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Abstract 

Unlike a conventional laser propagating along a straight line, a self-accelerating beam has the 

characteristic to follow a curved trajectory in a linear homogeneous medium, thus introducing 

transverse acceleration. Research on this field started in 2007 with the introduction of the Airy 

beam in an optical context. Such a beam propagates without diffraction along a parabolic 

trajectory, while exhibiting an Airy-shaped amplitude profile. Another property associated to 

the Airy beam is its capability of “self-healing”. Should one attempt to block a part of the 

beam at a certain distance, the Airy beam would “regenerate” during propagation. These 

intriguing features have made the Airy beam ideal for several applications in diverse fields of 

science. To name a few, we can mention optical bullets, curved plasma channels, electron 

accelerating beams and optical trapping. In the time domain, the counterpart to an Airy beam 

is an Airy pulse, showing the same properties in time when propagating in a linear regime. 

Nevertheless, in nonlinear media, an Airy beam/pulse behaves differently, due to the breakup 

of its acceleration by the nonlinearity. This constitutes a clear disadvantage, eventually 

limiting the possible range of applications of these wave packets. Meanwhile, over the last 

few years, the concept of acceleration has been extended beyond the parabolic case. In 

particular, further research advances on this topic have reported self-accelerating beams 

propagating along any arbitrary trajectory. Interestingly, the possibility to generate self-

accelerating beams has also been investigated in the framework of the so-called “non-

paraxial” regime, where beams accelerating along large bending angles have been 

demonstrated.  

In this dissertation, we numerically and experimentally investigate the linear and nonlinear 

dynamics of optical self-accelerating wave packets. In the linear regime, one of the technique 
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used to generate such wave packets is based on the spectral amplitude and phase modulation 

of a standard laser beam. We introduce an analytical approach able to predict theirs curved 

paths, in the one- (or (1+1)D), two- (or (2+1)D) and three-dimensional (i.e. spatio-temporal or 

(3+1)D) cases, starting from the knowledge of the applied spectral modulation. Conversely, 

our method allow us  to achieve any desired convex path by accordantly designing the spectral 

modulation. 

Based on this study, we also propose and demonstrate a practical and easy technique to 

confine the energy of self-accelerating wave packets. In particular, we show that a significant 

enhancement of the peak intensity of these beams can be achieved, while preserving their 

intrinsic properties. 

Finally, we study the nonlinear propagation of Airy beams and pulses. Specifically, we show 

that these self-accelerating wave packets are capable to preserve their accelerating properties 

in Kerr and photorefractive nonlinear media when their initial spectral modulation is properly 

engineered. 
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Introduction 

One of most apparent property of light which we observe in our daily life is its rectilinear 

propagation. Fundamental physics reports that light can behave either as a particle or as a 

wave, for which most optical phenomena can be described by the classical electromagnetic 

theory [1]. Actually, such a description can also be provided by means of simplified models, 

either based on geometric optics or wave optics. An essential result of geometric optics is that 

light, described as a collection of rays, travels through a straight line in free space or in a 

medium. At the interface between different media where the refractive index changes (and 

hence the light velocity), the light rays are refracted and reflected at the interface, thus 

changing their directions according to the Snell’s law.  

Depending on the exact interface shape, light rays that are refracted or reflected can be used to 

reshape light propagation (as required for example for reading glasses), or even lead to the 

formation of so-called “caustic” patterns. The word “caustic” comes from Latin and means 

“burning”. In the optical context, a caustic is a curve or surface where an intense concentration 

of light is observed. In particular, a caustic corresponds to the envelope of a family of light 

rays that defines a boundary between two regions where the light intensity is respectively zero 

and nonzero. On one side of the caustic, the intensity decreases rapidly to zero, whereas on the 

other side, a complex pattern of interference fringes can be observed. Such an interference 

pattern arises from the interaction between at least two coherent waves, resulting in a change 

of the light intensity distribution. Depending on the phase of each wave, the optical intensity 

will increase (decrease) if a constructive (destructive) interference occurs. A typical example 

is shown below, where two cases of caustics commonly observed are those formed by the 

sunlight shining on a glass of water or at the bottom of a swimming pool.  
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Diffraction is another phenomenon that is known to deviate light from its rectilinear 

propagation. In contrast with refraction or reflection, diffraction is connected with light 

transmitted by an aperture or opaque obstruction. This phenomenon is explained by the 

Huygens’s principle [2]. Such principle states that each point of a wave front acts as source of 

a secondary waves, which interfere so to create a new wave front. Diffraction is also 

responsible for the divergence of a standard laser beam along free space propagation, whose 

most famous example is the case of a Gaussian beam evolution and spatial spreading. 

However, diffraction can be overcome in order to preserve the beam profile shape, by 

employing optical waveguide or exploiting the nonlinear properties of some materials to 

compensate diffractive effects (through the generation of so-called solitons). 

 

 

Figure I.1: Light caustics formed by sunlight incident on a glass of water and at the bottom of a 

swimming pool (Figure adapted from Wikipedia: www.wikipedia.org/wiki/Caustic_(optics)). 

 

In 1987, J. Durnin introduced and demonstrated the zero-order Bessel beam [3-4], whose 

transversal intensity profile is described by a Bessel function. More importantly, a Bessel 

beam maintains invariant its intensity profile during the propagation, and is therefore referred 

as non-diffracting beam. Since its discovery, the term “non-diffracting beam” has been 

extended to the free-space case, while more general types of shape-preserving beams have 

also been reported [5-8]. The diffraction invariance of these beams is explained by looking at 

the particular composition of their spectra, which rely on the superposition of plane waves 

whose wavevectors are localized onto a conical surface, while carrying an infinite energy. 
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This is the reason why ideal non-diffracting beams cannot be physically realized. In practice, 

only a finite energy version of these beams can be experimentally obtained, by ‘bounding’ an 

ideal non-diffracting beam through a transmitting finite or Gaussian aperture. A way to obtain 

such finite-energy non-diffractive beams is to employ light modulation methods. In particular, 

the wave front of a collimated Gaussian beam is amplitude or/and phase modulated by means 

of optical devices that can be either passives (e.g. slit, wedge, grating, axicon lens, etc.) or 

actively controlled (such as Spatial Light Modulator (SLM). By properly engineering the 

amplitude and phase masks, the modulation results in the formation of an electric field profile 

corresponding to the desired non-diffracting beam. It is worth mentioning that light can be 

generally controlled by modulating its wave front both in amplitude and phase in either the 

real or Fourier space.  

Nevertheless, the above-mentioned non-diffracting beams are only found in the two spatial 

dimensions (2+1)D regime. Non-diffracting spatio-temporal (or (3+1)D) configurations that 

are impervious to both dispersion and diffraction have also been proposed [9-10]. Similar to 

diffraction in space, dispersion broadens the temporal profile of a wave packet because its 

different frequency components travel with different phase velocities, due to the frequency-

dependence of the refractive index of the material. In the (1+1)D regime, an Airy wave packet 

is the unique free-dispersive configuration. Such mathematical function was introduced in the 

field of quantum mechanics more than thirty years ago by Berry and Balazas [11], as a 

singular solution of the Schrödinger equation describing the motion of a particle in absence of 

an external potential. Its profile is analytically described by an Airy function [12] and tends to 

accelerate with a parabolic evolution. In 2007, the Airy beam was also introduced and 

demonstrated in the optical framework by G. Siviloglou et al. [13-14]. Like its counterpart in 

quantum mechanics, an Airy beam is able to propagate in free-space along a parabolic 

trajectory. In particular, it possesses the properties of non-diffraction and self-healing (i.e. it 

regenerates itself after being obstructed at a given distance [15]). The main outcome of the 

Airy beam (re)discovery lies in the possibility to “engineer” light that does not propagate 

along a straight line. From a physical viewpoint, the bending propagation of such a beam can 

be explained as an interference of optical waves resulting in the formation of a caustic 

appearing in the Airy intensity profile of the beam. Such a beam is physically generated by 



xi 

 

impressing a cubic phase modulation to an input laser in the Fourier domain. Over the last few 

years, important research efforts on this topic have been dedicated to extend and expand the 

concept of Airy beam to a more general class of self-accelerating wave packets. For example, 

self-accelerating beams propagating along any arbitrary convex trajectory can be designed by 

engineering the phase of a light-beam in the real space [16-17] or in its Fourier counterpart 

[16,18]. Such self-accelerating beams exhibit Airy-like intensity profiles, but are ultimately 

affected by diffraction and remain non-broadening only over a limited propagation range. The 

concept of self-accelerating beam has been also extended into the non-paraxial regime, where 

the curved trajectories of larger bending angles do not comply anymore with the paraxial 

approximation [1]. It should be mention that Airy beams tend to break up in such a non-

paraxial regime, and their use is therefore limited in many applications. To date, we can 

generate beams propagating along a circular, a parabolic and an elliptical trajectory, 

respectively corresponding to the patterns described by a half-Bessel [19-20], a Weber or a 

Mathieu [21] function. Besides these methods, non-paraxial beams can also propagate along 

any arbitrary convex trajectory by means of engineering the initial beam phase structure in 

both real [17,22-24] and Fourier regime [18].  

Under nonlinear propagation regime (i.e. when the refractive index is dependent of the local 

beam intensity), the accelerating property of a spatial or temporal Airy wave packet is affected 

by the nonlinearity, especially when considering an evolution under a so called “self-

focusing” nonlinear regime [25-27]. Several efforts have been made to control and preserve 

the self-accelerating trajectory under different nonlinear effects, such as Kerr, photorefractive 

(PR) and quadratic media [26,28-31]. The formation of accelerating self-trapped optical 

beams was alternatively proposed by employing different self-focusing and defocusing 

nonlinearities [31-32].  

In contrast to all the non-diffractive beams reported in the literature, an Airy beam can exist in 

the one-dimensional (1D) configuration. This offers an opportunity to generate Airy pulse as a 

result of time-space duality. In analogy with its counterpart in the spatial domain, an Airy 

pulse propagates without the pulse spreading typically arising from dispersion, and for which 

the pulse envelope tends to either accelerate or decelerate. In this context, several works have 

been reported regarding Airy pulse propagating under different dispersion regimes (i.e. with 
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the inclusion of higher-order dispersion) or mediated by nonlinear effects, especially in fiber 

optics systems [27,33-36]. One of most interesting applications of Airy pulses is the 

synthetization of linear optical Airy bullets, which are both non-diffractive and non-dispersive 

spatio-temporal wave packets. Such types of bullets can be achieved by combining an Airy 

pulse and a two-dimensional (2D) non-diffractive beam, such as for example Bessel and 2D 

Airy beams [37-38]. In particular, an Airy bullet obtained by combining an Airy pulse and a 

2D Airy beam retains all the intriguing properties of its two-dimensional counterpart, such as 

both a parabolic trajectory and self-healing. In this framework, self-accelerating beams have 

been proposed for several applications in optics and many other fields. For instance, their 

bending trajectory have been employed to generate curved plasma channels [39]. In the field 

of bio-photonics, they have been utilized for optical trapping, e.g., attracting and moving 

particles from one box to another along a curved trajectory [40]. It should be noted that the 

concept has also been extended to other fields of physics. Very recently, Airy electron beams 

and curved electric discharge were also observed [41-42].  

In the following, we report our results and achievements on self-accelerating wave packets 

evolving in both a linear and a nonlinear regime. In particular, we study their propagation 

dynamics by focusing our attention on the spectral features displayed by these peculiar optical 

wave packets. 

 

In Chapter 1, we provide an overview on the linear and nonlinear generation and control of 

self-accelerating wave packets and recent developments in this area. At first, the propagation 

dynamics and the intriguing properties of optical Airy beams are reviewed. Then, we 

introduce in some details the state-of-the-art regarding paraxial and non-paraxial self-

accelerating beams and their propagation dynamics in free-space. An overview of the most 

important works studying the nonlinear dynamics of these beams is also provided in this 

chapter. In the temporal domain, we provide examples illustrating the propagation dynamics 

of Airy pulses in optical fibers under different dispersive and nonlinear regimes. In the spatio-

temporal regime, we also explain the concept of linear optical Airy bullet and present the 

efforts carried out so far to their achievement. Finally, we succinctly provide a summary of the 
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most important applications proposed and demonstrated to date for self-accelerating beams in 

optics and other related physical systems. 

Although self-accelerating beams can be engineered along any arbitrary convex trajectory in 

the linear regime, until now most efforts were focused into the study of smooth and single-

path light localizations. From a physical point of view, this beam evolution relies on the 

application of specific monotonic phase modulations, in the either the real or Fourier domain. 

To date, the presence of non-monotonic phase modulations has not been investigated. 

Therefore, it is natural to wonder whether the application of a non-monotonic phase can lead 

to multi-path accelerating beams or analogous dynamics. Furthermore, several studies have 

also introduced self-accelerating beams propagating along curved and periodic trajectories 

rather than smooth paths [20,43-44]. Such periodic accelerating beams can be realized by 

applying both a phase and an amplitude modulation in the Fourier regime. Nevertheless, they 

lack of a general and detailed explanation which may pave the way to the design of beams 

with any desired profiles. Besides, most of the works reported to date are limited to the 

consideration of 1D beam configurations only, and mainly focused on engineering the beam 

trajectory. The 2D dynamics and spatio-temporal configurations that can provide useful tools 

for practical applications has not been examined in a general way. Another aspect that is 

worth investigating is the possibility to optimally confine the energy carried by these 2D and 

three-dimensional (3D) wave packets, usually associated with patterns occupying a large area 

filled by an intense main lobe and several sub-lobes. This feature constitutes a disadvantage, 

especially for applications where low energies and a high confinement are simultaneously 

required. Oddly, the relevant problem of the optimal energy confinement has been ignored up 

to now, especially for arbitrary trajectories. Although some works reported 2D self-

accelerating beams with a short tail of sub lobes, those were only limited to a parabolic 

trajectory case, and do not quantify the energy confinement achieved by these beam profiles 

[45-47]. In the nonlinear regime, the main issue comes from maintaining the accelerating 

property of these wave packets in the presence of various nonlinear effects. As mentioned 

above, several works reported that an Airy beam (as well as an Airy pulse) is not able to 

preserve the self-accelerating features when propagating in photorefractive or Kerr media [25-
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26]. Thus, it is reasonable to question whether it is possible to find a method to maintain, even 

in the presence of a strong self-focusing or de-focusing nonlinearity, the accelerating 

properties of high-intensity Airy beams or pulses.  

In this dissertation, we specifically address these issues by investigating the linear and 

nonlinear dynamics of self-accelerating wave packets from the viewpoint of the Fourier 

spectrum and, in particular, by emphasizing the connections with the real space features of 

these wave packets. The novel results reported in this thesis are organized according to the 

following structure: 

 

In Chapter 2, we introduce the concept of spectral phase gradient. We show that this concept 

defines a spectrum-to-space mapping, in which different key spatial frequencies are related to 

different propagation distances. The trajectory of a self-accelerating beam can be thus 

determinated a priori through this mapping. Furthermore, our theory allows to estimate the 

spectral phase required for generating a beam with any desired convex trajectory. We show, 

both theoretically and experimentally, that this approach can be used to generate one-

dimensional single- and multi-path self-accelerating beams, in the paraxial approximation. We 

also demonstrate that the method can be applied to non-paraxial self-accelerating beams as 

well as vectorial wave fronts. In particular, the breakup of the Airy beam in the non-paraxial 

regime is discussed from another viewpoint. In the same chapter, the combined influence of a 

spectral phase and amplitude modulation on the dynamics of curved beams is also 

investigated. We demonstrate, both analytically and experimentally, the possibility of 

generating self-accelerating beams evolving along any “periodic” convex path.  

 

In Chapter 3, we generalize the concept of spectral phase gradient to the (2+1) and (3+1)D 

regime. Similarly to the case of 1D self-accelerating beams, we can either predict the convex 

trajectories or estimate the spectral phase associated to these self-accelerating wave packets 

through a spectrum-to-distance mapping. Taking advantage of the spectral features of these 

wave packets, i.e. by appropriately reshaping their Fourier spectra, we also propose and 

demonstrate a practical method to confine the energy of the beam predominantly into its main 

hump. We report experimental observations of optimized 2D self-accelerating beams for three 
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typical trajectories generated by designing an appropriate spectral phase and amplitude 

modification based on our theoretical findings. In the spatio-temporal regime, i.e. (3+1)D, we 

investigate the extension of this approach for generating optical Airy bullets with a reduced 

spatio-temporal expansion, thus associated with an enhanced energy confinement. Finally, we 

verify that these optimized self-accelerating wave packets in both (2+1) and (3+1)D regimes 

retain both the expected acceleration profiles and the intrinsic self-healing properties.  

 

In Chapter 4, we investigate the evolution of optical Airy beams and pulses under various 

scenarios of nonlinear propagation regimes. Spatial Airy beams are studied in photorefractive 

media in the presence of either a self-focusing or a self-defocusing nonlinearity, while 

temporal Airy pulses dynamics are considered in optical fiber propagation under the combined 

influence of a normal (and an anomalous) group velocity dispersion with a nonlinear Kerr 

effect. We demonstrate, both numerically and experimentally, a scheme to preserve and 

control the bending propagation and the spectral features of these optical wave packets even 

under nonlinear conditions. In particular, we experimentally observe that the linear spectrum 

of an Airy wave packet is dramatically reshaped under nonlinear propagation, and that most of 

the spectral content becomes concentrated into self-shifting positive or negative defect, 

formed by one or two peaks. In correspondence of the defect area, we show that the central 

frequency of both positive and negative defects linearly changes at each propagation distance, 

thus indicating a mapping between propagation distance and frequency domain. 
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Chapter 1 

Review of the literature 

Self-accelerating beams are optical light localizations that are capable of propagating along 

curved paths. The Airy beam was the first self-accelerating beam to be introduced and 

demonstrated in optics. This optical beam can propagate along a parabolic trajectory without 

experiencing diffraction. Over the last few years, the research on this field has been growing 

rapidly: New types of self-accelerating beams have been introduced and several applications 

have been proposed in optics and related fields of physics. In this chapter, we provide a brief 

overview of the state of the art regarding this subject. Since it expands well beyond the scope 

of the work reported in this thesis, this literature review does not mean to be exhaustive, but 

rather introduces the concepts required for understanding what is  reported in the next chapters 

as well as to provide a broader context to the problematics treated in this thesis.      

 

1.1 Diffractive and non-diffractive beams 

When a typical laser beam propagates in free-space, its transversal Gaussian intensity profile 

undergoes a continuous broadening because of diffraction. In the temporal domain, dispersion 

affects the propagation of an optical Gaussian pulse in a dielectric medium, usually leading to 

the spreading of the pulse profile and to an increase of its duration. Over the years, non-

diffractive and non-dispersive wave packet configurations have been reported in optics as well 

as in other physical systems. Such optical localized wave packets are shape-preserving during 

propagation, and can be introduced in the two-dimensional (2D) or three-dimensional (3D) 

regime. The most widely known non-diffracting wave packet is the Bessel beam which was 

first introduced by J. Durnin et al. [3-4]. This pioneering work has paved the way to the 

discovery of other non-diffractive solutions [5-8] including Mathieu [8] and parabolic beams 



2 

 

[6], as well as high-order Mathieu [7] and Bessel beams [5]. In optical systems, such as 

photonics crystals, exhibiting normal and anomalous diffractions along the two different 

directions, non-diffractive X-waves [9] and Bessel-like beams [10] have been also introduced. 

However, such non-diffractive beams exhibit non-diffractive propagation because they convey 

infinite power. Although not realistic from an experimental viewpoint, in practice, quasi 

“diffraction-free” beams can be obtained with a finite-energy version – essentially truncated 

by an aperture. In this case, the diffraction rate can be significantly slowed-down depending 

on the truncation factor used. Recently, self-accelerating wave packets capable of propagating 

along a curved trajectory have attracted a great deal of interest. Among them, the Airy beam 

(or pulse), first introduced in optics, propagates along a parabolic trajectory without any 

diffraction (or dispersion) [11,13]. Unlike other non-diffractive configurations, Airy wave 

packets can also exist in the 1D regime. Since its first demonstration, an ever increasing 

interest has been devoted not only to the study of Airy beams, but also of self-accelerating 

wave packets in general. In the following chapter, we provide an overview of the recent 

developments in this research area, essential to placing the results provided throughout this 

thesis in an appropriate multidisciplinary context, while offering the key scientific concept 

needed for its understanding. In particular, starting from the concept of Airy beams, we 

discuss a selection of publications reporting on numerical and experimental studies in the field 

of self-accelerating wave packets in different frameworks, such as spatial and temporal, linear 

and nonlinear regime, as well as the most relevant proposed and demonstrated applications. 

 

1.2 Paraxial approximation of the light 

In optics, the light propagation is generally described by the Maxwell's equations [1]. Let us 

consider a scenario where a one-dimensional (1D) optical beam (with x-axis variation) is 

propagating in free-space along the z-axis, and is also linearly polarized along the x-axis. In 

this case, the optical beam is only experiencing diffraction along the x-axis. Under this 

condition, the propagation dynamics of a linearly-polarized electric field 

( , , ) ( , , )xx z t E x z tE x  can be described by the scalar wave equation [2]: 
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In the Eq. (1.1), ( , , )xE x z t  the x-component of the electric field, t is the time coordinate. 

Solutions to Eq. (1.1) can be found by defining ( , , )xE x z t  as:  

  0( , , ) ( , ) ,
i kz t

xE x z t E x z e


   (1.2) 

where ( , )E x z  and k = n0ω0/c refer to the complex envelope and the wavenumber, 

respectively, while ω0 is the angular frequency, n0 is the refractive index, and c the light 

velocity. By substituting the latter expression into Eq. (1.1), the complex envelope ( , )E x z of 

the x-component of the electric field obeys to the Helmholtz equation, explicitly expressed as: 
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  (1.3) 

Under the paraxial condition, the approximation 
2 2| |/ /2 | |E Ez k z      is valid, hence 

propagation dynamics can be described by the paraxial wave equation of diffraction so that: 
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  (1.4) 

 

1.3 Optical Airy beam 

In the context of quantum mechanics, M. Berry and N. Balazas theoretically demonstrated in 

1979 that the Schrödinger equation describing the propagation of a free particle admits an 

Airy wave packet as a unique non-spreading solution in the (1+1)D regime [11]. In this paper, 

not only they demonstrated that an Airy wave packet remains invariant in time, but also that 

the Airy solution is able to accelerate along a parabolic trajectory in the absence of any 

external potential. Nevertheless, this work has been set aside for about thirty years due to the 

fact that such an Airy wave packet could not be experimentally realized in quantum 

mechanics. Meanwhile, optics has offered, over the years, a fertile and straightforward ground 

to investigate and demonstrate the proprieties of non-spreading or non-dispersive wave 
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configurations, even though initially introduced in other physical settings such as atom 

physics. This analogy origins from the mathematical correspondence between the paraxial 

Helmholtz equation in optics and the Schrödinger equation in quantum mechanics [48]. In 

2007, G. Siviloglou et al. [13-14] proposed and demonstrated experimentally the first 

generation of an optical Airy wave packet in optics (commonly referred as Airy beam). In 

what follows, and in in order to introduce the reader to the context, we will provide a detailed 

digression about their work.  

 

1.3.a Infinite-energy Airy beam 

The analysis starts from the normalized (1+1) D paraxial Helmholtz equation that governs the 

propagation dynamics of the electric field envelope φ( s, ξ ) = E( s, ξ ) of an optical beam: 

 

2

2

1
0,

2
i

s

 


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 

 
  (1.5) 

where s = x /x0 and ξ = z / k0 n0 x0
2

 denote normalized transverse and longitudinal coordinates, 

k0 is the  vacuum wave number, and x0 is an arbitrary length scale. This equation assumes that 

the angle between the propagation axis and wave vectors is small enough so that the wave 

does not significantly deviate from it. The solution to Eq. (1.5) is a non-spreading Airy beam 

[11,13]: 

  
2 3

,   exp exp , 
4 2 12

s Ai s is i
  

 
    

     
    

  (1.6) 

where Ai is the Airy function [12] and φ( s, 0) = Ai(s) is electric field envelope at the input 

(ξ = 0). Eq. (1.6) shows that this Airy solution is diffraction-free, and experiences a transverse 

shift along a parabolic curve (s = ξ
2
/4) during propagation [Fig. 1.1]. An ideal Airy beam is 

characterized by an asymmetric amplitude profile, formed by a more intense main lobe and an 

oscillating tail of sub-lobes decaying very slowly for negative values of s, (i.e. 

1/2 1/4 3/2( ) sin(2 / 3 / 4)Ai s s s     ) as s  ) [12]. 



5 

 

 

Figure 1.1: Propagation dynamics of an inifnite-energy Airy beam. False color plot of the spatial 

evolution of the Airy beam intensity. The red inset shows the corresponding input intensity profile. 

(Figure reproduced from Ref. [14]). 

 

For positive values of s, the Airy solution decays exponentially. An interpretation of the 

acceleration process was provided by D. Greenberger through the principle of equivalence 

[49]. Other physical interpretations explain the origin of the bending propagation as an 

interference of straight line rays converging into a caustic [17-18,50-52]. The free-diffraction 

property is essentially associated with the inherent infinite-energy nature of the beam profile. 

In fact, an Airy beam is not square integrable  2
( )Ai s ds




 , and as consequence the 

center of mass cannot be defined. This means that the self-accelerating behavior does not 

violate the Ehrenfest’s theorem [48], describing the motion of a center of mass. In practice, 

“ideal” Airy beams are impossible to realize experimentally, as they would require an infinite 

amount of energy. An Airy beam can still be synthesized by using a truncation aperture 

function, thus obtaining a finite-energy Airy beam (also commonly called Airy beam by 

extension) [13-14,53].  

 

1.3.b Finite-energy Airy beam 

The most common way to obtain a finite-energy Airy beam is by applying an exponential 

aperture function at the system’s input such as [13-14]: 

    ,0   ( )exp , s Ai s s    (1.7) 
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Where α > 0 is the truncation factor [Fig. 1.2(a)]. The solution to Eq. (1.5) with the initial 

condition of Eq. (1.7) is found to be: 

  
2 2 3

2,   exp exp , 
4 2 12 2 2

s Ai s i s i i is
    

     
     

          
     

  (1.8) 

which reduces to the ideal case when α = 0. Unlike the ideal case, the total power associated to 

this truncated Airy beam possesses a finite value that is dependent on the truncation parameter 

α as: 

 
3

2 1 2
( )exp( ) exp

8 3
Ai s s ds










 
  

 
   (1.9) 

Despite the initial truncation, this finite-energy Airy beam still exhibits the property of an 

ideal Airy beam. It tends to self-accelerate along the same parabolic trajectory with a quasi-

diffraction free propagation. In the work proposed by G. Siviloglou et al. [13-14],  an Airy 

beam was propagated up to a distance of 1.25 m, using α = 0.1, x0 = 100 μm and λ = λ0 /n0  = 

0.5 μm. For these values, the intensity full-wave half maximum (FWHM) width of the (more 

intense) main lobe is 173 μm.  

As shown in Figs. 1.2(b, c), such an Airy beam not only shifts transversally during 

propagation, but its main hump also remains almost invariant for 75 cm of propagation before 

being affected by diffraction. Interestingly, the authors also reported that a conventional 

Gaussian beam with the same initial width would, for the same propagation distance, have 

undergone a spatial expansion 6 times larger. Moreover, it is possible to define the center of 

mass of a finite-energy Airy beam. In particular, such a center of mass is constant with 

distance and is described by the following equation: 
2

( ) 1/ ( , )s N s s ds  



 

3(4 1) / 4 ,    where  1/ (8 )N 
3exp(2 / 3)  [54-55]. 
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Figure 1.2: Propagation dynamics of a finite-energy Airy beam. (a) Input intensity profile as a 

function of the normalized trasversal coordinates s. (b) Intensity distribution showing the propagation 

dynamincs of a finite-energy Airy beam. (c) Intensity profiles as a function of the real trasversal 

coordinate x at selected distances z ((i) z = 0 cm, (ii) 31.4 cm, (iii) 62.8 cm, (iv) 94.3 cm, and (v) 125.7 

cm). (Figure adapted from Ref. [13]). 

 

The results obtained for the one-dimensional (1D) Airy beams were readily generalized to the 

(2+1)D scenario. In this case, the solution is found by solving the normalized (2+1)D paraxial 

equation: 

 
2 2

2 2

ˆ ˆ ˆ1 1
0

2 2x y

i
s s

  



  
  

  
  (1.10) 

where  , ,ˆ
x ys s  is the electric field envelope, sx = x / w0  and sy = y / w0  are, respectively, the 

normalized transverse coordinates (with w0  scale factor) along the x and y directions, and ξ = 

z / k0 n0 w0
2

 denotes the normalized longitudinal coordinate. αx  and αy  are the truncation 

parameters along  x and y. One easy way to find a two-dimensional (2D) Airy beam is 

obtained by  multiplying two 1D Airy solutions, respectively along the x and y directions as: 

          , ,0   exp exp , ˆ
x y x y x x y ys s Ai s Ai s s s     (1.11) 

The evolution of a 2D Airy beam is found as:  

      , , , ,  , ˆ
x y x ys s s s        (1.12) 
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where  ,is   (i = x or y) are the 1D electric field profiles in Eq. (1.8). This 2D Airy beam 

has an asymmetric intensity profile composed by a highly-confined main lobe spot in the      

(x- y) plane, and two long tails of sub-lobes [Fig. 1.3(a)]. In the same study, Siviloglou et al. 

[2-3] also investigated numerically the evolutions of this 2D field configuration by 

using αx = αy  = 0.11 and w0 = 53 μm. In contrast to its counterpart in the 1D regime, results 

showed quasi non-diffractive propagation. The size of the main lobe spot remained almost 

invariant up to a distance of 25 cm, while accelerating in the longitudinal direction on the 2D 

parabolic trajectory with sx  = sy = ξ
2
/4. In the transverse plane, such acceleration corresponds 

to a shift of the 2D Airy intensity pattern along the 45o radial directions, as shown in Fig. 

1.3(a, b).    

 

 

Figure 1.3: Propagation dynamics of  a 2D finite-energy Airy beam. (a) Transverse intensity 

distributions of a 2D finite-energy Airy beam, (a) at the onset of the propagation (z = 0 cm) and  (b) 

after propagation ( z = 50 cm). (Figure adapted from Ref. [13]). 

 

In addition to this analytical and numerical study, the same authors experimentally 

demonstrated the first generation of optical Airy beams by using a Fourier transform approach 

[56], as illustrated in Fig. 1.4(a). Their method was based on the properties of the Fourier 

spatial spectrum of an initial Airy beam in Eq. (1.7),  given by: 

      2 3 2 3,0  exp e .3xp
3

i
k k k k i  

 
   

 
   (1.13) 

(b) (a) 
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Such spectrum possesses a Gaussian amplitude, and involves a cubic spectral phase. As a 

result, an Airy beam can be easily generated by phase-modulating an incident Gaussian beam 

with a cubic phase distribution in the Fourier domain [Fig. 1.4(b)], and then computing its 

inverse Fourier transform. The same principle can be readily generalized even for 2D Airy 

beams. Indeed, the spectrum associated to the envelope field of Eq. (1.11) is

     ˆ , ,0 ,0 ,0x y x yk k k k   .  

 

Figure 1.4: Experimental demonstration of 1D (and 2D) Airy beams. (a) Scheme of the 

experimental setup. (Figure adapted from the Ref. [54]). (b-c) Cubic phase masks imprinted onto the 

incident Gaussian beam to generate (b) a 1D and (c) a 2D Airy beam. (Figures adapted from Ref. [14]). 

The phase structures shown are “wrapped” between 0 and 2π (i.e. modulo 2π), as typically uploaded in 

the SLM. The boundary values 0 and 2π correspond, respectively, to the white and black color in the 

grey scale pattern.  

 

Therefore, a 2D Airy beam can also be easily generated by phase-modulating a circular 

Gaussian beam with a 2D cubic phase distribution in the in the Fourier domain [Fig. 1.4(c)]. 

In the setup shown in Fig. 1.4(a), a linearly-polarized Argon-ion Gaussian laser                        

(λ0  = 0.4.88 μm) was firstly collimated to a FWHM of 6.7 mm and then sent to a spatial light 

modulator (SLM). Such a computer-controlled liquid crystal device was used to impress the 

1D (or 2D) cubic phase modulation onto the incident beam. To generate 1D (or 2D) Airy 
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beams, a converging cylinder (or spherical) lens (f = 1.2 m) was placed in front of the SLM in 

order to compute the Fourier transform of the spectrally phase-modulated Gaussian beam. The 

propagation of the Airy beam was monitored by imaging its intensity pattern using a CCD 

camera after the back focal plane of the Fourier-transforming lens. 

 

1.4 “Self-healing” of an Airy beam 

Along with the convex trajectory and a diffraction-free propagation, another remarkable 

characteristic of an Airy beam is its “self-healing” property. This feature refers to the ability 

of an Airy beam of self-reconstructing its shape during propagation, and is of particular 

importance when it propagates into inhomogeneous media or adverse environments. An 

infinite-energy Airy beam is able to self-heal at any propagation distance, while a finite-

energy Airy beam manifests self-healing only in the range of distances where a quasi-

diffraction free propagation is maintained (as mentioned above). J. Broky et al. studied the 

self-healing property of optical Airy beam [15]. They carried out a sequence of experimental 

observations where different parts of a 2D Airy beam were blocked. They observed that the 

2D Airy beam could regenerate itself after being blocked by an opaque obstacle, as shown in 

Figs. 1.5(a, b). Depending on the severity of the perturbation, the distance of self-healing 

varied during the experiment. In another set of measurements, the authors also demonstrated 

that an Airy beam can maintain its shape in scattering environments as well as turbulent 

media, while a standard Gaussian beam was seriously deformed.  

The self-healing property is not only a prerogative of Airy beams, but is a characteristic 

inherent to any non-diffractive beam. An explanation can be obtained using the Babinet’s 

principle [57]. Indeed, if a non-diffractive beam 𝜑̂(x, y, z = 0) is blocked at the onset of the 

propagation (z = 0) by a finite energy perturbation ε(x, y, z = 0), the resulting field is expressed 

as: U(x, y, 0) ≅ 𝜑̂(x, y, 0) ‒ ε(x, y, 0). Due its finite energy nature, the perturbation will diffract 

out during the propagation. As consequence, at very large distance only the non-diffractive 

beam will be present, i.e. 
2 2

ˆ( , , ) ( , , )U x y z x y z   . 

For an Airy beam, such self-healing process can be understood by studying the internal 

transverse power flow P  in the (sx - sy ) plane. H. Sztul and R. Alfano investigated the 
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Pointing vector P  and the angular moment of an unperturbed 2D Airy beam [58], reporting 

that P   follows the tangential direction to the curved trajectory. At each propagation distance, 

the transverse component of the main lobe energy flow ( P ) is thus directed along the 45
o
 

radial direction. Correspondingly, the direction of P  for the beam tails is initially oriented 

along the negative sx  and sy  axes, and then tends to rotate towards a direction orthogonal to 

these axes during propagation. However, the net energy flow remains constant and oriented 

along the 45
o
 radial direction. 

