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R6sum6

Ce m6moire est consacr6 d la synchronisation temporelle (ou estimation du d6lai) pour

les r6cepteurs num6riques. Les principales contributions incluent deux grands volets. Le
premier consiste d estimer le retard oi les nouvelles techniques d'estimation d6velopp6es

sont bas6es sur le critdre du maximum de vraisemblance. D'une part, nous d6veloppons un

estimateur i maximum de vraisemblance par la m6thode "importance sampling" pour les

signaux num6riques lin6airement modul6s oir I'on considdre un seul trajet de propagation,

et donc un seul parambtre h estimer. Dans cette configuration, nous supposons que les don-

n6es transmises sont totalement inconnues au niveau du rdcepteur. Le d6lai reste constant

sur I'intervalle d'observation et le bruit est suppos6 blanc. Nous appliquons aussi la m6-

thode propos6e dans le cas d'un seul trajet au cas de plusieurs trajets et donc le nombre

de paramdtres i estimer augmente avec le nombre de trajets d6tectds. Nous signalons que

dans ce cas le signal transmis est connu par le r6cepteur. Cette mdthode peut s'appliquer

dans les radars et les systBmes de localisations. En plus nous nous sommes int6ress6s d la

synchronisation temporelle pour les systbmes CDMA en ddveloppant deux estimateurs d

maximum de vraisemblance. Le premier se base sur la m6thode "importance sampling" et

I' autre sur l' algorithme it6ratif "expectation maximization".

D'autre part, nous d6rivons aussi les expressions analytiques des bornes de Cram6r-Rao
pour les estimateurs non biais6s du retard dans le cas des signaux QAM carr6s et des

systdmes CDMA.
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Introduction

La synchronisation est une tache essentielle pour n'importe quel systdme de communi-

cations num6rique. Souvent les performances d'un systbme de transmission sont dict6es

par la fiabilit6 de la fonction de synchronisation. En effet, le signal regu est compldtement

connu d l'exception des donndes transmises et des paramdtres introduits par le canal (d6-

lai, phase, ddcalage fr6quentiel...). M6me si la fonction primordiale du r6cepteur est de

reconstruire les donn6es transmises, ceci ne peut se faire qu'en connaissant les paramdtres

introduits par le canal. Dans ce travail, nous nous int6ressons i la synchronisation tempo-

relle, ou en d'autres termes d I'estimation du d6lai de propagation. Dans ce contexte, bien

que plusieurs estimateurs du d6lai aient €t6 d6velopp6s durant les dernibres d6cennies,

ce problbme suscite encore une grande attention surtout aprbs le succbs des systbmes de

communication sans fil et les avanc6es en micro6lectronique qui offrent plus de possibilit6

d'impl6mentation.

Les estimateurs du retard peuvent Otre class6s en plusieurs sous-classes : supervis6s, semi-

aveugles ou aveugles. Les techniques supervisdes exploitent la connaissance des symboles

transmis dans les blocs de synchronisation pour faciliter la proc6dure d'estimation. Les

m6thodes semi-aveugles s'inspirent des techniques supervis6es puisque les symboles in-

connus sont d'abord estimds puis utilis6s dans la synchronisation. Bien qu'elles requiBrent

la transmission de moins de symboles connus, elles souffrent d'erreurs de d6tections qui

d6gradent les performances du systdme. Dans la suite, nous nous int6ressons au cas oi les

donn6es transmises sont inconnues.

Dans ce contexte, plusieurs estimateurs ont 6t6 rapport6s dans la litt6rature pour of-

frir les meilleures performances possibles. Il est connu que I'estimateur d maximum de

vraisemblance est un estimateur asymptotiquement efficace et qu'il r6alise la meilleure

performance i des valeurs relativement 6lev6es du rapport signal sur bruit (RSB), m6me

sur de courts intervalles d'observation. Par cons6quent, il a €t6 I'objet de recherches in-

tensives. Dans le cas oir les symboles transmis sont connus, une expression analytique du

maximum global de la fonction de vraisemblance peut Otre obtenue. Toutefois, lorsque

les donn6es transmises sont totalement inconnues (c'est-d-dire le parambtre d'int6r0t doit

6tre estim6 d'une manibre aveugle), la fonction de vraisemblance devient une fonction

non-lin6aire et il est difficile, mOme impossible, de trouver une expression analytique du

maximum global de Ia fonction de vraisemblance. Dans ce cas, des m6thodes de rdsolution



num6riques doivent Otre envisag6es. Le travail pr6sent6 dans ce m6moire s'inscrit dans le

cadre de d6veloppement de m6thodes pour trouver le maximum global de la fonction de

vraisemblance. L 6tape primordiale pour le d6veloppement de tels estimateurs est d'expri-

mer le problbme sous la forme d'un modble lin6aire g6n6ralis6. Pour ce faire nous traitons

les modbles les plus r6pandus en communication num6rique, h savoir le cas d'une trans-

mission d'un signal modul6 sur un seul trajet, une transmission sur plusieurs trajets et le

cas des systbmes CDMA. Une telle distinction est indispensable puisque les estimateurs

d6velopp6s par la suite changent d'un moddle i un autre.

Une fois que les estimateurs sont d6velopp6s, nous 6valuons leurs performances en termes

de variance de I'estim6 comme une mesure de performances du systbme. Pour ce faire,

il est dvident qu'il faut les comparer aux autres estimateurs mais aussi par rapport i une

borne inf6rieure de la variance de tout estimateur. Dans ce contexte. les bornes de Cram6r-

Rao sont connues comme des bornes inf6rieures contre lesquelles les performances des

estimateurs sont compardes. Elles indiquent la limite inf6rieure de la pr6cision d'estima-

tion qui peut Otre atteinte. Notre revue de la litt6rature nous a r6v6l€, que ces bornes n'ont
pas encore 6t€ d€rivdes analytiquement en estimation aveugle. Elles n'ont 6t6 calcul6es
que de fagon num6rique d partir d'expressions trbs complexes. La ddrivation de ces ex-
pressions permet de mieux caract6riser et analyser les performances du systdme. Dans ce

travail, nous d6rivons les expressions analytiques de ces bornes pour les estimateurs de d6-

lai en pr6sence de la pluspart des constellations utilisdes couramment et pour les systbmes

CDMA.

Ce rapport est structurd comme suit. Dans le chapitre 1, nous pr6sentons une brbve intro-

duction sur l'estimation du retard en communication sans fiI. Les contributions effectu6es

sont pr6sent6es dans les chapitres suivant. Le chapitre 2 d1crit le nouvel estimateur pour

les signaux modul6s. Ensuite, dans le chapitre 3, nous d6rivons les expressions exactes des

bornes de Cramdr-Rao pour l'estimation aveugle. Dans le chapitre 4, nous d6veloppons

un estimateur de d6lai dans le cas d'un canal i plusieurs trajets. Et dans le dernier cha-

pitre nous nous int6ressons aux systbmes CDMA oi nous d6veloppons deux estimateurs d

maximum de vraisemblance et les bornes de Cram6r-Rao correspondantes.



Chapitre 1

La synchronisation temporelle pour les

signaux modul6s



1.1 Introduction

La synchronisation est une tdche essentielle pour n'importe quel systbme de communi-

cations num6rique. La synchronisation temporelle, appelde aussi estimation du d6lai de
propagation, est un problbme fr6quemment rencontr6 dans la synchronisation. Le but est

de s'assurer que les 6chantillons pris du signal regu concordent avec la valeur optimale
pour reconstruire les donn6es d'une manibre fiable. Autrement dit, le ddlai introduit par le

canal de propagation doit Otre pris en consid6ration au niveau du r6cepteur. Une des solu-

tions pour estimer ce paramdtre est d'envoyer un signal connu au r6cepteur. La mdthode

classique consiste d faire I'auto-corrdlation de I'observation. Cependant, cette approche est

co0teuse en termes d'6nergie et de bande passante puisque le signal transmis ne transporte
pas d'information utile. C'est pour cette raison que plusieurs travaux ont traitdle probldme

de la synchronisation temporelle en utilisant directement le signal regu. Les m6thodes 16-

sultantes sont class6es comme aveugle (non-data-aided) oir le r6cepteur n'a pas besoin de

connaitre les donn6s transmises. Une 6tape importante dans le processus d'estimation est

de d6terminer une fonction objective, calcul6e d partir du signal regu, de telle fagon qu'une

estimde du d6lai de propagation peut Otre obtenu. En se basant sur cette fonction, les es-

timateurs du d6lai sont class6s comme suit [1] : d erreur quadratique moyenne minimale
(minimum mean square error), forgage d z6ro (zero forcing), early-late gate, maximum

de vraisemblance, etc. Dans ce qui suit, nous nous int6ressons au critdre du maximum de

vraisemblance.

1.2 Ltimportance de la synchronisation temporelle

Dans plusieurs systbmes de communications, les performances sont 6troitement li6es i la

marge temporelle allou6e. La marge temporelle est I'erreur de synchronisation maximale

que le rdcepteur tolbre sans provoquer des d6gradations en performances. Elle peut 6tre
jug6e en examinant le diagramme de l'eil du signal i l'entr6e du bloc de ddcision au

r6cepteur. Le diagramme de I'eil est obtenu en superposant plusieurs r6pliques du signal

reEu. Le nom de ce diagramme vient du fait que la figure obtenue ressemble d un ceil

humain. Pour 6valuer la marge de mancuvre d'un systdme par rapport aux distorsions que

subit le systdme, par exemple b I'erreur de synchronisation, h l'interfdrence inter-symbole

et au bruit, nous 6tudions la forme et I'ouverture du diagramme de I'eil.

Les figures l.l et I.2 illustrent les diagrammes de I'ail en absence de bruit et en uti-

lisant un filtre d cosinus sur6lev6 avec un coefficient de retomb6 de 20% et I00To, respec-

tivement. Uinstant auquel l'ouverture du diagramme est maximale correspond d l'instant

optimal d'6chantillonnage. Comme nous pouvons le voir, I'ouverture de l'ail diminue de

plus en plus que nous nous 6loignons de I'instant t : 0. En effet, f interf6rence inter-

symbole augmente d'autant plus que I'instant d'6chantillonnage s'6loigne de I'instant op-



Donn6es binairc, un c@ffcient de relomb6e de 20%

-0.6 -0.4 -o.2 0 0.2 0.4

D6calage tempore

FrcuRe 1.1 - Diagramme de I'eil pour un filtre d cosinus sur6lev6 avec un coefficient de

retomb6e de20%

-0.8 -0.6 -0.4 -o.2 0 0.2 0.4
D6calage temporel

FIcune 7.2 -Diagramme de I'eil pour un filtre d cosinus sur6lev6 avec un coefficient de

retomb6e de 100%

timal, et par cons6quence, la marge de bruit diminue. En absence de bruit, les donn6es

peuvent Otre parfaitement d6tect6es tant que I'instant d'6chantillonnage est d I'intdrieur de

la zone d'ouverture de I'eil. Une synchronisation parfaite qui satisfait le critdre de Ny-

quist minimise ou annule compldtement I'interf6rence inter-symbole. Cependant, plus le

Donn6es binaire, un c@t{icient de retomb6e d€ 100%



rapport signal sur bruit (RSB) diminue, plus l'intervalle d'6chantillonnage fiable diminue

et le systbme devient plus sensible aux effeurs de synchronisation.

1.3 Bstimateur e maximum de vraisemblance

Uestimateur ir maximum de vraisemblance (MLE) est un estimateur dit h efficacitd asymp-

totique. Il est d6fini comme la valeur du paramdtre qui maximise la fonction de vraisem-

blance. En g6n6ral, rl a €t6 prouv6 en l2l que le MLE est asymptotiquement non-biais6,

atteint la borne de Cram6r-Rao (CRLB) et son erreur possdde une Distribution Gaussienne.

Concernant notre problbme,le MLE devrait atteindre la CRLB pour de grandes valeurs du

rapport signal sur bruit. Pour cette raison, la plupart des algorithmes de synchronisation

sont bas6s sur le critbre de maximum de vraisemblance.

La formulation du problbme d'estimation varie suivant que nous consid6rons un signal h

temps continu ou un signal d temps discret. La premibre approche semble Otre la plus ap-

propride i cause de la nature physique du signal, mais les r6cepteurs numdriques opdrent

sur des sdquences 6chantillonndes.

Dans cette partie, nous consid6rons d'abord une formulation i temps continue pour 6tendre,

dans les chapitres qui suivent, I'approche au temps discret. Nous notons par 7 l'ensemble

des parambtres inconnus qui inclut la fr6quence porteuse, l'offset de phase, le retard in-

troduit par le canal et les symboles transmis dans le cas d'une estimation aveugle. Nous

adoptons la notation r(t,-f) pour le signal regu en absence de bruit qui met en 6vidence la

d6pendance en 1 . Le moddle en bande de base est :

y ( t ) : r ( t , 'Y )+w( t ) , ( 1 .1 )

on ru(t) est le bruit additif complexe. On considbre que g(f ) est une r6alisation d'un pro-

cessus al6atoire y(l) pour une valeur donn6e de I : 7. En effet, une r6alisation de y(f )
a un certain degr6 de ressemblance avec g(/) d6pendamment de la ressemblance entre

"(t,7) 
et t(t,.y), en d'autres termes, la distance entre I et 7. Uestimateur d maximum

de vraisemblance est bas6 sur le calcul de ] de sorte que la ressemblance entre y(t) etla

r6alisation y(t) soit maximale. En termes de probabilit6, nous appelons p(V(t)17) la den-

sit6 de probabilit6 de y(l) conditionnd e pr 7 .Supposons que pour deux r6alisations de ],
not6es par 7t et ]2, nous avons :

p\(t) : a(t)17') < p1(t) : a(t)172), (t .2)

alors 12 est dit plus vraisemblable que 11.
Comme nous I'avons mentionn6, le but est de maximiser p(y(l) : a(t)17) par rapport d l.
La position du maximum est appel6e estim6 d maximum de vraisemblance et est donnde



par :

i*": argmax{p(y(l) : a(t)17)}-Y
(1 .3 )

Cependant, I inclut, en plus des parambtres de synchronisation, les symboles inconnus

qu'on ne cherche pas d estimer d ce niveau. C'est pour cette raison que les paramdtres d

estimer sont rassembl6s dans ,\ et les autres parambtres, appel6s parambtres de nuisance,

sont rassembl6s dans n. Maintenant, nous devons reformuler I'estimateur en (1.3) pour

tenir compte de n. Soient \ et fi, deux valeurs hypoth6tiques de ), et n, respectivement.

En mod6lisant n comme un vecteur aldatoire de densit6 de probabilrt€ p(n),la formule

des probabilit6s totales permet d'6crire :

f l o o
p(v(t) : a(t)l,\) : / p(v(t) : a(t)17) p@)an.

J x

Puis, I'estimateur d maximum de vraisemblance de A est :

/t(al,,c) : exp 
{fr l,' 

y(t)r(t)dt- *a l,' ,'AVr} ,

\ur :  argmax{p(y(r)  :  g(r) l^)}
I

(  1.s)

Dans la suite de ce chapitre, ainsi que dans les chapitres 2 et3, nous nous concentrons sur

le cas oir ) est un scalaire (le d6lai r) et nous traitons le cas oU .\ est un vecteur dans les

chapitres 4 et 5.

1.4 Bstimateurs du retard i maximum de vraisemblance

1.4.L Estimateur pour Faible RSB

Dans cette section, nous nous int6ressons au cas aveugle (symboles non connus). Nous

pr6sentons le traditionnel estimateur pour faible valeurs de RSB d6velopp6 en [3]. La

fonction de vraisemblance est :

(1 .4)

( r .7)

(1 .6 )

oi 1/0 est la puissance du bruit, c : {co, cr, ..., c;} repr6sente la s6quence de donn6es

inconnue et r(t\ est d6finie comme suit :

i :o

L objectif est d'estimer le retard T sans avoir une connaissance a priori des symboles. La

m6thode la plus directe est de consid6rer les donn6es c comme un vecteur aldatoire. La

fonction de vraisemblance est moyenn6e par rapport aux donn6es transmises pour obtenir

la fonction de vraisemblance inconditionnelle :

A(slt)  :  E"{A(r lr ,  c)}. (1 .8 )



Malheureusement, l'expression analytique de la fonction de vraisemblance incondition-

nelle est difficile bi 6valuer. C'est pour cette raison que quelques approximations sont utili-

s6es. Premidrement, le second terme dans I'expression de la fonction de vraisemblance en
(1.6) est ignor6. Cette simplification entrainera une ddgradation des performances d'esti-

mation. Ensuite, une approximation de la fonction rdsultante peut Otre envisag6e en utili-

sant le d6veloppement de Taylor sous I'hypothbse de faibles valeurs de RSB. Alors nous

obtenons [3] :

(1.e)

Considdrant

(1 .10 )

Troisibme approximation, puisque les coefflcients de h(t) sont n6gligeables pour t f

[0,7], les limites de l'int6grale dans (1.10) peuvent 6tre 6largies d I'infini pour obtenir :

ty(al,,c) x L+ fr lo' ,{r),{r)dt + hll,' u@,(Dotf
la d6finition (1.7), nous avons :

lo' ,t),tDo,:E,n lo' v(t)h'(t - ir - r)d't

7 T  L - 1

I  aU)r ( t )d t  x  lc ; r ( iT  *  r ) '
J o E

/^+-
r (1 )  :  I  a ( r )h (u- t )du .

J - a

( 1 .11 )

(r.r2)

( 1 .13 )

(1 .14 )

(1 .15 )

(1 .16 )

Maintenant, nous substituons (1.11) dans (1.9) et tenant compte de I'hypothdse E{c6} : g,

la fonction de vraisemblance inconditionnelle s'dcrit comme suit :
L _ L

L@lr) :  D r2( iT  +r ) ,
i,:o

oir les termes constants sont ignor6s. De cette fagon, une expression plus pratique de la

fonction de vraisemblance inconditionnelle est trouv6e. C'est une expression quadratique

qui implique la r6ponse du filtre adaptl au signal reEu. A partir de (1.13), la valeur optimale

du retard r maximise l'6nergie de la s6quence {r(i,T + r)}. Pour trouver cette valeur

optimale, il faut annuler la d6riv6e de A(ylr) par rapport i z :

L - 7

\y' (al") = 2Dr(i,T + r)r' (tT + r).
i :o

Pour z - rp,la d6riv6e de la fonction de vraisemblance inconditionnelle est consid6r6e

comme une erreur d'estimation et utilis6e pour estimer le retard de fagon it6rative :

Tk+L : rx -l p'e(k),

avec

e(k) : r(kr + 16)r' (kr + rk),

et p correspond au pas d'adaptation.



1.4.2 Estimateur i Maximum de Vraisemblance Conditionnel

Nous avons vu que suite i plusieurs approximations, le critdre du maximum de vraisem-

blance se formule d'une manidre pratique. Cependant, I'algorithme est ddriv6 sous I'hy-

pothbse d'un faible RSB. Cette hypothbse limite les performances de I'estimateur pour les

larges valeurs du RSB de telle fagon que la diff6rence entre la borne de Cramer-Rao et les

performances d'estimation est d'autant plus importante que le RSB augmente. En effet,

I'estimateur I faible RSB est une approximation de I'estimateur i maximum de vraisem-

blance. A grand RSB, cette approximation ne refldte plus la vraie fonction de vraisem-

blance et les perfonnances de I'estimateur ne sont plus optimales. C'est pour cette raison

qu'un autre algorithme, connu sous le nom de maximum de vraisemblance conditionnelle

(MVC), a 6t6 ddveloppe g\Afin d'6viter les approximations, une approche diff6rente est

utilis6e pour calculer la fonction de vraisemblance. Contrairement i la premibre mdthode

pr6sent6e en 1.4.1, les symboles regus sont mod6lis6s comme d6terministes et inconnus.

Les parambtres de nuisance (donn6es, phase) sont exprimds en fonction du parambtre d

estimer et du signal regu. De cette fagon, nous obtenons une fonction qui ddpend seule-

ment du parambtre inconnu qui est le retard h estimer. A partir de cette fonction, un signal

d'erreur est calcul6 puis utilisd pour mettre i jour I'estim6 du retard.

Nous pr6sentons plus de d6tails sur ce point dans chapitre 2.

1.5 Limites de performance des estimateurs

1.5.1 Les Bornes de Cramdr-Rao

Considdrons n'importe quelle m6thode d'estimation de r et notons par ? I'estim6 corres-
pondant. Vu que ? d6pend de I'observation'y, diff6rentes observations engendrent ditr6-

rents estim6s. Dans ce cas i est une variable al6atoire dont la moyenne peut coincider avec

les vraies valeurs de r. Dans ce cas, l'estimateur est dit non biais6. Cette propri6t6 est un

caractbre d'6valuation des performances d'estimation puisque, en moyenne, l'estimateur

fournit la vraie valeur du parambtre. Cependant, l'erreur d'estimationT - r est aussi une

mesure importante, d'oir la n6cessit6e de minimiser cette erreur, ou encore sa variance.

Alors quand est ce qu'on peut dire que l'erreur d'estimation est acceptable ?

Dans ce contexte, la borne de Cram6r-Rao est une limite thdorique qui fournit une borne

inferieure pour la variance de tout estimateur non-biais6 [2] :

va r {? - r }>CRLB( r ) , (1 .  r  7)



avec

CRLB(r) :

1
(1 .18 )

Dans les probldmes de synchronisation, I'application de cette borne est difficile i cause

de la complexit6 de A(rlr). En effet, nous devons moyenner .tt(rlr,u) par rapport aux

parambtres de nuisance t^c :

"{{*-m;'1

A(rlr) : 
I_: 

Le/,u)p(u)du (1 .1e)

qui, jusqu'd prdsent, n'a pas d'expression analytique. Nous pr6sentons dans le Chapitre 3

une mdthode pour d6river l'expression analytique de la borne de Cram6r-Rao pour l'esti-

mation du d6lai et ceci pour une large gamme de modulations.

Une alternative d la borne de Cram6r-Rao, connue sous le nom de borne de Cramdr-Rao

modifide, est pr6sent6e en [5] pour contourner les probldmes de calcul.

1.5.2 Les Bornes de Cram6r-Rao Modifi6es

Une approche modifi6e, propos6e par D'Andrea, Mengali et Reggiannini [5] est souvent

utilis6e. I1 s'agit de la borne de Cramer Rao modifi6e (MCRB pour Modified Cramer Rao

Bound). Cette nouvelle borne s'6crit :

MCRLB :

E-U{'lltu#ell'"}
(r.20)

Dans (1.20), la moyenne E,{.} est effectu6e sur les parambtres de nuisance u et K est le

nombre de symboles dans I'intervalle d'observation. La notation r(t.r. z) est introduite

afin de s6parer le parambtre d estimer r des parambtres de nuisance z.

Deux remarques doivent Otre soulign6es h ce niveau sur la MCRLB. Premibrement, dans

les 6tapes de d6rivation de la borne, nous supposons que :
- les densit6s de probabilit6 de la phase et de la fr6quence sont connues ;
- les symboles {c;} sont des variables al6atoires ind6pendantes, de moyenne nulle et

E{(c6)2} : g.

De plus, D'Andrea a montr6 que la borne de Cram6r-Rao est sup6rieure i la borne modi-

fl6e [5]. Il est 6vident qu'il y a lgalitd si le vecteur t^c est parfaitement connu. Notez que

cette remarque reste valide quelque soit le parambtre d estimer.

La d6rivation de la MCRLB peut ere effectu6e de la fagon suivante :

l/o
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".U"'\ry#ell'"): 
Ion' 

n. {y1^'1t7ll'} at, (r.2r)

(r.22)

(r.23)

(r.2s)

(r.26)

(r.27)

(1 .28)

avec
t / , \  S -  / ,m'( t ) :  Lc ipU 

-  iT  -  r ) ,
i

et p(t) : dh(t) ldt Comme m'(t) est ind6pendante de f . et 0,le moyennage dans (1.21)

se limite au moyennage sur les symboles 6mis. Par suite, nous obtenons :

E-{l lm'(t) l l2} :  CI p(t  -  iT - r)
i

(-
: ; \- P' ( :\ 

"i2rn(t-r)/'r7 t  " ' \ T )
n

ot &(/) repr6sente la transformde de Fourier de p2(t). La dernibre lgalitd dans (1.23)

est v6rifi6e par la formule de Poisson. Ensuite, consid6rant (I.2I) et (l.23) et notant que

ffr siz""{t-,)lr - 5(n)KT,nous obtenons :

u-{ [* '  l lar( lrr .u)l l '0,]  :  9r p,(: \  [o' , , ,nn,,-,) /rd.L-- l /o 
l l  o,  l l  

-J r /- ' " \ r /Jo
:  KCP2(0) (r.24)

Cependant, &(0) est en relation directe avec H (f),la transform6e de Fourrier de h(t) :

p2e) : S+* ( 
a&!D) ' : n,.- [ 

'* 
f lH (f )l,df .\ " ,  

J -*  \  d t  /  J -co

Finalement, en int6grant (l .24) dans ( 1 .20), nous obtenons le rdsultat d6sir6 :

MCRLB(r) : 
#*troE",

r  r+*
u" : ; J _* lH (f )l"t.f ,

_, f i  f , lH(f) l ,df\ 'h:r  
I= lw) luf

oi E" est 1'6nergie moyenne du signal 6mise par symbole et C7 est le carr6 de la largeur

de bande moyenne normalis6e qui d6pend de la fonction de mise en forme et sont donnds,

respectivement, par :

L'expression analytique en (1.26) montre que la MCRLB est inversement proportionnelle

au rapport signal sur bruit E"ll'{o et d la taille de l'observation. De plus, elle est inverse-

mentproportionnelle d,C6,le carr6 de la largeur de bande de H(f). Ceci veut dire que

l'estimation du retard est plus facile d effectuer avec des signaux d large bande. Ceci peut

s'expliquer intuitivement par le fait que les filtres de mise en forme d large bande ont re-

lativement une petite dur6e temporelle et donc peuvent 6tre mieux d6tect6s en pr6sence de

bruit.



