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Abstract 

Using density functional theory, we have performed a comparative study between 

unstrained multiferroic Bi2FeCrO6 (BFCO) and BFCO epitaxially strained on SrTiO3 

(STO) substrate. We have compared the predicted structural, magnetic, and electric 

properties in order to understand the effect of epitaxial strain. In this work, all 

calculations were performed using the LSDA+U formalism implemented in the VASP 

code and used a 8×8×8 Monkhorst-Pack grid of k- points and a cutoff energy of 500 eV.  

We have first investigated the properties of the unstrained system that has a 

rhombohedral symmetry and belongs to the R3 space group, with lattice parameters 

arh=5.47Å and αrh=60.09°. The lattice parameters of the BFCO unit cell obtained through 

spin-polarized calculations and complete relaxation. The results revealed small 

differences with what has been reported in literature. The differences are chiefly in the 

contribution of Fe and Cr to the total magnetic moment, the energy of the fully optimized 

structure, as well as the position of some ions. The total magnetic moment per unit cell of 

the ferrimagnetic high spin (FiMHS) and ferromagnetic high spin (FMHS) configurations 

are 1.987 μB and 7.66 μB, respectively, while that of the ferrimagnetic low spin (FiMLS) 

and ferromagnetic low spin (FMLS) configurations results in values of 3.8 μB and 1.88 μB, 

respectively. For completeness, the ionic charges, as well as the density of state have been 

calculated. Despite slight differences, our results are in overall agreement with what has 

been reported in the literature. 

Secondly, we have investigated the effect of the epitaxial strain on the electronic and 

magnetic properties of the BFCO system. To this end, the lattice parameters of the 

rhombohedral BFCO unit cell have been fixed to the STO parameters in the plane of the 

BFCO/STO interface and the out-of-plane lattice parameter has been varied. We found 

that FiMHS remains the ground state configuration of the BFCO system under the 

epitaxial constraint of STO. The influence of the epitaxial deformation imposed by the 

STO substrate mainly manifests itself in the ionic contribution to spontaneous 

polarization by inducing a change of 7.64 μC cm-2 for the the ground state (FiMHS), and 

producing a total polarization estimated at 90.24 μC cm-2, as compared to 79.24 μC cm-2 
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in the unstrained case. The magnetic moments of the constrained and unconstrained 

BFCO are very similar, the main difference being observed for the FiMLS phase, with 

1.905 μB instead of 1.880 μB. Finally, we have calculated the density of states. Comparing 

with the case of the system without constraint, we  found  that  the  band  gap  remains 

practically  unchanged  for  FiMHS,  is  reduced  by  0.1  eV  (-10%)  for  FMHS,  and  

almost vanishes for FMLS and FiMLS. 
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Introduction  

Nowadays, the ongoing development of theories leading to the design of numerical 

algorithms and of electronic structure software packages has enabled the study of quite 

complicated physical systems with high reliability and in a reasonable time. Ab initio 

density functional theory (DFT), which is built on the first principles of quantum 

mechanics, has proven to be an astonishing tool, very successful in material science as 

well as in other fields. The DFT formalism relies on the electron density, instead on the 

wave function, in order to determine the ground state properties of a system of electrons 

without the need of empirical adjustable parameters.  

DFT has been widely used to investigate the properties of interest in many materials. As 

such, it has also been among the techniques used to predict the properties of a family of 

materials called multiferroics. The formal definition of a multiferroic material is the 

simultaneous presence of more than one ferroic order in the same phase. In most cases, 

multiferroic materials show a ferroelectric order (often accompanied by a ferroelastic 

order) and a ferromagnetic or antiferromagnetic order [1]. Such a multiplicity of 

physiochemical properties in a single material, with promising potential applications 

(such as controlling the magnetic properties of the multiferroic material electrically), has 

attracted a significant attention. Therefore, theoretical and experimental studies are 

currently being dedicated to gain fundamental understanding of the magnetic and electric 

properties of single-phase multiferroic crystals. The valuable properties of multiferroics 

are mainly related to the presence of the magnetoelectric effect (interplay between 

electrical polarization and magnetization), which gives these materials their great 

significance in terms of the variety of applications they could potentially enable, 

particularly in electronic devices. Several bismuth-based double perovskites of the 

Bi2BB’O6 family, such as Bi2FeCrO6 (BFCO), Bi2FeMnO6 (BFMO), and Bi2NiMnO6 

(BNMO) are promising candidates exhibiting multiferroism [2] [3] [4]. 

BFCO was designed by combining its parents, the Bi-based BiFeO3 (BFO) and BiCrO3 

(BCO) in a unit cell. BFCO has attracted intensive attention in particular after the 

experimental observation of multiferroicity at room temperature exceeding the properties 
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predicted by DFT calculations [5]. The first DFT calculations to investigate BFCO 

properties were done by Baettig et al., and they reported that the lowest energy structure 

belongs to the R3 symmetry group with a rhombohedral distorted unit cell, with 𝑎𝑟ℎ = 

5.47 Å and 𝛼𝑟ℎ = 60.09o. The B-site of the rhombohedral structure is occupied by alternate 

Fe3+ and Cr3+ ions with a perfect ordering along the (111) direction. Ferromagnetism and 

insulating properties stem from superexchange interaction of the spatial spin 

arrangement of Fe-d5 and Cr-d3 cations, while the ferroelectricity is attributed to the Bi3+ 

with the stereochemically active 6s2 lone pair of electrons. An estimation of the magnetic 

Curie temperature of the BFCO system was provided by calculating the exchange coupling 

constant of nearest neighbors through the mean-field approximation. Baettig et al. work 

clearly highlighted promising multiferroic properties with electric polarization of 

80 μC. cm−2 and magnetic moment of 2 μB per formula unit (f.u.) for the ferrimagnetic 

ground state configuration of BFCO [6][7]. Since then, the experimental efforts relied on 

thin film deposition techniques, whereby strain engineering is used to enhance the 

multifunctional properties of BFCO epitaxial thin films. The growth of BFCO thin film 

was successfully obtained on SrTiO3 (STO) substrate with a measured magnetic moment 

of 1.91 μB/f. u. and a remenant polarization of 60 μC. cm−2 [5]. These experimental findings 

are consistent with the DFT calculation of Ref. [6], although those calculations were done 

at 0 K while the ferroelectric and magnetic measurements were performed at room 

temperature. Calculations of Ref. [9], performed using advanced computational 

techniques, predicted a Curie temperature of ~450 K. It has been recognized that the 

properties of materials with a perovskite structure, in particular those with a double-

perovskite structure, are strongly sensitive to the influence of epitaxial strain [10]. 

Epitaxial strain is commonly used experimentally to control the thin film properties, and 

it can be simulated theoretically. When a thin film (single crystal) grows on the top of a 

crystalline substrate, it keeps the symmetry of the crystallographic plane forming the 

substrate surface and also tries to keep the lattice constants of this plane, and the 

overlayer is said to have grown epitaxially. The crystallographic structure of the 

monocrystalline overlayer thus depends on the arrangement of the atoms in the substrate 

as well as on it crystallographic orientation. For the case of the growth of BFCO film on 

STO, the structure of the film is deformed due to slightly different lattice parameters 
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(lattice mismatch) of the two materials. Hence, in heteroepitaxy (growth of a film of a 

different material than the substrate), the effects of strain are unavoidable and can 

influence significantly the physical properties of the investigated epitaxial thin films.  

The progress in materials modeling opens the possibility to simulate the experimentally 

observed strain effects. Epitaxial strain can be implemented in DFT calculations by fixing 

the in-plane lattice parameters (a and b) which are related to the substrate, whereas 

relaxation of the remaining structural parameters is permitted in accord with the global 

energy minimum under epitaxial constraint [7]. In this regard, the influence of epitaxial 

strain on several Bi-based perovskite structures have been investigated. Unstrained 

bismuth ferrite BFO exhibits a polarization of 96 μC cm−2 with a very weak net 

ferromagnetic moment, whereas epitaxial strain calculations predicted a high intrinsic 

polarization up to 150 μC. cm−2 when the tetragonal BFO structure is strongly elongated 

out of the plane [10]. This predicted giant ferroelectricity was indeed experimentally 

observed [11]. Double perovskite BFMO is another single-phase multiferroic candidate 

that has been investigated theoretically and experimentally demonstrated. Recently, 

experimental measurements at room temperature reported that BFMO-strained thin 

films have a magnetization value of 1.16 μB/f. u. [12]. The stable sate of the fully relaxed 

BFMO thick film predicted from non-magnetic DFT calculations has a monoclinic 

symmetry. In addition, a self-consistent calculation carried out on strained tetragonal 

BFMO predicted that the total magnetic moment depends on epitaxial strain: for a 

particular c/a ratio of 1.27, the total magnetic moment was found to be 1.11 μB/f. u. while 

for c/a = 1.45 (experimental ratio of BFMO/STO films), the magnetic moment found was 

1.05 μB/f. u. [13][14]. Regarding recent work on BFCO, magnetic and electronic properties 

were computed by Goffinet et al. within the DFT framework [15]. Four possible magnetic 

configurations were examined for 4 cases of spin ordering, namely FiMLS, FiMHS, FMLS 

and FMHS, i.e. an antiparallel spin arrangement (ferrimagnetic – FI) and a parallel spin 

arrangement (ferromagnetic – FM), for both high spin (HS) and low spin (LS) 

configurations of iron. The results showed that the FiMHS configuration represents the 

ground state of the BFCO system with a magnetic moment of 2 μB per unit cell (in 

agreement with previous works), while the FMHS is predicted to have a slightly higher 

energy than the ground state. They found that reducing the volume of the unit cell leads 
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to a crossover between FiMLS and FiMHS as the lowest energy state (however, both states 

have the same magnetic moment of 2 μB). More recently, DFT was employed in order to 

investigate the influence of epitaxial strain on BFCO by using a tetragonal supercell 

involving 20 atoms. Interestingly, a magnetic moment of 2 μB/f. u. was reported [16].  

The main objectives of this work are to investigate the properties of epitaxially strained 

rhombohedral BFCO on a STO substrate within the framework of DFT calculations in 

order to compare the obtained results with those obtained for unstrained BFCO. As we 

mentioned previously, it is expected that BFCO properties are affected by the epitaxial 

strain and, toward this end, we imposed the value of the STO lattice parameter to the 

pseudo-cubic lattice parameter of rhombohedral BFCO in order to simulate the strained 

BFCO epitaxial thin film. In the simulation, we fixed the in-plane parameters and varied 

manually the out-of-plane parameter of the unit cell. We performed full relaxation within 

these constraints. In contrast, all the structural parameters of unstrained BFCO are fully 

relaxed. Electric and magnetic properties were investigated in both cases. At the end, we 

come up with a comparison between strained and unstrained BFCO. 
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Chapter 1. DENSITY FUNCTIONAL THEORY 
 

1.1 Background 
 

The first vision of density functional theory (DFT) started from Thomas and Fermi (TF) 

in 1920. The TF model was designed to calculate the electron distribution inside the atom. 

In 1928, Dirac improved the TF work by adding exchange energy density. However, the 

theory of Thomas-Fermi-Dirac was inaccurate for most applications due to the weak 

representation of the kinetic energy as a function of the electron density and to the 

absence of electron correlation in the model. Ab initio (first principles) methods with 

various approximations and assumptions have been developed to study the properties of 

many-body-systems [1]. The Hartree-Fock (HF) method is the simplest ab initio method 

for treating interacting systems. This method assumes that the electron can affect the 

average potential created by the other electrons. In fact, considerable complications occur 

due to considering single electron orbitals and solving many wave functions. The difficulty 

of using HF calculations increases as the number of electrons goes up [2].    

In 1964, Hohenberg and Kohn introduced the bases of DFT. Their main idea was to 

determine the electronic ground state energy of the system from the electron density. 

According to their work, the electron density of the ground state not only uniquely 

determines the total energy of the ground state but also all the other system’s properties. 

Since the electron density is a single three-dimensional distribution in space, there is no 

need to calculate the wave function of each electron in the system as in the HF method. 

In order to specify the energy of the ground state corresponding to the electron density, 

it is necessary to formulate a functional relating these two quantities.  

The year after, Kohn and Sham introduced the exchange correlation functional, which 

relates the electron density to the ground state energy. The Kohn-Sham method is a 

mathematical model based on a non-interacting electrons system. In their approximated 

approach, the exchange correlation functional takes into account the quantum interaction 

between electrons [3].  

The main objective of this chapter is to introduce the basics of DFT, starting from the 

resolution of the non-relativistic Schrödinger’s equation.  
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1.2 Schrödinger’s Equation for Many Body Systems 

Resolving the Schrödinger’s equation for many body systems has been attempted since 

quantum mechanics emerged. Analytically, obtaining the exact solution for a system 

having more than two electrons is however impossible [4]. In quantum mechanics, all the 

observable quantities can be obtained from the system’s wave function Ψ. In a stationary 

system, this wave function is calculated from the non-relativistic time-independent 

Schrödinger’s equation, which for a distribution of electrons and nuclei can be written 

generally as 

                                                 {𝐻 − 𝐸}Ψ(𝑟, 𝑅) = 0                                             (1.1) 

where E is the total energy of the system and the Hamiltonian given by 

                                      𝐻 =  𝑇 + 𝑉𝑒−𝑒 + 𝑉𝑒−𝑛 + 𝑉𝑛−𝑛                                               (1.2) 

Here r and R represent collectively the positions of the electrons and of the nuclei, 

respectively. In  Eq. (1.2), T is the kinetic energy of the electrons and nuclei, 𝑉𝑒−𝑒 is the 

potential energy due to electron-electron interaction, 𝑉𝑒−𝑛 is the potential energy of the 

electron-nuclei interaction, and 𝑉𝑛−𝑛 is the nuclei-nuclei interaction. The wave function 

Ψ(𝑟, 𝑅) depends on the positions and spin coordinates of all N nuclei and n electrons in 

the system. 

In the following we use the atomic units ℏ = 𝑒 = 4𝜋𝜖0 = 𝑚𝑒 = 1. For a normalized 

distribution of electrons with coordinates 𝑟𝑖 and nuclei with charges 𝑍𝑎 and 

coordinates 𝑅𝑎, the terms of  Eq. (1.2) can be written (ignoring the spin-spin and spin-

orbit interactions here for simplicity), 

                                                           𝑇 =  −
1

2
{∑ ∇𝜇

2
𝜇 +  ∑

1

𝑀𝑎
𝑎 ∇𝑎

2}; 

𝑉𝑒−𝑒  = +
1

2
∑

1

⃓𝐫𝜇−𝐫𝑣⃓𝜇,𝑣(𝜇≠𝑣)   ;    

𝑉𝑒−𝑛  =  − ∑
𝑍𝑎

⃓𝐫𝜇−𝐑𝑎⃓𝜇,𝑎    ;      

𝑉𝑛−𝑛 =  +
1

2
 ∑

𝑍𝑎𝑍𝑏

⃓𝐑𝑎−𝐑𝑏
𝑎,𝑏(𝑎≠𝑏)  ; 
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The kinetic energy T involves a sum over all electrons (𝜇 = 1 → 𝑛) and nuclei (α = 1→ 𝑁 ). 

The electron-electron and nuclei-nuclei potentials are the sum over all combinations of 

distinct pairs. To avoid each pair from being counted twice, the potentials 𝑉𝑒−𝑒  and 𝑉𝑛−𝑛 

are multiplied by 
𝟏

𝟐
 . 

1.2.1  Born - Oppenheimer approximation (BOA) 

The BOA is a simplification that has been used almost in all methods to solve 

Schrödinger’s equation for atomic systems. It is well known that the charge magnitude is 

the same for electrons and protons while the mass ratio of electron to the proton is 1/1836. 

Since the mass of the nuclei is much greater than the electron’s mass, electrons can move 

much faster than the nuclei. Hence, the electron distribution will change rapidly with the 

variation of the nuclei field [5]. Therefore, it is possible to consider the position of the 

nuclei R as fixed relative to the electrons motion. Accordingly, BOA allows to decouple 

the total wavefunction into the electronic part and nuclear part. This is also called the 

adiabatic approximation. In this way, the total wave function for fixed nuclear 

arrangement, Ψ(𝑟, 𝑅), can be expressed as an expansion over the set of adiabatic electron 

wavefunctions 𝜑𝑘(𝑟, 𝑅):                            

                                          Ψ(𝐫, 𝐑) =  ∑ 𝜒𝑘(𝐑)𝜑𝑘(𝐫, 𝐑) 𝑘                                                  (1.3) 

where 𝜒𝑘(𝐑) is the expansion coefficients depending only on the parameter R. 

The 𝜑𝑘(𝐫, 𝐑) 𝑠atisfy the following wave equation for electrons: 

                         {−
1

2
∑ ∇𝜇

2
𝜇 + 𝑉𝑒−𝑒 + 𝑉𝑒−𝑛 + 𝑉𝑛−𝑛} 𝜑𝑘(𝐫, 𝐑) = 𝐸𝑘(𝐑)𝜑𝑘(𝐫, 𝐑)                   (1.4) 

where we assumed that the kinetic energy of the nuclei is zero. 

In order to obtain the nuclear wave function, we write the full Schrödinger  Eq. (1.1) as  

                           {−
1

2
 ∑

1

𝑀𝑛
𝑛  ∇𝑛

2 + 𝐻𝑒} Ψ(𝐫, 𝐑) = 𝐸Ψ(𝐫, 𝐑)                                     (1.5) 

Where He is the electron Hamiltonian expressed by the terms in brackets in  Eq. (1.4) (by 

convention, the constant 𝑉𝑛−𝑛 is also included in He).  Eq. (1.5) can also be written as 
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       ∑ 𝜑𝑘(𝐫, 𝐑) {−
1

2
∑

1

𝑀𝑛
𝑛 ∇𝑛

2 + 𝐸𝑘(𝐑) − 𝐸} 𝜒𝑘(𝐑)𝑘 = ∑ ∑
1

2𝑀𝑛
𝑛 {𝜒𝑘(𝐑)∇𝑛

2 𝜑𝑘(𝐫, 𝐑) +𝑘

        2∇𝑛𝜒𝑘(𝐑)· ∇𝑛𝜑𝑘(𝐫, 𝐑)                                                                                                           (1.6)           

which is decoupled from the electronic movement. Considering  Eq. (1.6) together with  

Eq. (1.4), one sees that the description of the nuclear and electronic movements can be 

made separately [6]. 

