensemble (Figure 14g) already shows a significant, though small, de-410

crease in precipitation in the western part of the domain, which progressively extends in size for411

the mid-term and long term projections. Similar results are obtained for the other months, that412

is, no statistically significant changes over the largest fraction of the domain for the five-member413

ensemble, even in long-term projections are observed, while the 50-member ensemble generally414

allows to detect such changes (see also Supplementary Figures S8, S15 and S16). But it is also415

important to note that precipitation change remains a challenging variable even with the full en-416

semble, as the signal is generally weak while the variability is high.417

d. Projected changes in temperature interannual variability418

Here the large ensemble is used to assess the effect of climate change on temperature interannual419

variability, which can be defined as follows. Given a time window extending from year a to b420

inclusively, the overall variance calculated over this period of P = b−a+1 years at a given grid-421

point can be written as422

σ
2
a,b =

1
P(N−1)

b

∑
t=a

N

∑
i=1

(Xit− X̄ot)
2, (1)

where N is the ensemble size (N = 50), Xit the monthly mean temperature over the given time423

period for member i and year t, and X̄ot the ensemble mean (average over all members) at year424

t. Assuming ergodicity between temporal and inter-member variances (Nikiéma et al. 2017), σa,b425

(i.e. the square root of equation 1) can be interpreted as an estimate of the interannual variability426
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for this specific time period. In the case of a climate system under transient forcing, the use of427

equation 1 to assess temporal variability using the inter-member spread involves weaker assump-428

tions than calculating the residual temporal variability from detrended time series. The latter ap-429

proach is nevertheless popular when assessing natural variability using small ensembles (Hawkins430

and Sutton 2009, 2011; Leduc et al. 2016a,b; Räisänen 2002).431

Figure 15 shows the monthly patterns of interannual variability of surface-air temperature cal-432

culated over the 2000-2019 period for the EU domain. These patterns show a marked annual cycle433

reaching a maximum of around 4◦C during winter in the northern regions, while the variability434

generally remains below 2.5◦C for the rest of the year. The relative changes in interannual vari-435

ability from 2000-2019 to 2080-2099 are presented in Figure 16, where the statistical significance436

is assessed using the F-test with a 99% confidence level. A large increase in interannual variability437

occurs from May through September over most of western and central Europe, and extending into438

the Scandinavian Peninsula. The maximum change is reached in August, when interannual vari-439

ability increases by more than 70% (approximately 1◦C), compared to the 2000-2019 period for440

which interannual variability is around 1.5◦C (Figure 15). In addition to the mean surface-air tem-441

perature increase of around 7◦C over this area and month in 2080-2099 (Figure 9), this highlights442

the importance of considering the effect of climate change on both mean climate and interannual443

variability when investigating the effect of climate change on heat waves, for instance (Schär et al.444

2004).445

The important projected decrease in mean precipitation during summer (see Figure 10) leads446

to a decrease in soil-moisture content (not shown) over a large part of Europe. The heat capac-447

ity of the land surface thus decreases, strengthening land-atmosphere coupling. As described in448

Seneviratne et al. (2006), the enhancement of the land-atmosphere coupling over Europe is an im-449

portant contributor to the projected increase in temperature interannual variability. For instance,450
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the surface-air temperature becomes more strongly influenced by variations in incident solar ra-451

diation, which is converted into sensible rather than latent heat flux (Brown et al. 2017). This452

suggests that local temperature variability could highly depend on geophysical characteristics in453

this case. It is also worth noting that the increase in summer temperature interannual variability is454

known to relate to both land-atmosphere interactions and projected changes in global atmospheric455

circulation patterns (e.g., Meehl and Tebaldi 2004).456

For the rest of the year (i.e. October through April), Figure 16 shows that interannual variability457

tends to decrease throughout the 21st century. Several physical mechanisms support this result.458

Sea-ice retreat in the North Atlantic plays a role as westerly circulation becomes less affected by459

sea-ice albedo variability, but also as the atmosphere is no more isolated from the ocean which has460

a much greater heat capacity (Stouffer and Wetherald 2007). As another key physical mechanism461

that could explain this decreasing variability, it is known that sub-seasonal temperature variability462

is strongly affected by Arctic amplification. As shown by Screen (2014), rapid warming in the463

