VOLET TÉLÉDÉTECTION SUIVI SPATIO-TEMPOREL DU COUVERT NIVAL À L'AIDE DES DONNÉES

NOAA-AVHRR
- Rapport d'étape -

Rapport de recherche No R-719-e1

Avril 2004

VOLET TÉLÉDÉTECTION

SUIVI SPATIO-TEMPOREL DU COUVERT NIVAL À L'AIDE DES DONNÉES NOAA-AVHRR

Préparé par :

Karem Chokmani Monique Bernier Véronique Beaulieu Marc Philippin Michel Slivitzky

Rapport d'étape N° R-719-e1 présenté au Dr. René Roy

OURANOS

dans le cadre du projet

Analyse hydrologique du MRCC

© INRS-ETE, 2004

ISBN: 2-89146-513-x

TABLE DES MATIÈRES

1. IN	TRODUCTION	1
1.1	Contexte	1
1.2	PRODUITS CARTOGRAPHIQUES DISPONIBLES	2
1.3	OBJECTIFS	4
2. M	ÉTHODOLOGIE	7
2.1	Données satellitaires	7
2.2	LE CAPTEUR AVHRR	8
2.3	Pré-traitements	9
2.4	ALGORITHME DE CLASSIFICATION DE LA NEIGE AU SOL	12
3. V	ALIDATION DE L'ALGORITHME DE CARTOGRAPHIE DU COUVER	T DE
NEIGI		17
3.1	ÉTALONNAGE DE L'ALGORITHME DE CLASSIFICATION	17
3.2	VALIDATION SPATIALE DE L'ALGORITHME DE CLASSIFICATION	22
3.3	VALIDATION TEMPORELLE DE L'ALGORITHME DE CLASSIFICATION	28
4. C	ONCLUSIONS	37
5. RI	ÉFÉRENCES	39
6. Al	NNEXES	41
6.1	IMAGES AVHRR ACQUISES POUR LES TROIS PÉRIODES VISÉES PAR L'ÉTUDE	41
6.2	STATIONS MÉTÉOROLOGIQUES UTILISÉES POUR LA VALIDATION DES RÉSULTATS	DE LA
CLAS	SIFICATION DES IMAGES AVHRR	52
6.3	Couverture des bassins obtenue à partir des images AVHRR	56
6.4	COUVERTURE DES BASSINS VERSANTS WASWANIPI, SAGUENAY ET CHURCHILL	-FALLS
À PAI	RTIR DES IMAGES AVHRR HEBDOMADAIRES COMPOSITES POUR LES TROIS PÉRIOD	ES
OBJE	T DE L'ÉTUDE	70

LISTE DES TABLEAUX

Tableau 1 : Caractéristiques du capteur AVHRR8
Tableau 2 : Valeurs des seuils de l'algorithme de classification des images AVHRR17
Tableau 3 : Matrices de confusion des résultats de la classification des images AVHRR comparés aux échantillons qui ont servi pour bâtir l'algorithme de classification20
Tableau 4 : Résultats de la classification des images AVHRR comparés aux observations de la neige au niveau de stations météorologiques pour deux dates critiques de chacune des trois périodes visées par l'étude
Tableau 5 : Résultats de la classification des images AVHRR comparés aux observations de la
neige au niveau des 15 stations météorologiques pour les trois périodes visées par l'étude. 29

LISTE DES FIGURES

Figure 1:	chéma des pré-traitements des images AVHRR.	11
Figure 2 : classifi	Organigramme de l'algorithme multi-canaux hiérarchique séquentiel de cation des images AVHRR.	
Figure 3 : classifi	Couvert nival obtenu à partir des images AVHRR à l'aide de l'algorithme de cation pour le 26/10/1998 et le 30/04/1999	
_	Couvert nival obtenu à partir des images AVHRR à l'aide de l'algorithme de cation pour le 29/10/1991 et le 27/04/1992	
_	Couvert nival obtenu à partir des images AVHRR à l'aide de l'algorithme de cation pour le 26/10/1986 et le 28/04/1987	
Figure 6 : des rés	Localisation des stations météorologique utilisées dans la validation temporelle ultats de classification des images AVHRR.	
	Comparaison entre l'occurrence de la classe neige dans une fenêtre 3x3 pixels e sur la station météorologique Hemon ([-72.60;49.07], Alt:183 m) et la profondeur eige mesurée à la station pour les trois périodes visées par l'étude	r
Figure 8: km x 4	Représentation des bassins versants étudiés par mailles de calcul du MRCC (45 5 km).	
•	Couverture des bassins versants Waswanipi et Saguenay déterminée à partir des AVHRR pour l'automne des trois périodes visées par l'étude	
Ü	Couverture des bassins versants Waswanipi et Saguenay déterminée à partir des AVHRR pour le printemps des trois périodes visées par l'étude	

1. Introduction

1.1 Contexte

Le présent travail s'inscrit dans le cadre d'une étude multidisciplinaire visant à « Valider les éléments importants du cycle hydrologique dans les simulations de la version 3.6 du modèle régional canadien du climat [MRCC(v3.6)] sur le Québec » ainsi qu'à évaluer les effets estimés par le MRCC(v3.6) dans ses projections de changement climatique. Le principal objectif de l'étude, qui devrait durée deux ans, est l'examen des bilans hydrologiques annuels et interannuels et des résultats de diverses simulations du MRCC(v3.6) effectuées sur des fenêtres de 25 années. La majeure partie des analyses sont effectuées sur une douzaine de bassins hydrographiques québécois et utilisent des données d'observations d'écoulements obtenues grâce à la collaboration des organismes suivants : Hydro-Québec, Churchill Falls and Labrador Corporation (CFLCo), Alcan, Ministère de l'Environnement du Québec (MENV).

Dans le volet télédétection du projet, certains types de données satellites sont exploités pour évaluer la possibilité de valider des variables du MRCC(v3.6) impossible à valider à partir des observations conventionnelles (*i.e.*, couverture de neige, le gel du sol, l'équivalent en eau de la neige).

Le couvert nival est un facteur clé dans la modélisation de la circulation atmosphérique, du ruissellement, du climat et des changements climatiques. L'albédo élevé de la neige influence le bilan radiatif global et son contenu en eau représente un grand réservoir hydrique. De plus, durant le cycle annuel, la neige couvre entre 10% à 40% de l'hémisphère nord (Hall *et al.*, 2001a; Cordisco *et al.*, 2003). La source conventionnelle d'information sur le couvert nival est le réseau de stations météorologiques où des observations journalières de la présence et/ou de la profondeur de la neige sont relevées. Ce réseau de stations ne permet pas de fournir des données assez précises pour

cartographier le couvert nival à grande échelle et avec une bonne résolution spatiale et ce, en raison de sa faible densité.

Les données satellitaires représentent alors des sources alternatives d'information sur le couvert nival et peuvent être utilisées pour la validation des simulations de MRCC. Par conséquent, il a été décidé d'explorer le potentiel des données acquises dans le visible et dans l'infrarouge, pour le suivi spatio-temporelle de la couverture de la neige au sol. Pour se faire, parmi les 25 années hydrologiques concernées par l'étude (1975-1999), trois hivers ont été retenus pour le développement et la validation initiale de l'approche satellitaire, en raison de leur caractère particulier : 1986-1987, 1991-1992 et 1998-1999. Les analyses seront effectuées sur une douzaine de bassins versants situés dans la province de Québec et au Labrador; la validation se fera en particulier sur des bassins du Saguenay et de Churchill.

1.2 Produits cartographiques disponibles

Déjà dès 1966, des cartes du couvert nival à l'échelle continentale de l'Hémisphère Nord réalisées à partir des données satellitaires ont été produites sur une base hebdomadaire (Klein et al., 1998). Ces cartes ont été continuellement améliorées à mesure que des nouvelles données satellitaires devenaient disponibles. Actuellement, plusieurs capteurs (fonctionnant dans visible et l'infrarouge) embarqués sur différents satellites ont la capacité de fournir de l'information à l'échelle régionale et globale sur la neige et la glace. Les principaux capteurs sont: AVHRR (Advanced Very High Resolution Radiometer) de NOAA (National Oceanic and Atmospheric Administration), l'imageur de GOES (Geostationary Operational Environmental Satellite), MODIS (Moderate Resolution Imaging Spectroradiometer) du satellite Terra et le capteur VEGETATION du satellite européen SPOT (Satellite Pour l'Observation de la Terre). À l'échelle du bassin versant, le couvert nival pourrait être suivi à l'aide des capteurs à plus haute résolution Spatiale tel TM (Thematic Mapper) du satellite Landsat ou HRV (Haute Résolution Visible) de SPOT. Toutefois, leur couverture temporelle est assez faible.

Jusqu'en 1997, les produits opérationnels disponibles sur la neige ont été les cartes hebdomadaires manuelles IMS (Ice Mappind System) couvrant l'hémisphère nord produites par le National Environmental Satellite Data and Information Service (NESDIS). Elles étaient réalisées manuellement à partir des images AVHRR et des satellites géostationnaires (GOES, METEOSAT). L'analyste se basait sur la dernière image claire pour délimiter manuellement l'étendue de la neige. Ensuite, le résultat était numérisé avec une résolution nominale de 190 km. Ce système a été amélioré pour produire des couvertures journalières avec une résolution de 23 km (Ramsay, 1998). À partir de 1999, la résolution spatiale du produit du NESDIS est passée à 5 km grâce à une autre amélioration du système IMS qui prend en compte les données du capteur de microondes passives SSM/I (Special Sensor Microwave Imager) embarqué sur le satellite DMSP (Defense Meteorological Satellite Program)) (Romanov et al., 2000).

Parallèlement, dès 1986, le National Operational Hydrological Remote Sensing Center (NOHRSC) mettait à la disposition des usagers une cartographie régionale de l'étendue journalière de la neige dans 3000 à 4000 bassins versant aux États-Unis, l'Alaska et au sud du Canada (Bitner *et al.*, 2002; Hall *et al.*, 2002). Ces cartes sont produites d'une manière semi-automatique à partir des données de AVHRR et GOES à une résolution spatiale nominale de 1 km.

Depuis fin 1999, des cartes de l'étendue de la neige réalisées à partir des images MODIS sont disponibles : une couverture régionale quotidienne et hebdomadaire (étendue maximale de la neige pendant les 8 derniers jours) à une résolution de 500 m ainsi qu'une couverture globale d'une résolution de 0,5 degrés. La cartographie de la neige est effectuée à l'aide d'un algorithme basé sur le Normalized Difference Snow Index (NDSI). Cet algorithme est toujours en phase de test et développement (Hall *et al.*, 1995; Hall *et al.*, 2001b; Hall *et al.*, 2002; Simic *et al.*, 2003).

D'après cette brève revue des produits opérationnels disponibles pour la cartographie l'étendue de la neige, il s'avère qu'aucun des produits ne peut être utilisé pour la validation des simulations du MRCC en raison de la couverture spatiale limitée, la résolution spatiale inadéquate ou la non disponibilité d'une série d'observations couvrant la période de temps ciblée par l'étude (1975-1999). En effet, les cartes produites par le

NOHRSC, de résolution de 1 km, présentent une couverture spatiale limitée. Celles produites par le NESDIS n'ont atteint une résolution convenable qu'après 1997. Quant aux cartes produites à l'aide des images MODIS, d'une résolution de 500 m, elles ne sont disponibles que depuis la fin de 1999. Par ailleurs, la précision des résultats de la modélisation climatologique dépend grandement de la qualité de la cartographie de l'étendue du couvert nival. Puisque la maille de modélisation varie entre 25-45 km, la couverture nivale devrait être produite à une résolution de l'ordre de quelque kilomètres (Romanov *et al.*, 2000). D'autre part, la faible résolution temporelle des satellites de haute résolution spatiale limite leur utilisation dans le suivi temporelle de la couverture de la neige (Hall *et al.*, 2002).

1.3 Objectifs

L'objectif principal du présent travail consiste à développer une procédure opérationnelle de suivi spatio-temporel de la couverture de la neige au sol à l'aide des images du capteur AVHRR de NOAA. Ce capteur est tout à fait approprié pour les études de changement climatique et le suivi temporel de l'état de la surface terrestre. En effet, une longue série d'observations quotidiennes de la surface terrestre dans le visible et l'infrarouge (de 1981 à aujourd'hui), d'une qualité constante (permettant le suivi temporel) et d'une résolution spatiale de 1,1 km (un niveau de précision satisfaisant pour des études régionales) est disponible en ligne (http://www.saa.noaa.gov).

Cet objectif a été scindé en deux objectifs spécifiques :

- En se basant sur les méthodes et les algorithmes publiés dans la littérature, développer un algorithme opérationnel de la classification de la neige à l'aide des données AVHRR pour la zone d'étude;
- 2. Valider les résultats de classification par rapport aux observations de l'occurrence et de l'épaisseur de la neige au sol.

Le prochain chapitre décrit la méthodologie utilisée pour cartographier la couverture de neige. Le troisième chapitre de ce rapport présente la validation spatiale et la validation temporelle de l'algorithme de classification pour les résultats de la saison 1986-1987, 1991-1992 et1998-1999.

2. Méthodologie

2.1 Données satellitaires

Les données images utilisées dans le présent travail ont été acquises par le capteur AVHRR, embarqué à bord de la série de satellites NOAA. La dernière génération de cette série a débuté avec TIROS-N en 1978 puis suivi par NOAA-6 jusqu'à NOAA-18, actuellement en service. Il s'agit d'un satellite à orbite polaire quasi héliosynchrone (en phase avec le soleil) à une altitude nominale variant de 833 à 870 km. Il a une inclinaison de 98.9° et une période orbitale de 102 minutes. Grâce à la rotation de la terre autour d'elle-même, le satellite balaie toute la surface de la terre, d'est en ouest, avec un chevauchement qui s'accentue vers les pôles. Le satellite fait 14,1 orbites par jour. Il croise le plan de l'équateur deux fois par jour, approximativement au même endroit (en réalité, il ne revient au même endroit qu'après 8 jours à cause d'un léger décalage à chaque orbite): une fois l'avant-midi (orbite descendante) et une autre l'après-midi (orbite ascendante). Deux satellites sont en opération simultanément. De la sorte, n'importe quel point du globe est couvert par au moins quatre passages, quotidiennement. En allant de l'équateur vers les pôles le nombre de passages augmente.

Afin de pouvoir suivre l'évolution de la neige au sol, surtout pendant les phases de formation et de fonte, les images quotidiennes ont été acquises du 1^{er} octobre au 15 décembre et du 1^{er} avril au 31 mai de chacune des trois période cibles (1986-1987, 1991-1992 et 1998-1999). Les images du début de l'après-midi ont été privilégiées. Les images de mi-journée sont moins sensibles aux effets topographiques qui se manifestent par des variations dans les conditions d'illumination (Voigt *et al.*, 1999).

2.2 Le capteur AVHRR

Le capteur AVHRR (Tableau 1) est un radiomètre balayeur mesurant le rayonnement dans cinq régions différentes du spectre électromagnétique. Le capteur couvre une région du spectre électromagnétique allant du visible jusqu'à l'infrarouge thermique en passant par l'infrarouge proche et l'infrarouge moyen. Le balayage longitudinal de la scène s'effectue grâce au déplacement du satellite. Le balayage transversal est réalisé à l'aide d'un miroir rotatif. Afin d'assurer une couverture quotidienne de tout le globe, le miroir balayeur de AVHRR couvre une importante scène (2700 km). À chaque rotation du miroir, 2048 mesures sont effectuées à l'intérieur d'un angle maximal de balayage de 55,4° de part et d'autre du nadir. Sa résolution spatiale est de 1,1 x 1,1 km au nadir et atteint, à cause de l'importance de la scène et de la courbure de la terre, 2,4 x 6,9 km à la limite du champ balayé.

Tableau 1 : Caractéristiques du capteur AVHRR.