 

1.3 Thomas –Fermi (TF) Model 

 
Thomas and Fermi considered an ideal system relying on the kinetic energy of non-

interacting electrons. The TF model approximates the electron distribution in the atom 

as a homogeneous gas [7]. If electrons behave as independent fermionic particles at zero 

Kelvin, the energy levels of the electrons in cubic potential well are given by   

                            𝐸( 𝑛𝑥  , 𝑛𝑦 , 𝑛𝑧) =  
𝜋2

2𝑙2  ( 𝑛𝑥
2 +   𝑛𝑦

2  +  𝑛𝑧
2 )                                       (1.7) 

 

where 𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧 are integer numbers and l is the length of the cubic edge. 

      The Fermi energy corresponds to the highest energy level for N electrons in a volume  

𝑉 = 𝑙3, respecting the Pauli principle, and is given by: 

                                                      𝜖𝐹(𝜌) =
1

2
(3𝜋2𝜌)2/3                                                      (1.8) 

where 𝜌 = 𝑁/𝑉 is the electron density. For this electron density, the kinetic energy density 

is given by 

                                        ∫ 𝜖𝐹
𝜌

0
(𝜌′)𝑑𝜌′ =

3

5
𝜖𝐹(𝜌)𝜌 = 𝐶𝐹𝜌5/3                                          (1.9) 

where 𝐶𝐹 =
3

10
(

3

8𝜋
)

2/3

. 

The total energy of a system, submitted to an external potential 𝑉𝑒𝑥𝑡(𝒓), thus depends only 

on the electron density ρ and is given by the sum of the kinetic and potential energies 

                𝐸𝑇𝐹 [𝜌] = 𝐶𝐹 ∫[𝜌(𝐫) ]
5

3⁄ 𝑑𝐫   + ∫ 𝜌(𝐫) 𝑉𝑒𝑥𝑡(𝐫)𝑑𝐫 + ∫ ∫
𝜌(𝐫)𝜌(𝐫′)

⃓𝒓−𝒓′⃓    
𝑑𝐫 𝑑𝐫′         (1.10)  
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 Eq. (1.10) shows that the electron density can be used instead of the wavefunction to 

describe the total energy of the electronic system.  

The TF model is accurate only if the system consists of one atom. Although the TF model 

fails to describe large systems, it is considered as the starting point to DFT (Hohenberg 

and Kohn theorem) [8].  

 

1.4 Hohenberg-Kohn Theorem (H-K theorem) 

The first H-K theorem states that for systems containing N electrons in an external 

potential V(r) (Coulomb potential usually generated by the nuclei), the external potential 

V(r) is completely determined by the electron density 𝜌(𝒓) associated with the ground 

state energy [9].  

To prove that, consider the Hamiltonian of a many-body system: 

        𝐻 = − ∑
1

2

𝑁
𝑖=1  ∇𝑖

2 +  ∑ 𝑈(𝐫𝑖 ,
𝑁
𝑖<𝑗  𝐫𝑗) + ∑  𝑉(𝐫𝑖

𝑁
𝑖=1 ) ≡  𝑇 + 𝑈 + 𝑉                  (1.11) 

 

where T is the kinetic energy, U the energy of electron-electron interaction, and V is the 

external potential. The electron density is defined as  

                                       𝜌(𝐫) = 𝑁 ∫|𝛹(𝐫, 𝐫2, … , 𝐫𝑁)|2 𝑑𝐫2 … … . 𝑑𝐫𝑁                                  (1.12) 

where Ψ is the electron wave function. Consider now a Hamiltonian 𝐻′ = 𝑇 +  𝑈 +  𝑉′ 

where 𝑉 − 𝑉′  ≠ 𝑐𝑜𝑛𝑠𝑡. The wave function of the ground state for 𝐻′ is Ψ′. Then we have 

the following inequality: 

                                                       𝐸′ =  ⟨Ψ′|𝐻′|Ψ′⟩  <  ⟨Ψ|𝐻′|Ψ⟩                                          (1.13) 

where 

⟨Ψ|𝐻′|Ψ⟩ =  ⟨Ψ|𝑇 + 𝑈 + 𝑉 + 𝑉′ − 𝑉|Ψ⟩  

                                                               = 𝐸 + ⟨Ψ|𝑉′ − 𝑉|Ψ⟩     

                                                       = 𝐸 + ∫ 𝜌(𝐫)[𝑉′(𝐫) − 𝑉(𝐫)]𝑑𝐫  
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Now, assume that the electron density ρ(r) is the same for both 𝐻 and 𝐻′. Then a similar 

inequality must hold when inverting the prime and nonprime quantities: 

𝐸 < 𝐸′ + ∫ 𝜌(𝐫)[𝑉(𝐫) − 𝑉′(𝐫)]𝑑𝐫 

Adding up the last two inequalities, one finds 𝐸′ + 𝐸 < 𝐸 + 𝐸′. This contradiction implies 

the impossibility of associating the same electron density ρ(r) to both external potentials 

𝑉(𝒓) and 𝑉′(𝒓). Therefore, the external potential is uniquely determined by the electron 

density ρ(r), as stated in the first H-K theorem. 

The second H-K theorem states that the ground state energy can be obtained from a 

variational principle, i.e. the density that minimises the total energy is the exact ground 

state density. The proof is also straightforward. We can represent the energy as the 

functional 

  𝐸[𝜌(𝐫)] =  ⟨Ψ|𝑇 + 𝑈|Ψ⟩ + ⟨Ψ|𝑉|Ψ⟩ =  𝐹[𝜌(𝐫)] + ∫ 𝜌(𝐫)𝑉(𝐫)𝑑𝐫                 (1.14) 

where 𝐹[𝜌(𝐫)] is a universal functional depending only on the electron density ρ(r). The 

variational principle states that: 

⟨Ψ′|𝑇 + 𝑈 + 𝑉|Ψ′⟩ >  ⟨Ψ|𝑇 + 𝑈 + 𝑉|Ψ⟩ 

We thus obtain:  

                                                             𝐸[𝜌′(𝐫)] > 𝐸[𝜌(𝐫)]                                             

which implies that the density that minimises the total energy is the exact ground state 

density and proves the theorem. 

 

1.5 Kohn-Sham (KS) Equations  

Since the kinetic energy of the system of interacting electrons is unknown, Kohn and 

Sham proposed to replace the system of interacting electrons by a system of non-

interacting electrons evolving in an effective potential, imposing that the electron density 

in the ground state is the same for both systems [10][11]. This amounts to replace the 

Hohenberg-Kohn functional (1.14) 
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𝐸𝐻𝑆[𝜌] =  𝐹[𝜌] + ∫ 𝜌(𝐫)𝑉(𝐫)𝑑𝐫  

by the following one 

                                                               𝐸𝐾𝑆[𝜌] =   𝑇𝐾𝑆[𝜌] + 𝐽[𝜌]                                                (1.15) 

where is 𝑇𝐾𝑆[𝜌] is the non-interacting kinetic energy and  

𝐽[𝜌] = 𝑉 + 𝑈 + (𝑇 − 𝑇𝐾𝑆) 

Therefore: 

      𝐸𝐾𝑆[𝜌(𝐫)] = − ∑ ⟨Ψ𝑖|
1

2
∇𝑖

2|Ψ𝑖⟩ 𝑖 +
1

2
 ∫ ∫

𝜌(𝐫)𝜌(𝐫′)

|𝐫−𝐫′|
 𝑑𝐫𝑑𝐫′ + 𝐸𝑋𝐶 [𝜌(𝐫)] + ∫ 𝜌(𝐫)𝑉(𝐫) 𝑑𝐫  

where the Ψ𝑖 form a set of functions (called orbitals) so that 

𝜌(𝐫) = ∑ 𝑓𝑖|Ψ𝑖(𝐫)|2

𝑖
 

where fi is the number of electrons in the orbital i (normally fi = 2). 

In 𝐸𝐾𝑆[𝜌], the first term is the kinetic energy and the second term is the Hartree term that 

takes into account the repulsion of the electron cloud. The term 𝐸𝑋𝐶[𝜌] is the exchange-

correlation term, which represents everything that is not taken into account by the other 

terms. The exchange term is a quantum mechanical effect producing a pseudo force 

between electrons that results from their undistinguishable nature. The correlation term 

describes the departure from the non-interacting electron assumption.  

The orbital functions Ψ𝑖 are obtained by minimizing the energy 𝐸𝐾𝑆[𝜌] under the 

orthonormal constraints ∫ Ψ𝑖
∗ (𝐫) Ψ𝑗 (𝒓)𝑑𝐫 = 〈Ψ𝑖| Ψ𝑗〉 = 𝛿𝑖𝑗. This is done using the 

variational method of Lagrange multipliers  

                                    𝛿{𝐸[𝜌(𝑟)] −  ∑ 𝜆𝑖𝑗𝑖𝑗  (∫ Ψ𝑖
∗ (𝒓) Ψ𝑗(𝒓)𝑑𝒓 − 𝛿𝑖𝑗)} = 0                     (1.16) 

where the operator 𝛿 denotes an arbitrary variation of Ψ𝑖. In this expression, the 𝜆𝑖𝑗 are 

the Lagrange multipliers such that 𝜆𝑖𝑗 =  𝛿𝑖𝑗𝜖𝑗 due to the orthonormality condition of the 

Ψ𝑖. One thus has to solve the following variation equation for 𝜌(𝒓) : 

                                     𝛿{𝐸[𝜌(𝐫)] −  ∑ 𝜖𝑖 ∫ Ψ𝑖
∗

𝑖 (𝐫)Ψ𝑖(𝐫) 𝑑𝐫 }    = 0                                     (1.17) 

The various terms in this equation can be developed as follows: 
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𝛿 ∑ ∫ Ψ𝑖
∗

𝑖

(𝐫)∇𝑖
2Ψ𝑖(𝐫) 𝑑𝐫 =  2Re [∑ ∫ 𝛿Ψ𝑖

∗(𝐫)∇𝑖
2

𝑖

Ψ𝑖(𝐫)] 

where Re denotes the real part of the argument. Furthermore, 

   𝛿 ∑ ∫ Ψ𝑖
∗

𝑖𝑗

(𝐫)Ψ𝑖(𝐫)
1

|𝐫 − 𝐫′|
 Ψ𝑗

∗(𝐫′)Ψ𝑗 (𝐫′)𝑑𝐫 𝑑𝐫′                                                               

=  4Re [∑ ∫ 𝛿Ψ𝑖
∗

𝑖𝑗

(𝐫)Ψ𝑖(𝐫)
1

|𝐫 − 𝐫′|
Ψ𝑗

∗(𝐫′)Ψ𝑗 (𝐫′)𝑑𝐫 𝑑𝐫′]               

In addition, 

𝛿 ∑ ∫ Ψ𝑖
∗

𝑖

(𝐫)Ψ𝑖(𝐫)𝑉(𝐫)𝑑𝐫 = 2Re [∑ ∫ 𝛿Ψ𝑖
∗

𝑖

(𝐫)Ψ𝑖(𝐫)𝑉(𝐫)𝑑𝐫] 

and, 

𝛿𝐸𝑋𝑐[𝜌(𝐫)] =
𝛿𝐸𝑋𝑐

𝛿𝜌(𝐫)
 𝛿 ∑ Ψ𝑖

∗

𝑖

(𝐫)Ψ𝑖(𝐫) =
𝛿𝐸𝑋𝐶

𝛿𝜌(𝐫)
 2Re [∑ 𝛿Ψ𝑖

∗

𝑖

(𝐫)Ψ𝑖(𝐫)] 

 Eq. (1.17) thus becomes 

∑{∫ 𝛿Ψ𝑖
∗(𝐫)[−

1

2
𝑖

∇𝑖
2 + ∑ ∫ Ψ𝑗

∗

𝑗

(𝐫′)
1

|𝐫 − 𝐫′|
Ψ𝑗(𝐫′)𝑑𝐫′ +

𝛿𝐸𝑋𝐶

𝛿𝜌(𝐫)
  

+ 𝑉(𝐫) − 𝜖𝑖 ]Ψ𝑖(𝐫)𝑑𝐫} = 0 

This is satisfied for an arbitrary variation 𝛿Ψ𝑖
∗ only if  

                                   [−
1

2
∇𝑖

2 + 𝑉𝐾𝑆 (𝐫)]Ψ𝑖(𝐫) = 𝜖𝑖Ψ𝑖(𝐫)                                               (1.18) 

where  

                                     𝑉𝐾𝑆 (𝐫) =  ∫
𝜌(𝐫′)

|𝐫−𝐫′|
𝑑𝐫′ +

𝛿𝐸𝑋𝐶

𝛿𝜌(𝐫)
+ 𝑉(𝐫)                                          (1.19) 

is the K-S potential. The total energy is given by 

                               𝐸 =  ∑ 𝜖𝑖𝑖 + 𝐸𝑋𝐶 − ∫
𝜌(𝐫)𝜌(𝐫′)

|𝐫−𝐫′|
𝑑𝐫𝑑𝐫′ − ∫

𝛿𝐸𝑋𝑐

𝛿𝜌
𝜌(𝐫)𝑑𝐫             
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The K-S  Eq. (1.18), is solved in a self-consistent way for the wavefunctions Ψ𝑖  and their 

eigenvalues 𝜖𝑖. This consists in starting from an initial guess for 𝜌(𝐫), then to calculate 

𝑉𝐾𝑆(𝐫) and then to solve the Kohn-Sham equation for the Ψ𝑖(𝐫). Then a new 𝜌(𝐫) is 

calculated and all the operations are repeated until convergence is obtained. 

Although the approach of Kohn and Sham is exact, so far the exchange correlation 

functional 𝐸𝐾𝑆[𝜌] is unknown, and therefore it is necessary to apply approximations to 

this functional. The Local Density Approximation (LDA) discussed in the next section is 

the simplest approximation. 

 

1.6 Local Density Approximation (LDA)  

 

In the K-S equation the exchange-correlation term 
𝛿𝐸𝑋𝐶

𝛿𝜌(𝐫)
 remains to be determined. Hence, 

resolving this difficulty is crucial. Toward this end, a simple approximation was presented 

by K-S in 1965. This approach is known as LDA for energy exchange and correlation. 

These authors showed that if 𝜌 varies extremely slowly with position then 𝐸𝑋𝐶  energy can 

be expressed by [12][13] 

                                                𝐸𝑋𝑐
𝐿𝐷𝐴[𝜌] = ∫ 𝜌(𝐫) 𝜀𝑋𝐶(𝜌)𝑑𝐫                                                (1.20) 

The potential entering the Kohn-Sham equation associated with this functional is 

                                                𝑉𝑋𝐶
𝐿𝐷𝐴 =  

𝛿𝐸𝑋𝐶
𝐿𝐷𝐴

𝛿𝜌
=  𝜀𝑋𝐶(𝜌(𝐫)) + 𝜌(𝐫)

𝜕𝜀𝑋𝐶(𝜌)

𝜕𝜌
   

In LDA, the functional 𝜀𝑋𝐶(𝜌) is expressed as the exchange energy plus the correlation 

energy of a homogeneous electron gas with density 𝜌 

                                                               𝜀𝑋𝐶(𝜌) =  𝜀𝑋(𝜌) + 𝜀𝑐(𝜌)                                             (1.21)  

The exchange term for a homogeneous electron gas is known analytically to be 

                                                             𝜀𝑋(𝜌) =  −
3

4
 (

3

𝜋
)

1
3⁄

 𝜌
1

3⁄ .                                              (1.22)  

The correlation energy per particle of a homogeneous electron gas 𝜀𝑐(𝜌) is not known 

analytically except in the low- and high-density limits. That is why it had to be simulated 
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using Quantum Monte Carlo (QMC) methods and then fitted into an analytical form. For 

example, the simple Chachiyo 2016 fit function [14] reads 

                                                    𝜀𝐶(𝜌) =  𝑎 ln (1 +
𝑏

𝑟𝑠
+

𝑏

𝑟𝑆
2)                                                                                              

Here a and b are fitting parameters which can also be determined from the known limiting 

cases.  

1.6.1 Local Spin Density Approximation (LSDA) 

 
For spin-polarized systems, the exchange-correlation functional 𝐸𝑋𝐶 now depends on the 

spin up and spin-down density, 𝜌↑ and 𝜌↓, respectively. The potentials entering the K-S 

equation for exchange and correlation are now 

𝑉𝑋𝐶
↑ =    

𝛿𝐸𝑋𝐶[𝜌↑, 𝜌↓]

𝛿𝜌↑
 

𝑉𝑋𝐶
↓ =   

𝛿𝐸𝑋𝐶[𝜌↑, 𝜌↓]

𝛿𝜌↓
 

for spin up and spin down, respectively. The exchange term is simply expressed in terms 

of the spin unpolarised functional as  

                                                      𝐸𝑋[𝜌↑, 𝜌↓] =  
1

2
(𝐸𝑋[2𝜌↑] + 𝐸𝑋[2𝜌↓])                                      (1.24)  

For the correlation energy density, it is necessary to introduce a different scheme to 

approximate the functional. The idea is to start from the energy of the fully polarized 

homogeneous system and then introduce the relative spin polarization  

                                                                   𝜁 =  
𝜌↑−𝜌↓

𝜌↑+𝜌↓
                                                        

If 𝜁 = 0 we have the spin-unpolarized case, which means that the electron gas is 

paramagnetic. If 𝜁 = ±1 the electron gas is fully spin polarized, corresponding to the 

ferromagnetic case. 

Although LDA is widely used, it does not work at all to describe strongly correlated system 

since it fails at predicting a band gap. For such systems, one has to use the LDA+U 

approach. 
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1.7 LDA plus Hubbard model (LDA+U) 
 

Mott insulators are an important class of material whose insulating properties result from 

strong electron-electron interactions (strongly correlated system) of orbitals d or f. BFCO 

falls into this category. LDA cannot describe Mott insulators since it is based on a simple 

one-electron theory. A way to correct the failure of LDA is to take explicitly into account 

the interaction between d (or f) electrons through a Hubbard-like model, which describes 

the transition between conducting and insulating systems. In this model, electrons are 

separated into two systems (for simplicity, we will restrict the discussion to the spin-

independent case) [15] 

(i) delocalized s and p electrons, which can still be described by using an orbital-

independent one-electron potential (LDA);  

(ii) localized d or f electrons taking into account Coulomb d-d interaction.  