 

 

Figure 1.5: Self-healing demonstration of Airy beams. Experimental intensity distributions of a 2D 

Airy beam (a) at the input (z = 0) where its main lobe is blocked, and (b) after propagation at z = 30 

cm. (c) Self-healing mechanism revealed by the transversal power flow P (white arrows), for a 2D 

Airy beam in which the internal sub-lobes are obstructed at the input distance z = 0. (Figures adapted 

from Ref. [15]). 

 

Consequently to a perturbation, J. Broky [15] showed how the mechanism of self-healing 

occurs for an Airy beam. The power flows from the sub-lobes towards the region where the 

Airy beam has been perturbed by the obstacle. However, the Pointing vector of the main lobe 

is not involved in the self-healing process. The power flow associated to the main lobe is 

directed along the 45o
radial direction for sustaining the self-accelerating property, as shown 

Fig. 1.5(c). 
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1.5 Paraxial self-accelerating beams   

Most of initial progress on the field of self-accelerating beams was limited to the case of 

parabolic trajectories. In this framework, M. Bandres [45,59] demonstrated that the only 

orthogonal and complete families of explicit accelerating and diffraction-free solutions of the 

2D paraxial wave equation are the infinite-energy Airy and parabolic beams [45]. This means 

that if the light beam is constrained to remain diffraction-free, the unique valid bending 

propagation is in fact along a parabolic path. For finite-energy self-accelerating beams, this 

constraint does not apply. Indeed, E. Greenfield et al. [52] provided the first theoretical and 

experimental demonstration of quasi-free diffractive 1D self-accelerating beams along 

arbitrary convex trajectories. Using a caustic theory approach, they engineered the phase 

structures applied to an incident plane wave (in the real space) towards generating self-

accelerating beams with arbitrary convex paths (x = f (z)). To illustrate their theory, several 

cases of convex trajectories have been considered such as light beams propagating along the 

curves x = z
n 

(with n = 1.5, 2, 3, 4, 5) or along an exponential trajectory 1dzx b e    (with b 

and d positive constants) [see e.g. Fig. 1.6(a1, a2), respectively]. The authors showed that the 

transverse intensity profiles of all these beams exhibit an Airy-like shape and remain non-

spreading up to several Rayleigh lengths (zd = π x0
2
/ k). To experimentally demonstrate their 

method, a setup very similar to the one described above for the Airy beams has been 

employed besides the suppression of the Fourier transform lens, due to the imprinting of the 

desired phase mask directly in the real space [Fig. 1.6(a3)]. Using this framework, we have 

demonstrated theoretically and experimentally the “Fourier-generation” of 1D (and 2D) self-

accelerating beams along arbitrary convex trajectory, for which the caustic theory has been 

here applied to the Fourier domain (Y. Hu et al. [18]). Such a method permits the design of 

spectral phase modulations which can be applied to an incident plane wave in order to 

generate any desired convex beam path. Interesting, this approach is not only valid for self-

accelerating beams with one single convex trajectory, but can also be generalized to multi-

path self-accelerating beams exhibiting more than one light localization [Fig. 1.6(b1)]. 

Furthermore, by combining these estimated phase structures with appropriate amplitude 

modulations in the Fourier domain, it becomes possible to generate periodic self-accelerating 
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beams, i.e. curved beams in which the main lobe evolves along periodical (or zigzag) paths 

[60], as illustrated in Fig. 1.6(b2). Note that part of these results (Ref. [18]) were actually 

obtained within the framework of this thesis, and will be further detailed in Chapter 2.  

 

 

Figure 1.6: Examples of paraxial self-accelerating beams generation. (a1-a3) show the measured 

intensity distributions of 1D self-accelerating beams propagating along (a1) a cubic polynomial and 

(a2) an exponential trajectory, obtained by designing the phase modulation in the real space. (a3) 

shows the schematic experimental apparatus, while the solid green lines in (a1-a2) are analytical 

predictions. (Figures adapted from Ref. [52]). (b1-b2) show the experimental intensity patterns of (b1) 

a multi-path (composed by three trajectories) and (b2) a periodic self-accelerating beam, generated by 

engineering the phase modulation in the Fourier space. (Figures adapted from Refs. [18,60]). (c1-c3) 

show the experimental generation of non-convex self-accelerating beams. (c1) Experimental intensity 

distribution for a 1D sinusoidal beam propagating in free space. (c2) Fabricated samples for generating 

the 1D, 2D sinusoidal beams and circular helical beams. (c3) Experimental setup highlighting the use 

of the fabricated sample to imprint the desired phase modulation in the Fourier space. (Figures adapted 

from Ref. [61]). 

 

Recently, Y. Wen et al. [61] developed a method based on a superposition of light caustics 

which enables the construction of self-accelerating beams whose main lobe follows a non-

convex trajectory. In this work, the phase structure for 1D sinusoidal beams [Fig. 1.6(c1)] has 
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been designed by dividing the entire trajectory in several segments. In each of these segments, 

the corresponding light localization is a convex path for which both associated spectral 

amplitude and phase structures are calculated. The entire sinusoidal trajectory was thus 

obtained by constructing the appropriate spectral amplitude and phase structures through a 

linear superposition of the initial spatial spectra corresponding to each convex sub-paths. In 

addition, the authors also demonstrated the generation of 2D sinusoidal and elliptic helical 

beams, by superimposing two 1D sinusoidal beams (one in the (x,z) plane and the other on the 

in the (y,z) plane) and controlling their respective phase shifts. An experimental 

implementation of these non-convex self-accelerating beams has also been performed. The 

experimental technique is similar as those implemented for  typical Airy beams generation, 

but using, instead of an SLM, several micro-optical structures on quartz glass [Fig. 1.6(c2)] to 

perform the phase and amplitude modulation onto the incident light in the Fourier domain 

[Fig. 1.6 (c3)]. 

 

1.6 Control of self-accelerating beams  

One of most useful feature of self-accelerating beams is the possibility to easily control their 

curved motion, as well as its transversal profile. As initially investigated by G. Siviloglou et 

al. [54],  it has been showed experimentally and theoretically that an Airy beam can propagate 

along ballistic dynamics by introducing the input condition: 

      ,0   ( )exp exp , s Ai s s ivs    (1.14) 

where v is the initial launch angle. The solution to Eq. (1.5) with the initial condition of Eq. 

(1.14) is found to be [54]: 
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  (1.15) 

From Eq. (1.15), the Airy beam propagates along a ballistic trajectory given by 
2 / 4 .s v     
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Figure 1.7: Ballistic control of Airy beams. (a1-a3) illustrate infinite-energy Airy beams (α = 0) with 

initial launch angles (a) 2v   , (b) 0v   and (c) 2v  . (Figures adapted from Ref. [54]). (b1-b2) 

illustrate the control of a 2D Airy beam enabled by shifting the relative position of the incident 

Gaussian beam and cubic phase mask in the Fourier space. (Figures adapted from Ref. [62]). (b1) 

shows the schematic experimental setup and (b2) shows several snapshots of the measured transverse 

intensity patterns at selected distances (z = 0, 15 and 30 cm), for two different propagation dynamics. 

Upper snapshots in (b2) correspond to a perfect axial alignment between the Gaussian beam and the 

cubic phase mask. Middle snapshots in (b2) highlight the ballistic dynamics of the 2D Airy beam when 

the cubic phase mask is shifted downward along the vertical direction ky. Lower snapshots in (b2) 

highlights the dynamics of the 2D Airy beam when both the cubic phase mask and the Gaussian beam 

are oppositely shifted along the vertical direction ky. 

 

When v is positive (negative), the Airy beam is launched upwards (downwards) [Figs. 1.7(a2-

a3)]. Airy beams with different angles can be launched by transversally shifting up or down 

the Fourier-transforming cylindrical lens [56], indicated with L in the setup shown in Fig. 1.4. 
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It is worth mentioning that, when the Airy beam moves along a ballistic path, the center of 

gravity evolves along the line given by: 3( ) (4 1) / 4s v      .  

In a related work, Y. Hu et al. [62] demonstrated another way to control the motion of 2D 

Airy beams. The authors showed that, when both the cubic phase mask and incident Gaussian 

beam centers are overlapped on the z-axis, the 2D Airy beam propagates along a parabolic 

trajectory and the peak intensity is located at the onset distance [z = 0 cm in Figs. 1.7(b1, b2) 

(upper panel)]. By vertically shifting the cubic phase mask with respect to the z-axis, as shown 

in Fig. 1.7(b1), the 2D Airy beam evolves along a ballistic trajectory. In this case, the peak 

intensity is reached in correspondence of the maximum height [Fig. 1.7(b2) (middle panel)]. 

Additionally if the Gaussian beam is also shifted vertically at the opposite location of the 

cubic phase mask, the peak intensity of the 2D Airy beam appears at the end of the trajectory 

[z = 30 cm in Fig. 1.7(b2) (lower panel)]. In this way, the position of the peak intensity can be 

also controlled along the propagation distance. Moreover, the horizontal displacement of 

either the cubic phase mask or the Gaussian beam leads to a projectile motion which can be 

set into any arbitrary direction. In this case, the intensity profile of the 2D Airy beam shows 

asymmetric wings.  

 

 

Figure 1.8: Deformed 2D Airy beams. Intensity distributions corresponding to a deformed Airy beam 

with (a) a right, (b) an acute and (c) an obtuse angle between the two wings. (Figure adapted from Ref. 

[63]). 
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Another way to control the parabolic trajectory of a 2D Airy beam is by deforming the two 

long sub-lobe tails [63]. In particular, the electric field envelope of a deformed Airy beam is 

expressed by: 

      (, ,0  ) ( )ˆ
x y x x y yS S Ai S exp S Ai S exp S     (1.16) 

where ( / ) / 2x x yS rs s r    and ( / ) / 2y x yS rs s r  , and r is the parameter determining the 

degree of deformation of the Airy beam.  A “classic” 2D Airy beam whose tails form a 90
o
   

angle corresponds to r = 1 [Fig. 1.18(a)]. Otherwise, the angle between the Airy beam tails 

changes, as shown in Figs. 1.18(b-c). In particular, if r > 1 (r < 1) this angle is acute (obtuse), 

and the correspondingly deformed Airy beam experiences a decreased (increased) 

acceleration. Additionally, a slightly-deformed Airy beam tends to restore the standard angle 

(90
o
 degree) during propagation. However, large deviations lead to beam propagations where 

an initial obtuse angle evolves towards an acute one, and vice versa.   

 

 

Figure 1.9: Experimentally obtained quasi-Airy beams corresponding to different disturbance 

factors 1θ  and 2θ . (a1-d1) illustrate the wrapped spectral phase masks obtained by setting the 

disturbance factors respectively to (a1) / 61θ   and 2 / 3θ  , (b1) 3 / 41θ   and 2 0θ  , (c1) 

01θ   and 2 / 2,θ  (d1) 7 / 61θ   and 2 / 4θ  . (a2-d2) are the corresponding transverse 

intensity distributions of the generated quasi-Airy beams. (Figure adapted from Ref. [64]). 
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In a similar work, Y. Qian and S. Zhang [64] deformed the spectral cubic phase mask by 

means of the two disturbance factors 
1 and 

2 (varying in the range between 0 and 2π), as: 
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  (1.17) 

In this way, they introduced a new family of 2D Airy beams (called quasi-Airy beams), of 

which some examples are shown in Figs. 1.9(a1-d2). By adjusting the angle between the 

wings, such quasi-Airy beams can propagate along designed trajectories. The Airy beam can 

be regarded as special case of a quasi-Airy beam whose wings are reciprocally orthogonal. 

During propagation, a quasi-Airy beams generates two separate parabolic trajectories, one for 

the main lobe and the other one carrying the peak intensity. The two parabolic trajectories 

overlap when the angle between the wings is 90
o
 degree (2D Airy beam) - see Ref. [64] for 

more details.  

However in all these previously mentioned cases, the control of Airy beams is achieved in 

free-space. It is worth mentioning briefly that other ways to manipulate the Airy beam 

dynamics exist by means of external potentials, such as linear [29,65-66] and harmonic [67-

68] potentials. For example, an optically-induced refractive index gradient along the x-axis 

can modulate the bending propagation of 1D (or 2D) Airy beams, thus leading to beam 

dynamics where the parabolic acceleration is increased, reduced or even suppressed [29].  

A linear potential can also be used to shape the propagation trajectory of an Airy beam. N. 

Efremidis [65] engineered the beam trajectory of 1D (and 2D) Airy beams by designing 

transversely linear potentials with longitudinal (z-axis) index gradients and finding the 

associated initial input conditions (i.e. spatial displacement and tilt). As an illustrative 

example, the author estimated the potential gradients and the initial parameters for an Airy 

beam to propagate along a polynomial law, sinusoidal, logarithmic and hyperbolic trajectory, 

as well as a 2D Airy beam to follow a spiral trajectory in space. Finally, under an external 

harmonic potential [67], the Airy beam follows an unusual oscillating propagation. 

  



19 

 

1.7 Non-paraxial self-accelerating beams  

The self-accelerating beams described until now are solutions of the (1+1)D (or (2+1)D) 

paraxial Helmholtz equation of diffraction, whose normalized form is Eq. (1.5)                             

(or  correspondingly Eq. (1.10)). Nevertheless, this paraxial wave equation only represents an 

approximation to the Helmholtz equation, describing the actual propagation of linearly-

polarized monochromatic optical beams. In the (2+1)D regime, this equation reads:    

 

2 2 2
2

2 2 2

ˆ ˆ ˆ
ˆ 0k

z x y

  


  
   

  
  (1.18) 

Where 𝜑̂(x, y, z) is the electric field envelope, x and y denote the transverse coordinates, and z 

is the longitudinal coordinate. Here, k = k0n0 indicates the wavenumber, where k0  is the 

vacuum wavenumber and n0 is the refractive index. Solutions to Eq. (1.18) can be found in the 

Fourier regime, as:  
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  (1.19) 

where 
 ˆ ˆ( , ,0) ( , ,0) x yi k x k y

x yk k x y e dxdy
  


     is the input spectrum. In Eq. (1.19), the 

positive sign of the first exponential term accounts for forward propagations, while a negative 

sign refers to backward propagations. Looking at the Fourier regime, the spatial frequencies in 

charge of the propagation are in the range
2 2 2 0x yk k k   , while those out of this range are 

associated to the generation of evanescent waves. To obtain the paraxial wave equation from 

Eq. (1.19), the condition of a slowly-varying envelope must be satisfied, i.e. 

2 2| | 2ˆ ˆ/ /| |z k z     . In the Fourier regime, such condition means to consider optical 

beams whose spatial spectrum is confined in a small range of spatial frequencies so 

that k >> kx  and k >> ky . From a physical viewpoint, the paraxial wave equation can thus only 

describe the propagation of self-accelerating beams when the trajectory is limited to small 

angles. For larger angles, such beams are not anymore shape-preserving. For instance, in the 

paraxial regime, an ideal Airy beam preserves its amplitude for all distances. When 

propagating under non-paraxial condition, its trajectory  tends to break after short propagation 
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distances (or small angles), thus becoming no longer shape-preserving [69] [see Fig. 1.10(g)]. 

This constitutes a serious limitation as the propagation angle of a self-accelerating beam 

continuously increases, and after a given distance, the beam dynamics actually fall into the 

non-paraxial regime. Indeed, steeper angles involve more spatial frequencies to sustain the 

beam acceleration. Therefore, it is important to find self-accelerating beams capable of 

maintaining the bending propagation, even in the non-paraxial regime. Further research on 

this field has been undertaken to solve this problem. In the last five years, several non-

diffractive self-accelerating beam solutions to the Helmholtz equation have been introduced 

and demonstrated [Fig. 1.10].  

 

 

Figure 1.10: Non-paraxial self-accelerating beams obtained by solving the Helmholtz equation in 

different conical coordinate systems. (a) Schematic of different trajectories related to a Mathieu non-

paraxial accelerating beam (NAB) for various ellipse parameters (i.e. semi-axes a and b) The case a = 

b corresponds to a Bessel NAB. (b) Amplitude of NABs at z = 0 for a < b (red solid line), a = b (black 

dotted line) and a > b (blue dashed line). Propagation dynamics of the Mathieu NABs for (c) a < b, (d) 

a = b and (e) a > b. (f-g) Comparison between the propagation dynamics of (f) a Weber NAB and an 

(g) Airy beam. (h) Amplitude of Weber NAB (solid blue line) and Airy beam (red dotted line) at z = 0. 

The white dashed line in (c-g) marks the input distance z = 0. (Figure adapted from Ref. [21]). 
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I. Kaminer et al. [20] were the first to introduce the concept of non-paraxial accelerating 

beams. By solving the (1+1)D Helmholtz equation in polar coordinates, they found a family of 

shape-preserving non-paraxial accelerating beams showing a Bessel amplitude profile and a 

circular propagation trajectory. In particular, the electric field envelope is here defined in 

Cartesian coordinates yielding    2 2( , ) exp arctan( / ) ,ax z J k x z ia z x     where                     

Ja indicates the Bessel function of order a. This beam is non-diffracting and accelerates along 

a closed circle trajectory, but requires both the forward and backward components as well as 

an infinite energy. The beam forms a longitudinal vortex of order a in the (x-z) plane. If only 

the forward (or backward) component is considered, the corresponding non-paraxial Bessel 

beam accelerates along a concave (or convex) semi-circular trajectory. In this case, the beam 

is not shape-preserving along the complete 
o

180 angle of propagation.  P. Zhang et al. [19] 

reported the experimental demonstration of such Bessel non-paraxial beams. In this case, the 

authors introduced a shifted and truncated version of these beams [Fig. 1.10(d)] using both an 

exponential aperture and a Heaviside step function   ( , 0) expx z x       

   / aH x a k J kx a  . Consequently, they retrieved the appropriate amplitude and phase 

modulations. In this case, the experimental technique was similar to the one used for the 1D 

Airy beam, but imprinting onto the SLM an off-axis hologram (produced by the interference 

between a plane wave with the spectral phase profile of the non-paraxial beam). In addition, a 

4f spatial filtering system [1] has been placed between the SLM and the Fourier-transforming 

cylindrical lens, in order to reconstruct the encoded phase information after the incident 

Gaussian beam has been phase-modulated by the hologram on the SLM. Similarly, P. Zhang 

et al. [21] also demonstrated both theoretically and experimentally both Mathieu [Figs. 1.10(c, 

e)] and Weber [Fig. 1.10(f)] non-paraxial accelerating beams (NAB). They found two families 

of exacts shape-preserving solutions of the Helmholtz equation in the elliptic (Mathieu) and 

parabolic (Weber) coordinates systems. In the former case, non-paraxial self-accelerating 

beams travel along an elliptic trajectory, and the amplitude profile is determined by the radial 

and angular Mathieu functions [70] [Fig. 1.10(b)]. Akin to non-paraxial Bessel beams, an 

ideal non-paraxial Mathieu beam propagating along a closed elliptical trajectory requires 
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infinite energy and both forward and backward components. In the latter case, non-paraxial 

parabolic beams propagate along a large-angle parabolic trajectory, whereas the amplitude 

profile is obtained by multiplying the eigensolutions of the Weber differential equation [6,70], 

but with opposite sign eigenvalues [Fig. 1.10(f)]. In contrast with the other two cases, an ideal 

non-paraxial Weber beam, although requiring infinite energy, only contains either the forward 

or backward beam propagation component.  

 

 

Figure 1.11: Generation of non-paraxial self-accelerating beams through caustic methods. (a) 

Measured intensity distributions of a non-paraxial logarithmic beam, obtained by designing the phase 

modulation in the real space. (Figure adapted from Ref. [17]). (b, e) Non-paraxial accelerating beams 

evolving along (b) an elliptical and (e) a hyperbolic trajectory, generated by a phase modulation in the 

Fourier domain. (Figures adapted from Ref. [18]). (c) Intensity distribution of a non-paraxial circular 

beam obtained from a properly-shaped mirror surface. (Figure adapted from Ref. [23]). (d) Amplitude 

profile of non-paraxial power-law beams, obtained from a closed-form expression of the phase 

modulation at the input plane. (Figure adapted from Ref. [22]). 

 

In parallel, several research groups proposed alternative methods that are not based on solving 

the Helmholtz equation through complex angular functions. Most of these approaches use the 

caustic theory [71] for generating a variety of non-paraxial self-accelerating beams as 

illustrated in Fig. 1.11. For example, L. Froehly, et al. [17] used the geometrical properties of 

optical caustics and the Legendre transform (i.e. the parametrization of a convex curve in term 

of its tangents and axis intercepts) to estimate the appropriated spatial phase profiles to be 

applied to an incident Gaussian beam in order to generate 1D paraxial and non-paraxial self-
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accelerating beams along arbitrary convex trajectory. As illustrative examples, several cases 

of non-paraxial beams have been demonstrated theoretically and experimentally. In particular, 

the authors engineered the real-space phase masks to experimentally synthesize parabolic, 

quartic and logarithmic accelerating profiles [Fig. 1.11(a)]. Interestingly, applying such direct 

phase masks with a reflection or rotational symmetry leads to novel two- and three-

dimensional self-accelerating beams, with localized high intensity profiles or optical spiral 

structures. In a related work, A. Mathis et al. demonstrated non-paraxial periodic accelerating 

beams, combining a binary amplitude and a phase modulation in real space [44]. The authors 

estimated the spatial phases to generate Circular and Weber self-accelerating beams using a 

similar approach to that reported in Ref. [17], and for which the authors directly encoded the 

binary amplitude modulation into the phase mask of the SLM and used a 4f system to filter the 

0th-order diffraction term. As demonstrated by J. Davis et al. [72], if a binary amplitude 

profile is encoded onto an only-phase structure, it spatially modifies the diffraction efficiency 

so that the light which is not diffracted into the 1st-order is correspondingly remaining in the 

0thdiffractive order. In this way, the effective phase and amplitude modulation profiles can be 

therefore reproduced in the 1st-order of the diffracted light. As presented in Ref. [18] and later 

detailed in Chapter 2, we also proposed a straightforward method to generate 1D non-paraxial 

accelerating beams along arbitrary convex trajectories by only designing, through caustic 

theory, the spectral phase modulation to be implemented in the Fourier regime [Fig. 1.11(b) 

and 1.11(e)].  

Alternatively, M. Alonso and M. Bandres introduced a ray-based description of non-paraxial 

self-accelerating beams in  both the (1+1)D and (2+1)D regime [23-24]. The authors 

developed a geometric procedure for designing mirror shapes that convert collimated beams 

generated by a point source into self-accelerating beams propagating beyond a semicircle 

trajectory [Fig. 1.11(c)]. Recently, R. Penciu et al. [22] presented a real-space method for the 

generation of non-paraxial self-accelerating beams that follow arbitrary convex paths [Fig. 

1.11(d)]. Their approach enables to find non-paraxial beams where the initial phase 

modulation is computed in a closed-form expression. Furthermore, the beams intensity 

contrast along the desired convex trajectories can be controlled by changing the initial 

amplitude profile. Indeed, depending on the initial amplitude profile, non-paraxial accelerating 
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beams can show uniform intensity profiles along the caustic, as well as patterns where the 

beam intensity is different at various locations along the trajectory. 

 

1.8 Nonlinear self-accelerating beams  

In optics and photonics, it is important, for both fundamentals aspects and related applications, 

to study the dynamics of self-accelerating beams propagating in a nonlinear regime (i.e. when 

the effective medium refractive index depends on the beam intensity).  

In general, the nonlinear propagation of a laser beam can be described by the nonlinear 

paraxial wave equation (NLPWE), according to the following equation:  
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Here A(x, y, z) is the slowly-varying electric field envelope in the physical coordinates x, y and 

z, k = k0n0 is the wavenumber, k0  is the vacuum wavenumber,  n0 the refractive index, and 

∆n(I) the nonlinear refractive index change driven by the beam intensity I. During 

propagation, an optical beam undergoes a self-induced phase modulation (SPM) due to ∆n(I) 

which results in a reshaping of the beam wave front. In general, the specific form of ∆n(I) 

depends on the nonlinear medium and on the physical process involved. One of the most 

important nonlinear phenomenon is the optical Kerr effect, which is observable in centro-

symmetric materials, such as silica glass. The beam intensity induces a linear change of the 

refractive index, according to ∆n(I)  = n2I  where  n2 is the Kerr coefficient. In such a medium, 

nonlinearity can lead an optical beam either to collapse into a singularity (self-focusing 

(n2 > 0), or to broaden similarly to what happens for a diverging lens (self-defocusing 

(n2 < 0)), both being unstable evolutions. Several studies concerning nonlinear optical wave 

manipulations with the main goal of achieving stationarity, stability and wave localization 

have been presented. For example, under certain conditions in the 1D regime, self-focusing 

can compensate diffraction, thus leading to shape-preserved light localizations named spatial 

solitons [73]. Nevertheless, in higher-dimension geometries, nonlinearity only drives the beam 

to instability. In this case, self-focusing can be counteracted by several stabilizing mechanisms 
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based on higher nonlinear phenomena, such as Kerr saturation, plasma-induced defocusing, or 

stimulated Raman scattering [74].  

Besides the Kerr effect, photorefractive nonlinearity is one of the most commonly used 

nonlinear effects. This is mainly because photorefractive (PR) materials (for example, 

ferroelectric crystals such as Strontium Barium Niobate (SBN)) can also show both self-

focusing and -defocusing property, which can be used to compensate diffraction, as seen in 

self-trapped bright (or dark) solitons [75]. In a PR medium, the optical intensity induces an 

internal electric field, originating from different mechanisms, such as carrier diffusion, 

photovoltaic effect, and drift current driven by an external voltage. In turn, this internal 

electric field causes a nonlinear refractive index change (∆n(I)) via the electro-optic effect 

[76]. Furthermore, the type of the nonlinearity in PR media can be easily switched by 

reversing the sign of an applied external voltage. 

In the context of self-accelerating beams, one of the most challenging issue is to preserve the 

bending trajectory (acceleration) inside the nonlinear medium, which can be seriously affected 

by the nonlinearity of the system. If an Airy beam propagates in the presence of a Kerr  

nonlinearity, both its amplitude profile and parabolic trajectory tend to be destroyed due to the 

action of self-focusing [25], in turn leading to the concentration of most of the beam energy 

into a self-trapped off-shooting soliton [77] (see also Fig. 1.16). Several research efforts have 

been pursued to solve this problem, some of which focused on finding stationary nonlinear 

accelerating solutions to Eq. (1.20). In particular, I. Kaminer et al. [31] demonstrated the 

existence of a family of shape-preserving self-trapped 1D accelerating beams in Kerr media. 

Such nonlinear accelerating beams are stable under self-defocusing and weak self-focusing, 

whereas under the influence of a strong self-focusing, the beam breaks up and emits a series of 

solitons, as shown in Fig.1.12. In a related work, A. Lotti et al. [32] also reported a family of 

shape-preserving self-trapped 1D self-accelerating beams existing even when considering the 

effects of Kerr nonlinearity and nonlinear losses in the propagation dynamics. The same 

authors also investigated the evolution of intense 2D Airy beams in air and water [78]. Under 

these conditions, they showed that the accelerating property of a 2D Airy beam is preserved if 

the power content in the main lobe remains below a certain threshold. Once this value is 
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overcome, the 2D Airy beam breaks into a multi-filamentary pattern that affects its bending 

propagation.  

  

 

Figure 1.12:  Examples of self-accelerating beams dynamics in Kerr media. (a1-c1) Intensity 

profiles at the input of the crystal (z = 0) and (a2-c2) intensity evolution of nonlinear self-accelerating 

beams propagating under (a1-a2) strong focusing, (b1-b2) weak focusing and (c1-c2) defocusing 

nonlinearity. (Figures adapted from Ref. [31]). 

 

Interestingly, non-paraxial accelerating beams are less sensitive to the Kerr nonlinearity when 

compared to their paraxial counterparts. In particular, for the case of Bessel-like accelerating 

beam, P. Zhang et al. reported that such non-paraxial wave packet, instead of being broken up 

by the nonlinearity, maintains its circular trajectory even under self-focusing [19]. 

In a nonlinear PR medium, self-accelerating beams were firstly investigated by S. Lee et al. 

[79], which reported the experimental observation of self-trapped Airy beams in nonlinear PR 

media, under the effect of carrier diffusion only (i.e. without any external bias). As an Airy 

beam is a shape-preserving solution of the paraxial Helmholtz equation, such “nonlinear Airy 

beams” are stationary solutions of the nonlinear paraxial equation, governing the diffraction 

dynamics of an optical beam which propagates in an unbiased photorefractive medium.  

Moreover, in an externally-biased photorefractive media, an Airy beam breaks up (i.e. looses 

both its invariant intensity pattern and its acceleration). As an illustrative example, the 

nonlinear evolution of a 2D Airy beam in a 1 cm-long SBN crystal is shown in Fig. 1.13 [26], 
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where is also compared with the linear case (no bias applied) [Figs. 1.13(a1-a2)].  By applying 

a positive bias to the PR crystal, the 2D Airy beam experiences a self-focusing effect. The 

nonlinearity causes a stagnation of its acceleration and leads the intensity pattern to mostly 

concentrate onto the four lobes close to the main hump with shorter tails [Figs. 1.13(b1-b2)]. 

If the polarity of the bias is negative, the 2D Airy beam propagates under the action of a self-

defocusing nonlinearity. In this case, the intensity pattern of the 2D Airy beam is expanded 

but nearly unchanged during propagation, and its acceleration is persisting more than in the 

self-focusing case [Figs. 1.13(c1-c2)].   

 

 

Figure 1.13:  Nonlinear propagation of Airy beams in a biased photorefractive medium. 

Experimental transverse intensity distributions of nonlinear 2D self-accelerating beams after 

propagation into a 1cm-long SBN (Strontium Barium Niobate) crystal, with (a1) no nonlinearity, (b) 

self-focusing nonlinearity and (c1) self-defocusing nonlinearity. (a2-c2) are the corresponding 

numerical results. (Figures adapted from Ref. [26]). 

 

It is worth to mention that under certain conditions, an Airy beam can also preserve its 

accelerating evolution in the presence of self-focusing. As it will be described in more details 

in the Chapter 4 of this dissertation, we demonstrate that by applying a transversal shift to the 

cubic phase mask in the Fourier regime, an Airy beam maintains its accelerating properties in 
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both Kerr and photorefractive media, yielding a dramatic reshaping of the linear Gaussian 

spectrum [33,80]. 

 

1.9 Self-accelerating Airy pulses  

In the temporal domain, self-accelerating pulses are analog to self-accelerating beams in 

space. From a physical viewpoint, self-accelerating beams exhibit bending propagation in 

space. On the other hand, for their temporal counterparts, the accelerating property manifest 

themselves as a change in the group velocity. The analogy origins from the fact that the 

paraxial Helmholtz equation (describing the linear propagation of optical spatial beams) has 

the same mathematical form as the linear dispersion equation (LDE), modelling the evolution 

of optical temporal pulses in a dispersive medium [81]. In the nonlinear regime, the spatio-

temporal duality also remains valid because the nonlinear spatial beams and temporal pulses 

can be described by the same (1+1)D normalized nonlinear Schrödinger equation (NLSE) 

[73]. Noteworthy, almost all studies reported to date on self-accelerating pulses are restricted 

to Airy pulses and their dynamics in optical fiber propagation. The choice to deal with optical 

fiber applications is motivated by the fact that optical fibers offer a reproducible and 

convenient environment to experimentally study both the linear and nonlinear propagation 

dynamics of temporal optical pulse. Airy pulses are analog to Airy beams, and were the first 

self-accelerating pulses to be introduced and studied in the literature [11,13].  Like an Airy 

beam, an infinite-energy Airy pulse is resistant to dispersion and its dominant intensity peak 

(i.e. its main lobe) propagates along a parabolic trajectory so that the group velocity undergoes 

a parabolic change. They are also able to regenerate their profile after being selectively 

attenuated or distorted (“self-healing”). For instance, if an Airy pulse is apodized by 

truncating its oscillating tail, the wave packet exhibits the key characteristics as in the ideal 

case before the dispersion takes place. In what follows, we provide an overview of the studies 

related to both linear and nonlinear Airy pulses propagation in optical fibers. 

 

1.9.a Airy pulses under linear propagation regimes 

As mention above, the linear propagation of an optical pulse in a dispersive medium is 

described by the linear dispersion equation (LDE). If only group velocity dispersion (GVD) 
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and third-order dispersion (TOD) are taken into account (i.e. by only retaining the dispersion 

coefficients up to the 3rd order term of the Taylor expansion propagation constant β (ω) around 

the carrier angular frequency ω0), the LDE takes the following form: 
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where in the Eq. (1.21)  ,A z   is the slowly-varying pulse envelope at ω0, τ = t ‒ z / νg is the 

time coordinate in the framework of the group velocity νg, in which z and  are the physical 

distance and time.  We also indicate the pulse duration as T0, and the dispersion length

2

d 0 2 /L T  . β2 and β3 are, respectively, the GVD and TOD coefficients. Although higher 

order dispersion may be neglected (most of the time ) to efficiently model such pulse 

dynamics, the inclusion of the TOD coefficient usually must be taken into account for optical 

pulses whose central wavelength is close to the zero-dispersion value of the fiber, or when 

considering the evolution of ultrashort pulses possessing a significantly large bandwidth. In 

general, Eq. (1.21) can be solved in the Fourier domain as: 
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in which    ,0 ,0 iA A e d  
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   is the input spectrum. More specifically, we study the 

linear dynamics of finite-energy Airy pulses, whose input condition is given by

 ,0 ( ) iA Ai e   . Here, α is the truncation coefficient. In the linear case, the solution can be 

found in a close form [82], as: 
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where b = ‒β3 / (2β2) and Z = zβ2.  When neglecting the impact of TOD in the system so that 

β3 = 0, Eq. (1.23) reduces to: 
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The solution described by Eq. (1.24) is analog to the finite-energy Airy beam [see Fig. 

1.15(a)] [3]. In particular, when considering evolution in the anomalous dispersion 

regime (β2 < 0), the linear propagation of an Airy pulse coincides with the Airy beam 

evolution described by Eq. (1.8).  

 

 

Figure 1.14:  Dynamics of an Airy pulse propagating in optical fiber in presence of  anomalous 

GVD dispersion with a positive TOD included. Absolute temporal amplitudes as a function of the 

normalized distance ξ = z / Ld and time T = τ /T0 under (a) only the presence of TOD, and (b) the 

combined action of anomalous GVD and positive TOD with comparable strengths. (Figure adapted 

from Ref. [34]). 