L6 Conclusion

Dans ce chapitre, nous avons pr6sent6 les caract6ristiques de l'estimateur d maximum de

vraisemblance. L'absence d'une expression analytique de I'estimd a favoris6 le d6velop-
pement de plusieurs algorithmes d'estimation avec des complexit6s et des performances

vari6es. Dans ce contexte, la d6rivation de bornes de pr6cision d'estimation est impor-

tante puisque celles-ci repr6sentent une limite th6orique i la performance des estimateurs.

Les bornes de Cram6r-Rao indiquent les limites inferieurs pour la variance de I'erreur

d'estimation. Cependant, leur application au problbme de synchronisation r6sulte en de

s6rieuses difficult6s math6matiques. Les bornes de Cramdr-Rao modifi6es sont beaucoup
plus faciles d calculer, mais elles se ddtachent des vraies bornes de Cram6r-Rao de fagon

impr6visible et donc ne refldtent pas les vraies performances possibles.
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Abstract

Dans cet article, nous pr6sentons un nouvel estimateur ir maximum de vraisemblance pour

le retard de propagation bas6 sur "importance sampling" (IS). Nous montrons que la re-

cherche exhaustive et les probldmes de convergence dont souffrent les m6thodes it6ratives

peuvent 6tre contourn6s. Les donn6es transmises sont suppos6s inconnues. Le retard reste

constant sur l'intervalle d'observation et le signal est entach6 par un bruit blanc gaussien.

Nous utilisons IS pour trouver le maximum global de la fonction de vraisemblance. L id6e

du nouvel estimateur est de g€n€rer des r6alisations i partir d'une version simplifi6e de la

fonction de vraisemblance. Nous verrons que les parambtres de l'algorithme affectent les

performances d'estimation et qu'avec un choix appropri6 de ces paramdtres, le retard peut

Otre estim6 de faqon pr6cise.

In this paper, we present a new time delay maximum likelihood estimator based on im-

portance sampling (IS). We show that a grid search and lack of convergence from which

most iterative estimators suffer can be avoided. It is assumed that the transmitted data are

completely unknown at the receiver. Moreover the carrier phase is considered as an unk-

nown nuisance parameter. The time delay remains constant over the observation interval

and the received signal is corrupted by additive white Gaussian noise (AWGN). We use

importance sampling to find the global maximum of the compressed likelihood function.

Based on a global optimization procedure, the main idea of the new estimator is to generate

realizations of a random variable using an importance function, which approximates the

actual compressed likelihood function. We will see that the algorithm parameters affect the

estimation performance and that with an appropriate parameter choice, even over a small

observation interval, the time delay can be accurately estimated at far lower computational

cost than with classical iterative methods.

2.1 Introduction

Parameter estimation is a crucial operation for any digital receiver; in particular the reco-

very of time delay introduced by the channel. Typically, in network communications, the

time delay is usually assumed to be confined within the symbol duration [1]. Particularly,

symbol timing recovery allows for sampling the signal at accurate time instants in order

to achieve satisfactory performances. The key task of timing recovery consists in determi-

ning the time instants at which the received signal should be sampled in order to perform

reliable data recovery. However, in many other applications such as radar or sonar systems

l2l l3l, where it can exceed the symbol duration, the time delay is used to localize targets.

During the last few decades, many time-delay estimators have been developed trying to

achieve the well-known Cram6r-Rao lower bound (CRLB). A key step in time recovery
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schemes is the determination of an objective function from the statistics of the received

signal from which an estimate of the time delay can be extracted. In this sense, it is known

that the maximum likelihood estimator is an asymptotically efficient estimator, and that it

performs close to the CRLB at relatively high SNR values [7], even for short data records.

Therefore, it has been subject to intense research. In the case of data-aided transmissions,

where the transmitted data arc a pri,ori completely known, an expression for the glo-

bal maximum of the log-likelihood function is analytically tractable. However, when the

transmitted data are completely unknown (i.e., the parameter of interest should be blindly

estimated), the log-likelihood function becomes extremely non-linear and it is difficult to

analytically find its global maximum. In this case, maximum likelihood (ML) solutions

must be numerically tackled. The grid search technique is the most basic alternative to

numerically lind the maximum of the non-linear likelihood function. Unfortunately, this

technique can be used only if the range of the parameter is confined to a finite interval,

otherwise, iterative maximization procedures must be envisaged. The most famous itera-

tive procedures are the Newton-Raphson method [5] and the expectation-maximization

algorithm [6]. However, these two prominent methods are known to converge to the ML

solution only if the initial guess is close enough to the true unknown parameter value. If

not, these iterative algorithms may converge to a local maximum of the likelihood func-

tion, or even diverge. To circumvent this problem, these algorithms may use many initial

values to improve their performance. But this increases in counterpart their computational

complexity without even ultimately warranting their convergence to the global maximum.

In this work, we resort to an entirely different approach for the estimation of the time delay

parameter. The compressed likelihood function is derived considering the transmitted sym-

bols as unknown but deterministic. Based on this function, an iterative algorithm earlier

implemented in [8] performs better in the high SNR region than the low-SNR uncondi-

tional ML (UML) timing error detectors (TEDs) [1], but its performance still depends on

the initialization value making it therefore prone to severe degradation due convergence

uncertainty.

Motivated by these facts, we develop in this paper a new non-iterative approach to find the

time delay conditional maximum likelihood (CML) estimates. We implement the CML

algorithm in a non-iterative way. We avoid the grid search, essential in traditional iterative

approaches, by using the importance sampling technique which has been shown to be a

powerful tool in performing NDA ML estimation. In fact, this method was successfully

applied to estimate other crucial parameters such as the direction of arrival (DOA) [9],
the carrier frequency [10] or the joint DOA-Doppler frequency tl11. The importance sam-
pling technique is used in this paper in the context of time delay estimation. Moreover,

we adopt the discrete-time model widely used in the field of sensors array processing [12]
and more recently formulated in the context of time-delay estimation [8]. The resulting

IS-based estimator attains the modified CRLB (MCRLB) over both the medium and hieh
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SNR regions, whereas the traditional UML TED, being derived under the assumption of
low SNR, does not approach the MCRLB at the high SNR region.

The remainder of this paper is organized as follows. In section II, we present the discrete-

time signal model that will be used throughout this article. We derive the compressed like-

lihood function in section III.In section IV we introduce the importance sampling method

that will be used in this article to find the global maximum of the compressed likelihood

function. Section V deals with the choice of the importance function and discusses the im-

pact of some parameters on the estimator performance. The newly proposed algorithm is

developed in section VL Simulation results are discussed in section VII and, finally, some

concludins remarks are drawn out in section VIIL

2.2 Discrete-Time Signal Model

First, we present a list of notations and definitions that will be used in this article.

E.{}: the expectation with respectto r.

ll Il , Euclidean norm.

(.)t, (.)t : transposition and conjugate transposition.

SNR : signal to noise ratio.

IS : importance sampling.

ML : maximum likelihood.

CML : conditional maximum likelihood.

MCRLB : Modified Cram6r-Rao lower bound.

QAM : quadrature amplitude modulation.

PAM : pulse-amplitude modulation.

Consider a traditional communication system where on one hand the channel delays the

transmitted signal and on the other hand an AWGN with an overall power of l/6 corrupts

the received signal as follows :

a(t) : t/ E, r(t - r*)eio + w(t), (2.r)

where r* is the unknown time delay to be estimated,0 is the unknown but deterministic

channel distortion phase, tu(f) is an additive white Gaussian noise (AWGN) with inde-
pendent real and imaginary parts, each of variance Nsl2 and t/4 is the signal amplitude.

The unknown transmitted signal r(f ) is modeled as follows :

n - r
, , \  \ a -  ,  / ,r ( t ) : )  qh ( t - i T ) .

/J

i :o

where K is the number of transmitted symbols in the observation interval, {"i}fJ'are the

unknown complex-valued symbols, h(f ) is the shaping pulse of energy E6 and 7 is the

(2.2)
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symbol's duration.

In the sequel, we outline the discrete-time signal model which was proposed for the lirst

time in [8] to derive an iterative CML timing recovery algorithm. The received signal y(f)

is passed through an ideal lowpass filter of bandwidth F"f 2 and sampled at a frequency

F" : 7lT" : klT, where k is a given integer which guarantees that fl" is above the

Nyquist rate. Then, the received samples g : la(O), A(7"), U(27"),..., y((M - 1)7")l'

can be written in a matrix form as follows :

A :A , - r l us , (2.3)

where M is the number of samples of g(t) and u and A"- are defined as follows :

6  :  [ 'u(0) ,  w(7") ,  . . . ,  u( (M -  1)?: ) ] t ,  (2 .4)

A,*  -  
[oo( r - ) ,  a t ( r * ) ,  . . . ,  ax - r ( r * ) ] , (2.s)

with

at( r* )  :  lh( - iT  -  r * ) ,  h(7"  -  dT -  r * ) ,  . . . ,  h( (M -  7)7"  -  iT  - , . ) ] ' .  (2 .6)

In(2.3), r is the set of unknown data and signal phase which is given by :

r  :  ceio :  lco, c1 . . .  c6-1fT eie. (2.7)

Moreover, the covariance matrix of u.r is given by :

C* : 2o2 Ix4 : N6F"I7,1 , (2.8)

where -Iy refers to the (M x M) identity matrix and2o2 : l/6F". The sampled data gr is a

linear function of the vector r but depends non-linearly on the time delay r*. We mention

that the model of Eq. (2.3) presented in [8] is inspired from the model widely used in array

signal processing where each column of the transfer matrix is a function of a different

parameter, usually the direction-of-arrival or the frequency of each incoming signal. In the

context of time delay estimation, the entire matrix -4". depends on the same parameter r* .

2.3 Likelihood function

The conditional likelihood function of the observed data g is given by :

tv(s l* ; r )  xp(y l r ; r ) :C exp { -  #  l la  -  A,* l l ' } ,  Q.s)

where p(Alr;r) is the probability density function (pdfl of y conditioned on r and pa-

rameterized by r, and C is a positive constant which does not depend on the time delay
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and therefore will be dropped, without loss of generality. Note here that r is any possible

value of the time delay parameter r" and that |v(Al*;r) attains its maximum at r : 7*,

i .e., r* - arg maxA(grlr;  r).
T

Actually, one needs to maximize |t(gln;r) with respect to r in order to find the ML so-

lution F. However, (2.9) imposes a joint estimation of c and r*, which is very difficult

to perform. Therefore, two principal approaches are developed in the literature in order to

obtain a likelihood function that depends only on r. On one side, the unconditional maxi-

mum likelihood (UML) estimator introduced in [] considers the data symbols as random

and hence averages thejoint likelihood function over re to obtain a function that depends

only on the time delay as follows :

A(sl ' )  :  n,UY(ul*;r) j .

On the other side, the data symbols are modeled as unknown but deterministic in the for-

mulation of the conditional likelihood function. Therefore. 8. the solution that maximizes
(2.9) with respect to r,for a given r is used in(2.9) as a substitute of r. Actually, i which

maximizes lv(A;r,r) also maximizes the log-likelihood function given by :

L(u;*,r)  :  - :  l l  a -  A,* l l '  .  (2.rr)
2 o 2 " "

Therefore, taking the gradient of L(ylr;z) with respect to ao and setting itto zero '.

(2.10)

(2.r2)

(2.r3)

(2.r4)

oL(a_;r,r) :  _4toTa _ ATA,*) :0,
0 ro

yields the following result :

a : (ATA")-'ATy
: ATa,

where Af, : (AT A")-r AT is the pseudo-inverse of the matrix A". Substituting O into

(2.I1), one obtains the so-called compressed likelihood function, that depends only on the

unknown time delay parameter :

L(a; r ,O :  - : -aH ( Ix  -  A,Af )a,
zo'

which can be further simplified by dropping the constant terms to obtain the useful com-

pressed likelihood function denoted by L.(a; r) as follows :

L "(a; i : sH A,(AT n,)-' nT u. (2.r5)

Note that the expression in (2.I5) represents the cross-energy between the pseudo-inverse

filter Af and the sampled matched filter Al . For z equal to the timing parameter to be

estimated, the fllter Af becomes a zero-forcing equalizer since the components of Af A
are intersymbol interference (ISI)-free (i.e., Af A : n -l Af, -, see [8]).
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2.4 Global Maximization of the Compressed Likelihood

Function

To perform maximum likelihood estimation, we have to maximize (2.I5) with respect to

r. Unfortunately, a closed-form expression for this optimization problem is not analyti-

cally tractable since the objective function in (2.15) is extremely non-linear with respect

to r. Therefore, many methods have been developed to numerically find the maximum,

but most of them are iterative [-8]. We cannot deny that these methods provide good

performance in terms of error variance, but unfortunately they require, in counterpart, a

sufficiently close initial guess to converge to the global maximum of the likelihood func-

tion. Otherwise, the result may be a local maximum, which does not correspond to the true

time delay value. This is why a suboptimal algorithm needs to be applied firstly and then

its output is considered as an initial value for any iterative technique.

To avoid this challenging drawback of iterative methods, we propose in this paper an enti-

rely different technique which does not claim any initial guess of the time delay parameter.

We apply the global maximization method earlier proposed by Pincus [13] which provides

a powerful tool for accomplishing nonlinear optimization and guarantees finding the glo-

bal maximum without any initialization concerns. In fact, the theorem of Pincus states that

the maximumof L.(g;r) is given by :

(2.16)

where

r |  l - \  -
" c , p \ t )  

-
exp{pL.(s;r)} (2.r7)

f  (  r  /  \ l  r  )
| , e x D l  O L - t u t r t t a r

J J

can be viewed as the normalized function of exp{pL"(A;r)}.Note that in (2.16) and
(2.17),.I is the integration interval in which r is supposed to be confined. In a certain

way, L'",,(r) can be viewed as a pdf (since it verifies all the properties of a pdf), but since

r is actually deterministic, L'",r(r) is more conveniently called a pseudo-pdf [9]. It is also

worth noting that, as p -+ oo, L",r(r) becomes a Dirac delta function centered at the

location of its original maximum. We leave broad details on this point in Appendix A.

The ML estimator for the time delay parameter, obtained from the location of the global

maximum of L"(y;r) is given, for a large value of po,by :

e:l im 
frrL'",r(r)d,r,

, :  
/ ,

rL'",ooQ)dr. (2 .18)

Now, we need to evaluate the integral given in (2.18), although a direct integration remains

always difficult if not impossible. However, this integral is in a way the mean value of a

random variable distributed according to L'",ro(.).It was shown in [1a] that this type of
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integral can be efficiently evaluated using Monte-Carlo simulations as follows :

(2.re)

where {rr}t:, are realizations of r distributed according to the pseudo-pdf, L'",ro(r), and

hence the global maximization problem reduces simply to a generation of random va-

riables. Yet, since it is a non-linear function of r, the direct generation of realizations

according to L'",00(r) is computationally hard. Thus, instead of pursuing a fruitless path,

we use the importance sampling technique, as done in [9], [10] and [11] for the estima-

tion of the signal directions of arrival, the carrier frequency and the Doppler frequencies,

instead of directly using (2.17).

2.5 The Importance Sampling Technique

lt has been shown that the importance sampling technique is a powerful tool to compute

multiple integrals; in particular the one given in (2.18). In fact, it can be easily seen that

for any function2 /(.) :

;. : +f,r,

(2.20)

where g'(.), called the normalized importance function, is another pseudo-pdf which must

be chosen as a simple function of r so thatrealizations distributed according to g'(.) can

be easily generated. Then, the Monte-Carlo method is used to empirically compute the

integral in (2.20) simply via the following summation :

f, f {r) r'",,,e)d,r : l, r r,lffi s' (r)d,r,

-  1+ p1- .1L ' " 'oo( ' r )
R  / 2 t  t ' r t  g , 0 i

L"(a;r) = fiu',+"ATa.

lrf ?)t '", 'o?)d,r (2.2r)

where n, is the kthrealization of r according to the normalized importance function g'(.)

and E is the number of realizations. Typicully, g'(.) and L'",00(.) should be very similar to

reduce the variance of the estimates. However, L'",ro(.) remains a complex function and

in counterpart S'(.) needs to be as simple as possible. Therefore, some trade-offs must be

found in the construction of the importance function. In fact, the inverse matrix (AT A")-t

in the actual compressed likelihood function, L"(A;r) (or equivalently L'",r.(.)), is very

non-linear with respect to r. Intuitively, one can replace this inverse matrix by the diagonal

matrix ht* Hence, a reasonable approximation of the compressed likelihood function

i s :

2In our case, we have f(r) : r.
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t
The approximation of (Al A")-1 with ftt* is very reasonable for most of the conventio-

nal pulse shaping functions. For instance, it can be verilied that for the widely used square

root-raised cosine pulse, the diagonal elements of (Al A,)-1 are dominant compared to

its off-diagonal ones. In fact, as defined in (2.5), the columns of A" are built upon shifted

versions of the shaping pulse h (. ) , therefore every element of AT A" can be seen as the

convolution of two shifted versions of h ( . ) (the shift being an integer multiple of 7), which

value is maximum when the shift is the same, i.e., in the diagonal elements. Whereas, when

the shift is not the same, the value of the convolution is very low. See Appendix B for more

details about this observation. In the particular case where the pulse shape does not gene-

rate inter-symbol interference, the approximation becomes strict equality and (2.22) yields

the exact compressed likelihood function. Then, a reasonable importance function is given

by :

g  r r ( , )

(  K - r  r  l M - r- exp { o' f # lI y"(i,r")h(i,r" - kr -
|  - I l s l
\  k : 0  " l t : 0

n - l

oo',?): f l  e"p {pi l t( ')},
k:0

I,E

.,1'),(2.23)

(2.24)

(2.2s)

where p1 is another constant different3 from p6. Note that the normalization of go, (.) by

It gor@)d, yields the normalized importance function g'or(.) {i.e., 9'r,(r) : 
##W).

But since the periodogram of the data evaluated at the time delay r, In(r), is given by :

lM - |  l '
16(r)  :  

lDr.(u '")h( i r"-kr-  ' )1,  :0,  1 '  2," ' ,  K -r ,
l ; : o  I

then, we rewrite the importance function as follows :

with

or: f in, Q.26)
The normafizatronot (2.25) leads to the pseudo-pdf g'(.) which will be used, hereafter, to

generate the realizations involved in (21) :

n t . l - \ -
v p \ \ '  /  -

K - l

l{ exp{p'r16(r)}
a:0 (2.27)

exp{p'rlp(u)}du

lt is also worth noting that the performanceof the new maximum-likelihood estimator

multiple parameters estimation where p1 should berln our case, p1 can be equal to ps, unlike for the

different from po.
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depends on the choice of p\.ln fact, our ultimate goal is to find the global maximum of the

function L.(g;r) : gH A"(ATA")-'ATg. However, this function exhibits many local

maxima even in the total absence of noise, and it is often difficult to distinguish between

the global and a local maximum. For this pu{pose, p', is chosen to render the objective

function in (2.27) more peaked around its global maximum which will have a relatively

higher peak compared to the local maxima. This behavior is illustrated in Fig. 2.1, which
plots the function g'oi(.) for Pl: L0 and p't : 20,inthe total absence of the additive noise.

Moreover, we show in Appendix C how this parameter renders g'o,"(.) more peaked around

its global maximum.

FtcuRe 2.1 - Plot of g'rl(.) for p'r: 20 and p\ : L0 using a root-raised cosine pulse and

for  K:  100.

Based on this fact, it can be stated, a priori, that it is better to arbitrarily increase p', in

order to achieve better performance. But, this is much easier said than done since, in prac-

tice, this leads to numerical overflows. Actually, the best value of p', is the highest possible

without resulting in any overflow in the computation of g'0, (.) as it will be seen in Section

VII. Same argument is valid for ps.In fact, the approximation of (AlA,)-'Vy h.l*
means that the quantiry L"(U;i : .yn A,(AT A")-t ATg is almost equal to fifP 1r1
where fYQ) : gHA,Aly (note thatthe superscript (a) in fL:)1r) refers to the word
"approximate" where we approximate L"(g;z) with LY)(r) by replacing (Al A")-r by

#t*). This means that ps will results in an overflow in exp{p6L.(y;r)} as far as p1

--T-

(

r '+27
T

,l

a-

,t

24



results in an overflow in exp 
{otf;fL^ fr;}. Therefore, the optimal value, p|t , of po ve-

rifies p'{t : p?'where p?' is again the optimal value of Or: frp',,..
We also note that the matrix A, in(2.22) exhibits an interesting structure since its columns

are simply shifted versions of the pulse shape. Hence, the matrix-by-vector operation Aly

can be viewed as a filtering operation of the received samples gr with a filter h(.) whose

coefficients are the central row of Af . Therefore, the computation of (2.27) is quite simple

and realizations distributed according to S'oi(.) in (2.27) can be easier generated than ac-

cording to Lt.,oo(.) in(2.17).

2,6 Estimation of the Time Delav

In the sequel, two scenarios will be proposed depending on the range of the unknown time

delay parameter. In the first scenario, we assume that the time delay parameter takes values

within 10, PT), where P is a strictly positive integer (i.e.,P > 1). In the second scenario,

we assume that the time delay parameter takes values within [0,7].

2.6.L First scenario 2 r* e 10, PTI

As already mentioned in the introduction, in many applications such as radar or sonar

transmissions, the actual time delay introduced by the channel may exceed the symbol's

duration. In this subsection, we assume however that the time delay does not exceed PT,

where P is a given strictly positive integer, i.e., r* € 10, PT| This upper limitation of the

interval is justified since, in each communication system, we always have an a pri,ori, rdea

about the maximum rangea of r. As we have seen in the previous section, the maxima of

g'r,r(.) are periodic, with period 7. Therefore, many secondary peaks may appear which

ultimately affects the estimate i of r*. In fact, to obtain unbiased estimates of r*, the

expected value of the estimation error re : T* - i should be equal to zero, i.e. :

E{r " } :E { r * - i } :0 . (2.28)

However, it may occur that the difference between r* and z* is very important. In fact, to

simplify, assume that gtr, (.) has only 2 peaks and neglect the others. Then the generated

values will take values around r* and T + T* , with higher probability around r* where the

highest peak is located. If we denote by Cl the set of realizations taking values near r*

and Cz the set of realizations taking values near r* * 7, then from (2.21) the estimated,

?, canbe approximated by :

^ _ card(Ct) _* , card(Cz) /_* .rr\
'  -  

R  
I  r - 6 1  \ /  r t ) ,

4Note that P can be always chosen as large as desired to ensure that r* € 10, PTI

25

(2.2e)



with card(C) denoting the cardinal of C, i.e., the number of elements of C. Therefore r* f
r* since R : card(C) + card(C2) and card(C2) is always not equal to zero. Moreover,

the bias is larger at low SNRs and/or short data records. This property was also previously

observed in the case of frequency estimation in [15].
To circumvent this problem, the pseudo-pdf, g'r,r(.), must be centered around r*. To that

end, two intuitive methods may be envisioned. We may either eliminate the secondary

peaks to keep only the principal one, or we can generate other peaks in a way that the

number of secondary lobes on either side of the principal lobe is the same. The first idea

seems to be the most efficient, but it is unfortunately unrealizable and we opt for the

second alternative. Indeed, as we have seen, the estimation bias stems from the peaks

taking place after the principal lobe. Thus we have to modify fii(.) so that it becomes

quasi-symmetric around r*. To that end, the simplest way is to suppose, virtually, that r

takes negative values although r is always positive. We extend the interval of definition

of g'p\(.) from [0, P7] to [-QT,P7], where Q is a positive integer smaller than P. In

this way, virtual secondary lobes appear before as well as after r*. Moreover, as it can be

seen from Frg.2.2, the probability of generating realizations around r* I iT is almost the

same as the one of generating realizations around r* - iT . Hence, the estimator becomes

unbiased and the estimate i is more accurate. So far, we have established an unbiased

f

T

i
, a  + T

:. f : . I

Frcune 2.2-Plotof the cumulative distribution function (CDF), G'(r) whose pdf is g'(r),

SNR = 5 dB.

estimator based on a linear average of the generated realizations. But through simulations,

we noted a performance change according to the constellation type. In fact, for a constant-

0
o

r

o
o

o

o.4

1

7 1 1

0.5
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envelope constellation such as phase-shift keying (PSK), the estimator works perfectly.