In the Hubbard-like model, the corrected LDA functional reads 

                                           𝐸𝐿𝐷𝐴+𝑈 = 𝐸𝐿𝐷𝐴 + 𝑈 ∑ 𝑛𝑖𝑛𝑗𝑖≠𝑗 /2 −
𝑈𝑁(𝑁−1)

2
                            (1.25)  

where U is the Coulomb repulsion parameter, ni are the d-orbital occupancies (i.e. the 

number of electrons occupying a given d orbital i) and 𝑁 = ∑ 𝑛𝑖. 

The second term of Eq. (1.25) takes into account the interactions between electrons in d 

orbital while the last term is called the double counting term which needs to be subtracted 

from the second term. The exchange parameter, usually denoted J, which describes the 

exchange interaction of electrons on neighboring sites as a consequence of the fermionic 

nature of the electrons, can be incorporated in the corrected LDA functional by replacing 

U by Ueff = U – J. In some more accurate formulations, U and J appear in separate terms 

[16].  

Energies of the orbitals are the derivatives of Eq. (1.25) with respect to ni 

𝜖𝑖
𝐿𝐷𝐴+𝑈 =

𝜕𝐸𝐿𝐷𝐴+𝑈

𝜕𝑛𝑖
= 𝜖𝑖

𝐿𝐷𝐴 + 𝑈 (
1

2
− 𝑛𝑖)                                     (1.26) 

From this expression, two main cases can be distinguished. 
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Case 1: If 𝑛𝑖 = 0, orbitals are unoccupied and the orbital energy of LDA changes by +U/2. 

Case 2: If 𝑛𝑖 ≥ 1, then orbitals are occupied and the orbital energy shifts by at least –U/2 

The potential entering in the K-S equation,  

                 𝑉𝑖(𝐫) =  
𝛿𝐸

𝛿𝑛𝑖(𝐫)
= 𝑉𝐿𝐷𝐴(𝐫) + 𝑈 (

1

2
− 𝑛𝑖)                                   (1.27) 

which is orbital dependent, thus provides a description for lower and upper Hubbard 

bands with the energy separation between them equal  to  the  Coulomb  parameter  U. 
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Chapter 2. FERROIC and MULTIFERROIC MATERIALS 
 

 

2.0 Introduction 

 

Historically, a magnetoelectric effects have been observed as early as 1888 by Wilhelm 

Röntgen, who observed that dielectrics moving through an electric field became 

magnetized [1] Then in 1894, and based on symmetry analysis only, Pierre Curie without 

using the term ‘multiferroic’ opened this field of investigation in predicting that an electric 

polarization of a molecule would be obtained by applying an external magnetic field. 

Conversely, a magnetic moment would be induced by an external electric field [2].  

In 1926, the terminology “magnetoelectric” (ME) was used for the first time by Debye to 

describe this phenomenon, and it was then mathematically described in their famous 

theoretical physics book series by L. D. Landau and E. Lifshitz in 1957, where they showed 

that, for certain symmetries and magnetic structures, a magnetoelectric response would 

be observed [3]. A few years later, in 1959, according to symmetry considerations, the form 

of the linear magnetoelectric effect in anti-ferromagnetic Cr2O3 was predicted by 

Dzyaloshinskii [4]. A year later, Astrov confirmed this prediction by observing 

experimentally that magnetization can be controlled by applying an electric field [5]. 

Despite the fact that interest in magentoelectrics persisted over the next 45 years, over 80 

magnetoelectric materials being discovered, a renewed surge of interest started again in 

2005, together with a renewed interest in multiferroics [6]. 

Despite the mystery surrounding the presence of two ferroic (or more than two) orders in 

a single phase, a growing interest in these enigmatic materials resurfaced since the 

terminology of “multiferroic magnetoelectric” materials was introduced by Schmid in 

1994 [7]. Thereafter, in 2000, Nicola A. Hill explained why ferromagnetic ferroelectric 

coexistence is so rare [8]. In 2003, a qualitative progress in this field was achieved when 

the group of Ramesh was able to obtain a high ferroelectric polarization through growing 

a single perovskite BiFeO3 epitaxially. The discovery of a magnetoelectric coupling in 

Terbium manganites (TbMnO3, TbMn2O5) followed shortly after [9] [10]. In BFCO the Bi+3 

are likely responsible for the ferroelectric effect while the insulating character is ascribed 
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to the partially occupied subshell d5 and d3 of Fe+3 and Cr+3, respectively [11]. Using first-

principles calculations within the LSDA+U formalism, the lowest energy of BFCO was 

found to belong to the R3 space group. DFT calculations show that the most stable state 

of BFCO corresponds to the ferrimagnetic high spin (FIHS) configuration and that 

changing the volume of the rhombohedral unit cell, while preserving the cell shape, BFCO 

exhibits a crossover between the ferrimagnetic high-spin and the ferrimagnetic low spin 

phases, which becomes more energetically favorable at low volumes [13]. An estimation of 

the magnetic arrangement vs. temperatures of BFCO was obtained by calculating the 

exchange coupling constant of the nearest neighbors through the mean-field 

approximation and first-principles calculations [11]. It was found not to exceed Néel 

temperature TN equals to 100 K. 

Experimentaly, epitaxial thin films of BFCO grown on SrTiO3 (STO), synthesized using 

pulsed laser deposition (PLD), clearly presented multiferroic properties at room 

temperature [12]. This finding confirmed in part the theoretical predictions of Ref. [11]. 

DFT calculations show the most stable state of BFCO corresponds to the ferrimagnetic 

high spin configuration and that changing the volume of the unit cell, BFCO exhibits a 

crossover between two ferrimagnetic phases [13].  

This chapter contains a short introduction to perovskite structures and a general 

presentation of ferroic materials. The last part of the chapter is devoted to multiferroic 

materials and their potential applications.  
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2.1 The Perovskite Structure 

2.1.1 Single Perovskites 

The perovskites have a chemical formula ABX3, where A and B are both metallic cations 

and X is an anion (usually an oxygen atom). The structure of the perovskites can be 

described by its unit cell. There are two different ways to describe the ideal high-symmetry 

cubic perovskite unit cell: (i) The large A atoms are located on the corner of a cube, a 

smaller B atoms is located in the center of the cube and X atoms (very often oxygen atoms) 

are located in the center of each face of the cube, so that they form an octahedron with the 

B atom in its center, as shown in Figure 2.1a. (ii) Alternately, the unit cell of the perovskite 

structure can be described with the small B atoms at the corner of a cube, each B atom 

being surrounded by an octahedron of X atoms, and the large A atom in the center of the 

cube, as shown in Figure 2.1b [14].  

 

Figure 2.1. (a) Ideal perovskite structure of formula ABX3 (b) Alternate representations of perovskite 
with the BO6 octahedra at the corner of a cube and the large cation A in the middle. 

 

 

In the ideal case of a non-polar phase, the single-perovskite structure has a cubic 

symmetry. Most of the polar phases having a single perovskite structure are distorted in 
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order to have a polar axis along which the spontaneous polarization can develop, and thus 

have a tetragonal, an orthorhombic or a rhombohedral symmetry. 

2.1.2 Double Perovskites 

In this work we are interested in more complex perovskite structures called double-

perovskites. This type of perovskite can be seen as the periodic arrangement of two single 

perovskite ABO3 and AB’O3 unit cells with the same cation A and distinct cations B and 

B’ positioned alternately in the 3 directions of space, which is shown in Figure 2.2. It can 

been seen as a rock-salt structure (like NaCl) arrangement of BO6 and B’O6 oxygen 

octahedra with A cations in the remaining spaces. For the ideal double perovskites, the 

existence of the two cations B and B’ in the rock-salt structure causes a reduction of the 

symmetry of the single perovskite from Pm-3m to Fm-3m, and their distorted structures 

possess either a rhombohedral or a trigonal symmetry. The properties of the perovskite 

systems, the magnetic properties for instance, are usually related to the structural 

characteristics of the perovskites, such as the octahedra distortions and other 

displacements of the ions forming the double perovskite structure [15] [16]. 

 

Figure 2.2 Ideal cubic structure of a double perovskite type A2BB’O6 [17]. 
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2.2 Deviation from the ideal cubic structure and octahedra 

rotations 

Under particular conditions of temperature and pressure, deviations from the ideal cubic 

perovskite can be computed through the so-called “tolerance factor” by utilizing the 

experimental values of the ionic radii of A, B and X. 

Consider Figure 2.3 and the following atom positions:  

I. B-site occupies each corner of the unit cell at position (0, 0, 0). 

II. An oxygen atoms close to the B-cations taking the position (1/2, 0, 0). 

III. The cation A is located in the center of the unit cell with atomic coordinate (1/2, 

1/2, 1/2).    

 

Figure 2.3 schematic representation for an ideal cubic perovskite 

 

 

One sees that the A-O distance equals 1
√2

⁄  while B-O is equal to  1 2 ⁄ . 

Assuming that the lattice parameter of the unit cell is determined by the ionic radii, for a 

perfectly closed packed perovskite, the relation between the atomic radii is given by the 

following equation [18]  
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𝑅𝐴 + 𝑅𝐵 = √2(𝑅𝐵 + 𝑅𝑋) 

where 𝑅𝐴,  𝑅𝐵 and 𝑅𝑋 are the ionic radius of A, B cations and X anion, respectively. 

 

The tolerance factor, which was introduced by Goldschmidt in order to quantify the 

deviation from an ideal perovskite structure, is defined as [19]: 

 

𝑡 =  
𝑅𝐴+𝑅𝐵

√2(𝑅𝐵+𝑅𝑋) 
                

with t = 1 for an ideal cubic perovskite structure. 

If 0.9 < 𝑡 ≤ 1, we have an ideal cubic perovskite phase, for example SrTiO3. If  t > 1 (A too 

large, or B too small), then the structure becomes tetragonal or hexagonal. For 0.71 < t < 

0.9 (A ions too small to fit into B ion interstices), the structure is either orthorhombic or 

rhombohedral. Values of t smaller than 0.71 result in crystal structure that are not 

perovskite anymore (e.g. FeTiO3 has a trigonal ilmenite structure). Values outside the 

range for ideal cubic perovskite structure lead to oxygen octahedra rotations. Rotating the 

oxygen octahedra (BO6) plays a fundamental role in determining various perovskite 

properties. To reach  a state having a lower energy, perovskite structures have to undergo 

various types of distortions. The most important are those involving: (i) ionic 

displacements, in which the transitions elements move out from their equilibrium 

position and (ii) rotations of the octahedra and/or changes in the octahedra bond 

lengths. 

2.2.1 Jahn-Teller effect 

In the ground state, if electronic orbitals are degenerated, the system can adopt another 

geometric configuration with lower overall symmetry by removing degeneracy in order 

to further minimize the energy and thus stabilizing the structure. This is called Jahn-

Teller (JT) effect. Fundamental cause of distortion in perovskite structure can be 

understood through two factors: (i) the existence of B-site that undergo through first 

and second order JT effect. (ii)  The stereochemical activity of the lone pair that may 

present in the cation on A -site. To clarify the first, Let us consider an oxygen 
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octahedron with a metal cation in the center. Therefore d-orbitals will split up into t2g 

and eg orbitals. 

The first distortion occurs when the degeneracy is lifted through the stabilization 

(lowering energy) of d-orbitals, allowing an elongation of B-O bond along the z-axis 

(lowering energy) and compression of other ligands (higher in energy).  

More in details, d-orbitals will split up into t2g and eg orbitals (Figure 2.4). In the case 

of undistorted symmetric octahedra, we have two orbitals of higher energy (𝑑𝑧2 ,  𝑑𝑥2−𝑦2) 

which are together called eg. In addition, there are three orbitals of lower energy 

(𝑑𝑥𝑦 ,  𝑑𝑥𝑧 ,  𝑑𝑦𝑧) collectively known as t2g. In the case of Cu surrounded by 6 oxygen 

atoms, eg orbitals are not equally filled as 𝑑𝑧2 is fully occupied while 𝑑𝑥2−𝑦2 is partially 

filled, as shown in the middle of Figure 2.4.  

 

Figure 2.4. Jahn-Teller effect on octahedral Cu+2 complex, where the green atom represents Cu+2 

and red atoms are oxygen. 

In that case, the repulsion between the two electrons in 𝑑𝑧2 leads to a symmetry 

distortion, resulting in an axial elongation along the z-direction. Therefore, the bond 

lengths between the metal and the ligand atoms in the z direction are longer. As a result 

of the elongation, orbitals in the z direction have lower energy due to the lowering of 

the energy of orbitals involving a z component, as shown on the right side of Figure 2.4. 

Second order JT distortions occur when there is a small energy gap between a filled 

HOMO (highest occupied molecular orbital) and the LUMO (lowest unoccupied 

molecular orbital). Such distortions can be seen in the change of O-B-O bonds which leads 

to change in the symmetry group of the perovskite structure [20].  
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 The stereochemical activity of lone pair element (like Bi+3, Sb+3) can cause a structural 

distortion. In other words, in the presence of 6s lone pair electrons, a crystalline field, 

affect the arrangement of regular polyhedron that surrounds the cation A. Hence, 

cation A undergoes a distortion which leads to  a variation in the lengths and the angles 

of O-B-O bonds and a lowering of the energy.  

Until now, we have introduced briefly the perovskite structure, as well as their 

distortions due to the JT effect. Since multiferroics exhibit, by definition, two primary 

ferroic orders within a single phase, it is important to explain the concept of ferroic 

materials and their classifications. 

 

2.3 Ferroic Materials 

Magnetic material and piezoelectric/pyroelectric/ferroelectric/electric materials, i.e. 

materials exhibiting a magnetic moment and materials exhibiting an electric polarization 

have long been considered as different and separate classes of materials. The fact that a 

material could possess both a ferroelectric and a magnetic ordering simultaneously was 

first introduced theoretically by Landau and Lifshitz in 1959 [21]. The concept of 

ferroelastic material (material exhibiting a spontaneous strain, whose configuration can 

be switched by means of an applied stress), as well as a unified symmetry description of 

ferroelectric, ferroelastic and ferromagnetic materials, together with the first use of the 

term ‘ferroic’ to describe the new class of material including them all, was presented by 

K. Aizu shortly after [22]. Ferroic materials are classified into ferroelectrics, ferroelastics 

and ferromagnetics, according to their ordering parameters as well as how they response 

to an external field. Interestingly, these materials show change in their properties at a 

critical value of temperature called Curie temperature Tc, and a material symmetry 

breaking can occur. Ferroic materials are characterized by the existence of domains, each 

of them having a homogenous crystalline structure and two or more stable states that can 

be distinguished by the values of some spontaneous macroscopic tensorial physical 

properties (e.g. polarization or magnetization having different spatial orientation). This 

spontaneous macroscopic physical property can be switched by means of an appropriate 

field (e.g. an electric field for ferroelectrics or a magnetic field for ferromagnetics), the 
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switching between stable states producing some domain dynamics that  involves domain 

walls motion, giving rise to some hysteresis [23]. 

 

2.4 Ferroelectric materials  

Ferroelectricity was discovered in Rochelle salt by Valasek in 1921 [24]. Generally 

speaking, ferroelectric materials are dielectrics presenting a spontaneous polarization 

vector even in the absence of an external electric field. This polarization must have the 

capability to be reversibly switchable from one state to another, which requires at least 

two stable states. The reason of ferroelectricity is the presence of a permanent electric 

dipole moment, the spontaneous polarization being due to the different positive and 

negative charges barycenters. If the crystal is centrosymmetric (the space group has an 

inversion center), no polarization occurs because the contributions from the positive 

charges cancel out for symmetry reasons, and so do the contribution of negative charges. 

In addition, if the material is subjected to an external electric field, switching of the 

polarization in the stable state the closest to the direction of the external electric field 

occurs, and cycling polarization between its 2 stable states (by cycling the electric field) 

lead to a hysteretic behavior, as illustrated in Figure 2.5 [25]. The physical origin of the 

hysteretic behavior is the mechanical and electric energy losses that are represented by 

the imaginary components of the elastic compliance and dielectric permittivity. 
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 Figure 2.5. Hysteresis loop characteristic of a ferroelectric material, showing the spontaneous 
polarization P as a function of the applied electric field E. 

 

It is notable that, as the electric field E increases positively, the polarization increases up 

to a certain limit called saturated polarization Ps. Then, as E decreases to zero, the 

polarization reaches a particular value called remnant polarization Pr . Conversely, as E 

further increases negatively, the polarization rises negatively to saturate at –Ps. Then, as 

E goes back to zero, P reaches the remnant polarization –Pr. As E further increases 

positively, P vanishes at a field called coercive electric field Ec. 

In the ferroelectric phase of so-called displacive ferroelectrics (in contrast to order-

disorder ferroelectrics, not discussed here), the lowest energy structure of a ferroelectric 

materials below TC corresponds to a structure where the ions are displaced from their 

high-symmetry centrosymmetric positions. By definition, at temperature T = TC, the 

polarization suddenly disappears for a ferroelectric material with a first order transition, 

and gradually diminishes as T approaches TC for a ferroelectric material with a second 

order transition. This results, above TC, in a paraelectric phase with centrosymmetric 

symmetry.  

The phase transition can be understood when remembering that the stable state is the 

state with the lowest Gibbs free energy and looking at the Gibbs free energy versus 

polarization curves for temperatures above TC, equal to TC and below TC, where the two 
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polarization states +Ps and –Ps take place, as shown in Figure 2.6 for a ferroelectric 

materials with first order phase transition [26].  

Another important characteristics of ferroelectrics is the existence of domains. In 

ferroelectric materials, there are microscopic domains, and within each of these domains, 

lined up electric dipoles are uniformly oriented along one of the crystalline directions 

permitted for the polarization. The application of an external electric field will orient the 

polarization of all domains in the direction closest to the applied field and polarize the 

bulk material as a whole. In general, applying a quite high electric field (of the order of 

hundreds of kV/cm) is necessary in order to reach the polarization saturation, i.e. the 

situation where all domains have the same orientation of the polarization. When 

removing the external electric field, most domains tend to keep their polarization oriented 

in the same direction, producing an effect of memory. The interface region that separates 

two adjacent domains is called domain wall. the domain wall motion and the energy losses 

related to this motion also contribute to the hysteretic behavior and to the shape of the 

hysteresis loop. [27]. 