 

When the TOD is also taken into account (β3 ≠ 0), the Airy wave packet experiences different 

propagation dynamics, depending on the sign and strength of both the GVD and TOD [34,82-

83]. An interesting case is illustrated in Fig. 1.14 (a), showing the dynamics of an Airy pulse 

under the influence of an anomalous GVD (β2 < 0) and a positive TOD (β3 > 0). During 
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propagation, the Airy pulse presents a breaking area after which the wave packet shows an 

inversion in its acceleration [Fig. 1.14 (a)]. An explanation of such evolution has been 

provided by R. Driben et al. [34]. The authors investigated the dynamics of an Airy pulse 

launched into an optical fiber close to the zero-dispersion point, thus only considering the 

predominant effect of the TOD coefficient. Under this condition, the pulse reaches what they 

call “tight-focusing” distance, where the energy content concentrates into a very narrow and 

intense light spot. After that point, the pulse undergoes an acceleration inversion, as shown in 

Fig. 1.14(b). The compression ratio, i.e. the ratio between the peak intensity at the input and at 

the tight-focusing distance, depends on the truncation coefficient α. From a physical 

viewpoint, the TOD balances the spectral cubic phase modulation generating an Airy pulse at 

the tight-focusing distance. Beyond this point, the Airy pulse reverses its acceleration because 

the TOD overcomes the cubic phase modulation with an opposite sign. Instead, if GVD and 

TOD introduce comparable contributions, the focal point extends into a finite area, after which 

the wave packet reverses its acceleration. The extension of this area depend on the relative 

influence of the dispersions parameters [Fig. 1.14(a)]. 

 

 

Figure 1.15:  Linear evolution of chirped Airy pulses in optical fiber in anomalous dispersion 

regime. Evolutions of the absolute temporal amplitude as a function of the normalized distance ξ = 

z / Ld and time T = τ /T0 for the case of an initial (a) un-chirped, (b) positively-chirped and (c1) 

negatively-chirped Airy pulse. (Figure adapted from Ref. [84]). 

 

Recently, it has also been demonstrated that an initially chirped Airy pulse can experience an 

acceleration reversal without requiring the inclusion of TOD effects [84]. Initially chirped 

Airy pulses are defined as:  
2

,0 ( ) ,iCA Ai e e    where C is the chirp parameter. The linear 
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propagation dynamics in optical fibers of such an initially chirped Airy pulse depends 

considerably on the signs of the GVD and C [Fig. 1.15]. For β2C < 0, the chirped Airy pulse 

experiences an initial compression phase up to a breakup area, after which the pulse continues 

to travel with opposite acceleration [Fig. 1.15(b)]. On the other hand, for β2C > 0, the chirped 

Airy pulse always disperses during propagation [Fig. 1.15(c)].  

 

1.9.b Airy pulses under a nonlinear propagation regimes 

In general, the nonlinear evolution of an optical pulse in an optical fiber is described by the 

nonlinear Schrödinger equation (NLSE) [85]. When only GVD and TOD terms are taken into 

account, the NLSE reads: 
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where,   is the nonlinear parameter, responsible of the self-phase modulation (SPM) 

experienced by the pulse [85]. Such a nonlinear optical effect arises from the Kerr 

nonlinearity, which induces an intensity-dependent phase shift on the temporal pulse, similar 

to the above discussed spatial self-focusing effect. A direct consequence of SPM is a change 

on the pulse spectrum, due to an induced frequency modulation (or frequency chirp) of the 

pulse carrier frequency ω0 [85]. Under certain conditions, SPM can compensate the effect of 

anomalous GVD, in such a way that the optical pulse propagates undistorted along the fibers, 

i.e. giving rise to the formation of so-called solitons [73,85].  

Airy pulse propagation in a Kerr medium, under the combined influence of SPM effect and 

different types of dispersion, has been investigated in both the temporal and spectral domains. 

In particular, Y. Fattal et al. [27] described the nonlinear propagation of an Airy pulse in the 

presence of a Kerr nonlinearity and anomalous GVD (β2 < 0). In such conditions, the launched 

Airy pulse leads to the shedding of various soliton pulses, depending on the truncation 

coefficient (α) [Fig. 1.16]. In this case, most of the energy is provided to the temporal solitons, 

thus affecting the acceleration of the Airy pulse. Instead, by reversing the dispersion sign (i.e. 

normal GVD, β2 > 0), the Airy wave packet disperses, and no soliton formation occurs in this 

case [83]. Although the main part of the energy content supports the pulse acceleration, a 
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certain amount of leakage is observed. As presented in Ref. [33] and later detailed in Chapter 

4 of this thesis, we will also show that an Airy pulse can fully preserve its accelerating 

property under SPM effect for both sign of β2.  

 

 

Figure 1.16:  Nonlinear evolution of an Airy pulse in the presence of an anomalous GVD 

dispersion and SPM. Intensity distributions as a function of the normalized distance ξ = z / Ld and 

time T = τ /T0 for (a) R = 0.8, (b) R = 1.2, and (c) R = 2. Here, R is a dimensionless parameter tuned to 

scale the Airy pulse power. (Figure adapted from Ref. [27]). 

 

For the case considering a positive TOD, nonlinear self-focusing distorts the phase evolution 

typically associated with linear Airy pulse propagation. The consequence is a reduction of the 

previously mentioned tight-focusing effect [34].  

In another relevant aspect of fiber propagation, the modulation instability (MI) of Airy wave 

packets has also been studied [86]. MI is a nonlinear phenomenon that originates from the 

interplay between nonlinearity and dispersion [87]. In optical fibers, MI can be due the 

interaction between SPM and anomalous GVD, leading to, e.g., a spontaneous break-up of an 

intense continuous wave (CW) radiation into a modulated light wave or a periodic pulse train, 

- see Ref. [85] for more details. 

In the case of an Airy pulse, MI induces a modulation on the envelope of the various pulse 

lobes, followed by a splitting into multiple sub-pulses. If the truncation factor is small, the 

sub-lobe splitting precedes the one of the main lobe [Fig. 1.17(a)], while the opposite occurs 

for a larger truncation coefficient α [Fig. 1.17(b)] [86].  
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Figure 1.17:  Modulation instability of an Airy pulse in the presence of an anomalous GVD and 

SPM. Intensity profile as a function of the normalized time T = τ /T0 at selected normalized distance 

ξ = z / Ld for truncation coefficients (a-e) α = 0.01 and (a1-e1) α = 0.1, respectively. (Figure adapted 

from Ref. [86]).  

 

Besides, the propagation dynamics of Airy pulses has also been investigated under the 

simultaneous influence of high-order dispersions and nonlinear effects. Such high-order 

contributions must be taken into account for nonlinear propagation of pulses with a duration 

typically shorter than 100fs [85]. The nonlinear evolution of such ultrashort pulses in fiber 

optics can be described by the generalized nonlinear Schrödinger equation (GNLSE) [88]: 

   
1

2

2

ˆ
1 ( , ) ( ') , ' ' ,

2 !

k k

k shockk
k

A i A
A i iT A z R A z d

z k
      

 







    
     

   
  (1.26) 

where the left- and right-hand terms account for the linear and nonlinear propagation effects, 

respectively. In Eq. (1.26), ̂  represents the linear loss, βk the dispersion coefficients obtained 

from the Taylor expansion of β(ω) around 0 , R(τ) the global nonlinear response function that 
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includes instantaneous electronic (Kerr nonlinearity) and delayed Raman contributions. The 

delayed Raman response gives rise to the so-called Raman-induced frequency shift (RIFS), 

i.e. the shift of the spectrum associated to an ultrashort optical pulse toward longer 

wavelengths (red-shift). From the physical viewpoint, RIFS is attributed to intrapulse Raman 

scattering (IRS), a phenomenon where longer wavelength components of an optical pulse are 

amplified by the shorter wavelength components, thus providing energy to the red side of the 

spectrum through stimulated Raman scattering [89].  

The time derivative term on the right-hand side models the dispersion of nonlinearity (or 

intensity-dependence of group velocity), characterized by the time scale Tshock= 1 /ω0, and 

associated to the self-steepening (SS) effect. SS affects the propagation of an intense pulse by 

driving its peak at a lower speed than its wings, thus  leading to shock formation in one of 

pulse edges [85].   

Since Airy pulses are featured by an asymmetric temporal shape, they show a versatile 

behavior when experiencing such an “asymmetric” nonlinearity induced by the delayed 

Raman response. 

L. Zhang et al. [90] investigated the role of  IRS, SS and TOD on the dynamics of Airy pulses 

in optical fibers. In this study, several Airy pulses with different truncation coefficients (a) 

and input peak powers have been considered. In absence of IRS, the Airy pulse undergoes 

soliton shedding at high peak power, due to the interplay between SPM and anomalous GVD, 

as shown in Figs. 1.16 (b-c). When the effect of IRS is taken into accounts, the soliton 

generated from the Airy pulse captures a significant amount of the initial pulse energy and 

propagates, decelerating, along the fiber length, mainly due to the presence of IRS                       

[Figs. 1.18 (a-d)]. In the Fourier domain, as expected, the Airy pulse spectrum undergoes a 

frequency red-shift induced by IRS [Figs. 1.18 (e-f)]. The RIFS can be tailored, not only by 

varying the peak power of the launched Airy pulse, but also acting on its truncation coefficient 

(a). Moreover, if the combined influence of Raman scattering and SS (or positive TOD) are 

taken into account, both TOD and SS effects slow down the RIFS during the nonlinear 

propagation of the Airy pulse. In particular, SS can suppress RIFS for long propagation 

distances. Furthermore, in addition to red-shifted frequency components, the simultaneous 
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contributions of Raman, TOD, and SS effects produce a broadening spectrum that also 

extends toward blue-shifted components, when compared to symmetric input pulses [90]. 

 

 

Figure 1.18:  Nonlinear evolution of an Airy pulse in the presence of IRS, anomalous GVD 

dispersion and SPM. (a) Intensity and (e) spectral intensity profiles at ξ = 8 , where ξ = z / Ld is the 

normalized distance. (b-d) Intensity and (f-h) spectral distributions as a function of ξ  and time T = τ /T0 

for (b, f)  N = 1, (c, g) N = 1.5, and (d, h) N = 1.8. Here, N is a dimensionless parameter tuned to scale 

the Airy pulse power. (Figure adapted from Ref. [90]). 

 

Another way to control the RIFS was reported by Y. Hu et al. [36], who experimentally 

demonstrated the possibility of tuning the generation of solitons from an Airy pulse. A 

straightforward method to tune the RIFS is by using initially time-reversed Airy pulse. 
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Additionally, the authors also proposed how to control the RIFS by applying an offset to the 

initial cubic spectral phase structure used to generate the input Airy pulse.  

Finally, Airy pulses have also been used in extreme nonlinear conditions for supercontinuum 

generation [91]. Such a nonlinear phenomenon is related to the spectral broadening 

experienced by optical pulses, due to the combined effects of dispersion and nonlinearity 

along the propagation medium [89]. Both experimental and numerical results of femtosecond 

Airy pulses sent in a highly nonlinear optical fiber typically shows the generation of 

distinctive features in the optical spectrum [91].  

 

1.10 Optical Airy bullet 

In the multi-dimensional (3+1)D regime, self-accelerating wave packets enable an easy and 

straightforward way to achieve optical light bullets, especially in the case of free-space 

propagation. Such localizations are spatio-temporal wave packets impervious to both 

dispersion and diffraction. Theoretically, the beam envelope in the spatio-temporal domain is 

described by the following normalized paraxial differential equation [10]:     
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In Eq. (1.27), ( , )R Z is the electric field envelope, and ( , ) ( , , , ) R Z X Y T Z 

0 0 0( / , / , / , / )diffx w y w z L   are the dimensionless coordinates, in which w0 and τ0 are, 

respectively, the spatial width and the pulse duration of the wave packet. Ldiff = kw0
2
 is the 

diffraction length, and k the wave vector. In particular, Eq. (1.27) is obtained by assuming 

anomalous dispersion. Here, a solution can be found using the separation of variables as: ψ 

= φ(Z,T)U(Z,X,Y) [13]. In this case, to generate linear optical bullets, it is necessary to use 

non-diffractive beams in space and nondispersive pulses in time. Remarkably, an Airy pulse is 

the unique nondispersive wave packet existing in the (1+1)D regime, thus resulting the 

essential element required to synthesize linear optical bullets. For the spatial domain, the 

possibility of choice is multiple. In fact, any 2D non-diffractive configurations such as Bessel, 

Mathieu, 2D Airy beams, etc. can be employed [Fig. 1.19]. Nevertheless, since complete 
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shape-preserving propagation intrinsically requires infinite energy, such optical bullets are 

only physically realizable by using finite energy non-broadening wave packets.  

 

 

Figure 1.19: Linear three-dimensional (3D) spatio-temporal wave packets. (a-d) Examples of 

linear optical Airy bullets. (a) Airy-Bessel [37], (b) Airy3 [38], (c) Airy-Parabolic-Cylinder [92] and (d) 

Airy-Tricomi-Gaussian [93] optical Airy bullets.  

 

In this framework, A. Chong et al. [37] reported the first experimental demonstration of Airy-

Bessel (Ai-Bes) bullets, formed by the combination of a Bessel beam in the transverse plane 

and an Airy pulse in time. The method is very general, being independent of the medium 

nonlinearity and material properties. Another work reported an analytical and numerical 

investigation of Airy Parabolic-Cylinder (Ai-Par-Cyl) light bullets, in which the spatial 

component is a parabolic-cylinder function, while the temporal counterpart is an Airy pulse 

[92]. Airy Tricomi-Gauss (Ai-Tri-Gau) light bullets have been also proposed and investigated 

[93]. In this case, the temporal part is given by the superposition of two counter-accelerating 

Airy functions, while the spatial part is formed by Tricomi-Gauss polynomials. One of most 

relevant works was performed by D. Abdollahpour et al. [38], who demonstrated 

experimentally the first realization of Airy3 light bullets. Such linear spatio-temporal wave 

packets are formed by the combination of a spatial 2D Airy beam and an Airy pulse. 

Differently from all previously cases, in which the optical Airy bullets propagate along a 

straight path, an Airy3 bullet evolves along a parabolic trajectory. In particular, an optical 

Airy3 bullet extends to the spatio-temporal regime all the intriguing properties seen for its 2D 
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counterpart, such as a bending propagation and self-healing. Interestingly, the authors also 

showed that this wave packet is robust in the high intensity regime. This research has been 

motivated by the fact that, due to the Airy wave packet self-healing property, the bullet is 

capable of counteracting the nonlinear-induced distortions and thus restore its initial spatio-

temporal profile.  

More interestingly, optical Airy3 and Bessel-Airy bullets have been synthesized by separately 

shaping the temporal or spatial profiles, thus providing a straightforward way of 

experimentally realizing such spatio-temporal wave packets.  

Finally, optical Airy bullets can also be realized in nonlinear media as demonstrated by P. 

Panagiotopoulos et al. [94], who investigated the nonlinear propagation, in fused silica, of 

intense radially-symmetric Airy waves (or abruptly autofocusing beams (AABs)). Under 

strong nonlinear conditions, the authors experimentally demonstrated that AABs reshape into 

nonlinear intense light bullets propagating over extended distances.  

 

1.11  Selected self-accelerating beam applications 

Over the last few years, several applications employing self-accelerating beams have been 

proposed and demonstrated. Most of them are related to the use of the Airy beam, even though 

several applications using non-paraxial configurations of self-accelerating beams have been 

recently introduced. In this section, we provide a brief overview of the most important works 

reported to date.  

 

1.11.a Laser-assisted guiding of electric discharges by Airy beams 

Electric discharges in air occur when a voltage is applied between two electrodes in order to 

establish an electric field exceeding a typical threshold value of about 34kV/cm. The large 

current arising from the electric breakdown usually follows an unpredictable path. Recently, 

M. Clerici et al. [42] have shown that electric discharges can be manipulated by means of 

shaped beams, thus sending the electric charges along pre-defined paths [Fig. 1.20]. From a 

physical viewpoint, shaped beams such as Airy beams induce an air ionization favoring the 

electric discharge due to the decrease of the breakdown voltage over the laser path [95-97]. In 

this work, the authors generated an electric discharge along a parabolic line using an Airy 
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beam [Fig. 1.20(b)], while bypassing an obstacle placed along two wire electrodes. For 

completeness, they also induced discharges along more complex paths including an S-shaped 

trajectory - formed by concatenating two Airy beams generated from a binary cubic phase 

mask [Fig. 1.20(c)]. More interesting, the self-healing property of an Airy beam can be 

transferred directly from the laser to the flow of charges. Placing an obstacle at a given 

distance, the authors also demonstrated that the electric discharge resumed its original 

trajectory after being disrupted by the obstacle.  

 

 

Figure 1.20: Laser-assisted curved electric discharges.  (a-b) show different electric discharge paths 

induced by different optical beams, in the presence of a high voltage between two electrodes. (a) 

Gaussian beam case. (b) Airy beam case. (c) S-shaped beam case. Such an S-shaped path can be 

obtained by properly combining two Airy beams. (Figures adapted from Ref. [42]).  

 

1.11.b  Optical-induced particles cleaning using Airy beam 

Another exciting application of self-accelerating beams was proposed for optical 

micromanipulation by J. Baumgartl et al. [98]. By using a 2D Airy beam, the authors reported 

the first demonstration of particle guiding along a curved path [Fig. 1.21(a)]. In their 

experiment, a 2D Airy beam was used as “snowblower”. As shown in Fig. 1.21(b), the curved 

beam entraps the colloidal particles from one section of a cuvette and ‘blows’ them towards 

the neighbor section [Fig. 1.21(b)]. Physically, micrometers-sized particles such as biological 

and colloidal objects respond to gradient and scattering forces, influencing the flow direction 

of these particles. If a 2D Airy beam is used, the optical gradient forces exerted by the Airy 

pattern drag these micrometers-sized particles towards the (high intensity) main lobe, which in 

turn guides the particles vertically along the parabolic trajectory. The particles are then 

dropped out from the beam-induced trapping when diffraction takes over. Moreover,                 
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self-healing in Airy beams makes this optically-induced particle sorting more robust compared 

to other light-based configurations. Additionally, the same group reported “optical path 

cleaning (OPC)” induced by Airy beams [99]. In this work, the authors showed the cleaning of 

large regions in a sample by using rotating multiple 2D Airy beams, acting in a synchronized 

fashion. 

 

 

Figure 1.21: Optical micromanipulation using Airy beams. (a) Recorded micrograph of the sample 

after colloidal particles were exposed to an Airy beam. The white overlay highlights the Airy beam 

pattern, while the white arrow indicates its propagation direction. (b) 3D schematic view highlighting 

the ‘snowblowing’ effect produced by an Airy beam. (Figures adapted from Ref. [98]). 

 

1.11.c  Generation of curved plasma channels using Airy beams 

Self-accelerating beams can also be employed to generate curved plasma channels. From a 

physical viewpoint, femtosecond laser pulses propagating in air can generate plasma by 

multiphoton absorption. Once formed, the defocusing effect of the plasma prevents the beam 

from collapsing (due to a strong self-focusing effect) into a singularity, thus forming 

submillimeter plasma channels (or filaments). In previous studies, plasma channels were 

generated by axially symmetric beams characterized by straight line propagations [45,100]. 

The emission of broadband conical light is also associated to laser-induced plasma channels, 

occurring at different longitudinal sections. The so generated contributions to such a radiation 

lead to mutual interference, thus affecting its frequency content. To address this issue,           
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P. Polynkin et al. [39] have demonstrated that by shaping an input femtosecond pulse with a 

Gaussian profile into a transversal 2D Airy profile [Fig. 1.22], it is possible to induce curved 

plasma channels in air, evolving along a parabolic path. In this way, the parabolic propagation 

of this Airy pump has been used to angularly resolve the generated broadband conical 

radiation in the far field [Fig. 1.22(a)]. In another related work, the same authors also reported 

the experimental observation of curved filaments in water. In this case, the predominant 

mechanism responsible for the beam collapse arrest is the group velocity dispersion in the 

medium [101]. 

 

 

Figure 1.22: Curved-plasma channels generation from Airy beams. (a) Angularly-resolved 

radiation emission from a curved plasma. (b) Schematic of the experimental setup. The location in the 

plane at which the emission is observed allows to determinate the origin of the emission along the 

parabolic plasma. (Figures adapted from Ref. [39]). 

 

1.11.d  Generation of electron Airy beams 

Almost all the applications involving self-accelerating beams rely directly on the evolution of 

optical fields. However, due to the mathematical analogy between the paraxial Helmholtz 

equation and the Schrödinger equation, the temporal evolution of the wave packet of a 

massive particle is similar to the propagation dynamics of a zero mass photon. In this contest, 

N. Voloch-Bloch et al. reported the first generation and observation of an Airy wave packet 
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made of free electrons (thus referred as “electron Airy beam”) [102]. Similar to their optical 

counterparts, electron Airy beams are shape-preserving matter waves exhibiting self-

acceleration in the absence of an external force [Fig. 1.23(a)], as well as self-healing of their 

original shape when the initial electron beam profile deteriorates.  

 

 

 Figure 1.23: Experimental generation of electron Airy beams. (a) Schematic experimental setup. 

(b-c) TEM micrographs of the nano-scale holograms used to impress a cubic phase structure to the 

input electron gun with (b) and without (c) a spatial frequency carrier. (d-e) Micrographs of the 

experimentally generated (d) 2D and (e) 1D electron Airy beams. (Figures adapted from Ref. [102]).  

 

The experimental realization of electron Airy beams was based on the same technique used to 

generate optical Airy beams. Firstly, the authors induced a cubic phase modulation in the 

Fourier domain of an initial electron beam through a nano-scale hologram, shown in Fig. 

1.23(b). In particular, they imposed an additional spatial carrier frequency to the typical cubic 

phase structure [Fig. 1.23(c)]. Then, the electron Airy beam was generated by Fourier 

transforming the phase-modulated electron beam through a magnetic lens. The entire 

characterization was carried out inside a transmission electron microscope. Since the 

electronic beam shaping technique is similar to those exploited in optics, it enables the 

possibility of readily extending the advances obtained in optical systems to matter waves in 

both the paraxial and non-paraxial regime. 
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1.11.e  Micromachining 

Since an Airy beam was the first self-accelerating beam to be introduced in optics, it is natural 

to expect that most of applications actually refer to this wave packet. However, since it 

accelerates along a parabolic trajectory in the paraxial regime, it cannot be exploited in 

applications where different beam paths and/or large angles are required. To overcome this 

serious limitation, researchers are trying to extend the range of possible applications even to 

more arbitrary beams. For example, J. M. Dudley’s group demonstrated the realization of 

arbitrary convex accelerating beams by engineering (in the real space) the appropriate phase 

mask to be imprinted to an indent Gaussian beam [17]. Such phase profiles, for both paraxial 

and non-paraxial accelerating beams, were estimated by using the caustic theory approach. As 

a proof of principle, the authors synthesized femtosecond accelerating beams with the desired 

trajectories, showing the ability of writing curved region of refractive index modification in 

glass, as shown in Fig. 1.24.  

 

 

Figure 1.24: Femtosecond waveguide writing. (a) Transversal intensity distribution of the 

synthesized 2D Airy beam. (b) Curved region of refractive index modification. (Figure adapted from 

Ref. [17]). 

 

To increase the beam intensity in the main lobe, the estimated phase profile has been applied 

along the two orthogonal directions of the SLM, thus creating a 2D beam profile, with an 

energy mostly confined in the beam main lobe [Fig. 1.24(a)]. In this experiment, a parabolic 
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accelerating beam has been used, but the method is readily applicable for any arbitrary 

trajectory, even in the non-paraxial regime.  

In related works, this group also reported laser micromachining of micron-sized curved 

surface and trenches with circular profiles, using tailored femtosecond accelerating beams 

[103-104]. For this application, the authors not only demonstrated the ablation in materials 

such as silicon and diamond using femtosecond accelerating beams, but also showed how 

efficiently a control of the depth of the trenches, as well as of the curvature of the surface 

could be achieved - as shown in Fig. 1.25.  

 

 

Figure 1.25: Micromachining using circular self-accelerating beams. (a) Curved machined surface 

obtained by ablating a 50µm-thick diamond sample with a bending radius of 70µm. (b) Machined 

surface for a 100µm-thick silicon sample using a beam circular trajectory with a 120µm-long bending 

radius. Dotted white line in (a-b) are the calculated ablation profiles. (Figure adapted from Ref. [103]). 

 

1.11.f  Other self-accelerating beams applications 

Apart from the examples described above, the number of potential applications for self-

accelerating beams has been growing rapidly in the last few years. For instance, G. Porat et al. 

[105] proposed a method to realize a solid-state laser emitting Airy beams. In such a laser, a 

diffraction grating imposing a transverse cubic phase to the diffractive light was used as the 

output-coupler. The Airy beam profile was obtained by adding to the laser system an external 

lens to compute the Fourier transform of the output beam. P. Rose et al. [106] introduced an 

all-optical routing scheme based on Airy beams capable to address as much as 16 individually 
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output channels. For imaging applications, T. Vettenburg et al. [107] reported light-sheet 

microscopy using Airy beams. In this application, the authors demonstrated that an Airy beam 

not only produces high contrast and resolutions up to a tenfold larger field of view (FOV), but 

that its transverse asymmetric beam structure improves the imaging method. Using nonlinear 

optical phenomena, T. Ellenbogen et al. [28] demonstrated a new way of generating Airy 

beams. In particular, the authors experimentally generated a second-harmonic Airy beam by 

using three-wave mixing processes in asymmetric nonlinear photonic crystals. In related 

works, I. Dolev et al. also reported Airy beam generation and control from three-wave mixing 

processes [108-110]. In the field of plasmonics, A. Saladrino and D. Christodoulides [111] 

reported the existence of a 1D Airy solution in the planar system of a metal interface. Later 

on, several groups have provided experimental realization and control of plasmonic Airy 

beams [112-115]. Other applications of particular interests are those involving abruptly 

autofocusing beams (AABs). D. Papazoglou et al. [116] showed the advantage of AABs in 

laser processing of thick samples (e.g. 10mm fused silica) compared to a traditional Gaussian 

beam. Due to an abrupt enhancement in the intensity of these beams at the focal point, AABs 

combine short focal volume with a long working distance, thus making them ideal for 

nanosurgery and biomedical applications. P. Zhang et al. [117] also explored the possibility of 

trapping and guiding dielectric microparticles using AABs. In this work, the authors sent an 

AAB into an optical tweezers-like setting where the microparticles were trapped and 

transported along the AAB, which therefore behaved as a tapered channel guide for the 

microparticles. 
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Chapter 2 

Trajectory prediction and designing of self-accelerating beams 

In this chapter, we propose and demonstrate a method to control and design the propagation 

trajectories of one-dimensional (1D) single- and multi-path self-accelerating beams by way of 

a spectrum-to-distance mapping. Such mapping not only allows for a Fourier-space prediction 

of the propagation trajectory based on the a priori knowledge of the imposed spectral phase 

configuration, but also enables the possibility to engineer the beam initial spectral phase so to 

generate a beam propagating along an arbitrary convex trajectory. Furthermore, our approach 

gives an alternative physical justification to the self-healing property shown by this type of 

beams [15]. Non-paraxial accelerating beams characterized by large-angle convex trajectories 

can also be described by this method in both the scalar and vectorial context. Moreover, we 

also demonstrate the generation of periodic or zigzag self-accelerating beams in both the 

paraxial and non-paraxial regimes.  

 

2.1. Introduction 

In the last few years, the field of self-accelerating beams has attracted growing attention, 

mainly due to their fascinating propagation along a transversely bending trajectory. Airy 

beams, propagating along a parabolic trajectory in the paraxial condition, were the first wave 

packets to exhibit bending or self-accelerating trajectories (see Chapter 1 and reviews [118-

119]). Potential applications, as well as the intriguing properties of these optical beams, have 

driven the research efforts to go beyond the paraxial approximation limit, and extend Airy 

parabolic paths towards the generation of more arbitrary convex trajectories. A great variety 

of self-accelerating beams exhibiting different trajectories has been suggested and 
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demonstrated [17-21,44,47,51-52,120], in both the paraxial and non-paraxial regime. In these 

settings, the generation of these beams is obtained by imposing a phase modulation in the real 

space. Some works also showing the Fourier-generation of self-accelerating beams have 

already been recently reported in the literature. In particular, under the non-paraxial condition, 

both amplitude and spectral phase configurations for main humps following circular (Bessel-

like), parabolic (Weber) and elliptic (Mathieu) trajectories, are found as solutions of complex 

separable coordinate systems, derived from the wave equation [19,21]. Nevertheless, all of 

them dealt with light localizations in which the main lobe moves along a convex smooth 

trajectory. Furthermore, all the progresses accomplished in this field rely on the application of 

a specific monotonic phase modulation which leads to single-path self-accelerating beams. 

The effect of a non-monotonic phase which can lead to multi-path beam localizations has not, 

surprisingly, been investigated to the best of our knowledge. Besides, a smooth trajectory is 

not the only possible way in which a self-accelerating beam can evolve. Light localizations 

with periodic or snake-like optical paths have been also introduced and experimentally 

observed through different approaches [121]. In particular, periodic self-accelerating beams 

can be realized by applying both a phase and an amplitude modulation in the Fourier regime, 

but they lack a general and detailed explanation. Such knowledge may pave the way to the 

design of beams with any desired profiles [43-44].  

In this chapter, we introduce the concept of spatial spectral phase gradient which enables to 

map spatial frequencies to propagation distances. We will show theoretically and 

experimentally that such a spectrum-to-distance mapping can be employed to predict and 

manage the trajectories of single- or multi-paths self-accelerating beams by means of 

analyzing the Fourier-space phase. With reference to previous works, we notice that the 

spectrum of a self-accelerating beam is composed of different spatial frequencies whose 

phases have a special relationship. This resembles non-stationary signals in the time domain, 

which cannot be decomposed in sinusoidal signals of the same frequency. To analyze these 

signals in the framework of signal processing, the spectral phase gradient has been 

successfully introduced to describe the group delay [122]. Since the concept of group delay in 

time can be analogous to the position in the spatial domain, the spatial spectral phase gradient 

can be used to describe positions in space, so giving us the opportunity to control the 
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trajectories of self-accelerating beams by analyzing the spatial spectral phase. In particular, we 

will show that for self-accelerating beams with a single smooth trajectory, different 

propagation distances are linked to different key spatial frequencies in the spectrum. Instead, 

for multi-path light localizations, different portions of the spectrum are mapped to different 

trajectories and each of them behaves in the same way as a single-path beam does. Several 

properties, including self-healing and curved trajectories, descent from such principle. 

Through this scheme, the path of a self-accelerating beam can be predicted from the 

knowledge of the phase modulation applied to the Fourier space. Conversely, the spectral 

phase structure can be also engineered in order to restrict the main hump propagation along 

any desired convex trajectory. Another important point to highlight is the fact that this method 

is not limited to the description of convex trajectories generated by phase-only spectral 

modulation, but also applies to beam paths produced by the combination of both spectral 

phase and amplitude modulation. Additionally, the generation of periodic accelerating beams 

will be also discussed. Such light localization patterns can be obtained by imposing both phase 

and amplitude modulations in the Fourier domain. We will show that when a homogenous or 

small amplitude modulation is impressed in the Fourier domain, a self-accelerating beam 

follows a smooth convex trajectory that can be traced by only analyzing the initially imposed 

spectral phase. Larger amplitude modulations, such as a Heaviside-shape profile with zero 

amplitude values, greatly affect the beam path, thus leading to the co-existence of straight-

lines and convex trajectories. A “spectral well” structure yields to a reshaping of the convex 

trajectory into a “V”-shaped path. Periodic accelerating beams can be generated by employing 

appropriate arrays of “spectral wells”. 

Beside the paraxial limit, we will also show that such a mapping is also applicable for 

generating large-angle multi-path periodic/smooth self-accelerating beams, only achievable 

under non-paraxial condition. Remarkably, our approach can explain from another perspective 

why an Airy beam breaks down the acceleration in the non-paraxial regime. Finally, we will 

analyze vectorial self-accelerating beams, whose intensity patterns are shared by the two 

polarized components. Similarly to the scalar case, we can apply our method to predict or 

engineering the whole beam pattern that will be followed by the sum of the two components. 
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2.2 Theory of spectrum to space mapping 

We start our analysis by considering the 1D paraxial diffraction equation, which describes the 

propagation dynamics of the electric field envelope in the linear regime [1]: 
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0,
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  
 

 
  (2.1) 

Here ϕ(x,z) is the electric field envelope and k is the wave number. As shown in the sketch of 

Fig. 2.1, self-accelerating beams are generated in the real space (x-y-z), after shaping the 

spectrum in the Fourier plane. In this case, an initial plane wave is modulated in both 

amplitude and phase at the x'-y' plane (left side of Fig. 2.1) corresponding with the focal plane 

of a lens of focal length f. Since we here only deal with 1D self-accelerating beams, we apply 

a y'-independent amplitude and phase modulation in the spectrum. Additionally, the 1D 

Fourier transform of the modulated plane wave is spatially achieved through the use of a 

cylindrical lens (assumed to be ideal), thus forming a self-accelerating beam in the real space 

(x-y-z), right side of Fig. 2.1).  

 

 

Figure 2.1: Sketch of the experimental setup employed for generating 1D self-accelerating 

beams, in which both a phase and an amplitude modulation is imprinted in the Fourier space (x'-

y'). 

 



51 

 

The polarization of the input beam (i.e. the direction of the electric field oscillation) is set 

along the y’-axis. In such a case, no change of the polarization is involved throughout the 

propagation of self-accelerating beams, and the scalar description is therefore valid. On the 

other hand, if the initial beam is at least partially polarized along the x’-axis, a vectorial 

analysis must be considered as a bending propagation induces a change of polarization to the 

electric field. This case will be treated in further details in the next sections.  

Under the paraxial condition, the electric field envelope can be described by this simple 

expression:       

    
1

,
2

, .xixk

x xE k z dkx ez
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      (2.2) 

In Eq. (2.2) /xk x k f  is the spatial angular frequency, where x/f is a scaling factor. 

   , ( )exp[ , ]x x xE k z A k i k z  is the Fourier spectrum, for which   2, / (2 )x xk z k z k   

 xk  corresponds to the spectral phase. ( ) 0xA k   and (kx) are respectively the amplitude 

and phase modulations set at the x'-y' plane. In analogy to the time domain, where the spectral 

phase gradient can be related to the group velocity [122],  the spectral phase gradient in the 

spatial domain is related to the local position so that: 
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In a local range x, the spatial frequencies  2 2, /x x xk k z k   are mainly responsible for 

aggregating the light, as these nearly-in-phase waves generate constructive interference. Since 

each spatial frequency component is weighted by ( )xA k , the spectral density ( ) x
x

dk
D k

dx


takes the form:  
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At first, we will focus on self-accelerating beams generated by phase-only modulation in the 

Fourier space, without considering any effect due to an amplitude modulation. ( )xA k is 

assumed to be homogenous and unitary ( ( ) 1)xA k  . Since we only deal with phase variations, 

the amplitude of each xk  component in the Eq. (2.2) is thus equal and the spectral density 

 xD k reduces to  2 21/ , /x xk z k  . The beam can reach the maximum intensity (MI) when 

the singularity condition  2 2, / 0x xk z k    is satisfied. This spectral density singularity 

determines the beam caustic, strictly related to the trajectory followed by the self-accelerating 

beam. It can also be expressed as: 

   ,x

z
k

k
    (2.5) 

thus relating spatial frequencies to propagation distance z. By solving Eq. (2.5), the key spatial 

frequencies ( )xck  determining the propagation trajectory can be expressed as a function of z. 

Furthermore, Eq. (2.5) together with the following: 

 
 

,
xck zdx

dz k
   (2.6) 

which is derived from Eq. (2.3) and (2.5), readily leads to the convex trajectory followed by 

the maximum intensity of the beam. A simple case can be illustrated by assuming ρ′′(kx) to be 

a smooth monotonic function of the spectral angular frequency kx. By solving Eqs. (2.5) and 

(2.6) the key spatial frequency kxc is found to be a single-valued function of the propagation 

distance z so that the corresponding beam localization consists of a single convex trajectory. 