However, its performance degrades dramatically for non-constant-modulus constellations

such as pulse-amplitude modulation (PAM), quadrature amplitude modulation (QAM),

etc. In fact, as we have previously seen, the main problem that faces the new ML estimator

is the presence of secondary peaks. Although we have explained, in section V how to

reduce the adverse effects of these peaks, they generate irreversible errors in the case of

non-constant-envelope constellations. To simplify the problem, without loss of generality,

we suppose again that gii(.) exhiUits only two peaks, one located atr* and the other

located at r* 17. From (2.25), gp,,(r-) and gr,,(r. -t T) can be written as follows :

(
gp,r(r*):""p1 pi

(

and

K - t l M - L  l ' )  (  l * - t

t lt y"(r")h(ir" - kr - r-)l | *o{ pi It y.(ir")h(ir" - r- * : r l - o - -o  
|  )  \  r i : o

K - 1 . l M - r

t  l t  a.GT")h( iT"z-.r lz-t " '
k:r I  i :0

.,1') ,
(2.30)

gri|. *T) : *, 
{rt

*o 
{,r

_ kr _-.,1,) ,

lTnr*")h('ir" 
- Kr- ".,1')

Q.3I)

Noting that the samples of the received signal are limited in time to 10, KTI and the magni-

tudes of h(t - Kf - r) for , € [0, KTI are very small compared to those of h(t - KT - r)

for t € lKT, (K + 1)7], then, the term !f;1 y. (i,T")h,(ir" - KT - r) canbe neglected.

Considering this result, we express gpt(r*) as a function of goiQ. + T) :

gri?.) = gp,r(r* + 7) exp{p'r lo(r*)}, (2.32)

where 1o(".) depends mainly on the amplitude of the first symbol. In practice, it may

occur that the amplitude of the first transmitted symbol is the smallest one. In this case,

the contribution of exp{ pllo(r.)} in g oi?.) is far less important than the other terms, i.e.,

exp {p | l s ( r . ) }  <  exp {p l l i ( r - ) } f o r i , : 1 , 2 , . . . ,  K -T .Asa resu l t , go i ( r . )  w i l l be

closer to go,r(r* lT), which is a local maximum making the estimate i shift toward r* *7.
The same problem occurs when the last transmitted symbol has the smallest amplitude

with the only difference that the shift will be toward r* - T.

To avoid these problems, 16(r*) must be as large as possible. To that end, we slightly

modify the algorithm in the case of non-constant-modulus constellations by sending two

a priori known symbols : one at the beginning and one at the end of the frame. Moreover,

these two known symbols must be of highest energy among the constellation points. Then,
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1o(r.) is no longer negligible compared to li(r*), for i, I 0, and the difference between

the magnitude of gr, (r.) and gpi(r. + 7) is large enough to avoid an important detection

error. The same thing holds for got(r*) and go, ?- - T).

2.6.2 Second scenario i, r* € 10,7]

In many cases, the time delay does not exceed the symbol duration 7. Therefore, we must

look for the global maximum only in [0,7]. As previously explained, the maxima of the

importance function are periodically located, with a period equal to 7. Moreover, since we

know a priori that r does not exceed 7, then we can more conveniently use the circulat'
(instead of the linear) mean to evaluate the mean in (18). It will be seen in section VII

that the use of the circular mean provides considerable performance enhancements in the

low-SNR region. As it will be explained later, the use of the circular mean considerably

reduces the computational cost.

To introduce the concept of a circular mean, consider a circular random variable which

takes values in a finite interval that can be mapped into the unit circle. For instance, let

a be a random variable defined in [0, 1] with pdf P(").Then, the circular mean of a is

defined as :

(2.33)

where Z denotes the angle in radians. Having Rrealizations of o, its circular mean is [6] :

E.{o} : 
}z I 

e>tp{jura} P (a)cl,a,

^: *t**" 'ornva.)

*:#'*f='*",{t!},

,: #t**on;"o{iT},

F(r) :W
9 oi\r )

In our case, if the time delay is not confined within the interval 10, 1], it can be easily trans-

posed into this interval by normalizing r* by 7. Then, the resulting transposed estimate is

inversed to obtain an estimate in the orieinal interval. Hence. the IS estimate of r* usins

(2.34) and (2.21) is :

(2.34)

(2.3s)

(2.36)

(2.37)

or finally :

where

5Note that the circular mean cannot be used in the first scenario when r may exceed T since it always

returns an estimate in [0, 
"] 

by virtually bringing, into this interval, all the secondary lobes of the normalized

importance function.
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Note that we need to find the angle of a complex number, and thus, we can remove any

positive real factor taking place in (2,36) without affecting the linal result. This means that

the two strictly positive normalization constants [, f'@)au and [, g'(u)du can be simply

dropped. Moreover, an overflow may occur since both the numerator and the denominator

are exponentials. To circumvent this problem, we replaceu p (r) by F'(16) :

(  K - '

F'(rt) - exp 
lro;{r,) 

- drU, tt(rr) -,-g (rot"(',)
\  k :0

where we multiply F(r) by a real scalar factor.

} { - l

-d,D
k:0

(2.38),-(',)) 
)

2.6.3 Summary of steps

In the following, we summarize the steps of the new algorithm for the two considered

scenarios.

Based on the sampled data g(i,T),'i : 0, I,. . ., M - T,evaluate the periodogram

Ia(r) according to (2.24).

Compute the normalized importance function in (2.27). Note that, in practice, we

use a discreet model by substituting the integration in the denominator of (2.27) by

a summation as follows :

n t  .  ( - \  -
v p l v  t  -

n - l

T - T  (  t  r  /  \ )
|  |  e x D {  o . l u l r l ft - r
k:o (2.3e)

i
n - l

D):' fl exp{pil*(',)}
,k:0

where l/ is the total number of points in the time delay interval.

Generate R realizations of the parameter {r}L, using the inverse probability inte-

gration as detailed in Appendix D.

Evaluate the weight coefficient F(4) delinedin (2.37) (or F'(r) defined in (2.38) if

we consider that r is in [0, 7]) for each generated value r;.

5. Compute the mean of the generated variables multiplied by the weight coefficients

to find the ML estimate of the time delav.

oNote that the same simplifications have been used in [9] to estimate the signal DOA.

1 .

2.

3 .

4.
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2.7 Simulation Results

In this section, we will present numerical results to substantiate the performance of the

new ML estimator as a function of the SNR. We will also refer to our new IS-based ML

estimator as "IS algorithm". The normalized (by T2) mean square error (NMSE), defined

in (2.40), will be used as our performance measure :

NMSE(r) :
E{(} - r-) '}

(2.40)
ry1)
1 -

and computed over 1000 Monte-Carlo runs. The modified Cram6r-Rao lower bound (MCRLB)

is also normalized by T' and the total number of transmitted symbols, K, in the observa-

tion window is set to K : 100 and p', is taken equal to 28. Unless specified otherwise,

a root-raised cosine shaping pulse of roll-off factor of 0.5 is used. First, the effect of p1
(or equivalently pt) on the performance of our IS-based ML estimator is shown in Fig.

2.3 at an SNR of 10 dB. As it could be predicted, the mean square error decreases as p1

increases toward its optimal value and, for too large values, the performance deteriorates

due to numerical overflows. In the implementation, p', can be set as a function of the po-

too

to- '

' ' : ' ' S N R  +  1 0  d B  :

: : :

' ' 'N::', :,, ' l

P ' t

1o- 'L't0

FtcuRB 2.3 - Performance versus p\for SNR=10 dB.

wer of the received samples g. Moreover, using computer simulations, we verify that for

a root-raised cosine filter the ratio L|'o?) I g'O) is almost equal to 1. Then to reduce the

computational complexity, we can set this ratio to 1 in (2.2I) and (2.36). In fact, Fig.2.4

u J .
o  1 0 '= -

1 0  
-
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shows the NMSE of the IS-based time delay ML estimator when this ratio is preserved

in the importance function and when it is set to 1. As it can be seen, this simplilication

does not degrade the performance of the estimator while reducing the computational com-

plexity considerably. This simplification is also valid for any linear modulation scheme.

Therefore, in the following simulations we consider that :

r  |  ( - \
" c , p 6 \ '  )  .

, / \
I o'r\r )

(2.4r)

Note that this simplification remains valid when the intersymbol interference is not im-

portant (for high values of the roll-off factor). As the roll-off factor tends to 0, it appears

necessary to consider the ratio in order to achieve better performance of the estimator.

Moreover, we implement the iterative CML estimator, called CML-TED, proposed in [8]

1 0

SNR dB

FtcunB 2.4 Estimation performance considering L'",roQ) f g'(r) and setting

LL,^?) ls'(r) to 1 wirh QPSK modulation.

and compare its performance to the performance of our IS-based CML estimator. As far

as we know, among all the existing synchronization techniques, the CML-TED algorithm

achieves the best performance, but, as an iterative procedure, its performance depends

strictly on the initial guess. To corroborate our claims, we consider in Fig. 5 two initial

values of r* for the CML-TED, which should be seen as the result of another estimator. In

Ft5.2.5, the small crosses represent the normalized variance where the initial value is very

close to the true time delay value, i.e., verifies 116-r*l : T 170, with r* being the true time

delay value to be estimated and rj is the initial guess. As it can be seen from this figure,

o

z
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even with a close-enough initial guess, our IS-based estimator outperforms the CML-TED

estimator in the high SNR region although the CML-TED achieves better performance at

low SNR values. We also note that, at high SNR values, the performance of our IS-based

estimator is close to the MCRLB. This means that, in this region, our new time delay esti-

mator exhibits performances equivalent to those that could be achieved if the transmitted

data were perfectly known to the receiver. However, if we consider lrj - r* | : T f 2, the
performance of the CML-TED deteriorates considerably over the entire SNR region. This

illustrates the fact that the CML-TED algorithm fails to estimate the time delay if the ini-

tial value is not appropriately chosen, while no initialization concerns are raised with our

new IS-based CML estimator. Moreover, the second variant of the IS algorithm, namely

o

o
z

1 0  
' L
-5 1 0

SNR dB

Ftcune 2.5 - Comparison between the estimation performance of the IS algorithm using

the two scenarios and the tracking performance of the CML-TED using QPSK modulation.

considering the time delay as a circular variable, is also represented in Fig. 2.5. We see

in this case that the variance effor is reduced in the low SNR region. In addition, in both

cases, starting from an SNR value of about 5 dB, our IS-based algorithm surpasses the

iterative algorithm, even when assuming a sufficiently accurate initial guess.

Furthermore, in Fig. 2.6, the CML-TED algorithm exhibits a variance penalty for a

roll-off equal to 0.2. This penalty is higher for smaller excess bandwidth. It has been

shown in [8] that the CML-TED reaches the asymptotic compressed CRLB (CRLB"),

and the difference between the MCRLB and the CRLB" becomes more important as the

roll-offfactor decreases. Then the performance of the CML-TED cannot approach asymp-
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totically the MCRLB for small

always reaches the MCRLB in

value.

roll-off factors. In contrast, the new IS-based algorithm

the high SNR range, irrespectively of the roll-off factor

t 0

10-
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o
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1 0
SNR dB

FIcURB 2.6 - Comparison between the estimation performance of IS algorithm and the

tracking performance of CML TED using QPSK modulation and for a roll-off factor of

0.2.

In Fig. 2.7, performance curves are drawn for 16-QAM and 64-QAM' as examples for

non-constant modulus constellations. As explained in section VI, we force the first and

the last transmitted symbols to be of maximum energy. To illustrate the performance de-

gradation in the case of higher-order modulations, we also plot the NMSE for QPSK. As

we can see, the IS algorithm achieves close performance for the three modulations ordets,

with, however, a small improvement for the QPSK modulation. To illustrate the perfor-

mance enhancement achieved by forcing the f,rst and the last symbols to have maximum

constellation magnitude, we plot, in Fig. 2.8 the performance of the new IS-based ML

estimator without this constraint. As anticipated, the performance is strongly affected by

the two edge symbols since the curve corresponding to the non-forced symbols does not

approach the MCRLB. Therefore, for non-constant-envelope modulated constellations, it

is essential to force the first and the last transmitted symbols to have maximum energy, as

explained in section VI.
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FrcunB 2.7 - Normalized MSE of the time delay estimate for different QAM modulation

order, using a root-raised cosine filter with a roll-off factor 0.5.

_ MCRLB
- < - 16-OAM withforcd symbols
- a - 16-OAMwilbullorced

1*.

1 0
SNR dB

FtcuRs 2.8 - Comparison of the estimation performance with and without forced symbols

using 16-QAM modulation and for a roll-off factor of 0.5.

2.8 Conclusion

A computationally efficient technique has been developed to implement the CML estima-

1 0  -

t o-'

t o '

o
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tor of the time delay parameter. Based on a$screte-time model, the transmitted symbols



are supposed to be unknown and no restriction on their distribution was assumed. To avoid

iterative techniques and their drawbacks, the importance sampling method was used to

find the ML solution. Its main advantage over the iterative procedures is that it does not

require any initial guess of the time delay parameter and that it is far less computationally

expensive while retaining good performances. Moreover, its convergence to the global

maximum is guaranteed. Relative to other proposed methods such as the CML-TED, the

IS-based estimator exhibits better performance at high SNR. In practice, the choice of the

algorithm parameters p6 and p', is critical for the estimation performance and for a good

choice of these parameters, a small number of generated realizations can be sufficient to

achieve satisfactory performance and reduce the computation burden.

Appendix A

Proof of lim
p0-++oo

-6,

In the following, we prove that Lt",oo(r) defined in (2.I7) tends to a Dirac delta function

centered at the location of its global maximum as ps ) *oo. To do so, consider the

general case where /(r) is an integrable function having one global maximum, denoted

a :

a:  arg max f  ( r ) .
r € lR

And denoting by F(r) the following normalized function :

L'",rr(')

exp{pe./(r)}

(2.42)

(2.43)E' (  * \  -

J'r exp{pof (u)}du'

where .I is the definition domain of F. (.). Then, for a given real number b I o, we have :

(2.4s)

(2.44)

However, since /(a) is the maximum value of the function /(r), then f (b) - /(o) is a

negative number and, therefore, exp{ps ( f (b) - f (t))} tends to 0, as well as F'(b), when

p6 tends to oo. As a result :

r , /A \_  exp{p6 l (b ) }  -  exp{p6 l (a ) }' \u/ - j, 
"pQJ6ld" 

- 
I ""p{pd(-')}d'

l im F(r)  :  Q,
p0--+oo

for any real r f a.Moreover, if we consider that 
,lim 

F(a) : 0, then whatever r € IR,

r * m
we have lim F(r) : 0 and lim I f 1u7a'u : 0, which is in conflict with the as-

po-+oo po >@ J _*

sumption that /]; F(u)d,u:\. 
^+rc

Finally, we conclude that 
,ll* 

a(o) I 0 and rt*" 
olTL /_* 

F(u)d,u : 1, F(r) be-

comes a Dirac delta function centered at a when p6 tends to +oo.
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Appendix B

Justification of the approximation AT A, = * t ̂

The diagonal elements of Al A" are the convolution of the same shifted version of h(.)
(lAT A"l,,n : aT ?)ao(r) foli : 0, L,. . .K - 1 where ai(r) is defined in (6)). Whe-

reas, when the shift is not the same (i.e., lAl A,]tj : al (r)a1Q), i. + j), the value of

the convolution, o,f, (r)ai?), is, according to the Nyquist criteria, equal to zero. However,

s incewetakesomesamplesof  h( . ) ,  IATA,)o, i :  aT(r )a i ( t ) ,  i+ j  isnotreal lyequal to

zero but still very small and negligible in front of lAl A,l;,;. To clarify, we plotted in Fig.

2.9 the following three functions : 96(r) : h(r) x h(r) : h(r)2, 9lr) : h(r) x h(r -T)

and g2(r) : h(r) x h(r - 2T) and we take for example [ATA"]t,, : aT?)az(r) :

DY-j9r(mT"). Then, notice from this figure that some samples of gr(.) are negative,

which will compensate for positive samples it D#:.t 7t(mT") from the same function

thereby resulting in very low convolution. However, the samples of 96(r) are always posi-

tive and there is no compensation effect in lAl A,11,, : DX_--,l go(mT") added to the fact

that go@) > 9{r), this results in the following conclusion : lAlA,)t1 > IATA")t,t.
Using the same arguments for the other off-diagonal elements of A! A" leads to the follo-

wing approximation:

ATA, ='irn

FIcURB 2.9 -Plot of  90(.) ,91(.)  and 92(.) .

(2.46)

l

t / r
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Appendix C

Proof of the effect of p\ on g'o,ro

In the following, we briefly show how p', (o, equivalently p1) can render eii (.) more pea-

ked around its global maximum. Starting from g'o, (r*), define the function H,"(pr) :

g'r i(r.) :

H (p't) :
exp{p'rr,9) (r.)}

(2.47)
f .

I  ""p{p\Lf)(u) lduJ . I

where r* is the true time delay value to be estimated and ff) 1r) is the approximation

of L.(y;r) defined in the right-hand side of (22), i.e., fY)(r) : yH A,Afy. The first

derivative of H (p\) with respectto pl is given by equation (2.48).

H'(P'r) :
rP) (r.) e*p{p\r?) (r")} 

J ,exp{p'rrf,) @))au -exp{p'rr1) ?.)} J ,r?) @)e*p{p'rr'9) @)}au

(1,"'r{o',LY) @}d,)

e*p {p\L9) 1"- I 1 (r!") ?. ) l rexp {p', Lf,) (u)} du - 
l r 

ty, rr) exp {p'rLf,) 1117 au

(f ,"'o{o'LY) 
(q}d')

(2.48)

And noting that r* - arg ma*, Ll!) 1r). it follows that

[ *'@)exp{p'rLlil luyau < rf)g.1 [ "*o{r',Lf)(u)}c]u.J t  JL

Therefore H',- {pr) > 0 Vpi . Hence, H,. (pr) is an increasing function with respect to pl,

i.e., for 
"r"ry 

p'[') , p'lt) we have u,-b'])) ] H,.@']')), which means 7'o<n(r*) ]

g'o,.1e(r*). We conclude that p', renders the objective function more and more peaked

around its global maximum.

Appendix D

Method to generate iqj!,

In this appendix, we detail how to generate realizations according to g'(r). First, we ge-

ne ra teavec to ru : l u r , r t r2 , . . . , u r , )o fRrea l i za t i onsun i fo rm lyd i s t r i bu ted in [0 ,1 ] .

(2.4e)
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Then, we search r.i: G'-1(u;), where G'-t(.) is the reciprocal function of the cumulative

distribution function (CDF) G'(r) of r defined as :

G'(") g'r ,r(u)du. (2.s0)

Unfortunately, a closed-form expression of G'- 1 (r) is not analytically tractable. Moreover,

since G'(r) is a steep-slope function, a fine search to find T; as argmin,lu6 - G'(z)l is

required and makes the process computationally intensive. However, since G'(r) is an

increasing function of r, the function ,S(r) : lui - G'(r)l is unimodal. This observation

allows us to adopt the golden search [17] to find the location of the minimum of S(r). The

golden search is appropriate for this problem because it converges after a small number of

iterations and requires only one function evaluation per iteration.
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Abstract

Dans cet article, nous d6rivons pour la premibre fois les expressions analytiques des bornes

de Cram6r-Rao pour I'estimation du retard pour les signaux h modulation par ddplacement

de phase, modulation i d6placement minimum et modulation d'amplitude en quadrature.

Nous supposons que les donn6es transmises sont inconnues au niveau du r6cepteur et que

la fonction de mise en forme satisfait le critdre de Nyquist. De plus, la phase et la fr6guence

porteuses sont consid6r6es inconnues. Le retard reste constant sur l'intervalle d'observa-

tion et le signal regu est entachd de bruit additif. Les nouvelles expressions montrent que

les performances d'estimation ne d6pendent pas de la vraie valeur du paramdtre. De plus,

ils concordent avec les r6sultats obtenus par calculs empiriques.

In this paper, we derive for the first time analytical expressions for the exact Cram6r-Rao

lower bounds (CRLB) for symbol timing recovery of binary phase shift keying (BPSK),

minimum shift keying (MSK) and square QAM-modulated signals. It is assumed that the

transmitted data are completely unknown at the receiver and that the shaping pulse veri-

fies the first Nyquist criterion. Moreover the carrier phase and frequency are considered

as unknown nuisance parameters. The time delay remains constant over the observation

interval and the received signal is comrpted by additive white Gaussian noise (AWGN).

Our new expressions prove that the achievable performance holds irrespectively of the true

time delay value. Moreover, they corroborate previous attempts to empirically compute the

considered bounds thereby enabling their immediate evaluation.
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3.1 Introduction

In modern communication systems, the received signal is usually sampled once per-symbol

interval to recover the transmitted information. But the unknown time delay, introduced by

the channel, must be estimated a priori in order to sample the signal at the accurate sam-

pling times. In this context, many time delay estimators have been developed to meet this

requirement. These estimators can be mainly categorized into two major categories : data-

aided (DA) and non-data-aided (NDA) estimators. In DA estimation, a pri,ori known sym-

bols are transmitted to assist the estimation process, although the transmission of a known

sequence has the drawback of limiting the whole throughput of the system. Whereas, in

the NDA mode, the required parameter is blindly estimated assuming the transmitted sym-

bols to be completely unknown. In both cases, the performance of an estimator affects the

performance of the entire system. In the case of an unbiased estimation, the variance of

the timing error is usually used to evaluate the estimation accuracy. The CRLB is a lower

bound on the variance of any unbiased estimator and is often used as a benchmark for

the performance evaluation of actual estimators ll,2l. The computation of this bound has

been previously tackled by many authors, under different simplifying assumptions. For

instance, assuming the transmitted data to be perfectly known and one can derive the DA

CRLB. The modi{ied CRLB (MCRLB), which is also easy to derive, has been introduced

in 13, 41, but unfortunately it departs dramatically from the exact (stochastic) CRLB, es-

pecially at low signal-to-noise ratios (SNR).

Actually, the time delay stochastic CRLBs of higher-order modulations were empirically

computed in previous works. Their analytical expressions were tackled only for specific

SNR regions, i.e., very low or very high-SNR values and the derived bounds are referred

to as ACRLBs (asymptotic CRLBs). In fact, in [5] the stochastic CRLB was tackled under

the low-SNR assumption and an analytical expression of the considered bound (ACRLB)

was derived for arbitrary PSK, QAM and PAM constellations. In this SNR region, the au-

thors of [5] approximated the likelihood function by a truncated Taylor series expansion

to obtain a relatively simple ACRLB expression. An analytical expression was also intro-

duced in [6] under the high-SNR assumption. This high-SNR ACRLB coincides with the

stochastic CRLB in this SNR region but unfortunately it cannot be used even for moderate
(practical) SNR values. Another approach was later proposed in [7] and [8] to compute

the NDA deterministic (or conditional) CRLBs, in which the symbols are considered as

deterministic unknown parameters. Then the conditional CRLB is derived from the com-

pressed likelihood function f (U;0,0) in which g stands for the observed vector, 0 is the

parameter vector of interest (including the unknown time delay) and fr is the maximum

likelihood estimate of the transmitted symbols r. However, it is widely known that the

conditional CRLB does not provide the actual performance limit (unconditional or sto-

chastic CRLBs). In an other works, the stochastic CRLB was empirically computed [9]
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assuming perfect phase and frequency synchronization and a time-limited shaping pulse.

Later in [10], its computation was tackled in the presence of unknown carrier phase and

frequency and pulses that are unlimited in time. Both [9] and [10] simplified the expression

of the bounds but ultimately resorted to empirical methods to evaluate the exact CRLB,

without providing any closed-form expressions.

Motivated by these facts, in this work, we derive for the first time analytical expressions

for the stochastic CRLBs of symbol timing recovery from BPSK, MSK and square QAM-
modulated signals. We consider the general scenario as in [10] in which the carrier phase

and frequency offsets are completely unknown at the receiver, and we show that this as-

sumption does not actually affect the performance of a time delay estimator from perfectly

frequency- and phase-synchronized received samples. The derivations assume an AWGN-

corrupted received signal and a shaping pulse that verifies the first Nyquist criterion. The

last assumption is verified in practice for most of the shaping pulses.

This paper is organized as follows. In section II, we introduce the system model that will

be used throughout this article. In section III, we derive the analytical expression of the

stochastic CRLB for any square QAM modulation. Then, in section IV, we outline the de-

rivation steps of the CRLB in the cases of BPSK and MSK transmissions. Some graphical

representations are presented in section V and, finally, some concluding remarks are drawn

out in section VI.

3.2 System Model

Consider a traditional communication system where the channel delays the transmitted

signal and a zero-mean proper2 AWGN, with an overall power o2, cor:rttpts the received

signal. In the case of imperfect frequency and phase synchronization, the received signal

is expressed as :

,y(t) :  J n" 
"(t 

- r)ejQ"f"t+o) +,w(t), (3 .1 )

where r is the time delay, I is the channel distortion phase, /" is the carrier frequency

offset and j is the complex number verifying j2 : -I. The parameters r, g and f" are

assumed to be deterministic but unknown. They can be gathered in the following unknown

parameter vector :

' : l ' ,0 , f . ) ' (3.2)

In (3.1), 'u(t) is a proper complex Gaussian white noise with independent real and imagi-

nary parts, each of variance o2 f 2, and r(t) is the transmitted signal given by :

2Aproper complex random process o(l) satisfies n{u(t)2} :0.
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K
\-r (1 )  :Lo ,h ( t - iT ) ,
i : I

with {a,1}[, being the sequence of K transmitted symbols drawn from a BPSK, an MSK

or any square-QAM constellation and 7 is the symbol duration. The transmitted symbols

are assumed to be statistically independent and equally likely, with normalized energy,

i.e., E{lall'} : 1. Finally, h(t) is a square-root Nyquist shaping pulse function with

unit-energy which will be seen in sections III and IY as would be expected, to have an

important impact on the CRLB and therefore on the system's performance. The Nyquist

pulse 9(l) obtained from h(l) is defined as :

/n F-

s(t) : J__ 
h(r)h(t-r r)dr.

and satisfies the first Nyquist criterion :

g(nT)  :0 ,  n  10 . (3.s)

Supposethatweareabletoproduceunbiasedestimates, O,of the vector ufromthere-

ceived signal. Then the CRLB, which verifies tr{(t - 
")"} 

> CRLB(z), is defined as [1,
2l :

CRLB(z) : I-r(u), (3.6)

where 1(z) is the Fisher information matrix (FIM) whose entries are defined as :

(3.3)

(3.4)

(3.7)

with L(u) being the log-likelihood function of the parameters to be estimated and {"r}?_-.
are the elements of the unknown parameter vector u.