Paramètres spatiaux			· · · · · · · · · · · · · · · · · · ·		
Angle de balayage:	±55,4°				
Champ balayé:	2700 km				
Résolution spatiale :	1,1 x 1,1 km	n au nadir			
	2,4 x 6,9 km	n à la limite d	u champ bala	yé	
Paramètres spectraux					
Canal:	1	2	3	4	5
Région spectrale :	rouge	infrarouge proche	infrarouge moyen	infrarouge thermique	infrarouge thermique
Bande spectrale (μm) :	0,58-0,68	0,725-1,10	3,55-3,93	10,3-11,3	11,5-12,5
Codage:	10 bits pour	tous les cana	ux		

2.3 Pré-traitements

Du fait qu'elles ne sont pas utilisables dans leur format brut et qu'elles sont affectées par un certain nombre de facteurs indésirables lors de leur acquisition, les données AVHRR doivent subir une série de pré-traitements. Ceci comprend l'étalonnage (calibration) des données brutes et leur correction radiométrique et géométrique (Figure 1). L'ensemble des pré-traitements a été réalisé dans le logiciel PCI.

L'étalonnage des données AVHRR permet de transformer les données brutes fournies par le capteur en paramètres physiques. Les données dans le visible et l'infrarouge proche (canaux 1 et 2) sont converties en albédo (A1 et A2). Les données dans l'infrarouge moyen et thermique (canaux 3, 4 et 5) sont converties en température de brillance (T3, T4 et T5). Le module AVHRRAD de PCI se sert d'une série de coefficients d'étalonnage ainsi que des données de navigation orbitale inclus dans l'image brute. Également, ce même module permet d'effectuer la principale correction radiométrique appliquée aux données dans le visible et l'infrarouge proche (canaux 1 et 2), à savoir leur correction par rapport à l'angle zénithal solaire.

Dans une aussi grande scène que celle de AVHRR, on assiste à un grand changement de l'angle zénithal solaire (sur 2700 km le temps solaire local change 1,6 fois) et de l'angle de visée. Par conséquent, l'utilisation d'une série temporelle d'images implique l'emploi d'une grande variété de configurations de la géométrie d'acquisition (soleil-cible-capteur). Ainsi, une même surface cible pourrait être observée à partir de différents angles et sous différentes conditions d'illumination. Or la plupart des surfaces naturelles ne reflètent pas le rayonnement électromagnétique d'une manière isotropique mais plutôt selon une fonction angulaire propre à chaque type de surface connue sous le nom de la fonction de distribution de la réflexion bidirectionnelle (connue sous l'acronyme anglais BRDF pour bidirectional reflectance distribution function).

Plusieurs travaux ont été consacrés à l'étude et la modélisation de la BRDF et ont démontré l'importance d'en tenir compte dans les études impliquant la réflectance terrestre dans les régions du visible et du proche infrarouge (Roujean *et al.*, 1992; Wu *et al.*, 1995; Roberts, 2001). Latifovic *et al.* (2003), par exemple, ont proposé un modèle

semi empirique pour la correction des effets de la BRDF dans les données optiques du capteur AVHRR acquises au-dessus d'une dizaine de types adapté au Canada. Toutefois, ce modèle a été développé pour la saison estivale. Après une revue de littérature exhaustive, nous n'avons noté aucun modèle de correction de la BRDF qui soit applicable aux conditions de formation et fonte de la neige (le développement d'un tel modèle dépasse le cadre de la présente étude). Par conséquent, aucune correction pour les effets de la BRDF n'a été appliquée aux images et les surfaces observées ont été considérées ainsi comme des cibles lambertiennes. Toutefois, il serait intéressant d'évaluer l'effet de cette hypothèse sur la précision des paramètres extraits à partir de telles données.

Ainsi, les mesures de réflectance dans les canaux 1 et 2 n'ont été normalisées que par rapport aux conditions d'illumination. Cette normalisation permet tout de même de comparer les données de réflectance dans les canaux 1 et 2 d'une même image ainsi que celles d'images de dates d'acquisition différentes. Pour les parties de l'image pour lesquelles l'angle zénithal solaire dépasse les 85 degrés, la correction est invalide. Ces parties ont été éliminées. Ceci est particulièrement le cas des images de la fin novembre et de décembre. Par ailleurs, afin de tenir compte des fluctuations saisonnières dans les conditions d'illumination, les deux premiers canaux ont été normalisés par rapport à la distance moyenne Terre-Soleil.

Par ailleurs, les données de AVHRR dans le visible et l'infrarouge sont affectées par l'atmosphère. En effet, celle-ci n'est pas parfaitement transparente dans cette région spectrale, puisque ses différentes composantes (principalement : H₂O, O₃, CO₂ et les aérosols) viennent modifier l'énergie émise par la surface terrestre par leur émission et absorption. La correction des effets atmosphériques requiert des données de profils atmosphériques, au moment de l'acquisition de l'image. Ces profils sont obtenus par sondages à l'aide de ballons sondeurs ou par des observations satellitaires. Les profils atmosphériques fournissent au modèle de correction des informations sur sa composition de l'atmosphère, sa pression ou sa température. Ce dernier, estime les coefficients d'absorption, transmittance et de diffusion des différentes couches, nécessaire pour la correction du signal en provenance de la surface terrestre. Malheureusement, nous ne disposons pas de telles données et l'utilisation de profiles atmosphériques standard ne

fera qu'alourdir la procédure de prétraitement sans pour autant que le gain dans la précision de données soit évident. Par conséquent, les données utilisées ici n'ont subi aucune correction atmosphérique.

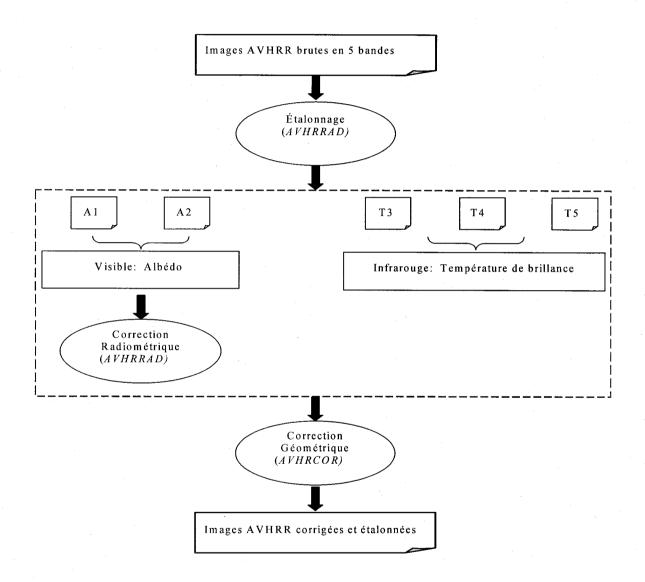


Figure 1 : Schéma des pré-traitements des images AVHRR.

Les images produites par le capteur AVHRR ne sont pas géoréférencées. De plus, elles contiennent des distorsions géométriques dues aux effets conjugués de l'étendue du champ balayé, du mouvement du satellite, de la variation de son altitude, de la rotation de la terre et de la courbure de celle-ci. La correction géométrique consiste à réduire les déformations spatiales dans les images et les rattacher à un système de projection usuel. Le module AVHRCOR a été appliqué pour corriger les images géométriquement. Ce dernier exploite les données de navigation du satellite (position, altitude, trajectoires, etc.) transmises avec les données brutes ainsi que la géométrie de la terre pour reconstruire la géométrie des images. À partir de chacune des images, une sous-région couvrant le territoire à l'étude (82°30'O, 58°N; 60°O, 46°N)¹ a été extraite pour être exploitée dans le reste de l'étude.

2.4 Algorithme de classification de la neige au sol

Étant donné que la neige, contrairement à plusieurs surfaces naturelles, affiche une grande réflectance dans l'infrarouge moyen en plus d'avoir une réflectance élevée dans le visible, plusieurs techniques prometteuses exploitant cette propriété ont été appliquées avec succès pour la cartographie de la neige : classification spectrale supervisée (Qobilov et al., 2001), les réseaux de neurones artificiels (Welch et al., 1992), les techniques de segmentation (Simpson et al., 1998) ou la modélisation sous pixels (Vikhamar et Solberg, 2002). Cependant, ces techniques, quoique parfaitement efficaces à l'échelle locale, le sont moins à l'échelle régionale ou globale puisqu'elles requièrent un effort soutenu pour leur étalonnage et leur application. Par conséquent, pour les études de suivi de la neige à grande échelle et sur une longue période de temps comme dans le cas la présente étude, des techniques de classification à l'aide de seuils hiérarchiques sont plus appropriées en raison de leur simplicité, transparence et rapidité (Hall et al., 2001a).

¹ Pour les images de la saison 1998-1999, l'étendue de la zone extraite des images est légèrement plus petite : (79°O, 58°N; 60°O, 46°N).

Différents algorithmes employant des seuils de classification pour la cartographie de la neige au sol à l'aide de l'imagerie AVHRR ont été proposés dans la littérature (Hutchison et Locke, 1997; Voigt *et al.*, 1999; Kangas *et al.*, 2001; Ananasso *et al.*, 2003; Appel et Bach, 2003). Afin de discriminer les différentes surfaces présentes dans la scène, les seuils employés sont conçus en se basant sur les différences dans leur réponse spectrale dans les canaux de AVHRR. Les différents seuils correspondent à la valeur d'une bande ou une combinaison de bandes de AVHRR. Il sont déterminés empiriquement et diffèrent d'un algorithme à un autre. Ils sont appliqués à l'ensemble de l'image d'une manière séquentielle pixel par pixel. Cependant, l'ensemble des algorithmes emploient la réflectance dans la bande 3 de AVHRR (3,7 µm) comme critère de ségrégation entre la neige et les nuages. En effet, dans les deux bandes du visible, les surfaces enneigées et les nuages présentent des propriétés spectrales similaires. En revanche, les surfaces enneigées se caractérisent par une plus faible réflectance dans l'infrarouge moyen que les nuages bas, formés de gouttelettes d'eau. Ceci est moins vrai pour les nuages formés de particules de glace.

Toutefois, la réflectance dans la bande 3 de AVHRR (infrarouge moyen) n'est pas disponible directement² dans les données AVHRR. En fait, le rayonnement mesuré par le capteur dans cette région spectrale est composé, pendant le jour, du rayonnement solaire réfléchi par la surface terrestre et de l'énergie émise par cette dernière³. Certains auteurs (Allen *et al.*, 1989; Gesell, 1989) ont proposé une méthode indirecte d'estimation de la réflectance dans la bande 3 utilisant la température de brillance dans la bande 4 pour estimer et soustraire l'énergie émise par la surface terrestre dans la bande 3. Kongas *et al.* (2001) ont aussi proposé une méthode d'estimation de la réflectance dans la bande 3. Elle consiste à utiliser la différence de température T3-T4 comme une mesure de la réflectance dans l'infrarouge moyen. C'est cette dernière méthode qui a été adoptée et appliquée dans le présent travail.

² Depuis avril 1999, l'information dans l'infrarouge moyen est désormais disponible à partir des données AVHRR grâce à la nouvelle bande 3a (1,6 μm) ajoutée au capteur embarqué sur NOAA-15. Cette bande est composée entièrement d'énergie solaire réfléchie.

³ Pendant la nuit, celle-ci est composée uniquement de l'énergie émise par la terre.

L'algorithme de classification des images AVHRR développé dans la présente étude a été inspiré de celui proposé par Voigt *et al.* (1999). Il s'agit d'un algorithme à seuils multicanaux pour le suivi du couvert de la neige. Selon Voigt *et al.* (1999), la technique présentée surpasse la classification supervisée et non supervisée. Comparée aux observations au sol (le pixel centré sur la station météo affichant 10 cm de neige ou plus est considéré comme couvert de neige), la technique affiche un taux de réussite variant entre 60% et 90%.

L'algorithme est conçu pour distinguer trois catégories de surface: neige, nuages et autres. Il est constitué d'une combinaison de 6 seuils séquentiels. L'application des seuils va du moins restrictif au plus sévère. Un pixel qui réussi tous les seuils est classé comme neige, sinon il est catégorisé comme nuages ou autre (Figure 2):

- 1. Le pixel doit avoir une T4 inférieure à la température maximale que pourrait avoir la neige. Sinon, le pixel est classé autre que neige ou nuage;
- 2. Le pixel doit avoir une T4 supérieure à la température minimale que pourrait avoir la neige. Sinon, le pixel est classé en nuages (plus froide que la neige);
- 3. Le pixel doit avoir une différence de température ΔT45 (T4-T5) inférieure à celle des voiles nuageux tels les cirrus. Sinon, le pixel est classé en nuages;
- 4. Le pixel doit avoir un indice de végétation NDVI⁴ inférieur au maximum que pourrait avoir la neige. Sinon, le pixel est classé autre que neige ou nuage. Les valeurs de NDVI varient entre 1 et -1. Normalement, la neige présente des valeurs de NDVI négatives ou de faibles valeurs positives;
- 5. Le pixel doit avoir une différence de température ΔT34 (T3-T4) inférieur à la valeur maximale que pourrait avoir la neige. Sinon, le pixel est classé en nuages. Dans la bande 3, la réflectance de la neige est beaucoup plus basse que celle des nuages bas;

⁴ NDVI=(A2-A1)/(A2+A1)

6. Le pixel doit avoir un albédo dans la bande 1 (A1) supérieur à la valeur minimale que pourrait avoir la neige. Sinon, le pixel est classé autre que neige ou nuage. La neige a normalement un albédo dans le visible supérieur aux autres surfaces.

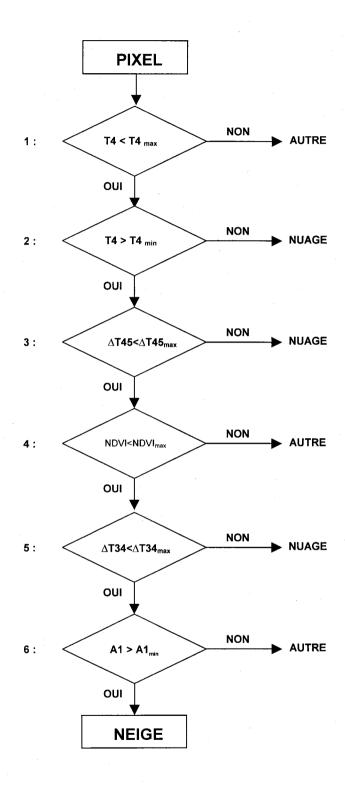


Figure 2 : Organigramme de l'algorithme multi-canaux hiérarchique séquentiel de classification des images AVHRR.

3. Validation de l'algorithme de cartographie du couvert de neige

3.1 Étalonnage de l'algorithme de classification

Après une sélection visuelle, seule les images présentant une couverture nuageuse minimale ont été retenues. Elles ont été utilisées pour l'étalonnage et la validation de l'algorithme de cartographie de la couverture de la neige au sol (voir Annexes pour une liste exhaustive des images).

Dans le but d'étalonner l'algorithme de classification, des échantillons de pixels ont été extraits à partir de chacune des images sélectionnées, au-dessus de zones appartenant aux trois catégories de surface présentes dans la scène (neige, nuages et autres). Ces zones ont été identifiées visuellement et délimitées manuellement dans le système PCI. Par la suite, les percentiles des données radiométriques (T4, ΔT45, NDVI, ΔT34 et A1) des échantillons de pixels ont été calculés. Les percentiles ont servi à bâtir les valeurs des seuils de l'algorithme dépendamment. Le Tableau 2 présente les valeurs des seuils ainsi obtenus.

Tableau 2: Valeurs des seuils de l'algorithme de classification des images AVHRR

Seuil	Paramètre	Valeur du seuil pour l'automne	Valeur du seuil pour le printemps
1	T4	274,9 °K	289,3 °K
2	T4	240,2 °K	254.2 °K
3	ΔΤ45	2 °K	2 °K
4	NDVI	0,14	0,19
5	ΔΤ34	7,4 °K	11,3 °K
6	A1	22,8%	12,1%

De prime abord, les tests de comparaison (test de Student) effectués sur les données radiométriques extraites au-dessus des zones d'échantillonnage ont montré que les caractéristiques radiométriques des différentes catégories de surface sont significativement différentes dépendamment s'il s'agit d'images d'automne ou de printemps. Par conséquent, nous avons choisi d'établir des valeurs seuils différentes pour les images d'automne et de printemps. La valeur seuil de $\Delta T45$ est par contre temporellement stable.