 

Figure 2.6. Schematic potential well (Gibbs free energy G vs. Polarization P) of a ferroelectric 

system with first order phase transition for T>Tc, T=Tc, and T<Tc. 
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2.5 Magnetic Materials  

Magnetism is a well-known phenomenon in nature which has attracted the attention of 

people since immemorial time. Magnetism is a quantum- mechanical phenomenon which 

occupies a central position in material science. The entities which produce magnetization 

and magnetize the material are known as spins. Spin is an additional degree of freedom 

in electronic, atomic and molecular systems. Magnetism mainly results from electrons of 

the atoms and molecules. Materials can be magnetically categorized into different classes: 

diamagnetic, paramagnetic, ferromagnetic, antiferromagnetic, and ferrimagnetic, as 

illustrated in Figure 2.7 [28]. 

 

Figure 2.7. Classification of magnetic material according to their magnetic dipole ordering. 
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In fact, differences in magnetic properties stem from the competition between the effect 

of thermal agitation and the exchange interaction. Exchange interaction is a quantum-

mechanical effect occurring between identical particles. The exchange interaction 

depends strongly on the spin states Si and Sj of two interacting electrons according to 

Heisenberg’s Hamiltonian [29] : 

𝐻 = − ∑ 𝐽𝑖𝑗

𝑖<𝑗

 𝑺𝑖. 𝑺𝑗 

where 𝐽𝑖𝑗  is the magnetic exchange integral between 𝑆𝑖 and 𝑆𝑗. 

When 𝐽𝑖𝑗   is positive, the interaction is ferromagnetic, while when it is negative the 

interaction is antiferromagnetic.   

2.5.1 Diamagnetic and paramagnetic materials  

  

I. Diamagnetic materials have a zero net magnetic moment in the absence of 

magnetic field. This property arises in because the electrons in their atomic orbitals 

are paired with spins in opposite directions. When a diamagnetic material is placed 

in a uniform magnetic field, it acquires a weak magnetism in the opposite direction 

to that of the applied magnetic field. While removing the magnetic field, 

magnetization disappears. It is characterized by its negative magnetic 

susceptibility of order 10−5 which is temperature independent. 

II. Paramagnetic materials possess unpaired spins oriented randomly. When the 

material is subjected to an external magnetic field, the magnetic moments line up 

in the same direction as the field. They present a small positive susceptibility. As 

soon as the magnetic field is removed, the individual unpaired spins moments 

assume again a random orientation and the net material’s magnetic moment 

vanishes. Thermal agitation causes a randomization in the arrangement of the 

individual magnetic dipole moments so that, when the temperature increases, 

paramagnetic properties weaken [30]. 
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2.5.2 Ferromagnetic materials  

Ferromagnetic materials possess a spontaneous permanent magnetic moment 

originating from the spins of unpaired electrons in the d and f electron shells of certain 

atoms. Generally, the dipole magnetic moments in ferromagnetic materials tend to align 

parallel one to another within domains, due to a strong internal ‘molecular field’, resulting 

from the quantum-mechanical exchange interaction between neighbouring unpaired 

electrons. The individual net magnetic moments of each of these domains are randomly 

oriented to result in a zero global net magnetic moment. When placed in an external 

magnetic field, the magnetic moments of those domains align along the magnetic field 

direction. What distinguishes ferromagnetic materials from diamagnetic and 

paramagnetic materials is that ferromagnetic materials have the ability to remain 

magnetized and therefore possess a permanent magnetic moment even if the external 

field is removed. The domain structure optimal energy configuration also depends on the 

magnetocrystalline anisotropy as Landau and Lifshitz have demonstrated. In the case of 

magnetic isotropy, the dipole directions will randomly change due to thermal fluctuations 

and the tendency of the dipoles to align decreases as the temperature rises. 

Beyond TC, ferromagnetic materials undergo a first or second order phase transition and 

the system becomes paramagnetic, i.e. the system no longer maintains a net spontaneous 

magnetization unless it is placed in an external magnetic field. 

The hysteretic behaviour of the magnetization is due to some resistance to the 

reorientation of magnetic dipoles (energy loss when the dipoles are forced to rotate away 

from their easy axis – a direction – determined by the crystallography of the material as 

well as of its geometrical shape - where they have an energy minimum). 
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Figure 2.8 Magnetic hysteresis curve of a ferromagnetic material and evolution of the    
macroscopic magnetization M varies as a function of magnetic field H. 

 

The behavior of the ferromagnetic hysteresis M vs. H is similar to that of the P vs. E 

ferroelectric hysteresis shown in Figure 2. 5. As seen in Figure 2.8, there is a remnant 

value ±Mr at H = 0 and a coercive magnetic field ±𝐇𝐜 when M = 0. 

 2.5.3 Ferrimagnetic and antiferromagnetic materials 

In antiferromagnetic materials, the magnetic dipoles line up antiparallel, and cancel each 

other. One of the characterisitic features of antiferromagnetic materials is that, at the 

critical temperature, called Néel temperature TN, they show an extremely large magnetic 

susceptibility. Above TN, antiferromagnetic materials become paramagnetic. In contrast 

to antiferromagnetic materials, while ferrimagnetic materials have the same antiparallel 

spins arrangement, the magnitude of the spins oriented in one direction is different from 

the magnitude of the spins oriented in the opposite direction, so that they don’t cancel out 

and the material displays a net permanent magnetic moment and a hysteresis behaviour 

similar to that of the ferromagnetic materials below TC. Most ferrimagnetic materials are 

ceramic oxides, such as Fe2O3 and Y3Fe5O12. Since transition metals have different 

numbers of unpaired d-electrons, they are prime candidates to exhibit significant non-

zero magnetization [31]. 
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2.6 Multiferroic Materials 

The name multiferroic was coined to classify materials in which either two or all three of 

the ferroic material orders (ferroelectricity, ferromagnetism, and ferroelasticity) are 

present simultaneously in a single phase [7]. Ignoring the fact that the displacive 

ferroelectrics, exhibiting both a spontaneous strain and a spontaneous polarization, 

hence two ferroic orders simultaneously, are indeed multiferroic materials according to 

the definition, the practical definition commonly used today for multiferroics (extended 

to other long-range orders) is that of a ferroelectric magnetic material or a ferromagnetic 

or antiferromagnetic ferroelectric materials permitting magnetoelectric effects. 

Sometimes the term is even used for hetero-phase systems. 

Multiferoic materials can be categorized into two classes: type-I and type-II multiferroics. 

Type I multiferroics, also called “split-order parameter multiferroics”, are materials for 

which ferroelectricity and magnetism have different origins and set on at different 

temperatures. They generally have medium to high polarization and have rather weak 

magnetoelectric coupling (ferroelectricity is due either to lone pairs electrons or in the 

case of improper ferroelectricity, to charge ordering or to purely structural geometrical 

distortion). Multiferroics with perovskite and double perovskite structure are type-I 

multiferroics and ferroelectricity is due to lone pairs. 

Type-II multiferroics, also called “joint-order parameter multiferroics” are materials for 

which both ferroelectric and magnetic order are due to the spins (for these materials, 

magnetic frustration is at the origin of the distortions that lead to a non-centrosymmetric 

structure and to ferroelectricity). Type-II multiferroics therefore exhibit a robust “built-

in” coupling between polarization and magnetic order, but a very small spontaneous 

polarization [32]. 
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Figure 2.9. Schematics representation of multiferroics (green color) combining the properties of 
ferroelctrics (blue color) and of magnetic materials (yellow color), i.e. exhibiting both magnetic and 

ferroelectric hysteresis loops [32]. 

 

This coupling will induce a variation in magnetization in presence of an external electric 

field and a variation of polarization in presence of an external magnetic field. Many 

interesting applications could benefit from the coupling between magnetic and 

ferroelectric properties as, for instance, memory, spintronic devices, and switching 

elements. 

The initial requirement for a material to be a multiferroic is that it must exhibit 

simultaneously ferroelectric and ferromagnetic properties. Hence, the multiferroic 

properties are determined by the physical properties that appear in ferromagnetic and 

ferroelectric materials. Therefore, it is relevant to address the limiting factors in 

restricting the concurrent presence of ferromagnetism and ferroelectricity [33].       

I. Symmetry considerations. In order to allow electric polarization, the 

structural distortions are such that the crystal is not centrosymmetric (lacking an 

inversion center). More precisely, spontaneous polarization is produced 

principally from an asymmetry in the atomic positions of the atoms of the 

perovskite crystal. From a crystallographic and symmetry group point of view, out 

of the 32 crystallographic point groups, 21 are non-centrosymmetric (which allow 

piezoelectricity, with the exception of the cubic point group 432), and 10 are polar 

(allowing pyroelectricity, i.e. a spontaneous polarization to exist, among which 
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those for which the polarization can be switched by an electric field are called 

ferroelectric). To describe magnetism, i.e. not only polar vectors but also axial 

vectors, the time inversion has to be included as an additional symmetry element. 

Out of the now 122 point groups (after including the time-inversion symmetry 

element), 31 allow a permanent polarization, and of the 58 magnetic point groups, 

31 allow a spontaneous magnetization (i.e. ferromagnetism, the remaining 27 

magnetic group being antiferromagnetic) [34]. Belonging to both ferromagnetic 

and ferroelectric generalized point group (with time inversion) subsets, only 13 

(generalized) point groups allow both properties to exist in the same phase. They 

are: 1, 2, 2', m, m', 3, 3m ', 4, 4m'm', mm'2', 2m'm', 6 and 6m'm'. Materials 

belonging to one of these 13 point groups are therefore multiferroic, and their 

point group also allows a linear magnetoelectric effect. However, there are 45 

other point groups that allow linear magnetoelectric effects, 33 of which are 

neither magnetic nor ferroelectric [35]. 

 

II. Electric vs magnetic properties Perovskite materials display ferroelectricity 

mainly because of the structural distortion occurring when cation A and B move 

with respect to the oxygen octahedra. Thus hybridization is expected to take place 

between fully occupied O 2p states and unfilled d stated of the transition element. 

Magnetism would be optimal when d shells are partially filled, which result in 

unpaired electrons .  

It has been suggested that, assuming that both the ferroelectric and the magnetic 

properties originate from the transition metal cations inside the oxygen octahedral 

cage, the multiferroics properties are prohibited in perovskite materials due to 

different mechanisms causing ferroelectricity and magnetism, which would impose 

contradictory conditions on the electron occupancies of the d-shells of these cations. 

While polarization would require completely empty d-orbitals, magnetism, on the 

other hand, needs partially filled d-orbitals [36]. Nonetheless, the paradoxical 

mechanisms leading to a single phase multiferroic system are intricate and far from 

being undersstood. Indeed, although this field is relatively young, experimental and 

theoretical researches have proved that coupling two properties in the same phase is 
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not impossible. For example, Bi-based perovskite, such as the single perovskite 

BiFeO3 (BFO) and the double perovskite BiFeCrO6 (BFCO) display multiferroic 

properties at room temperature. The apparent paradox has been resolved by 

suggesting that ferroelctricity is not originating from the transition metal cations, but 

from the stereochemically active 6s lone pair electrons of the bismuth cations, the 

transition metal cation being the cause of the magnetism. In BFO, while 

ferroelectricity is drastically controlled by the hybridization between the O 2p and 

empty 6s orbitals of Bi, it has been debated whether magnetoelectric coupling could 

originate from the existence of cycloidal spin order which allows a coupling between 

magnetization and polarization even if it has been shown that the linear 

magnetoelectric effect is inhibited in antiferromagnetic structure. 

The case of BFCO will be discussed more in detail in Chapter 3.  

2.7 Magnetoelectric Effect 

The magnetoelectric coupling is the coupling existing between polarization and 

magnetization in a single phase or composite material. The direct magnetoelectric effect 

describes the dependence of the Polarization on the applied magnetic field, while the 

inverse magnetoelectric effect describes the dependence of the magnetization on the 

applied electric field.  In a single phase multiferroic or magnetoelectric material, the 

magnetoelectric coupling is an intrinsic material properties, while in the case of 

composite materials, the magnetoelectric coupling is mostly mediated by the elastic 

coupling between the piezoelectric/electrostrictive phase (which doesn’t necessarily need 

to be ferroelectric and possess a permanent spontaneous polarization) and the 

piezomagnetic/magnetostrictive phase (which doesn’t necessarily need to be 

ferromagnetic and have a permanent magnetization).  

In multiferroics, the magnetoelectric effect is the coupling between the magnetic and 

electrical order parameters, namely between the spontaneous polarization and the 

permanent magnetization. In other words, the direct magnetoelectric response consists 

in an induced change in the electric polarization P as a result of an applied magnetic field 

H and the inverse magnetoelectric response consists in an induced change in the 

magnetization M resulting from an applied electric field E [37]. 
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2.7.1 Direct and Inverse Magnetoelectric Effect 

Considering a conventional material where the direct coupling can be described through 

Landau and Lifshitz’s theory, if the material is subjected to external fields E and H, the 

free energies F can be expressed as follows (where summations are performed over 

repeated indices): 

𝐹(𝐸, 𝐻) = 𝐹0 − 𝑃𝑖
𝑠𝐸𝑖 − 𝑀𝑖

𝑠𝐻𝑖 −
1

2
 𝜀0𝜀𝑖𝑗𝐸𝑖𝐸𝑗 − 

1

2
 𝜇0 𝜇𝑖𝑗  𝑀𝑖𝑀𝑗 −  𝛼𝑖𝑗 𝐸𝑖𝐻𝑖 −

                                    
1

2
𝛽𝑖𝑗𝑘𝐸𝑖𝐻𝑗𝐻𝑘 −

1

2
𝛾𝑖𝑗𝑘𝐻𝑖𝐸𝑗𝐸𝑘 + ⋯                                                    (2.1) 

Consider E and H as independent variables, the free energy can be written in the 

differential form 𝑑𝐹 = 𝑷𝑑𝑬 + 𝑴𝑑𝑯, bearing in mind that magnetoelectric coupling can 

be established either in terms of 𝑃𝑗(𝐻𝑗) or in terms of  𝑀𝑗(𝐸𝑗). Differentiating with 

respect to 𝐸𝑖, one obtains; 

𝑃𝑖(𝐸, 𝐻) = −
𝜕𝐹

𝜕𝐸𝑖
=  𝑃𝑖

𝑠 + 𝜀0𝜀𝑖𝑗𝐸𝑗 +  𝛼𝑖𝑗 𝐻𝑗 −
1

2
𝛽𝑖𝑗𝑘𝐻𝑗𝐻𝑘+ 

1

2
𝛾𝑖𝑗𝑘𝐻𝑖𝐸𝑗 −  …           (2.2) 

With respect to 𝐻𝑖 we have 

𝑀𝑖(𝐸, 𝐻) = −
𝜕𝐹

𝜕𝐻𝑖
=  𝑀𝑖

𝑠 + 𝜇0 𝜇𝑖𝑗  𝑀𝑗 +  𝛼 ∗𝑖𝑗 𝐸𝑗 −
1

2
𝛽𝑖𝑗𝑘 ∗ 𝐻𝑗𝐸𝑖+ 

1

2
𝛾𝑖𝑗𝑘 ∗ 𝐸𝑘𝐸𝑗 −  …      (2.3) 

where  𝑃𝑠 and 𝑀𝑠  , are the spontaneous polarization and magnetization, respectively. 𝜀 is 

the electrical permittivity, 𝜇 is the magnetic permeability, and 𝛼 (𝛼 ∗) is the direct 

(inverse) magnetoelectric susceptibility tensor which describes the linear magnetoelectric 

effect. Due to the first law of thermodynamics, the inverse and direct magnetoelectric 

effects should be described with the same linear magnetoelectric coefficient. 

𝛽 (𝛽 ∗)and 𝛾(𝛾 ∗)  are third rank tensors describing higher-order magnetoelectric effects. 

The high-order terms are non-linear terms which govern the complicated magnetoelectric 

coupling at large fields, but can be neglected at weak fields (linear regime). Furthermore, 

the two expressions of magnetization and polarization (Eqs. (2.2) and (2.3)) do not 

include the elastic strain effects, which can be significant as well.  
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2.7.2 Indirect or Elastically-mediated Magnetoelectric Effect 

Besides the direct coupling between the order parameters (P and M) and the driving forces 

(H and E) shown above, a second and indirect coupling between the order parameters 

and the driving forces can be found. Such coupling is induced elastically by the strain 

effects that characterize ferroelectric materials, namely the piezoelectric effect, and some 

magnetic materials characterized by the piezomagnetic or magnetostrictive effect. In such 

a case, the application of an external field, whether it being electric or magnetic, would 

induce a deformation via the inverse piezoelectric or magnetostrictive effect, which would 

in turn affect the magnetization or polarization via the direct magnetostrictive or 

piezoelectric effects. 

This indirect or elastically-mediated magnetoelectric coupling is of great practical interest 

given how rare single phase multiferroic materials are (and even more so at room 

temperature and above). Composite multiferroic or magnetoelectric materials are 

therefore promising candidates for applications. Furthermore, they actually usually 

exhibit larger magnetoelectric coefficients than single phase materials. 

2.8 Potential Applications 

Materials combining multiple order parameters paved the way for controlling the electric 

polarization by means of an applied magnetic field and vice versa, taking advantage of the 

coexistence and coupling of magnetism and ferroelectricity. In ferroelectric materials, the 

presence of a spontaneous polarization plays a key role in the design of ferroelectric 

random access memories (FeRAM).  

The binary information storage relies on the use of two or more stable and switchable 

polarization states with different permanent polarization. Despite its high writing 

endurance, one of noteworthy issue with ordinary FeRAM memories is connected to its 

destructive reading process (reading of polarization) [38]. There are also magnetic random 

access memories (MRAM), in which digital information is encoded by different 

magnetoresistive states that can be switched by a magnetic field. Due to the large 

magnetic field required to reverse the magnetoresistive state, these memories consume a 

considerable amount of energy [39]. Interestingly, while FeRAM shows a fast speed in 
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writing data, MRAM present valuable properties in terms of reading operations. 

Multiferroic materials might therefore open the door to explore a new memory device 

with best functionalities. Multiferroic materials can enhance data storage due to the 

coexistence of several order parameters. Magnetoelectric coupling thus provides 

interesting perspectives to develop an ultimate memory device that can combine the 

advantages of MRAMs and FeRAM. This type of memories was named magnetoelectric 

(multiferroic as a subsystem) random access memories (MERAMs) [40]. 