This allows us to define a spectrum-to-distance mapping, since different propagation distances 

z are related to different key spatial frequencies.  

If the spectral amplitude components A(kx) are no longer uniform, the analysis must include 

further considerations. However, as will be shown in section 2.4, our method can still be 

applied to describe the dynamics of self-accelerating beams.  
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2.3 Phase-only modulation 

In this section, we apply our analytical method to some particular cases of single- and multi-

path beams. Herein, in particular, we deal with phase-only modulation, which leads to a light 

localization showing smooth single- and multi-trajectory paths. Under this condition, the beam 

evolution is given by: 

    , exp[ , ].x xE k z i k z   (2.7) 

From the knowledge of the spectral phase modulation ( )xk , the beam path of a self-

accelerating beam can be predicted by calculating the key spatial frequency kxc(z) from             

Eq. (2.5), and then substituting it into Eq. (2.6). On the other hand, the phase structure ( )xk  

can be also engineered for any desired convex trajectory through the determination of kxc(z) 

from Eq. (2.6) and then inserting it into Eq. (2.5).  

 

2.3.a Single-path self-accelerating beams 

At first, a single-path self-accelerating beam is considered. As mentioned above, the phase 

modulation must have a second derivative which behaves as a smooth monotonic function of 

the spectral frequency  xk . A well-known case of single-path self-accelerating beam is the Airy 

beam, which bends along a parabolic trajectory, and is generated by a cubic phase modulation, 

as e.g.    
3

 /x xk k k  ( 200 a  and  633nmk  ). Starting from this phase distribution, as 

expected from Eq. (2.5), the key spatial frequency is a linear function of the propagation 

distance z, according to 
2 3/ (6 )xck k z   [dotted white line in Fig. 2.2(a)]. Inserting this 

estimated xck in Eq. (2.6), the convex trajectory followed by the MI is found to be the parabolic 

curve so that 
2 3( ) / (12 )rT z kz   [dotted white line in Fig. 2.2(b)]. The analytical prediction is 

further confirmed by numerical simulations of the beam propagation obtained by a Fourier 

transform of Eq. (2.2), as shown in the Fig. 2.2(b). Additionally, if all the sub-lobes in the 

intensity path illustrated in the Fig. 2.2(b) are then discarded, in order to only consider the 
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main lobe of the beam, the spectrum corresponding to the residual intense hump will follow 

the linear evolution of the key spatial frequency described above [Fig. 2.2(a)]. 

 

 

Figure 2.2: Single-path self-accelerating beam generated by a spectral cubic phase modulation 

under the paraxial approximation. (a) Estimated key spatial frequency (dashed white line) and 

residual spectrum (false color) corresponding to the main hump of (b); (b) predicted propagation 

trajectory (dashed white line) and numerical intensity beam evolution (false color); (c) intensity pattern 

at z = 0 calculated by considering a small 0.002xk k  (upper) and a large 0.043xk k  (bottom) 

interval of spatial frequencies kx filtered around the key frequency kxc. All the trajectories calculated 

analytically are slightly shifted with the purpose of better visual clarity when comparing the beam 

evolutions. This also applies to all the following figures.  

 

A deeper understanding of the beam dynamics is also achieved by studying the influence of 

the spatial frequencies kx around the key spatial frequency kxc. As shown in the upper panel in 

Fig. 2.2(c), if we limit our study to the spectral components located within a small range 

around the key spatial frequency, the MI of the corresponding beam at z = 0 matches the 

spectral density singularity, estimated to be localized at x = 0. If we consider more spectral 

components, i.e. a larger frequency range surrounding the key spatial frequency, one can 

observe the deviation of the location of the MI with respect to the spectral density singularity 

position [bottom panel of Fig. 2.2(c)]. Neglecting this minor mismatch, the trajectory 

predicted by Eq. (2.5) and (2.6) perfectly agrees with the path of the main hump shown in Fig. 

2.2(c). 
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The self-healing property, characteristic of self-accelerating beams, can thus be fully 

understood by this “uncorrelated” propagation of the main hump [18]. Indeed, since the main 

humps at different distances z are determined by different key spatial frequencies, even if the 

main lobe at a certain position is filtered out (or blocked – in more physical terms), the main 

hump at subsequent propagation distances, further away from the obstacle, is not influenced, 

as its position is mapped to a different key spatial frequency.  

Although we limited our study to the particular example of a spectral cubic phase, our 

approach can be also used to describe a more general class of beams. In particular, the 

spectrum-to-distance mapping can be defined for any self-accelerating beam generated by an 

arbitrary phase modulation ( xk  ) whose second derivative ))xk   is a monotonic 

function. As mentioned in the end of section (2.2), the key spatial frequency calculated from 

Eq. (2.5) remains, in this case, a single-valued function of z. Indeed, the beam path retrieved 

via Eq. (2.6) is composed by a single convex trajectory. Due to this mapping, the main hump 

of the beam at different propagation distances is linked to different key spatial frequencies. 

Furthermore, while for a spectral cubic phase the key spatial frequency varies linearly with the 

propagation distance [Fig. 2.2(a)], such evolution is generally curvilinear for an arbitrary 

spectral phase modulation.  

 

2.3.b Multi-path self-accelerating beams 

Next, we consider the case of an arbitrary spectral phase modulation. Since  xk  may not 

be a monotonic function, two or more key spatial frequencies could be involved in this case, 

in order to determine multiple beam localizations. The results for a typical example of non-

monotonic function  xk  are shown in Figs. 2.3(a, b), obtained by analyzing the sinusoidal 

spectral phase modulation    130sin 80 /x xk k k . By inserting this phase structure in 

Eq.(2.5), the propagation distance z is linked to the key spatial frequency through the relation: 

  5 ( ) 8.32 10 sin 80 / /xc xcz k k k k     (2.8) 
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Unlike single-path beams, in this case the key spatial frequency (kxc (z)) is expressed as a 

multi-valued function of z and is numerically evaluated from Eq. (2.8). This is achieved by 

restricting the domain of kxc to the portions of the spectrum [highlighted by the numbers 1, 2, 

3 in Fig. 2.3(a)] where Eq. (2.8) results to be a single value of kxc. If the monotonic portions of 

the key spatial frequency are then inserted into Eq. (2.6), we can predict the beam path to be 

composed by three trajectories (or branches). Each of these trajectories is associated to 

different spectral components, due to the fact that the key spatial frequency is still monotonic 

in that spectral range. This correspondence is illustrated in Figs. 2.3(a, b), where for clarity, 

we labeled with the same number each key spatial frequency and its related trajectory.  

 

 

Figure 2.3: Multi-path self-accelerating beams generated by a spectral sinusoidal phase 

modulation under the paraxial approximation. (a) Multi-valued key spatial frequency (dashed 

white line) and the residual spectrum corresponding to the three main humps paths in (b); (b) predicted 

beam path (dashed white curves) and numerical beam evolution. The numbers indicate the 

correspondence between the trajectory and the related key frequency.  

 

As shown in Fig. 2.3(b), our analytical approach is further confirmed by numerical 

simulations of the beam evolution based on the Fourier transforms of Eq. (2.2). In addition, 

when the beam path is filtered in order to only retain the main hump of the 2nd trajectory, the 

residual spectrum tends to evolve as expected from the corresponding key spatial frequency 

[white dotted line in Fig. 2.3(a)]. If the same filtering is carried out for the 1st and 3rd 

trajectories, the spectra associated to their main lobes evolve, respectively, almost as the 



57 

 

corresponding key spatial frequencies [white solid lines in Fig. 2.3(a)].  Indeed, it is worth 

noting that the imperfect overlap is due to the unoptimized filtering procedure employed in the 

numerical simulations. This mismatch is expected to be efficiently reduced by blocking the 

beam path (i.e. filtering) in a more accurate way.  

Going back to the general case, the same analysis carried out for the above example of a 

spectral sinusoidal phase can be directly applied to any arbitrary non-monotonic key spatial 

frequency. Different trajectories composing the beam path can be therefore linked to different 

portions of spectrum where the remaining key spatial frequency has a monotonic trend. In this 

way, all typologies of multi-trajectory beams can be described by using our approach. 

In the next section, we provide experimental observations attesting the validity of such a 

spectrum-to-distance mapping approach.  

 

2.3.c Experimental results 

To verify the above analysis, we perform an experimental characterization using the setup 

shown in Fig. 2.4. A 2D Gaussian beam obtained by means of a He-Ne laser (CW at 

λ = 633 nm), horizontally-polarized (along the y'-axis) is initially truncated by two metallic 

blades, so as to approximate the circular Gaussian distribution to a 1D Gaussian beam. Then, 

the beam is phase modulated at the rear focal plane of a cylindrical lens (f=100 mm) using a 

phase mask, that is numerically uploaded into phase-only spatial light modulator (SLM) 

produced by Holoeye (Pluto – 1920 1080 pixels of 8 8 µm area, with 256 phase levels). 

The lens computes the Fourier transform of the phase-modulated Gaussian beam at the front 

focal plane. A CCD camera moving on a translation stage is then employed after the lens (i.e. 

in the real space), to record the beam evolution and the corresponding spatial spectrum. The 

latter are imaged by means of an additional cylindrical lens (f = 100 mm), while spectral 

filtering of the beam main hump is obtained using an adjustable slit made of two metallic 

blades.  

We initially considered an Airy beam propagating along the parabolic trajectory shown in 

Fig. 2.2(b). The Airy beam is generated by uploading, into the SLM, a wrapped shifted 1D 

cubic phase mask [62], whose profile is plotted in the upper panel of Fig. 2.5(a). The beam 



58 

 

evolution [Fig. 2.5(b)] follows the parabolic trajectory predicted by our model (dashed white 

line in Fig. 2.5(b)). More interestingly, as shown in Fig. 2.5(c), if the sub-lobes are filtered 

out, the main hump’s spectrum shifts linearly with the propagation distance z, similarly to the 

simulation presented in Fig. 2.2(a), thus providing a direct proof that beam localizations at 

different propagation distances z are mapped to different spatial frequencies. 

 

 

Figure 2.4: Experimental Setup 

 

In a second experiment aiming to generate multi-path beam localizations, we employed two 

examples of phase modulation shown in Figs. 2.5(d, g), for which beam patterns exhibit two 

and three main humps, respectively. As illustrated in Figs. 2.5(e, h), the measured propagation 

patterns are in good agreement with the analytical predictions obtained via the spectrum-to-

distance mapping (dashed white line in Figs. 2.5(e, h)). Furthermore, by blocking alternately 

the beam path(s) in the real space, each residual branch is shown to be linked to different parts 

of the spectrum, as presented in Figs. 2.5(f, i). Indeed, for the beam path constituted by two 

main trajectories [Fig. 2.5(e)], we can readily observe that two different spectral parts are 

linked to the two branches. 
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Figure 2.5: Experimental observation of self-accelerating beams with single- and multi-

trajectory paths. (a, d and g) k-space phase and amplitude modulations imposed on the SLM, 

respectively corresponding to the beams evolution in (b, e and h). Note that in (b, e and h), the 

analytically predicted trajectories are shown as white dashed lines; Panels (a, b) depict a case of self-

accelerating beam with a single-path related to the Airy beam; the associated (c) key spatial frequency 

distribution (c) is obtained by plotting the residual spectrum of the main hump as a function of the 

propagation distance after spatial filtering. Panels (d, e) and (g, h) show two cases of multi-path self-

accelerating beams with two and three trajectories, respectively. For each of these cases, (f) and (i) 

respectively represent the spectral intensity of the multi-path self-accelerating beams extracted at z = 

50 mm. Furthermore, in panels (f) and (i), the portions of the spectrum associated to the different 

trajectories in (e) and (h)  are, respectively, labeled with the same numbers in (e) and (h).  
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Our measurements experimentally confirm the existence of a spectrum-to-distance mapping 

even for multi-path light localizations. Moreover, by alternatively blocking one of the two 

main branches and further filtering out the sub-lobes of the remaining trajectory (so leaving 

only its main hump), we can also image the different spatial frequencies associated to different 

positions of the main hump. As expected, this key spatial frequency is only localized in the 

portion of spectrum associated to the unblocked trajectory. The same behavior is also 

observed for the pattern exhibiting three main trajectories. [Fig. 2.5(h)].  

Although all the analysis and experimental observations shown here are related to the 

trajectory prediction from a known spectral phase, it can be conjectured that, conversely, the 

phase structure to be implemented for any desired beam trajectory can be designed using the 

results shown above. Several examples of this approach are shown in section 2.5a, where the 

spectral phases for various trajectories of non-paraxial self-accelerating beams are engineered 

(see Fig. 2.11). Paraxial examples of similar beam designs are also shown in the third chapter, 

for which we extend our previous analysis to the two-dimensional regime in order to calculate 

the spectral distributions to be used for generating the desired trajectories. 

 

2.4 Spectral phase and amplitude modulation 

When the spectral modulation in Eq. (2.2) does not exhibit a constant amplitude anymore, 

meaning that  xA k  is now a function of the spatial frequency, the theoretical analysis shown 

previously may require further considerations. Assuming that the spectral amplitude is strictly 

positive (i.e. )( 0xA k  ), with relatively small variations, the spectral density    xD k   

   | |/  x xA k '' k  still shows a singularity for  | | 0x'' k  . Therefore, the previous analysis 

used to predict the beam path still remains valid. Nevertheless, when the amplitude 

modulation depth is very high, i.e.   0xA k  , this approach is not valid anymore and the 

analysis must be revisited. To analyze the influence of a spectral amplitude modulation on the 

dynamics of self-accelerating beams, we will study three particular examples of amplitude 

distributions: a Heaviside-shape, a so-called “spectral well” and an array of multiple “spectral 

wells”.  
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2.4.a Heaviside spectral amplitude modulation 

The simplest case of spectral amplitude modulation to be considered corresponds to a 

Heaviside shape whose profile is given as: 
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We illustrate this example in Fig. 2.6, where we show the dynamics of a Fourier-generated 

self-accelerating beam [Fig. 2.6(a)] obtained by combining an arbitrary phase modulation 

 xk  with a Heaviside amplitude modulation  xA k  (illustrated as a grey shaded rectangle 

in Fig. 2.6(b). The phase modulation  xk  is assumed to be monotonic, with a second 

derivative  x'' k  also increasing monotonically, for which our method predicts the beam to 

propagate along a smooth convex trajectory. Here, the presence of a Heaviside amplitude 

modulation strongly alters the curved propagation: For ranges of propagation distances z up to 

 0 0xz k '' k , Eqs. (2.3) and (2.4) can be still used to estimate the convex trajectory, since 

these distances are mapped to key spatial frequencies whose amplitude is unitary (A(kx) = 1). 

Nevertheless, for distances z larger than z0 (i.e. where A(kx) = 0), the beam path deviates from 

the predicted convex trajectory and our approach must be re-examined. Indeed, according to 

Eq. (2.3), such distances should be mapped to key spatial frequencies larger than kx0, for 

which the spectral density D(kx) is actually equal to zero - rather than exhibiting a singularity 

that enables the calculation of the beam path seen above. In this case D(kx ) can only reach a 

maximum in the range kx ≤ kx0, associated to a minimum of  | |x'' k ). The underlying 

question here is related to the behavior of  | |x'' k outside this propagation range. Since we 

assume that  x'' k is a monotonically growing function,  x'' k  not only increases 

monotonically, but also remains negative for propagation distances z > z0. Conversely, 

 | |x'' k has a monotonic decreasing trend (black solid line in Fig. 2.6(b)) reaching the 

minimum at the jump point of the Heaviside-shape spectrum kx = kx0. For spatial frequencies 
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kx > kx0,  | |x'' k continues decreasing, but the spectral density D(kx ) is null in this case. As a 

result, the spectral density D(kx ) does not show a singularity when  | | 0x'' k  , because it is 

null for z > z0. For these distances, D(kx ) only reaches a maximum value appearing at kx = kx0. 

As a consequence, the key spatial frequency kxc is constant over this range and coincides with 

the spatial frequency at the jump point of the Heaviside spectrum kx0.  

 

 

Figure 2.6: Schematic dynamics of a self-accelerating beam obtained from a spectral amplitude 

modulation having a Heaviside shape. Panel (a) shows the composed path followed by the beam 

during propagation. Solid blue and red lines highlight the convex and straight-line components, 

associated to spatial frequencies in which the Heaviside amplitude modulation is unitary and zero, 

respectively. Panel (b) shows a plot of the evolution of | ( ) |x'' k  for propagation distances z > z0. The 

shaded grey rectangle in (b) indicates the Heaviside amplitude spectral distribution. 

 

According to this argument, we can infer that our analytical scheme still provides a correct 

description of  the beam path, even in the presence of a larger spectral amplitude modulation, 

but Eq. (2.2) must be first modified so that: 

  0
0 .x

x

k
x z k

k
    (2.10) 

Eq. (2.10) points out that the beam path is not a convex trajectory anymore, but the MI 

undergoes a linear shift with distance. Such a linear evolution is schematically described by 

the red line plotted in Fig. 2.6, which is tangent to the convex trajectory (blue line) at z = z0.  
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In particular, Eq. (2.10) is obtained analytically from Eqs. (2.6) and (2.3) by substituting 

kxc = kx0 for every z ≥ z0. Indeed, from Eq. (2.6), we find that  
0 0 / . / | /z c xz xdx dz k k kz k 

From this expression, the beam trajectory for z ≥ z0 is calculated to be the tangent line to the 

convex trajectory at z0, given by: 

  0
0 0( ) ( ) .xk

x z x z z z
k

     (2.11) 

Moreover, from Eq. (2.3), we can find out that the local positon at z = z0 is related to the 

spectral phase gradient as:    0 0 0 0 0( ), / .xc x xx k z z k z k k   Finally, Eq. (2.10) results by 

replacing the term x(z0) on the right-hand side of Eq. (2.11) with  0 0( ),xcx k z z . 

Therefore, if a spectral amplitude with a Heaviside shape is impressed in the frequency 

domain, the beam path can still be predicted via our approach as a composite trajectory made 

of the curved and straight paths respectively corresponding to propagation distances before 

and after the distance z = z0.  The MI of beam follows a convex trajectory for z < z0 and then it 

evolves along the straight path tangent to the convex trajectory at z0. All our considerations 

are based on a monotonically increasing  ′′(kx ), but a similar behavior can be readily retrieved 

assuming a monotonically decreasing case. It is also worth mentioning that the path followed 

by a self-accelerating beam generated by a Heaviside-like amplitude modulation with non-

zero values at  kx > kx0 (e.g., by adding a constant offset to the previous Heaviside spectral 

distribution) is similar to the one obtained by a complete modulation.   

 

2.4.b Airy beam generated by a Heaviside spectral amplitude modulation 

To validate the above analyses, we now take in consideration a specific example of self-

accelerating beam, generated by applying both a phase (kx) and a Heaviside amplitude                  

A(kx) modulation at the Fourier space. As spectral phase, we consider the cubic function                              

(kx ) = [a (kx ‒ b) /k ]
3
 

3 64 10 , 0( ).033a b k     [upper panel in Fig. 2.7(a)], widely-used to 

generate Airy beams. In this case, both (kx ) and its second derivative  ′′ (kx ) = 6a
3
(kx ‒ b)/k

3
 

are monotonically increasing functions. The numerical simulation shown in Fig. 2.7(c) 
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illustrate the parabolic trajectory Tr (z) = kz2 / (12a
3
) + bz / k  followed by the Airy beam in 

the absence of a spectral amplitude modulation (see Fig. 2.7(a)). If now the cubic phase 

modulation is combined with a spectral Heaviside amplitude modulation (for which kx0 = 

0.005k) [see lower panel in Fig. 2.7(b)], our method estimates the beam path to be composed 

by a parabolic curve up to z = z0 = 6a
3
(kx0 ‒ b)/k

2
, and a straight line tangent to this curve at 

z0 for propagation distances larger than z0 (white dashed line in Fig. 2.7(d)). This analytical 

prediction is confirmed by the beam evolution computed from Eq. (2.2), in which one can also 

notice that the main hump of the beam experiences a dramatic increase in terms of width when 

propagating along the straight-line portion (thus attesting for the loss of non-diffraction 

behavior over this propagation range – see Fig. 2.7(d)). In addition, if the sub-lobes in 

Fig. 2.7(d) are filtered out, thus only leaving the main lobe, the residual spectrum shifts 

linearly with the propagation distance z up to z0, and then remains constant for z > z0 

[Fig. 2.7(e)], in good agreement with our theoretical predictions. To complement numerical 

simulations, we also carried out an experimental demonstration employing the setup used 

described in the first section.  The spectral amplitude modulation was performed by placing a 

transparent film right in front of the SLM, on which the designed (opaque) amplitude pattern 

was printed. The amplitude modulation have been drawn through scaling the spectral and real 

coordinates with the focal lens (f = 100 mm), as x = kx / f. In order to readily compare our 

experimental results with the numerical simulations illustrated in Figs. 2.7(c-e), we generated 

an Airy beam using the same parameters. As shown in Figs. 2.7(f-h), the measured beam 

propagations and main lobe spectral distributions show excellent qualitative agreement with 

our numerical results. 
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Figure 2.7: Experimental observation of an Airy beam generated using a cubic phase modulation 

and different amplitude modulations in the spectral domain. In the 1st column we plot the spectral 

cubic phase (upper panel) and amplitude (lower panel) distributions imposed in the SLM; the 2nd and 

3rd columns illustrate the numerical evolutions and experimental observations, respectively. (a) Plots of 

the spectral phase and an homogenous amplitude modulation corresponding to an Airy beam 

propagating along the smooth parabolic trajectory shown in (c) and (f); (b) plots of the phase and a 

Heaviside-shape amplitude modulations for an Airy beam propagating along a path composed by a 

smooth parabolic trajectory and straight line in (d) and (g). (e) Numerical and (h) experimental key 

spatial frequency distributions obtained by filtering the main-lobes in (d) and (g), respectively. In all 

the panels, dashed white lines represent the analytical predictions of either the beam trajectory or key 

spatial frequencies, obtained via the spectral-to-space mapping. 
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2.4.c  “Spectral well” amplitude modulation 

Before, we analyze the effect of a Heaviside-shape amplitude modulation on the dynamics of 

the Airy beam. Here, we extend our study towards the effect of more complex spectral 

amplitude structures on the Airy beam propagation dynamics (whose phase modulation is here 

   
3

/x xk a k b k     – where 
3 66 10a    , b = 0.043k – as seen in Fig. 2.8(a)). A 

straightforward case consists in modulating the amplitude through a “spectral well”, in which 

the spectral amplitude A(kx) is null within the range kx1 ≤ k ≤ kx2, and 1 otherwise [see 

Fig. 2.8(b)].   

 

 

Figure 2.8: V-shaped path of a self-accelerating beam along a parabolic trajectory, generated by 

modulating the amplitude through a single spectral “well”, and the phase through a spectral 

cubic distribution. Panels (a) and (b) represent the spectral phase and amplitude modulation, 

respectively. Panels (c) and (d) show the numerical and experimental results of the propagation 

intensity distributions. Dashed white lines in (c,d) represent analytical predictions of the various 

trajectory components (ideal parabolic and tangential lines) via both the spectral-to-space mapping for 

the combination of the phase and amplitude modulation shown in (a) and (b). 
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In this case, the beam path predicted through the spectrum-to-distance mapping is found by 

joining together two straight lines, appearing in the range 

   3 2 3 2

2 16 /   6 /x xa k b k z a k b k    , with a parabolic trajectory elsewhere (dashed white 

line in Fig. 2.8(b)). Such linear propagation range z is bounded by  1 1xz k '' k  and

 2 2xz k '' k , and is correlated to the spectral distance between the jump points present in 

the “spectral well” 
2 1x x xk k k   , similar to what is seen for the case of a Heaviside-shape 

distribution. If kx is small enough, the parabolic trajectory evolves into a “V”-shaped beam 

path formed by the two straight lines tangent to z1 and z2. We mention that the “V”-shaped 

path matches the parabolic trajectory asymptotically, i.e. for kx → 0. As kx increases, the 

“V”-shaped path vanishes, thus causing a severe distortion at the convex trajectory. 

The results shown in Fig. 2.8 further confirm the analytical prediction of a “V”-shaped beam 

path, highlighting the good agreement between numerical simulations [Fig. 2.8(c)] and the 

experimental observations seen in Fig. 2.8(d). 

 

2.4.d Periodic self-accelerating beams 

An interesting feature of the above-mentioned “V”-shaped paths lies in their ability to be used 

as elementary cells for the construction of periodic (or “zigzag”) self-accelerating beams. 

Since a “spectral well” amplitude modulation produces a light interference leading to a beam 

propagation along two straight lines (when the corresponding spectral amplitude modulation is 

null), one can envision the generation of periodic self-accelerating beams composed of several 

“V”-shaped paths, employing an array of wells for the initially imprinted spectral amplitude 

modulation. As an illustrative example, we here focus our attention to the case of a beam 

whose spectral phase modulation possesses the same characteristics of the “spectral well case” 

shown in Fig. 2.8, and also reported in Fig. 2.9(a) for clarity. Through numerical simulations, 

we first optimized the periodicity of the amplitude modulation to be used for generating an 

appropriate “zigzag” accelerating beam. Imposing such a periodic amplitude modulation, as 

illustrated in Fig. 2.9(b) the beam exhibits a path in which the main lobe still accelerates along 

a parabolic trajectory, but experimenting several local and periodic “zigzag” oscillations. 
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These oscillations are matched by the series of “V”-shaped straight lines, and our simulation 

results as well as experimental observations are both in excellent agreement with the 

predictions of our approach. In order to observe a proper periodic beam path generated by the 

light interference pattern, both the period and the relative duty cycle of the spectral well array 

should be adequately tuned to achieve a symmetric zigzag. Otherwise, the absence of a 

properly adjusted amplitude modulation can lead to the disappearance of such oscillations.  

 

 

 

Figure 2.9: Periodic (or zigzag) self-accelerating beam along a parabolic trajectory, generated by 

modulating the beam spectral amplitude through an array of spectral “wells”, and the spectral 

phase through a cubic distribution. Panels (a) and (b) show the applied spectral phase and amplitude 

modulation, respectively. (c) depicts the numerically-calculated intensity distribution and (d) the 

corresponding experimental observation of the beam profile.       
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2.5 Non-paraxial self-accelerating beams 

Besides the paraxial approximation, the previous analysis is also applicable to the non-

paraxial regime, i.e. for beams propagating along a large bending angle. In this case, 1D non-

paraxial self-accelerating beams are described by the Helmholtz equation [1] as: 

 
2 2

2

2 2
0.k

z x

 


 
  

 
  (2.12) 

By neglecting the backward propagating component, the spectrum evolution of a beam takes 

the form: 

       2 2, expx x x xE k z k i k k z i k      (2.13) 

Although the calculation here exhibit a slightly higher complexity, due to the presence of a 

square root in Eq. (2.13), the beam trajectory is still predicable from a given phase modulation 

(kx), even when propagating in the non-paraxial regime. In this case, the theoretical approach 

is similar to what has been done for Eq. (2.2) – i.e. only replacing in  xk ,z  the paraxial 

term 
2 / (2 )xk z k   with the non-paraxial one 2 2

xk k z  - and for which such beams basically 

manifest the same behaviors as those seen under the paraxial approximation.  

 

2.5.a Scalar non-paraxial self-accelerating beams 

Let us start by the simple case of a non-paraxial accelerating beam generated though spectral 

phase modulation only (so that the spectral amplitude modulation A(kx) is assumed uniform). 

In this case, the spectrum evolution reduces to: 

     2 2, exp .x x xE k z i k k z i k     (2.14) 

By carrying out an analysis similar to the one for the paraxial regime, the spectral density 

singularity determining the beam caustic is expressed as:  
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


 
  (2.15) 

The spatial key frequency (ksc(z)) is found by solving the Eq. (2.15), while the propagation 

trajectory is obtained by means of the following expression:  

 
2 2

( )
.

( )

xsc

xsc

x k z

z k k z




 
  (2.16) 

To study the validity of our approach to the non-paraxial regime, we apply our analysis to 

predict the trajectory of two typical non-paraxial beams generated by the spectral modulations 

shown in Figs. 2.10(a, b).  

The first case corresponds to a the circular self-accelerating beam [19-20] generated by a 

spectral inverse sinusoidal function    1sin /x xk rk k k   (with r = 4010-6 – see dotted 

blue line in in Fig. 2.10(a)), while the other case corresponds to a cubic phase structure 

  35 / )( xx kk k  (solid blue line in in Fig. 2.10(a)). Applying our method, the spectrum-to-

distance mapping can still predict the propagation of a Bessel-like (or circular) beam along a 

smooth circular trajectory   2 2 2/rT z r k z    [dashed white line in Fig. 2.10(c)], as 

attested by the propagation simulation shown in Fig. 2.10(c). In opposition to the work 

reported in [19], where the circular accelerating beam is generated by imposing both a spectral 

phase and an amplitude modulation, our method only relies on a spectral phase modulation, 

thus greatly simplifying the experimental synthesis of such non-paraxial beams.  

In a second example, the cubic phase structure, associated to a non-diffractive Airy beam 

[11,13] in the paraxial approximation, leads to a beam localization with three main trajectories 

in the non-paraxial regime [see white dotted line in Fig. 2.10(d)]. Our predictions are once 

again in good agreement with the beam evolution computed numerically from Eq. (2.13) [see 

Fig. 2.10(d)]. Moreover, such a beam pattern explains why the multi-path Airy beam cannot 

propagate in the non-paraxial regime [20]. In contrast to the paraxial case where an Airy beam 

has a single trajectory, a non-paraxial Airy beam is associated with a multi-path localization 
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composed of three main trajectories whose interference deforms the beam over a small scale 

[19-20,47], thus destroying the ideal parabolic propagation seen in the paraxial regime.  

 

 
Figure 2.10: Trajectory prediction of self-accelerating beams under non-paraxial conditions. 

Panels (a) and (b) show the initial spectral phase and amplitude modulations, respectively. The dotted 

blue line in (a) refers to the inverse sinusoidal phase used to generate a circular (or Bessel-like) beam, 

while the solid blue lines in (a) correspond to the cubic phase used to realize a non-paraxial Airy beam. 

Note that both cases exhibit a constant (unitary) spectral amplitude modulation as illustrated in (b). 

The intensity distributions in (c) and (d) are the beam evolutions obtained numerically - based on the 

two corresponding cases of spectral modulations shown in (a). Dashed white lines in (c) and (d) 

correspond to the analytical beam trajectories predicted via the spectral-to-space mapping. 
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Furthermore, this example of spectral cubic phase clearly highlights that the phase 

modulations ρ(kx), whose second derivative ρ′′(kx) is a monotonic function of the spatial 

frequency, do not generally lead to self-accelerating beams with a smooth single trajectory 

under non-paraxial conditions. An example of a multiple non-paraxial beam generated by a 

not monotonic ρ′′(kx) is also shown in the section 2.5c. Herein, we investigate the particular 

case of a spectral sinusoidal phase to explain the vectorial nature of self-accelerating beams. 

As seen for their paraxial counterparts, even for multi-path non-paraxial beams, we found that 

different parts of the spectrum are responsible for different trajectories, and for each single 

trajectory the key frequency is a monotonic function of the propagation distance z [see Fig. 

2.14(a)]. 

 

Figure 2.11: Spectral phase design of self-accelerating beams in the non-paraxial regime.  

Spectral phase (a) and amplitude (b) distributions (estimated numerically to generate self-accelerating 

beams propagating along either a smooth elliptic (c) or a hyperbolic (d) trajectory. Dashed white lines 

in (c) and (d) are the desired beam trajectories used as “a priori” information to engineer  the phase 

structure in (a) via the spectral-to-space mapping technique.  
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For the particular cases of non-paraxial accelerating beams discussed above, we have used the 

spectrum-to-distance mapping method to verify that the various beams generated from a 

known spectral phase modulation yielded to a beam path in agreement with analytical 

predictions of the trajectory. Now, we propose to use an inverse approach by selecting an 

arbitrary convex trajectory as an a priori information to retrieve the ideal spectral modulation 

to be applied on the initial beam. As a typical example, we apply our method to engineer the 

phase structure of an elliptical and a hyperbolic trajectory, respectively described by 

  2 2 /rT z a b z b   and    2 2 /rT z c d z d  . Using the parameters b = 30 μm and c = d 

= 30 μm, the phase shapes retrieved numerically are respectively plotted in Fig. 2.11(a). The 

most noticeable difference between the two retrieved phases in Fig. 2.11(a) is that, while all 

the spatial frequencies  xk k  contributes to form an elliptical accelerating beam, only a 

certain range of frequencies  2 2/xk k c c d   is involved for the formation of the 

hyperbolic accelerating beam. To verify that the main humps of the beams propagate along the 

desired trajectories, numerical simulations of the beam propagation are performed based on 

imposing the estimated phases in the frequency domain. As shown in Figs. 2.11(c, d), the 

beam evolutions calculated through Eq. (2.13) show propagations in which their main hump 

follows the targeted convex trajectories. For the non-paraxial regime, the approach shown 

here provides an easier and more straightforward way of manipulating the trajectories of self-

accelerating beams in comparison with alternative techniques reported in the literature [21,47] 

(e.g. where elliptical non-paraxial beams are found by solving the Helmholtz equation using 

complex angular Mathieu functions).  

In this framework, it is worth mentioning that additional numerical studies highlight the fact 

that our method remains applicable when generate multiple self-accelerating beams along two 

or more different trajectories, as long as different spectral parts associated to different 

trajectories are non-overlapping. 
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2.5.b Non-paraxial periodic self-accelerating beams 

In the non-paraxial regime, our previous analytical study is still applicable for generating non-

paraxial periodic accelerating beams by modulating, at the same time, both amplitude and 

phase in the Fourier domain. In this case, the spectral evolution has the following form: 

       2 2, exp .x x x xE k z A k i k k z i k     (2.17) 

In Fig. 2.11(a), we show the retrieved spectral phase structures used to generate non-paraxial 

self-accelerating beams propagating along a circular, an elliptical and a parabolic trajectory, 

respectively described by   2 2 2/rT z r k z   (with 
640 10r   ),   2 2 /rT z a b z b 

(with 
620 10a    and 

640 10b   ), and 
2( )rT z z  (with 

39.93 10   ). For the sake of 

clarity, we mention that at this stage no amplitude modulation has been considered.  

In a second step, by imposing the amplitude modulations shown in Figs. 2.12(b1-d1), the 

intense main lobes of the circular, the elliptic and the parabolic self-accelerating beams 

undergo an oscillating (periodic) propagation while still maintaining their targeted curved 

trajectories [Figs. 2.12(b2-d2)]. 