Arctic translates into a warming of cold air advected by northerly winds, which decreases sub-464

seasonal variability of surface-air temperature.465

Figure 17 shows the annual cycle of interannual variability over the NNA domain for the period466

2000-2019. Variability is much larger during the cold season in the northern part of the domain,467

which is in general agreement with observations (see Figure 1 in de Elı́a et al. 2013). From January468

through March, interannual variability exceeds 3◦C for Hudson Bay and most of Québec. High469

values persist into April and May in a narrow region of maximum temperature variability that470

extends from the south shore of Hudson Bay and across Québec. It is worth noting that these471

regions are also characterized by a high level of interannual variability in snow-cover fraction472

(not shown). This corresponds with the transition zone separating permanent snow cover in the473

north and rare spring snow in the lower latitudes (Krasting et al. 2013). This link between high474
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temperature variability and the edges of snow-covered regions is consistent with the results of475

Fischer et al. (2010), and as well as with Lehner et al. (2017) who showed the evidence of an476

existing thermodynamical link between snow cover and surface air temperature variability.477

Figure 18 shows changes in monthly mean temperature interannual variability over the NNA478

domain from 2000-2019 to 2080-2099. There is a systematic decrease in interannual variability479

during winter over a dominant fraction of the domain and an increase during summer for the480

southern regions. This is in agreement with the relationship between temperature variability and481

thermal advection (Holmes et al. 2016), based on the fact that land-sea temperature contrasts will482

tend to increase during summer and decrease during winter, while the temperature gradient from483

pole to equator decreases mostly during winter due to Arctic amplification.484

The northernmost part of Québec experiences a 80% increase (corresponding to about 1◦C)485

in interannual temperature variability in May. This can be partly explained by the northward486

migration of the snow transition zone, which is located in the northernmost part of Québec in487

2080-2090 while being around 10◦ further south in the reference period. In other words, the snow488

cover in a specific year may completely disappear in May in the northernmost region for some489

ensemble members while persisting in others. So interannual variability increases in a region when490

persistent snow cover transforms into a new transition region (northernmost region of Québec),491

while inversely, a transition region that becomes permanently without snow will rather experience492

a decrease in interannual variability. This may also explains the narrow east-west band in northern493

Québec where variability decreases by 30% during May.494

While a rich literature describes the physical mechanisms underlying changes in temperature495

variability, the patterns of these changes are often difficult to assess with a high degree of confi-496

dence when using smaller ensembles. Similarly to what was done in Section c, it can be shown497

that using only the first five members of the ensemble leads to much less regions where changes in498
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temperature interannual variability are statistically significant. Nevertheless, it is worth noting that499

some general features can still be detected with the smaller ensemble, such as the general decrease500

in variability over the northern regions during winter, or the increasing variability that is specific501

to central Europe during summer. More details about these results can be found in Supplementary502

Figures S17 and S18.503

e. CRCM5-LE added value for extreme precipitations504

A fundamental reason for producing large initial-condition ensembles is to obtain a satisfac-505

tory sampling of extreme events, these being poorly characterized in a single-member framework.506

In addition, it has been widely shown in the literature that RCMs have potential to add value507

compared to GCMs due to their higher spatial resolution, and especially over regions with spe-508

cific heterogeneous features that can have an impact on surface forcings such as vegetation, lakes,509

orography, land-sea contrasts (e.g., Lucas-Picher et al. 2016; Prein et al. 2015; Di Luca et al. 2011;510

Kanamitsu and DeHaan 2011). To extend the concept of RCM added value to the case of large511

ensembles, the two large ensemble involved in the ClimEx project (CanESM-LE and CRCM5-512

LE) are compared in terms of the 20-year daily Annual Maximum Precipitation (AMP). For both513

ensembles, this climate extreme index was calculated by first extracting the daily annual maxima514

precipitation series at each grid point over the 2000-2019 period for each member (20 years x 50515

members), from which the 95th percentile empirical quantile (20-year return level) was estimated.516