To begin with, we show in Appendix A that the problem of time delay estimation is disjoint

from the problem of carrier phase and frequency estimation. Indeed, we show that the FIM

is block-diasonal structured as follows :

tr(,)tn,i : E {W W}, 
u, t : r,2,r,

/ cnl-n-'(r; o
I("): I

\  0  h(0. f . ) )

(3.8)

where O : [0 , 0]", CRLB(r) is the CRLB of the time delay parameter and I2(0, /") is the

(2 x 2) FIM pertaining to the joint estimation of /. and 0. Hence, we prove analytically

that we deal with two separable estimation problems; on one hand time delay estimation

and on the other hand carrier phase and frequency estimation. Actually, this conclusion

has been already made in [10] but the authors resorted to empirical evaluations to find

45



that the elements lI(r)|t," and [,t(z)]1,s of the FIM are almost equal to zero. Now, since

the parameters are decoupled, we only need to derive the lirst element of the global FIM,

V @)lt,t in order to find the CRLB for time delay estimation under imperfect frequency

and phase synchronization. Therefore, in the following, we consider the virtually derotated

received signal /(f) given by :

i@ : Y(t) s-lQ*l't+e1

: J F+ r(t - r) + fr(t), (3.e)

where 6(t) : u(t)e-i{z"t"t+d) i, also a proper AWGN with an overall power o2 since the

nuisance parameters are assumed to be deterministic.

We mention that l. l, n{.}, S{.} and {. }- return the magnitude, real, imaginary and conju-

gate of any complex number and E{.} is the statistical expectation. We also define the

SNR of the system as p - E"lo' .

3.3 Time Delay CRLB for Square QAM-Modulated Si-

gnals

In this section, we introduce the main contribution embodied by this paper which consists

in deriving closed-form expressions for the stochastic CRLBs of time delay estimation

when the transmitted data are unknown and drawn from any NI -ary square QAM-constellation
(i.e., M :22P).

Before further development, it is important to emphasize that an exact representation of

/(t) requires an infinite-dimensional vector representation /. But let us consider the -A/-

dimensional truncated vectors i x , n N and 61,', representing the projection, over an ortho-

normal basis of N dimensions, of /(t), r(t) and fr(t), respectively. Then, the pdf of iw
conditioned on the transmitted symbols a and parameterized by r is given by [4] :

To derive the likelihood function which incorporates all the information contained infi(t),

we should make N tend to infinity to get P(ilo;r). However, convergence problems ap-

pear. To overcome these problems, P(fr1,,1a; r) is divide dby L f Qro2)t u*p { t  I  o' D*' 
- '". l

^  t  ' ' k : r lA * l - J
to obtain :

/Y  t  
^ . - ^ |  l a * - t * l ' \P(ilNla;') :!+ft"v\- 

"-: I

/ _ N

^@lo;r) : exp 1'+I n{g*,;} -
I  

a" k:L

and as .A/ tends to infinity, we obtain the conditional likeli

^@to;r): exp 
{+ f_l ntaft)r(t).dt} -
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( 3 .11 )
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To begin with, we note that since the transmitted symbols {oo}f:, are equally likely, then

the desired likelihood function of the derotated observation vector fi can be written as :

(3.13)^ (y;,) : " {fr r'(,,,0(,))} ,
where the expectation is performed with respect to the vector of transmitted symbols and

F(ao,y(t))- exp 
{+/_- 

*rn,t)ai}h(t - ir - r)d,t - t irr '} 
el4)

It can be shown that (3.13) reduces simply to :

1 K^(i;"): #fla'(').
; - 1

where

, , ,  \  \ -  (  E " t  r , )  2 J T  r ' * -  )
H;( r ) :  L  " *p i  

-= l r^1"  +- -#  /  n  { i ( t )4 }h( t  - iT  - r )d t l  ,  (3 .16)
cpcc  

(  o -  o '  J -a  )

in which C is the constellation alphabet. Actually, the main difficulty in deriving an analy-

tical expression for the stochastic CRLB stems from the complexity of the log-likelihood

function. Therefore, we will manipulate the summation involved in (3.16). In fact, consi-

dering only square QAM-modulated signals, we are able, by exploiting the full symmetry

of the constellation, to factortze H;(r) which in turn linearizes the global log-likelihood

function and ultimately linearizes all the derivations.

Indeed, denoting by C the subset of the alphabet points with positive real and imaginary

parts (i.e., e : 1pl - 7)do + jQk - l)drlo,r:.r.,2,...,2p r), the constellation alphabet C is

decomposed as follows :

c:e u i .  u (- i )  u (- i . )

(3 .1s)

(3.r7)

Note that do is the inter-symbol distance derived under the assumption of a normalized-

energy square QAM constellation as follows :

2nli"_i Qk -
(3 .18)



Using (3.17), we rewrite (3.16) as :

H,(r): t "*o { 
_.u:rca'}, ("*o {ry,, f n{r(/)(-d)}h(r - ,, - "tor}

Zt"ee \

(  2{E;  f  +*  
_  i r  _ , - )d1}*exp 

\TJ_*m{t( /)(-ek)}h(L 
-  

)
,  ̂ _-^ | 2\/4 [+* , _ ,)dr ]* exp 

\T J -*n{t(f )e;}h (t - ir 
)

(2J4[ t*  . . ) \* exp 
\T J _*n{t(r)Ck}h 

(t - ir - ,)dt 
} ) 

(3. r e)

Now using the hyperbolic cosine function defined by 2 cosh("r) : e' + e-', (3.I9)

reduces simply to :

H ?):2L",.0 { 
-*vrf}I,*^(+l_*-*1y1,;u; }h(t - ir - r)d,t\

? a € c  t  o z '  )  L  \  o "  J - o '  /

*cosh (#1.-"{aft)ek}h,(t - ir -,)")]

Moreover, using the fact that cosh(o) f cosh(b) : 2 cosh(#) cosh(f ) and noting that

En * eI : 2ft{Zx} and1p - 6T" : 2j3{ck}, weobtain:

Hiu) :2D.*o{ -*lu-f},",n(+in{er}/ ?tn,,)}h(/ - ,, - io,) *
ci 'eu

"",n(+s{er} /_1r0,,,}h(t 
- u, - oot)

) "

(3.20)

(3.22)

(3.2r)

Recall thate : {Ql-l)do+ jQm-I)do},,^:r,2,...,2e-t and hence the previous expression

of HJr) is rewritten as :

Ht(")  :
2 P - L  2 P  t  (^tP-'"otE" ((21 - t)' + (2^ - r)') d7

"'"n (+ et - r) o, I_J*ro@)h(t 
- ir - ,lot) "

"""n (+ e* -1) d,/% {i(t)}h(t - ir - iot)

Then, splitting the two sums in (3.22), Ho(t) is factorized as follows3 :

3Note that similar factorization was recently used to derive an analytical expression for the NDA SNR

estimation t111, t121.



where

H n(r) : 4 tr (u lr)) .P(%(r)),

r*-
tJ;(r) : 

/_." 
m{utt)} h(t - iT - r)dL.

r*-
v,(i : 

J_* 
s{t(r)} h(t - ir - r)dt,

(3.23)

(3.24)

(3.2s)

and

2 P - 1  /  -  '  / ^  t =  \

F-l r\ : \- exp { -*en- rlra3} 
"orr, l ' 

'$ek - r)d"r\ . (3.26), . \ r  )  _  
Z _
k : r  

^  
t  0 2 '  u )  

\  
0 2  

' "  
)

Now, injecting the expression of Hift) in the likelihood function of the received signal
(3.15), we obtain :

t  , r  \ K  K

^@;,):  (+ ) i l  F(u/r))F(V(i) e.27)
\w t  /  i : ,

Finally, the log-likelihood function of the received signal expands to :

L(r) :Dr"( r (u, ( " ) ) )  +th(F(%(?)) )  Q.28)
i : l  i : l

Note from (3.28) that due to the factorizationof Hift) in (3.19), the global log-likelihood

function of interest in (3.28) involves the sum of two analogous terms. This reduces consi-

derably the complexity of the stochastic CRLB derivation.

In fact, the first derivative of (3.28) with respect to r is obtained as follows :

4r:f ygt.ryP. i\y:g!!W (3zs)
dr 2 rluntD 0r P(V?D Er )

where i(r): %P i, givenby:

q D - L

F(r) :  
D ""0 {-p(zk - rya?,} '#er - Ddo,t"n(Tek _1)d",) (3.30)
I ^  -1

Then the first diagonal element of the FIM matrix is expressed as :

tfqo)']:u{f)a{q,? !u''tt )
I r(")h:, :  El (# )  |  :  EltLLri f f i f f iu i(r)u1(r) l  +

1 \ or / ) P-l:F@mrui#ut(r)ut(r)]+
,, {fi #ffiffi u G)v(r) } . " {*t #&ffi tn)i,,(.)\

( i : t t : t  ' / / ' \ ' L \ ' ) )  
J  t i : I t : l  

'  \ ' r \ '  

( 3 . 3  l )
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where U/r) andVl(r) are the derivatives of LI1(r) and I{(r) with respect to r.

Starting from (3.31), the derivation of [/(")]t,t involves the evaluation of three expec-

tations. However, it is easy to verify that the first and the last expectations in the right-hand

side of (3.31) are performed with respect to two random processes having the same statis-

tical properties and they are therefore identically equal. Moreover, as shown in Appendix

B, the second expectation is equal to zero. Therefore, (3.31) reduces simply to :

(3.32)

First, we consider the case where i : l, andwe show in Appendix C that Ui(r) and Ui(r)

are statistically independent. This results in :

u [ ( r\r,J),),)',*,,,,,] : u { f y'@,,'J'} u { (a,r,r),} (3 33)"\\4urll l\ ' ' \//J-\\F@Gt/lr\ /)

These two expectations involved in the right-hand side of (3.33) are easily evaluated as

rr(,)t,,, : 2ii'{ :99}ggR r,1,;r,i,) },
i= r  r : r  

"  
I  r (Ur ( r ) )  F (UA,  n  )

follows :

,  |  ( F ( u 1 ( r ) ) ) ' )  r * m

"t(iffi,) ]: J--
I

J;P

where 9(.) and g(.) are the first and second derivative of g( ), respectively. We simplify

(3.34) by changin e t/rUo(t) lo by r and we obtain the following result :

: +ii'((i,- k)r) -lutot
k :1" {(ar"l)'} (3.3s)

(3.36)

where

2p- r

sp(r) : I "*o {-p(zk - 1)'d3} Jrek - l)d,sinh ( /zp1zr, - r)d,r) ,(3.37)
k:1'

2 p t
\-a (

G r\t) : Lexp { 
-p(2k - t) 'a?} 

"otn (r/-zoQk - t)d,or) .
k :L
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We now consider the case where i, I l.The intersymbol interference results in a statistical

dependence between Ui(r) andthe lirst derivatives (Ii(r) andt{(r) (ikewise for V1(r) and

the first derivatives l4(l anaUO>. Thus using a standard probobility approach to derive

the expectations involved in (3.32), we first average by conditioning on U;(r) and Ut(r),

then average the resulting expression with respect to these two random variables. To that

end, consider the expectation of U;(r) and U7(r) conditioned on U1(r) andU{r) :

t r  {u i(r) lU n(r),  u {r)}  :  U /r)  g (( i  -  t)T),

E {U 1(r) lU u(r),  U,(r)}  :  U o(r) g ((t  -  i ln.

Using (3.39) and (3.40), it follows that :

t { i\!,fllgg9 rr,G)utu)lro?),1,,(,-)} : ily:!'ll ilyl!'ll ,"  
I  F(u; ( r ) )  F(u i l r ) )  ' r  /1 '  I \ '  /  

J  F(ut?) )  F(u1(r ) )  "

(3.3e)

(3.40)

ua(r)u{r)s((i, - t)r)s((t -d\T\)

and we obtain :

. l  rp,1,) r1y,1-rr )  _ (  , !  , t r , t , l l , r , ( ,))) '  
n,(( ,_t)r1,.4z)t 

t"iGtFdffi 
u,ft)rrtft)] : 

\- [ora(,))-, ) /
where the last equality follows from the statistical independence of Ui(r) and t{(r) and :

"{ffiffi ,?)}:rl # I-.J.n^.7"-*a.(3.43)

Finally, gathering all these results, we obtain the analytical expression of the stochastic

CRLB for symbol timing estimation. From square QAM-modulated signals in the presence

of carrier phase and frequency offsets as follows :

cRLB(r) : 
l(rnf i g'(- - n)r) -2Kps(o)) tt ""2 f #"-*d, 

-
L \  m : r n : r  /  '

2  K  K  l - 1

tt i '(^ -,)r)l
m: ln : I  I

Note that for large values of K, one can use the following accurate approximation [10] :

K K + m

t I  g"(^-n)r)  x K \ ,  t '@r\. (3.4s)

It is worth mentioning that the new analytical expression in (3.44) allows the imme-

diate evaluation of time delay stochastic CRLBs, contrarily to the empirical approaches

presented in [9] and [10], and this is made possible for any square QAM modulation order.

# (l-: *s,1'7"-*a*) (3.44)



Second, the shaping pulse is involved only via 1j(0) and S'((^,- r,)T), and is separate

from the factors resulting from the modulation order. Moreover, to the best of our know-

ledge, we show here for the first time, through our new analytical expression, that the true

value of the time delay parameter does not affect the actual achievable performance as in-

tuitively expected, i.e., the variance of the estimation error holds irrespectively of the time

delay value to be estimated.

3.4 CRLB for BPSK and MSK Modulated Signals

In this section, we consider the BPSK and MSK modulations. In BPSK transmissions,

the data symbols take values in {-1, +1} with equal probabilities. In MSK transmissions,

the symbols are defined as a7"11 : j ancn where cp is a sequence of BPSK symbols and

a6 is the original value drawn from the set {-1, -i,+7,*7}. For these two transmission

schemes, the key derivation steps of the NDA CRLB will be briefly outlined in the follo-

wing. All derivation details can be found in Appendix D.

First, the likelihood function of interest based on the received signal is :

K \

. )d , t  +* lu , l ' ) ,  G.46)
j : l  \  

J - x ,  o '  
/

where bi is equal to 1 and jo-'oo for BPSK and MSK, respectively. Therefore, we show

that the useful log-likelihood function of fr is given by :

L(r):ir("",n (+ I_:n{b : i ( t ) }h ( t - f f - , ) " ) )  G .47)

Note that /(t) is defined in (3.9). After some algebraic manipulations, detailed in Appen-

dix D, it turns out that the analytical expression of the stochastic CRLB for time delay

estimation is the same for BPSK and MSK modulations, and it is given by :

CRLB :

(3.48)

[^,{(' 
- ftu,pe)) ('f, iuu^-n):r)- f,r'r)

,f,ig((m-',t,)]
tn:l n:l

oQ) : l"*
,2

, - U  
, n,  /  -  \  * - '

cosn \t/ 2P t )
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3.5 Graphical Representations

In this sectiono we provide graphical representations of the time delay CRLBs and the

CRLB/MCRLB ratio for different modulation orders.-First, we mention that the even in-
^ 2 t , t  , 2  , 2  r o

tegrand functions ff i"-+, rgr(r)e-T and -; ip-1 involved in (3.44) and (3.49).

respectively, decrease rapidly as lll increases. Therefore, the integrals over [-oo, foo]

can be accurately approximated by a finite integral over an interval [-A, A] and the Rie-

mann integration method can be adequately used. In our simulations, we note that A : 100

and a summation step of 0.5 provided accurate values for the infinite integral.

FIcunB 3.1 - Compression between the empirical CRLB and the analytical expression

in (3.44) for different modulation orders using K : 100 and a raised-cosine pulse with

rolloff factor of 0.2.

First, we plot in Fig. 3.1 the CRLBs for different modulation orders and compare them

to the ones previously obtained empirically in [10]. We see a good agreement between

the two approaches thereby validating the developments above. Then, we confirm through

Fig. 3.2 that, at low SNR values, the MCRLB is a looser bound compared to the exact

CRLB. Indeed, this figure depicts the CRLB/MCRLB ratio as a function of the SNR. This

ratio quantifies the performance degradation that arises from randomizing the transmitted

data and it approaches 1 at high SNR values. Hence, in this SNR region, the MCRLB can

be used as a benchmark to evaluate the performance of unbiased time delay estimators

instead of the exact CRLB, since it is easier to evaluate. However, the gap between the

two bounds becomes important as soon as the SNR drops below 7 dB, even for QPSK-
modulated signals, where the stochastic CRLB quantifies the actual performance limit.

0  5  l 0
sNR [dBl
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Moreover, we consider in this figure two values of the rolloff factor, 0.2 and 1, in order to
illustrate the effect of the rolloff factor on timing estimation. Clearly, timing estimation is

less accurate at a lower rolloff factor (larger intersymbol interference).

Moreover, we see from Fig. 3.3 that the different CRLBs tend to ultimately coincide

with the MCRLB as long as the SNR gets increases. Actually, in the high SNR region, the

achievable performance of NDA estimation of the signal time delay is equivalent to the

one obtained when the received symbols are perfectly known since in this SNR range the

MCRLB coincides with the DA CRLB.

FtcuRe 3.2 - CRLBA4CRLB ratio vs. SNR for different modulation orders usins K :

100 and a raised-cosine pulse with rolloff factor of 0.2 and 1.

In the specilic case where h(l) is time limited to the symbol duration, the corresponding

CRLB follows directly from the general expression in (3.44) by taking it(mT) : 0 for all

m t L :

J

o=
J

o

(3.50)

Note from (3.50) that the resulting CRLB becomes the product of two separate terms;

one depending on the shaping pulse function and the other on the signal modulation. This

special bound is plotted in Fig. 3.4. We see again a good agreement in this special case

between the CRLBs obtained from our analytical expression in (3.50) and their empirical

counterparts plotted in Fig. I of [9]. This particular expression still finds applications in

cRLB(rpl-r* oU1o1
1  - r

^2  1_T dr l
I
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5
sNR [dBl

FIcuRe 3.3 - CRLB vs. SNR for different modulation orders usins K : 100 and a raised-

cosine pulse with rolloff factor of 0.2.

many conventional systems and in the emerging impulse radio technology lI3,l4l where,

precisely, synchronization stands today as a very challenging issue.

FtcuRs 3.4 - CRLB/IvICRLB ratio vs. SNR for different modulations and a time-limited

shaping pulse.

Fl

o

j

Q

sNR IdBl
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3.6 Conclusion

In this paper, we derived, for the first time, analytical expressions of the Cram6r-Rao lower

bound for symbol timing estimation in the cases of BPSK, MSK and square-QAM modu-

lations. We considered the stochastic CRLB where the transmitted data are unknown and

randomly drawn. The carrier phase and frequency offsets are also supposed to be unknown
(nuisance parameters). We showed that the knowledge of the phase and frequency does not

bring any additional information to the time delay estimation problem and that the latter

is decoupled from the joint estimation of the carrier frequency and phase offsets. Moreo-

ver, our analytical expressions for the CRLBs underline the fact that these bounds do not

depend on the time delay value, which used to be stated only intuitively. We confirmed

also that the modified CRLB is a valid approximation of the exact CRLB in the high SNR

region and that it can be used as a benchmark since it is easier to evaluate. Furthermore,

the derived analytical expressions corroborate previous works that empirically computed

the stochastic CRLBs via Monte Carlo simulations, and hence provide a useful tool for a

quick and easy evaluation of the CRLBs with BPSK, MSK and square-QAM modulations.

Appendix A

Proof of the Block-Diagonal Structure of the FIM

To show that r and u : lf ",01r 
are decoupled, we consider the actual received signal

y(l) instead of the virtually derotated signal 9(l). Then we follow the same derivation

steps from (3.13) to (3.28) to retrieve the log-likelihood function parameterized by z as

follows :
K K

L(u): It" (r1uo1u7\ + t rn(F(V(u)))
i - l  ; - l

The first derivatives of this function with respect to the Ith element of u, {u1}!}1, and r

are, respectively, given by :

(3.sr)

(3.s2)aL(u)_ :
0'tr1

K

\-
./--)
; - 1

F(Ut(u))  \ur(u) -  
p(U("))  aV@) t  _ 1 e

F(Ua(u ) )  0 t t 1  P (V@))  7u t  
1  u  -  L '  ' 1

and

|L(u) _ aa pv,@)) \tLi@) _
a, 

: 
k FW,@D a, -

where F. (.) is defined in (3.30). Then we average

followine result :

ev@))
e(v@))

0L(v)  }L(u)
0r AUQ)

)Vi@)-#,  (3.53)
OT

as in (3.31) to obtain the
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[1(rz)]r,r+r :' 
{%?u#P}

:'ii'{ffi8#&ry#.#} G54t
i : l  m : I  [ '  

'

In order to simplify the calculations, without loss of generality, we consider I : 1. To

begin with, we lirst differentiate U^(u) with respectto f . and we obtain :

)U*(u)  _r -  [ **
af. 

-"" 
J-*
K

- . ) - \ - c >- '" /- -
m - 1

3 {s(r)"-it2nr"t+o} hft - mT - r)tdt

(3.55)

W is a function of the imaginary part of the transmitted symbols and the derotated

noise, which are mutually independent from the real part of the transmitted symbols and

the derotated noise. As a result, W is independent from Uo(r),U*(r) anO $p. tfrt

allows us to split the expectations in (3.54) :

-  [  rg,p\ rp*p)) lu i@) 0u^(u) l  -  |  rg,@)) p(u^(v)) au;@)]
" I F1rl,(t,D F(IA"D a, 

--d; 
J 

: '\NpfiTW;6 a, I
u {0, : ( " ) \  (3 .s6)

Ldur  )
Noting that the last expectation is equal to zero, itfollows immediately thatll (u)]r;z is also

equal to zero. Thus, we show analytically that the two parameters r and f . are decoupled.

The same manipulations are used to prove that r and 0 are also decoupled. Therefore, the

FIM is block-diagonal structured as given by (3.8).

Appendix B

Proof of tr { +\y=,v)! l\Yt?\ fr,(r\v(r\ } - or  r v v r  v L  u  
| . r t r r r t " ) )  F ( v 1 i ) ) ' r 2 \ '  ) '  L \ '  )  

J  
-  \

rn the foilowing, we briefly show rhar E {ffiEwe u,?)utr)} : 0. By definirion,
Ui(r) depends on the real part of /(t), while I{(r) involves the imaginary part of T(t),
which are statistically independent. It follows that Ui(r) and \fi(r) are independent. The

same arguments hold to show the statistical independence of (Ii(r) and V(r) Then, it

immediately follows that :

u{i,\y;9,),{(r4('\t ), {!!yI{/,(,)} r{::y:fllai,y}rr,E 
tFdiqUDuift)v1i) j: 

b 
tF(ui;Du,\') l- lF(v1(r)) ". ,,J
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And since U6(r) and(I;(r) arc statistically independent (see Appendix C), each with mean

zero. we obtain :

(3.s8)

Appendix C

C.l - Pdfs of Ui(r) and V?)

In this Appendix, we establish the joint pdf of U6(r) and Vi(r) defined, respectively, in
(3.24) and (3.25). To that end, we deline the proper complex random variable Zi(r) :

[ i |y,Al hQ - iT - r)dt.I tcanbe easily seenthat zi(r) :  U6(r) + jvo(t) andthat

P(Z/r)) : P(Ui(r),V(r)) Using the same algebraic manipulations from (3.16) through
(3.23), we establish the pdf of Z;(r) as follows :

"{ffi8ffi,,?)v(,)} :o

1 1 ,xp{-V!4!}n,(,)P(Z ; ( r ) ) :  
M  no r ,  I  o .  )

:  
#.*o { 

-u?(r) j-v '2(r)} o,u, ' , ,  F(%('))
:  P({J i ( r ) )  P(V(")) ,  (3.se)

where

P(ui(r)) : (3.60)

p(v(,)):#l#"r{ YP},,nr, (361)
Note that the factorization of the joint pdt P(Ui(r),V(r)) of Ui(r) and Vi(r) to their

elementary pdfs confirms that these are two independent random variables.

u,: I_.:

(Ii(r): tf4*n{a} + l3t,

n{?r(r)}h(,  - iT -r)dt .
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C.2 - Proof of Statistical Independence of U i(r) and U t(r)

First, note that, Uij) can be written as :

where

(3.63)



Therefore, Ua(r) is given by :

t 
* 

r+oo

LI i?)  :  f  m{o- }s( ( i -m)T) -  /  n1a1r t } l , t r -  iT - r )d t
- - r  /  - O O

K

: D n{o-i ift,- ^)r) - 00. Q.64)
m,:I

In addition, ffi{rr} and p6 are independent since the noise and the transmitted symbols

are independent. Recall also that 9(0) : 0 (the maximum of g(r) is located at 0). Then,

D[:rn{a*}g((i, - m)f) and ft{r4} are also independent. Moreover, [)6 and pi are ob-

tained by a linear transformation of the Gaussian process n{tu(t)}. Hence they are also

Gaussian processes. Then, since the cross-correlation of Bi and p; is equal to zero, as

shown below :

(i*r)?*r
' - t n A \  r  f  f
LIu,u i l  -  t r ]  I  I  f t {u ' ( f1)e- iQ"I " t t+d)1n1' , ' i t r ; " - ) (2 t f ' tz  td) }  x

\  t /
iTIr

, : , -  )
h(1,  -  iT  -  r )h(12 -  iT  -  r )dLf iL2 j

6 2  f  f  l *

: + I I d(t, - t2)h(t1)h(t2)dtdt2
z  J  J - x

f i2
:  - ; f0)

-n

then, pi andUi(r) are actually two uncorrelated Gaussian random processes and therefore

they are independent. Thus, Ui(r) andu6(r) areindependent.