Unlike the case of periodic self-accelerating beams propagating in the paraxial regime, both 

the depths and widths of the “spectral wells” composing the periodic spectral amplitude 

distributions in Fig. 2.12 are also modulated (i.e. a sinusoidal like modulation rather than a 

“creneau” shape in this case). Such a requirement is due to the larger curvature associated to 

non-paraxial beams when compared to paraxial ones. Indeed, as the beam curvature increases, 

the spectral well period has to be reduced adequately, in order to ensure a constructive 

interference and achieving a zigzag path.  
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Figure 2.12: Non-paraxial periodic self-accelerating beams. (a) Estimated spectral phase and 

amplitude modulations (b1-d1) for generating periodic (or zigzag) beams along circular, elliptic and 

parabolic trajectories, respectively. The corresponding longitudinal intensity beam patterns estimated 

numerically are shown in (b2), (c2) and (d2).   
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2.5.c Vectorial non-paraxial self-accelerating beams 

In the previous sections, we only discussed the case of scalar self-accelerating beams. 

According to the scheme in Fig. 2.1, those were generated by setting the polarization of the 

input light incident onto the SLM along an y′-axis (see also Fig. 2.13(a)). From a physical 

viewpoint, the phase front of the initial light beam is tilted due to the modulation mask and the 

cylindrical lens, regardless of the polarization of the electric field. Assuming that the phase 

modulation only changes along the x′-axis, such phase tilt does not alter the polarization 

direction for a y′-polarized electric field [Fig. 2.13(a)] [120]. However, by setting the initial 

beam polarization along the x′-axis, the change of polarization throughout propagation must 

be taken into consideration. Indeed, because of the above-mentioned rotation of the wave 

vector, the electric field vector acquires a component along the propagation direction z, as 

shown in Fig. 2.13(b).  

 

 

Figure 2.13: Schematic illustration highlighting the electric field polarization of the Fourier-

generated self-accelerating beams obtained by input beams which were linearly-polarized along 

the (a) y’-axis and (b) x’-axis. In particular, the black arrows labeled with E  and H  indicate, 

respectively, the directions of the electric and magnetic fields. The red arrow labeled with k indicates 

the corresponding wave vectors. 
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We can account for the vectorial nature of polarization by means of the Jones matrix [56]. 

Therefore, the spectral evolution of the beam is separated into its x- and z- components, which 

thus read as: 

     
2 2

2 2, exp
x

x x x x x

k k
E k z ik x i k k z i k

k



      (2.18) 

     2 2, expx
z x x x x

k
E k z ik x i k k z i k

k
      (2.19) 

In Eqs. (2.18) and (2.19), both the x- and z- components of the spectral evolution are featured 

by the same phase term as for non-paraxial beams, and an additional amplitude modulation 

term, showing an intrinsic complementarity between the two spectral components. Such 

complementarity is revealed by noting that the amplitude modulation associated to total 

spectral evolution     2 2 2 2, expx x z x x xE k z E E ik x i k k z i k       is homogenous 

and unitary. For each spectral component, we can therefore use the previous analysis 

concerning non-paraxial accelerating beams. 

Now, we apply now our approach to predict the beam path associated to specific example of 

vectorial accelerating beams. In particular, we specifically consider the vectorial beams 

generated by the sinusoidal phase   100sin 2( )/x xk k k  . Since the phase terms of the 

spectral evolutions in Eqs. (2.18) and (2.19) are the same, the key spatial frequencies 

estimated through Eq. (2.18) for both the two components are obviously identical. As 

illustrated in Fig. 2.14(a), the key frequency is a monotonic function in five different portions 

of the spectrum. Such spectral regions are highlighted by alternating solid and dotted lines in 

Fig. 2.1(a). As a consequence, the beam path predicted by our approach for either the two 

components results to be composed by five main trajectories [see white dotted line in Fig. 

2.14(b)]. The analytical prediction is further confirmed by the calculated beam evolution 

obtained by numerically Fourier transforming Eqs. (2.18) and (2.19) as well as the total 

spectral evolution  ,xE k z . As expected, the estimated trajectories have a good matching with 

the beam evolutions of the total intensity [Fig. 2.14(b)]. Nevertheless, the method can only 
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partially predict the beam path for each component due to the influence of the inhomogeneous 

spectral amplitude. 

 

 

Figure 2.14: Beam evolution dynamics of a vectorial self-accelerating beam related to a 

sinusoidal phase under the non-paraxial condition. Panel (a) shows the calculated key spatial 

frequencies, (b) the total intensity pattern, (c) and (d) the intensity distributions for the (c) x- and (d) z-

component. The numbers in (a) and (b) mark the correspondence between the beam trajectories and the 

related key spatial frequency segments. Note that the sum of intensity distributions in (c) and (d) 

provides the total intensity pattern in (b). 
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For the x-component field, the beam along trajectories 1 and 5 fades away as the amplitude 

approaches zero or |kx| approaches k [Fig. 2.14(c)]. Instead, for the z-component, the beam 

along trajectory 3 totally disappears since the spectral amplitude reaches zero around the 

corresponding key frequencies [Fig. 2.14(d)]. The intensity patterns of the two components 

are nevertheless complementary, and their sum hence follows the predicted trajectories. 

From the results in Fig. 2.14, we can state that our approach is still applicable for vectorial 

self-accelerating beams, and the scheme shown here can be successfully applied to the 

analysis of non-paraxial three-dimensional (3D) cases whose polarization always needs to be 

accounted for. 

 

2.6 Final remarks 

In this chapter, we reported a method to generate and control single- or multi-path self-

accelerating beams through Fourier-space phase engineering. In the spatial domain, the beam 

localization is related to the gradient of the spatial spectral phase. If a phase-only modulation 

is applied in the Fourier regime, we found that different parts of the spectrum are in charge of 

different parts of the beam trajectory. For each single trajectory, the key frequency 

monotonously varies along the propagation, being mapped to various main hump position of 

the beam. The properties of the self-accelerating beams, such as self-bending and self-healing, 

are well explained with a deeper understanding in term of frequency correspondence. Via our 

method, the beam trajectories under the paraxial approximation can be predicted from a 

known spectral phase, while the phase to be used for a given (single or multiple) beam 

trajectory can be retrieved analytically.  

We also studied the dynamics of self-accelerating beams generated by the combined effect of 

a spectral phase and an amplitude modulation. In particular, we extended the spectrum-to-

distance mapping method to the case of an amplitude modulation superimposed to a phase 

structure in the Fourier regime. While small amplitude modulations only slightly affect the 

trajectory generated by a suitable spectral phase modulation [123], large amplitude 

modulations, such as a Heaviside-shape amplitude distribution, greatly modify the beam path, 

adding to the global convex path some portions where the propagation trajectory is both linear 
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and tangent to the overall convex  path. A “spectral well” amplitude structure yields to the 

generation of a convex trajectory including a “V”-shaped path structure, which can be further 

exploited as an elementary cell for constructing periodic self-accelerating beams. In both the 

paraxial and non-paraxial regime, periodic or zigzag beam paths are readily generated by 

employing an array of spectral wells. In contrast with the works reported by other groups (for 

which periodic self-accelerating beams have been observed in the non-paraxial regime by 

applying both spectral amplitude and phase modulations) [43-44],  our scheme also offers a 

detailed explanation about the formation of periodic paths via a spectrum-to-distance 

mapping.  

In the non-paraxial regime, our approach can also be extended to generate any large-angle 

(smooth or periodic) convex self-accelerating beam or employed to predict their paths from a 

known modulation. In addition, we have shown that a non-paraxial Airy beam is a multi-path 

beam composed by three main trajectories, thus providing a physical explanation on the 

underlying reasons for which the parabolic propagation of an Airy beam breaks under non-

paraxial condition. Moreover, our method is readily applicable to the case of vectorial self-

accelerating beams.  

There are several  promising directions for future investigations, such as developing beam 

localizations for incoherent light [124], manipulating spatio-temporal self-accelerating beams 

[37-38], extending our scheme to the nonlinear regime [33,80], and so on. On a broader note, 

it is worth mentioning that any progress made in optics can be beneficial and give insights for 

the study and exploitation of any other self-accelerating ondulatory phenomenon found in 

nature.  
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Chapter 3 

Energy confinement enhancement of self-accelerating wavepackets 

In this chapter, we introduce a practical method to increase the energy confinement of self-

accelerating wave packets. Our approach is based on a generalization of the concept of the 

spatial spectral phase gradient to the (2+1) and (3+1)D regimes. We show that the trajectories 

of these self-accelerating wave packets can be determined by a spectrum-to-distance mapping, 

and the frequencies associated to such wave packets’ main lobes are limited to a certain range 

of the Fourier spectra. In particular, we demonstrate that an appropriate shaping of the Fourier 

spectra that does not affect the main lobes evolution, leading instead to a dramatic 

enhancement of their peak intensity, as well as a significant decrease of their spatial or spatio-

temporal footprint. Remarkably, such self-accelerating beams retain both the expected 

acceleration profiles and intrinsic self-healing properties.  

 

3.1 Introduction 

In most of the applications reported in literature using either (2+1) or (3+1)D self-accelerating 

wave packets, the patterns associated with these wave packets occupies a large area filled by 

several sub-lobes [37-40,102,104,125-126]. In most of them, the energy contained in their 

long tails could be considered wasted, or even undesirable, because of their minor interest in 

comparison with the higher intensity portion of the main lobes. In this framework, some 

works have been focusing on ways to obtain accelerating beams with a reduced sub-lobes 

expansion by directly solving the related wave functions. Nevertheless, these studies have 

actually been restricted to only a few special trajectories in both the paraxial and non-paraxial 

regime [45-47,127]. Particularly in the context of arbitrary trajectories, the issue of optimal 
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energy confinement has not been directly addressed. Although not unexpected, the peak 

intensity enhancements of these confined accelerating beams have not been quantitatively 

evaluated so far. In this chapter, we will show that an appropriate shaping of the initial spectra 

is able to increase the energy confinement of both (2+1) and (3+1)D self-accelerating wave 

packets. Furthermore, the concept of spatial spectral phase gradient is generalized to both the 

(2+1) and (3+1)D regimes, thus showing that even in these scenarios the accelerating 

trajectory can be determinate by a spectrum-to-distance mapping where the various 

frequencies in the spectrum are mapped to different propagation distances. As seen for 1D 

self-accelerating beams, the trajectory of such wave packets can be predicted from the 

knowledge of an applied phase modulation. Conversely, we note that the phase structure 

imprinted in the Fourier regime to obtain any desired convex propagation can be engineered 

by using this mapping. Interestingly, we will also illustrate that only some frequencies in the 

Fourier regime are responsible for the evolution of the wave packet main lobe over the entire 

range of propagation distances. Motivated by this consideration, we introduce a method for 

improving the optical bullet energy confinement by transferring the energy from the spectral 

region associated to the sub-lobes to its main lobe. The first part of this chapter will focus on 

self-accelerating beams in the (2+1)D regime. We will show, both theoretically and 

experimentally, that by appropriately shaping the spatial spectra, we are capable of generating 

optimized versions of 2D accelerating beams. The optimized beams exhibit more compact 

transversal patterns as well as enhanced peak intensities without significantly degrading either 

the propagation characteristics or the intrinsic properties of their unshaped counterparts. In the 

second part of this chapter, our spectral shaping method will be extended to the (3+1)D 

regime. In particular, we report a numerical investigation aimed at optimizing the energy 

efficiency of an Airy3 bullet propagating under anomalous dispersion condition. The approach 

is based on an appropriate compression of the initial Gaussian spatio-temporal spectrum 

leading to the generation of a “short-tail” version of the Airy3 bullet, which exhibits a 

significant enhancement of the bullet peak power as well as the overall energy confinement. 

Similar to the (2+1)D case, we also illustrate that the newly-optimized Airy3 bullet is not 

subject to significant degradations of the Airy3 bullet characteristics, such as parabolic 

trajectory and self-healing.  
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3.2 Two-dimensional spatial phase gradient  

Let us consider a two-dimensional (2D) optical beam propagating in free-space along the z-

axis, and linearly polarized along the x-axis. In this case, the 2D optical beam is experiencing 

diffraction in the transversal plane (x,y). Under this condition, the propagation dynamics of a 

linearly-polarized electromagnetic wave ( , ) ( , )xr t E r tE x can be described by the scalar 

wave equation [2]: 

 
2

2

2 2

1
0.x

x

E
E
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  (3.1) 

In the Eq. (3.1), 
2 is the Laplacian operator, ( , )xE r t  the x-component of the electric field, t 

is the time coordinate, and , ),(r x y z  is the spatial vector. Solutions to Eq. (3.1) can be found 

by defining ( , )xE r t  as:  
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   (3.2) 

where ( )E r  and k = ω0/c refer to the complex envelope and the vacuum wavenumber, 

respectively, while ω0 is the angular frequency and c the light velocity. By substituting the 

latter expression into Eq. (3.1), the complex envelope ( )E r of the x-component of the electric 

field obeys to the Helmholtz equation, explicitly expressed as: 
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 Under the paraxial condition, the approximation 
2 2| |/ /2 | |E Ez k z      is valid, hence 

propagation dynamics can be described by the 2D paraxial wave equation of diffraction so 

that: 
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. Solutions of Eq. (3.4) can be found in the Fourier domain as:  
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where    , 0 , ,0 ,x yk x k yi

x y

i
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
    is the Fourier transform of the input beam, 

while kx, and ky are the corresponding spatial angular frequencies.  

 

3.2.a Theory of (2+1)D spectrum-to-space mapping 

As input condition, we consider a phase-modulated Gaussian spectral profile. Such input 

spectrum can be obtained by applying an arbitrary transverse (spectral) phase modulation 

 ,x yk k  to an incident Gaussian beam at the Fourier plane of a spherical lens. Using such a 

modulation, the input spectrum can be expressed as: 

   2 2, ,0 exp ( ) exp ( , ) ,x y x y x yE k k k k i k k             (3.6) 

where α is related to the beam waist of the input Gaussian beam. If we insert Eq. (3.6) into 

Eq. (3.5), the Fourier spectrum is:  

   2 2, , exp ( ) ( , ,exp ) ,x y x y x yE k k z k k k zi k           (3.7) 

where ( ) ( ) ( )2 2
x y x y x y

z
μ k ,k ,z =- k +k  + ρ k ,k

2k
 is the spectral phase. Similar to the approach 

undertaken in Chapter 2 for 1D self-accelerating beams, the concept of spatial spectral phase 

gradient can also be extended to self-accelerating beams in the 2D regime. In this case, the 

transverse positions x and y are related to the gradient of ( , , )x yk k z  by means of the 

expressions: 
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The spectral density 
1

, , ”( ) ( ), ,x y x yD k k z k k z


   within the infinitesimal area dA = dxdy is 

calculated from the inverse determinant of the Hessian matrix H(μ) [128]. At each propagation 



85 

 

distance z, D(kx, ky,z) is singular when the determinant of the Hessian matrix H(μ) is zero, so 

that the following condition is satisfied: 
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The complex form of Eq. (3.9) can be greatly simplified by assuming the imposed transverse 

phase modulation to be a separable function, i.e., ) ( ) ( ).( ,  x y x x y yk k k k    By inserting 

the latter expression into Eq. (3.9), it reduces to: 
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  (3.10) 

Akin to 1D self-accelerating beams, Eq. (3.10) links spatial frequencies to propagation 

distances z. Starting from the spectral phase structure ( ),x yk k , the key spatial frequencies 

(indicated as kxc(z) and kyc(z)) can be estimated by Eq. (3.10), thus offering the possibility of 

building a mapping between distance and spatial frequency. Once kxc(z) and kyc(z) are 

estimated, the beam trajectory can be therefore predicted as a parametric representation of the 

propagation distance z using the following expression: 
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  (3.11) 

Alternatively, the spectrum-to-distance mapping also allows us to engineer any desired 

convex beam trajectory. The required convex paths are engineered by firstly retrieving the key 

spatial frequencies from the Eq. (3.11), and then finding the initial spectral phase mask 

structures to be implemented from Eq. (3.10). 

 

3.2.b 2D self-accelerating beams via spectrum-to-space mapping 

In this section, the validity of the previous analytical method is confirmed by applying the 

theory to two typical classes of 2D self-accelerating beams. In particular, we consider curved 



86 

 

beams that are characterized by the following convex paths: nth-order polynomial and an 

exponential trajectory. In contrast with Chapter 2, for which the beam trajectories of 1D self-

accelerating beams and associated key spatial frequencies were found from the initial spectral 

phase structures, we here use the spectrum-to-space mapping to engineer the initial spectral 

phase profiles retrieved from the desired beam paths. The phase distributions are designed by 

choosing the same acceleration profiles along the x and y directions in order to obtain beam 

paths with accelerating trajectories localized exclusively on a single plane. Such a plane 

orthogonally intersects the ( )x y  plane along the 45° radial direction, so that the projections 

of the beam trajectories lie on the 45° diagonal line only. Likewise, the related key spatial 

frequencies are projected on the 45° diagonal line of the ( )x yk k  plane. In this way, we can 

study the beam propagation characteristics by solely analyzing the evolution along this 45° 

line. When the accelerations along the x and y directions are different, the beam trajectory is 

localized in the 3D space (and not only on one plane), making the description of the beam 

dynamics more complex, thus requiring further analytic considerations. Since the beam 

acceleration along the x and y directions are chosen to be the same, for convenience we define 

the radial position of the main hump as 
2 2s x y   in the real space and 

2 2

s x yk k k   in 

the spectral domain. First, we analyze an nth-order polynomial trajectory given as: 

( , , ) , , ).( n nbz bzx z zy   The beam path is expressed as a parametric representation of the 

propagation distances z, with b indicating a scaling factor. Substituting this expression into 

Eq. (3.11), the key spatial frequencies are (kxc(z),kyc(z)) = ,( )n-1 n-1nbkznbkz  being therefore a 

monotonic function of the propagation distance z. The spectral phase modulation is estimated 

by inverting these key spatial frequencies in order to express the propagation distance z as 

function of kxc and kyc, i.e. (z(kxc), z(kyc)),  and then inserted into Eq. (3.10).   

If n is even, the spectral phase mask from Eq. (3.10) has the following form: 
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Conversely, if n is odd, the phase profile reads as:  
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Whenever n is even, all spatial frequencies contribute to form the polynomial accelerating 

beam [see Eq. (3.12)], and, therefore, different distances z are mapped to different key spatial 

frequencies. On the contrary, when n is odd, only the non-negative spatial frequencies play a 

role in forming the polynomial accelerating beam [see Eq. (3.13)]. This means that only the 

non-negative spatial key frequencies are linked to different propagation distances z. In 

particular, each positive key spatial frequency is related to two values of z, corresponding to 

either forward (z ≥ 0) or backward (z ≤ 0) propagations, for which the spectrum-to-space 

mapping is respectively valid. Both estimated spectral phases have the same profiles, with the 

exception of an opposite (negative) sign when negative propagation distances are considered. 

In a second case, we focus on a general class of 2D exponential self-accelerating beams. Here, 

the convex trajectory is described as: 1( ), ( ,, ) ( ( )1), ,bz bzF e F ex y z z  where b and F are 

arbitrary distance and amplitude scaling factors, respectively. Substituting this expression in 

Eq. (3.11), the corresponding monotonic key spatial frequencies are:

( ( ), ( )) , ).(xsc y
b bz

sc
zk z k z Fb bkeFke  The phase mask structure retrieved from Eq. (3.10) is 

therefore: 
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Eq. (3.14) shows that only the positive spatial frequencies contribute to form an exponential 

accelerating beam, being those mapped into different propagation distances z.  
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3.2.c Numerical results 

In what follows, we perform numerical simulations in order to analyze in more details three 

specific cases of the above described convex trajectories: for instance, a parabolic, a cubic 

polynomial and an exponential trajectory. The trajectory parameters F and b are chosen to 

obtain beam trajectories that can be represented on the same scale (i.e. with qualitatively 

similar dimensions). The characteristics and parameters of these beams (calculated 

numerically) are presented in Tab. 1.  

 

 

Table 3.1: 2D self-accelerating beams under study and corresponding parameters. 

 

In Fig. 3.1(a), we show the phase structure used for generating a 2D self-accelerating beam 

with the parabolic trajectory presented in Tab 1. Such phase mask, designed from the Eq. 

(3.12) using the parameters n = 2 and b = 0.1, exhibits the typical cubic profile associated to 

the well-known 2D Airy beam. By imposing this phase modulation in the Fourier domain, we 

can numerically simulate the evolution of the beam using Eq. (3.5). As an illustrative 

example, we show in Fig 3.1(b) the corresponding beam intensity pattern at z = 8.1cm. As 

expected, the intensity distribution is a 2D Airy beam showing an intense main lobe and two 

long tails of sub-lobes (along the x and y directions). The 2D Airy beam moves along the 

radial direction s in the  x y  transverse plane [see dashed line in Fig. 3.1(b)], while in the 

( )s z  longitudinal plane, the main lobe of the beam follows the desired parabolic trajectory 

shown in Fig. 3.1(c).  

 

Type of trajectory 
Trajectory 

(x, y, z) = f (z) 

Key Spatial Frequency 

(kxc = kyc)  

Parabolic 0.1 z2, 0.1 z2 , z 0.2 kz 

Cubic polynomial 1.13 z3, 1.13 z3, z 3.39 kz2 

Exponential 4.10-4 (e20z -1), 4.10-4 (e20z -1), z 8.10-3 ke20z 
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Figure 3.1:  Beam features of a 2D self-accelerating beam propagating along a parabolic 

trajectory (Airy beam) using a circular Gaussian beam. (a) Wrapped cubic phase mask designed 

for the parabolic trajectory whose parameters are given in Tab 1. (b) Intensity pattern of the Airy beam 

at z = 8.1cm. (c) Longitudinal intensity pattern along the radial direction s as a function of the distance 

z. (d) Spatial spectrum corresponding to the beam pattern in (b). Dotted white lines in (b) and (c) mark 

the corresponding parabolic trajectory predicted analytically.  

 

Now, if we look at the Fourier domain, the beam spectrum has a Gaussian profile [Fig. 

3.1(d)]. In our numerical investigations, we also observed that such a spectral profile does not 

change along the propagation distance z. Nevertheless, if we filter out the sub-lobes from the 
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2D Airy beam, (as shown in the inset in Fig. 3.2(a) for the Airy beam at z = 8.1cm), the spatial 

frequencies associated with the residual main lobe are located in a spot of drastically reduced 

size [Fig. 3.2(a)]. During propagation, such spectral spot shifts along the radial direction 
sk  on 

the  x yk k  plane, as illustrated in Fig. 3.2(b), while its longitudinal evolution follows the 

linear key frequency predicted by the mapping [see Fig. 3.2(c)]. As result, we found that the 

entire spectrum associated with the main lobe remains confined only into a spectral stripe 

delimited by the white lines shown in Fig. 3.2(b-c). This feature also illustrates that the 

spectral content located outside this stripe is actually associated with the wide sub-lobes of the 

Airy beam.  

 

 

Figure 3.2: Main hump characteristics of the 2D self-accelerating beam shown in Fig. 3.1. (a) 

Intensity pattern corresponding to the main lobe of the Airy beam in Fig. 3.1(b), obtained by filtering 

out its sub-lobes. (b) Spatial spectrum associated to the main lobe in (a). (c) Longitudinal evolution of 

the main lobe spectrum along the radial direction ks as a function of the propagation distance z. The 

dotted white line in (b) delimits the spectral area of the main lobe spectrum for all propagation 

distances z, while the white line in (c) marks the key spatial frequency obtained from theory. 

 

Similarly to the above presented parabolic case, we also engineered the spectral phases for the 

two other convex paths presented in Tab. 1. For the cubic polynomial trajectory, the 

appropriated phase structure was estimated from Eq. (3.13) assuming positive distances 0z   

and n = 3 [Fig. 3.3(a)], whereas, for the exponential trajectory, the spectral modulation was 
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retrieved from Eq. (3.14) [Fig. 3.4(a)]. In contrast with the Airy beam case, only positive 

spatial frequencies are involved in forming such 2D self-accelerating beams.  

 

 

Figure 3.3: Beam and spectral characteristics of a 2D self-accelerating beam propagating along a 

cubic polynomial trajectory using a circular Gaussian beam. (a) Wrapped cubic phase mask 

designed for the cubic polynomial trajectory whose parameters are given in Tab 1. (b) Intensity 

distribution at z = 7.4 cm. (c) Longitudinal intensity pattern along the radial direction s as a function of 

the distance z. (d) Spatial spectrum corresponding to the beam pattern in (b). (e) Spatial spectrum associated 

to the main lobe in (b) when the sub-lobes are filtered out. (f) Longitudinal evolution of the main lobe 

spectrum along the radial direction ks as a function of the propagation distance z. Dotted white lines in 

(b) and (c) mark the corresponding cubic polynomial trajectory predicted analytically. In particular, the 

trajectory in (c) is intentionally shifted upwards for a better illustration. The dotted white lines in (e) 

delimit the spectral area of the main lobe spectrum for all propagation distances z, while the white line 

in (f) marks the key spatial frequency obtained from theory. 
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In Figs. 3.3(b) and 3.4(b) we show the intensity patterns at two selected distances, z = 7.4 and 

2.8cm respectively. Those were obtained by numerically simulating the beam evolutions after 

applying the estimated phase modulations in the Fourier domain. For both these intensity 

distributions, 2D Airy-like profiles are observed, both moving along the radial direction s in 

the (x-y) plane during propagation [see Figs. 3.3(b) and 3.4(b)]. The corresponding 

longitudinal evolutions of the beams are presented in Figs. 3.3(c) and 3.4(c), clearly showing 

that the main lobes accelerate along different propagation trajectories, being both in excellent 

agreement with theoretical predictions. With respect to the Airy beam, the most distinctive 

feature is that the peak intensities appear far away from the onset distance z = 0. Furthermore, 

while the exponential beam follows the analytical prediction even for small propagation 

distances close to z = 0, the theory fails to properly describe the cubic polynomial beam in 

such a range.  

In the Fourier domain, the spectra of the two input beams have the same Gaussian shape as in 

Fig. 3.1(d). As for the Airy beam case, we also checked numerically that these other two 

spectral profiles remain invariants throughout propagation [Figs. 3.3(d) and 3.4(d)]. 

Nevertheless, the spectra associated with the main lobes also take the form of two small-sized 

spots [Figs. 3.3(e) and 3.4(e)]. During propagation, the spectral spots tend to move along the 

sk direction in the  x yk k  plane [Figs. 3.3(e) and 3.4(e)]. Similar to the 2D Airy beam, the 

main lobes spectra are confined within a stripe on the spatial frequency plane [Figs. 3.3(e) and 

3.4(e)] but evolve, in the longitudinal plane, along different key spatial frequencies - in 

agreement with their respective analytical predictions [Figs. 3.3(f) and 3.4(f)]. In particular, 

the main lobe spectrum of the cubic polynomial beam follows a parabolic key spatial 

frequency [Fig. 3.3(f)], while the one associated to the exponential beam evolves as an 

exponential key spatial frequency during propagation [Fig. 3.4(f)]. It is worth noting that the 

numerical simulation in Fig. 3.3(f) shows that the main lobe spectrum tends to slightly deviate 

from the key spatial frequency prediction (dotted white line) near  z = 0, i.e. where the slope of 

the cubic polynomial trajectory is very small or null. This discrepancy indicates that the 

validity of our analytical method is limited when describing the evolution of the cubic 

polynomial beam in this region. Although not explicitly shown here, we have found through 
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additional numerical investigations that a similar limitation is also observed for other convex 

beams, and was attributed to the vanishing value of the slope of the trajectory under 

investigation. 

 

Figure 3.4: Beam and spectral characteristics of a 2D self-accelerating beam propagating along 

an exponential trajectory using a circular Gaussian beam. (a) Wrapped cubic phase mask designed 

for the exponential trajectory whose parameters are given in the Tab 1. (b) Intensity distribution at z = 

28 cm. (c) Longitudinal intensity pattern along the radial direction s as a function of the distance z. (d) 

Spatial spectrum corresponding to the beam pattern in (b). (e) Spatial spectrum associated to the main 

lobe in (b) when the sub-lobes are filtered out. (f) Longitudinal evolution of the main lobe spectrum 

along the radial direction ks as a function of the propagation distance z. Dotted white lines in (b) and 

(c) mark the corresponding exponential trajectory predicted analytically. In particular, the trajectory in 

(c) is intentionally shifted upwards for a better illustration. The dotted white lines in (e) delimit the 

spectral area of the main lobe spectrum for all propagation distances z, while the white line in (f) marks 

the key spatial frequency obtained from theory. 
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3.2.d Experimental results 

Besides the theoretical and the numerical study, we also performed experimental 

measurements to confirm our predictions using a setup similar to the one employed for 1D 

self-accelerating beams. A broad-sized Gaussian beam (CW at λ = 633 nm, w0 = 2.45 mm) 

was used to illuminate a phase-only Pluto Spatial Light Modulator (SLM) produced by 

Holoeye (Pluto - 1920 x 1080 pixels of 8x8 µm area, 8-bit grey phase levels). The SLM 

modulates the phase of the incident Gaussian beam by means of an applied grey-scale 

hologram reproducing the appropriate phase mask  , x yk k .  

 

 

Figure 3.5: Experimental setup used for 2D self-accelerating beams characterization. 

 

As shown in Fig. 3.5, the SLM was used to impress a phase modulation in the Fourier domain 

and placed at the back focal plane of a spherical lens (f = 150 mm – noted as Fourier lens), 

which is used to compute the 2D Fourier transform of the initial phase-modulated Gaussian 

beam. The transverse patterns at the front focal plane of the lens are the 2D self-accelerating 

beams, whose main intensity lobes are expected to follow the desired trajectories after the 

lens-induced Fourier transform. By means of a CCD camera (Sony XC-ST50 - 640x480 pixels 
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of 8.4 x 9.8 µm area, 8-bit dynamic range) mounted on a translation stage, the intensity 

distributions of the beams and their corresponding spectra were imaged at selected 

(longitudinal) propagation distances. In particular, the spectral intensity distributions were 

retrieved by imaging the beam in the Fourier plane of a second spherical lens (f = 100mm), 

which was also mounted on the translation stage. The main lobe spectra were measured by 

means of an additional adjustable aperture slit placed on the translation stage, in 

correspondence with the back focal plane of the second lens. The aperture slit filters out the 

contributions of the beam side-lobes, thus only leaving the contribution of main lobe to be 

analyzed at selected longitudinal distances. 

 

 

Figure 3.6: Propagation features of self-accelerating beams generated by a circular Gaussian 

beam. (a) Intensity beam pattern obtained experimentally at z = 4.2cm for the parabolic trajectory 

(Airy beam). (b) Main hump displacements as a function of the propagation distance measured along 

the radial direction s for the three trajectories given in Tab. 1. The curves refer to the analytical 

prediction while the markers are the corresponding experimental results for the 3 selected trajectories, 

as seen in the legend.  

 

In a first set of measurements, both propagation and spectral characteristics of the three 

considered beams have been measured. Typical experimental results are shown in Fig. 3.6. In 

particular, as an illustrative example, Fig. 3.6(a) presents the measured intensity distribution at 
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z = 4.2 cm for the typical case of a parabolic trajectory. Such intensity pattern presents a high 

intensity lobe surrounded by decreasing intensity side-lobes. Although not reported here, 

similar Airy-like intensity patterns were observed for a cubic polynomial and an exponential 

path, in good agreement with the numerical simulations shown in Figs. 3.3(b) and 3.4(b). To 

confirm the reliability of our setup, we also evaluated the beam trajectories of these three 

accelerating beams by measuring the main lobe displacements at selected propagation 

distances. Results are summarized in Fig. 3.6(b). The experimental convex trajectories 

(markers) are in excellent agreement with the analytically- expected evolutions (lines).  

 

 

Figure 3.7: Spectral characteristics of self-accelerating beams generated by a circular Gaussian 

beam.  (a) Spectral intensity pattern associated with the main hump of the Airy beam in Figs. 3.6(a). 

(b) Radial positions of main hump spectra (marker) as a function of propagation distance z measured 

for the three trajectories given in Tab. 1, and corresponding key spatial frequencies deduced from 

theory (curves). The color code is the same as in Fig. 3.6. 

 

In the Fourier domain, the spectrum of the 2D Airy beam exhibits a Gaussian shape remaining 

invariant over the whole range of propagation distances. For the other two beam cases, the 

same spectral feature was also observed. Nevertheless, by filtering out the side-lobes from the 

intensity pattern, the spectral content associated to the residual main hump for those case self-
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accelerating beams reduces to a small-sized spot. As an illustrative example, Fig. 3.7(a) shows 

the main lobe spectrum associated to a 2D Airy beam at 4.2cmz  . As expected from 

simulations, we observed experimentally that the main lobe spectra not only exhibits a 

reduced spot size, but also moves along the radial direction ks as the beam propagates in real 

space. Therefore, the overall energy associated with the spectral spots is confined within a 

diagonal stripe, oriented along the radial direction ks in the Fourier plane. In Fig. 3.7(a), such 

spectral stripe is bounded by the two white dashed lines. In particular, we estimated the width 

of such a spectral stripe using a 95% intensity cut-off (i.e. twice the standard deviation of a 

Gaussian function).  

Besides, we also measured the displacements of these spectral spots as a function of the 

propagation distance z. The side-lobes were filtered out from the beams by placing the 

aperture slit at the same distances where the beam trajectories in Fig. 3.6(b) were measured. 

As expected from numerical simulations, the shifts of the main lobe spectra follow both the 

longitudinal and transversal evolutions of their corresponding key spatial frequencies. The 

results reported in Fig. 3.7(b) clearly highlight this excellent agreement between the 

experimentally-measured spot shifts (markers) and the longitudinal evolutions of the key 

spatial frequencies (lines) predicted by Eq. (3.11). 

 From a physical viewpoint, our experimental observations further confirm that the spectral 

component surrounding the key spatial frequencies only contributes to the main lobes 

intensity, and most of them are localized in the spectral stripe highlighted in Fig. 3.7(a). 
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3.3 Transverse energy confinement through spectral reshaping 

Since the spectral components surrounding the key spatial frequencies (i.e. localized within 

the stripe shown above) are associated with the main lobe of the 2D self-accelerating beams, 

the spectral components outside such spectral stripe are connected to the remaining sub-lobes. 

Numerous applications involving curved beams are predominantly dealing with the optical 

intensity and the accelerating feature of these beams, so that the exact beam shape might have 

limited importance. Therefore, the energy stored in the sub-lobes is usually considered as 

unwanted or wasted. Furthermore, an optimal spatial confinement of the beam intensity may 

also be required in applications such as optical mapping or pump-probe measurements, in 

which several experimental factors can constrain or limit the applicability of these light 

localizations. For example, experimental constraints might be caused by the spatial resolutions 

or the numerical apertures of the optical elements used in the experimental setting. A way to 

address these issues directly might be to increase the spatial confinement of the beam itself. In 

this framework, we introduce a practical and straightforward method suitable to achieve the 

energy confinement of a 2D self-accelerating beam, i.e. by illuminating the SLM phase mask 

with an elliptical Gaussian beam (rather than a circular Gaussian beam) whose major axis is 

oriented along the spectral stripe bounded by the two white dashed lines in Fig. 3.7(a).  