Le premier et le deuxième seuil correspondent, respectivement, au 99^{ième} et au 1^{ier} percentile de la température T4 observée au-dessus des échantillons de pixels enneigés. Il est à remarquer que les valeurs de température sont plus élevées au printemps qu'elles en le sont en automne. Ce qui reflète bien des conditions plus douces pendant la fonte de la neige. La valeur du troisième seuil a été établie à 2°K, une valeur typique, utilisée pour détecter la plupart des voiles nuageux minces. Plus la valeur est grande, plus est grande la chance de laisser passer des cirrus épais. En revanche, plus la valeur est faible plus grande la chance de classer faussement des pixels en nuages. Quant au quatrième seuil, sa valeur correspond au 99^{ième} percentile de NDVI des pixels de la classe neige. Le cinquième seuil, quant à lui, représente le principal discriminant entre la classe neige et la classe nuages. Toutefois, ce seuil ne permet pas de séparer avec précision les surfaces enneigées et les nuages formés de cristaux de glace. Or ces derniers sont plus fréquents vers la fin de l'automne. Pour cette raison, la valeur du cinquième seuil pour les images d'automne a été fixée à un niveau plus sévère à savoir le 95 ième percentile contre le 99 ième percentile pour les images de printemps. La valeur du dernier seuil servant à séparer les pixels de neige des pixels non enneigés a été établie au 1^{ier} percentile de l'albédo de la bande 1. Ceci se base sur le fait que les pixels sans neige présentent une réflectance dans la bande 1 inférieure à celle des pixels enneigés.

Malgré que les données des deux bandes du visible (A1 et A2) utilisées dans l'étalonnage de l'algorithme ne soient pas corrigées aux effets de la FDRB, il est important cependant d'en mesurer l'effet sur la précision de l'étalonnage en particulier sur les seuils de classifications. Il faut rappeler que les données de ces deux bandes interviennent au niveau de deux seuils : le quatrième à travers le NDVI qui est une combinaisons de A1 et

A2 et le sixième qui fait appel uniquement à A1. Par ailleurs, Roberts (2001) a estimé l'erreur de la réflectance bidirectionnelle (FDRB) sur A1 et A2. Celle-ci s'élève à ±5% et ±12,5%, respectivement. À l'aide de la simulation Monte Carlo, nous avons estimé l'impact de cette incertitude sur les deux seuils en question. Ainsi, il s'est avéré que le quatrième seuil se situerait au niveau de 93 ième percentile au lieu du 99 ième et le sixième seuil au niveau de 2 ième au lieu du 1 ier. En d'autres termes, si on répète l'expérience d'échantillonnage de pixels un grand nombre de fois en recalculant les seuils à chaque fois, on trouverait que 93% des pixels de neige auraient un NDVI inférieur au seuil retenu contre 99%, actuellement; et que 98% des pixels de neige auraient une valeur de A1 supérieure au seuil retenu contre 99%, actuellement. Ainsi, ces niveaux d'incertitude pourront servir à expliquer en partie les divergences éventuelles entre les résultats de classification à l'aide de l'algorithme et les observations de neige.

L'algorithme de classification ainsi étalonné a été appliqué aux zones d'échantillonnage identifiées auparavant afin d'en mesurer les performances. Le Tableau 3 présente les résultats de comparaison entre les échantillons de pixels dans chaque catégorie de surfaces identifiées et les résultats de leur classification à l'aide de l'algorithme.

Il est à noter que le succès de la classification représente le rapport du nombre de pixels bien classés dans une catégorie donnée par rapport au nombre total de pixels de la catégorie en question. L'erreur d'omission représente la fraction de pixels d'une catégorie donnée qui ont été faussement classés par l'algorithme dans d'autres classes de surface. L'erreur de commission, quant à elle, donne la quantité de pixels appartenant à d'autres classes de surface et qui ont été attribués par erreur à la catégorie en question.

Tableau 3 : Matrices de confusion des résultats de la classification des images AVHRR comparés aux échantillons qui ont servi pour bâtir l'algorithme de classification.

<u>Automnes :</u>			Classification						
1986, 1991 et	1998	Nuages	Autre	Neige	Total	Omission	Succès		
Échantillons Nuages		450237	9926	43167	503330	11%	89%		
	Autre	379	102190	10770	113339	10%	90%		
	Neige	11631	4928	159276	175835	9%	91%		
·	Total	462247	117044	213213	792504		90%		
Commission		3%	13%	25%					
Printemps :			Classification						
1987, 1992 et	1999	Nuages	Autre	Neige	Total	Omission	Succès		
Échantillons	Nuages	573618	3263	4037	580918	1%	99%		
	Autre	4122	141469	8336	153927	8%	92%		
	Neige	15762	18606	583293	617661	6%	94%		
	Total	593502	163338	595666	1352506		96%		
Commission		3%	13%	2%					

D'après le Tableau 3, l'algorithme réussi à identifier les trois catégories de surface avec un taux de succès élevé dépassant les 90%. Ce succès est plus marqué dans le cas des images du printemps 1999. Ceci revient au fait que les images d'automne sont plus sujettes aux erreurs de commission surtout en ce qui concerne la classe « Neige ». En effet, près 20% des pixels rattachés à cette catégorie proviennent en fait de la classe « Nuages ». Ceci est attribuable à la présence de nuages formés de cristaux de glace qui sont plus fréquemment observés en automne et que l'algorithme confond avec la neige. À ceci s'ajoute aussi l'imprécision dans l'établissement des échantillons de pixels de neige dans les images d'automne. En effet, vu la faible étendue des surfaces enneigées dans les images d'automne, il est possible que des pixels appartenant à d'autres classes (particulièrement la classe « Autre ») soient échantillonnés comme « Neige ». Ces performances légèrement plus faibles dans le cas des images d'automne se traduiraient par une légère surestimation de l'étendue de la neige.

En ce qui concerne les images de printemps, la plus importante confusion a lieu entre la « Neige » et la classe « Autres ». Près de 11% des pixels classés dans cette catégorie en

été identifiés lors de l'échantillonnage comme étant des pixels enneigés. Là aussi l'imprécision dans l'établissement des échantillons de pixels dans les images de printemps pourrait expliquer en partie cette confusion. En effet, vu l'étendue des surfaces sans neige relativement plus faibles dans les images de printemps, il est possible que des pixels enneigés surtout en milieu forestier (où la neige est masquée en partie par le couvert forestier ce qui rend sont identification visuelle plus difficile) appartenant à la classe neige soient échantillonnés comme étant sans neige.

Le taux de succès global de la classification ainsi que les erreurs d'omission et de commission permettent d'apprécier la qualité globale de la classification. Cependant, ces paramètres ne sont pas indépendants de la qualité de l'échantillonnage des pixels. Il est possible par contre d'en juger de la qualité d'une classification indépendamment de l'échantillonnage des pixels et ce à l'aide du coefficient Kappa (K). K est calculé comme suit :

$$K = \frac{N\sum_{i=1}^{r} x_{ii} - \sum_{i=1}^{r} x_{i+} * x_{+i}}{N^2 - \sum_{i=1}^{r} x_{i+} * x_{+i}}$$
(1)

Où r est le nombre de lignes dans la matrice de confusion, x_{ii} est la valeur la i^{iéme} diagonale de la matrice de confusion, x_{i+} est le total de la ligne i de la matrice, x_{+i} est le total de la colonne i et N représente la taille totale de l'échantillon.

Le coefficient K permet de mesurer le gain obtenu à l'aide de la méthode de classification retenue par rapport à une classification complètement aléatoire. Les valeurs de K varient de 0 à 1 : la valeur 0 n'indique aucun gain par rapport à une classification aléatoire et la valeur 1 correspond à une classification parfaite. Généralement, des valeurs supérieures à 0,40 indiquent une classification acceptable.

En calculant le coefficient K pour les résultats de classification présentés au Tableau 3, il s'avère que l'algorithme développé dans la présente étude offre de bonnes performances. Puisque la méthode de classification appliquée aux images d'automne et de printemps des trois périodes visées par l'étude est meilleure de 81% et 93%), respectivement, (Les

valeurs de K correspondantes sont 0,81 et 0,93qu'une classification aléatoire. Ces résultats confirment les meilleurs résultats signalés auparavant obtenus avec les images de printemps par rapport aux images d'automnes.

3.2 Validation spatiale de l'algorithme de classification

Pour chacune des trois périodes visées par l'étude, deux dates, l'une pendant la période de formation du couvert nival (fin octobre) l'autre pendant la période de fonte de la neige au printemps (fin avril), ont été retenues pour valider spatialement l'étendue du couvert nival produit à partir des images AVHRR. En plus d'être sélectionnées dans la période critique de l'évolution de la couverture de la neige, ces dates ont été choisies en raison de la présence des trois catégories de surface ainsi que du couvert nuageux relativement faible au-dessus de la zone d'étude. Les six images qui en résultent ont été coupées sur les frontières du Québec et du Labrador. Également, les étendues d'eau marine et continentale ont été masquées (Figure 3, Figure 4, Figure 5).

Malgré la présence de nuages pendant les six dates, il est possible distinguer clairement la ligne du front de neige. Ainsi, par comparaison à l'étendue de la neige pendant la saison 1998-1999, considérée comme une année moyenne du point de vue climatique, il s'avère que la saison hivernale en 1986-1987 a été plus courte. En effet, bien que le front de neige se trouvait au même niveau le 26 octobre 1987 qu'à pareille date en 1998, celui-ci se trouvait beaucoup plus au nord en fin avril 1987 (à une cinquantaine de km au nord du réservoir de la Manicouagan) qu'il l'était en 1999 (Figure 3, Figure 5). Ce qui démontre qu'en 1987 la fonte de neige s'est amorcée beaucoup plus tôt qu'en 1999. En ce qui concerne la période 1991-1992, il s'est avéré que la saison hivernale a été plus tardive qu'en 1998-1999 : le couvert nival s'était établi plus tard en automne pour disparaître plus tardivement au printemps. Ainsi, à la fin du mois d'octobre 1991, le front de neige se trouvait encore à plus de 150 km au nord du réservoir de la Manicouagan. D'autre part, à la fin du mois d'avril 1992, des régions normalement dégagées en cette période de l'année telle que les abords du Saguenay et du Lac St-Jean et les basses terres de la péninsule Gaspésienne, se retrouvaient encore couvertes de neige (Figure 4).

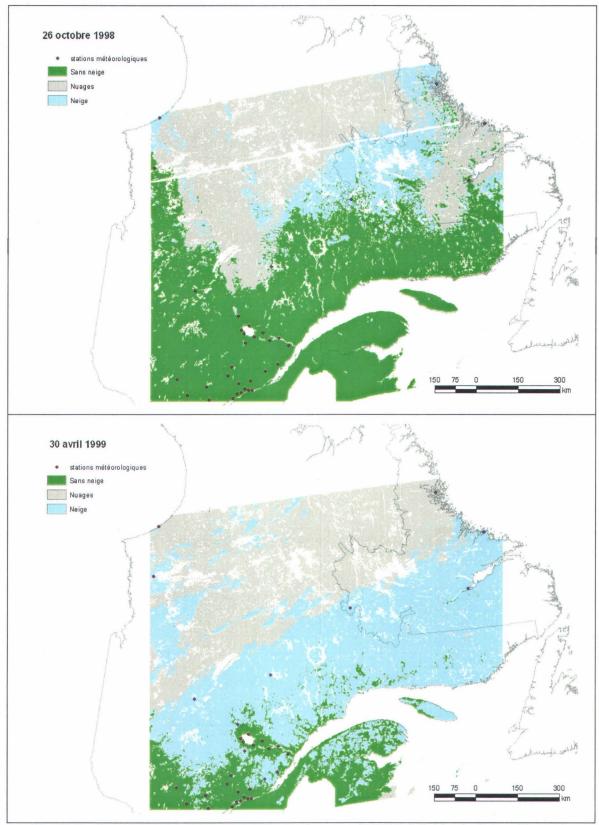


Figure 3 : Couvert nival obtenu à partir des images AVHRR à l'aide de l'algorithme de classification pour le 26/10/1998 et le 30/04/1999

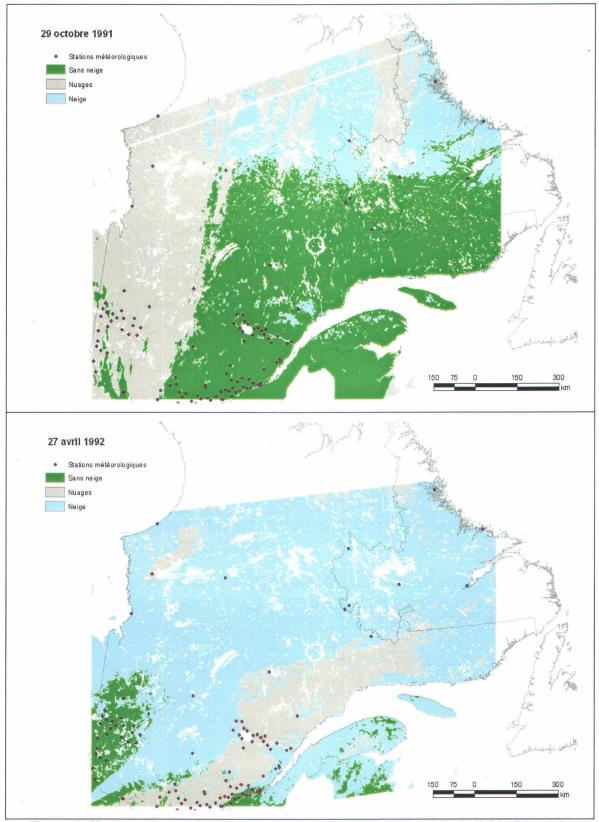


Figure 4 : Couvert nival obtenu à partir des images AVHRR à l'aide de l'algorithme de classification pour le 29/10/1991 et le 27/04/1992

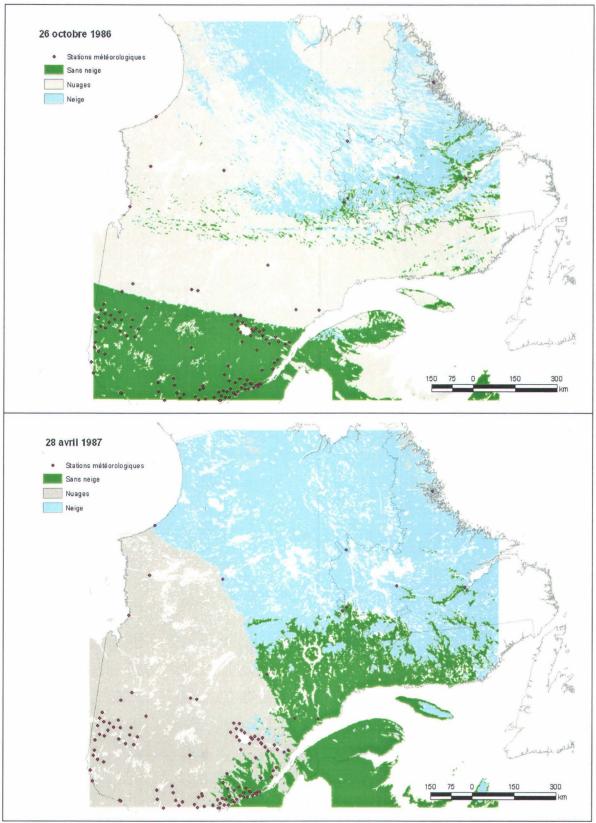


Figure 5 : Couvert nival obtenu à partir des images AVHRR à l'aide de l'algorithme de classification pour le 26/10/1986 et le 28/04/1987

Dans le but de vérifier la validité des résultats sur l'étendue de la neige ainsi obtenus, les observations de la profondeur de neige au sol enregistrées au niveau d'un certain nombre de stations météorologiques d'Environnement Canada, ont été comparées aux résultats de classification des images AVHRR. Le nombre de stations employées varie d'une période à une autre (Figure 3, Figure 4, Figure 5). La liste complète des stations ainsi que leur description figurent en annexe (§6.2).

Pour se faire, les résultats de classifications à l'intérieur d'une fenêtre de 3x3 pixels, centrée au-dessus de chaque site d'observation de la profondeur de la neige ont été extraits. Ensuite, l'occurrence de chaque catégorie de surface à l'intérieur des fenêtres de pixels a été comptabilisée. L'ensemble de la fenêtre de 3x3 pixels autour du site a été considéré comme appartenant à la catégorie de surface la plus fréquente dans la fenêtre. Les fenêtres présentant un taux de couverture nuageuse supérieur à 50% ont été écartées de la comparaison. Les statistiques d'occurrence ont été par la suite utilisées dans la comparaison avec les observations de la profondeur de la neige.