Appendix D

Derivation of the Analytical Expressions for the CRLBs in

Case of BPSK and MSK Modulations

Starting from the expression of the log-likelihood function given in (3.47), we will consi-

der the two cases of BPSK and MSK separately. Starting with BPSK-modulated signals,

we show that the log-likelihood function in(3.47) reduces to :

(3.6s)

(3.66)L(r) :f ," (*-n (Tr^,,)),

u6(r) :/J *,n, t) j  h(t - ir - r)dt.
where
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Then, the first derivative of the log-likelihood function with respect to the time delay pa-

rameter, r, is given by :

(3.68)

where t/,(r) denotes the first derivative of tl(r) with respect to r. It is easy to see that :

(3.6e)

Now injecting (3.68) tn(3.7), we obtain :

1 7  K  K  (  / q  t r F -  \  / o . f f  . \  .  , lf r l , , ,  :  4+tf  e { tu"n 1"$uft)  ) tanh (" f#u' t r ) )unG)u,(r t>
o t ? u * -  [  \  0 2  " /  \  o '  " /  ' " )

K K

:  +>)Duo,,. (3.70)
0 4 L

t : l  l : l

Note that (3.70) is similar to (3.32) (obtained in the case of square QAM modulations).

Thus, for the same reasons, it is more convenient to separate the cases when i : I and i I l.

Moreover, it can be shown that the pdf of Ui() is given by :

oL(r) -2/4 " ' i "n (@", u,( ' ))  
ui l i .a, - o, +;i@id"

P (u6(r)) : 
# ", {-qg*} .o,r' (#run)

Thus, it can be shown that, after some manipulations, the expectations involved in (3.70)

reduce to :

n {ran.,'fltr\ \ "*p {-?} ['* "^n' lTQe"p { -4\ o,"t"""" \ o'-)J : ,/"r, J---""rt\ry") "^"\ o'I*

(3.7 t )

(3.72)

(3.73)

:  1 - ' - ' 9101 ,
t/2r " '

K K

E {(uc(r)) '} : E"t t g'(^ - n):r)
m:I n:L

,
o -

-  q ( 0 ) .' 2 " " ' ,

-i,(i - t)r) (# I_: r,1"h (ry) "*o { S} ",)'
-ps'((i - t)r) Q.74)



Finally, we obtain the closed-form expression for the stochastic CRLB of BPSK-modulated

signals as follows :

CRLBsp5K : lnrl (, - $oo)) (, i i s,((^ - n)r)-frrol)
L 'L \  t / 2 t r  "  /  \  m : t n : l  -  /

K  K  l l - 1
ptI g(,,-")r)l l

m:7 n : l  J  J

(3.7s)

where 0b) is defined in (3.49).

Now, consider an MSK-modulated signal. In order to find the derivative of (3.47) with

respect to the time delay r, we need to separate the cases where b; is real or imaginary. To

do so, we assume, without loss of generality, that K is an even number (r.e., K -- 2P) and

ao :7. Using these assumptions, the log-likelihood function can be written as :

P  /  / q . r p  \ \  /  / 2 {8 , , , . \ \L(r) :  I ,n (cosh lTr,,- ,( ,r))+ 
h (cosh l f fu,, tn ) )  

,  e.76)

where
/o+-

uo(r) :  
J_*,  

n{ t ( r ) }  h( t - iT - r )dt ,

and

v(,) :  /*-  *{ i ( ,  )}  h(t  -  i r  -  r)d,t .
J - a

Then, the first derivative of (3.76) with respect to r is given by :

(3.77)

(3.78)

ry :'+t ( r^'n (+r,,-,G)) uzi-t )* ranh (*u,,,t) u,o)t r,

with U26-{r) and ho(r) being the derivatives of (}2i-y(r) and V26(r) with respect to r,

respectively. Then, the first diagonal element of the FIM matrix is expressed as :

[/(,)],,,:u{ (ry)'}
+*te' { 

. ""n (# u,, -, (' ) ) t u,.r. (+, " -, 61) rt,o -, (,) u,, -, (, )\

" **a {, 
*n (r# r,, -, (, ) ) t u,.r. (r4r, r,1),,0 -, 1')w, ? )}

22;e{,""r' (#r,,t")) tu"n (#r,,r,1)v,,1,1q,,',] } 
(3.80)



Note that (3.80) is equivalent to (3.31). Then for the same reasons, [/(")]t,r reduces simply

to :

P . : -  (  / 2 . G  \  / )  G  \  )
[1( ') ] ' , ,  :  +I t  E { tanh (!!r t , ,- ,)  tu, 'n ("! !r t"-, \  ur,-,ur,-,  I  rs.st l

o"  - i _ :E  [  \  o "  /  \ o '  /  )

which is similar to (3.70) in the case of BPSK modulation. Thus we obtain the same

expression for the stochastic CRLB in case of MSK and BPSK transmissions as given by

8.7r.
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Abstract

Dans cet article, nous pr6sentons une nouvelle impl6mentation du critdre de maximum

de vraisemblance pour I'estimation du d6lai de propagation dans un milieu multi-trajet,

puis nous 6tendons la m6thode propos6e pour l'estimation de la diff6rence du temps d'ar-

riv6 quand le signal 6mis est inconnu. La nouvelle technique impl6mente le concept de

l"'importance sampling" (IS) pour trouver le maximum global de la fonction de vrai-

semblance. Nous 6vitons la traditionnelle recherche multidimensionnelle et les m6thodes

it6ratives pour maximiser la fonction de vraisemblance. Nous montrons par simulation

que cette m6thode permet d'estimer des ddlais trbs proches et offre de meilleures perfor-

mances que les m6thodes sous-optimales telles que MUSIC. Le principal avantage de cette

mdthode est que la convergence au maximum global est garanti contrairement aux algo-

rithmes it6ratifs qui d6pendent 6troitement de l'initialisation.

In this paper, we present a new implementation of the maximum likelihood criterion for the

estimation of the time delays in a multipath environment, and then we extend the proposed

method to the estimation of the time difference of arrival when the transmitted signal is

unknown. The new technique implements the concept of important sampling (IS) to find

the global maximum of the compressed likelihood function in a modest computational

manner. Thus we avoid the traditional multidimensional grid search or the iterative me-

thods to maximize the compressed likelihood function. We show by simulations that the

new technique allows the estimation of very close delays and surpasses suboptimal tech-

niques such as the MUSIC algorithm. The main advantage of our method is the guaranteed

convergence to the global maximum, contrarily to the popular iterative implementation of

the maximum likelihood criterion by the well known expectation maximization algorithm.

4.1 Introduction

Time delay estimation is a well studied problem with applications in many areas such as ra-

dar [1], sonar [2], and wireless communication systems [3]. Typically, to allow estimation

of the time delay, an a pri,ori known waveform is transmitted through a multipath en-

vironment, which consists of several propagation paths, among which the dominant ones,

relatively few, are considered. If the transmitted waveform is unknown, only the difference

of arrival times can be estimated from the received signals at multiple separated sensors

[4]. In what follows, we will treat the two cases.

These two time delay estimation problems have been extensively studied in previous years

[5-7]. The maximum likelihood (ML) estimator is well known to be an optimal technique.

For the problem at hand, the likelihood function depends on the time delays and on the

complex channel coefficients making its solution intractable in a closed-form. A direct im-
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plementation of this criterion requires a multidimensional grid search, whose complexity

increases with the number of unknown delays. Therefore, many iterative methods, such

as the expectation maximization (EM) algorithm, have been developed to achieve the well

known Cram6r-Rao lower bound (CRLB) at a lower coast. But their performances are

closely linked to the initialization values and their convergence may take many complex

iterative steps and therefore, a tread-off must be found between complexity and accuracy.

Hence, there is yet a need for developing a non-grid-search-based and a non-iterative ML

estimator. Alternatively, sub-optimal methods based on the eigen-decomposition of the

sample covariance matrix, which initially gained much interest in the direction of arrival

estimation, were later exploited in the context of time delay estimation [8-9]. While these

suboptimal techniques offer an attractive reduced complexity compared to the grid search

implementation of the ML criterion, they still suffer from heavy computation steps due to

the eigenvalue decomposition. Moreover, their performances are relatively poor compared

to the ML estimator, especially for closely spaced delays and/or few numbers of samples.

Motivated by these facts, we derive, in this paper, a new non-iterative implementation of

the ML time delays estimator which avoids the multidimensional grid search by applying :

i) the global maximization theorem of Pincus proposed in [10] and

ii) a powerful Monte Carlo technique called importance sampling (IS) offering thereby an

efficient tool to find the global maximum of the likelihood function.

Note here that many other traditional Monte Carlo techniques (besides the IS method)

can also be successfully applied. However, unlike the IS method, they often require a lar-

ger number of realizations that are, in addition, usually generated according to a complex

probability density function (pdf). Hence they appear to be less attractive for practical

considerations. In this sense, the importance sampling technique lends itself as a powerful

alternative in which the required realizations are easily generated according to a simpler

pdf. Additionally, it offers a way to process the obtained realizations in a more judicious

manner [1]. This method has indeed been applied to the estimation of the direction of

arrival (DOA) [13], the joint DOA-Doppler frequency [12] and more recently to the es-

timation of the time delay in the context of modulated signals and a single propagation

path [14]. Based on the results of these works, the IS technique was shown to dramatically

reduce the computational complexity of the ML estimates while still providing high accu-

racy.

The remainder of this paper is organized as follows. In section II, we present the system

model for the active mode (i.e., known transmitted pulse) and derive the corresponding

compressed likelihood function to be maximized. In section III, we detail the global maxi-

mization method applied to our problem. In section IV the importance sampling technique

is described and then applied to the estimation of the time delays both in active and passive

(unknown transmitted pulse). Simulation results are discussed in section V and, finally,

some concludins remarks are drawn out in section VI.
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4.2 System Model and Compressed Likelihood Function

Consider an a priori, known signal r(l) transmitted through a multipath environment. The

received signal is a superposition of multiple delayed replicas of the known transmitted

waveform; modeled as follows :

where P is the total number of multipath components, u(l) is an additive noise and a :

for, *r,. . . , ap)r are the unknown complex path gains resulting from scattering and

fading through the propagation medium. In addition, {r}l:, are the unknown time delays

tobeest imatedandgatheredinthevector  t  :  f r r ,  r2 , . . . ,  ro \ ' . I f  F"  :  1 /? i  is the

sampling frequency, the resulting samples, taken at instances {nT"}{:, are :

P

a@7) :  I  a i r (nT" -  r ) tw(nT" ) ,  n :0 ,  1 , . . . ,  N  -  1 ,  (4 .2 )
i : I

where l/ stands for the total number of available samples.

In general, the IS principle is suitable for the estimation of non-linear parameters in the
general linear models (GLM) described as :

a:Q(o)s+u

P
\-

uf t ) : )  a i r ( t - rn )+w( t ) ,
ZJ

P
r r l ' \  S -  t r /  

i ' 2 n k r :

Y(k )  :  
\ a rX (k )e - - - n - -  +W(k ) ,  k : 0 ,  1 . . . . .  N  -  1 ,
i : l

(4 .1 )

(4.3)

(4.4)

where a : laq), a(7"),. . . , y((l/ - 1)7:)]t is the received data vector which depends

linearly on some nuisance unknown parameters s and non-linearly on the delays 0. Ho-

wever, in contrast to the single-path scenario in [14], the formulation of the input-output

relationship in (4.2) cannot be directly transformed into a GLM analogous to (4.3). Here,

the received samples are transformed into the frequency domain where the model could

be expressed in a matrix form. In fact, taking the discrete Fourier transform of (4.2), we

obtain :

where {y(k)}il-t, {X(k)}il; and {W(k)}I;t *" the discrete Fouriertransforms (DFTs)

of y(nT"), r(nT") and w(nT"), respectively. Then, considering this transformation, the

channel coefficients vector o and the time delays r manifest themselves as the linear and

non-linear unknown parameters, respectively. Hence we transform the basic model in (4.2)

into the general form of (4.3), using a compact representation of (4.4) as follows :

Y : Q o ( r ) a * W ,
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in which y : [Y(0), y(1),. . ., y(N - 1)]t is viewed as the received vector, a :

l"r, or,. . . , c.p]1T and the matrix2 A"(t) depends only on the unknown delays gathered

in the vector r and is given by :

o"(t)  :  [0"?1),  Q"(rz) , .  .  . ,  Q"?p)) ,

with the columns {Q"?o)}l:rbeing defined as :

Q"( ro) :  [X(0) ,  X(1)e- !3;P,  XQ)e-&#L, . . . ,  X( t /  -  tSe- '#y.  g .7)

andX :  [X (0 ) ,  X (1 ) , . . . ,  X ( l / - 1 ) ] t  andW:  [ I 4 l ( 0 ) ,  W(1 ) , . . . ,W(N  -1 ) ] " a re

the (.V x 1)-dimensional vectors containing the DFT coefficients of samples corresponding

to the known transmitted pulse and the additive noise components, respectively.

First, we consider the active model where, in contrast to the passive model treated later

in section 4.4.3, the transmitted signal r(f) is known to the receiver. Now, following the

same arguments of [15], the likelihood function of the active model (4.5) is given by :

A (z .o )  xp (y ; r . a . ) : - * . * p {  -  \ f t - iD " ( z )o ) ' ( v  - iD " ( z ) c )  }  1o . r l
7T'" o. '" I  d. )

where p(Y;r,a) is the probability density function (pdf) of Y parameterized by r and

a and a2 is the spectrum power of the noise. Actually, the ML solution ?x,11rs delined

as the global maximum of the likelihood function in (4.8) with respect to r. However,

this formulation of the likelihood function imposes a joint estimation of z and o which is

computationally intensive. Therefore, it is of interest to obtain a likelihood function that

depends only on r that can be more easily handled. Observing that A(r, a) is quadratic

with respect to c, we consider the nuisance parameter, o, as deterministic but unknown

and substitute, in (4.8), a by the solution d(z) which maximizes the log-likelihood func-

tion L(r, a) : ln {A(2, a)} for a given r. Indeed, it can be shown that 6(r) is given

by :

6(r) : (of;(r)o"('))- ' a! Q)v

(4.6)

(4.e)

(4.10)

Replacing a in (4.8) by d(r) and omitting the terms that do not interfere in the maxi-

mization with respect to r , we obtain the so-called compressed likelihood function of the

system as follows :

L.('): #tu *"(z) (of 1')o,(')) 
-'oy 

1,7v .

4.3 Global Maximization of the Compressed Likelihood

Function

To find the desired ML estimate, we need to maximize the compressed likelihood function

in (4.10) over z. Yet, L.(r) is non linear with respectto r : hence, a closed-form solution

2Note that we index A"(z) by a to refer to the active mode.
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seems analytically intractable. It is quite common in the current literature to solve this

maximization problem in an iterative way, as an alternative for the trivial multidimensio-

nal grid search. However, iterative approaches require an initial guess, usually taken from

the output of another suboptimal algorithm. The iterative quadratic ML (IQML) [16], the

simulated annealing technique [17] and the expectation maximization (EM) algorithm [5],
taken as example in our simulation, are some of the most famous iterative implementations

of the ML estimator. Naturally, the performances of these iterative algorithms depend se-

verely on the available initial guess and may even converge to local maximum reflecting

estimates which are completely different from the real values of the delays (corresponding

to the global maximum).

In this context, the global maximization theorem proposed by Pincus t4.111 offers an alter-

native to find the global maximum of multidimensional functions, such as the one at hand

in (4.10). Interestingly, it does not require any initialization and guarantees the conver-

gence to the global maximum. The idea is very simple and claims that the solution is given

by (4.11)  :

r  r  - .€xp {pL"(r)}  dr
i : l im%. r :1 .2 . . . . .P .p-+oo J., . . . J., exp lpL"(T) j d.r

(4 .11 )

(4.r2)

(4 .13)

W

i :  L ,  2 ,  . . . ,  P .

where -I is the interval in which the delays are confined. Delining the pseudo-pdP L'",.o(T),

for some large value of p6, as :

f  |  / - \  -
L c , p g \ t  )  

-
exp {p61"(z)}

then, according to (4.11), the optimal value of 4 is simply given by :

o: l,
Intuitively, we can say that, as p6 tends to infinity, the function LL,rr(") becomes a P-

dimensional Dirac-delta function centered at the location of the maximum of L.(r). Thus,

the ML estimate is simply obtained from the evaluation of the P-dimensional integral in
(4.13). Yet, this is a difficult task due to the complexity of the involved integrand function

[thepseudo-pdf L'",*o(.)]. One solutionistoexploitthefactthat L'".ro(.) is apseudo-pdf and

interpret f; as the expected value of ri, the ith element of a vector z distributed according

to the multidimensional pseudo-pdf L|,roO.Therefore, if one is able to generate R reali-

zations of a random vector, {r*}f:, according to L'",00(r), it is reasonable to approximate

the expected value of z using Monte Carlo techniques [11] as follows :

(4.r4)

3 f|*oG) is designated as a pseudo-pdf since it has all the properties of a pdf although z is not really a

random variable.

lrror'",^(r)dr,

P1+
- \ ? ,

R  L ' " '- "  
k : l
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Hence, we substitute the complex integration in (4.13) by a simple samples average.

Clearly, as the number of generated values -R increases, the variance of the sample mean

becomes smaller and ? gets closer to the global maximum of the compressed likelihood

function. Yet a practical issue remains as how to easily generate realizations according to

L'.,*o(r).The proposed pseudo-pdf is a non-linear function of z and needs to operate in

a multidimensional space, which is not suitable for easy generation of realizations. One

solution is to approximate the actual pseudo-pdf by a one-dimensional function and trans-

pose the problem of generating a vector to the generation of P independent variables, then

resort to the concept ofIS as described in the next section.

4.4 The Importance Sampling Based Time Delays Esti-

mation

4.4.1 IS Concept

Importance sampling is a Monte Carlo technique which makes use of an alternative distri-

bution (carefully designed) to generate realizations. It is usually applied when the original

distribution does not have a practical form, like L'",po(.) given in our problem.

The approach is based on the following simple observation on the integral involved in

A.r3\:

where c'(z) is also assumed to have all the properties of a pdf, called normalized i,mpor.

tance function (IF). Then, the left-hand side of (4. 15) is interpreted as the mean of qffi

when z is generated according to gt (r) . Unlike L'.,rr(.) , it is of interest to choose g/ (r)

to be a simple function of z. Then, we use Monte-Carlo methods to numerically compute

the expectation as done in (4.I4):

l, Ir"'"'o"o)d'r : I, Ir"tiffn'(r)d'r'

I, I,,tffi n' Q)d,r: * :,rt-:#,

(4.1s)

(4.r6)

where 27, is now the kth realization of r according to g'(.).

Clearly, the choice of g'( ) affects the estimation performance. An inappropriate choice of

g'(.) may need a large number of realizations r? to reduce the estimation variance and re-

sult in a higher computational complexity. Therefore, the value of -R depends on how much

g'(.) resembles L'.,r.(.). tn the ideal case, generations according to g'(.) are the same as if

they were generated according to L'",r'(.). Therefore, ideally, the shapes of the two func-

tions .g'(.) and L'",,,o(.) should be similar to reduce the variance of the estimator given by
(4.16) [13]. On the other hand, we should keep in mind that 9'(.) has to be simple enough

so that realizations can be easily generated. Thus some tradeoffs are required to choose a
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function as simple as possible yet similar to Lt",ro(.). In what follows, we will show that

owing some simplilications of Lt",ro(.), *" can build an appropriate function g'(.) to pro-

perly generate variables.

Now, coming back to the expression of the actual compressed likelihood function (4.10),

the inverse matrix (Oy1"!O"tr)) makes the compressed likelihood function, and

consequently the pseirdo-pdf L'",00(l), very non-linear with respect to r. One can approxi-

mate Q{ (r)O.(r) by a diagonal matrix to avoid a heavy computation of the inverse. In

fact, the diagonal elements of Of;(z)O 
"(r) 

are given by :

l/- 1

l ( 6 i l ' '  
\ - ' ' - " ' ' '

1q -o ' ( r ) (Do ( r ) ) l r , r  :  
L IX (A )1 " .  I  :  I .  2 . . . . .  P ,
k:0

and its off-diagonal elements are :

k(r* - r.)
N
J .
7 -  t o .

N

o! 1r)o,1r) = ( t lx(k) f) r,,

where.Io is the p x p identity matrix.

1V- I
r , - H ,  

_ _ \ -[ ( {Pa' , (7J{P0 \ r  ) ) ]m;n /  ,
a:0

m

i ) r

lx (k)l'""o 
{ ) ,

(4.r7)

(4.18)

(4.20)

(4.2r)

,  f r :  I ,  2 , . . .  ,  P r n t

It is easy to verify, for r^ f rn, that:

[(of (r)o" (r))]^,* < [(o#(') iD"(z))]r;r (4.r9)

Although this inequality does not give sufficient condition to approximate Af;(r)lD"(z)

by a diagonal matrix, we verify statistically that this inequality holds with very high pro-

bability for almost all possible values of the delay difference rm - rn. To that end, we

consider Tm;n : rrn - rn as a random variable uniformly distributed in4 l-7, 7] and we

define K(r^,n) the ratio (4.18)l(4.17) as follows :

K( ' , , tn) :
Dfl; lx(A')l'""p { 

'tt#--\

tH lx(k)l
Then, we plot in Fig. 4.1 the complementary cumulative distribution function of K (r*.n)

(randomized according to r*,n), to verify that the diagonal elements of Of;(z)O,(r) are

indeed dominant, with very high probability, compared to its off-diagonal elements. The-

refore, we adopt the following well-justified approximation :

aWe consider here that the delays do not exceed a given real value ? (see section 4.4.2 for further details

on this assumption).
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FtcuRB 4.1 - Complementary cumulative distribution function of the ratio K (r,n.n).

Then, we define the importance function, gprO, without normalization, [i.e., g'(r) :

gr,G)l I go,(u)du] in the active case as :

^ 0 .
H

^ 0 _
!-

Y 0 .

^ 0 .
a

- o

0 . 1

(4.22)

where p1 is another constant different from p6 for some practical reasons. A further dis-

cussion on the appropriate choice of p6 and p1 is left to the end of this section.

After some easy algebraic manipulations, we express (4.22) as:

e o,(,)- exp 
{r*mY 

H o "(r)oy (,)t\,

gp,(r): fr "-o { r*iryr(',)},
where 1(4) is the periodogram of the data in the frequency domain evaluated at each delay

r; as follows :

*)lI ( - . \  -

l'/

t t1o;.t(k) e"p 
{

( k -
,A/

i ) n

(4.23)

(4.24)

Now, we comment on the advantage of this choice in (4.23) for the importance function
(IF). First, we notice that the joint contribution of the different delays ir gr, (.) is separable

into the product of their individual contributions as seen from (4.23). Hence, we substitute

the brute generation of realizations of the vector z according to a multi-dimensional pdf

to the generation of P independent scalar realizations (i.e., one realization for each entry

of z) using the elementary IF, I orjr). defined as :

'"P{rr#Xr*rr I(")\
I pr\rt' ) :

.LexP {t:*mot r@} ar
(4.2s)



Note here that, the multiplicative terms X (k), k : 7, 2,. . ., l/ act as weighting factors.

They attenuate the contribution of the frequencies with low energy in the computation

of I (r;) and hence emphasize the high-SNR frequencies. In fact, this property improves

considerably the performance of the estimator compared to some other approaches where

the received signal is divided, in the frequency domain, by the DFT of the known trans-

mitted waveform [8]. Actually, this operation is not suitable for narrowband signals since

it results in some harmful effects by amplifying the additive noise in the low-energy fre-

quencies. It is suitable only for wideband signals, in contrast to our algorithm which is

also adapted to narrowband signals.