Another possible application of these materials is to design tunnel magnetoresistances in 

which (ferro) magnetic films are used as a tunnel effect barrier. For example, BFO thin 

films have been utilized as magnetic tunnel barriers that can be controlled electrically. 

Such materials would contribute to resolve the high power consumption writing issue 

encountered in MRAM memories [41]. Alternatively, BiMnO3 (BMO) could also be used as 

a tunnel barrier because of its ferromagnetism. In case of no or negligible magnetoelectric 

coupling, the use of multiferroics can be envisioned to engineer memory devices with four 

states (two magnetic and two ferroelectric state independently addressable) in order to 

increase the storage density.  

In case of a strong magnetoelectric coupling, multiferroic could be implemented to 

replace the bulky and power-hungry writing head in magnetic storage disks. Indeed, 

replacing the magnetic coils (inside which an electric current is circulating to generate the 

magnetic field) by a voltage-controlled much smaller magnetoelectric device would both 

reduce the bit size, increasing the storage density and significantly reduce the power 

consumption of the memory device [42]. 
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Chapter 3. COMPUTATIONAL DETAILS AND RESULTS   
 

This chapter first deals with a brief introduction to the DFT software that we utilized in 

order to investigate the properties of strained and unstrained BFCO. Then we provide 

crystallographic background about unstrained BFCO along with its related physical 

properties, such as stable states, magnetism and polarization. Finally, we discuss the 

effect of the epitaxial strain on BFCO on the (001) surface of a strontium titanate SrTiO3 

substrate, as the BFCO was first synthesized on this substrate. Under the influence of the 

epitaxial strain, we look for stable BFCO states and discuss several of their features such 

as their density of states (DOS), ionic charges and electric polarization. 

3.1 Vienna Ab Initio Simulation Package (VASP)  

All our calculations were performed with the Vienna ab initio simulation package (VASP) 

[1][2] within the LSDA+U method. The use of LSDA+U is justified by the fact that the LDA 

functionnal guarantees reasonably accurate result in short time. VASP is a commercial 

software performing DFT calculations within the projector augmented wave method 

(PAW). The electronic fundamental state is determined by the K-S equation while, for 

geometry optimization, the forces are calculated by the Hellman-Feynman theorem and 

the quasi-Newton-Raphson algorithms. [3][4]. 

VASP is based on the pseudopotential approach, which consists in substituting the 

coulombic interaction potential of the nucleus and the effects of the core electrons by an 

effective potential interacting only with the valence electrons. Therefore, the K-S 

equations are solved only for the valence electrons as only these are involved in the 

chemical bonds.  

It is worth noting that in principle the complete wavefunction evolution is defined 

through the reciprocal space in terms of an infinite number of Brillouin zone k-points 

(BZK). The software is able to estimate the state occupancy for each k-point. Because we 

cannot deal with infinite number of plane waves in practice, we determine an energy 

cutoff value. Performing a DFT calculation with VASP requires four main input files: 

 INCAR: includes all parameters that define the calculation. 

 POSCAR: contains the geometry of the system.  
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 POTCAR: contains the pseudopotentials of most elements in the periodic 

table, as well as information on the atomic structure, such as atomic 

masses, valence electrons, cutoff energy, etc. 

 KPOINTS: specifies the k-points in the Brillouin zone. 

 

3.2 Introduction to Bi2FeCrO6 (BFCO) crystal structure 

The double perovskite structure (BFCO) was predicted theoretically to be a promising 

candidate for showing multiferroic properties. The BFCO unit cell was predicted to have 

a rhombohedral double perovskite structure (ABB’O6) belonging to the R3 space group, 

with a lattice constant arh = 5.47 Å and angle αrh = 60.9o. The unit cell contains 10 atoms, 

including Fe+3 (d5) and Cr+3 (d3), two Bi+3 atoms and six O-2 atoms. Both Fe and Cr occupy 

the center of octahedra formed by six O-2 ions [6].  

The charges of the Fe and Cr ions have been dermined as follow. Their sum must be +6, 

considering that the charge of the two Bi is +3, the charge of the six O is -2, since the total 

charge of the unit cell must be zero. The DFT calculations presented below indicate that 

the ratio of the Fe charge to the Cr charge is always close to 1, indicating that they have 

the same +3 charge state. 

 

Figure 3.1 BFCO rhombohedral structure and ordering of the transition metals Cr and Fe along the 
<111>  direction. 𝒂𝐁𝐅𝐂𝐎𝐑 , Indicates the lattice constant of the rhombohedron. The 10 atoms of the 

unit cell are identified (Bi1,Bi2,Cr,Fe,O1,…O6). 
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The O-2 ligands are bonded to the transition metal Fe or Cr, which are d–block elements 

with unpaired electrons. Crystal field theory (CFT) plays an important role to explain the 

electric and magnetic properties of provskite materials which result from distorsions of 

the oxygen octahedra, as well as to describe the degeneracy of d orbitals. The BFCO 

components and how they contribute to its magnetic and electric properties could be 

described in the following way: 

Essentially, the magnetic properties of BFCO are attributed to the magnetic interaction of 

the transition metals with their oxygen octahedron. Fe+3 (3s2 3p6 3d5) and Cr+3 (3 

p64s03d3) are transition metallic cations having 5 and 3 valence electrons in d-orbitals, 

respectively. These orbitals are affected by the crystal field of the six O-2 ions . This field 

will split the d orbital in energy with an energy difference ∆ between the lower energy 

orbitals 𝑑𝑥𝑦 , 𝑑𝑥𝑧 and 𝑑𝑦𝑧 , denoted t2g, and the upper energy orbitals 𝑑𝑧
2 and 𝑑𝑥2−𝑦2, which 

are denoted eg.  

 

 

Figure 3.2 Crystal field splitting diagram for Fe+3 and Cr+3 with spin orientations in the high-spin and 

low-spin cases[7]. 
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As shown in Figure 3.2, in the case of Cr+3, the 3 valence d electrons occupy the 3 t2g 

orbitals, forming a magnetic moment of 3 µB. In the case of Fe+3, the 5 valence d electrons 

can occupy two different configurations: high spin and low spin. In the high-spin 

configuration, the 5 electrons occupy each one of the 5 orbitals t2g and eg, forming a 

magnetic moment of 5 µB, while in the low spin configuration, all the electrons lie in the 

t2g orbitals, forming pairs with opposite spins in two of them, so that the magnetic 

moment is only 1 µB. In the high-spin case, the splitting energy Δ is usually small, thus 

putting electrons in the eg orbitals following the Hund’s rule is easier than pairing up two 

electrons into t2g. In contrast, the low spin arrangement occurs when Δ is high and the 

electronic distribution in this case follows the Aufbau principle. The value of Δ depends 

on the strength of the repulsive interaction between the outermost electrons in the eg 

orbitals and the negatively charged ligand of O-2 ions, more than on interactions with 

electron of the t2g orbital.  

The remaining ions Bi+3 (5d106s2) and O-2 (2s22p6) are non-degenerate. Therefore, the 

effect of the crystal field cannot be observed. Transition metals and oxygen ions interact 

with each other as it is possible for the O-2 p orbitals to overlap with the Cr+3 and Fe+3 3d 

orbitals due to the hybridization in the octahedral environment.  

Two magnetic configurations of BFCO can be considered according to the relative spin 

orientation (up or down) of Fe and Cr. The spin arrangement can produce a ferromagnetic 

configuration (parallel spins of Fe and Cr) in which, for the ferromagnetic high spin 

(FMHS) and ferromagnetic low pin (FMLS) cases, the total magnetic moment is 8 μB and 

4 μB, respectively. The second configuration is ferrimagnetic (antiparallel spins of Fe and 

Cr), with the ferrimagnetic low spin (FiMLS) and ferrimagnetic high spin (FiMHS) 

configurations which have the same total magnetic moment of 2 μB. 

3.3 Calculations of Unstrained BFCO 

Full optimization of the BFCO unit cell was performed to determine its electronic, electric 

and magnetic properties in the unstrained case. As a first step, we optimized the BFCO 

unit cell without taking the spin into account. This optimized cell was then used as the 

starting point for the calculation of the four magnetic states described above. For all these 

calculations, we used the LSDA+U formalism with 8×8×8 k-points. We used U = 3 eV 
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and J = 0.8 eV to treat partially occupied orbitals of Fe and Cr as these values (which are 

typical of insulating materials) have been used in previous works on unconstrained BFCO 

[8]. Our results prove to be in good agreement with the work of Goffinet et al. [8] despite 

small differences that can likely be attributed to the differences in the VASP versions used 

(we used the latest version). The results are summarized in table 3.1. 

One observes that the atomic positions of oxygen ions are relatively different from what 

was reported in Ref. [8]. This means the structural optimization according to the version 

of the VASP software we used leads to different octahedra distorsions due to the free 

relaxation. 

Table 3.1 shows that the ground state belongs to FiMHS while the stability of FMHS is 

better than that of the two low-spin states. One observes that only 0.162 eV separates the 

FMHS from the FMHS state. This relatively small separation between the two states  

is interesting from the point of view of potential applications since the magnetic moment 

of the FMHS state is 4 times higher than that of the FMHS state. Therefore, one can 

wonder whether epitaxial strain could be used to induce a phase transition between 

FiMHS and FMHS.  
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Table 3.1Summary of the electronic properties of the unstrained BFCO system. The system was 

relaxed by using LSDA+U with U = 3 eV and J = 0.8 eV. a and α are unit cell parameters whereas Ω 

denotes the unit cell volume. (x, y, z) indicate the atomic position according to the R3 space group. 

μFe and μCr are the local magnetic moments of Fe and Cr, respectively. The energies are relative 

to the ground state FiMHS. For comparison , the values between brackets indicate the results which 

are reported in Ref. 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Phase FiMHS FiMLS FMHS FMLS 
a(Ǻ) 5.466 

( 5.48) 
5.347 
(5.37) 

5.452 
(5.49) 

5.348 
(5.37) 

𝜶 in o 60.17  
(60.04) 

60.74 
 (60.8) 

60.38  
(60.04) 

60.79  
(5.37) 

Ω Ǻ𝟑 115.96 
(166.57) 

109.93 
(111.33) 

115.608 
(117.18) 

110.12  
(111.64) 

xBi1 0.0 
(0.0) 

0.0 
(0.0) 

0.0 
(0.0) 

0.0 
(0.0) 

xBi2 0.503 
(0.503) 

0.495 
 (0.500) 

0.501  
(0.504) 

0.501 
(0.49) 

xFe 0.731 
(0.732) 

0.726 
 (0.730) 

0.731 
(0.731) 

0.731 
(0.731) 

xCr 0.226 
(0.226) 

0.228 
( 0.232) 

0.226 
(0.226) 

0.226  
(0.232) 

xO1 0.544 
(0.544) 

0.544 
 (0.550) 

0.544  
(0.546) 

0.544  
(0.550) 

yO1 0.950 
(0.950) 

0.949  
(0.956) 

0.951 
(0.949) 

0.951 
(0.953) 

zO1 0.398 
(0.398) 

0.413 
(0.414) 

0.398  
(0.400) 

0.398 
(0.413) 

xO2 0.0398  
(0.047) 

0.0413 
(0.046) 

0.0398 
 (0.044) 

0. 0398 
 (0.045) 

yO2 0.544 
0.905 

0.544 
0.908 

0.544 
(0.905) 

0.544  

(0.908) 

zO2 0.950 
(0.447) 

0.949  

(0.461) 
0.951 

 (0.449) 
0.951  

(0.457) 

μFe (μB) -3.980 
(-3.99) 

-0.769 
(-0.86) 

4.15 
(4.04) 

0.905 
(1.02) 

μCr (μB) 2.542 
 (+2.55) 

2.685 
(+2.75) 

2.928 
(2.86) 

2.699 
(2.73) 

Total (μB) 1.987 1.88 7.66 3.83 

Energy, ∆E 

 (meV) 
0 

(0) 
363 

(382) 
164 

(164) 
379 

(404) 
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3.3.1 Computing atomic charges  

It is well known that atomic charge cannot be measured experimentally because it does 

not belong to any single physical property. However, through the VASP software, it is 

possible to calculate the charge of each atom in the system so that the polarization can be 

calculated, as we will see later. The VASP POTCAR file contains a default radius for each 

element, called RWIG, which corresponds to the “Wigner–Seitz Radius”. The latter is 

defined as the radius of a sphere whose volume is equal to the mean volume per atom in 

a solid. The on-site charges are simply calculated inside the sphere around the atoms. The 

basis functions inside the sphere are mostly the so-called “projectors” that gives the 

projector augmented wave (PAW) method. By projecting onto those functions and taking 

partial sums of just the s, p, and d orbitals, one obtains the partial charges. The charge of 

each element is calculated by subtracting the charge given in the POTCAR file from the 

calculation result. The initial charges from the POTCAR files are 15 for Bi, 14 for Fe, 12 for 

Cr, and 6 for O. The calculated charges are summarized in table 3.2.  

 

Table 3.2.The total charge of each ion in unit of the elementary charge as determined by VASP. 

 

 

 

 

 

 

 

 

 

 

         Phase FIMHS FIMLS FMHS FMLS 

𝑩𝒊 𝟏
+𝟑 2.457 2.445 2.459 2.446 

𝑩𝒊𝟐
+𝟑 2.436 2.448 2.44 2.448 

𝑭𝒆+𝟑  1.521 1.32 1.518 1.101 

𝑪𝒓+𝟑 1.19 1.205 1.164 1.211 

𝑶𝟏
−𝟐  0.969 0.95 0.969 0.949 

𝑶𝟐
−𝟐  1.075 1.08 1.079 1.08 

𝑶𝟑
−𝟐 0.964  0.956 0.964 0.956 

𝑶𝟒
−𝟐 1.072  1.087 1.076 1.091 

𝑶𝟓
−𝟐 0.973 0.979 0.973 0.98 

𝑶𝟔
−𝟐 0.939 0.944 0.94 0.943 
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One observes that the total charge of the unit cell as calculated by VASP is not zero since 

the charges of the oxygen atoms are positive. This is due to the inaccurate way VASP 

calculates the charges. Indeed, the calculation of the charges using more sophisticated 

approaches, such as the Bader method [9], where the charge is calculated inside a more 

complex volume than the simple Wigner-Seitz sphere, provides more reasonable results. 

Unfortunately, the Bader method is not implemented in VASP. In the following we will 

rather use the nominal charges of the ions to calculate the polarization. 

 

3.4 Influence of the Epitaxial Strain on BFCO Single Crystal  

Experimentally, the epitaxial strain is used to adjust the lattice constant of the thin film 

which is expected to fit the lattice constant of the substrate. This type of adjustment 

induces specific ionic displacements in the thin film at the interface and can modify 

significantly the properties of the thin film. To simulate the epitaxial strain experiments, 

SrTiO3 (STO), whose lattice constant is equal to 3.905 Å, was selected as the substrate. In 

the original experiments on the systhesis of BFCO, (001)-oriented STO has been chosen 

because its lattice constant closely matches the lattice constant of BFCO predicted by DFT 

calculations. Experimentally, Ichikawa et al. made artificial BiFeO3/BiCrO3 superlattice 

grown on STO (111) substrate using the PLD technique. The magnetic measurements at 

room temperature revealed a magnetization value of 3.7 μB/f.u. and a remanent 

polarization of 60 μC cm-2 [10]. R. Nechache et al., at INRS, performed magnetic and 

ferroelectric measurements on single phase BFCO thin film grown on (100)-oriented STO 

and found a maximum magnetization of 1.9 μB/f.u. and a remanent polarization of 55-

60 μC cm-2 [11] in relatively good agreement with the predicted values (2 μB/f.u. and ~80 

μC cm-2, respectively). 

3.4.1  SrTiO3 (STO) crystal structure 

Strontium titanate STO crystalizes in a single cubic perovskite (ABO3, space group Pm3m) 

structure with a lattice parameter arh = 3.905 Å and a lattice angle αrh = 90o. As shown in 

Figure 3.3, this cubic structure is composed of O-2 ions centered in each face of the cube 
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formed by the Sr+2 ions, occupying the A sites, and Ti+4, occupying the B site octahedrally 

bonded to the O-2 ions [12]. 

3.4.2  Technical details  

As for the unstrained case, the electronic structure calculations were carried out by using 

the VASP software within parameterization of the projector augmented plane-wave 

(PAW) method [13]. We considered the local density approximation LSDA+U to describe 

the partially-filled orbitals of Fe+3 (3s23p63d5) and Cr+3 (3p64s03d3). To investigate the 

electronic and magnetic properties of the strongly correlated system of BFCO, we used a 

8×8×8 Monkhorst-Pack grid of k-points and the energy cutoff was 500 eV. The electronic 

and ionic convergence conditions were 10−8 eV and 10−2 eV/ Å, respectively. In addition, 

the values of U and J used here are the same as in the unstrained case discussed above. 

 

Figure 3.3. Cubic structure of STO with lattice constant = 3.905 Å  

 

3.5 Variation of the energy as a function of the out-of plane-cell 

size 

The BFCO single crystal is epitaxially strained due the slight lattice mismatch between 

BFCO and STO. In order to investigate the epitaxial strain in BFCO, we considered the 

rhombohedral shape inside a fully cubic BFCO structure, as shown in Figure 3.4. This 

cubic structure sits on the STO substrate, as shown in Figure 3.5. The lattice parameter of 

STO is experimentally known to be 3.905 Å while that of BFCO in the ground state 

FiMHS is 5.466 Å (length of the BFCO lattice vectors a (red), b (green) or c (blue) in 
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Figure 3.4), as indicated in Table 3.1. However, we have to consider the projection of 

vectors b or c on the interface plane between the two materials, which is 5.466/√𝟐 = 

3.865 Å. Therefore, the STO substrate will slightly stretch BFCO in the interface plane in 

a proportion of about +1% for the FiMHS state. 