In our setup - shown in Fig. 3.8, an elliptical Gaussian beam was obtained by reshaping the 

incident circular Gaussian beam through a cylindrical telescope. Such optical system was 

formed by means of two conjugated cylindrical lenses of focal lengths f1 = 200 mm and f2 = 

50 mm, respectively. The telescope system was rotated o45 around the z axis, in order to align 

the major axis of the elliptical beam with the radial direction ks. From a physical viewpoint, 

since the SLM is placed at the front focal plane of a lens (responsible for performing a Fourier 

transform of the beam), the presence of the cylindrical telescope affects the spatial spectrum 

of the circular Gaussian beam by squeezing its spatial frequencies along the direction 

orthogonal to ks (i.e. the axis noted ds’), thus preserving the overall energy content of the 

initial beam. 
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Figure 3.8: Experimental setup for the generation and characterization of 2D self-accelerating 

beams initiated from an elliptical Gaussian beam. 

 

As illustrated in Fig. 3.9(a), this approach allows the illumination of the SLM phase mask 

with an elliptical Gaussian beam (red shading ellipse) rather than a circular Gaussian beam 

(blue shading disc). As an outcome of such a compression, almost all the energy of the 

incident circular Gaussian beam is focused on the spectral region of the SLM phase mask 

corresponding to the stripe associated with the main lobe spectral location of a 2D self-

accelerating beam (see white dashed lines in 3.9 (a)).  

In our experiment, we recorded the accelerating trajectories for the three cases of convex path 

previously generated (see Tab. 1). However, here we illuminate the SLM with the elliptical 

Gaussian beam described above [Fig. 3.9(a)]. Besides this spectral compression obtained by 

the addition of a rotated cylindrical telescope in the setup, the measurements have been carried 

out using the same parameters and experimental conditions as those reported in Figs. 3.6 and 

3.7. 
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Figure 3.9:  Self-accelerating beams properties after spectral compression, for the case in which 

they were initiated from an elliptical Gaussian beam. (a) Wrapped cubic phase mask applied on the 

SLM for the case of a parabolic trajectory superimposed to the beam intensity profiles (95% cutoff) of 

the incident elliptical (red shading – after spectral compression) and circular Gaussian beam (blue 

shading – before spectral compression). (b) Main hump position along the radial direction s as a 

function of the propagation distance z, measured for the three convex trajectories of Tab. 1. The lines 

refer to the analytical predictions, while the markers show the experimental results. (c, d) Transverse 

intensity pattern of a “short-tail” beam measured experimentally at z = 0 and z = 5.3 cm for the case of 

a parabolic trajectory. Note that for the sake of clarity, the color scale is normalized here to the 

maximal intensity value of each measurement. 
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As illustrated in Fig. 3.9(b), the measured trajectories (markers) are in excellent agreement 

with the numerical predictions (lines). These results confirm that the propagation trajectories 

remain almost unaffected by the spectral compression of the beam, as we would expect from 

theory. To provide a visual illustration of the self-accelerating beams obtained from the 

elliptical Gaussian beam, we have measured the corresponding transverse intensity 

distributions of the beams after spectral compression. As an illustrative example, we show in 

Figs. 3.9(c, d) two transverse intensity maps corresponding to the case of the parabolic 

trajectory, recorded at two different propagation distances (z = 0 and z = 5.3 cm). Compared to 

the uncompressed case of Fig. 3.6(a), the transverse intensity patterns of the newly-obtained 

beams exhibit tails (i.e. the temporal side lobes) characteristic of a greatly reduced spatial 

expansion, and whose intensity profiles have a similar shape to those of the zero-order 

accelerating parabolic beams reported in ref. [45-46]. Interestingly, as the energy is conserved 

with our method, the peak intensity of the beam is expected to be significantly enhanced in 

comparison with the “uncompressed” case. This aspect will be quantitatively discussed in the 

next sections. Finally, it is worth mentioning that the spatial confinement obtained by 

reshaping the circular Gaussian beam only preserves the initial curved trajectory if the major 

axis of the elliptical Gaussian beams is aligned with
sk . Otherwise, the short-tail beam tends to 

be destroyed, with a “speed” increasing proportionally with the “misalignment” of those two 

axes.  

 

3.4 Characterization of the peak intensity enhancement 

So far, we have demonstrated that the spectral “squeezing” of a 2D self-accelerating beam is 

associated with an increase of the beam spatial confinement without affecting its convex 

propagation. Additionally, the beam peak intensity is expected to increase while the overall 

energy remains constant.  To investigate the effect of such a spectral compression applied to a 

circular Gaussian spectrum over the resulting peak intensity enhancement, numerical 

simulations have been performed for the case of the parabolic trajectory under investigation. 

In Fig. 3.10, we show the peak intensity enhancement as a function of the minor diameter of 

the elliptical Gaussian beam, whose width is varying along the ds’ direction (orthogonal to ks). 
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According to this result, the experimental elliptical beam (red circle) would provide a peak 

intensity of the short-tail beam approximately 60% higher than the corresponding Airy beam 

obtained from the initial circular beam (blue square). The expected peak intensity is 

determined by the amount of “squeezing” of the input circular spectrum, intrinsically related 

to the associated numerical aperture of the cylindrical telescope. For our experimental 

conditions, the optimal values of energy harvesting are expected for a beam minor diameter of 

2 mm. In this case, the spectrum of an elliptical Gaussian beam exhibits a maximal overlap 

with the main lobe spectral components of the 2D Airy beam. When further increasing the 

eccentricity of the elliptical beam shape (i.e. for values of ds below 2 mm), the peak intensity 

starts to decrease drastically. 

 

 

Figure 3.10: Peak intensity enhancement for the case of a parabolic trajectory as a function of 

the elliptical Gaussian beam minor diameter (ds’). The major diameter is constrained to the circular 

Gaussian beam diameter, whose experimental value is ds = 5.96 mm. The plot shows that the highest 

peak intensity enhancement is obtained when the minor diameter approximates 2mm. 

 

Physically, the plot illustrated in Fig. 3.10 highlights the most relevant findings of our study. 

To optimize the energy confinement, the minor diameter of the elliptical Gaussian beam must 

closely match the width of the spectral stripe associated with the beam main lobe, as shown in 

Fig. 3.9(a). When the minor diameter of the elliptical Gaussian spectrum is wider or narrower 

than the stripe width, both the spatial confinement and peak intensity tend to drift away from 

their optimal values. Indeed, a broadening of the beam minor diameter tends to involve more 
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and more sub-lobes within the overall beam shape. Instead, a narrowing of its width affects 

the beam main lobe by (excessively) increasing its transverse size, according to the Fourier 

limit. Additionally, it is worth mentioning that the spectrum of the main lobe does not possess, 

strictly speaking, a Gaussian shape. In fact, our approach based on using an elliptical Gaussian 

shape represents only an approximation of main lobe ideal spectral shape. One would expect 

that an ideal optimization would be achieved by using an input beam not only matching the 

stripe width of main lobe spectrum, but also its spectral profile. 

 

 

 

Figure 3.11: Peak intensity enhancement along the propagation distance range.  Measured peak 

intensity values as a function of the longitudinal distance z for the case of a (a) parabolic, (b) cubic 

polynomial and (c) exponential trajectory. Rounded red and squared blue markers are, respectively, the 

experimental results obtained from an incident elliptical and circular Gaussian beam, while the dotted 

red and solid blue lines show the corresponding simulation results.  

 

To confirm the validity of our numerical simulation, we have experimentally measured the 

evolution of the beam peak intensity throughout the propagation range for the three 

trajectories given in Tab. 1. As illustrated in Figs. 3.11(a-c), these results provide a 

comparison between the peak intensity values of the beam when either a circular (blue 

squares) or an elliptical (red circles) incident beam is used. In both cases, the peak intensity 

evolutions show a similar trend over of the longitudinal propagation. For the case of a 
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parabolic trajectory [Fig. 3.11(a)], we can observe a very good agreement with the 60% 

intensity enhancement expected from the simulations. For the cubic and exponential 

trajectories, respectively shown in Figs. 3.11(b, c), the measurements still provide an excellent 

agreement with simulations, yielding peak intensities values 30% higher than the ones of the 

uncompressed case.  

To perform a proper comparison of our measurements (for each of the cases presented in Fig. 

3.11), we have carefully characterized the overall power of both the input circular and 

elliptical Gaussian beams, in order to equalize them at the input and output of the imaging 

system. The characterization has been carried out by both power measurements and transverse 

spatial integration of the CCD images, allowing for a straightforward measurement of the 

peak intensity enhancement. Furthermore, for each beam trajectory, the comparison between 

the peak intensity evolutions from both the circular and elliptical Gaussian beams have been 

plotted by normalizing the curves to the maximal peak intensity detected on the CCD camera 

for the input circular Gaussian beam case, and similar normalization was done for numerical 

results. 

 

3.5 Self-healing of short-tail beams 

Due to a reduced expansion of the tails of sub-lobes, one may intuitively infer that the self-

healing property of newly generated accelerating beams might be entirely affected or, 

however, limited, over a small longitudinal range only. To clarify this point, we also 

experimentally verified the self-healing behavior of all considered cases of accelerating 

beams. The experiments have been carried out by blocking the main lobes at the propagation 

onset (z = 0), and then recording the intensity patterns at selected distances z. As an illustrative 

example, Fig. 3.12 show the intensity distributions associated to the case of a parabolic 

trajectory. The results provide a direct observation of the self-healing property for this specific 

case. Similarly, for the other two paths, no significant changes of the self-healing features with 

or without compression of the input spatial spectrum have been observed, thus highlighting 

that the short-tail beams obtained by squeezing the initial spectrum retain the self-healing 

property of their “classic” 2D self-accelerating beam counterparts.  
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Figure 3.12: Example of self-healing of a 2D accelerating beam initiated from an elliptical beam 

propagating along a parabolic trajectory. Experimental transverse intensity maps at (a) z = 0 cm and 

(b)  z = 5.3 cm, respectively. The measures have been performed by blocking the main hump of the 

beam at the onset of propagation (z = 0). 

 

These self-healing measurements further confirm the capability of our practical method to not 

only to provide energetically confined beam patterns, but also to retain all the peculiar 

properties of 2D accelerating beams. We have in fact shown, both theoretically and 

experimentally, that by appropriately shaping the spatial spectra, 2D self-accelerating beams 

exhibiting significantly reduced tails and enhanced peak intensity can be generated. These 

beams follow the originally predicted trajectories and, most importantly, they retain their self-

healing properties.  

Interestingly, our approach based on shaping the initial spectrum is expected to be directly 

applicable also to the (3+1)D regime, in order to increase the energy confinement of so-called 

optical light bullets. Such optical bullets can be seen as the spatio-temporal version of 2D self-

accelerating beams, which exhibit a self-preserving shape propagation in all spatial directions, 

i.e. along ( , , )x y z . The next sections of this chapter will be devoted to investigate the 

possibility of applying the manipulation of the initial wave packet spectrum also in the case of 

a spatio-temporal propagation regime.  
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3.6 Optical light bullets 

Until now, we only considered the case of a spatial beam propagating in vacuum, without 

considering the temporal evolution dynamics of the wave packet. Nevertheless, during 

propagation in a homogenous dielectric medium, an optical (no CW) wave packet naturally 

tends to spread in both space and time due to the combined effects of diffraction and 

dispersion. Over the last few years, tremendous efforts have been deployed by the community 

to avoid the detrimental effects occurring during light propagation in both the linear and 

nonlinear regimes, in order to achieve the  generation of so-called “optical light bullets” [129-

132].  

When considering an optical wave packet of large instantaneous power (i.e. intensity), 

nonlinear effects can compensate both dispersion/diffraction when the appropriate propagation 

parameters are used. In turn, this allows maintaining the pulse temporal/spatial envelope 

throughout propagation, leading to what are  commonly referred as temporal/spatial solitons 

[73]. Although of high interest for numerous applications, the use of nonlinearity to mitigate 

such spreading is limited to special combinations of optical wave packet parameters and 

propagation media, which both need to be perfectly characterized and therefore cannot be 

usually tuned over a wide range of parameters. Additionally, such nonlinear optical bullets, 

due to their high-power requirements, cannot be implemented for applications requiring non-

disruptive and non-invasive techniques including, for example, biomedical imaging or optical 

probing, where the propagation medium should not be significantly impacted by the incident 

electromagnetic wave.  

In the linear regime, optical bullet solutions propagating with a straight trajectory can exhibit 

either an X-wave or O-wave structure, respectively obtained when considering propagation in 

either a normal or anomalous dispersion regime [131-132]. On the other hand, self-

accelerating solutions (such as Airy beams/pulses) offer the opportunity to generate linear 

optical bullets in a rather straightforward fashion by taking advantage of the potential 

separation between the spatial and the temporal components of the solution [37-38].  Similarly 

to the above studied analog in the spatial domain, an optical pulse featured by an Airy 

temporal profile is not affected, in the temporal domain , by dispersion during its propagation 

(i.e., its temporal shape remains unchanged) [133].  
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 Interestingly, Airy wave packets have been demonstrated to be unique non-diffractive 

solutions existing in a one dimensional regime [11,55] and have thus been exploited as a key 

building block for the generation of (3+1)D linear optical bullets. This is particularly true 

when considering the temporal component of such optical bullets, where structures combining 

an Airy pulse with different typologies of two dimensional non-diffractive beams, such as 

Airy-Bessel [37], Airy-Airy (i.e. Airy3) [38], and Airy Parabolic-Cylinder [92] bullets have 

been extensively reported in literature. Among them, Airy3 bullets are of particular interest as 

they maintain all properties of their one or two dimensional beams counterpart: i.e. self-

healing, parabolic trajectory and non-diffracting/dispersive propagation. Nevertheless, such 

bullets have the intrinsic disadvantage of occupying a large (spatio-temporal) volume filled by 

the numerous sub-lobes typical of Airy functions, as already discussed extensively in the first 

sections of this chapter. This large-area pattern is thus expected to strongly limit the range of 

the targeted applications, especially in the framework where low energy but high confinement 

of the bullet is required, such as, for example, spatio-temporally resolved and non-disruptive 

optical probing, microscopy and biomedical applications [107,134-135]. Interestingly, few (or 

perhaps no) studies have addressed the possibility of reshaping Airy bullets to improve the re-

distribution of energy in the beam pattern while still preserving the beneficial properties of 

self-accelerating beams (bullets) [45-46,127,136].    

In the second part of this chapter, we report a numerical investigation related to the realization 

of an optimized version of Airy3 bullets propagating under anomalous dispersion. In 

particular, we provide a method to generate a spatio-temporally confined bullet by reshaping 

both the temporal and the spatial frequency domain of the initial pulse, as a straightforward 

expansion of the beam optimization already reported above. We show that, in a similar 

fashion, an appropriate compression of the spatio-temporal input spectrum leads to the 

generation of a “short-tail” version of the Airy3 bullet, exhibiting a significant enhancement of 

the bullet main lobe intensity, paired with a confinement of its spatio-temporal footprint. 

Remarkably, this is matched by the absence of a significant degradation in the propagation 

characteristics (i.e. parabolic trajectory and self-healing properties).  
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3.7 Theory of (3+1)D accelerating optical bullets 

In the linear regime, the spatio-temporal propagation of an optical wave packet in a dispersive 

medium can be described by the (3+1)D paraxial differential equation [73]: 
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where in Eq. (3.16),    , ,R Z E R Z   is the normalized electric field envelope. In the 

following, we consider propagation in an anomalous dispersion regime (β2 < 0) where, for 

simplicity, dispersion and diffraction are assumed to have the same quantitative effect along 
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propagation so that 
diff dispL L . Although arbitrary, such an assumption can be easily 

discarded and the propagation properties readily scaled from the normalized form of Eq. 

(3.16). Nevertheless, in this particular case, the spatio-temporal evolution of an optical bullet 

can be drastically simplified for analytic purpose yielding: 
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Eq. (3.17) can be found as:  
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2

2 2 2

X YK K K    , while the initial spatio-

temporal spectrum is given by the relation        Φ ,0 ,0   iK RK R e dR


 



  .  

Considering an initial spectrum formed by a phase term only, i.e.    
Φ ,0  

i K
K e


 , a mapping 

between spectrum and propagation distance can be obtained in the (3+1)D paraxial regime by 

an analysis similar to those conducted in the first part of this chapter. Indeed, by defining the 

phase term in the Fourier domain of Eq. (3.18) so that: 

    
2

  
  ,    

2

K
K Z Z K   ,  (3.19) 

one can readily extend the concept of spatial phase gradient to the (3+1)D case, where the 

spatio-temporal coordinates  , ,X Y T  are directly related to the gradient of  ,K Z  through 

the relation:   

        , . 
K

R K Z    (3.20) 
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The spectral density within the volume dXdYdT (i.e. the inverse determinant of the matrix

( , ) )
K K

K Z  shows a singularity at each propagation distance Z, associated with the bullet 

trajectory, when the following condition is satisfied:  

    ,                0 .
K K K K

Det K Z K Z K          
   

  (3.21) 

The expansion of the Eq. (3.21) yields: 

           2 2 2 2 2 2

2 2 2
2    

X Y X Y Y X

K K K K K K
Z Z Z

K K K K K K

     

  

        
          
           
   

  (3.22) 

           
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2 2 2
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Y X X Y T X Y

K K K K K K
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K K K K K K K

     

 

               
              
                  
         



 

 

Eq. (3.22) exhibits a complex form that can be greatly simplified considering the imposed 

phase modulation to be a separable function, i.e.          X X Y Y TK K K       , yielding 

a relation: 

 
     

 
2 2 2

2 2 2
,  ,    , ,  ,

X Y

K K K
Z Z Z

K K

  



   
  
   
 

  (3.23) 

By solving Eq. (3.23) in an analogous way to the (2+1) case, a mapping between the Fourier 

and direct space can be found by estimating the key frequencies

        , , ,
c cX Yc K Z K Z ZK   so that the propagation trajectory of the bullet can be 

predicted by: 

       c

R

Z
K





   (3.24) 

The analysis reported here is general and can be applied to optical bullets with an arbitrary 

convex trajectory, which can be directly retrieved from the initially imposed phase mask. 

From a practical viewpoint, a straightforward approach lies on selecting a desired trajectory, 
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evaluating the corresponding key frequencies from Eq. (3.24) and, finally, calculating the 

initial phase mask  K to be applied (retrieved from Eq. (3.23)).  

 

3.8 The Airy3 bullets 

Although the approach is rather general, we here focus on optical bullets following a parabolic 

trajectory, which is described by the well-known Airy wave packet.   

In what follows, we consider the particular case of an ideal Airy3 bullet [13] whose initial 

amplitude takes the form of        ,0    R Ai X Ai Y Ai T  , where 𝐴𝑖 refers here to the Airy 

function [12]. In the Fourier space, the corresponding spatio-temporal spectrum is 

characterized by a 3D cubic spectral phase    
 3 3 3

 
3Φ ,0    

X Yk k
ii K

K e e





 

  , yielding a solution to 

Eq. (3.17) of the form [11,13]: 

  
 

3
2 2 2

         
2 4,      

4 4 4

Z Z
i X Y T iZ Z Z

R Z Ai X Ai Y Ai T e e
       

        
     

  (3.25) 

Such a wave packet is constituted of a 2D Airy beam in the X and Y plane and an Airy pulse 

along the time axis T (or, correspondingly, in the longitudinal propagation direction Z, as time 

and longitudinal propagation are related here by the bullet group velocity νg).  

An ideal Airy3 bullet moves freely along the parabolic trajectory defined as 

 
2 2 2

, , , ,
4 4 4

Z Z Z
X Y T

 
  
 

, for which the bullet intensity profile remains invariant over a 

longitudinal propagation (i.e. being non-diffractive and non-dispersive). Correspondingly, in 

the Fourier domain, the key frequencies of the bullet can be directly mapped as a function of 

distance so that , ,
2 2 2

S

Z Z Z
K

 
  
 

.  
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In the dimensionless space  , ,X Y Z , the intensity distribution evolves along the parabolic 

trajectory 
2 2

, ,
4 4

Z Z
Z

 
 
 

, while the temporal shift in the longitudinal direction exhibit the 

temporal trajectory T = Z
2
/4. Physically, this corresponds to a modification of the propagation 

velocity of the Airy wave packet 
0

2

   
1     

2 

g

z
g

diff

vdz
v

vdt
z

L


 



, where a maximum is obtained at 

z = 0 so that νz (z = 0) = νg . 

 

3.9 Finite-energy Airy3 bullets 

From a physical viewpoint, the generation of an ideal Airy3 bullet is not realizable as it would 

require the generation of infinite energy bullets (due to the fact that an Airy function is not 

square integrable). In a practical scenario, one can consider the case where the spatio-temporal 

spectrum exhibits a 3D Gaussian amplitude profile, on top of which is applied a cubic phase. 

This in turn yields, in the Fourier domain, to the initial condition

     2 2 2 
Φ ,0    

X X Y Y T Tk k ki K
K e e

     
 , where the truncation coefficients αi << 1 (i  = X,Y,T) are 

positive and constant. Mathematically, such Gaussian apodization in the Fourier domain is a 

close approximation of an exponential windowing function in direct space, so that

         
,0       X Y TX Y T

R Ai X Ai Y Ai T e
  


 

 . Rigorously speaking, an input spectrum featured 

by a Gaussian amplitude leads to the physical synthesis of a finite-energy Airy wave packet 

whose solution of Eq. (3.18) takes the form:    

 

 
2 2 2

2 2 2

2

2 2 2
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     
              

     

    
           

      

  (3.26) 

Note that, in Eq. (3.26), the truncation parameters of each component are assumed equal for 

the sake of simplicity, so that α = αX = αY = αT. In our simulations, we considered a small 
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truncation factor of 0.04   in order to obtain a bullet of sufficient expansion (i.e. 

maintaining the main properties of an ideal Airy3 bullet) while ensuring that the numerical 

grid span was sufficiently discretized to encompass properly the whole bullet and, at the same 

time, accurately resolve the fine bullet characteristics (taking into account the computational 

memory limitation of our system).  

 

 

Figure 3.13: Spatio-temporal evolution of an Airy bullet. (a,b) Spatio-temporal and (c,d) spectral 

intensity isosurfaces of a (finite-energy) Airy3 bullet shown in blue, and obtained at Z = 0 and Z = 5, 

respectively.  Red isosurfaces highlight the bullet main lobe in (a,b), and its spectral counterpart in the 

Fourier space (shown in (c,d)). The isosurfaces are extracted using a 95% intensity cutoff. The red line 

in (c,d)  corresponds to the key spatial frequency trajectory sK  followed by the main lobe spectral 

components, whose location in the Fourier space (throughout the entire range of propagation) is 

represented by the red shaded cylinder in (d). 
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Fig. 3.13 shows the direct and Fourier space intensities (95% cutoff isosurfaces) of the 

corresponding bullet at two different propagation distances (for instance Z = 0 and Z = 5). In 

the spatio-temporal space (X, Y, T), depicted in Figs. 3.13(a, b), the Airy wave packet is 

characterized by an intense main lobe (highlighted in red), as well as three main (long) tails 

formed of numerous sub-lobes. Although one may identify non negligible spreading when 

approaching Z = 5 (i.e. the increase of the bullet expansion due to its finite energy), we 

verified that the Airy3 bullet maintains its shape over a significant propagation range and 

follows closely the predicted parabolic trajectory along the direction 

 
2 2 2

, , , ,
4 4 4

Z Z Z
S X Y T

 
   

 
.  

In the Fourier space, the spectral intensity isosurfaces shown in Figs. 3.13(c, d) exhibit a 

spherical shape (blue isosurface), invariant over propagation and intrinsically associated to the 

spherical symmetry set by the 3D Gaussian amplitude of the input spectrum. In contrast, the 

spectral content associated with the bullet main lobe (smaller red isosurface) is located in the 

central part of the input spectrum [Fig. 3.13(c)], but its location moves within the main 

spectrum to follow the trajectory defined by the key spatio-temporal frequency

  , ,
2

,
2 2

,S X YK
Z Z Z

K K 
 

   
 

, as illustrated in Fig. 3.13(d). Over the whole propagation 

range, the main lobe spectral content moves along the axis 𝐾⃗⃗ 𝑆 similarly to the cases studied in 

the (2+1)D regime, however defined here as the diagonals of the cube [ KX, KY, ω ]. In such a 

case, the main lobe spectral intensity remains confined within an elliptic cylinder (red 

shading) with half-axis defined along the (orthogonal) directions 𝐾⃗⃗ 𝑄 = (KX, ‒ KY, 0 )  and 

𝐾⃗⃗ 𝑅 = (‒ KX, ‒ KY, 2ω ) .  

 

3.10 Compressed Airy3 bullets 

The fact that the spectral components associated with the main lobe of the Airy3 bullet are 

found within a specific spectral location is of paramount importance for the targeted 

optimization of such an Airy3 bullet. Indeed, by reshaping the spatio-temporal spectral 
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intensity in an efficient way, we foresee that a significant enhancement of the bullet main lobe 

intensity associated with a reduced overall spatio-temporal can be readily obtained. This can 

be achieved in a similar way as what we reported above for the cases of 2D self-accelerating 

beams, i.e. by confining the initial Gaussian spectrum of the Airy3 bullet along the key spatial 

frequency KS . This leads in turn to the compression of the spatio-temporal spectral intensity 

along both the directions 𝐾⃗⃗ 𝑄 = (KX, ‒ KY, 0 )  and 𝐾⃗⃗ 𝑅 = (‒ KX, ‒ KY, 2ω ) .   

 

 

Figure 3.14: Spatio-temporal evolution of a “Short-tail bullet”. (a-d) Isosurfaces plots as shown in 

Fig. 3.13, considering a compressed bullet with a spectrum “squeezed” along QK and RK . With a 

compression factor CQ = CR = 8, the initial Gaussian spectrum (blue sphere) shown in (c) is reshaped 

into an ellipsoid (green shading) closely matching the displacement of the main lobe spectral 

components throughout propagation [see Fig. 3.13(d)].  
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Here, to avoid losses of generality, we perform a normalized numerical analysis to assess the 

effect of such a “spectral squeezing” on the dynamics of a finite-energy Airy3 bullet. In this 

framework, we define the squeezing (or compression) parameters as the ratio between the 

Gaussian waist αQ obtained after spectral compression along   QK  with the initial waist of the 

spectrum α given in Eq. (3.26) so that CQ = αQ / α. Correspondingly, a spectral compression 

along   RK is associated to the parameter CR = αR / α. 

In Fig. 3.14, we show numerical results considering the same bullet parameters, but with a 

symmetric compression of the spatio-temporal spectrum along   QK  and   RK  so that CQ = CR 

= 8. Physically, this corresponds to a decrease of the spectral intensity FWHM by a factor 

2.83Q RC C  , as can be seen in Figs. 3.14(c, d), where the compressed spectrum is 

shown as green isosurfaces, and compared with the initial Gaussian spectrum (blue shading). 

In the direct space, presented in Figs. 3.14(a, b), the overall compressed bullet (blue) exhibit a 

reduced expansion compared to the previous case but the shape of the main lobe (red) remains 

almost unaffected at both propagation distances.  

 

3.11 Impact of Airy3 bullet compression 

Although Fig. 3.14 already illustrates qualitatively the effect of the spectral compression on 

the bullet shape, a more qualitative study regarding the impact of the spectral compression on 

the bullets is provided in Fig. 3.15, comparing the properties of the bullets shown in Fig. 3.13 

and 3.14 as a function of propagation. As seen in Fig. 3.15(a), both the trajectories of the 

Airy3 (blue dots) and compressed (red circles) bullets are in excellent agreement with the 

analytically predicted parabolic trajectory over the range Z = [ -5:5]  (black line). Additionally, 

the compressed bullet peak power shown in Fig. 3.15(b) exhibits a significant enhancement 

(i.e. by a factor > 3) compared to the bullet of Fig. 3.13 which is here used as normalized 

reference. In comparison with the 2D beams optimization reported above, what we find to 

probably be the most striking feature is illustrated in Fig. 3.15(c). Here we extracted and 

compared the volume of the bullet in the “classic” and compressed case.  
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Figure 3.15: Comparison between the fundamental properties of an Airy bullet and a “Short-tail 

bullet” obtained by an appropriate compression of the Airy bullet spectrum. (a) Spatio-temporal 

trajectories, (b) peak intensities, and (c) volumes along the propagation Z, considering the Airy3 bullet 

of Fig. 3.13 (dashed blue) and the compressed bullet shown in Fig. 3.14 (red). (d-e) Illustration of the 

self-healing property of a compressed bullet (i.e. CQ = CR = 8). The main lobe of the bullet is blocked 

at Z = 0, as seen in (d), and regenerated after propagation, as illustrated in (e) for Z = 5. 

 

In particular, such volumes are extracted as the smaller cube (V = ∆X ∆Y ∆T) where 

components above 0.1% of the bullet peak intensity could be found (so that at least 95% of the 

overall bullet energy is enclosed within this region), and normalized with respect to the 
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volume of the bullet main lobe shown in Fig. 3.13(a). Although slightly larger spatio-temporal 

expansion can be observed at the edges of the propagation range, one can clearly assess the 

drastic volume reduction of the compressed bullet over almost two orders of magnitude (see 

left/right axis scale) when compared to the Gaussian spectrum case of Fig. 3.13. This confirms 

the potential of this approach in efficiently confining the Airy3 bullet spatio-temporal 

expansion while maintaining its propagation characteristics almost unaffected. This is further 

attested by the ability of the compressed bullet to “self-heal”, as illustrated in Figs. 3.15(d, e). 

Specifically, we numerically “suppressed” the spectral components associated with the bullet 

main lobe at Z = 0 which corresponds to the red isosurface shown in Fig. 3.14(c). At this 

propagation distance, illustrated in Fig. 3.15(d), the main bullet lobe is thus absent but is still 

regenerated through propagation, as shown for instance at Z = 5 in Fig. 3.15(e). Indeed, the 

fact that the reshaped spectrum seen in Figs. 3.14(c, d) closely overlaps the spectral content of 

the main lobe (i.e. the ‘red shaded’ cylinder in Fig. 3.13(d)) allows the bullet to maintain (and 

eventually “self-heal”) its compressed shape over a significant propagation range, which could 

not be reached otherwise (e.g. by only using a Gaussian shape with a higher truncation 

parameter).  

 

3.12 Effect of the spectral compression 

As previously seen, the bullet spectral compression can greatly affect its intensity and 

expansion without significantly deteriorating the overall propagation dynamics. In Fig. 3.16, 

we report a more detailed and quantitative study of the impact of the spectral compression on 

the bullet properties recorded on the onset of propagation (i.e. Z = 0). In these cases, the 

truncation factor is kept constant with the same value as shown in Figs. 3.13 - 3.15 so that 

α = 0.04. Fig. 3.16(a) depicts a colorplot of the peak intensity, obtained at Z = 0, as a function 

of both compression factors CQ and CR. In this case, one can readily see that a significant 

intensity enhancement can be obtained even for low (and eventually asymmetric) compression 

factors. Optimal intensity enhancement is achieved for symmetric compression so that CQ = 

CR (white dashed line diagonal) and, in this case, the relevant bullet properties are extracted 

and illustrated in Figs. 3.16(b-d). We can observe a significant and monotonic peak intensity 
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enhancement for compression factors below ~10, as seen in Fig. 3.16(b). For higher values, 

further spectral compression starts to become detrimental, as the bullet does not overlap 

anymore with the key frequency components shown in Fig. 3.13(d) and 3.14(d) [136] – i.e. in 

a similar fashion as observed for 2D self-accelerating beams. 

 

 

Figure 3.16: Peak intensity and spatio-temporal volume of the “Short-tail bullet” as a function of 

the spectral compression. (a) Peak intensity distribution as a function of the spectral compression 

factors CQ and CR (the case shown previously is illustrated with a white dot in the plot). For symmetric 

squeezing (dashed white line, i.e. CQ = CR), we extracted the bullet (b) peak intensity, (c) volume and 

(d) energy ratio present in the main lobe as a function of the spectral compression factor. The inset in 

Fig. 3.16(c) illustrates the effect of spectral compression on the main lobe volume. 

 

As a consequence, the extracted peak intensity starts to decrease from this optimal value and 

the bullet propagation dynamics is expected to exhibit some deterioration. The impact of 

spectral compression on the overall bullet volume is shown in Fig. 3.16(c), where one can 
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observe an exponential-like decay of the volume as the bullet spectrum is compressed, until 

reaching quasi-saturation for compressions greater than ~10. In the inset, we report the 

corresponding variation of the bullet main lobe volume as a function of spectral squeezing. In 

this case, we can see a small but steady increase of the main lobe volume, attesting for the 

energy transfer of the bullet power from its wings to the main lobe as we increase the 

compression of the bullet spectrum. This phenomenon is even better illustrated when 

computing the ratio of the bullet energy contained in the main lobe as a function of spectral 

squeezing, see Fig. 3.16(d). Indeed, one can see that a clear increase of the main lobe energy 

is obtained when the bullet spectrum is compressed around its key frequency components. For 

instance, the main lobe contains about 10% of the total bullet energy without spectral 

compression (as in the case shown in Fig. 3.13) while the compressed bullet of Fig. 3.14 (i.e. 

CQ = CR = 8) possesses more than 40% of its energy concentrated in its main lobe. In fact, our 

numerical results predict the possibility to concentrate more than half of the bullet energy in 

the main lobe - when considering this truncation factor and an optimal spectral compression 

(corresponding to CQ = CR ≈ 10) . 

Our approach clearly has a twofold advantage. Not only it increases the bullet main lobe 

intensity/energy, but also reduces the overall spatio-temporal bullet expansion. Evidently, both 

of these aspects are associated with an improvement of the bullet energy confinement (here 

calculated as the ratio between energy and volume), whose impact is summarized in Fig. 3.17. 

We can thus observe that the energy confinement of the bullet main lobe (red line) is indeed 

enhanced by a factor of approximately 3 for an optimal compression factor of ~10 before 

decreasing upon further spectral squeezing. The main significant aspect of such compression 

is nevertheless associated with the overall bullet energy confinement, which can be improved 

by a factor above 50 for a similar spectral squeezing.  
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Figure 3.17: Energy spatio-temporal confinement of the total bullet (blue line) and its main lobe 

(red line) as a function of spectral compression. Energy confinement is calculated as the average 

ratio between energy and volume shown in Figs. 3.16(c-d), and normalized to unity with respect to the 

(uncompressed) Airy3 bullet case. 

 

It is worth noting that the impact of spectral squeezing depends clearly on the initial truncation 

parameter, which fixes the energy content of the Airy bullet. Here we focused on the case 

where α = 0.04 (for numerical grid limitations), which corresponds to scenarios that can be 

typically obtained experimentally. Although not presented here, we conducted additional 

numerical simulations using both lower and upper values of α. For instance, by considering α 

= 0.02, the spectral compression provides a more dramatic impact on the bullet energy 

confinement. The bullet will maintain its shape over longer distances, while exhibiting a 

higher energy confinement. The optimal spectral compression can yield to a bullet 

confinement improved by a factor up to 150. One the other hand, when fixing α = 0.08, the 

improvement of spectral compression on the bullet energy confinement is reduced as the 

bullet spectral expansion is already closely matching the key frequency components, but the 

bullet do not maintain its shape over such a long propagation range.  

