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Nonstationary Temperature-
Duration-Frequency curves
Taha B. M. J. Ouarda & Christian Charron

Persistent extreme heat events are of growing concern in a climate change context. An increase in the 
intensity, frequency and duration of heat waves is observed in several regions. Temperature extremes 
are also influenced by global-scale modes of climate variability. Temperature-Duration-Frequency 
(TDF) curves, which relate the intensity of heat events of different durations to their frequencies, can 
be useful tools for the analysis of heat extremes. To account for climate external forcings, we develop 
a nonstationary approach to the TDF curves by introducing indices that account for the temporal trend 
and teleconnections. Nonstationary TDF modeling can find applications in adaptive management in the 
fields of health care, public safety and energy production. We present a one-step method, based on the 
maximization of the composite likelihood of observed heat extremes, to build the nonstationary TDF 
curves. We show the importance of integrating the information concerning climate change and climate 
oscillations. In an application to the province of Quebec, Canada, the influence of Atlantic Multidecadal 
Oscillations (AMO) on heat events is shown to be more important than the temporal trend.

Extended periods of extreme temperature have significant adverse impacts on public health, infrastructure and 
natural ecosystems. It is well established that mean temperatures have increased globally since the middle of the 
20th century1.This phenomenon has been attributed to the human influence on climate2. Increase in global mean 
temperature has resulted in an even larger increase in the probabilities of extreme temperature events3–5. Recently, 
a large number of heat waves occurred in different regions6,7, causing considerable damage. It is expected that the 
frequency, duration and intensity of extreme heat events will increase in a future warmer climate8–10. Aside from 
climate change, global-scale modes of climate variability have also important influences on temperature extremes 
around the world. The links between temperature extremes and circulation patterns have been demonstrated in 
a number of studies11–13.

Rainfall Intensity-Duration-Frequency (IDF) curves are widely used tools for the planning, design and oper-
ation of water resources infrastructure14,15. IDF curves relate rainfall intensities corresponding to different dura-
tions to a series of return periods. A similar concept applied to temperature extremes16, referred to in this work as 
the Temperature-Duration-Frequency (TDF) curves approach, would be of interest for managers in a number of 
fields including healthcare, public security, agriculture and energy production.

In the only previous work on TDF curves, it was assumed that the characteristics of the probability distribu-
tion of extreme heat events are invariant through time16. However, temperature extreme characteristics change 
with time due to the influence of climate change and climate oscillation patterns. In this context, it is important 
to develop models for temperature extremes that account for external forcings. One approach to handle nonsta-
tionarity in temperature extremes is to make the parameters of the temperature extremes distribution dependent 
on covariates representing climate variability and change17. A covariate representing time can be used to account 
for the eventual temporal trend caused by climate change, and covariates representing climate indices can be 
introduced to take into consideration the influence of climate oscillation patterns.

The mathematical formulation of the non-stationary TDF curves presented here follows the one of the 
general IDF relationship (see Methods) but extended to the non-stationary case. In this formulation, a single 
model is defined in which the duration is a parameter. This model differs from other recent works introducing 
non-stationarity in IDF curves where an independent model is defined for each duration. Maximum tempera-
tures are modeled with the Generalized Extreme Value (GEV) distribution, a 3-parameter distribution widely 
used to model climatic extremes.

Such a nonstationary tool would be particularly useful in adaptive management, a structure process of deci-
sion making in condition of uncertainty18. This concept has been used, for instance, in the fields of agriculture19, 
health care20 and water resources21,22. Adaptive management is expected to become an important tool for public 
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health policy makers where knowledge concerning trends in climate extremes can be used for mitigation and 
preparedness23. Non stationary TDF curves can also be used to integrate information concerning future temper-
ature extreme characteristics in the design, operation, and safety analysis of thermal and nuclear power plants24.

Results
Modelling of extreme temperature with nonstationary TDF curves. The nonstationary TDF 
approach proposed here is applied to observed daily maximum temperatures at meteorological stations in the 
Province of Quebec (Canada). Six meteorological stations with long series and recent data were selected. Table 1 
presents the selected stations with their coordinates and the parameters obtained for the stationary TDF approach. 
To build the TDF curves, the annual maximum of multi-day averages of daily maximum temperatures over dura-
tions of 1 to 7 and 10 days (a total of 8 durations) during the summer season (June-August) were extracted for 
each station. The slope of the annual maximum temperature time series was computed for each duration using the 
Theil-Sen method. The slopes corresponding to all durations have a positive sign at all stations except for the sta-
tion of Quebec Intl. Airport where the slopes are negative for all durations (Supplementary Table 1). An analysis of 
the trends with the non-parametric Mann-Kendall statistical test reveals that, while trends are not generally signifi-
cant, positive significant trends are observed for most of the durations for the stations of Sherbrooke and Rimouski.