Selon les résultats figurant dans le Tableau 4, l'algorithme a réussi à identifier correctement l'état de surface autour des stations météorologiques, sous ciel clair, avec des taux de succès allant de 73%, dans les cas les plus défavorables, et à 97%, dans le meilleur des cas. Ceci correspond à des niveaux de qualité de classification allant d'acceptable (Kappa=0,44) à très bien (Kappa=0,87). Par ailleurs, il semble que l'algorithme réussi moins à identifier les surfaces enneigées. En effet, plusieurs sites sous couvert nival et sous ciel clair ont été incorrectement classés et ce, avec des erreurs d'omissions dépassant les 60% pour certaines dates. Ceci s'expliquerait par le nombre relativement faible de sites sous couvert nival disponibles au départ par comparaison nombre des sites appartenant à la catégorie « Autre ». De plus, l'erreur relative à la non correction des deux bandes du visible pour les effets de la BRDF expliquerait en partie la classification de certains sites enneigés comme étant sans neige. Il faut rappeler que les deux principaux seuils de discrimination entre les deux classes (le quatrième et le sixième seuil) sont calculés à partir des bandes du visible. Et il a été démontré que l'erreur sur la BRDF introduit une incertitude dans leurs valeurs contribuant à augmenter la confusion entre la neige et la catégorie « Autre » au profit de cette dernière. Ceci est d'autant plus important que le site en question se trouve à la marge de la scène de AVHRR.

Tableau 4 : Résultats de la classification des images AVHRR comparés aux observations de la neige au niveau de stations météorologiques pour deux dates critiques de chacune des trois périodes visées par l'étude.

26 oct. 1998		Classification							
		Neige	Autre	Nuages [†]	Total	Omission	Succès [‡]		
Observations	Neige	4	1		5	20%	80%		
	Autre	0	28		28	0%	100%		
au sol	Nuages			1	1	0%	100%		
	Total	4	29	1	34		97%(97%)		
Commission		0%	4%	0%		Kappa	=0,87		
30 avr. 1999		Classification							
		Neige	Autre	Nuages	Total	Omission	Succès		
Observations	Neige	7	2		9	22%	78%		
	Autre	2	20		22	9%	91%		
au sol	Nuages			3	3	0%	100%		
	Total	9	22	3	34	-	87%(88%)		
Commission		22%	10%	0%		Kappa			
29 oct. 1991				Classific	ation				
		Neige	Autre	Nuages	Total	Omission	Succès		
01	Neige	4	7		11	64%	36%		
Observations	Autre	0	64		64	0%	100%		
au sol	Nuages			28	28	0%	100%		
	Total	4	71	28	103		91%(93%)		
Commission		0%	11%	0%		Карра			
27 avr. 1992		Classification							
		Neige	Autre	Nuages	Total	Omission	Succès		
0	Neige	18	6		24	25%	75%		
Observations	Autre	11	27		38	29%	71%		
au sol	Nuages			42	42	0%	100%		
	Total	29	33	42	104		73%(84%)		
Commission		38%	22%	0%		Kappa			
26 oct. 1986		30,0		Classific	ation		-,		
		Neige	Autre	Nuages	Total	Omission	Succès		
	Neige	3	5		8	63%	38%		
Observations	Autre	1	94		95	1%	99%		
au sol	Nuages			14	14	0%	100%		
	Total	4	99	14	117	9,0	94%(95%)		
Commission		25%	5%	0%		Kanna			
28 avr. 1987		2070	25% 5% 0% Kappa=0,47 Classification						
20 4717 1007		Neige	Autre	Nuages	Total	Omission	Succès		
	Neige	3	0	Huuges	3	0%	100%		
Observations	Autre	3	22		25	12%	88%		
au sol	Nuages	3	22	87	87	0%	100%		
	Total	6	22	87	115	070	89%(97%)		

^{† :} En absence d'observations au sol sur la couverture nuageuse, les pixels classés comme nuages ont été présumés correctement classés.

^{‡ :} La valeur entre parenthèse est calculée en tenant compte des résultats de classifications des nuages.

3.3 Validation temporelle de l'algorithme de classification

Les observations de la profondeur de la neige au sol pendant les trois périodes : 1998-1999, 1991-1992 et 1986-1987, au niveau de 15 stations météorologiques (Figure 6, voir §6.2 pour la liste détaillé), ont servi pour la validation temporelle de l'algorithme de classification. Les observations de la neige au sol correspondant aux dates d'acquisition des images AVHRR ont été comparées à l'occurrence de la classe « Neige » à l'intérieur des fenêtres 3x3 pixels centrées sur chacune des stations. Les mêmes règles de comparaison, décrites plus haut, entre observations au sol et les résultats de classification, ont été appliquées. Le Tableau 5 en présente les résultats.

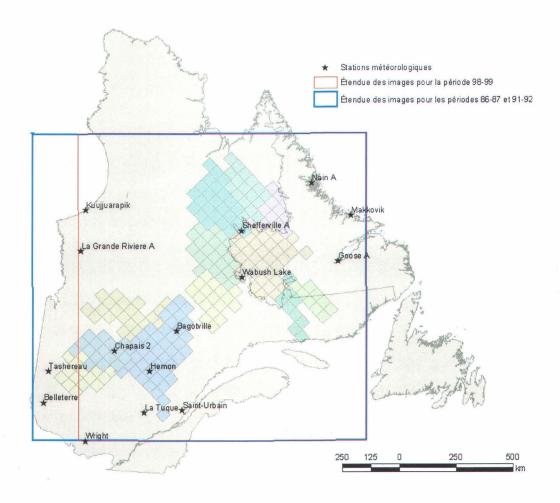


Figure 6 : Localisation des stations météorologique utilisées dans la validation temporelle des résultats de classification des images AVHRR.

Pour l'ensemble des stations, environ 50% des dates ont été contaminées par les nuages. Et ceci a été plus important en automne. Pour les dates restantes, l'algorithme de classification a correctement identifié les conditions de surface dans le voisinage de l'ensemble des stations dans 79% des cas, dans les images d'automne, et dans 86% des cas pour les images de printemps. Quant aux valeurs du coefficient Kappa, elles démontrent que les résultats de classification sont d'assez bonne qualité et confirment la tendance de l'algorithme à avoir des performances supérieures lors de la période printanière. Il est à noter que les résultats de classification concernant la classe « Neige » concordent très bien avec les observations au sol avec un taux de succès pour de cette classe de l'ordre de 90%. En revanche, les performances de l'algorithme en ce qui concerne l'identification de la classe « Autre » sont plus faibles. Ceci serait attribuable à la légère tendance de l'algorithme à surestimer la présence de la neige qui serait plus importante au cours de l'automne.

Tableau 5 : Résultats de la classification des images AVHRR comparés aux observations de la neige au niveau des 15 stations météorologiques pour les trois périodes visées par l'étude.

<u>Automne :</u>		Résultats de la classification					
86, 91 et 98		Neige	Autre	Nuages [†]	Total	Omission	Succès [‡]
	Neige	169	19		188	10%	90%
Observations	Autre	51	102		153	33%	67%
au sol	Nuages			389	389	0%	100%
•	Total	220	121	389	730		79%(90%)
Commission		13%	23%	19%	0%	Kappa=0,58	
Printemps :		Résultats de la classification					
87, 92 et 99		Neige	Autre	Nuages	Total	Omission	Succès
	Neige	310	34		344	10%	90%
Observations	Autre	40	153		193	21%	79%
au sol	Nuages			571	571	0%	100%
	Total	350	187	571	1108		86%(93%)
Commission	·.	6%	11%	22%	0%	Kappa	i=0,70

^{† :} En absence d'observations au sol sur la couverture nuageuse, les pixels classés comme nuages ont été présumés correctement classés.

^{‡ :} La valeur entre parenthèse est calculée en tenant compte des résultats de classifications des nuages.

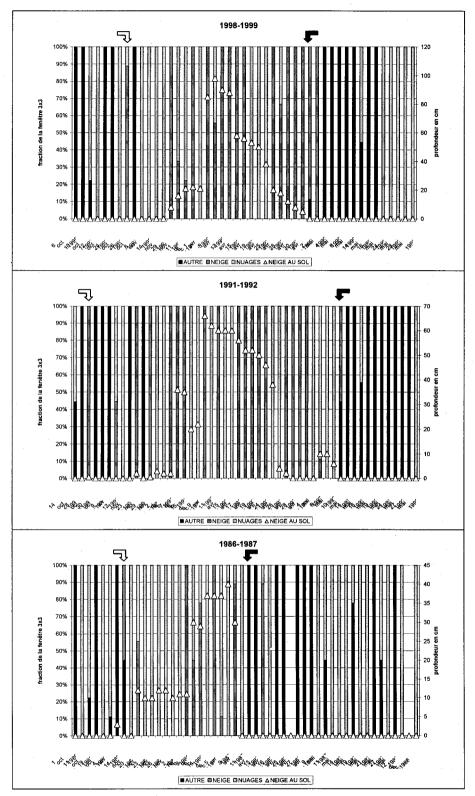


Figure 7 : Comparaison entre l'occurrence de la classe neige dans une fenêtre 3x3 pixels centrée sur la station météorologique Hemon ([-72.60;49.07], Alt:183 m) et la profondeur de la neige mesurée à la station pour les trois périodes visées par l'étude.

La Figure 7 permet d'effectuer une comparaison visuelle entre l'occurrence de la classe neige, telle que estimée par l'algorithme de classification, dans le voisinage de la station météorologique Hemon, d'une part, et la profondeur de la neige qui y réellement mesurée aux dates de l'acquisition des images AVHRR, d'autre part. Il en ressort alors qu'il est possible, à l'aide de l'algorithme de classification développé dans la présent travail, de suivre l'évolution du couvert nival autour de cette station, en particulier, le début de la formation du couvert nival en automne et l'amorçage de la fonte de la neige au printemps. Ainsi, la date de l'apparition de pixels enneigés pour la première fois dans la fenêtre de voisinage de la station correspondrait alors au début de l'établissement de la neige. En revanche, la date de l'apparition de pixels sans neige pour la première fois dans la fenêtre extraites des images de printemps indiquerait le déclenchement de la fonte de neige. D'après la Figure 7, ces dates concordent assez bien avec l'évolution de la profondeur de la neige. Il faut signaler que les valeurs de la hauteur de la neige enregistrées à la station Hemon au cours de la saison 1986-1987 sont assez faibles (<45 cm) par comparaison aux deux autres saisons en raison de sa faible durée qui a été fidèlement reproduite dans les résultats de classification. La saison hivernale tardive de la période 1991-1992 a été également bien reproduite par l'algorithme de classification dans le voisinage de la station Hemon.

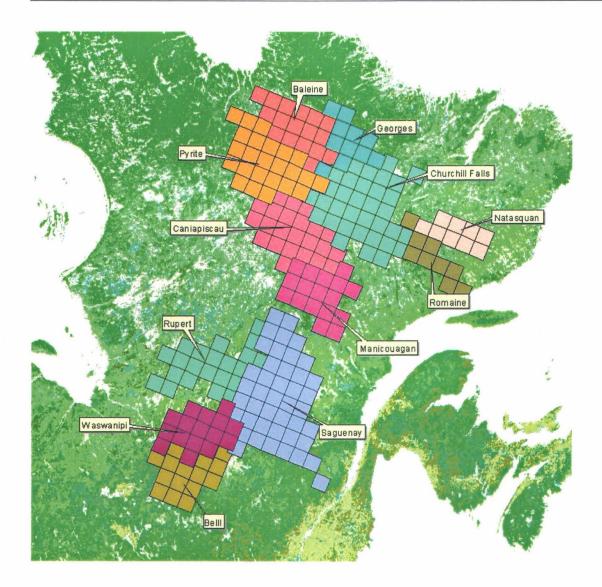
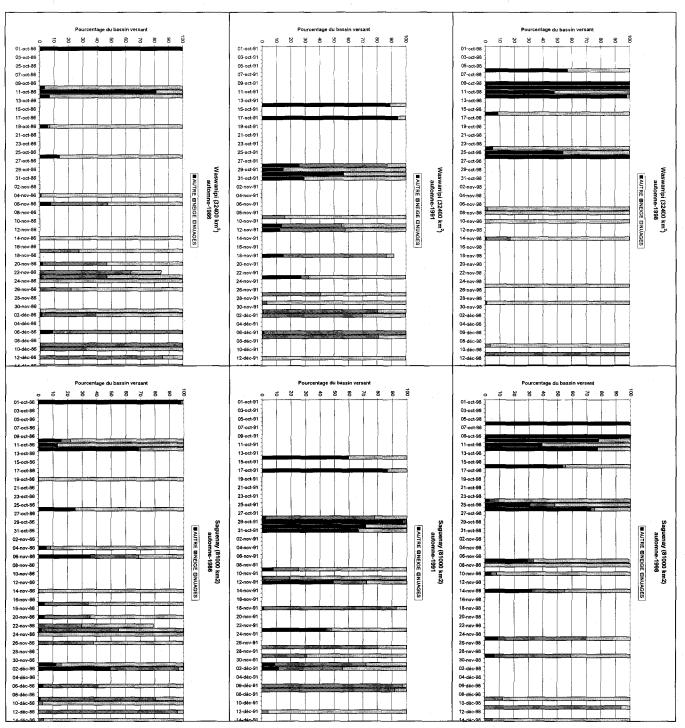


Figure 8 : Représentation des bassins versants étudiés par mailles de calcul du MRCC (45 km x 45 km).


Par ailleurs, les résultats de classification des images AVHRR à l'aide de l'algorithme et compilés sur les bassins versants en question (Figure 8) démontrent sa capacité à suivre l'évolution dans le temps du couvert nival à l'intérieur de chaque bassin versant.

Les Figure 9 et Figure 10 donnent le pourcentage du bassin occupé par chacune des trois classes sur les bassins Saguenay et Waswanipi et ce, pour les trois périodes objet de l'étude. Les résultats des autres bassins figurent en annexe (§6.3).

Malgré la présence de nuages, assez important par moment, particulièrement dans les images d'automne, il est possible de localiser les dates du début de la formation et

disparition du couvert nival au-dessus de chaque bassin. Également, il est possible de discerner les différences de durée de la saison hivernale observées entre les trois périodes objet de l'étude. Par exemple, le 05 mai 1998, près de 50% du bassin Saguenay se trouvait encore couvert de neige (Figure 10). En revanche, vers le 15 avril 1987, près de la moitié du bassin se trouvait déjà sans neige. Par ailleurs, en 1992, c'est vers le 12 mai que 50% du bassin Saguenay se trouvait sans neige.

Aussi, les résultats de classification des images AVHRR compilés par bassin font l'écho des différences climatiques existant entre ces deux bassins versant. En effet, l'installation de la neige est plus tardive et le déclenchement de la fonte est plus hâtif sur le bassin Waswanipi que sur le bassin Saguenay. Par exemple, au moment où les premières neiges ont apparu vers le 24 octobre 1998 au-dessus du bassin Saguenay , la neige n'a été détectée sur le bassin Waswanipi qu'au-delà du 06 novembre 1998 (Figure 9). Ce constat est vrai pour le reste des périodes.