Figure 19a and b show the daily AMP over the EU domain as calculated from CanESM2-LE517

and CRCM5-LE respectively. The largest fraction of grid points have daily AMP values rang-518

ing between 20-60 mm/day for CanESM2-LE while corresponding values for CRCM5-LE are519

mostly around 40-80 mm/day. In terms of the spatial distribution of the daily AMP, it is clear520

that the effect of orography on extreme precipitation patterns is more realistic for CRCM5-LE521
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than CanESM2. Maximum values of about 60-80 mm/day occur over a few grid points in central522

Europe for CanESM2-LE, which correspond to the Alps region as seen from the CanESM2 topog-523

raphy (Figure 2d). Due to its coarse resolution, CanESM2 topography barely represents the Alps,524

as compared with CRCM5 topography (Figure 2b) where they are more realistically represented525

in terms of both height and spatial extent. This necessarily has an effect on the spatial structure526

of the AMP maximum over this region in CanESM2. For CRCM5-LE, coastal regions and ar-527

eas with complex orography such as the southwest part of Scandinavian Mountains, the Atlantic528

coast of the Iberian Peninsula, the Alps and Dinaric Alps, the Pyrenees, are characterized by high529

precipitation extremes that are often around 120 mm/day, and even exceed 200 mm/day in some530

localized areas. Similar features were also detected from observations by Nikulin et al. (2011),531

although the reported AMP values were generally smaller.532

For the NNA domain (Figure 19b), there is a north-south gradient from 30 mm/day in northern533

Québec to values around 100 mm/day in the southern part of the domain for CanESM2-LE. For534

CRCM5, this gradient ranges from about 40 mm/day in the north to about 160 mm/day in the south.535

This gradient, as well as the area of higher values detected along the east coast of United-States, is536

better represented in CRCM5-LE in terms of spatial distribution as compared with Gervais et al.537

(2014b,a) who have analyzed the 97th percentile of the observed daily precipitation.538

As for the mean precipitation climatology (Section b), CRCM5-LE likely has some biases in539

extreme values. Nevertheless, this analysis shows that CRCM5-LE provides a much better repre-540

sentation of local extremes as compared with its driving model. In addition to its more detailed541

representation of surface forcings, a 12-km resolution model is generally more suitable for resolv-542

ing extreme values at short time scales such as the daily AMP, as also shown by Innocenti et al.543

(2018).544
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4. Discussion and conclusions545

The series of extreme flood events that occurred in Bavaria and Québec in recent decades has546

been of great concern to local governments, and has led to the development of the ClimEx project,547

which builds on the longstanding collaboration between Bavaria and Québec. The main goal548

of ClimEx is to help decision makers to implement robust climate-change adaptation strategies549

regarding flood risk, and more particularly, to better understand the role of natural climate vari-550

ability and extreme meteorological events in the quantification of risk. This project is structured as551

a hydro-modelling chain: a Global Climate Model (GCM) large ensemble is dynamically down-552

scaled with a Regional Climate Model (RCM), whose outputs will serve as input to hydrological553

model simulations over Bavaria and Québec. In this context, the current paper introduced the554

dynamical downscaling phase of ClimEx (i.e. the CRCM5 Large Ensemble) to the scientific com-555

munity and was framed with the aim of facilitating the use of this unique dataset in future climate556

applications and research. The CRCM5 Large Ensemble (CRCM5-LE) consists in the dynam-557

ically downscaled version of the CanESM2 large initial-conditions ensemble from 2.8◦ (≈ 310558

km) to 0.11◦ (≈ 12 km) resolution using the CRCM5 regional model over two regions of interest:559

Europe (EU) and northeastern North America (NNA).560

In a preliminary analysis, the initial spin-up period of CanESM2-LE was analyzed in order561

to assess the time from which CRCM5-LE is driven by independent climate realizations, and562

therefore to ensure that the simulated natural variability can be assumed as physically consistent563

in future applications. For surface-air temperature, spin-up times of 100 and 800 days were found564

over land and ocean regions respectively, while for precipitation much shorter periods were found565

(25 and 150 days respectively). Therefore, an 800-day spin-up is the characteristic time after566

which the boundary conditions of CRCM5-LE can be assumed as independent realizations from567
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CanESM2, given the time scales of interest in the ClimEx project. In the light of these results, and568

since the CRCM5 also needs some time to become independent from its own initial conditions569