The Atlantic Multidecadal Oscillation (AMO) is a large scale pattern of multidecadal variability related to 
variations of the sea surface temperature in the North Atlantic Ocean. Several examples of regional multidec-
adal climate variability have been related to the AMO including for the North American and European sum-
mer climate25. AMO is known to have the most important influence on summer temperature extremes in North 
America26 and is selected here to be included as covariate in the nonstationary TDF approach. Annual AMO 
time series for the summer season are obtained by averaging the monthly values over the summer months 
(June-August) of each year. Correlations of summer AMO with the annual maximum temperatures for the differ-
ent durations at the six stations are computed and the Student’s t-test reveals that correlations are significant at a 
significance level of 5% for most of the durations (Supplementary Table 2).

In the nonstationary framework, we consider the location and scale parameters of the GEV distribution in the 
TDF relationship to be dependent upon the covariates. The variables “Time” representing the year, and the climate 
index AMO for the summer season, are used as covariates (see Methods). One nonstationary model uses Time 
as covariate (denoted TDF model “Time”), a second uses AMO (denoted TDF model “AMO”) and a third model 
uses both covariates together (denoted TDF model “Time + AMO”). The parameters of the TDF relationships are 
estimated with the maximum composite likelihood method (see Methods for details). The criterion CL-AIC (see 
equation (14) in Methods), an analogue of the Akaike information criterion (AIC), is used for model comparison.

Table 2 presents the maximized independence log-likelihood, the CL-AIC statistic and the model parameters 
for each TDF model and each station. For a given station and a given selection of covariates, the table presents only 
the best model among the linear and quadratic relationships presented in equations (6–9) according to the CL-AIC 
statistic. Table 2 shows that the linear relationship is selected by CL-AIC in all cases except in the case of Montréal 
where a quadratic relationship is selected when the covariate is time. In all cases, with respect to the CL-AIC crite-
rion, the goodness-of-fit is improved when a nonstationary model is used. For the majority of stations, the model 
with only AMO obtains the best CL-AIC values. This means, that for most stations, the influence of the climate 
oscillation pattern is more important than the temporal trend. This result is in agreement with the fact that corre-
lations with the AMO index are more significant than temporal trends. For the Quebec and the Rimouski stations, 
the best goodness-of-fit is obtained with a combination of covariates Time and AMO. This indicates that in some 
cases the combination of the two covariates has significant impacts on extreme temperatures.

Stationary TDF curves and similar relationships (e.g. IDF curves) are generally represented on graphs with 
the intensity plotted against the duration where each curve represents a return period. Such representation is not 
possible with nonstationary TDF curves. With one covariate, TDF surfaces can be well defined and it is possible 
to represent them with 3D graphs of the intensity against the duration and the covariate. Two examples of such 
graphs are presented in Fig. 1a for Sherbrooke with the TDF model “Time” and in Fig. 1c for Montréal with the 
TDF model “AMO”. Curves of the 3-day maximum temperatures against the covariate are also illustrated for the 
same examples in Fig. 1b–d. These curves represent cross sections of the TDF surfaces for fixed durations. A 
positive temporal trend with a decreasing variance can be observed for Sherbrooke and a linear positive relation-
ship with AMO can be observed for Montréal. For Sherbrooke, the location and the scale parameters are related 
linearly to the covariate Time, and for Montréal, the location parameter is related linearly to the covariate AMO. 
With two covariates, it is possible to represent TDF surfaces with 3D graphs of the intensity against each covariate 
for separate durations or separate return periods. Examples of such illustrations are presented in Supplementary 
Fig. 10, where the 3-day maximum temperatures are plotted against Time and AMO for each station.