Figure 9 : Couverture des bassins versants Waswanipi et Saguenay déterminée l'automne des trois périodes visées par l'étude ð١٠ partir des images AVHRR pour

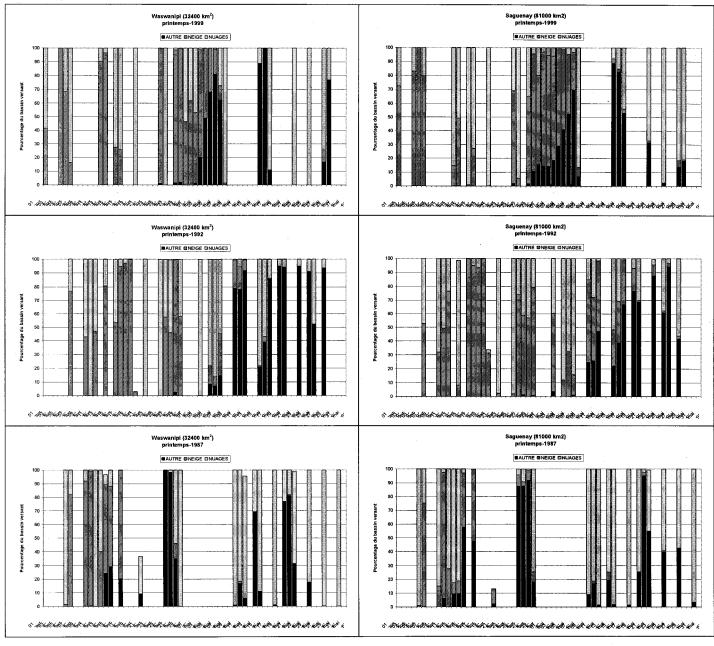


Figure 10 : Couverture des bassins versants Waswanipi et Saguenay déterminée à partir des images AVHRR pour le printemps des trois périodes visées par l'étude

	Suivi spatio-temporel du c	couvert nival à l'ai	de des données N	IOAA-AVHRR	
					•
				•	•
					•
•					
					F

4. Conclusions

L'objectif principal du présent travail a été de développer une procédure simple de suivi spatio-temporel de la couverture de la neige au sol à l'aide des images du capteur AVHRR de NOAA. Cet objectif a été atteint. En effet, un algorithme opérationnel de la classification de la neige à l'aide des données AVHRR a été développé en se basant sur les travaux publiés dans la littérature. Cet algorithme a été appliqué sur les trois périodes visées par l'étude : 1998-1999, 1991-1992 et 1986-1987. Ensuite, les résultats obtenus ont été validés à l'aide d'observations de l'occurrence et de la profondeur de la neige au sol et ce, aussi bien sur le niveau spatial que temporel.

Ainsi, l'algorithme estime l'étendue de la couverture de la neige avec une précision moyenne de 80% par comparaison aux observations au sol et ce, avec une qualité de classification allant d'acceptable à très bonne. Il est à noter que les performances de l'algorithme sont supérieures en printemps qu'en automne. Ceci est dû à la plus grande occurrence de nuages pendant cette période. Par ailleurs, l'algorithme permet de situer le début des périodes de formation et de fonte de la neige et ce, tant au niveau local qu'à l'échelle du bassin versant, notamment en présence de conditions de ciel dégagé. Il permet également de saisir la dynamique interannuelle et les variations spatiales dans l'établissement et disparition du couvert nival. Ce qui démontre ainsi que la procédure développée dans le présent travail représente un outil approprié pour le suivi spatio-temporel de l'état de la surface terrestre. Toutefois, cet algorithme a tendance à légèrement surestimer l'étendue du couvert nival au dépend des autres catégories de surface.

L'application de la procédure développée dans le présent travail se trouve limitée par la présence des nuages persistants au-dessus du territoire visé. Afin de pallier à ce problème, il est possible de produire des images hebdomadaires de l'étendue maximale du couvert nival. Celles-ci seraient des images composites construites à l'aide des images journalières de l'étendue de la neige. Si un pixel a été classé sous la catégorie neige au

moins une fois au cours de la semaine, il sera classé comme tel dans l'image composite. Sinon, il sera classé comme un pixel sans neige s'il est déclaré comme tel au moins dans une des images journalières. Ainsi, il est possible d'augmenter la taille du territoire observé sous des conditions dégagées dans l'image résultante. Dans ce sens, des images composites hebdomadaires de l'étendue maximale du couvert nival ont été produites pour trois bassins versants (Waswanipi, Saguenay et Churchill-Fulls) en utilisant uniquement les images AVHRR avec le minimum de couverture nuageuse déjà disponibles. Les résultats sont prometteurs et il a ainsi été possible d'augmenter les étendues des zones dégagées pour une période donnée. Ces résultats sont rapportés en annexe (§6.4).

D'autre part, nous suggérons d'appliquer une procédure pour fusionner la cartographie de la neige obtenue à l'aide des données AVHRR et celle obtenue à l'aide du capteur de micro-ondes passives SSM/I (Royer et al., 2003). Cette procédure permettrait d'allier la haute résolution spatiale du capteur AVHRR à la capacité de SSM/I de cartographier la neige au sol malgré la présence de nuages et ainsi d'améliorer la précision moyenne de la cartographie. En effet, Romanov et al. (2000) ont développé un système automatique de cartographie de la neige fusionnant les observations du visible et de l'infrarouge du capteur GOES et des données micro-ondes du capteur SSM/I. Cette technique pourrait être adaptée aux approches de classification que nous avons développé pour les images AVHRR (ce rapport) et les images SSM/I (Royer et al., 2003) du Québec dans le cadre de ce projet. D'ailleurs, les auteurs avancent que l'application de cette méthodologie aux données AVHRR serait une amélioration à leur technique car les conditions d'observation de AVHRR sont meilleures que GOES (meilleure résolution spatiale, plus faible angle de visée, etc.).

5. Références

- Allen R. C., Durkee P. A., Wash C. H. 1989. Snow/cloud Discrimination with multispectral satellite meaurements. *Journal of Applied Meteorology* **29**: 994-1004.
- Ananasso C., Santoler R., Marullo S., D'Ortenzio F. 2003. Remote sensing of cloud cover in the Artic region from AVHRR data during the ARTIST experiment. *International Journal of Remote Sensing* **24**(3): 437-456.
- Appel F., Bach H. 2003. Near-real-time derivation of snow cover maps for hydrological modeling using operational remote sensing data. *IEEE IGARSS '03*.
- Bitner D., Carroll T., Cline D., Romanov P. 2002. An assessment of the differnces between three satellite snow cover mapping techniques. *Hydrological Processes* **16**: 3723-3733.
- Cordisco E., Prigent C., Aires F. 2003. Sensivity of satellite observations to snow characteristics. *IEEE IGARSS '03*.
- Gesell G. 1989. An algorithm for snow and ice detection using AVHRR data: An extension to the APOLLO software package. *International Journal of Remote Sensing* **10**(4-5): 897-905.
- Hall D. K., Rhoads J. D., Salomonson V. V. 1995. Development of methods for mapping global snow cover using Moderate Resolution Imaging Spectroradiometer data. *Remote Sensing of Environment* 54: 127-140.
- Hall D. K., Riggs G. A., Salomonson V. V. 2001a. Algorithm Theoretical Basis Document (ATBD) for the MODIS Snow and Sea Ice-Mapping Algorithms. 2003.
- Hall D. K., Riggs G. A., Salomonson V. V., DiGirolamo N. E., Bayr K. J. 2002. MODIS snow-cover products. *Remote Sensing of Environment* **83**: 181-194.
- Hall D. K., Riggs G. A., Salomonson V. V., Scherfen G. R. 2001b. Earth Observing System (EOS) Moderate Imaging Spectroradiometer (MODIS) global snow-cover maps. *IAHS-AISH Publication* **267**: 55-60.
- Hutchison K. D., Locke J. K. 1997. Snow cover identification through cirrus-cloudy atmosphers using daytime AVHRR imagery. *Geophysical Research Letters* **24**(14): 1791-1794.
- Kangas M., Heikinheimo M., Laine V. 2001. Accuracy of NOAA AVHRR-based surface reflectance over winter-time boreal surface comparison with aircraft measurements and land-cover information. *Theoretical and Applied Climatology* 70: 231-244.

- Klein A. G., Hall D. K., Riggs G. A. 1998. Improving snow cover mapping in forests through the use of a canopy reflectance model. *Hydrological Processes* **12**: 1723-1744.
- Latifovic R., Cihlar J., Chen J. 2003. A comparison of BRDF models for the normalisation of optical data to a standard sun-target-sensor geometry. *IEEE Transactios on Geoscience and Remote Sensing* **41**(8): 18891898.
- Qobilov T., Pertziger F., Vasilina L., Baumgartner M. F. 2001. Operational technology for snow-cover mapping in the Central Asian mountains using NOAA-AVHRR data. *IAHS-AISH Publication* **267**: 76-80.
- Ramsay B. H. 1998. The interactive multisensor snow and ice mapping system. *Hydrological Processes* **12**: 1537-1546.
- Roberts G. 2001. A review of the application of BRDF models to infer land cover parameters at regional and global scales. *Progress in Physical Geography* **25**(4): 483-511.
- Romanov P., Gutman G., Csisar I. 2000. Automated monitoring of snow cover over North America with multispectral satellite data. *Journal of Applied Meteorology* **39**: 1866-1880.
- Roujean J. L., Podaire M. L., Deschamps P. Y. 1992. Evidence of surface reflectance bidirectional effects from a NOAA/AVHRR multi-temporal data set. *international Journal of Remote Sensing* **13**(4): 685-698.
- Simic A., Fernandes R., Brown R., Romanov P., Park W., Hall D. K. 2003. Validation of MODIS, VEGETATION, and GOES+SSM/I snow cover products over Canada based on surface snow depth observations. *IEEE IGARSS '03*.
- Simpson J. J., Stitt J. R., Sienko M. 1998. Improved estimates of the areal extent of snow cover from AVHRR data. *Journal of Hydrology* **204**: 1-23.
- Vikhamar D., Solberg R. 2002. Subpixel mapping of snow cover in forests by optical remote sensing. *Remote Sensing of Environment* 84: 69-82.
- Voigt S., Koch M., M.F. B. 1999. A multichannel thershold technique for NOAA AVHRR data to monitor the extent of snow cover in the Swiss Alps. *IAHS-AISH Publication* **256**: 35-43.
- Welch R. M., Rangaraj N., Navar M. S., Sengupta S. K., Goroch A. K., Rabindra P. 1992. Polar cloud and surface classification using AVHRR imagery: an intercomparison of methods. *Journal of Applied Meteorology* **31**(5): 405-420.
- Wu A., Li Z., Cihlar J. 1995. Effects of land cover type and greenness on advanced very high resolution radiometer bidirectional reflactances: Analysis and removal. Journal of Geophysical Research 100(D5): 9179-9192.

6. Annexes

6.1 Images AVHRR acquises pour les trois périodes visées par l'étude

Les images employées dans l'étalonnage et la validation de l'algorithme sont identifiées dans les tableaux à l'aide de la trame grise. L'heure d'acquisition correspond à l'heure GMT.

Octobre 1986:

Date	Heure	Orbite	Nuages
1-oct	1857	9287	55%
2-oct	1847	9301	65%
3-oct	1837	9315	80%
4-oct	1826	9329	78%
5-oct	1815	9343	77%
6-oct	1805	9357	85%
7-oct	1755	9371	NA
8-oct	1745	9385	80%
9-oct	1920	9400	60%
10-oct	1902	9414	55%
11-oct	1850	9428	48%
12-oct	1840	9442	45%
13-oct	1829	9456	62%
14-oct	1819	9470	90%
15-oct	1809	9484	.NA
16-oct	1801	9498	58%
17-oct	1749	9512	45%
18-oct	1917	9527	58%
19-oct	1913	9541	70%
20-oct	2036	9556	60%
21-oct	1844	9569	70%
22-oct	1833	9583	68%
23-oct	1823	9597	70%
24-oct	1813	9611	55%
25-oct	1803	9625	45%
26-oct	1752	9639	30%
27-oct	1742	9653	70%

28-oct	1914	9668	80%
29-oct	1859	9682	65%
30-oct	1848	9696	62%
31-oct	1837	9710	50%

Novembre 1986:

Date	Heure	Orbite	Nuages
1-nov	1827	9724	70%
2-nov	1958	9739	75%
3-nov	1806	9752	52%
4-nov	1756	9766	62%
5-nov	1746	9780	40%
6-nov	1914	9795	80%
7-nov	1903	9809	68%
8-nov	1852	9823	80%
9-nov	1841	9837	75%
10-nov	1831	9851	70%
11-nov	1824	9865	65%
12-nov	1952	9880	NA.
13-nov	1802	9893	60%
14-nov	1755	9907	62%
15-nov	1918	9922	60%
16-nov	1907	9936	50%
17-nov	1856	9950	70%
18-nov	1845	9964	50%
19-nov	1843	9978	20%
20-nov	1824	9992	55%
21-nov	1814	10006	35%
22-nov	1804	10020	20%
23-nov	1754	10034	40%
24-nov	1922	10049	68%
25-nov	1911	10063	50%
26-nov	1900	10077	85%
27-nov	1849	10091	40%
28-nov	1839	10105	70%
29-nov	1828	10119	65%
30-nov	1818	10133	45%

Décembre 1986 :

Date	Heure	Orbite	Nuages
1-déc	1808	10147	30%
2-déc	2130	2141	NA
3-déc	1747	10175	80%
4-déc	1915	10190	75%
5-déc	1904	10204	48%
6-déc	1853	10218	65%

7-déc	1842	10232	60%
8-déc	1832	10246	20%
9-déc	1822	10260	50%
10-déc	1811	10274	70%
11-déc	1801	10288	30%
11-déc	1810	10288	35%
12-déc	1751	10302	40%
13-déc	1919	10317	40%
14-déc	1907	10331	70%
15-déc	1856	10345	50%

<u>Avril 1987 :</u>

Date	Heure	Orbite	Nuages
01-avr	1814	11854	NA
02-avr	1804	11868	80%
03-avr	1932	11883	50%
04-avr	1921	11897	45%
05-avr	1910	11911	40%
06-avr	1859	11925	45%
07-avr	1849	11939	55%
08-avr	1838	11953	40%
09-avr	1828	11967	30%
10-avr	1818	11981	30%
11-avr	1808	11995	45%
12-avr	1757	12009	35%
13-avr	1925	12024	5%
14-avr	1914	12038	50%
15-avr	1903	12052	10%
16-avr	1852	12066	55%
17-avr	1842	12080	55%
18-avr	1831	12094	65%
19-avr	1821	12108	50%
20-avr	1811	12122	55%
21-avr	1801	12136	70%
22-avr	1929	12151	NA
23-avr	1917	12165	NA
24-avr	1906	12179	40%
25-avr	1856	12193	30%
26-avr	1845	12207	30%
27-avr	1839	12221	25%
28-avr	1841	12235	NA
29-avr	1830	12249	NA
30-avr	1926	3201	NA

<u>Mai 1987 :</u>

Date	Heure	Orbite	Nuages
01-mai	1948	12278	NA
02-mai	2255	12294	NA

03-mai 04-mai 05-mai	1747 1302 1849 2212	12305 12318 12334	NA NA
05-mai	1849		
		12334	N I A
00	2212		NA
06-mai		12350	NA
07-mai	1828	12362	60%
08-mai	1818	12376	50%
09-mai	1808	12390	55%
10-mai	1758	12404	55%
11-mai	1925	12419	60%
12-mai	1914	12433	40%
13-mai	1903	12447	50%
14-mai	1852	12461	55%
15-mai	1842	12475	65%
16-mai	1831	12489	60%
17-mai	1821	12503	65%
18-mai	1811	12517	40%
19-mai	1801	12531	30%
20-mai	1928	12546	30%
21-mai	1917	12560	70%
22-mai	1906	12574	55%
23-mai	1856	12588	35%
24-mai	1845	12602	40%
25-mai	1835	12616	40%
26-mai	1830	12630	20%
27-mai	1815	12644	65%
28-mai	1804	12658	65%
29-mai	1932	12673	30%
30-mai	1921	12687	60%
31-mai	1913	12701	NA

Octobre 1991:

Date	heure	ID	Orbite	Nuages
1-oct	1824	2020318	15551	90%
2-oct	1813	2020324	15565	77%
3-oct	1802	2020329	15579	95%
4-oct	1751	2021469	15593	70%
5-oct	1739	2021861	15607	65%
6-oct	1731	2021872	15621	73%
7-oct	1856	2022067	15636	60%
8-oct	1843	2020350	15650	70%
9-oct	1832	2020759	15664	75%
10-oct	1820	2020357	15678	NA
11-oct	1809	2020362	15692	77%
12-oct	1758	2017862	15706	95%
13-oct	1747	2020379	15720	85%
14-oct	1736	2027304	15734	58%

15-oct	1902	2027392	15749	85%
16-oct	1852	2027485	15763	80%
17-oct	1839	2027730	15777	50%
18-oct	1828	2017438	15791	75%
19-oct	1817	2019851	15805	75%
20-oct	1805	2019237	15819	85%
21-oct	1754	2020506	15833	75%
22-oct	1743	2020508	15847	83%
23-oct	1732	2020515	15861	NA
24-oct	1859	2020520	15876	70%
25-oct	1847	2020130	15890	80%
26-oct	1836	2019980	15904	75%
27-oct	1824	2018358	15918	85%
28-oct	1954	2019559	15933	50%
29-oct	1801	2018924	15946	35%
30-oct	1750	2016367	15960	21%
31-oct	1740	2020571	15974	60%