Finally, we also mention that the technique discussed above can be directly generalized to 

optical linear bullets propagating along arbitrary convex trajectories. As seen for 2D self-

accelerating beams, we can engineer the spatio-temporal phase structure to generate optical 

linear Airy-like bullets with the desired convex trajectory. Since the main-lobe associated to 
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these optical bullets show the same spectral features as the Airy bullet, energy confinement 

can be directly achieved by squeezing the input spectrum in an appropriate (yet similar) way. 

 

3.13 Potential experimental implementations 

By looking at the approach discussed above to improve the bullet energy confinement, one 

may wonder about its viability in a realistic and suitable experimental setting. Despite this 

being out of the scope of this thesis, we can briefly mention that this exact approach might not 

be trivial to implement (first of all because a compression of the temporal spectrum is not 

really feasible in the linear regime). However, we foresee that a similar technique may be 

implemented without requiring a compression of the spectral components, but rather their 

spectral redistribution. The scheme in Fig. 3.18 shows a potential way to experimentally 

achieve such a bullet energy confinement. First, an input Gaussian pulse undergoes a temporal 

shaping in order to modify its temporal profile into an Airy pulse. This can be obtained by 

spreading its spectral (temporal) components through an optical system, formed by a 

diffraction grating and a lens. At the Fourier plane of this lens, we can perform the 1D cubic 

phase modulation using, for example, an SLM. Then, the Airy pulse is obtained by 

recombining the spectral (temporal) components using a second system of lens and a grating, 

which is placed specularly to the first one. Before carrying out the recombination, the circular 

(spatial) profile of the beam is reshaped into an ellipse shape by means of a cylindrical 

telescope. In this way, the spherical spectrum of the input Gaussian pulse (blue isosurface in 

Fig. 3.13(c)) is reshaped into an ellipsoid before the application of a “spatial” 2D cubic phase 

modulation. As shown in Fig. 3.14(c), an appropriate spectral tilt of the ellipsoidal spectrum 

has to be introduced in order to project KS onto the plane [KX , KY ] of the SLM. Such tilting 

could be tuned by rotating the reflection angle of a third grating. This grating, along with 

another lens, is also responsible of distributing the spectral (temporal) components at the 

Fourier plane, where the spatial phase modulation is performed. In order to orient the 

ellipsoidal spectrum along the KS direction, the spatial modulation can be carried out by 

rotating the 2D cubic phase mask of 45-degree. Finally, the fourth lens is used to obtain, in the 

real space, a compressed Airy bullet analog to the one numerically investigated here.  
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Figure 3.18: Proposed experimental implementation 

 

The actual set-up is expected to require additional adjustments that will be the subject of 

further investigation, taking into account the numerical apertures and physical parameters of 

the system as well as the potential deteriorations of the beam/pulse quality due to this 

implementation (e.g. astigmatism, lens dispersion, viability of spectral tilting, etc.). 

Nevertheless, we foresee that such a spectral intensity reshaping could be easily obtained 

through the joint use of widely available dispersive and focusing optical elements (e.g. 

gratings, lenses), as previously discussed.  
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3.14 Final remarks 

In conclusion, we have demonstrated the possibility to significantly enhance the energy 

confinement of 2D self-accelerating beams and optical Airy bullets, both propagating in a 

linear regime. This energy confinement can be readily obtained by reshaping the input spectra 

in order to properly match the spatial frequency content associated with the main lobes over 

propagation. The initial spectral reshaping gives rise to a short-tail version of the associated 

optical wave packets, showing a significant increase of the peak intensity of its main lobes, 

while maintaining the same peculiar features of their “classical” counterparts.  

In the first part of this chapter, we dealt with the energy confinement of 2D self-accelerating 

beams. At first, we extended the spectral-to-space mapping to the (2+1)D regime, highlighting 

that the spectra associated with the main lobe of these beams is mapped into the propagation 

distance. To prove our analysis, three different convex trajectories have been studied: a 

parabolic, a cubic polynomial and an exponential trajectory. Starting from the convex paths, 

for which we assumed to have the same acceleration along the x and y directions, we retrieved 

the appropriate phase structures to be applied in the Fourier domain to generate the desired 

beam patterns. For each case, we studied the propagation and spectral characteristics of these 

2D self-accelerating beams. Then, we introduced a practical method to significantly and 

efficiently enhance the energy confinement of these 2D self-accelerating beams. This is easily 

reached experimentally by reshaping the circular Gaussian beam (incident to the SLM) into an 

elliptical Gaussian beam matching the spectral stripe associated to the main lobe spectrum 

during propagation. A notable enhancement of the main lobe peak intensity along several 

convex trajectories was observed in experiments, and a reduction of their equivalent 

transverse expansion was obtained. When an optimal shaping of the initial beam is realized, 

the intensity localized in the main lobe can be increased up to about 60%. Furthermore, we 

also verified that the newly generated short-tail beam preserves the intrinsic characteristics of 

the beams initiated by the circular Gaussian beams. 

In the second part of this chapter, the spectrum-to-space mapping has been also extended to 

the (3+1)D regime. We proposed a numerical method to enhance the spatio-temporal energy 

confinement of an Airy3 bullet by an appropriate spectral reshaping of the bullet amplitude in 
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the Fourier space. The spectral compression proposed here – analogous to the one studied 

experimentally for the (2+1)D case - has the potential to generate an Airy3 bullet of reduced 

spatio-temporal expansion – also exhibiting an enhanced energy confinement. For instance, 

we observed that the overall bullet energy confinement can be improved by a factor above 50, 

while the energy confinement of the bullet main lobe can be enhanced by a factor of 

approximately 3 in comparison with a “classical” Airy3 bullet featured by the  same 

characteristics. Additionally, the compressed bullet peak power exhibits a significant 

enhancement by a factor > 3. We also demonstrated numerically that the bullet peculiar 

properties (i.e. non-diffractive, non-dispersive, self-healing) are, similarly to the case of 2D 

beams, conserved for the desired trajectory. 

We expect that the results reported in this chapter will have a significant impact towards the 

implementation of curved trajectories wave packets for applications requiring non-destructive 

and non-invasive techniques including, for example, biomedical imaging and highly localized 

optical probing. Here, the propagation medium should not be significantly impacted by the 

electromagnetic wave. Additionally, future work will focus on extending this approach to the 

case of accelerating wave packets propagating in a nonlinear medium, for typical applications 

requiring higher powers, as for example micro-machining.  
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Chapter 4 

Acceleration and spectral reshaping of nonlinear Airy wavepackets 

In this chapter, the nonlinear behavior of Airy beams and pulses is investigated. In the first 

part, spatial Airy beams are studied, both theoretically and experimentally, by considering 

their propagation in a biased photorefractive (PR) material, under either a self-focusing or 

self-defocusing nonlinearity. We found that a finite-energy Airy beam can preserve its 

acceleration properties in nonlinear photorefractive media, with a slight change of the beam 

path with respect to the linear parabolic trajectory. Additionally, throughout the nonlinear 

propagation, the spatial spectrum undergoes a dramatic reshaping initiated from a Gaussian 

spectral distribution. A positive or negative defect appears under the self-focusing or -

defocusing nonlinearity, respectively. In the second part, the nonlinear propagation of Airy 

pulses in optical fiber are studied theoretically and experimentally under the combined effect 

of the both self-phase modulation (SPM) and GVD dispersion. We observe that most spectra 

content concentrates into one or two position-dependent self-shifting peaks under normal or 

anomalous dispersion, respectively. Furthermore, we also propose a practical method to 

proportionally control frequency shifts, by acting on the central frequency of a spectral cubic 

phase structure without the need to alter the fiber length.  

 

4.1 Introduction 

Optical Airy beams/pulses are self-accelerating wave packets having, respectively, a better 

resistance to diffraction and dispersion comparing to Gaussian beams/pulses. Since they were 

introduced and experimentally observed in optics [13-14], many intriguing phenomena and 

potential applications associated with these wave packets have been proposed and 
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demonstrated [118]. As we saw in the previous chapter, one of the most remarkable 

applications for Airy wave packets is the realization of linear optical bullets, where an Airy 

pulse is combined with a non-diffractive 2D beam, hence suppressing the broadening of the 

spatio-temporal wave packet - both in spatial and temporal domains without the need of using 

nonlinear phenomena [37-38,92-93,137]. In the nonlinear regime, one of the most challenging 

issue for Airy wave packets is to preserve their self-accelerating property. Along this 

direction, many research efforts have been devoted to control and maintain the parabolic 

acceleration under the action of nonlinearities [25-26,28,31,79,108-109]. In space, nonlinear 

Airy beams have been studied theoretically and explored experimentally in different nonlinear 

environments, such as in Kerr, saturable Kerr, and quadratic nonlinear media [32,78,138-139]. 

In particular, an Airy beam breakdowns and loses its acceleration under a self-focusing 

nonlinearity that seriously alters the optical phase [25-26,78]. Nevertheless, the acceleration is 

better kept for in a self-defocusing medium, yet it is still affected by the presence of the 

nonlinearity [26]. To understand how a parabolic trajectory can be also followed by an optical 

beam in nonlinear media, the formation of 1D self-accelerating nonlinear modes have been 

proposed [31,78]. These self-trapped optical beams are found as self-accelerating solutions of 

the nonlinear wave equation (NLWE), including either self-focusing or -defocusing 

nonlinearities [31]. Temporal Airy pulses share analogous nonlinear behaviors with 1D Airy 

beams in space [13-14]. In nonlinear environments, such as nonlinear optical fibers, their 

propagation is described by the generalized nonlinear Schrödinger equation (GNLSE) [85]. 

Airy pulses have been employed to control super-continuous generation in photonic crystal 

fibers [91] and to improve the intra-pulse Raman scattering [36]. For a simply and realistic 

case where only the Kerr effect is considered, Airy pulses tend to shed self-trapped solitons 

[27].  

In this chapter, we investigate numerically and experimentally the nonlinear propagation of 

optical Airy beams and pulses. We propose a scheme to preserve their self-accelerating 

properties in the nonlinear regime, as well as control both trajectories and spectral features. In 

the first part, we will deal with spatial Airy beams propagating in a biased PR crystal under 

self-focusing and -defocusing nonlinearities. When a finite-energy Airy beam is delivered into 

a nonlinear PR medium, the nonlinearity, especially the self-focusing type, is able to greatly 
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affect the self-accelerating properties [25-26,78]. In most cases, finite-energy Airy beams 

(called from now Airy beams) are generated in the Fourier regime by modulating an input 

Gaussian beam with a cubic phase mask coded into a spatial light modulator (SLM). We will 

show that if the central frequency of the cubic phase modulation is shifted, the Airy beam 

tends to maintain its acceleration under photorefractive nonlinearity, albeit with a slight 

change on the propagation trajectory with respect to the linear parabolic path. Accordingly, 

their Fourier spectra reshape into some interesting configurations. Under a self-focusing (self-

defocusing) nonlinearity, such spectrum is featured by a notch (spectral peak) that can shift 

during the pulse propagation.  

The second part of the chapter will be focused on the nonlinear propagation of optical Airy 

pulses, described by the nonlinear Schrödinger equation (NLSE). In particular, we will 

investigate the self-phase modulation (SPM) of Airy pulses under normal and anomalous 

dispersion in single mode fibers, and will consider their behavior in the presence of Kerr 

nonlinear effects. Similar to the spatial counterpart, Airy pulses are generated by imposing a a 

cubic phase modulation to an input Gaussian pulse in the Fourier domain. Such phase 

modulation is performed by employing a pulse shaper that is based on the space-time pulse 

conversion technique. In time, we will demonstrate that Airy pulses can also preserve their 

self-acceleration property in a Kerr medium under normal and anomalous dispersion. This can 

be achieved by shifting the central frequency of the applied cubic phase modulation, as done 

for the spatial case. During nonlinear propagation under normal dispersion, most of the 

spectrum concentrates to one self-shifting peak (or positive defect). Instead, under anomalous 

dispersion, the spectrum reshapes into two self-shifting peaks (or negative defect). Moreover, 

the shifts of the spectral defects at the output side of a single-mode fiber (SMF) can be 

proportionally controlled solely by shifting the cubic phase structures, without the need of any 

change in terms of fiber length. Therefore, we can readily realize wavelength selection by 

employing Airy pulses. Finally, these nonlinear spectral reshaping occurring in both spatial 

and temporal domains may find applications in laser filamentation and plasma guidance, as 

well as in beam/pulse shaping.  
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4.2 Nonlinear effects in a dielectric medium 

In the first two chapters, we only studied self-accelerating beams and Airy bullets in the linear 

regime. The unique physical phenomena taken in consideration were diffraction and 

dispersion. In the spatial domain, diffraction causes the waist of a finite-energy optical beam 

to spread along propagation in a dielectric medium. In a similar fashion, dispersion affects a 

finite-energy optical pulse propagating inside a dielectric medium in the temporal domain. 

Under normal or anomalous dispersion, the pulse undergoes a broadening or narrowing of its 

pulse duration, respectively. Since the refractive index is a function of the frequency, the 

different components of an optical pulse will travel with different phase velocities, affecting 

the pulse width. Nonlinearity is another property that can affect the propagation of both 

optical beams and pulses. It consists in the change of the refractive index due to the optical 

intensity. Many nonlinear phenomena have been demonstrated in optics [89]. In this section, 

we only limit our discussion to consider two important nonlinear effects: Kerr and PR 

saturable nonlinearities. Under a Kerr nonlinearity, the optical intensity induces a nonlinear 

change of the polarization density which in turn induces a refractive index change in the 

material. On the other hand, in the presence of PR nonlinearity, the optical intensity induces 

an internal electric field which modifies the refractive index of the material via the electro-

optic effect. These two nonlinearities are analyzed more in the details in the following 

sections. In particular, the refractive index changes as function of the optical intensity will be 

derived and investigated.  

 

4.2.a Kerr nonlinearity 

Kerr nonlinearity can induce a change in the refractive index originating from a light-induced 

nonlinear change of the polarization density. Here, we briefly review the physical mechanism, 

limiting the analysis to the specific cases used in the next sections. More details on this topic 

can be found in Ref. [89]. 

When an electromagnetic wave propagates inside a dielectric medium, light-matter 

interactions are described by the vector relationship between the polarization density P and the 

electric field E. Polarization effects originate from the motion of the bound electrons inside 
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the material, induced by the applied electromagnetic field. If this motion is harmonic, the total 

polarization is linear and the medium is also called linear. On the other hand, an intense 

electric fields E produces an anharmonic motion and, as a consequence, the total polarization 

density P becomes nonlinear. If the electric field only varies along one dimension, for 

example, E = E x, the polarization density is also induced along the same direction, i.e. P = P 

x. Since we will deal with linearly-polarized laser beams, the analysis can be reduced to the 

scalar case.  

Under the above conditions and assuming the nonlinearity weak when compared to the intra-

atomic forces inside the medium, the relationship between P and E is expressed via a Tailor 

series as: 

              1 2 32 3

0 0 0 ...P t E t E t E t           (4.1) 

Where ε0 is the free-space dielectric permeability and χ
(n)

 is the nth-order dielectric 

susceptibility. For the sake of simplicity, we assume the dielectric medium to be isotropic, 

homogeneous and dispersiveless. In general, susceptibility terms χ
(n)

 higher than the third 

order are (n=3) not taken into account because they provide a negligible effect. 

 If light is monochromatic, the electric field is expressed as:
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Therefore, the induced polarization density takes the following form: 
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Eq. (4.2) shows that the nonlinear polarization density generates new terms whose angular 

frequencies are different from those carried by the input electric field. These components are 

responsible for well-known nonlinear phenomena, such as optical rectification, second- and 

third-harmonic generation, the Kerr effect etc. [89]. In particular, the second term in Eq. (4.2) 

represents indeed such Kerr effect. In non-centrosymmetric materials where χ
(2)

 is not zero, 

the Kerr effect is usually negligible with respect to other nonlinear effects because χ
(2)

 is much 

larger than χ
(3). 
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However in centrosymmetric materials, such as silica in optical fibers, χ
(2)

 is zero and the 

Eq. (4.2) reduces to: 
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in which only the components of polarization at frequencies ω and 3ω are preserved. The 3ω 

term corresponds to third harmonic generation, but in most practical cases the energy 

conversion efficiency is low. Therefore, we can also neglect this term. Finally, the polarization 

density induced by a monochromatic pump reads as (in complex form):  
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Where PL= ε0 χ
(1)

 E0 and PNL= ε0 ∆χ E0 (with ∆χ = 3/4 χ
(3)

|E |
2
) are the linear and nonlinear 

polarization densities, respectively. To connect the nonlinear polarization to a nonlinear 

change in the refractive index, we consider now the displacement vector: 

  0 0 1D E P E          (4.5) 

Since the refractive index n is related to the relative permittivity εr through n
2
 = εr = 1 + χ + 

∆χ  we can find the refractive index n as: 
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From Eq. (4.6), the nonlinear change in the refractive index is derived as: 
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 Where n2  = 3η0/(4𝑛0
2)𝜒(3) is the nonlinear refractive index coefficient, I = n0|E |

2
/(2η0) is the 

optical intensity and η0 ≈ 380Ω is the free-space impedance. In conclusion, the refractive 

index in Kerr media can be modified by the light intensity due to the Kerr effect: 

  0 0 2n n n I n n I      (4.8) 
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4.2.b Propagation of light in anisotropic media and electro-optics effect  

To better understand the physics of light propagating inside a PR crystal, it is worth to recap 

very briefly two important concepts in optics: optical anisotropy, and the electro-optics effect. 

As known from both theory and experiments, differently polarized plane waves propagating in 

isotropic media will travel at the same phase velocity. However, in an anisotropic medium, the 

phase velocity depends on the polarization of light. This can be intuitively explained 

observing that electric fields along different directions experience dissimilar refractive 

indexes. Birefringence is the most appreciable phenomenon caused by anisotropy in crystals. 

Physically, an elliptically polarized light beam travelling through an anisotropic crystal is split 

into two orthogonal linearly-polarized components, eventually emerging from the crystal as 

two separated light beams [2]. In particular, the most used crystals in both experimental 

settings and applications are uniaxial ones, where ordinary refractive index n0 appears along 

two orthogonal directions (ordinary axis), e.g. the y-and z-axis, and extraordinary refractive 

index ne along the other dimension, i.e. the x-axis (extraordinary axis and also called optical c-

axis). In such crystals, when a plane wave is linearly-polarized along the c-axis (or 

alternatively along the  y-/z-axis), it will travel at an extraordinary phase velocity ve= c / ne (or 

at an ordinary phase velocity v0= c / n0, respectively). In general, the refractive index along 

three axes could be completely different, which corresponds to the so called biaxial crystals.  

Another property that is inherent to the anisotropy of a crystal is the electro-optic effect. Here, 

a change of the refractive index is caused by an applied or induced electric field. In the most 

common electro-optic effect, the refractive index change is linearly-dependent of the applied 

electric field - so-called electro-optic Pockels’effect. The relationship between the refractive 

index change and the applied electric field is described by a 63 matrix [rij], i = 1…6 and j = 

1…3, known as linear electro optics tensor, providing that the electro-optic coefficients rij is 

related to the crystallographic composition and symmetry of the electro-optic material [1]. We 

would like to mention that the electro-optic effect could be also of Kerr type, which has a 

quadratic dependence on the electric field and mainly appears in centrosymmetric electro-

optics materials. However, in the case of PR crystals, the induced internal electric field 

modifies the refractive index via the electro-optic Pockel’s effect only.  
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4.2.c  Photorefractive nonlinearity 

In PR media, the change of the refractive index is caused by the combination of both the 

photoconductive and the electro-optic effects exhibited by these materials. Photorefractivity 

was first observed in a LiNbO3 (Lithium Niobate) crystal by Ashkin and his collaborators 

[140]. In literature, a variety of materials are reported to manifest PR properties. Among 

others, the most used are: ferroelectric crystals such as LiNbO3, SBN (Strontium Barium 

Niobate), BaTiO3 (Barium Titanate), KNbO3 (Potassium Niobate), KTN (Potassium Tantalate 

Niobate) and KLTN (Potassium Lithium Tantalate Niobate); paraelectric crystals such as BSO 

(Bismuth Silicon Oxide), BTO (Bismuth Titanate Oxide) and BGO (Bismuth Germanium 

Oxide); semiconductors such as GaAs (Gallium Arsenide).  

The PR effect is commonly explained by using a simple band-transport model, named 

Kukhtarev model [141]. In the following, we will limit to analyze more detail only the 1D 

case associated to our study. For more general cases, in which 2D modeling is required, the 

interested readers can refer to the excellent available literature [142-145]. 

Figure 4.1 illustrates a simplified scheme describing the physical mechanisms associated with 

the PR effect.  If an optical beam illuminates a PR medium, free charge carriers, electrons or 

holes, are generated from impurity energy levels (e.g. Fe2+ in LiNbO3) in the forbidden band, 

at a generation rate that is proportional to the light intensity I = I(x, z). In addition to the 

optical excitation, free charge carriers can also be thermally generated. This phenomenon is 

taken into account by introducing the so-called dark irradiance ID. Upon excitation, free 

carriers move away from the high intensity locations, thus leaving ions with opposite signs. 

Charge transport is mainly due to a diffusion current produced by the concentration gradient 

of the charge carriers, and a drift current arises when an external electric field is applied. An 

additional contribution can come from a photovoltaic current, originating from the anisotropic 

photoexcitation of carriers in piezoelectric media. Once moving, these free charge carriers can 

recombine at other ionized impurities (e.g. Fe3+ in LiNbO3), thus creating an excess of charges 

with the same sign in these locations. In this way, an inhomogeneous space-charge 

distribution in the PR medium is created, which in turn induces an internal electric field Esc(x), 

known as a space charge field. As a result, such field modulates the refractive index of the PR 

medium via the electro-optic Pockel’s effect. 
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Figure 4.1: Kukhtarev’s band transport model. 

 

For illustrative purposes, we will now derivate quantitatively the change of the refractive 

index due to the induced space-charge field inside a PR medium. At first, we need to calculate 

the screening electric field Esc(x) via the Kukhtarev transport model. Let us consider a 

scenario in which an external bias electric field E0 is applied to a PR crystal along its optical c-

axis (x direction). The optical beam is linearly-polarized along the x direction and propagates 

in the biased PR medium along the z-direction. Moreover, the beam is only permitted to 

diffract along the x-direction with an intensity profile I = I(x, z). Under these assumptions, the 

induced electric field Esc(x) will be also oriented along the c-axis: Esc(x) = Esc(x) x. Therefore, 

the Kukhtarev’s model reduces to the one-dimensional case. The crystal under test here is 

SBN that is uniaxial and widely-used, especially when large nonlinear optical coefficients are 

required. The electro-optic coefficient r33 along the optical c-axis can reach values larger than 

200 pm/V [146]. The photovoltaic effect in this material is low enough to make the 

photovoltaic current basically neglectable. Although our analysis is limited to the particular 

case of SBN crystals [75,147], it can be similarly applied to others PR media, such as LiNbO3. 

However, in this case, the photovoltaic contribution should also be taken into account [148]. 
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Another reasonable approximation is to consider electrons as the only free charge carriers in 

the SBN crystal. Under the conditions above, the time-independent response through the one-

dimensional Kukharev’s model is governed by a set of equations describing the different 

involved processes [75]: 
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Where si is the photoexcitation cross section, γR is the carrier recombination rate, ND , NA , 𝑁𝐷
+, 

and ne are the volume density of donors, acceptors or traps, ionized donors, and free-electrons, 

respectively. ID is the dark irradiance, I = I(x, z) is the light intensity, ε0 and εr  are the static 

free-space and relative permittivity, respectively. Furthermore, Esc(x) is the induced spatial-

charge electric field, J is the current density, KB is Boltzmann’s constant, T is the temperature, 

μ and e are the electron mobility and the charge, respectively. 

The overall rate of generation, i.e. 𝐺(𝑥) = 𝑠𝑖(𝐼 + 𝐼𝐷)(𝑁𝐷 − 𝑁𝐷
+), and recombination, 

i.e. 𝑅(𝑥) = γRne𝑁𝐷
+, for free charge carriers must be equal. The generation rate G(x) is 

contributed by both the optical, i.e. 𝐺𝑜𝑝(𝑥) = 𝑠𝑖𝐼(𝑁𝐷 − 𝑁𝐷
+), and thermal, i.e. 𝐺𝑡ℎ(𝑥) =

𝑠𝑖𝐼𝐷(𝑁𝐷 − 𝑁𝐷
+) processes. The redistribution of the electrical charges and the creation of a 

space charge field obey the Poisson’s equation. The total current density J is contributed from 

both the drift current, i.e. JEsc = eμneEsc, and the diffusion current, i.e. JD = μKBT ∂ne/∂x. The 

electric field Esc(x), due to the nonuniform space-charge distribution (resulting from the 

electrons transport in the PR crystal), can be therefore calculated by solving the set of 

equations presented above.  
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An easy way to estimate Esc(x) is to consider further simplifications which are physically valid 

in most PR media, including SBN. In particular, we assume that the light intensity I = I(x, z) is 

slowly varying respect to x, and NA  ≫ n𝑒 and 𝑁𝐷
+ ≫ n𝑒. Using these approximations, 

Eq. (4.9) and (4.12) can be reduced to a simpler form [148]: 
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Let us also assume that the optical intensity I = I(x, z) asymptotically tends to a constant value 

at 𝑥 → ±∞, i.e. I(𝑥 → ±∞, z) = I∞. In these regions, the induced space-charge field is 

independent of x, i.e. Esc(𝑥 → ±∞, z) = E0. If the width W of the PR crystal is much larger 

than the spatial extension of the optical wave, and a constant voltage bias V is applied, E0 is 

approximately ± 𝑉/𝑊. In such case, the Eq. (4.14) asymptotically reads: 
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Since the current density is constant respect to x: J = J∞, one can obtain from Eq. (4.11): 
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Substituting Eq. (4.15) into Eq. (4.16), the induced space-charge field  is estimated to be: 
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Generally speaking, the bias electric field E0 can reach appreciable values. As a result, the drift 

component of the current will be dominant when compared to the diffusion term. In this case, 

the second term in Eq. (4.17) can be neglected. Furthermore, if the width W of the crystal is 



137 

 

larger than the spatial extension of the optical beam, ID can also be considered much larger 

than I∞. Therefore, the induced space-charge electric field Esc(x) can be simplified as: 

 0 .D
SC

D

I
E E

I I



  (4.18) 

As previously mentioned, the internal electric field Esc(x) locally perturbs the refractive index 

of the SBN crystal by virtue of the electro-optic Pockel’s effect. Since the optical beam is 

linearly-polarized along the c-axis, only the extraordinary refractive index is taken into 

account. The index change ∆ne(x) of the extraordinary refractive index ne caused by Esc(x) via 

the electro-optic effect,  is given as [76]: 
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Where ne and r33 are the unperturbed extraordinary refractive index and the electro-optic 

coefficient of the SBN crystal, respectively. The relationship between the incident beam 

intensity I(x, z) and the resultant refractive index change ∆ne(x) can be readily obtained by 

substituting Eq. (4.14) into Eq. (4.16): 

 
3

33 0

1
.

2

D
e

D

I
n n r E

I I
  


  (4.20) 

The most notable characteristic is that, differently from the Kerr effect, the PR nonlinearity 

manifests a refractive index change ∆ne(x) that has a saturable evolution with the optical 

intensity. For this reason, it is called saturable PR nonlinearity. 

 

4.3  Nonlinear propagation of an optical beam 

In the previous section, we have demonstrated that the optical intensity produces a change of 

the refractive index in a dielectric medium. In what follows, we will derive the nonlinear 

paraxial wave equation (NLPWE) describing the spatial propagation of an optical beam under 

the nonlinear regime. To simplify the analysis, we assume that the wave packet propagates 
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along the z-axis and diffracts along the transversal direction (x-axis). Additionally, we also 

assume the optical beam being linearly-polarized along the x-axis direction. Starting from 

Maxwell’s equations, the electric field expressed via E(x ,  z ,t) = Ex(x ,  z ,t)x obeys to the 

relation: 
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  (4.21) 

In Eq. (4.21), Ex(x ,  z ,t) is the x-component of the electric field, x is the transversal coordinate, 

z is the propagation coordinate, t is the time coordinate and ν = c/n is the propagation velocity 

Here,  c is the speed of light in vacuum  and n is the nonlinear refractive index. n follows the 

formula  
22 2

0 0 0( ) 2 ( )n n I n n In n     , where n0 is the linear refractive index and ∆n(I) is 

the small index change induced by the nonlinearity. For monochromatic beams, a typical way 

to solve the wave equation is by separating the x-component of the electric field into its spatial 

and time-harmonic solutions: 

      0, , , exp ,xE x z t E x z i t    (4.22) 

in which E(x ,  z) denotes the spatial-varying component of the electric field, and ω0 is the 

carrier frequency. Substituting this expression into Eq. (4.21), the spatial component satisfies 

the nonlinear Helmholtz equation: 
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Where k0 = ω0 /c is the free-space wave number. The electric field can be expressed via 

( , ) ( , )exp( )E x z A x z ikz , where A(x , z) is the slowly-varying electric field envelope, and k 

= ω0 n0 /c  is the wave number. By substituting those terms into Eq. (4.23), the NLPWE under 

the slowly-varying envelope approximation 2 2/  /2 A z Ak z      reaches its  final form: 
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For a Kerr nonlinearity ∆n(I) = n2 I, while in the presence of a PR nonlinearity we have 

instead  3

0 33 00.( ) 5 ( ).D Dn rI In E I I   Here n0 is the unperturbed extraordinary refractive 

index ne and I = |A|2 / (2η).   

After deriving the NLPWE, we will now introduce two nonlinear effects related to a change in 

the refractive index: the so-called self-focusing and self-defocusing nonlinearities.   

 

4.3.a Self-focusing and self-defocusing nonlinear effect 

Assuming that the beam diffraction is vanishingly small, or alternatively that the material is 

very thin, we can neglect diffraction and consider only the nonlinear contribution in  

Eq. (4.24), thus obtaining: 
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Defining      , , exp ,A x z A x z i x z    , Eq. (4.25) contains real and imaginary parts, i.e.     
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  (4.26) 

Then the solution to Eq. (4.25) is found to be: 
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As a result of nonlinearity, the optical wave experiences a spatial self-phase modulation 

(SPM) during propagation. Two interesting effects that are associated with SPM are self-

focusing and –defocusing nonlinearities. In Fig. 4.2 we show the propagation of a Gaussian 

beam in both Kerr and PR saturable media under a self-focusing and -defocusing nonlinearity, 

respectively, when no diffraction is considered. If a Gaussian beam is transmitted through a 

Kerr material, the induced refractive index change, i.e. ∆n(I) = n2 I, reproduces its optical 

intensity profile. If the Kerr parameter n2 is positive [Fig. 4.2(a)], SPM changes the wave front 
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of the Gaussian beam similarly to what a converging lens will do, causing self-focusing. 

Likewise, SPM can also induce self-focusing in PR saturable media, i.e. 

3

0 33 0( 1/ 2 / ( ).) D Dn r En I I I I    In particular, a self-focusing nonlinearity is obtained when a 

positive bias electric field (E0 > 0) is applied on the PR material [Fig. 4.2(b)]. On the other 

hand, in Kerr media with n2 < 0 [Fig. 4.2(c)], SPM can impose to the wave front of the 

Gaussian beam a change of the curvature similar to what a diverging lens will do, therefore 

causing self-defocusing. Interestingly, in PR media the self-defocusing nonlinearity can be 

easily turned on by reversing the applied static voltage (E0 < 0 ) [Fig. 4.2(d)]. Nevertheless, 

diffraction cannot be generally ignored, so both SPM and diffractive effects must be taken into 

account together. Under certain conditions, SPM can compensate diffraction and the optical 

beam propagates without changing its spatial distribution, forming a so-called spatial soliton 

[73].  

 

Figure 4.2: Pictorial representation of the effect of (a-b) self-focusing and (c-d) -defocusing 

nonlinearity on the dynamics of a Gaussian beam. The left-hand column shows (a) self-focusing 

and (c) -defocusing nonlinearity in a Kerr material. The right-hand column shows (b) self-focusing and 

(d) -defocusing nonlinearity in a biased PR saturable material. 
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We end by summarizing what have been discussed so far. In the previous sections, we 

introduced two types of nonlinear effects related to the optical intensity: PR saturable and 

Kerr nonlinearity. In both cases, the intensity-induced refractive index change is inserted into 

the NLPWE, modelling the nonlinear propagation of waves. We also pointed out that this 

nonlinear refractive index change affects the beam propagation through self-phase 

modulation. Additionally, we discussed self-focusing and –defocusing nonlinear effect 

associated with this modulation.  

In the next sections, we will study the nonlinear propagation of Airy beams and Airy pulses. 

Notably, nonlinear Airy beams will be analyzed in PR saturable materials under both self-

focusing and -defocusing nonlinearities. Airy pulses will be studied in Kerr materials (optical 

fibers) under both normal and anomalous dispersion. In the temporal domain, the nonlinear 

pulse evolution is described by the nonlinear Schrödinger equation analogous to the NLPWE 

in the spatial domain. Nevertheless, we will still introduce the Schrödinger equation in time 

before analyzing the nonlinear Airy pulse propagation. We will also prove that nonlinear 

phenomena are analogous in the spatial and temporal regimes. 

 

4.4 Nonlinear dynamics of Airy beams 

The propagation of optical beams in PR crystals has been recently a subject of intense 

research efforts. Compared with other nonlinear media such as those featured by a strong 

nonlinear Kerr response, PR media offer the possibility to observe self-action of a laser beam 

such as self-focusing and –defocusing effects, at very low power level (about µW). Kerr 

media would require much higher power level (about W) to observe such type of nonlinear 

processes. Moreover, since the electro-optical effect modifies the refractive index under 

optical illumination and in presence of an external electric field, another advantage offered by 

PR crystals is the possibility to switch the nonlinearity by means of simply reversing the 

external-applied electric field. Here, the propagation of a (1D) Airy beam in a nonlinear 

saturable PR medium is investigated. Under the slowly-varying amplitude approximation, the 

theoretical model to study the nonlinear propagation of an Airy beam is described by           

Eq. (4.24). For convenience, we transform this envelope equation into its normalized form. In 

dimensionless variables, Eq. (4.24) is reshaped as: 
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where    Ψ , , / 2 Ds A s I     is the normalized complex amplitude of the optical field, 

is the medium impedance, and DI  is the dark irradiance. s = x/x0 and ξ = z/(k0 n0x0
2
) denote 

the normalized transverse and longitudinal coordinates, k0 is the  vacuum wave number, n0 is 

the unperturbed extraordinary refractive index of the PR crystal, and x0 is an arbitrary length 

scale. In Eq. (1.7), 2 4 2

0 0 0 33 00.5k n x r E   represents the normalized nonlinear coefficient, in 

which E0  is the external bias field, and r33 is the electro-optics coefficient for the 

extraordinarily polarized beams. The sign of the external-applied electric field determines the 

type of nonlinearity: E0 > 0 (thus γ > 0) leads to a self-focusing nonlinearity, while E0 < 0 

(thus γ < 0) corresponds to a self-defocusing nonlinearity. When no bias field is present 

(γ = 0), the analysis is the same as in the linear regime. Although PR diffusion effect still 

exists, they can be neglected for a beam of sufficient large size.   