The integration of the STO substrate in the DFT calculation proved to be prohibitive in 

terms of computational time. Indeed, such a calculation needs taking into account a BFCO 

supercell (i.e. many unit cells) as well as few layers of STO. In order to incorporate the 

epitaxial strain effect in BFCO while still doing the calculation for a BFCO unit cell we 

proceeded as follows: 

The coordinates of the Bi atoms defining the BFCO structure were maintained fixed in the 

interface plane, which we define as the x-y plane, while their out-of-plane coordinate was 

varied. With reference to Figure 3.4 this means that the length of the projection of the 

BFCO lattice vectors b (green) and c (blue) in the x-y plane (bottom) was set to match the 

lattice constant of STO, i.e. 3.905 Å, while the length of the lattice vector a (red) was √2 ×

 3.905 = 5.223 Å. In addition, the position of the first Bi atom (Bi1 – see Figure 3.4) was 

maintained at the position (0, 0, 0). The z-position of Bi2 (see Figure 3.5) is quantified by 

the expression 

                                                          zBi2 = f × 3.905 Å                                                         (3.1) 

where the dimensionless factor f was varied manually around 1 in order to find the 

minimum of energy of the strained BFCO structure. A full DFT calculation was performed 

for each value of f, so that the positions of all the atoms in the unit cell (except those of 

the two Bi atoms) were optimized for minimizing the energy of the structure. The value 

of f corresponding to the absolute minimum of energy thus corresponds to the most stable 

configuration of BFCO on the STO substrate. 
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Figure 3.4. Sketch of the rhombohedra in a hilghly symmetric cubic BFCO. 

 

 

Figure 3.5 BFCO epitaxial film on the STO substrate. Due to epitaxial constraint, aBFCO/√𝟐 = aSTO.  
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We performed calculations for all four phase of BFCO. The energies of the strained BFCO 

structures as a function of the factor f are shown in Figure 3.6. One observes that the 

energy follows roughly a parabolic curve as a function of f. Quadratic fits have been 

performed for each phase and the coefficients of determination R2 are also indicated in 

Figure 3.6. The quadratic fits for the four phases are shown together in Figure 3.7.  

 

Figure 3.6. The relation between the energy and the factor f. The total magnetic moment per unit 
cell and the quality of the fits by quartic polynomials are also shown. 

 

The features of the BFCO structures at the energy minima as a function of f 

(corresponding to the most stable configuration) are listed in Table 3.3. Comparing with 

Table 3.1, one observes that FiMHS remains the ground state of the system. As expected, 
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we found that the energies of unstrained BFCO are smaller than those of strained BFCO, 

indicating higher stability of unstrained BFCO. For instance, for the FiMHS state, the 

energy of unstrained BFCO is E = -74.932 eV while for strained BFCO it is E = -74.924 

eV. The fact that f < 1 at the minimum energy means that the out-of-plane size of the unit 

cell has shrunk in response to the in-plane expansion. However, the volume of the unit 

cell has increased in all cases. We also observe that the magnetic moment of Fe and Cr, as 

well as the total magnetic moment remain practically unchanged for all the BFCO phases. 

 

Figure 3.7. Quartic polynomial fits of the calculated energy vs. f for the four phases of BFCO (FiMLS, 
FMLS, FMHS, and FiMHS) and the quality of the fits. 

    

From Figure 3.7, one observes that the most stable state is FiMHS at low volume (f < 

0.995) but that FMHS is the most stable at higher volumes. This is very interesting 

from the point of view of applications, since, as mentioned previously, the FMHS has a 

nominal magnetic moment of 8 µB, which is 4 times higher than that of FiMHS. 
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However, from an experimental point of view, observing this phase transition at large 

volumes would be a significant challenge. The low-spin phases, FMLS and FiMLS, 

clearly have higher energies than the high-spin phases within the range of f considered. 

 

Table 3.3. Calculated parameters and properties of strained BFCO.The meaning of the parameters 
is the same as in table 3.1. a, b, and c are the lattice parameters of the strained quasi-
rhombohedral structure. 

 

 
Phase FiMHS FiMLS FMHS FMLS 

a 5.52 5.525 5.522 5.52 

b 5.49 5.42 5.494 5.42 

c 5.49 5.42 5.49 5.42 

𝛼 in o 60.42  61.26 60.42  61.26 

𝛽 in o 59.92 59.5 59.92 59.505 

𝛾 in o 59.92 59.5 59.92 59.5 

Ω Ǻ3 118.144  115.16 118.144 115.16 

xBi1 0.000000 0.000000 0.000000 0.000000 

xBi2 0.493949 0.499184  0.503550 0.497759 

xFe 

 

0.717832 0.726213 0.730373 0.726482 

xCr 0.220180 0.226440 0.224886 0.226153 

xO1 0.519102 0.548141 0.546226 0.547517 

yO1 0.957073 0.947829 0.945244 0.943137 

zO1 0.404169 0.408191 0.400165 0.408680 

xO2 0.400149 0.410464 0.400224 0.408819 

yO2 0.526314 0.541786 0.542132 0.540425 

zO2 0.949443 0.946545 0.947527 0.946496 

μFe (μB) -3.986 -0.864 +4.032 +1.032 

μCr (μB) +2.558 +2.766 +2.868 +2.744 

Total ( μB) -1.985  1.905 7.66 3.825 

Energy, ∆E (m 

eV) 
0 471 149 476 
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Table 3.4. Total charge of each ion in unit of the elementary charge as determined by using VASP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

We used the same method to calculate the charge of the ions as in the unstrained case. 

Comparing the calculated charges in the strained case, shown in table 3.4, with those of 

table 3.2, obtained in the unstrained case, we can observe that most charges have 

increased, indicating a lower electron localization inside the Wigner-Seitz spheres, which 

is consistent with the larger cell volume. The opposite occurs in the case O2 and O4, for 

which the charge has slightly decrease.  

 

 

 

 

Phase FIMHS FIMLS FMHS FML 

𝑩𝒊 𝟏
+𝟑 2.461 2.462 2.466 2.455 

𝑩𝒊𝟐
+𝟑 2.438 2.464 2.442 2.457 

𝑭𝒆+𝟑 1.542 1.55 1.55 1.279 

𝑪𝒓+𝟑 1.219 1.275 1.252 1.272 

𝑶𝟏
−𝟐 1.008 1.001 1.01 1.0 

𝑶𝟐
−𝟐 1.016 1.021 1.016 1.021 

𝑶𝟑
−𝟐 1.015 1.019 1.015 1.019 

𝑶𝟒
−𝟐 1.006 1.023 1.008 1.022 

𝑶𝟓
−𝟐 1.007 1.026 1.009 1.024 

𝑶𝟔
−𝟐 1.0 1.005 1.004 1.004 
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3.6 Calculations of the Electric Polarization 

As discussed above, the oversimplified approach used by VASP to calculate the ion 

charges makes that the oxygen ions do not have the expected negative charge and the sum 

of the charges of the unit cell is therefore not zero. As a consequence, the charges 

calculated by VASP cannot be used to calculate the polarization, which is directly related 

to the ion charges. For this reason, we will use the nominal charges of each ion (i.e. +3e 

for Bi, Fe and Cr and -2e for O) to calculate the polarization.  

Now, using the nominal charges, we are able to estimate the electric polarization for each 

phase. The total polarization PT is expressed as the sum of an ion contribution Pi and 

electron contribution Pe : 

 𝐏𝑇 = 𝐏𝑖 +  𝐏𝑒                                                            (3.2) 

The ion contribution to polarization is given by: 

𝐏𝑖 =  
1

Ω
 ∑ 𝑍𝑠

𝑖𝑜𝑛 𝐫𝑠𝑠                                                        (3.3) 

where 𝑍𝑠
𝑖𝑜𝑛 = is the charge of the ion s located at the position rs in the unit cell, and Ω is 

the volume of the unit cell. The electron contribution to polarization is formally given by  

𝐏𝑒 =  
1

Ω
∑ 𝑞𝑛𝐫̅𝑛

𝑂𝐶𝐶
𝑛                                                             (3.4) 

In this expression, the sum is over each occupied Wannier function in band n, 𝐫̅𝑛 is the 

Wannier center, and qn is the associated electron charge [14]. 

In principle, Pe can be calculated within the VASP software by means of the Berry phase 

method. However, in practice it appears that the calculation can be performed only in 

certain conditions. One condition is that the band gap of the structure should be 

“sufficiently” large. Another condition is that the structure has a recognizable symmetry. 

While these conditions are fulfilled for unstrained BFCO (at least for the FiMHS state), 

they are not all fulfilled for strained BFCO so that the electron contribution to polarization 

could not be done by means of the Berry phase method in that case. In particular, the 

strained BFCO has no longer the pure rhombohedral symmetry of unstrained BFCO (see 

table 3.3), so that the Berry phase calculation fails within the VASP software. 

Nevertheless, we can calculate the ion contribution to polarization Pi and then estimate 
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the total polarization of the strained BFCO by assuming that the ratio |PT|/|Pi| remains 

the same as in the unstrained case.  

It is important to note that the polarization for periodic systems must be defined through 

a difference between two connected states in order to lift the ambiguity related to the 

selection of the set of atoms to consider in the calculation [15]. In our case, we use the 

difference between the ionic contributions in the strained and unstrained cases  

∆𝐏𝒊 = 𝐏𝑖 𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 
− 𝐏𝑖𝑢𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 

                                               (3.5) 

where the ionic polatizations are obtained from  Eq. (3.3).  

The contribution of each ion to ionic polarization in the unstrained case 𝐏𝑖𝑢𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 
 has 

been obtained from the difference between the unstrained rhombohedral BFCO and an 

optimized quasi-cubic structure [14]. We used the nominal charges for 𝑍𝑠
𝑖𝑜𝑛. The positions 

of the ions and the volume of the unit cell are summarized in tables 3.1 and 3.3 for the 

unstrained and strained cases, respectively (more complete ion positions for the 10 atoms 

of the unit cell are provided in the VASP output file CONTCAR). Table 3.5 shows the 

components and modulus of ∆𝐏𝒊 as obtained from Eq. (3.5). One observes from table 3.5 

that oxygen ions have the major contribution to ∆P𝒊. This result is consistent with that of 

Ref. [14], where is was found that the oxygen atoms provide the main contribution to 

polarization in unstrained BFCO. 
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Table 3.5. Contribution of each type of ion to ΔPi as obtained from Eqs. (3.3) and (3.5). 

 

 

Table 3.6 shows the total ionic polarization ∆Pi between strained and ustrained BFCO, as 

well as the total polarization PT for the strained and unstrained (in parenthesis) BFCO. 

The 𝑃𝑖𝑢𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 
 values, the |PT|/|Pi| ratios and the total polarizations in the unstrained 

case (in parentheses) have been calculated in our group by Dr. Braescu [15] . The total 

polarization has been obtained through the advanced effective Born charge method (not 

available in VASP). The calculated polarization values FiMHS are in good agreement with 

published values [7] (the polarizations for the three other BFCO states have been 

calculated for the first time in Ref. [15]). In order to get an estimate of the total polarization 

|PT| for strained BFCO, we have assumed that the same ratio |PT|/|Pi| applies in the 

strained and unstrained cases for each BFCO state.  

 
Phase 

 
 

 
∆Pi 

C/cm2 

 
 
 
 

FIMHS 

 
 
 
 

FMHS 

      
 
 
 

FMLS 

 
 
 
 

FIMLS 

𝐵𝑖+3 |−𝟐. 𝟒, −𝟎. 𝟗𝟔, −𝟎. 𝟗𝟔| 
 = 2.75 

|−𝟏. 𝟐𝟏, −𝟎. 𝟗𝟔, −𝟎. 𝟗𝟔| 
= 1.63 

|−𝟐. 𝟕, −𝟎. 𝟎𝟗𝟔, −𝟐. 𝟐𝟒| 
= 3.5 

|−𝟑. 𝟎𝟒, −𝟎. 𝟐𝟒, −𝟎. 𝟐𝟒| 
= 3.05 

𝐹𝑒+3 |−𝟒. 𝟑, −𝟏. 𝟒, −𝟔. 𝟒| 
= 7.8 

|−𝟏𝟒𝟐, 𝟐. 𝟎, 𝟏. 𝟔|    
= 2.85 

|−𝟔. 𝟐𝟒, −𝟐. 𝟎𝟔, −𝟐. 𝟎𝟑|  
= 6.87 

|-7.3,-2.3,- 1.55| 
= 7.8 

𝐶𝑟+3 |−𝟏. 𝟕, −𝟎. 𝟖, −𝟎. 𝟔𝟐| 
=1.97 

|−𝟎. 𝟑𝟎𝟒, −𝟎. 𝟑𝟓, −𝟎. 𝟒𝟑𝟐| 
=0.635 

|-2.7,0.89,-1.4| 
= 3.16 

|-2.7,-0.92,1.7| 
= 3.32 

𝑂−2 |𝟏𝟒. 𝟕, 𝟔. 𝟒, 𝟓. 𝟏| 
= 16.8 

|𝟒. 𝟖, 𝟑. 𝟑, 𝟏𝟔. 𝟖| 
= 17.79 

|22.2,8.9,10.09| 
= 25.9 

|23.7,10.8,1.5| 
= 26.08 

Total ∆Pi 7.64 18.2 13.8 12.9 



 

  61 

 

Table 3.6 Polarization results for strained and unstrained BFCO.  

 

Table 3.6 clearly shows a significant increase in the ionic contribution of the polarization, 

which is reflected in the total polarization. The differences in the polarizations come 

essentially from the differences in the ion positions inside the two structures since the 

nominal charges have been used in both cases. Even if the lattice mismatch is on the order 

of 1%, table 3.6 shows significant changes in the ionic contribution ∆Pi to polarization. 

Assuming the same ratio |PT|/|Pi| in the strained and unstrained cases, PT increases by 

about 13% for the FiMHS state. This large polarization is in agreement with the 

experimental value of ~90 C/cm2 obtained from epitaxially grown BFCO thin film on 

niobium–doped STO (see Figure 10a of Ref. [16]) although it is higher than the 

polarization of 55-60 C/cm2 obtained on undoped STO [10]. One also observes that there 

is a significant increase in both the ionic and total polarizations of about 35%, 20% and 

33% in the cases of FMHS, FiMLS and FMLS, respectively, with respect to the calculated 

values.  

It is possible that the ratio |PT|/|Pi| used for estimating the total polarization PT is actually 

overestimated. Neverthesess, if the ratio |PT|/|Pi| is nearly correct, the larger polarization 

obtained for strained BFCO can be attributed physically to the strong interdependence 

between the epitaxial strain and polarization, due to distorsions induced by strain in the 

            

 phase 

 

polarization                      

C/cm2 

 

FiMHS 

 

FMHS 

 

FiMLS 

 

FMLS 

∆Pi 7.64 18.2 12.9 13.8 

Pi unstrained 54.60 53.46 59.64 61.60 

Pi = Pi unstrained+∆Pi 62.24 71.66 72.54 99.10 

 Assumed 
|PT|/|Pi| ratio 

1.45 1.46 1.39 1.38 

𝑃𝑇  90.24  

(79.24) 

104.62 

(77.97) 
100.83 

(83.46) 
104.05 

(77.97)  
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crystal. For instance, a polarization of 150 C/cm2 has been measured in strained BFO [17] 

while the theoretical value for unstrained BFO is 95 C/cm2 [6], which represents an 

increase of about 50%. 

It is likely that the calculated polarization overestimates the actual film polarization. As 

stressed in Ref. [17], the polarization measurement depend on the film thickness. 

Measurements on a thin film provides an average between the polarization of the layers 

close to the substrate and that from layers father from the substrate. Due to the influence 

of lattice parameter mismatch, the polarization of layers which are close to the substrate 

are maximally affected by the epitaxial strain than those far from the substrate. In 

addition, thin films grown in the laboratory are never as perfect as the computer models. 

 

 

 

3.7 Density of state (DOS) calculations for Strained and 
Unstrained BFCO 

 We have performed density of state (DOS) calculations within the LSDA+U formalism 

using the Monkhorst-Pack grid of size 8×8×8. The main purpose of DOS calculations is 

to provide further insight into the effect of the epitaxial strain on the electronic properties 

of BFCO.  

DOS calculations for BFCO are shown in Figure 3.10 and Figure 3.11. The DOS for 

unstrained BFCO (right column) prove to be in overall agreement with the results 

reported in Ref. [8]. Generally, the splitting of Fe-3d orbitals into the two dissimilar states 

eg and t2g is a consequence of the crystal field. As explained above, the high-spin phases 

are characterized by occupied Cr 𝑡2𝑔 states and partially unoccupied Fe 𝑒𝑔 and 𝑡2𝑔, while 

low-spin phases are characterized by occupied Cr 𝑡2𝑔 and empty and occupied Fe 𝑒𝑔 

and 𝑡2𝑔. These states are represented in Figure 3.10 and Figure 3.11. It can be seen that 

epitaxial strain leads to significant changes in DOS. In particular, the distributions of 𝑡2𝑔 

and 𝑒𝑔 states around the Fermi level are quite different. In addition, changes are observed 

in the band gap size for FMHS, from 0.4 eV to 0.3 eV, whereas the FiMHS band gap 
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remains unchanged. DOS calculations for the low-spin cases show that the Fermi level 

dips in partially occupied states and the band gap is significantly reduced, so that BFCO 

tends to have a metallic character. These differences can be ascribed to the large crystal 

field splitting and strong hybridization between 2p-O and delocalized 3d orbitals. 
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Figure 3.8. Projected DOS of the FIMHS, FMHS, phases of strained BFCO (left) and unstrained BFCO 
(right). Spins up and down are represented on the positive and negative vertical axis, respectively. 
Blue, red and black curves pertain to Fe d orbitals, Cr d orbitals, and total DOS, respectively. The 
DOS calculations are performed with U = 3 eV and J = 0.8 eV. The blue curve correspond to Fe d 
orbitals, the red curve to Cr d orbitals and the black curves to the total DOS. 
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Figure 3.9. Projected DOS of the FIMLS, FMHS, phases of strained BFCO (left) and unstrained BFCO 
(right). Spins up and down are represented on the positive and negative vertical axis, respectively. 
Blue, red and black curves pertain to Fe d orbitals, Cr d orbitals, and total DOS, respectively. The 
DOS calculations are performed with U = 3 eV and J = 0.8 eV. The blue curve correspond to Fe d 
orbitals, the red curve to Cr d orbitals and the black curves to the total DOS. 
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Conclusion and Perspectives 

In this work we have investigated the properties of unstrained and epitaxially strained 

Bi2FeCrO6 (BFCO) on a SrTiO3 (STO) substrate through DFT within the LSDA+U 

formalism in order to better understand the effects of epitaxial strain on the properties of 

BFCO. We first investigated unstrained BFCO. Our magnetic calculations showed good 

agreement with the results that have been reported in literature, the small differences in 

optimized energies, total magnetic moments, and relaxed ionic positions being probably 

due to the newer VASP version we used. Although the lattice mismatch between 

unstrained BFCO and STO is only 1% (STO inducing a slight in-plane stretching of BFCO), 

our calculations have shown drastic changes on some properties due to the STO strain 

effect.  