Novembre 1991:

Date	heure	ID	Orbite	Nuages
1-nov	1906	2016206	15989	80%
2-nov	1854	2015498	16003	90%
3-nov	1842	2016622	16017	80%
4-nov	1404	2015002	2471	90%
4-nov	2013	2015362	16032	NA
5-nov	1820	2015008	16045	65%
6-nov	1810	2015107	16059	70%
7-nov	1757	2014879	16073	57%
8-nov	1746	2015874	16087	55%
9-nov	1735	2014402	16101	55%
10-nov	1339	2014036	2556	80%
10-nov	2317	2014041	2562	35%
11-nov	1849	2020762	16130	50%
12-nov	1838	2014490	16144	63%
13-nov	1826	2020133	16158	65%
14-nov	1815	2015431	16172	65%
15-nov	1804	2013366	16186	NA
16-nov	1753	2013370	16200	90%
17-nov	1742	2014272	16214	72%
18-nov	1731	2013822	16228	60%
18-nov	1733	2013826	16228	62%
19-nov	1858	2014280	16243	80%
20-nov	1845	2029013	16257	85%
21-nov	1833	2029025	16271	80%
22-nov	1824	2028804	16285	75%
23-nov	1811	2028771	16299	60%
24-nov	1800	2028640	16313	85%
25-nov	1749	2028651	16327	95%

26-nov	1737	2029437	16341	80%
27-nov	1903	2029363	16356	50%
28-nov	1852	2029108	16370	92%
29-nov	1842	2029166	16384	40%
30-nov	1829	2030896	16398	80%

Décembre 1991 :

Date	heure	ID	Orbite	Nuages
1-déc	1817	2033791	16412	55%
2-déc	1806	2033802	16426	60%
3-déc	1755	2033991	16440	70%
4-déc	1744	2034558	16454	95%
5-déc	1733	2034563	16468	85%
6-déc	1859	2034575	16483	35%
7-déc	1847	2034750	16497	20%
8-déc	1836	2034854	16511	65%
9-déc	1824	2034761	16525	65%
10-déc	1953	2034870	16540	95%
11-déc	1802	2034884	16553	78%
12-déc	1751	2036920	16567	50%
13-déc	1739	2036978	16581	90%
14-déc	1907	2037079	16596	70%
15-déc	1854	2037279	16610	40%

<u>Avril 1992 :</u>

Date	Heure	ID	Orbite	Nuages
01-avr	1747	1987257	18134	NA
02-avr	1913	1987263	18149	60%
03-avr	1902	1987363	18163	68%
04-avr	1849	1987508	18177	70%
05-avr	1838	2004295	18191	70%
06-avr	1829	2003128	18205	25%
07-avr	1815	2012843	18219	65%
08-avr	1804	1988127	18233	NA
09-avr	1755	1988185	18247	60%
10-avr	1918	2003554	18262	25%
11-avr	1907	2003280	18276	35%
12-avr	1854	2003418	18290	70%
13-avr	1418	2003612	4759	10%
13-avr	2356	2003616	4765	NA
14-avr	1831	2000689	18318	60%
15-avr	1820	1998378	18332	40%
16-avr	1808	1998233	18346	30%
17-avr	1757	1998086	18360	30%
18-avr	1923	1997823	18375	10%
19-avr	1912	2001322	18389	40%
20-avr	1900	1997754	18403	65%
21-avr	1847	1997640	18417	60%

22-avr	1427	1997893	4887	55%
22-avr	2017	1997897	18432	100%
23-avr	1825	1998147	18445	65%
24-avr	1813	2001407	18459	30%
25-avr	1802	1997213	18473	40%
26-avr	1750	1996988	18487	20%
27-avr	1916	1997533	18502	15%
28-avr	1904	1997398	18516	55%
29-avr	1853	1997346	18530	80%
30-avr	2022	2103992	18545	60%

Mai 1992:

Date	Heure	ID	Orbite	Nuage
01-mai	1436	1995388	5015	40%
01-mai	2011	1996343	18560	NA
02-mai	1818	1996252	18572	55%
03-mai	1806	1996186	18586	65%
04-mai	1755	1988294	18600	62%
05-mai	1921	1988194	18615	25%
06-mai	1909	1987735	18629	40%
07-mai	1857	1987638	18643	65%
08-mai	1348	1987730	5114	70%
09-mai	2305	1988121	5134	55%
09-mai	1329	2104541	5128	65%
10-mai	1822	1985718	18685	20%
11-mai	1811	1985458	18699	50%
12-mai	1800	1985318	18713	55%
13-mai	1926	1985208	18728	75%
14-mai	1914	1985130	18742	50%
15-mai	1906	1985159	18756	35%
16-mai	1851	1984859	18770	45%
17-mai	1839	1984786	18784	NA
18-mai	1827	1984723	18798	40%
19-mai	1816	1984625	18812	40%
20-mai	1804	1984566	18826	70%
21-mai	1753	1984651	18840	NA
22-mai	1918	1984265	18855	50%
23-mai	1907	1984233	18869	73%
24-mai	1856	2002608	18883	50%
25-mai	1844	1996850	18897	38%
26-mai	1832	2012846	18911	65%
27-mai	1821	2000273	18925	43%
28-mai	1813	2000288	18939	55%
29-mai	1757	1999072	18953	62%
30-mai	1923	1998779	18968	65%
31-mai	1912	2006384	18982	55%

Octobre 1998:

Date	ID	Heure	Orbite	Nuages
01-oct	359206	1827	19348	70%
02-oct	359807	1816	19362	75%
03-oct	360385	1806	19376	80%
04-oct	361013	1755	19390	80%
05-oct	361616	1746	19404	80%
06-oct	362165	1911	19419	60%
07-oct	362538	1900	19433	75%
08-oct	363058	1849	19447	72%
09-oct	363416	1838	19461	20%
10-oct	363763	1828	19475	55%
11-oct	364121	1817	19489	55%
12-oct	364448	1807	19503	50%
13-oct	364818	1756	19517	65%
14-oct	365392	1745	19531	60%
15-oct	366031	1913	19546	65%
16-oct	366471	1900	19560	67%
17-oct	367066	1850	19574	80%
18-oct	367660	1839	19588	90%
19-oct	368242	1828	19602	82%
20-oct	368782	1817	19616	80%
21-oct	369178	1807	19630	80%
22-oct	369531	1756	19644	75%
23-oct	369994	1747	19658	75%
24-oct	371354	1912	19673	45%
25-oct	370756	1901	19687	50%
26-oct	370871	1850		35%
27-oct	371634	1840	19715	55%
28-oct	372069	1829	19729	75%
29-oct	372503			
30-oct	372929		19757	57%
31-oct	373372	1757	19771	70%

Novembre 1998:

Date	ID	Heure	Orbite	Nuages
01-nov	373797	1746	19785	75%
02-nov	374252	1913	19800	75%
03-nov	374694	1902	19814	85%
04-nov	375366	1851	19828	70%
05-nov	376032	1840	19842	70%
06-nov	376703	1829	19856	75%
07-nov	377145	1819	19870	70%
08-nov	377561	1808	19884	50%
09-nov	378004	1757	19898	75%

10-nov	378492	1748	19912	50%
11-nov	379031	1913	19927	92%
12-nov	379432	1902	19941	65%
13-nov	379863	1851	19955	67%
14-nov	380298	1840	19969	62%
15-nov	380738	1829	19983	80%
16-nov	381165	1819	19997	70%
17-nov	381589	1809	20011	70%
18-nov	381978	1758	20025	80%
19-nov	382439	1748	20039	70%
20-nov	382880	1913	20054	77%
21-nov	383282	1902	20068	60%
22-nov	383668	1851	20082	75%
23-nov	467948	1841	20096	85%
24-nov	475251	1830	20110	85%
25-nov	649058	1819	20124	50%
26-nov	670477	1809	20138	60%
27-nov	794684	1758	20152	75%
28-nov	842457	1748	20166	80%
29-nov	842902	1914	20181	70%
30-nov	983318	1903	20195	90%

Décembre 1998 :

Date	ID	Heure	Orbite	Nuages
01-déc	983733	1852	20209	70%
02-déc	984152	1841	20223	70%
03-déc	984576	1831	20237	75%
04-déc	985013	1820	20251	60%
05-déc	985448	1809	20265	60%
06-déc	985885	1759	20279	60%
07-déc	986313	1749	20293	90%
08-déc	986783	1914	20308	67%
09-déc	987208	1903	20322	55%
10-déc	987646	1852	20336	62%
11-déc	988082	1842	20350	67%
12-déc	988506	1831	20364	70%
13-déc	988921	1820	20378	80%
14-déc	989356	1809	20392	50%
15-déc	989762	1759	20406	80%

Avril 1999:

Date	ID	Heure	Orbite	Nuages
_01-avr	1124369	1809	21916	65%
02-avr	1124753	1759	21930	75%
03-avr	1125124	1924	21945	60%
04-avr	1125497	1914	21959	40%
05-avr	1125862	1902	21973	25%
06-avr	1126231	1852	21987	50%

07-avr	1126611	1841	22001	80%
08-avr	1126982	1830	22015	80%
09-avr	1127367	1820	22029	80%
10-avr	1127724	1809	22043	70%
11-avr	1128094	1759	22057	75%
12-avr	1128503	1924	22072	30%
13-avr	2719663	1914	22086	40%
14-avr	1129259	1902	22100	65%
15-avr	1210102	1851	22114	55%
16-avr	1344836	1841	22128	65%
17-avr	1345236	1830	22142	70%
18-avr	1345617	1820	22156	80%
19-avr	1349099	1809	22170	65%
20-avr	1349529	1935	22185	70%
21-avr	1349932	1924	22199	70%
22-avr	1350326	1913	22213	70%
23-avr	1350682	1902	22227	65%
24-avr	1351068	1851	22241	55%
25-avr	1351442	1840	22255	55%
26-avr	1351819	1829	22269	75%
27-avr	1352199	1819	22283	35%
28-avr	1352544	1809	22297	37%
29-avr	1352930	1935	22312	20%
30-avr	1353317	1923	22326	25%

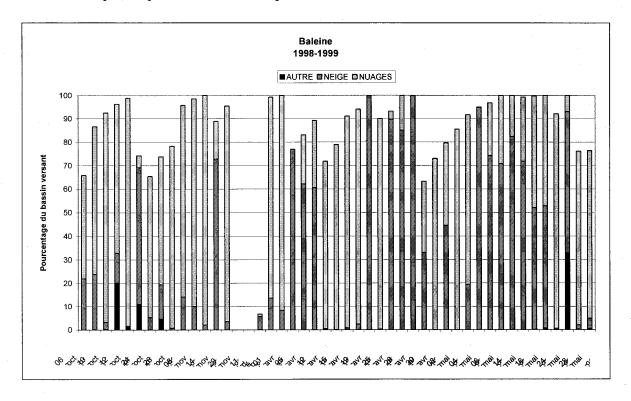
Mai 1999:

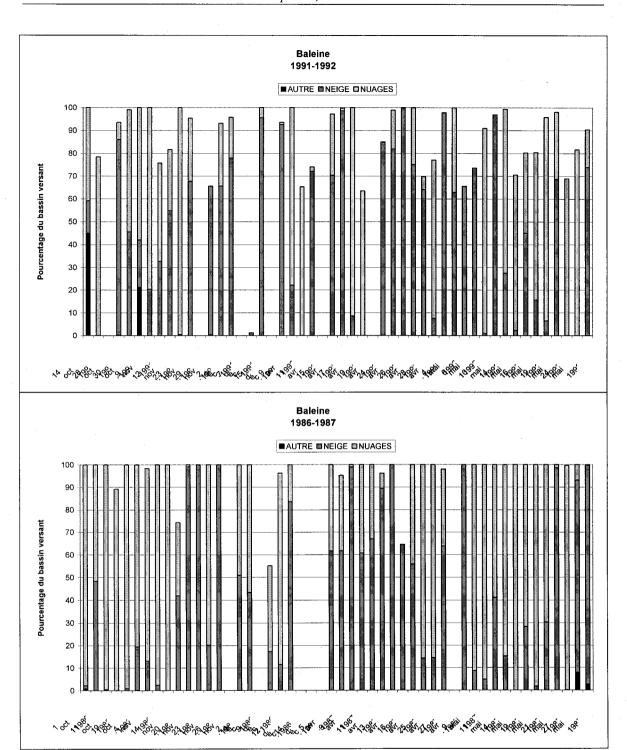
Date	ID	Heure	Orbite	Nuages
01-mai	1353700	1925	22340	15%
02-mai	1354046	1901	22354	37%
03-mai	1354436	1851	22368	15%
04-mai	1354814	1851	22382	15%
05-mai	1355165	1830	22396	30%
06-mai	1355526	1819	22410	42%
07-mai	1355875	1808	22424	30%
08-mai	1356287	1934	22439	65%
09-mai	1356684	1923	22453	67%
10-mai	1357030	1912	22467	62%
11-mai	1357325	1901	22481	57%
12-mai	1357737	1853	22495	67%
13-mai	1358084	1839	22509	NA
14-mai	1358500	1829	22523	45%
15-mai	1358894	1818	22537	50%
16-mai	1359238	1808	2255	35%
17-mai	1359630	1934	2256	70%
18-mai	1360007	1922	2258	65%
19-mai	1360342	1911	22594	60%
20-mai	1360704	1900	2260	70%
21-mai	1361077	1850	2262	52%
22-mai	1361450	1839	2263	70%

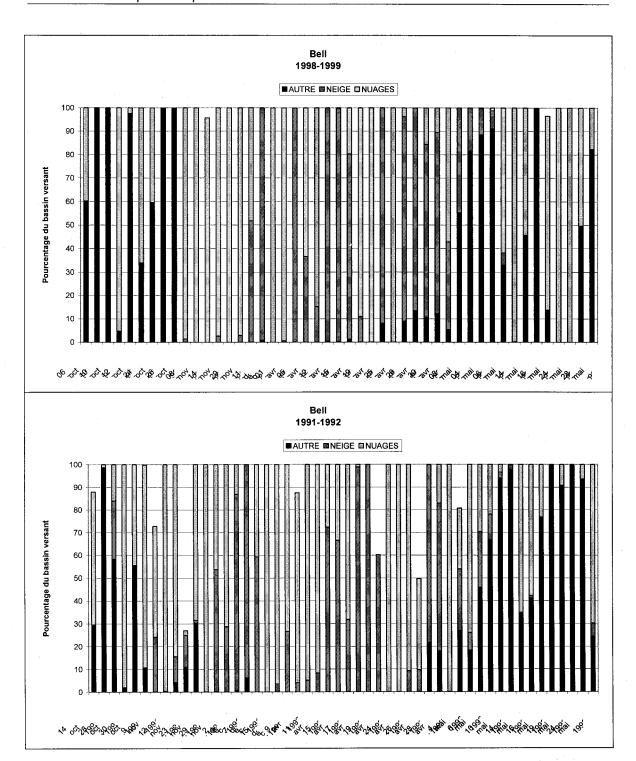
23-mai	1361825	1828	2265	11%
24-mai	1362200	1818	2266	55%
25-mai	1362526	1807	2267	70%
26-mai	1362936	1933	2269	55%
27-mai	1363308	1922	2270	35%
28-mai	1363690	1911	2272	40%
29-mai	1364057	1900	2273	52%
30-mai	1364428	1849	2274	55%
31-mai	1364823	1838	2276	50%