(not shown), it is reasonable to define the 1955-2099 period as the one where climate analysis570

could be performed.571

A climatological validation of CRCM5-LE was performed for monthly mean surface-air tem-572

perature and precipitation. As for other climate models, CRCM5 reproduces the historical climate573

with biases that can be related to two main sources: the RCM model itself (e.g., domain config-574

uration, spatial resolution, parameterization packages, land-surface scheme) and the nature of the575

boundary conditions (e.g., GCMs or reanalyses). For the analyzed variables, it was shown that576

biases of CanESM2 driven simulations are generally larger than those from the reanalysis-driven577

run, with the exception of a cold bias occurring during winter over Europe. These results suggest578

that a significant part of the total bias in CRCM5-LE may originate from both the CanESM2 and579

CRCM5 models. This climatological validation step should provide guidance to future users to580

select the most suitable bias-correction methods when using CRCM5-LE as an input for impact581

models (e.g., Muerth et al. 2013).582

Climate-change projections of the monthly mean variables were next analyzed. The added-value583

of the large ensemble was investigated by comparing two ensemble sizes (5 vs 50 members) and584

three time horizons for the projections (short term 2020-2039, mid-term 2040-2059 and long-term585

2080-2099 relative to 2000-2019) with regard to the spatial extent of the statistically significant586

climate-change signal. As expected, the highest extent of statistical significance was obtained587

using the full ensemble, and for long-term projections when the signal is large relative to the noise.588

While for temperature, a five-member ensemble was generally enough to detect short-term signals,589

for precipitation the 50-member short-term projection was often needed for long-term projection590

of the fraction of the domain with statistically significant signal. An interesting finding was that591
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the 5-member ensemble displayed large scale patterns of the climate response often very similar592

to the 50-member ensemble, although the local climatic response –investigated through grid-point593

series– was generally not statistically significant. This suggests, as previously reported for instance594

by Deser et al. (2012), that natural variability plays a major role at local scales. Averaging over a595

larger ensemble improves our ability to detect local climatic response changes by ‘filtering out the596

local internal variability noise’, but it is worth noting that the actual future local response could be597

very different from the ensemble mean estimate because of internal variability.598

Similarly, the projected changes in interannual variability of monthly mean surface-air temper-599

ature were investigated. Such analysis is possible when using a large ensemble while it remains600

very difficult to assess changes in interannual variability based on a single or few simulations. The601

patterns of change in temperature variability generally showed an increase during summer and a602

decrease during winter, which is in agreement with previous studies using GCM inititial-conditions603

ensembles (e.g., Holmes et al. 2016). The current results however provided a more detailed char-604

acterization of temperature variability at the regional scale, as compared with the previous studies605

based on GCMs. A striking result is the dipole of decreasing/increasing variability that was found606

in northern part Québec during May, which was mostly attributable to the northward progression607

of the transition zone in the snow cover as the mean surface-air temperature increases.608

Finally, the potential added-value of CRCM5-LE compared to CanESM2-LE was investigated609

by comparing 20-year daily AMP. While both ensembles allow empirical estimations of high AMP610

quantiles because to the large number of members –hence bypassing assumptions made in a para-611

metric analysis–, CRCM5-LE allowed a much more realistic representation of important regional612

features regarding extreme precipitation over both domains, and especially over regions character-613

ized by contrasting land-sea interfaces and complex topography such as in the southwest part of614
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Scandinavian, the Iberian Peninsula, the Alps and Dinaric Alps, the Pyrenees and along the east615

coast of United-States.616

It is worth reminding that the CRCM5-LE framework does not address neither the model nor617

the scenario uncertainties, since it uses only one combination of global (CanESM2) and regional618

climate models (CRCM5), along with a single future pathway of GHGA emissions (RCP8.5).619