Finally, the normalized IF is given by :

g'o'r(t) : fllr exp {prl (ro)}
(4.26)

I, [rf]Lr exp {p'rI(u)} dui

with

(4.27)l -  P tv' - oryy--r14ry'
We mention that the choice of the parameters p\ and po arc of great importance since

its affects the performance of the new estimator. In fact, as already mentioned, g'o;(r) is

separable as the product of P elementary IFs, A oll), corresponding to each delay 16 (i.e.,
t  /  r  n P  /  \ \  r Y

o'r1?): fllr lri?.iD. Hence, in practice, we use the same sr,,(") P times to generate

th; P elements of the vector z. Actually, for a noise-free observation, the function g or(.)
exhibits exactly P lobes centered at the locations of the true delays and at each run, a

realization is generated from the vicinity of one of the P lobes. However, in the presence

of additive noise, other secondary lobes appear and ultimately affect the generated values.

For this reason, the parameter pi should be increased to render the objective function g r;( )
more peaked around the actual delays {ro}l:r. This behavior is illustrated in Fig. 4.2where

we plot the function g o,rO for two values of p'r.

Yet, we observe that pt, cannot be increased indefinitely. In fact, very large values of p',

will ultimately destroy some useful lobes and so useful realizations may not be generated.

Obviously, proper choice of p', is of great importance. Its optimal value is the highest one

that makes at leasts P main lobes appear in g r,r(.). Moreover, by attenuating the secondary

lobes, we reduce the probability of generating undesired realizations. Consequently a good

choice of p/, reduces the number of necessary realizations -R and hence the complexity of

the estimator.

Recall that the normalized IF g'r, (r) is built upon an approximation of the actual compres-

sed likelihood function which results in biased estimates of the delays, especially at low

SNR values. However, we emphasizehere the fact that this bias can be reduced by the pre-

sence of the actual compressed likelihood function in the weighting factor L'",00(r) lg'r, (r)

tA 
oi(.) should have exactly P lobes, but the additive noise makes other relatively small secondary lobes

appear.
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FIcURB 4.2 -Plot otq oJ.) at SNR : 10 for (a) pl : 1 and (b) pl : 6.

in (4.16). Thus, we can maximize the contribution of L',.,r.(.) in the weighting factor by

choosing p', smaller than p6.

4.4.2 Time Delays Estimation in Active Systems

The IS-based estimator requires the generation of realizations according to p4 (.) then

evaluating the following mean values :

(4.28)

where 4, is the kth generated vector and rp(i) refers to its ith element.

Roughly speaking, the delays can actually take any positive value, but in practice, they

are confined in the interval [0, 7] where 7 is any positive real value that can be chosen

high enough6 so that ri e 10, ?] for i, : 1, 2,. . . , P. Therefore, since the parameters are

bounded from below and above, it is more convenient to use the circular mean instead of

the linear mean in (4.28). The advantages of this operation will be discussed later.

To introduce the concept of circular mean, define a random variable X taking values in

the finite interval [0, 1] and denote by G(X) its pdf. The circular mean of X is defined as

6In network communications, the delays are usually confined in the symbol duration, whereas for radar

and sonar systems, the symbol duration does not really exist and the observation window must be longer

than the largest delay.

,,:+>1uort*ff
' "  

* : t  v  p \
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[ 18 ]  :

(4.30)
r : L

In our time delays estimation problem, we first normalize the delays by 7 to transpose

them into the interval [0,1]. Then we apply directly the circular mean in (4.30). In this

context, the alternative formulation of the IS-based estimator is given by :

(4.2e)

where the operator l(.) returns the angle of its complex argument. Suppose that we have

a set of 11, . . . , rR generated via the pdf G(.), then the circular mean in (4.29) is:

E"{x}: }z fo' "*v{iztrr}G(r)d,r

E"{x} :  *r*f  "*p{7zn',}

,, : #r* * 
FGn)",.' {;r"#},

where F(rn) is the weighting factor defined by :

F(rt) : 
L'"tr('\)
I oi\r* )

(4.3r)

(4.32)

(  P  
/  : -  \ ' )

F'(rr) - exp 
{nol"('*) 

- d.,U,I?t@) - 
,?,?t (oot"{r,) - pr>,1(rt@))f+.zzt

From the formulation in (4.31), we only need to find the angle of a complex number.

Therefore, any positive multiplicative term will not affect the final result. Thus, the two

strictly positive constanrs I, [, exp{psL.(r)}rtr and [, I rfll e"p{p \l (u6)}d,'u6,

used in the normalization of L'",r.(.) and g'r, (z), respectively, can be dropped. However,

the exponential terms in both the numerator and the denominator of the weighting factor

F(.) may result in an overflow in the computation. To circumvent this problem, F(.) is

substituted by F'(.) :

Note from (4.33) that the arguments of the exponential terms are either negative or zero

and that the values ofthe exponential cannot exceed one.

Summary of steps

In the following, we recapitulate the different steps for the direct implementation of the

new algorithm :

1. Compute the DFT [y(0), y(1),. . . , y(l/ - 1)] of the received signal samples.

2. Use the Fourier transform coefficients to evaluate the periodogram according to

(4.24).



a
J . Compute the samples of the one-dimensional

the required realizations, at K points as :

pdf gp\(.), used for the generation of

exp {p'r1(4)}
I o1\Tt) 

:
s : K  (  t  r l  r t '

L*:r exp {pi l  (ralJ
I  : 7 ,  2 , .  .  .  ,  K ,  (4 .34 )

where K is the total number of points in the interval -/. Note that we substitute the

integration in the denominator of Er, (.) by u summation over the discrete points of

the interval J.

4. Generate one realization of z using O'piO. To do so, we generate realizations ac-

cording to g rr(.) P times to retrieve one realization of the P-dimensional vector z.

More details on this point are left to the Appendix. Repeat this step R times.

5. Evaluate the weighting factor F'(ro) fori : 1, 2,..., R and compute the cir-

cular mean of the generated values balanced by the weighting factors to find the

ML estimate of the multiple unknown delays. Note that we must evaluate the term

poL"(r) - p\Dl":rI(r1(m)) for all generated vectors {r}L, before computing

F'(re).

4.4.3 Time Delays Estimation in Passive Systems

In a passive system, the transmitted signal is considered to be unknown. In this case, only

the time difference of arrival (TDOA) can be estimated from multiple received signals at

spatially separated destinations [4]. In this section, we assume, without loss of genera-

lity, the presence of two separated sensors. The received signals at these two sensors are

modeled as :
P1

\ - a  \  ,  / , \

l n ( t l :  )  o r i r ( l  -  h ; i )  * r u i ( l ) ,
ZJ

Pz
\-f

azft) : ) a2.ir(t - rz,i) + w2ft).
t - l

where {r,,t)l!, and {a^,}131, for n : 7, 2, are the delays and the complex gains of

the received signal at the nth sensor and {P"}2^:, are the known numbers of multipath

components. For the sake of simplicity, suppose that y{t) has only one signal component
(Pt : 1). The received signal at this sensor is considered as a reference and hence it

is assimilated to a noisy known signal. Then, similarly to (4.4), we express the sampled

signals (4.35) and (4.36) in the frequency domain as :

(4.3s)

(4.36)

Y,(k): , .ylX(k)""0 
{ 

-t!#.\ +w,&),
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where {Y1(k)}Lo , {Yr(k)}{:,, {Wr(k)}fl:o and {Wr(t )}{:o are ly' samples of the Fou-

rier transform of samples of y1(t), y2(t), w{t) and w2(t), respectively. As mentioned

above, the TDOAs will be estimated by considering the received signal in the first sensor

as a reference. This simplifies to the estimation of the P2 delay differences Af) : r2;i-rr;r

foyi :1, 3,. . . , Pz. Therefore, we rewrite (4.38) as follows :

P2

Yr(k) :  t '  or,,x1t l"o {-UP} 
* *rtr1.

k :0 ,1 , . . . ,N -1 ,

P2 
[  P* t? ) )Y2(k) :\ \nv,{rr)""p I 
-ffi 

| + w,1n1,
i : r  \  

- '  
)

go:%, , i : I ,2 , . . . ,p2 ,
A t ; t

pz r iz"r tg \Wr(k) : WzG) - 
I 

Biwl(k)."p 
t

oo(A,)  :  [do( l f ) ) ,  oo(Ll ' ) ) , . . . ,  eo(Lta)) ,

f  'n-no) ' l  IF1(1) exp I 
-t '"n7' 

|  ,  Yt (N - 1) exp { 
-

l. 'n J I
' i : L , . . . ,  P 2 ,

p :  lo ' " ,  
c \22 

. . . . ,  
o ' ' " f ' ,

L O . r . r  ( l t . r  0 r . r  J

A" : [nf), rl '), ..., Llo,)f ' ,

in which

Y,  :  [%(0 ) ,  Y r ( l ) , . . . ,Y r (N  -1 ) ] t

: ao(L,)p + wp,

where the matrix Ao(A") is function of the TDOAs defined as :

Doing so, we highlight the parameters of interest in the expression of Y2(k). Moreover,

there is an analogy between the formulation of the active case in (4.4) and the passive one

in (4.39). More precisely, the major difference is in the reference signal (X for the active

case and Yr for the passive case).

Then, gathering all the frequency samples, we obtain the following matrix representation :

(4.38)

(4.3e)

(4.40)

(4.4r)

(4.42)

(4.43)

)l'
(4.44)

o,(^y)l: lo,,tol,
j2n(N -  1)AY)

(4.4s)

(4.46)

is the vector of the TDOAs of interest. Considering these notations, it turns out that the

estimation of the TDOAs can be performed using the same algorithm developed above for



the active system. We only have to substitute the vector Q"?) by Qo(L,) and X(k) by

Y1(k) in the expression of the periodogram in (4.24). The remaining steps follow in the

same way.

Now we rediscuss the estimation problem when P1 is different from 1. The problem then

consists of estimatin g PtxP2 different parameters. To that end, we refer again to the results

of the active case. P1 x P2 values are generated accordin1to gpr(.) by substituting X(k)

and Y(k) in the expression of 1(.) UV Y1(.) andY2(.), respectively. Then, the generated

values are classified from the smallest to the highest and organized as follows :

L,,k : talil, Lt'L..., al?)1, (4.47)

where each vector {tf)r}f}ris formed from P2TDOAs. The final step consists of evalua-

ting the following means as in (4.31) :

^7,{ : ** t+*r r"n ) "*o {t * "#}

4.5 Simulation Results

(4.48)

To properly assess the performance of our new IS-based approach, we compare the per-

formance of the proposed method to the expectation maximization (EM) algorithm [5]
as one representative example of the iterative implementations of the ML criterion and

to the MUSIC algorithm proposed in [4] as one representative example of suboptimal

subspace-based methods. The estimation error of the three estimators is also compared

to the Cram6r-Rao lower bound (CRLB) which reflects the theoretical achievable per-

formance taken as a benchmark for all the considered algorithms. In all simulations, the

transmitted pulse is a chirp signal which is widely used in radar and sonar applications.

The number of snapshots is set to ly' : 70. We consider 3 propagation paths with closely-

spaced delays f37", 67", 87]]. The multipath gain is assumed to be equal for the three

paths.

First, we study the influence of the parameters ps and p', onthe estimation performance

of our new estimator. We verify that there is no dependence on p6 as far as it is chosen to

be higher than p\ (see section 4.4). However, as illustrated in Fig. 4,3, p\ affects seriously

the estimation performance of the new IS-based algorithm. As already mentioned, small

values of p', may not reduce the effect of the additive noise involved in g r, (.), while too

large values reduce the desired lobes revealing the actual delays in{ r,r(.) thereby preven-

ting their generation. Therefore, an appropriate choice of p', is necessary in order to obtain

near-optimal performance. We see from Fig. 4.3 that for p', taking values between 2 andT,

the performance is almost the same, and thus the optimal value of p', can be freely selected

from this relatively large range.
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FrcuRe 4.3 - Estimation performance as a function of p',

Now turning to the comparison of the different estimators, we recall that the EM and

IS-based algorithms are two different implementations of the ML criterion. They are hence

expected to exhibit the same performance since they both try to maximize the same objec-

tive function. Yet, it should be kept in mind that the IS-based and MUSIC algorithms do

not require any initialization while the EM algorithm is iterative in nature. Consequently,

we consider for the EM algorithm two scenarios in which the initial values are selected as

random variables, centered at the real time delays and having a variance of aT! and 10(

reflecting, respectively, relatively accurate and less accurate initializations. Fig. 4.4 depicts

the performance of the three estimators. As expected, the two ML estimators perform bet-

ter than the MUSIC estimator. However, for less accurate initialization, the performance

of the EM algorithm deteriorates considerably over the entire SNR range. We see also that

while the MUSIC technique approaches the CRLB only as far as the SNR is sufficiently

high ; the proposed algorithm performs close to the CRLB over the entire SNR range. This

is hardly surprising since the IS-based estimator is far more accurate implementation of

the ML criterion. Same conclusions hold for the passive case, also plotted in Fig. 4.6 for

P t : 7  and  P r :3 .

So far, comparisons have been performed as a function of the SNR. To study the resolu-

tion power of the different estimators, we consider two propagations paths and vary the

delay separation Ar - 11 - 12 at an SNR value of 10 dB. The results are shown in Fig.

4.5. Clearly, as the difference between the delays is small, the estimate is less accurate

for the three methods. The two Ml-based estimators still perform better than the MUSIC

algorithm. For well spaced delays, all the methods perform the same.

Another important point to study is the effect of the signal bandwidth on the estima-
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FtcuRe 4.4 - Estimation perforrnance of the lS-based, EM ML and the MUSIC-type

algorithms in an active system vs. SNR.

tion performance. In fact, since all the derivations are made in the frequency domain, the

signal bandwidth (defined in the given example here as the difference between the higher

and the lower frequency in the chirp signal) is expected to have an impact on the esti-

mation procedure. Therefore, we compare in Fig. 4.7 the three estimators under different

signal bandwidths. Clearly, the proposed method outperforms the MUSIC algorithm over

the entire bandwidth range, although the gap between the two methods decreases as the

bandwidth increases. Note that the EM algorithm is also less sensitive to bandwidth varia-

tions. Same results hold for the passive system but the simulations were not included for

the sake of conciseness.

Now we consider the case of time varying channels. While the proposed method is

primarily developed under the assumption of constant paths gains, we verify through si-

mulations that it is also robust to time variations and that the IS-based estimator outper-

forms MUSIC-type methods over relatively low Doppler frequency. Nonetheless, the per-

formances of the two estimators degrade considerably as the Doppler factor increases. In

mean MSE ofthe thr€e paths

8 l
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FtcuRB 4.5 - Estimation performance of the lS-based, EM ML and the MUSIC-type

algorithms in an passive system vs. SNR.

fact, the time variations of the channel coefficients are not taken into account when deve-

loping these algorithms, and it was shown in [19] that, in this case, the estimates become

necessarily biasedT. Note, in this case, that we are no longer able to obtain the estimates of

the channel coefficients using (4.9). It is for this reason that the EM algorithm was omitted

in this scenario since it is based, at each iteration, on an estimate of a, which cannot be

performed for time varying channels.

4.6 Conclusion

In this paper, we developed a new implementation of the Ml-based estimator for mul-

tiple time delays based on the concept of importance sampling (IS). We considered the

7tn [t9], the effect of the time varying envelope has been treated in the case of frequency estimation with

the MUSIC and ESPRIT alsorithms.

mean MSE ot the three Daths
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FtcuRs 4.6 - Estimation performance of the IS-based, EM

algorithms in an passive system as a function of Ar.

ML and the MUSIC-type

FtcuRB 4.7 - Estimation performance of the IS-based, EM ML and the MUSIC-type

algorithms vs. signal bandwidth at SNR : 10 dB in an active system.

two cases of active and passive systems. The new algorithm is far less expensive in terms

of computational complexity than the traditional multidimensional grid search method.

Moreover, unlike the iterative methods, the IS-based algorithm does not suffer from ini-

tialization drawbacks. It performs well over the entire SNR range since its convergence

to the global maximum of the likelihood function is guaranteed. In addition, it avoids the

computation burden of the eigen-decomposition operation that is widely encountered in

classical subspace-based techniques in multiple parameters estimation. While these tradi-

tional methods perform well even for closely separated delays, at high SNR values, only
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FtcuRe 4.8 - Estimation performance of the IS-based and the MUSIC-type algorithms

vs. Doppler shift at SNR: 10 dB.

the proposed IS-based technique provides accurate estimates at low SNRs and for chal-

lenging cases of more closely-spaced delays. In practice, an appropriate choice of the

parameters p6 and p'l canbe performed to further optimize the estimation performance.

Appendix

Method to generate the Yector T

In this appendix, we present some practical hints to easily generate a single realization of

the vector z.
-First, define{ as adiscreterepresentationof the interval [0,7] ( i .e., €:0 :I f  s:7with

1/s beeing a given step for some s).
- Then, generate 1 according to g p,r(.) using the inverse probability integration method.

To do so, consider a vector z of random variables uniformly distributed over [0, 1]. Then

find 1 - argmax,6lG(r), where G(r) if the cumulative distribution function associated

t" g o;(.) (for more details, see [14]).
- Then eliminate the generated value 1 from { so that it cannot be generated again.
- Repeat the last two steps P- 1 times to generate r2, Tz, . . . , rp and obtain one realization

of the P-dimensional vector z.
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Abstract

Dans cet article, nous consid6rons le problbme de synchronisation temporelle pour le

Direct-Sequence CDMA (DS-CDMA) dans un canal multi-trajet. Nous d6rivons les ex-

pressions analytiques de la borne de Cram6r-Rao pour l'estimation du retard dans les sys-

tbmes uni-porteuse DS-CDMA. Puis nous d6veloppons deux algorithmes d'estimation ba-

s6s sur le critbre du maximum de vraisemblance. Le premier reprend la m6thode it6rative

"expectation maximization" (EM). Le second algorithme impldmente le critbre du maxi-

mum de vraisemblance d'une manidre non-it6rative et retourne le maximum global de la

fonction de vraisemblance en utilisant I'IS. Nous g6n6ralisons aussi les deux algorithmes

et la borne de Cram6r-Rao pour les systbmes CDMA multi-porteuses. Les simulations

montrent que l'algorithme EM est bien approprid pour les systbmes avec un grand nombre

d'antennes alors que l'algorithme IS offre de meilleures performances en pr6sence d'un

petit nombre d'antennes.

In this paper, we address the problem of time delay estimation from Direct-Sequence

CDMA (DS-CDMA) multipath transmissions. We derive for the first time a closed-form

expression for the Cramer-Rao lower bound (CRLB) of multiple time delay estimation in

single-carrier (SC) DS-CDMA systems. Then we develop two time delay estimators based

on the ML criterion. The first one is based on the iterative expectation maximization (EM)

algorithm and provides accurate estimates whenever a good initial guess of the parameters

is available at the receiver. The second approach implements the ML criterion in a non-

iterative way and finds the global maximum of the compressed likelihood function using

the importance sampling technique. Unlike the EM-based algorithm, this non-iterative me-

thod does not require any initial guess of the parameters to be estimated. We also extend

both the SC CRLB and the proposed SC algorithms to multicarrier (MC)-CDMA systems

by exploiting the frequency gain over subcarriers. In this work, the estimation process

can be performed using the channel estimate or directly from the received signal and thus

we cover all possible cases. By an adequate formulation of the problem, we are able to

exploit the time and frequency correlation if the channel estimate is used. We show by

simulations that the EM-based algorithm is suitable for CDMA systems with large receive

antenna affays whereas the IS-based offers better performance for small array sizes.

5.L Introduction

The most important challenge for wireless networks is the development of robust trans-

ceivers that are able to transmit at high data rates with a high bandwidth efflciency. Code-

division multiple access (CDMA) systems can satisfy this requirement. CDMA has been

adopted as the multiple access scheme for the third generation cellular mobile systems
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because of its flexibility in cell planning, user capacity, support for different rates and ro-

bustness to multipath channel. One of the most important motivations behind the use of

CDMA is to increase the number of simultaneous users (user capacity) with acceptable er-

ror performance. OFDM based CDMA systems, also called multicarrier (MC)-CDMA, is a

promising multiple access for high speed communication system due to robustness against

frequency selective fading channel and fully use the available bandwidth [1-2]. However,

the performance of these systems is closely linked to synchronization. In the following, we

focus on the CDMA array-receiver which has received much interest sequel to the perfor-

mance potential it carries 13, 4, 5f. Roughly speaking, the post correlation model (PCM)

of the despread data presents the signal in an interesting way to apply the researches done

in the field of affay processing. A suboptimal Root-MUSIC-based estimator was initially

developed in [6] to recover the time delay and later relined in [1] to significantly reduce its

complexity. This paper also investigates multiple time delay estimation, yet in an optimal

way in which the ML criterion is adapted to the PCM.

The problem of high-resolution parameters estimation has been extensively studied in the

past. In this context, it is well known that the ML technique always outperforms the other

sub-optimal methods in the challenging cases of low signal-to-noise ratio (SNR) values

or small number of available data snapshots. However, a direct implementation of the ML

criterion requires a multi-dimensional grid search which is of course impractical. Alterna-

tively, eigen-decomposition methods (which reduce the problem to one-dimensional grid

search) [7, 8] have attracted much interest due to their simplicity and their high-resolution

capacity. Yet, they are mainly based on the sample covariance matrix and require therefore

a large number of data snapshots. However, as we will see later, the number of snapshots

in CDMA systems is equivalent to the number of receiving antenna elements. Thus ap-

plying a traditional suboptimal technique would require a very large number of receiving

antenna branches which is also impractical. Consequently, there is a need to derive an ef-

ficient implementation of the Ml-based estimator that avoids the trivial multidimensional

grid search approach. To that end, iterative methods are usually envisioned to find the ML

estimates since a closed-form solution is, in most cases, deemed intractable. And to pro-

perly evaluate the performance of these estimators, we derive in the first part of this paper

a closed-form expression of the Crambr-Rao lower bound (CRLB).

Motivated by these facts, we develop in the second part of this paper an efficient scheme for

the estimation of the delays based on the expectation maximization (EM) algorithm. While

this method is widely used in multiple parameters estimation, especially for the estimation

of multiple time delay from an incoming waveform [9], it has not been yet adapted to the

context of CDMA systems. In few words, the EM method offers an interesting way to de-

compose the observed signal into different replicas, each one coming from one path, and

then treat each component separately. Therefore, the multidimensional optimization task is

interestingly transformed into multiple one-dimensional optimization problems, resulting
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in tremendous numerical advantages. Under good initialization, the likelihood function of

the estimated parameters is increased in each iteration and hence the algorithm converges

to its global maximum.

Alternatively, when a good initialization is not available, we resort to the concept of im-

portance sampling (IS) to derive, in the third pat of this paper, another technique that

finds the global maximum of the likelihood function, in a non-iterative way. In our case,

the likelihood function depends on the time delay and the channel covariance matrix. To

obtain a function that depends on the unknown delays only, the channel covariance ma-

trix is replaced by its ML estimate (a function of the delays themselves). The resulting

objective function, called compressed likelihood function, is then maximized with res-

pect to the unknown time delay. To that end, we use the global maximization theorem

introduced in [10] that provides an efficient tool of Iinding the global maximum of mul-

tidimensional functions. However, it still requires the computation of a multidimensional

integral which is itself difficult to perform. Yet, this integral can always be tackled empiri-

cally using Monte Carlo (MC) methods [11]. Among these MC methods, the importance

sampling technique, in particular, has been shown to be a powerful method that reduces

considerably the computational complexity. Typically, it was successfully applied to the

estimation of direction of arrival (DOA) [ 1 2], the joint DOA-Doppler frequency estimation

[13] and, more recently, to the estimation of the time delay in the context of a single path

and linearly-modulated signals [14]. Compared with the EM ML estimator, this method

does not need any initialization and does not suffer from any convergence problem, yet it

is computationally more intensive. The contributions of this work cover SC-CDMA and

MC-CDMA as well. In the estimation process, we distinguish two major cases. In the first

one, we estimate the delay directly from the received signal over the antenna array. In this

case, we prove that time, frequency and space dimensions are mixed together to obtain one

dimension which is the product of the three. On the other hand, a channel estimate can be

obtained prior to time delay estimation [26] then we use the channel estimate to estimate

the delays.