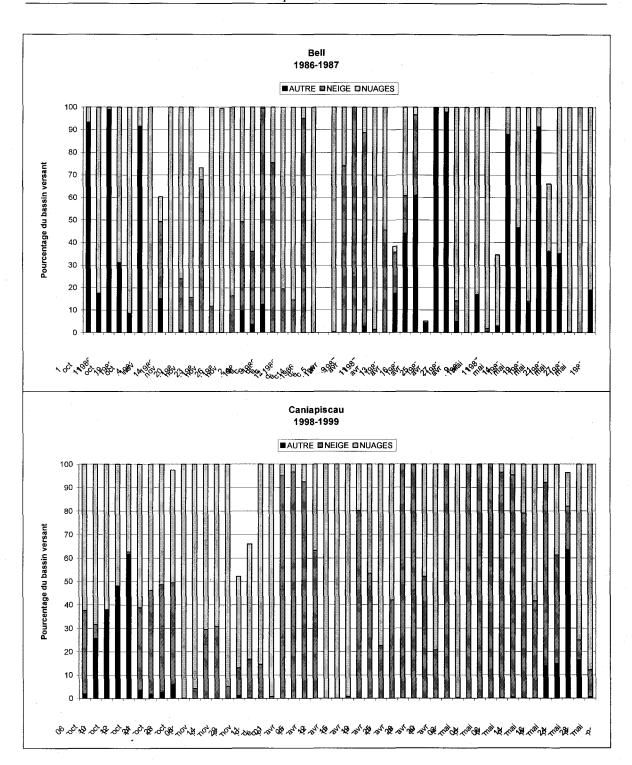
6.2 Stations météorologiques utilisées pour la validation des résultats de la classification des images AVHRR

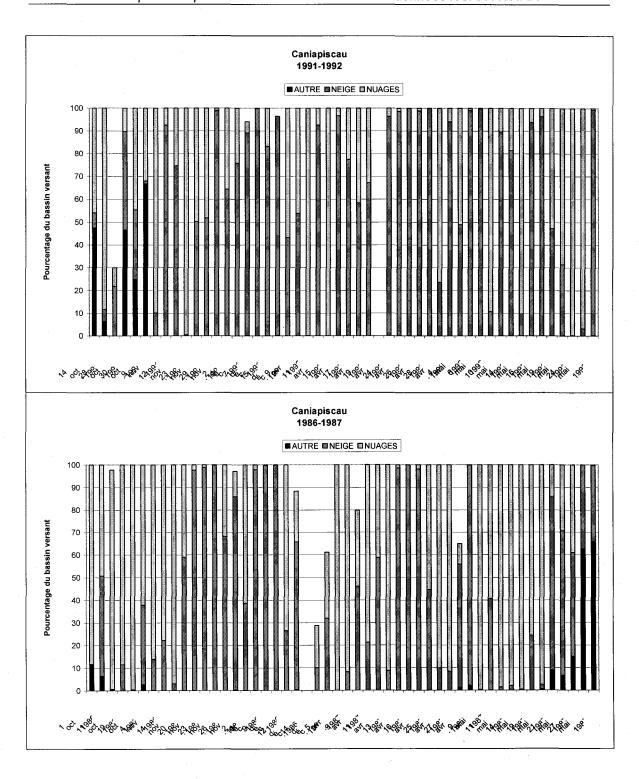
Station	Bassin	ID	Latitude	Longitude	Altitude	Validati	on spati	Validation	
						86-87	91-92	98-99	temporelle
Kuujjuarapik	Baie d'hudson	7103536	55.2833	-77.7667	10	х	х	х	х
Amos	Baie James	7090120	48.5667	-78.1333	310	Х	Х		
Barraute	Baie James	7090470	48.3667	-77.6500	305	Х	Х		
Chapais 2	Baie James	7091305	49.7833	-74.8500	396	Х	Х	Х	Х
Chibougameau- Chapais A	Baie James	7091404	49.7667	-74.5333	387	х			-
Duparquet	Baie James	709BBDH	48.5167	-79.2667	290	Х	Х		
Eastmain	Baie James	7092305	52.2500	-78.5167	6	Х	Х		
Joutel	Baie James	7093376	49.4667	-78.3000	290	Х	Х		
La Grande Riviere A	Baie James	7093715	53.6333	-77.7000	195	Х	. X	X	Х
La Grande VI	Baie James	7093GJ3	53.7500	-73.6667	306	Х	Х		
La Morandiere	Baie James	7094026	48.6167	-77.6167	297	Х	Х		
La Sarre	Baie James	7094120	48.7833	-79.2167	244	Х	Х		
Lac Berry	Baie James	709cee9	48.8000	-78.2833	305	х	х		
Lebel sur Quevillon	Baie James	7094275	49.0500	-76.9667	305	Х	Х		
Louvicourt	Baie James	709M332	48.0667	-77.3833	320	Х	Х		
Matagami A	Baie James	7094639	49.7667	-77.8167	281	Х			
Poularies	Baie James	7096215	48.6833	-78.9833	290	Х	Х		
Riviere Heva	Baie James	7096621	48.2000	-78.1333	305	х	X.		
Senneterre	Baie James	7097900	48.3333	-77.2667	310	Х	Х		
Tashereau	Baie James	7098360	48.6667	-78.7000	310	х	Х		Х
Val dor	Baie James	7095600	48.0667	-77.7833	337	Х	х	1	
Val St-Gilles	Baie James	70986RN	48.9833	-79.1333	290	Х	X		
Fermont	Bas St- Laurent-Nord	704BC70	52.8000	-67.0833	594	х	х		
Foret Montmorency	Bas St- Laurent-Nord	7042388	47.3167	-71.1500	640	х	х	х	
Grand Fonds	Bas St- Laurent-Nord	7042870	47.7500	-70.1167	366				
Labrieville B1	Bas St- Laurent-Nord	7043540	49.3000	-69.5500	152	X	X		
Manic2 LB1	Bas St- Laurent-Nord	7044453	49.3000	-68.4000	122	х			
Notre-Dame-des- Monts	Bas St- Laurent-Nord	7045672	47.6667	-70.4167	267	Х	Х		
Petit Saguenay	Bas St- Laurent-Nord	7046010	48.1833	-70.0500	122	Х	Х	X	
Poste Montagnais	Bas St- Laurent-Nord	7046212	51.8833	-65.7333	610		Х		
Riviere Eternite	Bas St- Laurent-Nord	7046619	48.2500	-70.4000	256	X			
Sacre Coeur	Bas St- Laurent-Nord	7046735	48.2500	-69.8667	122	Х	Х		
St-Cassin-des-Caps	Bas St- Laurent-Nord	7046931	47.3667	-70.6167	373	х			•
Ste-Rose-du-Nord	Bas St- Laurent-Nord	7047722	48.4000	-70.5333	205	х	Х	X	

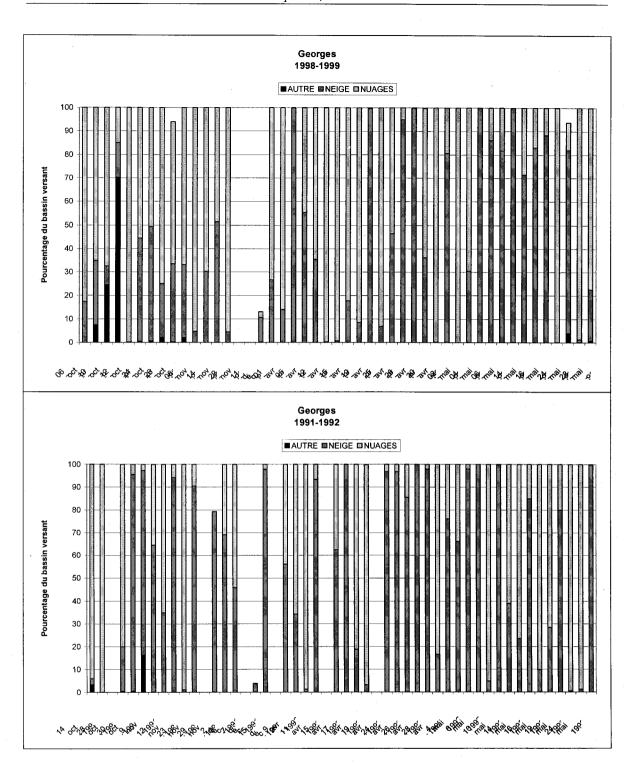

St-Hilarion	Bas St- Laurent-Nord	704GC09	47.6000	-70.4000	412		x		
St-Urbain	Bas St- Laurent-Nord	7047770	47.5667	-70.5500	91	Х	х	х	х
Albanel	Bassin du Lac St-Jean	7060080	48.8833	-72.4500	152	Х			
Arvida	Bassin du Lac St-Jean	7060320	48.4333	-71.1667	102	Х			
Bagotville	Bassin du Lac St-Jean	7060825	50.7333	-71.0500	506	Х	х	х	х
Bagotville A	Bassin du Lac St-Jean	7060400	48.3333	-71.0000	159	X	х	х	
Falardeau	Bassin du Lac St-Jean	706KC09	48.6333	-71.1333	198	Х	х		
Ferland	Bassin du Lac St-Jean	7062368	48.2000	-70.8333	198	Х	х		
Hemon	Bassin du Lac St-Jean	7063090	49.0667	-72.6000	183	Х	х	Х	х
Isle Maligne	Bassin du Lac St-Jean	7063320	48.5833	-71.6333	76	Х			
La Dore	Bassin du	706CP09	48.7667	-72.7167	183	X	х		
Lac Bouchette	Lac St-Jean Bassin du	7063560	48.2167	-72.1667	358	X	х	x	
Lac Ste-Croix	Lac St-Jean Bassin du	7063690	48.4167	-71.7500	152	X	x	X	
Mistassini	Lac St-Jean Bassin du	7064998	48.8500	-72.2000	122	X	X		
Mont Apica	Lac St-Jean Bassin du	7065100	47.9667	-71.4167	549		_ ^		
Notre-dame-de-	Lac St-Jean Bassin du					· · · · · · · · · · · · · · · · · · ·			
Lorette	Lac St-Jean Bassin du	7065667	49.0667	-72.3167	183	X	Х		
Peribonka	Lac St-Jean Bassin du	7065960	48.7667	-72.0333	103	X	X	X	
Roberval A	Lac St-Jean	7066685	48.5167	-72.2667	179	X	Х	Х	
Shipsshaw	Bassin du Lac St-Jean	7068160	48.4500	-71.2167	23	X	X		
St-Ambroise	Bassin du Lac St-Jean	7066820	48.5667	-71.3333	122	X	х	х	
St-Coeur-de-Marie	Bassin du Lac St-Jean	7067060	48.6333	-71.7167	107	Х	х		
St-Leom-de- Labrecque	Bassin du Lac St-Jean	7067460	48.6667	-71.5167	131	Х	х		
St-Prime	Bassin du Lac St-Jean	7067658	48.6167	-72.4167	122	Х	Х	х	
Berthierville	Centre St- Laurent-Nord	7010720	46.0500	-73.1833	12		х		
Champlain	Centre St- Laurent-Nord	7011290	46.4667	-72.3333	12	Х			
Charlesbourg Parc Orlean	Centre St- Laurent-Nord	7011309	46.8667	-71.2667	114	Х	х		
Deschambault	Centre St- Laurent-Nord	7011982	46.6667	-71.9167	. 15	Х	х	х	
Domaine-des- Maiserets	Centre St- Laurent-Nord	7012040	46.8333	-71.2167	6			*	
Donnacona 2	Centre St-	7012071	46.6833	-71.7333	46	X	X	х	
Duberger	Centre St-	7012232	46.8167	-71.3000	15	X	Х		
Duchesnay	Centre St-	7012240	46.8667	-71.6500	166	X	х		
Herouxville	Centre St-	7012100	46.6667	-72.6000	145	Х	X		
JolietteVille	Laurent-Nord Centre St-	7013362	46.0167	-73.4333	56		X		
	Laurent-Nord Centre St-							-	
Lac aux Sables	Laurent-Nord	701LEEH	46.8667	-72.4000	160	Х	Х	X	

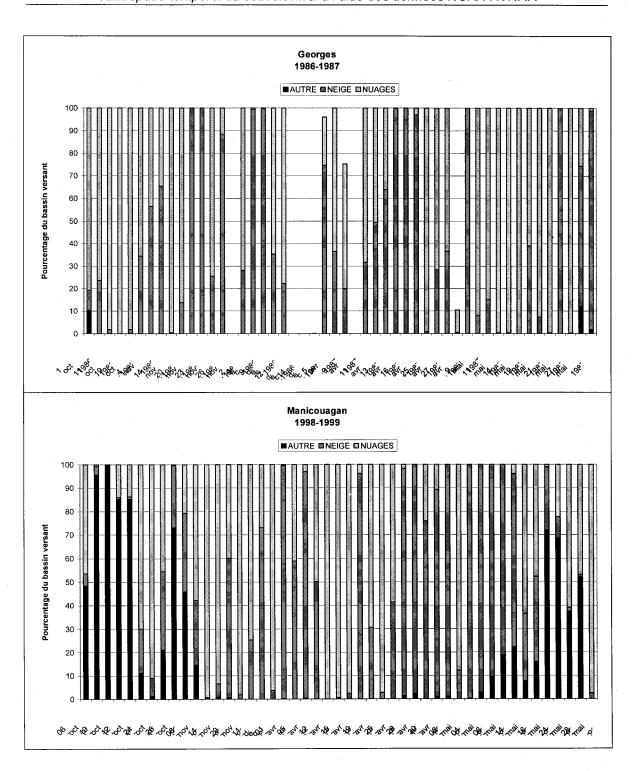

Louiseville	Centre St- Laurent-Nord	7014332	46.2667	-73.0167	45	х	х		
Notre-Dame-de-la- Merci	Centre St- Laurent-Nord	7015665	46.2333	-74.0500	366	Х	х		
Quebec A	Centre St- Laurent-Nord	7016294	46.8000	-71.3833	74	Х	х		
Riviere à Pierre	Centre St- Laurent-Nord	7016560	47.0000	-72.1667	221	х	х		
Riviere verte ouest	Centre St- Laurent-Nord	7016675	46.9833	-71.8333	213	Х	х	X ·	
Shawinigan	Centre St- Laurent-Nord	7018000	46.5667	-72.7500	122	Х	Х		
St-Alban	Centre St- Laurent-Nord	7016800	46.7167	-72.0833	76	Х	х	х	
St-Alexis-des-Monts	Centre St- Laurent-Nord	7016816	46.5333	-73.1500	183	Х	х		
St-Augustin	Centre St- Laurent-Nord	7016933	46.7333	-71.5000	58	Х			
St-Benoit	Centre St- Laurent-Nord	7016906	46.5667	-74.0500	53	Х			
St-Charles-de- Mandeville	Centre St- Laurent-Nord	7016960	46.3500	-73.3500	168	Х	х		
St-Come.	Centre St- Laurent-Nord	7017080	46.2833	-73.7500	244	Х	х	х	
St-Donat	Centre St- Laurent-Nord	7017100	46.3167	-74.2000	389	Х	х		
Ste-Anne-de-la- Perade	Centre St- Laurent-Nord	7016840	46.5833	-72.2333	16	Х	х	х	
Ste-Beatrix	Centre St- Laurent-Nord	7016902	46.2000	-73.6000	198		х		
Ste-Catherine	Centre St- Laurent-Nord	7016932	46.8500	-71.6167	152	Х	X		
Ste-Christine	Centre St- Laurent-Nord	7016932	46.8167	-71.9167	152	Х			
Ste-Foy (pie XII)	Centre St- Laurent-Nord	7017BFN	46.7833	-71.3167	79	Х	Х		
St-Joseph-de- Mekinac	Centre St- Laurent-Nord	7017422	46.9167	-72.6833	122	Х	х		·
St-Justin	Centre St- Laurent-Nord	7017435	46.2667	-73.1000	46	Х	х		
St-Mathieu	Centre St- Laurent-Nord	7017555	46.5833	-72.9333	168	Х	х		
St-Narcisse	Centre St- Laurent-Nord	7017585	46.5333	-72.4333	46	Х	х	х	
St-Paulin	Centre St- Laurent-Nord	7017640	46.4167	-73.0167	167	Х			
St-Thomas-de-Caxton	Centre St- Laurent-Nord	7017757	46.3667	-72.8000	53	Х			
St-Zenon	Centre St- Laurent-Nord	7017786	46.6167	-73.8667	442	Х	х		
Trois-Riviere Aqueduc	Centre St- Laurent-Nord	701HE63	46.3833	-72.6167	55	X	х	х	
Villeneuve	Centre St- Laurent-Nord	7018762	46.8667	-71.1667	2	Х			
Rolphton	Eastern Ontario Conties	6107182	46.1833	-77.6500	137		х		
Rolphton NPD	Eastern Ontario Conties	6107184	46.1833	-77.6667	122	х			
Grande Anse	Haut Saint- Maurice	7072816	47.1000	-72.9333	119	х	х	х	
La Tuque	Haut Saint- Maurice	7074240	47.4000	-72.7833	152	х	х	х	х
Parent S	Haut Saint- Maurice	7075799	47.9167	-74.6167	410	Х	х		
St-Michel-des-Saints	Haut Saint- Maurice	7077570	46.6833	-73.9167	351	х	Х	х	