Station Latitude Longitude Period μ σ κ θ η

Montréal Intl. Airport 45.47 −73.74 1941–2015 35.48 1.71 −0.22 1.94 0.09

Quebec Intl. Airport 46.80 −71.38 1943–2016 36.52 1.83 −0.23 2.77 0.11

Sherbrooke 45.44 −71.69 1962–2015 36.88 1.68 −0.35 3.54 0.12

Rimouski 48.45 −68.52 1953–2016 33.54 1.97 −0.30 1.05 0.11

Bagotville 48.33 −71.00 1943–2016 36.26 2.12 −0.31 1.35 0.12

Ste-Anne-de-la-Pérade 46.58 −72.23 1950–2016 35.03 1.76 −0.17 1.99 0.10

Table 1. Description of selected stations and parameters of the stationary TDF curves.
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Impacts of considering nonstationarity. To illustrate the impacts of considering nonstationary TDF 
curves instead of the classical stationary model, Fig. 2 presents, for each station, graphs of the 10-year quantiles 
versus the duration for the stationary TDF model and the nonstationay TDF models for values of the covariates 
representing different scenarios. For the nonstationary TDF model with Time as covariate, the case for the last 
year of record is considered. This model represents the most probable TDF relationship for the last year of record 
when only the temporal trend is considered. For the nonstationary TDF models “AMO” and “Time + AMO”, the 
years with the largest and lowest values of AMO during the period 1941–2016 are identified to illustrate extreme 
cases (1974 and 1998 for which AMO was respectively at the values −0.47 and 0.51). For the nonstationary TDF 
model “AMO”, the two observed extreme values of AMO during these two years were considered. Finally, for the 
nonstationary TDF model “Time + AMO”, these two years and their corresponding AMO values were considered.

Figure 2 illustrates the importance of considering climate variability when building TDF curves, as large 
discrepancies in quantiles are obtained for different years and for different nonstationary models. The mean 
difference between the quantiles of the two years selected for the TDF model “Time + AMO” is about 1.8 °C. 
In general, the climate index has much more impact than the temporal trend on the quantiles. For instance, 
quantiles obtained with the TDF model “Time” at the Sherbrooke, Rimouski and Bagotville stations are very 
similar to the ones obtained with the stationary TDF model. On the other hand, quantiles obtained with models 
including AMO are very different from the ones obtained with the stationary models. In general, the TDF model 
“Time + AMO” leads to very similar quantiles to the ones obtained with the TDF model “AMO”. The only excep-
tions are for the Quebec and Rimouski stations where the quantiles for the years 1974 and 1998 are distinct for 
these two models. These two stations are also the ones for which the TDF model “Time + AMO” obtains better 
goodness-of-fit statistics than the TDF model “AMO”. These last results can be explained by the fact that no 
important temporal trends are detected in the majority of time series while significant correlations are observed 
with AMO for the majority of durations for all stations.

Discussion
This study proposes a nonstationary approach to the development of TDF curves. With this approach, parameters 
of the TDF relationship are conditional upon time-dependent covariates representing climate change and climate 
oscillation patterns (Climate variability). We found that the goodness-of-fit is improved when using a nonsta-
tionary approach with covariates related to climate variability. For most stations in the study area, the impacts of 
considering the temporal trend on quantiles are lower than the impacts of considering the climate index AMO. 
This illustrates the importance of introducing climate indices in nonstationary models. Future work may focus on 
the introduction of additional relevant low frequency climate oscillation indices in the nonstationary TDF model. 
For the study area considered in the present work, few significant trends are detected in the annual maximum 

Station Model  ind CL-AIC Model parameters

Montréal Intl. Airport

Stationary −1084.2 2205.5 μ, σ, κ, θ, η

Time −1068.0 2200.7 μl = μ0 + μ1Time + μ2Time2, σ, κ, θ, η

AMO −1064.7 2179.7 μl = μ0 + μ1AMO, σ, κ, θ, η

Time + AMO −1064.7 2194.3 μl = μ0 + μ1Time + μ2AMO, σ, κ, θ, η

Quebec Intl. Airport

Stationary −1083.7 2203.1 μ, σ, κ, θ, η

Time −1074.7 2197.2 μ, σl = σ0 + σ1Time, κ, θ, η

AMO −1068.7 2187.8 μl = μ0 + μ1AMO, σ, κ, θ, η

Time + AMO −1046.3 2175.8 μl = μ0 + μ1Time + μ2AMO,
σl = σ0 + σ1Time + σ2AMO, κ, θ, η