This paper is organized as follows. In section II, we briefly introduce the post-correlation

model. Then, in section III, The analytical expression of the CRLB is derived. In section

IV, we develop the new EM-based ML time delay estimator. In section Y derivation de-

tails of the new IS-based estimator are discussed. In section VI, we extend the presented

work to the case of multi-carrier (MC)-CDMA. Section VII presents some simulation re-

sults that corroborate our findinss and finallv some concludine remarks are drawn out in

section VIII.
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5.2 System Model and Background

We consider a CDMA communication system where the receiver is equipped with M re-

ceiving antenna elements that capture signals travelling through a multipath propagation

environment consisting of P different paths. The signals received on the M antennas are

uncorrelated with the spreading code and sampled at the chip rate Q. Denoting the pro-

cessing gain by L (i.e., L : T lT" with 7 being the symbol duration), the resulting post-

correlation data of the spatio-temporal observation of the nth received symbol is modeled

by the following matrix form [6] :

Zn: G,TnDT (r)s,  *  ly ' , , (s.1)

where sn: b,{, is a function of the unknown transmitted symbol bn and the square root,

$,, of the total received power r!2" and -Ay',, is the (M x L)-dimensional post-correlation

noise matrix. The pth column of the matrix D(r) that gathers the time delay parameters,

T1-, 72,. . . , Tp, is given by :

d, :  lp"(-rr), p.(7" - ro),. .  . ,  p"((L - 1)7" - ro)) ' , (s.2)

where p"(.) is the correlation function of the spreading code. Gn is the M x P spatial

propagation matrix and T," is a P x P diagonal matrix representing the normalized power

ratios over the different paths [i.e., trace(Tl : t)] [6]. These two matrices can be further

gathered in one single spatial-response matrix Jn (i.e., Jn: GnT",) and by including the

scalar term sn in the matrix2 Jn, amore compact form of Zn is givenby :

zr :D(r) f i  + l r ; . (5.3)

Using the representation in (5.3), the original problem can be interpreted as the estimation

of the time delay, involved in the matrix D(r),from M snapshots observed on.L antenna

branches. Each column of ZI represents an observation vector and the columns of $
are interpreted as the transmitted signals from P different sources. If we suppose that the

delay vector z remains constant over N transmitted symbols, a compact representation of
(5.3) over l/ symbols is given by :

Z:[2T,2T,. . . ,  ZK]
: D(r)Jr + Ar7, (5.4)

with Jr :  lJT, $,. . . ,  JK] and.Alr :  [AIrr,  N{,.  . .  , l f f r ] .
Usually, high resolution methods (when applied to time delay estimation) transform the

2For the sake of simplicity, we keep the same notation Jn for Jns,. Hence, please note that the following

fbrmulation holds, unless specifled otherwise, lbr both data-aided (i.e., s, is a known reference signal) and

non-data-aided transmissions.

9 l



problem into the frequency domain in order to obtain a formulation that is similar to the

one encountered in frequency estimation l9l, |71, [18], after which high-resolution me-

thods, such as Root-MUSIC can be applied to estimate the delays (as in [6]). Following

the same logic, we perform a column-by-column fast Fourier transform (FFT) of ZT to

obtain:

Z:D( r )J r+N, (s.s)

where ,A/ is the resulting transformed noise matrix and D(t) depends only on the unk-

nown delays and is given by :

D(r) :  ld(r1), d(rr),.  . .  ,  d(rp)1,

where the columns {d(4)}f:, are given by :

_ j 2 n r p  _ i 2 n ( L - t ) r p , -
d \ T p ) : l C g , C 1 e  L  , . . . , C L - r €  "  l ' ,

(s.6)

(s.7)

(s.e)

and {c}l:oI are the FFT coefficients of the spreading code correlation function. Note that,

for CDMA systems, the correlation function of a perfect spreading code is a Dirac func-

tion, and hence the corresponding FFT coefficients are constant in this ideal case. This

feature holds true as a very good approximation even with practical spreading codes [1],

t6l.
Before exposing the main contributions of this paper, we mention that the following deve-

lopment is applicable on the estimate of the channel coefficients matrix. Actually, consi-

dering again the formulation in (5.1), Zn can be written as follows :

Zn: I: lnsn * Nr, (s.8)

in which Hn : J"Dr (r) denotes the overall spatio-temporal propagation matrix. In-

terestingly, the model in (5.8) can be used to estimate the channel response, II,, rn an

eflicient way. One can use any blind channel estimator to obtain an estimate , fin, of LIn.

More details on this subject can be found in [6]. Now, taking into account the estimation

"nor,frnis 
written as :

fr | :D(r)f i+EI,

where E[. is the corresponding channel error matrix. The variance of the entries of EI

depends ofcourse on the noise variance in the received signal [15] and it has been stated

that the power of En is lower than the power of .A[,, which has the effect of increasing

the SNR. Clearly, time delay could be estimated form the column-by-column FFT of Ff,

in (5.9) as well as from (5.5), with the only difference that the noise power is reduced in
(5.9). In the remain of this paper, we consider the formulation in (5.5) since an estimate of

the channel is not always available.
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5.3 The CramBr-Rao Lower Bound

Before we deal with the two estimators, we derive in this section a closed-form expression

for the CRLB for the problem at hand, which will be used as a benchmark, in addition

to the Root-MUSIC algorithm, against which we evaluate the performance of the new

estimators.

In fact, the Cramdr-Rao lower Bound (CRLB) is a well known lower bound for the variance

of unbiased estimators of an intended parameter. Many works have so far dealt with the

evaluation of the CRLB for the time delay estimation problem but, as far as we know, no

contributions have been made yet in the context of multipath time delay estimation in DS-

CDMA systems. To that end, we assume that the multipath fading coefficients, gathered

in $, are random variables with unknown covariance matrix fily. Therefore, the vector

of unknown parameters involved in the estimation process is :

o : lr ,  W{-Ry(m, n)} '*., :r,3{.R;(rn, n)}o*.,:r,  ot l '

with z : lrt, r2t. . . , rp)r. In the following, we suppose that the different columns

of Z, denoted 26 arre mutually independent and the columns of A/ are also mutually

independent and Gaussian distributed. Under these assumptions, the probability density

function (pdf) of Z, parameterized by r and l?"r (the covariance matrix of the columns of

$1, is given by :

I
B1Z:r,  Rt) : ; f r f r1

t I -  - '

(o1r1aro1ryH ,  (5 .1 1)

wherede t ( . )  re tu rns thede te rm inan to fag i venmat r i xand r : l r r ,T2 , . . . , r p ) r .Then

the log-likelihood function, L(r, Rr) : ln(F(Z;r, Rt)), reduces simply to :

L(r, Rr): - ln (det(2(z) RroH (r) + o2 t"))
't MN
r  \ - -  /- 

# F-",(o1r1nrou 
(') + o'rr)-' zn' 6'12)

The entries of the Fisher Information matrix (FIM), denoted here 1. are given by3 :

I(m, n) : Mtrace { or'!3=or'Pz=\ , (s. r3)
y - " '  ) a (m) - " '  ) a (n )  ) '

with Rs being the covariance matrix of 26 givenby :

Rz : D(r)RrDH (r) + o2 r7.

(det (2(z) ,RtD(r ) ' * o2I7

-t 
zr\+ o2Ir. \

r r M N
) )

(s.10)

( M N

""ot-?tr

'Note that the CRLB of the joint estimation of all parameters is simply the inverse of the FIM .I.
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However, the derivation of the FIM starting for (5.13) appears to be intractable. Alterna-

tively, the CRLB is asymptotically equivalent to the error covariance matrix, Cy1(z) :

E{(? - ,)(? - ,)'}, of the maximum likelihood estimate, as M tends to infinity [25],
which means that :

Cun(r): CRLB(z)'

Recall that the ML estimate i of r verifies the following equation :

(s.1s)

where AL(.)lAr is the gradient of I(.) with respect to z. Applying the Taylor series

expansion to the left-hand side of (5.16) and keeping only the first two terms of this deve-

lopment leads to :

} L ( r ,P "1 )  , 02L1 r .P - t ) , . .  \  n-t 
d"--=t + -- at(i 

- t) : g, (5.r7)

where A2 L(?, P-r) I 0r2 is a Hessian matrix. Hence, from (5.17) we obtain :

u9@:0,
OT

|  02 L6(r,,Rr) ' l  
- t  

0 L(r, P"1)
r m r n l

l O r " ) O T

(5 .16)

(s.18)

(s.2r)

(s.22)

where 02 L6(r, R) l0r2 is a Hessian matrix when fr.2 -+ Rz and,6 -+ o as M tends to

oo. It follows that :

(]^", _ l02roc. Rt)l-' (.fT tr {aw. 
a) 0L(r. Rt)'}) 

[r,r,(,,.,,1-lr.,n,vML-t a",  J \ ; : :"1- or or I) l  ar,  J

The analytical expressions of the gradient 0L(r, P"r) I Er and the matrix 02 Lo(r, P'1) I 0r2
(derived in [25]) leads to the following analytical expression for the CRLB of time delay

estimates :

n2  |  r  .  - ) l - t
cRLB(r) : ;N I nl (u" [1 - il] u) x (n1nH 1r1n;'ot")nr)' | | ,6.201' L  \  / _ l

where * stands for the element-wise product, fI is an orthogonal projector matrix defined

as fI : D(t) (OH 1r1o1t))-t o' (r) and the matrix U is defined as follows :

U : l u r ,  ? .12 , . . . ,  up ] ,

0d(ra)
ui: ----;-.

OT;
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5.4 Expectation MaximizationAlgorithm

The EM algorithm is a computational modest method to find the maximum likelihood

estimate when a closed-form solution of this one is intractable. Rewrite the loe-likelihood

function in (5.12) in a more compact form as follow :

L(r, F-r): - ln (det(R2)) - trace 
{n2'fr"} ,  6.23)

where R"b"ingan estimate of R2 computed from the columns of Z as follows :

't MN

;  r  f - z z HI L g :  ^  )  . Z i Z i^ t t \  u

Note here that the log-likelihood function, L(r,l?;r), depends on the delays vector r of

interest and the covariance matrix -R7. Hence the problem can be formulated as follows :

maximize L(r, R) with respect to r and Rr. We also mention that while o2 is usually

unknown, it can be easily estimated either by averagingthe L - M smallest eigen-values

of Rz or simply by exploiting the estimated power carried out in a previous stage of the

receiver [6].
Unfortunately, the above expression of the likelihood function cannot lead to a closed-

form solution for its maxima. Thus, we resort as a first option to a well-known iterative

algorithm, namely the EM algorithm [16], to resolve this problem numerically. The pur-

pose is to decompose the observation, {Zu}Yl into P complete-data, then estimate the

delays separately from each complete-data. This is equivalent to performing P parallel

maximizations over a one-dimensional space. This method reduces considerably the com-

putational complexity compared to the brute grid search solution. For this purpose, we

deflne the set of complete data as :

. t n ) ( i )  :  J r ( i , , p )d ( r r )  +n@( i ) ,  p  :  7 ,  2 , . . . ,  P ,  i  :  7 ,  2 , . . . ,  MN.  ( 5 .25 )

where z(d (i) can be seen as the received signal on the i'h spatio-temporal snapshot from

the pth path. From (5.25), the covarian 
"" 

o, .(d (i), n {ztol (i)z@ ('i)H } is given by :

(s.24)

(s.26)R"{o) : e}d'(ro)d(rr)u * 
i, ",

with {e2"}l:, being the diagonal elements of Rr and n1(k) is an arbitrary decomposition

of the estimation error (i.e., No : D;:rn@ OD. From (5.25), any column, 2i, of 26 can

be written as a function of the complete data as follows :

D

\ i :  t n l  z . r
Z ; :  )  z ' ' ' l l l .- 

.Ll

p :L
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Now, we are in a position to describe the Expectation-step (Z-step) and the Maximization-

step (,4,I-step) of the EM algorithm. The E-step consists in finding the conditional expec-

tations of the sample covariance matrices {fr"rr}f:, of the complete data defined as :

Given Rf-'l np6 r{c-r} (the previous estimates of Rr andr at iteration (q - 1) and fr.2,

the expectation of R"rnl can be computed from the classical formulas of the conditional

expectation with Gaussian distributed random vectors to yield :

fiL1L: u {fi^r;fr"; rr9-'}' '{c-r}}

: nLnl, ("9,)-' R" ("9t)-' ̂ L'J,*t"II,- Rt;!, ("9,)-' *l?], ,6.2s)

where the matrice t Rgj are computed at each iteration from the estimates ,jn-t]} unO

,z{o-t} computed in the previous iteration. Now, turning to the estimation of Rl), the

procedure is different from the one used in previous EM algorithms in [9] and [19] to esti-

mate the covariance matrix. In fact, in [9] and [19], the covariance matrix of the received

signal is simply diagonal, which is not the case in our work. Therefore, we resort to ano-

ther approach to estimate the covariance matrix Rl). first. suppose tnat Rtj is a Toeplitz

matrixa (case of stationary processes). We adopt the method proposed in l2ll @riefly de-

tailed next) to the estimation of Toeplitz covariance maftices, which is also based on the

EM algorithm making it well suited to our algorithm. Then, we define the l/" x l/" cir-

culant extended version of Rs, denoted as -R". The matrix fi|" represents the covariance

matrix of the extended vectors {Zr}Y{, where Zi consists of the vector Za augmented

bV (N" - l)-dimensional null vectors. The covariance matrix .R" is characterized by its

eigenvalues as follows :

-R" : FH RsF,

fr'^r: # (s.28)

(s.30)

where lf is the standard AL x l/" discrete Fourier transform (DFT) matrix and -R6 is a

diagonal matrix constructed from the eigenvalues of .R". The DFT transform of 26 results

in the rotated vectors Ct : FZn foli : 7, 2,. . . , M N. Denoting by fr" the estimate of

-R6r using {Cn}{:, (i.e., -0" : lllvl N Dyi CoCf), the expectation of -R6r conditioned

on R7 and Rz - applying the same formula used to find (5.29) - is given by :

E(AdRz, R ) : n"" (R"'fi-" IRZ')' - R"') Rzc + Rc. (s .31)

where Rss is the cross-covariance of C; and Z;. Noting that Z; : F'C* with F :

FII L OIT and 0 is the (.L x ,n/" - I) null matrix, the cross-covariance matrix R2s is equaT

aThis assumption implies that the covariance between Z^ and Zn depends only on the difference bet-

ween m and n, corresponding therefore to stationary processes.
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I
rc RcF. Then the estimate of Rs at iteration q is given by :

Rgj :oiag (n$-'\  r (tng-t j) LAz(Rr;-,t)-, - @y-rj I  ' )  F"nf- 'r + R\-,t lS.:zl

and, R2 is obtained using the transformation Za : FH Cuas follows :

Rt;j : r" ngt, (s.33)

Finally, it has been shown in [21] that the stable point of (5.33) is equal to the maximum

likelihood estimate of Rs,.

During the M-step of the EM algorithm, we aim to maximize the log-likelihood function

of the complete-data with respect to the parameters of interest {ro},!:r.It is the same ob-
jective function given in (5.I2), with the true expectation of the complete data replaced by

the conditional expectation of ,tn (l; in other words fi|s substituted by R"ws arnd R."by

fr.tt . Thus we obtain the log-likelihood function of the complete-d ata, Lr(r, R,ro>), as

follows :

Lo(ro, R.<o)): - ln (det(,R,1";)) - trace 
{e'":},^;e,}

(s.34)

Then, at iteration q, the estim ate rlq 
j 

and R,61are those which jointly maximiz e Lo(re, R"rot).

Using the eigen-decompositions of R"{d, the log-likelihood function of the complete-data

can be expressed as :

L,( ro,R",o, )  :  -m(17+ *)  -  Ur  -  1) ln  (+\  -
\ .  r /  \ r /

(  r  P \  P  / ^ r - r \

(4*g 
-;)a@)'RL'] 'a(d3t'"" '  (€j1] ') (s 3s)

which emphasizes the dependence of Lr(ro, R"r,t) on r, and e2r.fne closed-form expres-

sion of its maximum with respect to el, for a given to{n}. i, ,

,"o{n} : a1r{u}1H frL1,1,a6'}) - 
+ (s.36)

Now, injecting this expression in (5.35) yields the following one-dimensional maximiza-

tion problem :

rj."} :arsm€x- m {a1ro;" fr!n!,a1,l\ fiafr,l'frln},a1ro), 6.37)

or simply the problem of maximizing d,(r)H R{oJ,d(rr). This follows immediately from

the fact that the function f (r) : - ln(r) t P f o2r is monotonic.

So far, the ML estimate has been found in an iterative way. However, this method needs

an initial guess of the parameters from which the algorithm starts operating. Alternatively,

to avoid all initialization hurdles and issues, we develop in the next section a non-iterative

algorithm to find the ML estimates without grid search based on importance sampling.
sNoting that the matix e2rd(r)d(tr)H is of rank one with -L - 1 null eivenvalues and one equal to ef ,

the eigen-decomposition of R"1o1 can be easily done.



5.5 The Importance Sampling Technique

Similar to the above algorithm, we start from the expression of the log-likelihood function

in (5.12). A direct maximization of this function imposes joint maximization over r and

.R.7'. Therefore, it will be of interest to formulate an objective function that depends on

the time delay only. To that end, we first maximizethe likelihood function with respect to

the nuisance parameters .R;. For this purpose, it can be shown that the value of Rr that

maximizes L(r, P-t) for a fixed vector r is :

Ay' : (oH 1r1o1'))- '  oH t)fr.2o(r) (DH (r)o(r))- '  - o' (oH 1r1o1'))- '  .
(s.38)

Then, injecting Ry" i" (5.12) yields the so-called compressed likelihood function of the

system :

L.(') : \rru"" ("e") - m (a"t (nfr,n + o21rr- il))) ,

where fI, introduced in (5.20), is defined as fI : D(r) (DH (r)D(r)) 2H(z). Now,

the maximum likelihood estimates of the time delay are obtained by maximizing the obtai-

ned compressed likelihood function (again, the most obvious optimization technique that

naturally comes to mind is to perform a P-dimensional grid search, whose complexity

increases with the number of delays) L"(r) with respectto r.In this section, as an alter-

native to the iterative method already presented in section 5.4, we implement here the ML

criterion in a non-iterative way. We resort to the global maximization theorem of Pincus

[10] in order to find the global maximum of the multi-dimensional function at hand. In

fact, according to [10], the global maximum of L"(r) with respect to r is given by :

?-: lim [t^ IL^'oexPr{qLJ')}dr'P 
; ' ; ;  [ ,  I rexp{pL.( r ) }  dr

with J : [0,7] being the interval in which the unknown delays are supposed to be confi-

ned. Clearly. as p tends to infinity. the fraction L"+X*# becomes a multidimen-
J J . . .  J J e x p l p t J c l T ) j l

sional Dirac function, centered at the global maximum of L.(.). Therefore, if we define

the pseudo-pdf Ii.,(.) as :

L'" o(r)  
:

exp {pL"(r)} (s.41)
I, I r exp {pL.(r)} dr'

the ML estimate of {ro}!:r, obtained by applying (5.40), can be reformulated as :

' i : 1 ,  2 ,  . . . ,  P ,
t t

J, Jr'oL'' 'oQ)dr'

(s.3e)

(s.40)

(s.42)

where ps is a sufficiently large number (whose optimal value is discussed later). The func-

tion L'",.o(.) is called pseudo-pdf since it has all the properties of a pdf, although r is not
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truly a random variable. We note from (5.42) that the ML estimate requires the evaluation

of the multi-dimensional integral, which is usually diflicult to perform in practice. Howe-

ver, exploiting the fact that L'",r.(.) is a pseudo-pdf, the involved integral can be simply

interpreted as the mean value of ro, when the hole vector r is distributed according to

L'",ro(.).Therefore, one can easily evaluate this mean - and hence the integrals in (5.42)
- in order to obtain ? : lit, ?2, . . . , 7")' using Monte Carlo techniques [11] :

(s.43)

where {"r}*:, are R realizations of r, with z being distributed according to L'",.o(.).

But another problem arises here : how to jointly generate {ro$:, for a multidimensional

random variable. Actually. L'",ro(.) is constructed using the actual compressed likelihood

function in (5.39), which is a multi-dimensional function; making the generation of the

vector r a very difficult task if not impossible. Therefore, it is of interest to find another

pseudo-pdf to generate the realizations instead of using L'r,ro(.) .To do so, we resort to the

concept of IS as detailed below.

First, we mention that IS is a powerful Monte Carlo technique l23l which allows genera-

trngrealizations using another distribution that is simpler than the actual one. Through the

IS technique, the generated samples are weighted and averaged in a judicious manner to

obtain the desired estimates. This efficient weighting operation improves considerably the

performance achieved by the IS method compared to other Monte Carlo techniques. The

IS approach is based on the following simple observation :

p

1+
E )-,'r"'- "  

k : r

(s.44)

where g'(.) is another pseudo-pdf called normalized importance function (IF), whose

choice is discussed later and /(.) is any given parameter transformation. Now, the pro-

blem is recast as the computation of the expectation of f ft)ffi with respect to the

distribution g'(.) ; which is simply performed via Monte Carlo methods as follows :

I l,f {,)r'.,,o?)d,,: I, . l,rr"lffis'(r)d,r,

I, l;t)+#s'e)rtr= * : r?,)L+#, (s.4s)

in which the realizations {26}[1 are now generated according to g'(.). Yet, a great atten-

tion should be given to the choice of g'( ). In fact, the accuracy of this method depends

on the similarity of the shapes of L'",00(.) and S'(.).In the best cases, the global maxima

of L'.,ro(.) and g'(.) are the same. Still L',,,.o(.) is a complicated function of r and g'(.)

must be as simple as possible to easily generate the required realizations. Therefore, some

trade-offs must be found in the construction of the importance function. Moreover, an ap-

propriate choice of g'(.) reduces the number R of realizations since the generated values
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will appear as if they were generated according to the original pseudo-pdf L!,ro (. ) when

g'(.) is faithful to L'",ro(.). Next, we discuss the appropriate choice of g'(.).

First, as an alternative to the actual multidimensional compressed likelihood function, the

importance function should be a separable function in the different delays, {ro}l:r, to

reduce the generation of a P-dimensional random vector to the generation of P scalar ran-

dom variables. We therefore simplify the expression of the compressed likelihood function

L"(.) to lind g'(.). Indeed, it is seen from (5.39) that L"(.) involves the sum of two inde-

pendent terms. These two terms can be written as functions of the eigenvalues ot[Ifr.zft

as follows :

I  L l n o 2 ,

P

: f  rn
i . :L

\ t -e

(3)
[ ^ " )

and

(s.46)

(s.47)7  r  r  1  / -=  .  _$)o; trace (IJP.z) : -trace lrJBzfl l  =, 
".\  , /  \  . /  - o , o o

where )r, )2, . . . , )p are the eigenvalues of fIRzfI. Clearly, the term Lf:r) is doml-

nant compared to the term Df:rtn (3) 
"*requently, 

in (5.39) we drop the term LIno2,

independent on the delays. in In(det (nfi."tl+ o2(1"- 
"r) 

and it is reasonable ne-

glect the term h (de t(nR zn + 02 (r L - 
"))) 

with respect to jtrace ("A"). Moreo-

ver, one can approximare rhe matrix oH (r)o(r) by the diagonal matrix (rl.t l",l') t"

to avoid the computation of the inverse involved in fI. This approximation is well justi-

fled since the off-diagonal terms of the matrix DH (r)D(r) are negligible compared to its

diagonal elements (see the Appendix for further details). Using this assumption, the term

;ltrace (nfr"\ is approximated by :
o '  \  

- /

L,rru""(nfrr) t u", (o'1r7fi."o1r7) . (s.48)\ / 
", lLi:o'lr,l, ) 

\

Lastly, considering all these observations, an approximation of the actual compressed li-

kelihood function, 21.;, witn unnecessary terms discarded, is given by :

TlrS: \rrur" (o1r1o" @fr.")
. t M N P

\- \-
MNo2 L L

k: l  p: I

P
\ -  - ,:  
, )  . 1 1 r o ) ,
P:I

*" , , "*o{ \ "w,nl
7)ro
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where

can be evaluated using the Fast Fourier Transform (FFT). Hence, the normalized IF is

selected as follows :

g'rr(r)  :
flf:' ""n {prl(r)} (s.s 1)

( .Le*p {pr l ( r ) }dr)" '

which is the product of P elementary functions, each of which depending on the delay

of a given single path. Here, we succeed in making the different delays separable and

distributed according to the same pdf p(.) given by :

y \ t ) -
exp {p11(r)} (s.s2)

I  t  exp {p1I  ( r ) }  dr '

Hence, the joint pdf of the delays in g'rr(.) is sptit into the product of P individual pdfs,

which transposes the problem of generating a P-dimensional random variable to the ge-

neration of P one-dimensional random variables according to a simpler common distri-

bution. Moreover, the constant term p1 in (5.51) and (5.52) is different from p6 since it is

more advantageous to use two different values as explained later. We mention here that

the estimation performance depends on these two parameters. Actually, the pdf p(.) in

(5.52) exhibits P lobes centered at the location of the true time delay. But the estimation

enor tn makes other undesired lobes appear which in turn biases the generated values

not faithful (spurious values) to the true delays. For this reason, p1 is increased to make

the pdf p(.) more peaked around the actual delays {"r}F:, so that the undesired lobes di-

sappear. However, very large values of p1 may also destroy some useful lobes and hence

their corresponding delays will not be generated. Therefore, the optimal value of p1 is

the highest one for which the pdf p(.) still exhibits at least P main lobes. Moreover, one

should keep in mind that the normalized IF in (5.51) is built upon an approximation of the

actual compressed likelihood function, which we aim to maximize. Consequently, a bias

will always appear in the mean of the values generated according to the normalized IF.

Fortunately, this bias is alleviated by the weighting factor LL,or(.) I g'(.) introduced by the

concept of IS. Therefore, we maximize the contribution of the compressed likelihood in

the weighting factor rather than its approximation by making p6 higher than p1. Thus, an

appropriate choice of these two parameters reduces the number, fi, of required realizations

and ultimately the computational complexity.

To summarize,the new IS-based ML estimator is given by :

*"-,""0 { 
-i2n(t- r)r} 

"rr,rl,

1  R  r l
:  t  \-  -  r^^r -r,po(T*)
, r :  

E L"k\p) g,eJr i  '

I ( r ) :
MNo2

MN

\-
./--r

(s.50)
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where z6(p) is the pth element of the vector za. We also mention that in practice the delays

are confined in the interval 10, LT.l [6]. This allows us to further use the circular mean

instead of the linear mean given by (5.53), as detailed below.