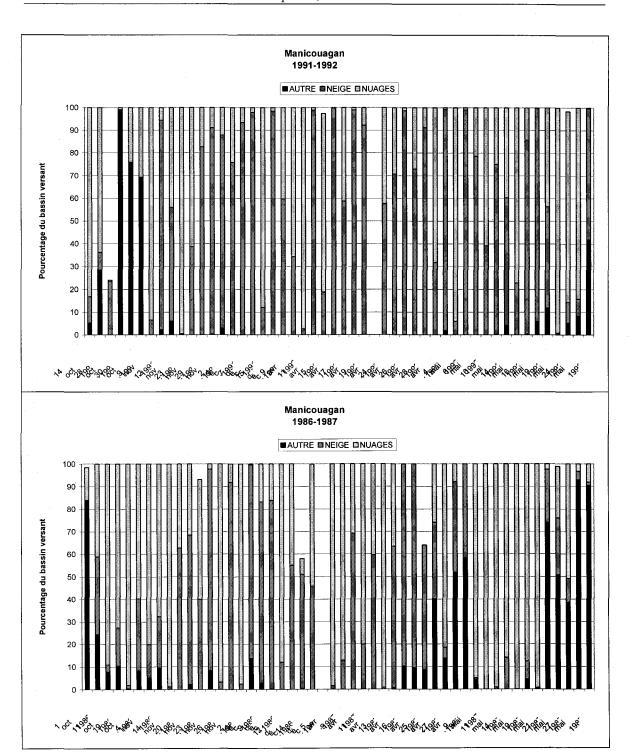

Barrage Angliers	Haute Riviere Ottawa	7080452	47.5500	-79.2333	266	x	x		
Barrage Temiscaming	Haute Riviere Ottawa	7080468	46.7167	-79.1000	180	X	х		
Belleterre	Haute Riviere Ottawa	7080600	47.3833	-78.7000	322	х	X		х
Evain	Haute Riviere Ottawa	708B309	48.2500	-79.1000	302	Х			
Kipawa Laniel	Haute Riviere Ottawa	7083480	47.0500	-79.2667	280	Х	х		
Latulipe	Haute Riviere Ottawa	708DBCE	47.4333	-79.0167	274	Х	х		
Manneville	Haute Riviere Ottawa	7084560	48.5500	-78.4833	311	Х	х		
Mont Brun	Haute Riviere Ottawa	7085106	48.4167	-78.7333	305	Х	х		
Montbeillard	Haute Riviere Ottawa	7085102	48.0500	-79.2667	290	Х	х		
Rapides-des- Joachims	Haute Riviere Ottawa	7086380	46.2000	-77.7000	137	Х	х		
Remigny	Haute Riviere Ottawa	7086460	47.7167	-79.2333	290	X	х		
Riviere Kinojevis	Haute Riviere Ottawa	7086630	48.2167	-78.8667	290	Х	X		-
Shefferville A	Hudson Strait Bassin	7117825	54.8000	-66.8167	522	Х	х	·	Х
Churchill Falls A	Labrador	8501132	53.5500	-64.1000	440	X	X		
Goose A	Labrador	8501900	53.3167	-60.4167	49	Х	Х	Х	Х
Makkovik	Labrador	8502NHR	55.0833	-59.1833	71		. X	Х	Х
Nain A	Labrador	8502800	56.5500	-61.6833	7	Х	Х	Х	Х
Wabush Lake	Labrador	8504175	52.9333	-66.8667	551	Х	Х	Х	Х
Chute St-Philippe	Ottawa- Gatineau	7031636	46.6500	-75.2500	252	Х	х		
Duhamel	Ottawa- Gatineau	703BBD2	46.0167	-75.0833	244		Х		
La Macaza	Ottawa- Gatineau	7033939	46.3667	-74.7667	244	Х	х	Х	-
La Minerve	Ottawa- Gatineau	7034010	46.2500	-74.9333	274	Х	Χ.		
Lytton	Ottawa- Gatineau	70334395	46.6833	-76.0333	213	Х			
Maniwaki	Ottawa- Gatineau	7034480	46.3833	-75.9667	173	X	х		
Mont Laurier	Ottawa- Gatineau	7035160	46.5667	-75.5500	244		х		
Nominingue	Ottawa- Gatineau	7035520	46.4000	-75.0833	274	Х	х		
Notre-Dame-du-Laus	Ottawa- Gatineau	7035680	46.1167	-75.6333	213	Х			
Ste-Agathe-des- Monts	Ottawa- Gatineau	7036762	46.0500	-74.2833	395		Х		
Ste-Anne-du-Lac	Ottawa- Gatineau	7036855	46.8500	-75.3333	262	Х	х	х	
St-Faustin	Ottawa- Gatineau	7037230	46.1167	-74.4833	366		х		
Wright	Ottawa- Gatineau	7038975	46.0667	-76.0500	142		х		x


6.3 Couverture des bassins obtenue à partir des images AVHRR

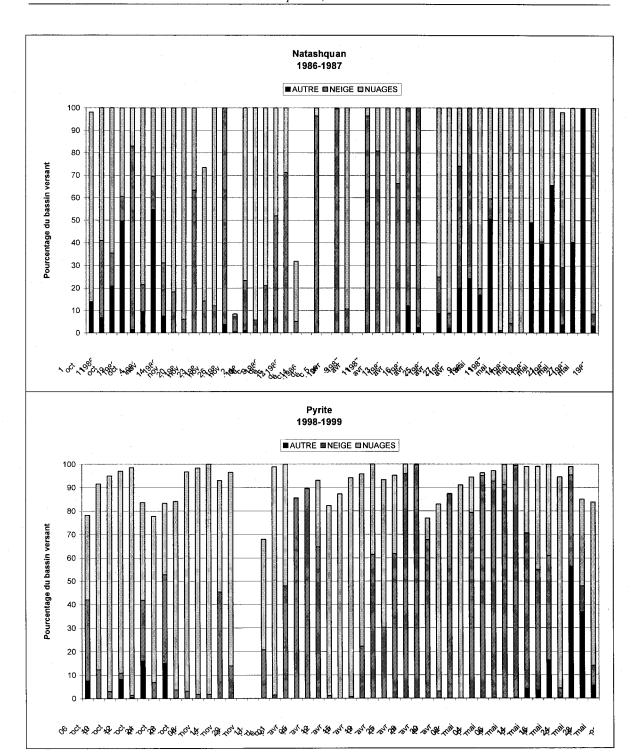

Il faut signaler que les faibles pourcentage de couverture enregistrés sur certains bassins versants sont dus au fait que les portions septentrionales des images AVHRR correspondantes n'étaient pas utilisables en raison de l'important angle zénithal solaire (>85 degré). Ceci est également dû au fait que dans certains cas les images disponibles ne couvraient qu'une partie du bassin en question.

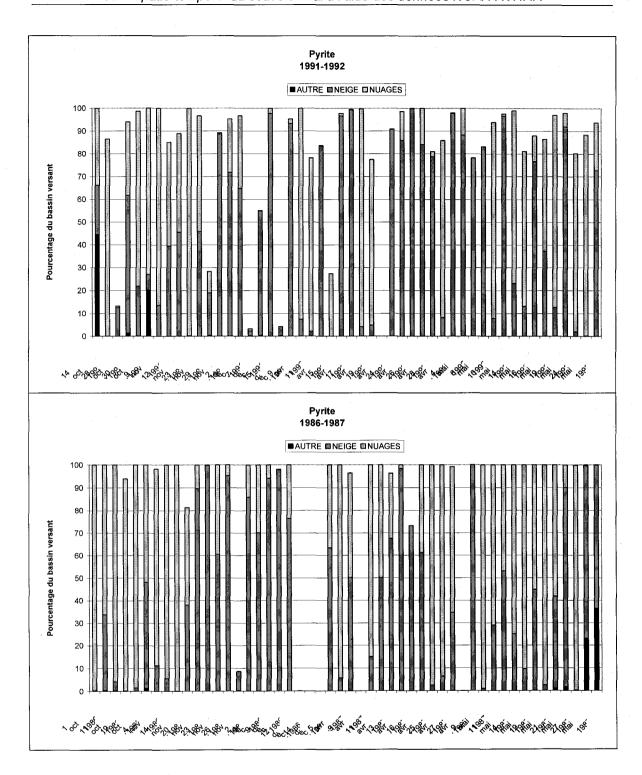


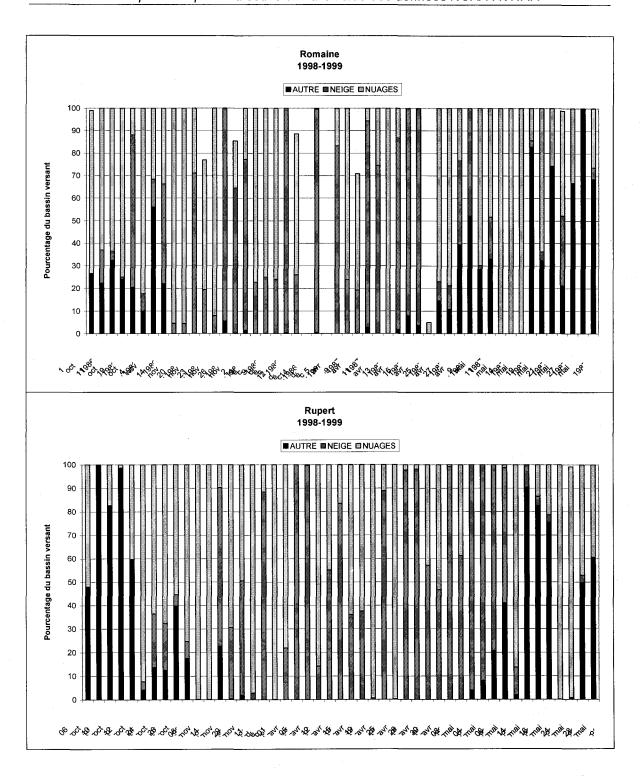


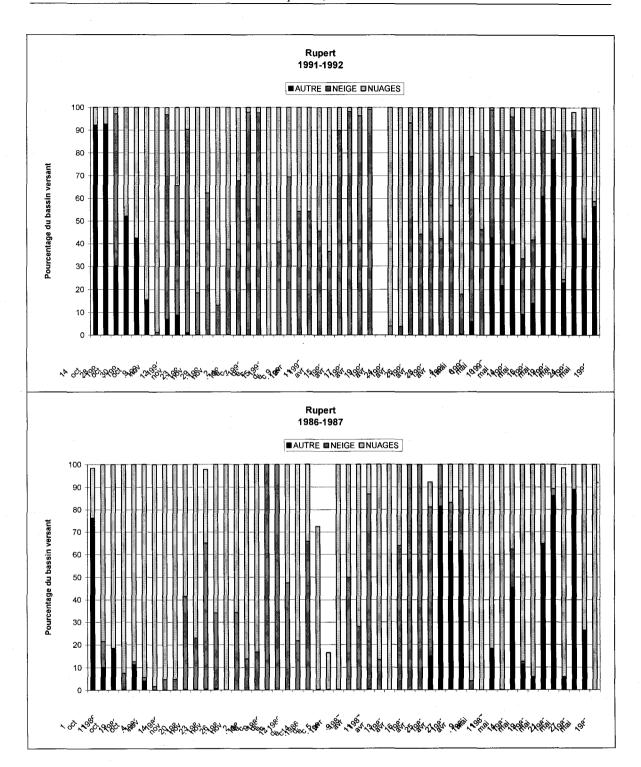


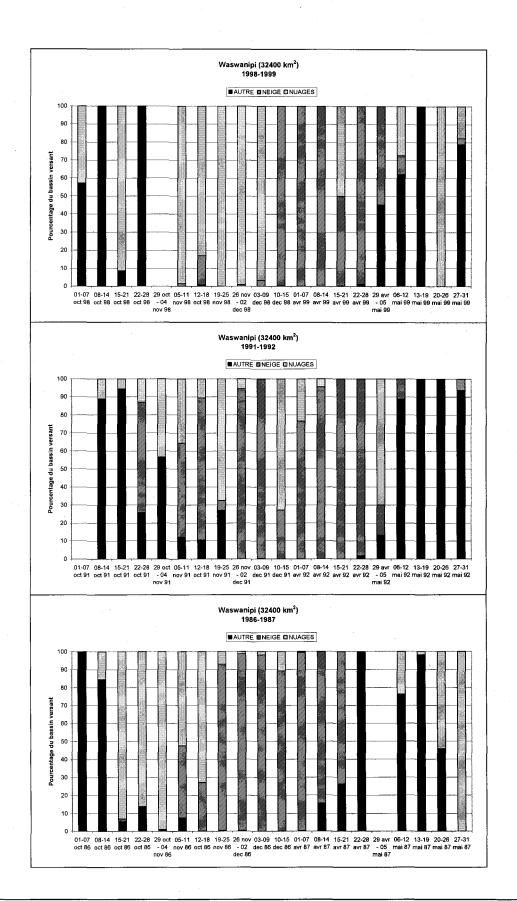


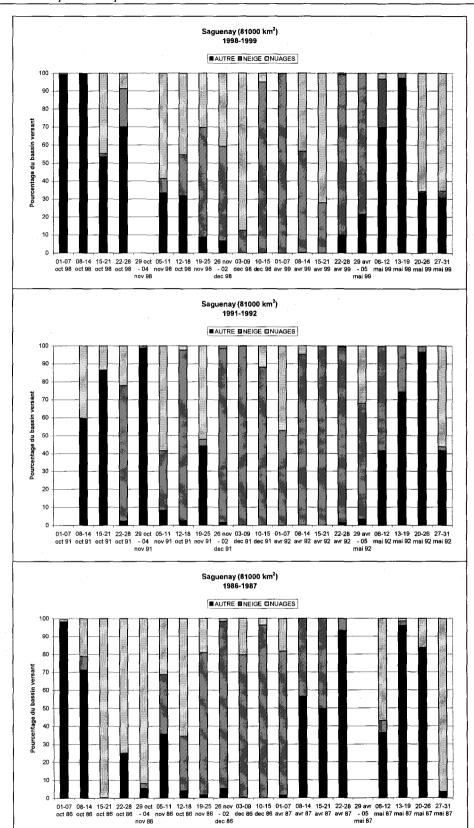


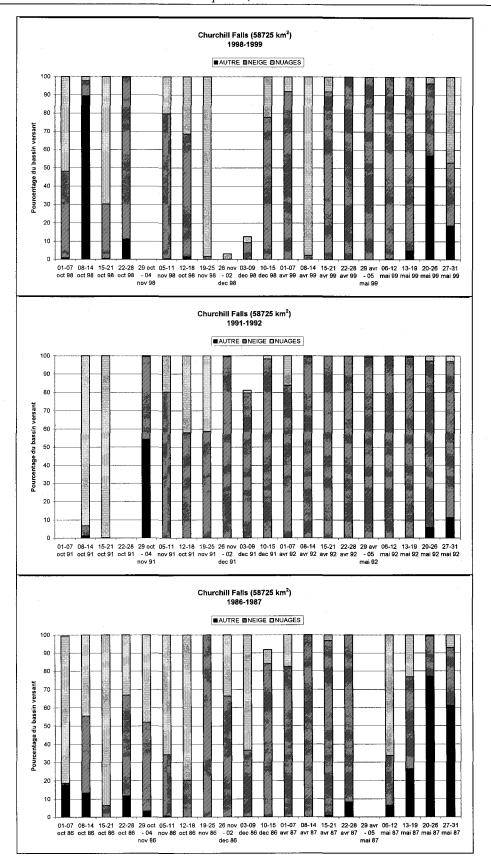












6.4 Couverture des bassins versants Waswanipi, Saguenay et Churchill-Falls à partir des images AVHRR hebdomadaires composites pour les trois périodes objet de l'étude