In order to calculate the effects of the epitaxial strain of STO on BFCO, we fixed the BFCO 

rhombohedral cell shape projected on the BFCO-STO interface so as to match the STO 

lattice parameter, and we varied manually the cell size (i.e. the position of the Bi2 atom) 

in the out of plane direction, which was quantified by the scaling parameter f which is 

proportional to the volume of the cell. A full relaxation of the 10 unit cell atoms (except 

Bi1, which was fixed at (0,0,0), and Bi2) was performed for each parameter f. A plot of the 

energy of the BFCO structure as a function of f show approximately parabolic curves for 

the four BFCO phases, with a clear minimum corresponding to the most stable 

configuration for each phase. These curves show that FiMHS remains the most stable 

structure for values of f smaller than that corresponding to the absolute minimum (f ~ 

0.996), i.e. for smaller cell volumes. The symmetry of the strained BFCO is no longer close 

to the R3 rhombohedron. Consequently, we can call this distorted symmetry pseudo-

rhombohedral in analogy with the common pseudo-cubic symmetry. DFT calculations 

showed that epitaxial strain induce a significantly higher ionic, and possibly total, 

spontaneous polarization. However, the magnetic moment of Fe and Cr as well as the total 

magnetic moment remains unchanged for all the BFCO phases. In particular, the 

magnetic moment of FiMHS (most stable state) remains in agreement with the 

experimental values of ~ 2 µB/f.u. The DOS shows another aspect of epitaxial strain. We 
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found that epitaxial strain decreases significantly the band gap in the low-spin cases, 

while the decrease is smaller in the FMHS case (from 0.4 to 0.3 eV) and negligible in the 

FiMHS case.  

In the future, more detailed simulations could be performed by considering several layers 

of BFCO instead of a single unit cell, as well as few layers of STO. For instance, the 

supercell would consist of three layers of BFCO and two layers of STO, as shown in Figure 

(4.1). This arrangement would possibly allow to understand better the physical 

interaction between the two materials and the structural variations of BFCO with respect 

to the distance from the interface.   

 

Figure 4.1. BFCO thin film supercell containing three layers of BFCO and two layers STO as a 
substrate. 
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Another topic of research would be the tetragonal symmetry of BFCO. Experiments have 

shown that BFCO can be grown tetragonally (contrary to the rhombohedral symmetry, 

which, according to DFT studies, is believed to be the most stable state of BFCO). In 

addition, it would be interesting to investigate other substrates, such as LaAlO3 (LAO), 

and (LaAlO3)0.3(Sr2AlTaO6)0.7 (LSAT), as well as other orientations of the STO substrate, 

such as STO(111), to compare with experimental studies.  
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Résumé du travail de Maîtrise  

Le développement continu de théories conduisant à la conception d'algorithmes 

numériques et de logiciels de structure électronique a permis l'étude de systèmes 

physiques complexes avec une grande fiabilité et dans un délai raisonnable. La théorie 

ab-initio de la fonctionnelle de la densité ou DFT (pour Density Functional Theory), qui 

repose sur les principes de base de la mécanique quantique, s'est avérée être un outil 

étonnant, très efficace en science des matériaux ainsi que dans d'autres domaines. Le 

formalisme DFT repose sur la densité électronique, plutôt que sur la fonction d'onde, afin 

de déterminer les propriétés de l’état fondamental d’un système d’électrons, sans avoir 

besoin de paramètres ajustables empiriques. 

La DFT a été largement utilisée pour étudier les propriétés d'intérêt dans de nombreux 

matériaux. En tant que telle, elle a également été parmi les techniques utilisées pour 

prédire les propriétés d'une famille de matériaux appelés multiferroïques.  

La définition formelle d'un matériau multiferroïque est la présence simultanée de plus 

d'un ordre ferroïque dans la même phase. Dans la plupart des cas, les matériaux 

multiferroïques montrent un ordre ferroélectrique (souvent accompagné d'un ordre 

ferroélastique) et un ordre ferromagnétique ou antiferromagnétique [1]. Une telle 

multiplicité de propriétés physico-chimiques intéressantes présentes dans un seul 

matériau, avec des applications potentielles prometteuses (telles que le contrôle 

électrique des propriétés magnétiques du matériau multiferroïque), a attiré un intérêt 

considérable. Par conséquent, des études théoriques et expérimentales sont actuellement 

consacrées à acquérir une compréhension fondamentale des propriétés magnétiques et 

électriques des cristaux multiferroïques monophasiques. 

Les propriétés les plus intéressantes des matériaux multiferroïques sont principalement 

liées à la présence de l'effet magnétoélectrique (couplage entre polarisation électrique et 

aimantation), ce qui confère à ces matériaux leur grande importance en termes de variété 

d'applications qu'ils pourraient potentiellement permettre, notamment dans les 

dispositifs électroniques intégrés. Plusieurs composés à base de bismuth, de la famille 

Bi2BB'O6 ayant une structure cristalline de pérovskites doubles, tels que Bi2FeCrO6 
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(BFCO), Bi2FeMnO6 (BFMO) et Bi2NiMnO6 (BNMO), sont des candidats prometteurs 

présentant des propriétés multiferroïques  [2] [3] [4]. 

1.0 Introduction 

En utilisant la théorie de la fonctionnelle de la densité, nous avons réalisé une étude 

comparative entre Bi2FeCrO6 (BFCO) sans contrainte et ce même multiferroïque BFCO 

déformé par des contraintes d’épitaxie lorsqu’il est déposé sur un substrat de SrTiO3 

(STO). La pérovskite double BFCO a été prédite théoriquement comme étant un candidat 

prometteur pour montrer des propriétés multiferroïques. La maille élémentaire du BFCO 

proposé aurait une structure de pérovskite double rhomboédrique (A2BB'O6) appartenant 

au groupe spatial R3, avec une constante de réseau arh = 5,47 Å et un angle αrh = 60,9o. La 

cellule unitaire contient 10 atomes, comprenant Fe+ 3 (d5) et Cr+ 3 (d3), deux atomes Bi+3 

et six atomes O-2. Fe et Cr occupent tous deux le centre des octaèdres formés par six ions 

O-2 (Figure 1). 

Les charges des ions Fe et Cr ont été déterminées comme suit. Leur somme doit être +6, 

considérant que la charge des deux Bi est +3, la charge des six O est -2 [5], puisque la 

charge totale de la cellule unitaire doit être nulle. Les calculs DFT présentés ci-dessous 

indiquent que le rapport de la charge de Fe à la charge de Cr est toujours proche de 1, 

indiquant qu'ils ont le même état de charge +3. 

 

Figure 1. Structure rhombohédrique de BFCO et arrangement ordonné des métaux de transition Cr 

et Fe le long de la direction  <111>  . 𝒂𝐁𝐅𝐂𝐎𝐑  indique le paramètre de maille du rhombohèdre. Les 10 

atomes de la maille élélmentaire sont indentifiés (Bi1,Bi2,Cr,Fe,O1,…O6). 

2.0 Calculs de BFCO non contraint 
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Tous nos calculs ont été effectués avec le logiciel de simulation VASP (pour Vienna ab 

initio simulation package) dans le formalisme LSDA + U. L'utilisation de LSDA + U est 

justifiée par le fait que le fonctionnel LDA garantit un résultat raisonnablement précis en 

peu de temps. VASP est un logiciel commercial effectuant des calculs DFT dans le cadre 

de la méthode des ondes augmentées par les projecteurs PAW (pour Projector Augmented 

Wave). L'état fondamental électronique est déterminé par la résolution de l'équation de 

Kohn-Sham tandis que, pour l'optimisation de la géométrie, les forces sont calculées 

suivant le théorème de Hellman-Feynman des algorithmes de quasi Newton-Raphson. 

L'optimisation complète de la cellule unité de BFCO a été réalisée pour déterminer ses 

propriétés électroniques, électriques et magnétiques dans le cas sans contrainte. Dans un 

premier temps, nous avons optimisé la cellule unité de BFCO sans tenir compte du spin. 

Cette cellule optimisée a ensuite été utilisée comme point de départ pour le calcul des 

quatre états magnétiques décrits dans le travail, à savoir les états ferrimagnétiques haut 

spin et bas spin FiMHS et FiMLS ainsi que les états ferromagnétiques  haut spin et bas 

spin FMHS et FMLS. Pour tous ces calculs, nous avons utilisé le formalisme LSDA + U 

avec grille 8 × 8 × 8 de points k. Nous avons utilisé U = 3 eV et J = 0.8 eV pour traiter les 

orbitales partiellement occupées du Fe et du Cr car ces valeurs (typiques des matériaux 

isolants) ont été utilisées dans des travaux antérieurs sur le BFCO non-contraint [6]. Nos 

résultats s'avèrent en bon accord avec les travaux de Goffinet et al. [6] malgré de petites 

différences qui peuvent probablement être attribuées aux différences dans les versions de 

VASP utilisées (nous avons utilisé la dernière version).  

Le Tableau 1 montre que l'état fondamental est FiMHS alors que la stabilité de FMHS est 

meilleure que celle des deux états bas spin. On observe que seulement 0.162 eV sépare 

FiMHS de l'état FMHS. Cette séparation relativement faible entre les deux états est 

intéressante du point de vue des applications potentielles puisque le moment magnétique 

de l'état FMHS est 4 fois plus élevé que celui de l'état FMHS. Par conséquent, on peut se 

demander si les contraintes d’une couche épitaxiée pourraient être utilisées pour induire 

une transition de phase entre FiMHS et FMHS. 

 

Tableau 2. Résumé des propriétés structurales et électroniques du système BFCO non-contraint. 



 

  73 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.0 Calcul des charges atomiques 

La charge de chaque élément est calculée en soustrayant la charge donnée dans le fichier POTCAR 

du résultat du calcul. Les charges initiales dans les fichiers POTCAR sont 15 pour Bi, 14 pour Fe, 

12 pour Cr et 6 pour O. Les charges calculées sont résumées dans le tableau 2. 

On observe que la charge totale de la cellule unitaire telle que calculée par VASP n'est pas nulle 

puisque les charges des atomes d'oxygène sont positives. Cela est dû à la façon inexacte dont VASP 

calcule les charges. En effet, le calcul des charges en utilisant des approches plus sophistiquées, 

comme la méthode de Bader [7], où la charge est calculée dans un volume plus complexe que la 

simple sphère de Wigner-Seitz, fournit des résultats plus raisonnables. Malheureusement, la 

Phase FiMHS FiMLS FMHS FMLS 
a(Ǻ) 5.466 

( 5.48) 
5.347 
(5.37) 

5.452 
(5.49) 

5.348 
(5.37) 

𝜶 in o 60.17  
(60.04) 

60.74 
 (60.8) 

60.38  
(60.04) 

60.79  
(5.37) 

Ω Ǻ𝟑 115.96 
(166.57) 

109.93 
(111.33) 

115.608 
(117.18) 

110.12  
(111.64) 

xBi1 0.0 
(0.0) 

0.0 
(0.0) 

0.0 
(0.0) 

0.0 
(0.0) 

xBi2 0.503 
(0.503) 

0.495 
 (0.500) 

0.501  
(0.504) 

0.501 
(0.49) 

xFe 0.731 
(0.732) 

0.726 
 (0.730) 

0.731 
(0.731) 

0.731 
(0.731) 

xCr 0.226 
(0.226) 

0.228 
( 0.232) 

0.226 
(0.226) 

0.226  
(0.232) 

xO1 0.544 
(0.544) 

0.544 
 (0.550) 

0.544  
(0.546) 

0.544  
(0.550) 

yO1 0.950 
(0.950) 

0.949  
(0.956) 

0.951 
(0.949) 

0.951 
(0.953) 

zO1 0.398 
(0.398) 

0.413 
(0.414) 

0.398  
(0.400) 

0.398 
(0.413) 

xO2 0.0398  
(0.047) 

0.0413 
(0.046) 

0.0398 
 (0.044) 

0. 0398 
 (0.045) 

yO2 0.544 
0.905 

0.544 
0.908 

0.544 
(0.905) 

0.544  
(0.908) 

zO2 0.950 
(0.447) 

0.949  
(0.461) 

0.951 
 (0.449) 

0.951  
(0.457) 

μFe (μB) -3.980 
(-3.99) 

-0.769 
(-0.86) 

4.15 
(4.04) 

0.905 
(1.02) 

μCr (μB) 2.542 
 (+2.55) 

2.685 
(+2.75) 

2.928 
(2.86) 

2.699 
(2.73) 

Total (μB) 1.987 1.88 7.66 3.83 

Énergie , ∆E 
 (meV) 

0 
(0) 

363 
(382) 

164 
(164) 

379 
(404) 
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méthode Bader n'est pas implémentée dans VASP. Dans ce qui suit, nous utiliserons donc plutôt 

les charges nominales des ions pour calculer la polarisation. 

 

 

4.0 Influence de la contrainte épitaxiale sur BFCO 
monocristallin 

Tout comme dans le cas sans contrainte, les calculs de structure électronique tenant 

compte de la contrainte épitaxiale ont été réalisés en utilisant le logiciel VASP dans le 

cadre du paramétrage de la méthode PAW (Projected Augmented Plane-Wave). Nous 

avons considéré l'approximation de densité locale LSDA + U pour décrire les orbitales 

partiellement remplies de Fe+3 (3s23p63d5) et de Cr+3 (3p64s03d3). Pour étudier les 

propriétés électroniques et magnétiques du système fortement corrélé du BFCO, nous 

Tableau 3. Charge totale de chaque ion déterminée par VASP donnée dans l'unité de charge 
élémentaire. 

Phase FIMHS FIMLS FMHS FMLS 

𝑩𝒊 𝟏
+𝟑 2.457 2.445 2.459 2.446 

𝑩𝒊𝟐
+𝟑 2.436 2.448 2.44 2.448 

𝑭𝒆+𝟑  1.521 1.32 1.518 1.101 

𝑪𝒓+𝟑 1.19 1.205 1.164 1.211 

𝑶𝟏
−𝟐  0.969 0.95 0.969 0.949 

𝑶𝟐
−𝟐  1.075 1.08 1.079 1.08 

𝑶𝟑
−𝟐 0.964  0.956 0.964 0.956 

𝑶𝟒
−𝟐 1.072  1.087 1.076 1.091 

𝑶𝟓
−𝟐 0.973 0.979 0.973 0.98 

𝑶𝟔
−𝟐 0.939 0.944 0.94 0.943 
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avons utilisé une grille de points k de Monkhorst-Pack 8 × 8 × 8 et l'énergie de coupure 

(cutoff) était de 500 eV. Les conditions de convergence électronique et ionique étaient 

respectivement de 10-8 eV et 10-2 eV / Å. De plus, les valeurs de U et J utilisées ici sont les 

mêmes que dans le cas sans contrainte discuté ci-dessus. 

Le titanate de strontium (STO) cristallise dans une structure de pérovskite cubique simple 

(ABO3, groupe spatial Pm3m) avec un paramètre de maille aSTO = 3.905 Å et un angle de 

réseau αSTO = 90o. Comme le montre la Figure 2, cette structure cubique est composée 

d'ions O-2 situés au centre de chaque face d’un cube formé par les cations Sr+2, occupant 

les sites A, et dont le site B situé au centre du cube est occupé par le cation Ti+4, qui est lié 

de façon octaédrique aux 6 anions O-2 [8]. 

 

Figure 2. Structure cubique de STO avec constante de réseau aSTO = 3.905 Å. 

 

Expérimentalement, Ichikawa et al .ont déposé des super-réseaux artificiel de couches 

alternées de BiFeO3 et de BiCrO3 sur substrat STO (111) par ablation laser pulsé (Pulsed 

Laser Deposition – PLD) [9]. Les mesures magnétiques à température ambiante ont révélé 

une valeur de magnétisation de 3.7 μB/f.u. et une polarisation résiduelle de 60 μC cm-2. 

D’autre part, R. Nechache et al., a l'INRS [10], ont effectué des mesures magnétiques et 

ferroélectriques sur une couche mince de BFCO monophasé, déposée par PLD sur du 

STO(100), et ils ont trouvé une magnétisation à saturation de 1.9 μB/f.u. et une 

polarisation résiduelle de 55-60 μC cm-2, en relativement bon accord avec les valeurs 

prédites théoriquement (2 μB/f.u et ~ 80 μC cm-2, respectivement). 
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4.0 Variation de l'énergie en fonction de la taille de la cellule hors-

plan 

Une couche mince monocristalline de BFCO déposée sur du STO(001) est soumise à une 

contrainte épitaxiale en raison du léger désaccord de maille (mismatch) entre les réseaux 

cristallins de BFCO et STO. Afin d'étudier la déformation épitaxiale dans le BFCO, et ses 

conséquences sur les propriétés multiferroïques, nous avons considéré la forme 

rhomboédrique à l'intérieur d'une structure de BFCO entièrement cubique, comme le 

montre la Figure 3. Cette structure cubique repose sur le substrat de STO, comme le 

montre la Figure 4. Le paramètre de réseau du STO est expérimentalement connu pour 

être 3.905 Å alors que celui du BFCO dans l'état fondamental FiMHS est 5.466 Å 

(longueur des vecteurs de réseau BFCO a (rouge), b (vert) ou c (bleu) sur la Figure 3), 

comme indiqué dans le Tableau1. Cependant, nous devons considérer la projection des 

vecteurs b et c sur le plan d'interface entre les deux matériaux, soit 5.466 / √2 = 3.865 Å. 

Par conséquent, le substrat de STO étire légèrement BFCO dans le plan d'interface dans 

une proportion d'environ + 1% pour l'état FiMHS. 