In few words, to define the concept of the circular mean, consider a random variable X

taking values in [0, 1] according to a given distribution G(.). The circular mean of X is
given by [24] :

(s.s4)

where the operator l(.) returns the argument of any complex number. Then, if we have a

set of R realizatio,nS, /1, . . ., r R, drawn according to the pdf G(.), the circular mean in
(5.54) is computed as :

E"{x}: }z lo' ","*'Gt )dr,

R
1 1

E-{ XI : i-lj-f 
"r2r'rt.

" '  t "  )  2 ^ -  R . L
k :1

?o:*t+* Ftr).*o{*#\,

Adopting the concept of circular mean in our problem, an alternative formulation of the

estimate in (5.53) is given by :

(5.ss)

(5.56)

where the delays are transposed to the interval [0, 1] after being normalizedby LT. and

F'(.) is the weighting factor defined as :

(5.57)

Note that the estimator in (5.56) relies on finding the angles of a complex number. There-

fore, we no longer need to compute the two positive real normalizationfactors I, I, exp {pL.(r)} dr

and (f exp {p1I (r)} ar)P since they can be dropped without ultimately affecting the fi-

nal result. Moreover, during the computation of the weighting factor F(.), the exponential

terms in the numerator and the denominator of F (.) may result in an overflow. To avoid

this overflow, we substitute F' (.) bV F'(.) given by :

by multiplying F(.) by a positive number. In such a way, the exponential argument in
(5.58) no longer exceeds zero, alleviating thereby any computation difficulty.

Summary of steps

In the following, we summarize the entire steps of the new IS-based ML time delay esti-

mator.

F'('r)- exp 
{o,rJ,n 

- ,,*I?x(p))-,?,?l (0,r.?,) - ,,f.Lf',tr))) 
}t.tt,
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1. From the samples matrix, Z, compute the periodogram 1(.) expressed in (5.50) at

discrete points of the interval 10, LT.]. Then evaluate the elementary pdf as follows :

I t \ t z l  
-

exp(p11(1) )

Df:rexp(p1l (r1,))'

where we substitute the integral in the denominator by a summation over all the

discrete points in the integration interval.

Generate one realization of the vector r according to the pseudo-pdf g'pr(.).To sim-

plify, we exploit the fact that the delays are separablein g'or(.) and we generate P rea-

lizations {rr(p)}'o=, according to p(.) using the inverse probability integration [20].
It is important to make sure that the P generated entries r*(7), Tk(2), . . . , rn(P)

(in order to obtain one vector realization) are different. This condition is necessary

since the delays of the paths are in practice different thereby ensuring that the matrix

inverse (DH G)D(r))-t in L"(.) always exists.

Repeat step 2) R - I times then evaluate the weighting factors F'(tl) for i, :

1 , . . . ,  R .

4. Find the maximum likelihood estimate of the delavs usins the circular mean tn

(5.56).

5.6 Extension To MC-CDMA Svstems

In MC-CDMA transmitter, the original data are spread over different subcarriers using

a spreading code. Therefore, it is possible to transmit several DS-CDMA waveforms in

parallel. At time index n, the input information is first converted into l/" : 2K 11 parallel

sequences and modulated at rate 7lTuc, where Tuc : l/"7 is the symbol duration after

seriaVparallel conversion. Each of the parallel stream is then spreaded with a spreading

code at rute Lf T" and modulated by the inverse discrete Fourier transform (IDFT).

At the receiver, a reformulation of the post-correlation model for MC-CDMA of the spatio-

temporal observation for the kth subcarrier and the nth observation is given by 126l:

Zk,n: s1,,nJp,nD[(z) + l/r,,, (5.60)

where s7r,, and Jp,n are the signal component and the spatial response matrix onthe kth

subcarrier, respectively. The column of the time response matrix Dn(r) : [dr,r, dn,z, . .. , dr,p]

are given by :

dk,p : 
"- iark\ff i |p"?ro), 

p.(T"lk" - ro)ei2"k&,... ,  p"((Lk" - I)T"Ik" - ro)"j '"*x#!1t,

(s.61)

2.

3 .
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where ) determines the frequency spacing between two adjacent subcarriero (f n : ^k ITMC)
and k" is the oversampling ratio [26]. Note here that the propagation time-delays are suppo-

sed to be the same for all subcarriers. Unlike the single-carrier case, the received samples

Zp,n ca;rrrrot be directly used as an input to the algorithms. Therefore, we introduce the

intermediate transformation of the samples matrix, denoted Zf,.,, givenby :

ZE,n: Zn,* (" tTo)
: sk,nJk,,D{ (r) + N;,*, (5.62)

where LM : [1,.. . ,  l ] t  and a : fr,  e-i2"+ ,. .  .  ,  "- i2"\#E!]". 
The prh column of

Dft(r) is:

Hence we eliminate in Dft(r) the dependence row-wise of the phase slope of each column

vector on k in the spectral domain. While the formulation in (5.62) seems to be adapted for

the estimation process, the phase shift e-i2"k^ffi oneach column of Dft(r) set against

the direct use of the formulation in (5.62). To overcome this problem, we note that the

matrix Dfr(r) can be written as Df(r) : AnD(r) where ,46 is a diagonal matrix which

diagonal elements *" 
{"-i'^u^#\::, 

Then we insert the phase shift in the spatial-

response matrix Jp,,to obtain a formulation similar to the one in (5.3). Finally, to exploit

the frequency gain, we gather the transformed observation over the different subcarrier

into the following compact representation :

dtk,o:d1r ,ox a '

- 
"-tznk\# lp.?ro), p.(T"lk" - ,r), , p.((Lk" - t)T.lk" - r)lr.6.AZ7

(5.64)

(s.6s)

where Jf,' : [Ar4r, ArJTr,..., A9.JK.,,,] and N{ : [.Aff;, Nfl,... , l/,(f,,,].

The interesting thing with the formulation in (5.64) is that it increases the number of ob-

servations proportionally to the number of subcarrier used in the system. Considering N

transmitted symbols, we formulate a compact representation similar to (5.4) by concate-

nating the ,A/ observed symbols :

z::lziT, z;,7", ., 2fl,,1
: D(r)Jf; + N{ ,

Z :  lz i ,2 i , . . . ,  Z.* l
: D(r)J{ + l,r"?,

6When .\ is equal to 1, the transiver belongs to the class of multitone (MT)-CDMA, and if it is equal to

I, the transiver belongs to the family of MC-DS-CDMA.
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where J"r :  lJf ' , . . . ,  Jff)and 1y'"7 : [ l Ir"t , .  .  . ,  .Af, i f l ] .

Compared to a schema that estimates the delays over each subcarrier separately, the pro-

posed model presents better performance. In addition, we are able to derive the correspon-

ding CRLB following the same steps as presented in Section II. This reveals that the CRLB

has a similar expression as in (5.20) by multiplying by a factor of lf N..If we denote by

CRLBo the CRLB when M : .Ay' : N" : 1, the resulting CRLB for the MC-CDMA is

given by :

CRLB : 
ffirRLBo

(s.66)

As a consequence, the time delay estimation merges space, time and frequency.

To obtain an expression of the CRLB by using the channel coefficients matrix to estimate

the delays, some modilications to the model are needed and developed in Appendix III. In

this case, we see that the resulting CRLB depends on both time and frequency correlation.

5.7 Simulation Results

In this section, we compare the performance of the two proposed maximum likelihood es-

timators against the popular Root-MUSIC algorithm and the CRLB. In all the simulations,

we consider a multipath propagation environment with 3 propagations paths and we si-

mulate a challenging scenario of closely-spaced delays equal to 0.L27,0.15? and 0.187.

The mean square error (MSE) - used as performance measure - of the three estimators

is compared to the CRLB. First, recall that the EM algorithm is iterative in nature; hence

initialization is a critical issue. Therefore, the initial values for this estimator are selected

as random variables, centered at the real time delay and with a variance of 0.057. The

processing gain is fixed at L : 64 and the optimal values of the parameters p6 and pl for

the IS-based technique are equal to 20 and 10, respectively. We also assume that the power

is equally distributed between the three paths on average.

First, we consider a single carrier transceiver with lll : 4 antenna branches at the receiver

and one received samples (N : 1) and we compare the MSE of the two proposed ML al-

gorithms to those of the Root-MUSIC in Fig. 5.1. We also plot the performance of the EM

ML when the initial values have a variance of 0.187 reflecting less accurate initializations.

Clearly, both the IS-based and the EM algorithms, for good initializations, outperform the

Root-MUSIC technique over a large range of the SNR. While the two ML algorithms

present almost the same performance, it is suggested in practice to use, in this configura-

tion, the EM ML approach since it offers less computational complexity compared to the

IS-based algorithm. Indeed, the EM ML estimator has the advantage of performing P pa-

rallel maximizations. Therefore, as the number of paths P increases, there is no additional

noticeable computational time cost. On the other side, IS-based algorithm can guarantee

robustness to the initial estimates, contrarily to the EM ML.
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MSE ofthe lst  Dath MSE ofthe 2nd path

MSE ofthe 3rd path

5 1 0 1 5 2 0
d, [dB]

5 1 0 1 5

", [dB]

FtcuRB 5.1 - Estimation perfonnance of the IS-based, the EM-based and the Root-

MUSIC algorithms for closely-separated delays, M : 4.

So far, all the methods exhibit good performance, with remarkable improvements for

the two new ML estimators. However, a quick study of the EM algorithm and the Root-

MUSIC reveals that they are based on an estimate of the covariance matrix of the received

signal from the columns of the matrix Z, and the accuracy of this estimate depends on

the number of antennas (which plays the role of the number of samples). Therefore, we

simulate the performance of all these algorithms considering only one receiving antenna

element and keep the other simulation conditions the same as in Fig. 5.1. The results

are shown in Fig. 5.2. ClearIy, Root-MUSIC estimator is very sensitive to the number

of receiving antenna branches. Its performance degrades considerably compared to the

previous case. It fails completely in estimating the delays which, indeed, is due to the poor

estimate of Rs. On the other hand, the EM and the IS-based algorithms are less affected,

in this challenging scenario. They still provide good estimates regardless of the challenging

operating conditions based on short data snapshots. Fig. 5.2 actually suggests that the IS-

based algorithm is even more robust than the EM ML estimator in this configuration.

To further investigate this issue, we fix the SNR value at 10 dB and vary the number

of antenna branches M from 1 to 8 with N : 1. The MSE of the three algorithms versus

M is plotted in Fig. 5.3. As expected, the IS-based methods attain the CRLB starting

from a small value of ,44 contrarily to the Root-MUSIC algorithm and the EM ML. This

means that the IS-based estimator is well geared toward situations of reduced antenna array

mean MSE ofthe thrce paths
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MSE ofthc lst  path MSE ofthe 2nd path

MSE of the 3rd path

I [dB]

1 0

1 o

10
5 1 0 1 5 2 0
r [dB]

0  1 0
r [dBj

- 1 0

FIcURB 5.2 - Estimation perforrnance of the IS-based, the EM-based and the Root-

MUSIC for closely-separated delays, AI - 7.

sizes. On the other hand, we plot in Fig. 5.4 the MSE versus N, considering one antenna

branches in the receiver. Note here that to see the effect of the time channel variation, we

use the channel estimate matrix instead of the received signal to estimate the delays. More

details about the formulation used in the estimation process are presented in Appendix

2. Clearly, the performance of the three estimators is the same starting from N : 5.

But it is not suitable to increase N since the values of the delays may change from one

symbol to another. Usually, a tracking technique (as the one developed in [26]) is used

to continue estimating the delays that is why we prefer to use small number of N in

the estimation. In the region of small numbers of snapshots (l/ is less than 5), the ML-

based methods perform better than the RooTMUSIC algorithm and the gap between these

methods increases as N decreases.

To evaluate the impact of the frequency gain in the multicarrier systems, we plot in

Fig. 5.5 the MSE versus the number of subcarriers l/". We fix A'I at I and ,A/ at 1 to better

illustrate the influence of the number of subcarriers N" on the estimation performance. As

Iy'" increases, the estimation performance improves to saturate for high value of -n/". This

salutation can be explained by the increase of inter-carrier interference with ,|y'", due to

the loss of orthogonality between subcarrier in a multipath environment. We should also

mention the similarity between Fig. 5.3 - Fig. 5.5 which proove that the three dimensions

time, space and frequency have the same impact on the estimation performance of the

algorithms. This conclusion is further verified by the expression of the CRLB in (5.66)

mean MSE ofthe three paths
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1 4 5 6
Number of antcnnr branches

FrcuRs 5.3 - MSE
subcarrier, and SNR

symbol, K : 7

4 5 6 7
Numbcr ofrcceived sampl€s N

Ftcunr 5.4 - MSE vs. number of received symbols l/ for M : 7 antenna branch, K : 7

subcarrier, and SNR: 10 dB.

which is inversely proportional to the number of receiving antenna, the number of symbols

and the number of subcarriers.

5.8 Conclusion

In this paper, we developed two implementations of the ML criterion for the estimation

of time delay both SC and MC air interface in multipath environment. We distinguish two

estimations process : either using directly the received signal or using the channel estimate

matrix. In the first option we show analytically, through the CRLB, and by simulations that

vs. number of antenna branches M for ly' : 1
:  10 dB.
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FtcuRB 5.5 - MSE vs. number of subcarrier with M : 7 and N : 1.

the three dimensions : time, frequency and space have the same effect of the estimation

performance. Whereas basing on the channel estimate matrix, we exploit the time and fre-

quency correlation. While the two proposed methods are an implementation of the same

criterion, each one has its attractive advantages. We also derived a closed-form expression

for the corresponding CRLB in the context of DS-CDMA. The first estimator relies on

the iterative EM algorithm with a moderate computation cost compared to the grid search

technique since it transforms the problem of a multidimensional search into parallel easy

searches over one-dimensional spaces. Compared to other eigen-based methods such as

the Root-MUSIC, the EM approach exhibits better performance with a relatively good

initialization, which is an important issue for this algorithm that affects its estimation per-

formance.

The other algorithm is based on an entirely different approach. It relies on a global maxi-

mization theorem and the concept of importance sampling to directly find the global maxi-

mum. The IS-based approach also avoids the multidimensional grid search by approxima-

ting the actual compressed likelihood function; splitting it thereby into separable one-

dimensional functions of the delays. It does not require any initialization and hence it does

not suffer from performance degradation. Its performance is almost equal to that of the EM

algorithm (whichrequires good initialization), but at the expense of an increase in the com-

putational burden. Moreover, only the IS-based algorithm produces accurate estimates for

a small number of receiving antenna branches. The performance of the EM approach also

degrades considerably in the specific case of single antenna (SISO conflguration) where

the Root-MUSIC algorithm fails completely to estimate the delays.
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Appendix 1

Justificationof theapproximation OH (r)O(r) = >i:i lr,l'Io
The diagonal and off-diagonal elements of OH (r)D(z) are respectively given by :

L - l

|oH 1r)o1r) l* ;^ :  t  l " , l t ,  *  :  t ,  2, . . . ,  P,
t:0

( r
v m

L

P (5.68)

While it is easy to verify that :

IDH (r)D(r)],n,, < loH (r)o(r))*,,*, (s.6e)

for nt f n, the inequality in (5.69) does not guarantee that the diagonal elements are

indeed dominant compared to the off-diagonal elements. To that end, we define F(.) the

ratio between (5.68) and (5.69) as follows :

E ' ( A -  \ -L  \ 4 t m ' n J  
-

DL-o' lcll2 exp {*ry'-} (s.70)
D,":] l",l ' 

1

where Lr,n;n - rrn - rn is considered as a random variable uniformly distributed in

l-LT", LT.l.We plot in Fig. 5.6 the probability of having F(A,r^,,) ) r for r e [0, 1]

and we verify that the diagonal elements of OH (r)O(r) are dominant, with very high

probability, compared to its off-diagonal elements. This justifies the following approxima-

t ion:

L - l

IDH (r)D(r) l*,n: t

TL,

Tn

I
TTN

2trr  r ' )

lct l-  exp

m - l

{ ,

2. .

) )

n .

(s.67)

(s.71)
L _ L

oH(r)o(r) = I lr,l 'ro.
t:0

Appendix 2

Model used to estimate from the channel coefficients ma-

trix

The development presented in the main body of the article is based on the observation

matrix Z. In this case, the columns of Z are uncorrelated because of the presence of

110



ts
n 0

F
f:

< 0--
5
9 0

a o

0 . 1 0.3 0_5
T

FrcunB 5.6 - Complementary cumulative distribution function of the ratio F(Lr^,,).

uncorrelated transmitted symbols. But if we went to use the channel coefficients matrix

fi : lfrT, fr[,. . . , frT,], these symbols are no longer presents and the columns of

ff ur" correlated. So we introduce a small modification on the formulation to remain the

two algorithms valid. This problem can be solved if viewed in the proper way. First, we

perform a column-by-column FFT of {ff"}I:rto obtain :

f(. ,  :  D(r)$+t,
:  D(t) lg"(r) ,  g"(2), .  .  . ,  g"(A' [ ) ]  + e*,

where the matrix t,, is the resulting noise and g,(i) is the 'ith column of $ . From the

formulation in (5.72),we bring together all the channel coefficient in one matrix fi. defined,

A S :

fu : D,noaorlg!), g(2),. . ., g(M)l + t, (s.73)

in which S(i) : l7r(,)', gr(i)',. . . , gN(i)rlT and Dnod,if : IxED,where the operator

I stands for the Kronecker product. If we consider that the signal is transmitted through a

Rayleigh channel and we denote the maximum Doppler frequency by f n, the covariance

matrix of 9(f ) is given by :

0.8o.7

(s.72)

( Jo(0) Js(21r(N -

Rs: I  :  :
\ .r6(2n(N - t)f  oT) /o(0)

t)/"7)\

I a E, (s.74)

)

Taking into account (5 .73) and (5 .7 4), the implementation of the two algorithms using the

channel information matrix is straishtforward.
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Appendix 3

CRLB for MC-CDMA using the channel coefficients ma-

trix

We use a similar developments as presented in Appendix II, with the difference that here

we deal with time and frequency correlation. We define iL"r,, u, the column by column

FFT of the channel response matrix fr;, fot the kth subcarrier and nth observation which

is given by :

fu'rn : o(r)Jfl t  €n,n
:  D( t ) lgr , " ( I ) ,  gk, , (2) , .  .  . ,  gk, , (M) l  +  8r , " , (s.75)

where gn,"(i) is the i'h column of Jffi. Then we gather the channel coefficients in the

matrix fL' givenby:

iL" :DWG), oe),. . . ,  s(A[)] , (s.76)

wi thg - (? )  : l sT , r ( i ) , . . . ,  sT , r . t ( d ) ,  gT , r ( i ) , . . . ,  sTw" ,z ( i ) , . . . ,  sT , ^ r ( i ) , . . . ,  gT t " ,w ( i ) ]  and

D : Ix 8Iu" I2. Denoteby Q(Lf,Al) the autocorrelation of the channel transfer

function (we suppose here uncorrelated scattering where the autocorrelation transfer func-

tion in frequency is a function of only the frequency difference Lf [27], the covariance

matrix of g'(d) is Rn. : iD E -R.7 where the elements of iD are function of /(A/, Al).

Injecting Rs" andD in6.ZO), the CRLB can be written in this alternative way :

_ q  \ \(cnrn-r (')) " : d:f."." f*,,;.ri,ilri*r:'"r,"!,,o"  L  \  
6 .77 )

where R71" is the covariance of ?L" andD; andD;are the derivativeof D and 2 with

respect to ri, respectively. If we denoteby Ba the kth P x P block on the diagonal of

nn.Dn4LDRn",we get

(cnI-n-1(z)) ,- 
: (s.78)

then we obtain the following expression of the CRLB :

'4n{E 
@f $-n).,0) "r(n,i)\,

#1.{f u'0-r)u."-}]-'
t t2

CRLB(z) : (s.7e)



I

Under certain conditions, iD can be easily expressed. In fact, d(Lf ,At) is given by

l27 l :

where $.(r, Lt) is the autocorrelation function of the channel impulse response. If the

different paths have a Rayleigh distribution, d"(t, Al) can be written as :

dAf .4,) : 
I_-J f ,r. 

Ltle-i2n^r'dr.

/n+-
Q"(r, Lt! : I r1r7lo(2r f pLt)e- j2rL'fr 4,

J _cx

: Js(2rf pLt)er(Lf)

(s.80)

(s .81)

Then Q : J I Fy where Fr(t, j) : Ft((i - j)AlT*c).

We verify that in the absence of time and frequency correlation, the expression of the

CRLB obtained in(5.79) is the same as in (5.66).
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Conclusion

Dans ce m6moire, le probldme de synchronisation temporelle en communication num6-

rique a 6t€ trait6. Nous avons d6velopp6 des proc6dures d'estimation du d6lai de propaga-

tion bas6es sur le critdre de maximum du vraisemblance pour divers systbmes de commu-

nication. Le premier estimateur est ddvelopp6 pour les signaux modul6s oir les symboles

6mis sont inconnus. La m6thode "importance sampling" (IS) est adaptde pour trouver l'es-

tim6 h maximum de vraisemblance. Bien qu'il soit d6velopp6 sous I'hypothbse d'un seul

trajet de propagation, il trouve des applications dans plusieurs systdmes tels que les com-

munications satellitaires. Une extension au cas multi-trajets est aussi proposde. Dans cette

configuration, nous nous retrouvons face d plusieurs d6lais d estimer. Bien que la fonction

de vraisemblance soit multidimensionnelle, I'IS offre une proc6dure attirante pour trans-

former le problbme multidimensionnel en un probldme unidimensionnel. Autre contribu-

tion, nous avons d6velopp6 deux algorithmes de synchronisation pour les systbmes CDMA

mono-porteuse et multi-porteuses. Le premier algorithme reprend le principe de I'IS au ni-

veau du signal aprds d6s6talement. L'autre algorithme se base sur la m6thode "expectation

maximization" (EM) qui transforme le problbme multidimensionnel en de simples op6ra-

tions unidimensionnelles dont le nombre augmente lindairement avec le nombre de trajets

d6tect6s. Bien que les deux m6thodes soient des impl6mentations du mOme critdre, cha-

cune possdde ses propres points forts. La m6thode EM estime des d6lais de propagation

avec une complexitd relativement faible compar6e d dSautres algorithmes puisque, tel que

d6montrer dans ce mdmoire, l'estimation des diff6rents d6lais peut se faire en parallble,

ce qui r6duit le temps de calcul. Les simulations montrent que cet algorithme pr6sente de

meilleur performance que les techniques de sous-espace tel que le Root-MUSIC et ceci en

utilisant de bonne initialisations, qui doit 0tre soulign6 comme un point faible de l'algo-

rithme. La performance de I'algorithme EM d6grade consid6rablement dans le cas d'une

seule antenne r6ceptrice alors que I'algorithme Root-MUSIC 6choue complbtement d es-

timer les d6lais. D'un autre cot6, I'algorithme IS ne n6cessite aucune initialisation et offre

de bonne performance mOme en pr6sence d'une seule antenne r6ceptrice, et ceci au prix

d'une complexit6 accrue. Nous montrons aussi par simulations que les dimensions espace,

temps et fr6quence (pour les systbmes multi-porteuses) ont le mOme effet sur les perfor-

mances de ces estimateurs.

I-lautre volet trait6 dans ce rapport est la d6rivation des expressions analytiques des bornes
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de Cram6r-Rao des estimateurs non biais6s du retard pour les modulation BPSK, MSK

et QAM carr6es en estimation aveugle. Ces expressions analytiques r6vblent que les per-

formances d'estimation du d6lai ne d6pendent pas de la valeur du parambtre en question,

chose qu'on ne pouvait pas confirmer auparavant en dvaluant les bornes de Cram6r-Rao

par des m6thodes empiriques et que I'estimation du ddlai est independent de l'estimation

de la phase et de la fr6quence. On dit que le d6lai est d6coupl6 de ces deux derniers pa-

ramdtres. Nous avons aussi d6riv6 les expressions de ces bornes pour les systbmes SC- et

MC-DS-CDMA. Dans ce cas, nous constatons que les trois dimensions : spatiale, tempo-

relle et fr6quentielle, agissent de la mOme fagon sur les performances d'estimation, se qui

confirme les r6sultats obtenus par simulations.

Cependant, plusieurs extensions restent d explorer. Dans ce m6moire, nous avons toujours

suppos6 que le bruit additif 6tait blanc et Gaussien. Ce sera intdressant de voir les modifi-

cations h faire, que ce soit au niveau des estimateurs de des CRLBs, si le bruit est color6.

De plus, le canal de propagation dans les chapitres 1 et 3 est suppos6 constant. Uadapta-

tion d'un canal variable refldte mieux larlalitf du canal de transmission. Aussi,la CRLB

est d6velopp6e dans le chapitre 2 sous I'hypothbse d'un seul trajet de propagation. La

ddrivation de la CRLB dans un canal d multi-trajets reste un bon sujet de recherche. En

ce qui concerne le 5em chapitre, nous avons suppos6 que les antennes sont d6corr6l6es.

U6valuation de la robustesse des estimateurs d6velopp6s dans ce chapitre en cas dSan-

tennes corr6l6es reste d venir et le d6veloppement d'estimateurs qui tiennent compte de

cette corr6lation serait peu 6tre d'actualit6 si jamais nous remarquons une d6gradation de

performance dans ce cas.
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