Sherbrooke

Stationary −704.9 1443.4 μ, σ, κ, θ, η

Time −686.2 1429.6 μl = μ0 + μ1Time, σl = σ0 + σ1Time, κ, θ, η

AMO −674.2 1394.8 μl = μ0 + μ1AMO, σ, κ, θ, η

Time + AMO −663.8 1404.7 μl = μ0 + μ1Time + μ2AMO,
σl = σ0 + σ1Time + σ2AMO, κ, θ, η

Rimouski

Stationary −912.7 1856.0 μ, σ, κ, θ, η

Time −884.2 1815.6 μl = μ0 + μ1Time, σl = σ0 + σ1Time, κ, θ, η

AMO −893.4 1829.2 μl = μ0 + μ1AMO, σ, κ, θ, η

Time + AMO −872.2 1810.4 μl = μ0 + μ1Time + μ2AMO,
σl = σ0 + σ1Time + σ2AMO, κ, θ, η

Bagotville

Stationary −1139.6 2309.1 μ, σ, κ, θ, η

Time −1139.5 2317.4 μ, σl = σ0 + σ1Time, κ, θ, η

AMO −1123.8 2289.6 μl = μ0 + μ1AMO, σ, κ, θ, η

Time + AMO −1123.8 2302.8 μl = μ0 + μ1Time + μ2AMO, σ, κ, θ, η

Ste-Anne-de-la-Pérade

Stationary −988.6 2016.7 μ, σ, κ, θ, η

Time −984.6 2021.4 μ, σl = σ0 + σ1Time, κ, θ, η

AMO −959.5 1971.2 μl = μ0 + μ1AMO, σ, κ, θ, η

Time + AMO −958.3 1982.9 μl = μ0 + μ1Time + μ2AMO, σ, κ, θ, η

Table 2. Statistics and model parameters for the stationary and nonstationary TDF curves.
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temperature series. However, this may not be the case in other parts of the world where increasing heat wave 
frequency and intensity are reported7,10,13.

Nonstationarity in TDF curves, IDF curves or similar tools have not been introduced until recently14,27. The 
general procedure presented in this work can be applied to other variables such as precipitations (IDF curves) and 
floods (QDF curves) for which the influence of climate variability is relatively well documented28–30. The nonsta-
tionary TDF model can be useful in adaptive management where predictions of the evolution of extreme values 
are needed. This approach will allow integrating information concerning future extreme temperature character-
istics in a number of applications such as the analysis of the safety of thermal and nuclear power plants. Indeed, 
the efficiency and safety of thermal and nuclear power plants are heavily affected by heatwaves by increasing the 
scarcity and temperature of cooling water and by reducing thermal efficiency24.

The approach proposed herein is useful if nonstationay models can be built for the near future. To achieve 
this, the covariate related to the temporal trend can be easily extrapolated. However, in the present approach, the 
climate index used is measured during the same period as the extreme temperature events (i.e. June-July-August). 
This is a limitation for prediction as the value of the climate index is unknown in the future. However, it is possible 
to predict climate indices26,31 and use these predictions in nonstationary TDF curves.

Methods
Nonstationary TDF relationship formulation. To build TDF curves, the time series of maximum aver-
age temperatures are derived from the daily maximum observed temperatures. For each year, the maximum 
average temperature value is extracted for a number of D durations dk, k = 1, …, D. The maximum average tem-
perature for year l, denoted by Tl(d), l = 1, …, n, is obtained using a moving average window during the summer 
season of June-August (JJA). In this formulation, n is the number of years with measurements and d ∈ [d1, dD].

The return level of T(d) for a return period of R years, denoted by tR(d), is given by:

= .t d a R
b d

( ) ( )
( ) (1)R

In this formulation, tR(d) has a separate functional dependence on the return period R and the duration d. The 
function a(R), determined by the distribution of T(d), defines curves that are parallel for different return periods 
R. The function b(d) models the shape of the TDF curves as a function of the duration d and can be expressed by:

θ= + ηb d d( ) ( ) , (2)

Figure 1. Nonstationary TDF surfaces and 3-day maximum temperatures against the covariate at Sherbrooke 
and Montréal stations. Nonstationary TDF surfaces are presented for the stations at Sherbrooke (a) and 
Montréal (c) with the covariates Time and AMO respectively. The 3-day maximum temperatures are 
represented for the stations of Sherbrooke (b) and Montréal (d) against the covariates Time and AMO 
respectively. Red dots represent observations. (b,d) are cross sections in (a,c) respectively.
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where θ and η are the shape parameters subject to the inequality constrains that θ > 0 and 0 < η < 1.
If FT(d) (t; d) denotes the distribution function of T(d), the scaled maximum average temperature Y = T(d) b(d) 

will also be distributed as FT(d) (t; d) (i.e. = = −F t d F y( ; ) ( ) 1T d Y R R( )
1 ). Since a(R) is the return level of T(d), the 

following expression is obtained:

=


 −



.−a R F

R
( ) 1 1

(3)Y
1

The Gumbel and the GEV are the probability distributions that are the most widely used to model climate 
extremes. The GEV is the limiting distribution for block maxima and includes the Gumbel distribution as a sub-
set32. The GEV is used here to model T(d). The cumulative distribution function of the GEV is given by:

κ μ
σ

=
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κ−

F x x( ) exp 1 ,
(4)

1/

where μ, σ and κ are the location, scale and shape parameters respectively. F(x) is defined for 1 + κ(x − μ)/σ > 0 
where σ > 0. The general TDF relationship assuming that T(d) follows the GEV distribution is then given by the 
following expression:

μ

θ
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1 log 1
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In the nonstationary case, the distribution parameters are made dependent on covariates which can represent 
a climate oscillation index or time. The shape parameter of the GEV is usually kept constant in nonstationary 
analysis33,34. In this study, all shape parameters, including the parameter κ, θ and η, are also kept constant. Let us 
denote Ul and Vl, the values during the lth year of two time-dependent covariates U and V. For non-stationary 
models with one covariate, the location parameter can be stationary or can depend linearly or quadratically on Ul:

μ

μ
μ μ

μ μ μ
=










+

+ +

U

U U (6)
l l

l l

0

0 1

0 1 2
2

and the scale parameter can be stationary or can depend linearly on Ul:

Figure 2. Comparison of the 10-year quantiles for the stationary TDF model and the nonstationary TDF 
models. 10-year quantiles for the stationary TDF model, the nonstationary TDF model Time for the case of 
the last year of record, the nonstationary TDF model AMO for the largest and lowest observed values of AMO 
(−0.47 and 0.51) and the nonstationary TDF model Time + AMO for the 2 years with the largest and lowest 
observed values of AMO (1974 and 1998) and their corresponding values.
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σ
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σ σ= + .{ U (7)l

l

0
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For non-stationary models with two covariates, the location parameter can be stationary or can depend line-
arly or quadratically on Ul and Vl:
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and the scale parameter can be stationary or can depend linearly on Ul and Vl:

σ
σ
σ σ σ= + + .{ U V (9)l

l l

0

0 1 2

The non-stationary models are built by considering any combinations of the models in equations (6) and 
(7) for one covariate and any combinations of the models in equations (8) and (9) for two covariates (the cases 
where both distribution parameters are constant are excluded since this is equivalent to the stationary model). 
For models with two covariates, it is not allowed for μl(σl) to depend only on one covariate and σl(μl) to depend 
only on the other covariate (see equations (8 and 9)). The relations of the distribution parameter σl with covariates 
are made constant or linear for the aim of obtaining simpler models considering that the number of parameters 
to be fitted increases rapidly with the complexity of the model, and that the size of the record may become a 
limiting factor. Parsimony considerations need to be taken into account in the selection of the optimum model 
to be adopted. The two covariates introduced in the nonstationary approach are the climate index AMO during 
summer and the year number denoted by Time. To obtain the AMO time series, the average of the AMO values 
over the months of the summer season (JJA) is computed. The covariate Time is defined by a series of integers 
incremented from 1 to the number of years of observed data.

Maximum composite likelihood method. The vectors of the distribution parameters ψ = (μ, σ, θ, η) 
and ψ = (μ0, μ1, …, σ0, σ1, …, κ, θ, η) need to be estimated for stationary IDF curves and non-stationary IDF 
curves respectively. The method used here for the estimation of the parameters is the maximum composite like-
lihood. The characteristics and formulation of the nonstationary TDF model make it necessary to adopt this 
method instead of the classical maximum likelihood approach. Indeed, while observations from year to year are 
independent, the maximum temperatures over the different durations for the same year are dependent. Let us 
define f(t; ψ, α), the joint probability density of the random vector T = {T(d1), …, T(dD)} where α is a parameter 
vector that parameterizes the interdependence between temperatures corresponding to different durations and ψ 
parameterizes the marginal structure35. The full likelihood is then given by:

∏ψ ψ α= …
=

L t f t t( ; ) ( , , ; , ),
(10)l

n

l Dl
1

1

where tkl denotes the maximum average temperature for the year l and for the duration group k. However, the 
joint density f(t; ψ, α) is unknown, making the estimation of the full likelihood difficult. To overcome this diffi-
culty, a simplified likelihood function for TDF curves is obtained by assuming the independence of the tempera-
tures over the different durations36,37. This function is referred to as the independence likelihood35 and is given by:

∏ ∏ψ ψ=
= =

( )L t f t( ; ) ; ,
(11)

ind
j

D

l

n

jl
1 1

where f(t; ψ) represents the density function of T(d). The independence likelihood can be considered as the sim-
plest case of a composite likelihood defined as an inference function derived by multiplying a set of component 
likelihoods38. Composite likelihood is used in several applications as surrogate for the full likelihood when it is 
too cumbersome or impractical to compute39. If T(d) is assumed to follow a GEV distribution, the probability 
function of T(d) is given by37:

μ σ κ∼ .T d d d( ) GEV( ( ), ( ), ) (12)

In the non-stationary case, the distribution parameters μ(d) and σ(d) are expressed by:

μ
μ

θ
σ

σ
θ

=
+

=
+

.η ηd
d

d
d

( )
( )

, ( )
( ) (13)l

l
l

l

In practice, the log likelihood ψ ψ= t L t( ; ) log ( ; )ind ind  is maximized instead of Lind(ψ; t) with an optimiza-
tion procedure. The optimization function fmincon in Matlab® is used to find ψ̂, the estimate of ψ that maximizes 
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ψ t( ; )ind . The algorithm used (interior-point) ensures that σl > 0: if σl < 0 for an iteration, the objective function 
returns a “not-a-number” value, the iterate is rejected and the next step is attempted.

For model comparison, information criteria such as the Akaike information criterion (AIC) or the Bayesian 
information criterion (BIC) are frequently used. Such criteria account for the goodness-of-fit and penalize more 
complex  mo dels .  L et  ψ ψ= − ∇  TH( ) E[ ( ; )]ind

2  b e  the  s ens it iv ity  or  Hess ian  matr ix  and 
ψ ψ= ∇ TJ( ) Var{ ( ; )}ind  be the variability matrix. Because of the assumption of independence among the like-

lihood terms in the definition of the independence likelihood, composite likelihood can be seen as a misspecified 
likelihood. In that case, the second Bartlett identity fails (i.e. H(ψ) ≠ J(ψ)) and classical criteria should be gener-
alized. Analogous criteria for AIC and BIC based on composite likelihoods were introduced39 and have the fol-
lowing forms38:

ψ ψ= − +‐ ˆ tCL AIC 2 ( ; ) 2dim( ), (14)ind

ψ ψ= − +‐ ˆ t nCL BIC 2 ( ; ) dim( ) log( ), (15)ind

where dim(ψ) is the effective number of parameters estimated by tr{J(ψ)H(ψ)−1}. The sample estimate of the 
sensitivity matrix H can be obtained by:

∑ψ ψ= − ∇
=

ˆ ˆ
n

u tH( ) 1 ( ; ),
(16)l

n

l
1

where ψ ψ= ∇u t t( ; ) ( ; )l ind l  and tl denotes the vector of maximum average temperatures for the year l. 
However, the cumbersome computation of the Hessians in equation (16) can be avoided. Given that the second 
Bartlett identity is valid for each individual likelihood term38, the matrix H can be obtained by the following sam-
ple estimate:

∑ ∑ψ ψ ψ= .
= =

ˆ ˆ ˆ
n

u t u tH( ) 1 ( ; ) ( ; )
(17)k

D

l

n

kl kl
1 1

T

The sample estimate of the variability matrix J can be obtained empirically by38:

∑ψ ψ ψ= .
=

ˆ ˆ ˆ
n

u t u tJ( ) 1 ( ; ) ( ; )
(18)l

n

l l
1

T

Data Availability
The maximum daily temperature data for Canada is freely available online from the Government of Canada: 
http://climate.weather.gc.ca/historical_data/search_historic_data_e.html. The monthly values of the climate in-
dex AMO are freely available online from the Earth System Research Laboratory of the National Oceanic and 
Atmospheric Administration: https://www.esrl.noaa.gov/psd/data/timeseries/AMO/.
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