CRCM5-LE rather samples the internal variability of the CanESM2 model, which is downscaled at620

the regional scale using the CRCM5 that also adds its own internal variability (although generally621

smaller than that of a GCM). But despite not spanning the full range of uncertainty, the natural622

climate variability of this high-resolution regional climate system was assessed at a degree of detail623

never reached before.624

In this context, an important strength of CRCM5-LE resides in short-term climate-change pro-625

jections, which is supported by the previous conclusion that a large number of members is neces-626

sary to obtain statistically significant signals for short-term projections. This is also in agreement627

with Hawkins and Sutton (2009, 2011) who have shown that natural climate variability is a ma-628

jor contributor (especially for precipitation) to the total uncertainty of climate-change projections629

on short lead times at the regional scale. This important characteristic of single-model large en-630

sembles should always be taken into account through the diversity of new applications that could631

emerge from CRCM5-LE, including the analysis of extreme compound events (e.g. heat waves,632

floods, droughts, forest fires), or the development of innovative techniques involving machine-633

learning algorithms to link meteorological patterns with high-impact events, among others. For634

long-term projections toward the end of the 21st century, CRCM5-LE results become increasingly635

dependent on the CRCM5 and CanESM2 models and the RCP8.5 scenario, which implies either636

to assume a storyline approach, or the include other models/ensembles in the analysis.637
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From this wider perspective, as more single-RCM large ensembles will become available in638

the future using other models and scenarios, inter-comparison of these datasets will be critical639

to better cope with the uncertainty related to future GHGA emissions, climate sensitivity (i.e.640

structural uncertainty) and natural variability within a common framework, at spatial and temporal641

scales suitable for climate-change impact applications. It is therefore necessary that future single-642

GCM large ensemble projects plan to provide all the necessary fields to drive RCMs. For instance,643

in the current experiment, CanESM2-LE was the only GCM allowing to drive an RCM with 50644

continuous climate simulations from 1950 to 2099, whereas the CESM large ensemble (Kay et al.645

2015) was also providing the necessary output but for a limited number of 10-year periods.646
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FIG. 1. Schematic representation of the ClimEx modelling chain where the CanESM2 members are used to

drive the CRCM5 and hydrological models.
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FIG. 2. Topography used by CRCM5 to produce the ClimEx large ensemble over the (a) northeastern North

America (NNA; left panel) and (b) Europe (EU; right panel) domains. Integration domain is shown in each case

(380x380 grid points; full map), as well as the ”free domain” (340x340 grid points; in red) where the model is

technically free from direct imposition of lateral boundary conditions, and the ”analysis domain” (280x280; in

green), that is the region where output fields were archived; (c) and (d) Topography used by CanESM2 as seen

from the perspective of the NNA and EU analysis domains respectively.
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FIG. 3. Spatially averaged inter-member standard deviation (IMSD) as a function of time (in days) from

the beginning of the simulations (starting on 1 January 1950) for the CanESM2 large ensemble. The IMSD was

calculated for twenty groups of 5 runs, and these groups divide in two categories: 1) same ocean initial conditions

(SOIC) and 2) mixed ocean initial conditions (MOIC). The SOIC groups (red and black curves) correspond to

members 1 to 5, 6 to 10, and so on up to members 45 to 50 (see families in Figure 1. The ten MOIC groups

(green and blue curves) correspond to members (1,11,21,31,41) up to (10,20,30,40,50). In panels (a) and (b), the

IMSD calculated for surface-air temperature was averaged over land and ocean grid points respectively while

(c) and (d) present the corresponding results for precipitation. Note the different scales for axes.
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FIG. 4. Mean seasonal surface-air temperature over the 1980-2012 period for E-OBS (first column), differ-

ences with the CRCM5 run driven by ERA-Interim (second column), and with the first member of the CanESM2-

LE (third column) for the EU domain. A positive difference corresponds to an overestimation of the observed

values by the simulations. The top color bar applies to the first column while the bottom one applies to second

and third columns. The root mean square differences (RMSD) over land grid-points of the domain is indicated

at the lower-right corner of each panel in central and right columns.
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FIG. 5. Mean seasonal precipitation over the 1980-2012 period for E-OBS (first column) and its difference

from the CRCM5 run driven by ERA-Interim (second column) and from the first member of CanESM2 (third

column) for the EU domain. A positive difference corresponds to an overestimation of the observed values.

The top colorbar applies to the first column. The root mean square difference (RMSD) is provided for each

difference.