L'intégration du substrat de STO dans le calcul DFT s'est avérée être prohibitive en termes 

de temps de calcul. En effet, un tel calcul nécessite de prendre en compte une 

« supercellule » de BFCO (c'est-à-dire de nombreuses mailles élémentaires) ainsi que 

quelques couches de STO. Afin d'incorporer l'effet de déformation épitaxiale dans le 

BFCO tout en effectuant le calcul pour une maille élémentaire de  BFCO, nous avons 

procédé comme suit : 

Les coordonnées des atomes Bi définissant la structure de BFCO ont été maintenues fixes 

dans le plan d'interface, que nous définissons comme le plan « x-y », tandis que leur 

coordonnée hors-plan a été modifiée. En référence à la Figure 3, cela signifie que la 

longueur de la projection des vecteurs de réseau BFCO b (vert) et c (bleu) dans le plan 

« x-y » (bas) a été réglée pour correspondre à la constante de réseau de STO, soit 3.905 

Å, la longueur du vecteur de réseau a (rouge) était √2 × 3.905 = 5.223 Å. De plus, la 

position du premier atome de Bi (Bi1 – voir Figure 3) a été maintenue à la position (0, 0, 

0). La position z de Bi2 (voir Figure 4) est quantifiée par l'expression : 

                                       zBi2 = f × 3,905 Å                                                      (1) 
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où le facteur sans dimension f a été modifié manuellement autour de 1 afin de trouver le 

minimum d'énergie de la structure de BFCO sous contrainte. Clairement, f est 

proportionnel au volume de la maille élémentaire, comme le montre la Figure 5. Un calcul 

DFT complet a été effectué pour chaque valeur de f, de sorte que les positions de tous les 

atomes dans la maille élémentaire (sauf celles des deux atomes fixes de Bi discutés plus 

haut) ont été optimisées pour minimiser l'énergie de la structure. La valeur de f 

correspondant au minimum absolu d'énergie correspond donc à la configuration la plus 

stable de BFCO épitaxialement contraint par le substrat STO. 

 

 

 

 

Figure 3. Esquisse des rhomboèdres dans une « supercellule » de BFCO cubique symétrique. 
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Figure 4. Couche mince de BFCO épitaxié sur un substrat de STO.  
À cause de contraintes d’épitaxie , aBFCO/√2 = aSTO. 

 

 

Nous avons effectué des calculs pour les quatre états magnétiques de BFCO. Les énergies 

des structures de BFCO contraintes en fonction du facteur f sont montrées à la Figure 5. 

On observe que l'énergie suit à peu près une courbe parabolique en fonction de f. Des 

ajustements par des polynômes quadratiques ont été effectués pour chaque phase et les 

coefficients de détermination R2 sont également indiqués dans la Figure 5. Les fonctions 

polynômiales quadratiques donnant le meilleur ajustement pour les quatre états 

magnétiques sont montrées ensemble sur la Figure 6. 
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Figure 6. La relation entre l'énergie et le facteur f. Le moment magnétique total par maille 

élémentaire et la qualité des ajustements par des polynômes quartiques sont également montrés. 

Les caractéristiques des structures de BFCO aux minima d'énergie en fonction de f 

(correspondant à la configuration la plus stable) sont données dans le tableau 3. En 

comparant avec le tableau 1, on observe que FiMHS reste l'état fondamental du système. 

Comme prévu, nous avons trouvé que les énergies du BFCO sans contrainte sont plus 

négatives que celles du BFCO avec contrainte, indiquant une plus grande stabilité du 

BFCO sans contrainte. Par exemple, pour l'état FiMHS, l'énergie du BFCO sans contrainte 

est E = -74.932 eV alors que pour le BFCO avec contrainte, elle est E = -74,924 eV. Le fait 

que f < 1 à l'énergie minimale signifie que la taille hors plan de la maille élémentaire a 

diminué en réponse à l'expansion dans le plan. Cependant, le volume de la maille 

élémentaire a augmenté dans tous les cas. Nous observons également que le moment 
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magnétique de Fe et de Cr, ainsi que le moment magnétique total restent pratiquement 

inchangés pour toutes les phases BFCO. 

 

Figure 6. Fonctions polynomiales quadratiques donnant le meilleur ajustement de l'énergie calculée 

en fonction du paramètre f pour les quatre états magnétiques du BFCO (FiMLS, FMLS, FMHS et 

FiMHS), ainsi que la  qualité des ajustements. 

D'après la Figure 7, on observe que l'état le plus stable est FiMHS à faible volume (f  < 

0,995) mais que FMHS est le plus stable à des volumes plus élevés. Ceci est très 

intéressant du point de vue des applications, puisque, comme mentionné précédemment, 

le FMHS a un moment magnétique nominal de 8 μB, ce qui est 4 fois plus élevé que celui 

du FiMHS. Cependant, d'un point de vue expérimental, provoquer et observer cette 

transition de phase à grands volumes constitue un défi important.  

Les phases bas spin, FMLS et FiMLS, ont clairement des énergies plus élevées que les 

phases haut spin dans la plage de f considérée. 
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Tableau 4. Paramètres calculés et propriétés du BFCO avec contraintes. Les valeurs rapportées sont 
les mêmes que dans le tableau 1 : a, b et c sont les paramètres de maille de la structure quasi-
rhomboédrique avec contrainte. 

Phase FiMHS FiMLS FMHS FMLS 

a 5.52 5.525 5.522 5.52 

b 5.49 5.42 5.494 5.42 

c 5.49 5.42 5.49 5.42 

𝛼 in o 60.42 61.26 60.42 61.26 

𝛽 in o 59.92 59.5 59.92 59.505 

𝛾 in o 59.92 59.5 59.92 59.5 

Ω Ǻ3 118.144 115.16 118.144 115.16 

xBi1 0.000000 0.000000 0.000000 0.000000 

xBi2 0.493949 0.499184 0.503550 0.497759 

xFe 0.717832 0.726213 0.730373 0.726482 

xCr 0.220180 0.226440 0.224886 0.226153 

xO1 0.519102 0.548141 0.546226 0.547517 

yO1 0.957073 0.947829 0.945244 0.943137 

zO1 0.404169 0.408191 0.400165 0.408680 

xO2 0.400149 0.410464 0.400224 0.408819 

yO2 0.526314 0.541786 0.542132 0.540425 

zO2 0.949443 0.946545 0.947527 0.946496 

μFe (μB) -3.986 -0.864 +4.032 +1.032 

μCr (μB) +2.558 +2.766 +2.868 +2.744 

Total ( μB) -1.985 1.905 7.66 3.825 

Énergie , ∆E (m 
(eV) 

0 471 149 476 
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 Nous avons utilisé la même méthode pour calculer la charge des ions que dans le cas sans 

contrainte. En comparant les charges calculées dans le cas contraint, montrées dans le 

tableau 4, avec celles du tableau 2, obtenues dans le cas non contraint, on peut observer 

que la plupart des charges ont augmenté, indiquant une localisation électronique 

inférieure dans les sphères de Wigner-Seitz, ce qui est en accord avec le  plus grand 

volume des mailles élémentaires. Le contraire se produit dans le cas O2 et O4, pour 

lesquels la charge a légèrement diminué. 

Tableau 5. Charge totale de chaque ion dans l'unité de la charge élémentaire déterminée par VASP. 

  

4.0 Calculs de la polarisation électrique 

Phase FIMHS FIMLS FMHS FML 

𝑩𝒊 𝟏
+𝟑 2.461 2.462 2.466 2.455 

𝑩𝒊𝟐
+𝟑 2.438 2.464 2.442 2.457 

𝑭𝒆+𝟑 1.542 1.55 1.55 1.279 

𝑪𝒓+𝟑 1.219 1.275 1.252 1.272 

𝑶𝟏
−𝟐 1.008 1.001 1.01 1.0 

𝑶𝟐
−𝟐 1.016 1.021 1.016 1.021 

𝑶𝟑
−𝟐 1.015 1.019 1.015 1.019 

𝑶𝟒
−𝟐 1.006 1.023 1.008 1.022 

𝑶𝟓
−𝟐 1.007 1.026 1.009 1.024 

𝑶𝟔
−𝟐 1.0 1.005 1.004 1.004 
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L'approche trop simplifiée utilisée par VASP pour calculer les charges ioniques fait que 

les ions d’oxygène n'ont pas la charge négative attendue et que la somme des charges de 

la maille élémentaire n'est donc pas nulle. Par conséquent, les charges calculées par VASP 

ne peuvent pas être utilisées pour calculer la polarisation, qui est directement liée aux 

charges ioniques. Pour cette raison, nous utiliserons les charges nominales de chaque ion 

(c'est-à-dire + 3e pour Bi, Fe et Cr et -2e pour O) pour calculer la polarisation. 

En utilisant les charges nominales, nous sommes en mesure d'estimer la polarisation 

électrique pour chaque phase. La polarisation totale PT est exprimée comme la somme 

d'une contribution ionique Pi et d'une contribution électronique Pe: 

𝐏𝑇 = 𝐏𝑖 +  𝐏𝑒                                                                                             (2) 

La contribution des ions à la polarisation est donnée par: 

𝐏𝑖 =  
1

Ω
 ∑ 𝑍𝑠

𝑖𝑜𝑛 𝐫𝑠𝑠                                                                                         (3) 

où 𝑍𝑠
𝑖𝑜𝑛 est la charge des ions situés à la position rs dans la maille élémentaire, et Ω est le 

volume de la maille élémentaire. La contribution des électrons à la polarisation est 

formellement donnée par [11] 

𝐏𝑒 =  
1

Ω
∑ 𝑞𝑛𝐫̅𝑛

𝑂𝐶𝐶
𝑛                                                                                        (4) 

Dans cette expression, la somme est sur chaque fonction de Wannier occupée dans la 

bande n, 𝐫̅𝑛est le centre de Wannier, et qn est la charge d'électrons associée. Il est 

important de noter que la polarisation des systèmes périodiques doit être définie par une 

différence entre deux états connectés afin de lever l'ambiguïté liée à la sélection de 

l'ensemble des atomes à prendre en compte dans le calcul [11]. Dans notre cas, nous 

utilisons la différence entre les contributions ioniques dans les cas contraints et non 

contraints. 

∆𝐏𝒊 = 𝐏𝑖 𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 
− 𝐏𝑖𝑢𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 

                                                                   (5) 

où les polarisations ioniques sont obtenues à partir de l'équation (3). 
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La contribution de chaque ion à la polarisation ionique dans le cas non contraint 

𝐏𝑖𝑢𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 
 a été obtenue à partir de la différence entre le BFCO rhomboédrique sans 

contrainte et une structure quasi-cubique optimisée [12]. Nous avons utilisé les charges 

nominales pour 𝑍𝑠
𝑖𝑜𝑛. Les positions des ions et le volume de la maille élémentaire sont 

résumés dans les tableaux 1 et 3 pour les cas non contraints et contraints, respectivement 

(des positions d'ions plus complètes pour les 10 atomes de la maille élémentaire sont 

fournies dans le fichier de sortie VASP CONTCAR). Le tableau 5 montre les composants 

et le module de ∆𝐏𝒊 obtenus à partir de l'équation (5). On observe à partir du tableau 2 

que ce sont les ions oxygène qui ont la contribution la plus importante à ΔPi. Ce résultat 

est cohérent avec celui de la Réf. [14], où il a été constaté que les atomes d'oxygène 

fournissent la principale contribution à la polarisation dans le BFCO sans contrainte. 

 

Tableau 5. Apport de chaque type d'ion à ΔPi tel qu'obtenu à partir des équations (3) et (5). 

 

Le tableau 6 montre la polarisation ionique totale ∆Pi  entre le  BFCO déformé par les 

contraintes épitaxiales et le BFCO non contraint, ainsi qu’une estimation de la 

polarisation totale PT pour le BFCO contraint et non contraint (entre parenthèses). Les 

valeurs 𝑃𝑖𝑢𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 
, les ratios | PT | / | Pi | et les polarisations totales dans le cas sans 

contrainte (entre parenthèses) ont été calculés dans notre groupe par le Dr. Braescu [12]. 

La polarisation totale a été obtenue grâce à la méthode plus évoluée de la charge efficace 

de Born (non disponible dans VASP). Les valeurs de polarisation calculées pour FiMHS 

dans le cas sans contrainte sont en bon accord avec les valeurs publiées (les polarisations 

pour les trois autres états magnétiques du BFCO ont été calculées pour la première fois 

 FIMHS FMHS FMLS FIMLS 

𝐵𝑖+3 
|−𝟐. 𝟒, −𝟎. 𝟗𝟔, −𝟎. 𝟗𝟔| 

= 2.75 
|−𝟏. 𝟐𝟏, −𝟎. 𝟗𝟔, −𝟎. 𝟗𝟔| 

= 1.63 
|−𝟐. 𝟕, −𝟎. 𝟎𝟗𝟔, −𝟐. 𝟐𝟒| 

= 3.5 
|−𝟑. 𝟎𝟒, −𝟎. 𝟐𝟒, −𝟎. 𝟐𝟒| 

= 3.05 

𝐹𝑒+3 
|−𝟒. 𝟑, −𝟏. 𝟒, −𝟔. 𝟒| 

= 7.8 
|−𝟏𝟒𝟐, 𝟐. 𝟎, 𝟏. 𝟔| 

= 2.85 
|−𝟔. 𝟐𝟒, −𝟐. 𝟎𝟔, −𝟐. 𝟎𝟑| 

= 6.87 
|-7.3,-2.3,- 1.55| 

= 7.8 

𝐶𝑟+3 
|−𝟏. 𝟕, −𝟎. 𝟖, −𝟎. 𝟔𝟐| 

=1.97 
|−𝟎. 𝟑𝟎𝟒, −𝟎. 𝟑𝟓, −𝟎. 𝟒𝟑𝟐| 

=0.635 
|-2.7,0.89,-1.4| 

= 3.16 
|-2.7,-0.92,1.7| 

= 3.32 

𝑂−2 
|𝟏𝟒. 𝟕, 𝟔. 𝟒, 𝟓. 𝟏| 

= 16.8 
|𝟒. 𝟖, 𝟑. 𝟑, 𝟏𝟔. 𝟖| 

= 17.79 
|22.2,8.9,10.09| 

= 25.9 
|23.7,10.8,1.5| 

= 26.08 

Total ∆Pi 7.64 18.2 13.8 12.9 
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dans la Réf. [14]). Afin d'obtenir une estimation de la polarisation totale | PT | pour le 

BFCO contraint, nous avons fait l’hypothèse que le même rapport | PT | / | Pi | s'applique 

dans les cas sous contrainte et dans le cas sans contrainte pour chaque état magnétique 

du BFCO. 

Tableau 6. Résultats de polarisation pour BFCO déformé et non contraint. 

 

 

6.0 Densités d’états (DOS) pour le BFCO contraint et non 

contraint 

Nous avons effectué des calculs de la densité d'état (DOS) dans le formalisme LSDA + U 

en utilisant la grille Monkhorst-Pack de taille 8 × 8 × 8. L'objectif principal des calculs 

DOS est de fournir un meilleur aperçu de l'effet de la déformation épitaxiale sur les 

propriétés électroniques du BFCO. 

Les calculs DOS pour le BFCO sont illustrés à la Figure 8. Le DOS pour le BFCO sans 

contrainte (colonne de droite) s'avère globalement en accord avec les résultats rapportés 

dans la Réf. [6]. Généralement, la levée de la dégénérescence des orbitales Fe-3d et leur 

séparation dans les deux niveaux d’énergie eg et t2g est une conséquence du champ 

cristallin. Comme expliqué ci-dessus, les phases haut spin sont caractérisées par des états 

Cr t2g occupés et Fe eg et t2g partiellement inoccupés, tandis que les phases bas spin sont 

caractérisées par Cr t2g occupé et Fe eg et t2g respectivement vides et occupés. Les densités 

 FiMHS FMHS FiMLS FMLS 

∆Pi 7.64 18.2 12.9 13.8 

Pi unstrained 54.60 53.46 59.64 61.60 

Pi = Pi unstrained    

+ ∆Pi 
62.24 71.66 72.54 99.10 

 Assumed 
|PT|/|Pi| ratio 

1.45 1.46 1.39 1.38 

𝑃𝑇  90.24  

(79.24) 

104.62 

(77.97) 
100.83 

(83.46) 
104.05 
(77.97)  
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d’états (DOS) « spin up » et « spin down » pour les quatre phases magnétiques sont 

représentées dans la Figure 8 pour le cas contraint (gauche) et non contraint (droite).  

On peut voir que la contrainte épitaxiale conduit à des changements significatifs dans la 

DOS. En particulier, les distributions des états t2g et eg autour du niveau de Fermi sont 

très différentes. De plus, des changements sont observés dans la largeur de la bande 

interdite pour FMHS, de 0.4 eV à 0.3 eV, alors que la bande interdite reste inchangée pour 

FiMHS. Les calculs DOS pour les cas bas spin montrent que le niveau de Fermi plonge 

dans les états partiellement occupés et que la bande interdite est significativement 

réduite, de sorte que le BFCO a tendance à avoir un caractère métallique. Ces différences 

peuvent être attribuées au grand dédoublement du champ cristallin et à l'hybridation 

forte entre les orbitales 2p de l’oxygène et les orbitales délocalisées 3d de Fe3+ et Cr3+. 



 

  87 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. DOS projeté des phases FiMHS, FMHS, FiMLS et FMLS du BFCO avec contrainte (à 

gauche) et du BFCO sans contraint (à droite). Les spins up et down sont représentés 

respectivement sur l'axe vertical positif et négatif. Les courbes bleues, rouges et noires se 

rapportent respectivement aux orbitales Fe d, aux orbitales Cr d et au DOS total. Les calculs DOS 

sont effectués avec U = 3 eV et J = 0.8 eV. 
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À l'avenir, des simulations plus détaillées pourraient être effectuées en considérant 

plusieurs couches de BFCO au lieu d'une seule cellule unitaire, ainsi que quelques couches 

de STO. Une telle configuration permettrait de mieux comprendre l'interaction physique 

entre les deux matériaux et les variations structurelles du BFCO en fonction de la distance 

à l'interface. 

Un autre sujet de recherche serait d’étudier  la phase de symétrie tétragonale du BFCO. 

Des expériences ont en effet montré que des couches minces de BFCO peuvent posséder 

une symétrie et une structure tétragonale (à la différence de la symétrie rhomboédrique 

qui, selon les études DFT, est considérée comme l'état le plus stable du BFCO). En outre, 

il serait intéressant d'étudier d'autres substrats utilisés expérimentalement, tels que 

LaAlO3 (LAO), (LaAlO3)0.3(Sr2AlTaO6)0.7 (LSAT), ainsi que d'autres orientations du 

substrat de STO, telles que STO (111). 
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