981

982

983

984

985

48



FIG. 6. Mean seasonal surface-air temperature over the 1980-2012 period for CRU (first column) and its dif-

ference from the CRCM5 run driven by ERA-Interim (second column) and from the first member of CanESM2

(third column) for the NNA domain. A positive difference corresponds to an overestimation of the observed

values. The top colorbar applies to the first column. The root mean square difference (RMSD) is provided for

each difference.
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FIG. 7. Mean seasonal precipitation over the 1980-2012 period for CRU (first column) and its difference from

the CRCM5 run driven by ERA-Interim (second column) and from the first member of CanESM2 (third column)

for the NNA domain. A positive difference corresponds to an overestimation of the observed values. The top

colorbar applies to the first column. The root mean square difference (RMSD) is provided for each difference.
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FIG. 8. Short-term climate-change projections (2020-2039 vs 2000-2019) for mean December precipitation

from the ensemble members 1 to 24 over the EU (top rows) and NNA (bottom rows) domains.
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FIG. 9. The CRCM5 50-member ensemble mean climate-change signal for surface-air temperature computed

as the difference between the 2080-2099 and 2000-2019 monthly climate means for the EU domain. All reported

changes are statistically significant at the 99% confidence level (Student’s t test with unequal variances). Months

are labeled from 1 to 12.
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FIG. 10. Same as Figure 9 for precipitation during the 2080-2099 period over the EU domain. Hatched

regions identify where the signal is not statistically significant at the 99% confidence level (Student’s t-test with

unequal variances).
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FIG. 11. (a) to (c): CRCM5 50-member ensemble mean climate-change signal for surface-air temperature

during December over the EU domain computed for the (a) 2020-2039, (b) 2040-2059, and (c) 2080-2099

periods relative to 2000-2019; (d) to (f): Same as (a) to (c) for the first five members of the ensemble; (g) to (i)

and (j) to (l): Same as (a) to (c) and (d) to (f)for precipitation during July. Panels (c) and (i) are reproduced from

Figures 9 and 10 for clarity. Hatched regions identify where the signal is not statistically significant at the 99%

confidence level (Student’s t-test with unequal variances).
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FIG. 12. Same as Figure 9 for surface-air temperature during the 2080-2099 period over the NNA domain.

Hatched regions identify where the signal is not statistically significant at the 99% confidence level (Student’s

t-test with unequal variances).
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FIG. 13. Same as Figure 9 for precipitation during the 2080-2099 period over the NNA domain. Hatched

regions identify where the signal is not statistically significant at the 99% confidence level (Student’s t-test with

unequal variances).
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FIG. 14. (a) to (c): CRCM5 50-member ensemble mean climate-change signal for surface-air temperature

during December over the NNA domain computed for the (a) 2020-2039,(b) 2040-2059, and (c) 2080-2099

periods relative to 2000-2019; (d) to (f): Same as (a) to (c) for the first five members of the ensemble; (g) to (i)

and (j) to (l): Same as (a) to (c) and (d) to (f) but for precipitation during July. Panels (c) and (i) are reproduced

from Figures 12 and 13 for clarity. Hatched regions identify where the signal is not statistically significant at the

99% confidence level (Student’s t-test with unequal variances).
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FIG. 15. Interannual variability of monthly mean surface-air temperature over the EU domain calculated as

the yearly inter-member spread averaged during the 2000-2019 period. Months are labeled from 1 to 12.
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FIG. 16. Relative change in interannual variability for the monthly mean surface-air temperature (2080-2099

vs 2000-2019) over the EU domain. Hatched regions identify where changes are not statistically significant at

the 99% confidence level (F-test). Months are labeled from 1 to 12.
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FIG. 17. Interannual variability of monthly mean surface-air temperature over the NNA domain calculated as

the yearly inter-member spread averaged during the 2000-2019 period. Months are labeled from 1 to 12.
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FIG. 18. Relative change in interannual variability for the monthly mean surface-air temperature (2080-2099

vs 2000-2019) over the NNA domain. Hatched regions identify where the changes are not statistically significant

at the 99% confidence level (F-test). Months are labeled from 1 to 12.
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FIG. 19. (a) and (b): The 20-year return period values of the daily annual maximum precipitation during

2000-2019 over the EU domain as calculated from CanESM2-LE and CRCM5-LE respectively. (c) and (d):

Same as (a) and (b) over the NNA domain.
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