 

4.4.a  Linear Airy beam propagation  

In the linear regime (γ = 0), the propagation of an Airy beam is studied by reducing Eq. (4.28) 

to the normalized paraxial differential equation of diffraction [13]: 
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Solutions to Eq. (4.29) can be found in the Fourier domain as: 
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where    ,0 ,0 xki s

xk s e ds





   is the input spectrum. We consider a truncated Airy beam 

as the input:   0Ψ ,0   ( ) ss I Ai s e , where Ai(·) denotes the Airy function, I0 is the input peak 
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intensity and α << 1 is the truncation factor [13-14]. The spectrum associated to the finite Airy 

beam is: 
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One can infer from the above equation that this truncated Airy beam can be experimentally 

generated by Fourier transforming a Gaussian beam modulated with a cubic phase mask. The 

configuration corresponds to the case in which the Gaussian beam and the spectral mask are 

perfectly aligned, so that the linear Airy beam propagates along a parabolic trajectory [13-14]. 

However, further studies on this topic have shown that the evolution of an Airy beam can be 

easily altered by slightly ‘misaligning’ the Gaussian beam and the cubic phase structure in the 

Fourier space [54,62], thus inducing a ballistic propagation trajectory. This is realized by 

adding an offset to the phase modulation. In this case, the input condition in the k-space 

assumes the form: 
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where (ωm) is the shift parameter of the cubic phase mask. The ballistic evolution of the Airy 

beam is analytically described by [62]: 
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       (4.33) 

From Eq. (4.33), it can be seen that the Airy beam accelerates following the ballistic trajectory  

s = ωmξ + ξ 2/4, with the peak intensity I0 appearing at ξ = 2ωm . Setting ξ = 0, the input beam 

)( ,0s  reads: 

      0Ψ ,0  exp   2  ,  mi s

ms I s Ai s i e
     (4.34) 
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In Figs. 4.3(a1-c1) are the intensity distributions corresponding to three examples of 

numerically generated Airy beams in the linear regime (γ = 0), which are obtained by 

launching the input condition at ωm= 0,-1 and -6,  and using I0 = 4.08 and α = 0.08 as 

parameter values.  

 

 

Figure 4.3: Linear propagation of an Airy beam. Intensity distributions of the Airy beam (a1-c1) 

and corresponding spectral intensity distributions (a2-c2), obtained for three different shifting values 

ωm= 0,-1 and -6 of the cubic phase mask, respectively. 

 

In this study, simulations are carried out by means of the split-step Fourier method (SSFM) 

that is a common and efficient numerical algorithm to approximate nonlinear solutions of the 

paraxial differential equations [85]. Numerical solutions are found by applying separately 
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diffraction and nonlinear response. In reality, both physical processes act simultaneously. 

However, for a very small distance, they can be approximately treated as independent effects.  

As expected from the analytical solution in Eq. (4.34), the Airy beam evolves along a 

parabolic curve for (ωm=0) [Fig. 4.3(a)], while a shift of the cubic phase mask leads the Airy 

beam to move along a ballistic trajectory [Figs. 4.3(b, c)]. For such offset values, i.e., the peak 

intensities appear at ξ = 0, 2 and 12, respectively. Furthermore, the Fourier spectrum assumes 

a Gaussian profile for each offset value, maintaining unchanged for all propagation distances 

[Figs. 4.3(a2-c3)].  

 

4.4.b Airy beams dynamics under a self-focusing nonlinearity 

Once turning on the nonlinearity, Airy beams behave in a considerably different way. The 

intensity distributions in Figs. 4.4(a1-c1) illustrate the nonlinear propagation of Airy beams 

under a self-focusing ( 0  ) nonlinearity, obtained by launching the input condition ( ),0s

at ωm = 0, -1 and -6, and setting γ = ±2.72, I0 = 4.08 and α = 0.08. The values of the latter 

three parameters are chosen in order to match the experimental conditions that will be 

discussed in detail in the next sections.  

If no shift of the cubic phase mask (ωm = 0) is taken into con sideration, most energy of the 

Airy beam reshapes into an “off-shooting” soliton [77,139], thus destroying the self-

accelerating properties [Fig. 4.4(a1)].  When a small shift is considered (ωm = -1), the 

acceleration property tends to survive [Fig. 4.4(b1)], and less energy of Airy beam is transfer 

to “off-shooting” solitons. At a larger shift value (ωm = -6), both the Airy profile and the 

accelerating properties are fully preserved, as shown in Fig. 4.4(c1). However, if the nonlinear 

evolution of the Airy beam is compared to the associated linear propagation [Fig. 4.4(a1)], the 

overall transverse width shrinks, while the propagation trajectory deviates slightly from the 

linear parabolic trajectory, rightwards along the transversal s directions. In addition, a 

nonlinear Airy beam under the action of a self-focusing nonlinearity accelerates faster than the 

linear Airy beam in the propagation region. This can be seen by noting the larger curvature of 

its trajectory with respect to the linear one.  
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Figure 4.4: Nonlinear propagation of an Airy beam under a self-focusing nonlinearity. Intensity 

distributions of the Airy beam (a1-c1) and corresponding spectral intensity distributions (a2-c2), 

obtained for three different shifting values ωm  = 0, -1 and -6 of the cubic phase mask, respectively. 

 

We note that the scheme described in Fig. 4.4(c1) seems to be an efficient and easy way to 

maintain the acceleration property of a nonlinear Airy beam under a self-focusing 

nonlinearity. Several research works reported detailed simulation results indicating that when 

ωm = 0, even a weak self-focusing nonlinearity would affect the trajectory of the Airy beam 

[32,78,138]. On the contrary, our method shows that the acceleration can also be preserved 

under a self-focusing nonlinearity by simply shifting the center of the phase mask. A possible 

explanation can be that by shifting the mask, the peak intensity of the Airy beam moves far 

away from the input facet of the PR crystal, avoiding the soliton formation. Additionally, 
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further elucidations on why an Airy beam can preserve its acceleration properties under a self-

focusing nonlinearity can be also found by studying the evolution of nonlinear Airy beams in 

the Fourier regime. 

As shown in Figs. 4.4(a2-c2), the spectra reshape completely from the initial linear Gaussian 

profile for each offset value ωm . Considering ωm = 0 or -1, the spectra break into many parts, 

and the energy localizes at different positions along the propagation distance. Especially at a 

long distance ξ, the spectrum tends to have a Λ-shaped periodic structure, mainly because of 

the “off-shooting” solitons [Figs. 4.4(a2, b2)]. Particularly interesting is the case with         

ωm = -6, where the spectral content concentrates in a position-dependent self-shifting spectral 

notch, or negative defect [Fig. 4.4(c2)]. This negative defect appears at propagation distances 

ranging from ξ = 7 to 17, and most of the energy is transferred in the vicinity of it. Nonlinear 

spectral reshaping takes place near the location of peak beam intensity. Outside the spectral 

gap, the spectrum keeps a Gaussian distribution, due to the fact that in this region the beam 

intensity is low enough to make the influence of the nonlinearity weak or even negligible. It is 

worth noting that the spectral notches are noticeable even in the other two shifting cases. As 

shown in Figs. 4.4(a2, b2), the defects start forming when the Airy beam enters in the crystal, 

but the onset of self-trapped solitons interrupts their formation, thus affecting the acceleration 

properties.   

 

4.4.c Dynamics of Airy beams under a self-defocusing nonlinearity 

When reversing the external bias, the input beam )( ,0s  experiences a self-defocusing 

nonlinearity ( 0  ). As shown in Figs. 4.5 (a1-c1), Airy beams under a self-defocusing 

nonlinearity perform much better than for the self-focusing case, due to the fact that most of 

the energy content supports their acceleration. For all shifting cases the acceleration properties 

are much better preserved, even when ωm = 0 [Fig. 4.5(a1)]. The beam widths tend to 

broaden slightly, when compared to the associated linear propagation. Similar to the self-

focusing case, not only the beam width changes, but also the propagation trajectory differs 

slightly from the linear parabolic curve, which is more perceptible at ωm  = -6. As shown in 

Fig. 4.5(c1), an Airy beam under self-defocusing nonlinearity tends to deviate leftwards along 
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the s direction, with respect to the parabolic curve (dashed white line). It also preserves a 

reduced acceleration as inferred from the smaller curvature of its trajectory. 

 

 

Figure 4.5: Nonlinear propagation of an Airy beam under a self-defocusing nonlinearity. 

Intensity distributions of the Airy beam (a1-c1) and corresponding spectral intensity distributions (a2-

c2), obtained for three different shifting values ωm  = 0, -1 and -6 of the cubic phase mask, 

respectively. 

 

In the Fourier space, the nonlinear spectra for each shifting parameter change dramatically, 

similarly to what happened in the self-focusing case. In the presence of a self-defocusing 

nonlinearity, the spectrum of nonlinear Airy beams reshapes into a position-dependent self-

shifting spectral peak (positive defect). The positive defect forms wherever the beam intensity 
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is sufficient strong. When the cubic mask is not shifted (ωm = 0), the positive defect appears 

from the input (ξ = 0) of the crystal up to ξ = 7, being a significant part of spectrum localized 

around this peak [Fig. 4.5(a2)]. Nevertheless, the defect shape is strongly deformed and 

stretched, indicating that part of the energy constituting the nonlinear Airy beam is dispersed 

and does not contribute to maintain its accelerating properties. By slightly shifting the cubic 

phase mask (ωm = -1), more and more spectral content tends to localize in the defect region 

from ξ  = 1 to ξ  = 7 [Fig. 4.5(a2)]. However, the positive defect is not fully-shaped yet, since 

some (small) part of the energy is still dispersed by the nonlinear Airy beam. At ωm = -6, the 

energy is completely transferred to the nonlinear Airy beam to preserve its acceleration 

properties, as shown in Fig. 4.5(c2). A full-shaped spectral peak appears at propagation 

distances ranging from ξ  = 7 to ξ  = 15 [Fig. 4.5(c2)], when most of the spectral content 

concentrates in the vicinity of the peak with a small surrounding ripple. Outside the positive 

defect the spectrum assumes a Gaussian profile. Similar to the self-focusing case, in this area 

the intensity is low enough to make nonlinearity weak or negligible. This spectral feature 

could find experimental applications such as frequency selection. Further simulations show 

that this spectrum reshaping is robust even in presence of high-level noise.   

 

4.5  Spectral reshaping of nonlinear Airy beams 

In the previous section, we have shown that when the cubic phase modulation is shifted to  

ωm = -6, Airy beams preserve their accelerating properties under both self-focusing and -

defocusing nonlinearity in a saturable PR media. Since this is the most valuable result of our 

argument, hereafter we will only focus on studying these special cases of nonlinear Airy 

beams. For the sake of clarity, we review the spatial and spectral features of linear and 

nonlinear Airy beams with ωm = -6 and summarize the associated results in Fig 4.6. The beam 

dynamics for linear and nonlinear Airy beams appear to be similar [Figs. 4.6(a1-c1)], while 

the corresponding spectral features are quite different [Figs. 4.6(a2-c3)]. When comparing to 

the linear case [Fig. 4.6(a1)], the Airy beam exhibits a small shift towards positive s directions 

as well as a slightly width shrinking during propagation under a self-focusing nonlinearity 
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[Fig. 4.6(b1)]. On the other hand, a self-defocusing nonlinearity shifts the Airy beam towards 

negative s directions, while broadening the beam width [Fig. 4.6(c1)].  

Such a transversal shift of nonlinear Airy beams along the s axis can be the reason of the 

spectral phase structures at ωm = -6, see Figs. 4.6(a3-c3). The nonlinear phase distributions 

[Figs. 4.6(b3, c3)] are similar to the linear case [Fig. 4.6(a3)]. The main difference occurs 

along the defect regions. A self-focusing nonlinearity tends to tilt the phase stripes rightwards, 

while a self-defocusing nonlinearity tends to tilt them leftwards. According to the Fourier 

theory, these tiltings indicate that the nonlinear Airy beam in the real space can have a 

translation along either a positive (self-focusing) or negative (self-defocusing) s scale. In the 

linear Airy beam, the spectral stripes have not tilting and therefore any shift along s is 

induced. Although the spectral phase structures are similar in the linear and nonlinear regime, 

the corresponding intensity spectra have completely different characteristics. The spectrum of 

a finite-energy Airy beam in the linear regime assumes a Gaussian profile, which maintains 

unchanged for all propagation distances ,  as shown in Fig. 4.6(a2). Conversely, the 

Gaussian spectrum reshapes into a position-dependent self-shifting spectral notch (peak) 

under a self-focusing (-defocusing) nonlinearity [Figs. 4.6(b2-c2)]. The spectral defects appear 

in the higher intensity region, and most of the spectral contents concentrate in the vicinity of 

defects. Outside these regions, since the beam intensity is sufficiently low, the spectra still 

keep their Gaussian distributions. 

In the following, we will give a qualitatively explanation about the nonlinear propagation of 

Airy beams and their spectral reshaping, by numerically finding the self-accelerating 

eigenvalue solutions to Eq. (4.28). After that, we will provide an experimental demonstration 

of these nonlinear Airy beams in both the spatial and the spectral domains.  
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Figure 4.6: Spectral reshaping of nonlinear Airy beams. Top panels from left to right show the 

intensity distributions corresponding to a shifting parameter ωm = -6 of the cubic phase mask under 

(a1) linear, (b1) nonlinear self-focusing, and (c2) nonlinear self-defocusing conditions. Middle and 

bottom panels from left to right show spectral (a2-c2) intensity and (a3-c3) phase distributions, 

corresponding to the intensity distributions in (a1-c1), respectively. Dashed white lines mark the (I) 

input, (II) the middle and (III) the output of the PR crystal.  
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4.6  Nonlinear self-accelerating modes  

Based on our simulations, a finite-energy Airy beam can therefore preserve the accelerating 

propagation in the presence of a self-focusing and –defocusing nonlinearity in a saturable PR 

medium. This is accomplished by shifting the cubic phase mask in the Fourier space. As a 

consequence, the nonlinear Airy beam experiences a dramatic reshaping of its spectrum with 

respect to the linear regime. Yet,  what is the mechanism behind these spectral features? In the 

literature, several works have demonstrated the existence of infinite-energy nonlinear self-

accelerating modes for different nonlinear effects [31-32,138]. From these studies, one could 

infer that the acceleration persistence of a finite-energy Airy beam under a saturable 

nonlinearity might originate from the existence of ideal infinite-energy nonlinear self-

accelerating modes. To solve such modes, we seek the solutions of Eq. (4.28) in the form: 

  
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where h is the rate of acceleration and ( )u s  is a real function. By defining 
2 / 2s h   , 

Eq. (4.35) is converted to: 
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Since we are concerned with solutions that accelerates along a parabolic trajectory, the rate of 

acceleration h is set to 1/2. Then Eq. (4.36) becomes: 
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The above equation can be easily solved numerically. We note that for ς → ∞, the amplitude 

of u tends to become small, so to make the nonlinear term negligible. In this case, the 

boundary condition for ς → ∞ can be obtained from its linear solution (γ = 0), which follows 

an Airy function. The other values can be integrated from the initial condition. In addition, an 

α degree of freedom is also introduced in order to obtain a family of solutions for Eq.(4.37). 

This α parameter corresponds to nonlinear mode amplitudes. Therefore, we solve numerically 



153 

 

Eq.(4.37)  through setting the asymptotic values as u(ς) = αAi(ς) and u′(ς) = αAi′(ς) for ς → ∞, 

to obtain a family of solutions with different peak intensities. 

A comparison between the linear infinite-energy Airy beam and the typical nonlinear modes is 

shown in Fig. 4.7. A self-focusing (-defocusing) nonlinearity brings the main lobe of the 

nonlinear mode to slightly shrink (broaden) when compared to the ideal Airy beam [Figs. 

4.7(a, d)]. These results are in a good agreement with numerical beam propagation, see section 

4.3. 

 

 

Figure 4.7: Nonlinear self-accelerating solutions under a saturable PR nonlinearity. (a) and (d) 

self-accelerating modes (blue solid curve) under self-focusing and -defocusing nonlinearities, 

respectively. The red dashed curves correspond to an ideal, linear Airy beam. (b) and (e) spectra 

corresponding to (a) and (d). (c) and (f) spectral distributions of the self-accelerating modes in (a) and 

(d), respectively. 
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In Fourier space, the corresponding spectra plotted in Figs. 4.7(b, e) present the formation of a 

spectral notch or peak defect similar to the spectral evolution in Figs. 4.4(c2) and 4.5(c2). In 

addition, the spectrum in Fig. 4.7(b) shows a more noticeable ripple outside the range where 

the spectral defect appears with respect to the spectral peak in Fig. 4.7(e), which confirms our 

previous numerical simulations. More interestingly, the power spectrum distribution [Figs. 

4.7(c, f)] undergoes a linear shift during the beam propagation for both type of nonlinearities. 

This linear shift can be estimated analytically by Fourier transforming the nonlinear modes. 

To determinate it, let us start from: 

    
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6

u ih ih
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By performing the Fourier transform of Eq. (4.38), the spectral profile can be expressed as:  
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where ( ) [u( )]( )U     and ( )F   stands for the Fourier transform. The power spectrum 

IΦ(ω, ξ) = |U(ω ‒ hξ)|2 demonstrates that the spectra have a linear shift at a rate given by,

1/ 2h  thus proving the spectral features in Figs. 4.7(c, f).   

Our numerical investigations point out to the fact that the nonlinear modes under a saturable 

PR nonlinearity have both real and spectral characteristics similar to nonlinear Airy beam 

propagating in Figs. 4.4(c1) and 4.5(c1). In particular, their spectral features indicate that Airy 

beams are able to evolve into nonlinear self-acceleration modes under the action of self-

focusing and –defocusing nonlinearities, thus preserving their acceleration (Figs. 4.4(c2) and 

4.5(c2)). Differently from other approaches [149], our physical picture offers a new way to 

test the formation of nonlinear modes. The initial shift of a cubic phase mask is crucial in this 

framework because, by delivering the peak intensity inside the PR medium, it allows the Airy 

beam to evolve into a nonlinear mode, thus fully-maintaining its self-accelerating properties. 

Without shifting, the peak intensity appears at the input of the crystal, causing the strong 

nonlinearity to destroy the beam properties.    
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4.7  Experimental observation 

To observe experimentally the phenomena obtained numerically, we use a set-up that is 

shown in Fig.4.8. A truncated Airy beam is created by phase-modulating a linearly-polarized 

Gaussian beam (λ = 532 nm) through a 1D cubic phase mask, uploaded into a spatial light 

modulator (SLM). The SLM is placed at the focal plane of a cylinder lens (f = 40 mm) which 

performs a Fourier transform. The polarization of the electric field is oriented along the x-

direction, parallel to the optical c-axis of a biased Strontium Borate Nitrate (SBN: 60) PR 

crystal (55(c)10mm). After the generation, the finite-energy Airy beam is coupled into the 

SBN crystal, and both output intensity and spectral profiles are recorded by CCD cameras.  

 

 

Figure 4.8: Experimental setup for measuring the nonlinear propagation of a finite-energy Airy 

beam in a saturable PR medium (SBN: 60) underboth a self-focusing and -defocusing 

nonlinearity.  

 

To obtain a nonlinear coefficient | γ | = 2.72, a static voltage of 600 V (| E | = 1.2x105 V/m) is 

applied to the PR crystal along the optical c-axis. The absolute values of the bias voltage is 
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kept fixed throughout the experimental measurement. The detection is accomplished by 

capturing the Airy beam patterns and the k-space spectra by means of two imaging systems 

composed of two spherical lenses and two CCD cameras. The cubic phase mask is 

‘electronically’ shifted through the graphic interface of the software driving the SLM. 

 

4.7.a Peak intensity of the Airy beam at the middle of the SBN crystal  

In the first set of measurements, the experiments have been carried out by conveniently 

shifting the cubic phase mask with the purpose of bringing the peak intensity into the middle 

of the crystal along the propagation direction ξ, as indicated by the dashed white line II in Fig. 

4.6(a1), where the other two dashed white lines, I and III, mark the spectral defect area 

localized in the region ξ ≈ 7 to 17. Outside this range, the propagation can be basically 

considered linear and, therefore, of lower interest. With this in mind, the cubic phase mask has 

been scaled intentionally in order to match the concerned area with the longitudinal scale of 

the crystal.  

Figure 4.9 presents the Airy beam patterns imaged at the output facet of the SBN crystal. In 

the linear regime, the output intensity pattern has a main hump localized at the same 

transverse position of te initial input beam [Fig. 4.9(a1)]. As in Fig 4.3(c1), and even in Fig. 

4.7, this vertical line marks the transversal position of the peak intensity along the s direction 

for the linear Airy beam. In the presence of a self-focusing nonlinearity, Fig. 4.9(b1) shows an 

output pattern whose main hump is not self-trapped and, therefore, keeps its self-accelerating 

property. However, the main lobe shrinks and shifts to the right when compared to the linear 

case. Conversely, a self-defocusing nonlinearity expands the main hump of the output pattern 

and causes a leftwards shift with respect to the linear output [Fig. 4.9(c1)]. In the Fourier 

regime, the corresponding imaged k-spectra present a Gaussian profile for the linear Airy 

beam [Fig. 4.9(a2)], and the appearance of a spectral gap and peak defect under both self-

focusing and -defocusing nonlinearities, respectively [Figs. 4.9(b2, c2)]. These spectral 

defects, whose positons are indicated by the downward pointing red arrows, reside at the right 

side of the k-space center.  
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Figure 4.9: Experimental observations of Airy beams propagating in a biased PR crystal, after 

setting its peak intensity at the middle of the crystal. From top to bottom the panels correspond to 

beam propagation under (a) linear, nonlinear (b) self-focusing and (c) -defocusing conditions. (a1-c1) 

show the imagined Airy beam patterns at the output of the crystal. (a2-c2) show the spectra at the 

outputs in (a1-c1). The red arrows in (a2-c2) indicate the position of the spectral defects in the  k-

space. 

 

4.7.b Peak intensity of the Airy beam at the output of the SBN crystal  

In a second set of measurements, with the goal of further confirming the first observation of 

this spectral defect, we shifted the output facet of the crystal along the ξ-direction to the peak 

intensity position indicated by the white dashed line II in Fig. 4.6(a1). Output Airy beam 

patterns in Figs. 4.10(a1-c1) present a similar behavior as those shown in Figs. 4.9(a1-c1). In 

the k-space, the Gaussian profile is still kept for the linear regime [Fig. 4.10(a2)], while under 

nonlinear conditions, the spectral defect shifts to the center of the Fourier space [Fig. 4.10(b2) 

and 4.10(c2)]. This nonlinear behavior is expected because the beam experiences a half-

shortened propagation distance when compared to the first set of measurements.  
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Figure 4.10: Experimental observations of Airy beams propagating in a biased PR crystal by 

setting its peak intensity at the output of the crystal. From top to bottom the panels correspond to 

beam propagation under (a) linear, nonlinear (b) self-focusing and (c) -defocusing conditions. (a1-c1) 

show the imagined Airy beam patterns at the output of the crystal. (a2-c2) show the spectra at the 

outputs, corresponding to (a1-c1). The red arrows in (a2-c2) indicate the position of the spectral 

defects in the k-space. 

 

In conclusion, the experimental observations presented in Figs. 4.9 and 4.10 are in a good 

agreement with the numerical simulations discussed in Figs. 4.6(a1-c1) and Figs. 4.6(a2-c2). 
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4.8 Nonlinear Schrödinger equation  

From now on, the chapter will be devoted to describe the nonlinear propagation of optical 

Airy pulses. In temporal domain, the evolution of optical pulses in the nonlinear regime is 

descripted by the nonlinear Schrödinger equation (NLSE) [85]. Our interest in studying the 

properties of nonlinear Airy pulses is inspired by the fact that the NLSE describing pulse 

propagation in time and the NLPWE describing beam evolution in space are featured by a 

similar mathematical form. Because of this analogy, Airy pulses in the nonlinear regime are 

expected to behave similarly to nonlinear Airy beams in PR materials. Under a Kerr 

nonlinearity, Airy pulses tend to shed solitons, thus affecting their acceleration properties [27]. 

Such a self-accelerating propagation could be preserved by applying a similar approach to that 

proposed for nonlinear Airy beams in the spatial domain. In light of these motivations, we will 

investigate the nonlinear Airy pulse propagation. We will restrict our study to fiber optics 

where the NLSE can be applied, even though Airy pulses could as well be investigated in bulk 

nonlinear media. More specifically, we will study here the dynamics of an Airy pulse under 

the combined influence of both dispersion and nonlinear effects in a single-mode optical fiber. 

A detailed derivation of the NLSE in a single mode nonlinear optical fiber can be found in 

Ref. [85]. Based on this derivation, the NLSE assumes the form: 
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In Eq. (4.40) ( , )A z t  is the pulse envelope, γ is the Kerr nonlinear parameter, 𝛼̂ is the fiber 

losses parameter. β1 = 1/vg, β2 and β3 are the first-, second-and third-order dispersion 

coefficients, in which vg is the group velocity. Finally, z and t are the physical distance and 

time, respectively.  

 

4.9 Nonlinear propagation of Gaussian pulses 

In many practical applications, third-order dispersion can be generally neglected and 

Eq. (4.40) can be simplified by including the second order dispersion β2 only. Additionally, for 

short length fibers, the losses are not generally taken into account. Under these conditions, the 
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pulse propagation in the presence of a Kerr effect can be described by the normalized 

nonlinear Schrödinger equation (NNLSE): 
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where    , ,T A T    is the pulse envelope in normalized units 2

2 0| | /z t   and 

0/( ) /gT t z v t    are the normalized distance and time in the framework of the group 

velocity vg. Here,  z and t are the physical distance and time, and t0 is a time scaling factor. 

The symbol sgn(·) is the sign operator, while 2

0 2/ ( | |)t    is the normalized nonlinear 

coefficient. In the Eq. (4.41), the first term on the right-hand side of the NNLSE accounts for 

the group velocity dispersion (GVD), while the second term relates to the Kerr nonlinearity.  

 

4.9.a Temporal self-phase modulation 

As analyzed previously in space, we assume the single-mode fiber to be weakly dispersive. 

Therefore, we neglect the GVD term and consider solely the Kerr nonlinearity. Eq. (4.41) 

reduces to: 
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Defining      , , exp ,NLT T i T         , Eq. (4.41) separates in the real and imaginary 

part as:    
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The solution to Eq. (4.43) is found to be: 

       2

, 0, exp ,0T T i T       (4.44) 
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Similar to the spatial case, the Kerr nonlinearity introduces an intensity-dependence phase 

shift in the optical pulse due to self-phase modulation (SPM). Such nonlinear phase shift 

increases with distance. Its amplitude is not affected by SPM, hence the pulse-shape is 

maintained. Additionally, because of the time-dependence of  ,NL T  , a spectral change is 

induced by SPM. Such spectral change implies that the instantaneous frequency across the 

optical pulse deviates from the carrier frequency ω0 (temporal chirping). The instantaneous 

frequency change is given by: 
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Fig. 4.11 shows the SPM effect on a Gaussian pulse propagating in a nonlinear optical fiber 

(which is featured by a positive Kerr nonlinearity). Due to SPM, the instantaneous frequency 

of the Gaussian pulse changes following the slope of the optical intensity. Since in fiber n2 > 0 

(η> 0), the frequency of the trailing edge (B) is increased, whereas the frequency in the 

leading edge (R) is decreased. Near the peak intensity, the instantaneous frequency 

experiences linear increasing (up-chirping). 

 

 

Figure 4.11: Scheme of self-phase modulation of a Gaussian pulse propagating in a single mode 

optical fiber. 

 

In general, dispersion cannot be ignored, so SPM and dispersion must be considered together. 

In the normal dispersion regime (recalling that the Kerr response is positive in fibers), SPM 
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accelerates the spreading of the pulse duration. Under the condition of anomalous dispersion, 

SPM may compensate dispersion and under certain conditions, an optical pulse propagates 

without changing its temporal profile, therefore forming a so-called temporal soliton [130].  

 

4.9.b  Nonlinear propagation of a Gaussian pulse 

Similar to an Airy beam in the spatial domain, the spectrum associated to a finite-energy Airy 

pulse consists of a Gaussian amplitude chirped by cubic phase, in the form [1]: 
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The term 
2( )exp v  is the amplitude, while 

3( / 3)exp iv  is the cubic phase. Here ν = ω/ωs is 

the normalized angular frequency, in which ω is the angular frequency, ωs = 1/t0 is a scale 

factor, and α determines the bandwidth of the pulse.  

It is instructive, before investigating the nonlinear dynamics of Airy pulses, to take a look at 

the nonlinear propagation of an optical Gaussian pulse under anomalous (β2 < 0) and normal 

(β2 > 0) dispersion. In particular, the self-phase modulation (SPM) of Gaussian pulse is 

investigated by considering an input chirped pulse whose spectrum is given by: 

   2 2

2( ) [ ( ) ],v exp v exp isgn v      (4.47) 

Likewise, α determines the bandwidth of the Gaussian pulse and ν = ω/ωs is the normalized 

angular frequency, in which ω is the original angular frequency and ωs is a scaling factor. The 

term 
2( )exp v  is the amplitude, while 2

2sgn[ ( ) ]exp i v   is the quadratic phase modulation. 

The numerical simulations, modelling the linear and nonlinear propagations under the effect 

of either anomalous or normal dispersion, are shown in the Fig. 4.12. For the linear 

propagation case (γ = 0), the temporal evolution of chirped Gaussian pulses appears to be the 

same under both the anomalous and the normal dispersion, given that an identical absolute 

value of β2  is used [Fig. 4.12(a)]. 
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Figure 4.12: Self-phase modulation of a Gaussian pulse. (a) Intensity distribution under linear 

propagation. (b, c) Spectra in the case of nonlinear propagation under (b) an anomalous and (c) a 

normal  dispersion using the same input conditions as in (a). 

 

The maximum peak power (MPP) for these pulses appears inside the fibers at ξ = 2, due to the 

combined effect of chirp and dispersion. Upon a mild Kerr effect, the spectra reshape 

dramatically near the MPP location of the linear case. At β2 < 0, the spectrum tends to transfer 

energy from the center part of frequency to the outer one [Fig. 4.12(b)], and a negative defect 

appears close to ξ = 2. At β2 > 0, the spectral energy flow is in the opposite direction and most 

spectrum concentrates instead near the central frequency [Fig. 4.12(c)], so reshaping into a 

positive defect around ξ = 2.  

 

4.10 Nonlinear propagation of optical Airy pulses 

Keeping in mind the nonlinear behavior of a Gaussian pulse, we now study the SPM of Airy 

pulses under both normal and anomalous dispersion. At first, we start from the linear 

dynamics  ( 0)  , and then we consider the nonlinear propagation of Airy pulses.  

 

4.10.a Linear Airy pulse propagation 

In the linear regime (η = 0), the normalized Schrödinger equation is expressed as: 
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A solution to Eq. (4.48) can be found in the Fourier domain as: 
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in which    ,0 ,0 vi Tv T e dT 



    is the Fourier transform of the input pulse. More 

specifically, we study the linear dynamics of an Airy pulse by considering a more general 

input condition: 

  
 

3

2( ) .
3

mv v
v exp v exp i

 







 


   (4.50) 

The input spectrum is featured by a Gaussian amplitude
2

( )exp v , modulated by a cubic 

phase structure
3[ ( ) ]/ 3mexp i v v  . The parameter vm introduces an offset to the phase 

modulation. Using this initial condition, the solution to Eq. (4.49) is given by: 
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Solving Eq. (4.51), the linear pulse propagation is obtained as:  
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where 22 / ( )mv sgn    ,  and Ai(·) is the Airy function. The Airy pulse follows a parabolic 

time trajectory given by: 

 
2 2 2/ 4p mT v      (4.53) 

The MPP is located at 2 2 / ( )mv sgn   . By setting vm = 0,  the peak power appears at ξ = 0, 

and the linear dynamics of the Airy pulse is analogous to that in the spatial domain [13,54]. 

Introducing a shift to the cubic phase structure, the linear dynamics of the Airy pulse can be 
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delayed or advanced [54,62]. We purposely move the MPP inside the fiber at ξ = 8, which can 

be achieved by setting vm = -4sgn(β2 ), since in this condition, the acceleration properties of 

Airy pulses can be preserved. 

 

 

Figure 4.13: Linear propagation of Airy pulses in optical fiber. (a) intensity distribution of the 

filtered main hump obtained by discarding the sub-lobes of the linear Airy pulse. (b) and (c) spectral 

distributions corresponding to the main hump under (b) anomalous and (c) normal dispersion. 

 

In Fig. 4.13(a), we plot the main hump evolution of the Airy pulse descripted by Eq. (4.52). 

The intensity distribution is obtained by discarding the sub-lobes from the Airy pulse, and by 

leaving only the main hump whose instantaneous power is larger than half of the MPP. Taking 

into consideration the spectral components corresponding to the main hump in Fig. 4.13(a), 

we can find that different frequencies dominate different propagation distances [Figs. 

4.13(b, c)]. This spectral feature is analogous to what was observed in Chapter 1 for the spatial 

domain case. More specifically, for each propagation distance ξ in Fig. 4.13(a), we can simply 

treat the main lobe of the Airy pulse as a chirped Gaussian pulse, as shown schematically by 

two white dashed dot lines in Fig. 4.13(a). Under the effect of an anomalous dispersion, lower 

frequencies are responsible for the initial pulse evolution and higher frequency for the 

subsequent propagations, which can be seen from Fig. 4.13(b). On the other hand, in the 

presence of a normal dispersion, higher frequencies are responsible for the initial pulse 
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evolution and lower frequency for the subsequent propagations [Fig. 4.13(c)]. Such a 

frequency change is linear with the distance ξ (dotted white lines in Figs. 4.13(b, c)).  

To estimate quantitatively these spectral frequencies, we can apply the phase gradient method 

in the temporal domain, which is the temporal counterpart to the spatial phase gradient method 

described in Chapter 1. From Eq. (4.51): 
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The phase gradient is related to the time as follows: 
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The key temporal frequency vd is calculated by Eq. (4.54) via ∂2μ/∂ν2 = 0, and the 

instantaneous frequency of the main lobe varies linearly along the propagation distance as: 

  2sgn
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Dashed lines in Figs. 4.13(b, c) are plotted based on this formula. Therefore, in order to 

understand the linear dynamics, we model the main hump propagation as a Gaussian pulse 

featured by a liner phase term exp(‒ivdT) varying along propagation.  

 

4.10.b  Nonlinear Airy pulse propagation  

In the presence of a Kerr effect (η ≠ 0), an Airy pulse behaves very differently with respect to 

the linear case. In Figs. 4.14(a, b) we illustrate the nonlinear evolutions under anomalous and 

normal dispersion, respectively. White dashed lines mark the parabolic trajectory followed by 

the Airy pulse in the linear regime (η = 0). The nonlinear propagation of Airy pulses is 

simulated by employing the Split Step Fourier method to solve Eq. (4.41) with input condition 

described by Eq. (4.50). In simulations, a mild nonlinearity and the same offset parameter vm 

are considered. As shown in Figs. 4.14(a, b), the MPPs also appear close to the propagation 

distance ξ = 8.  
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Under anomalous dispersion the main hump tends to shrink its temporal duration, showing a 

faster acceleration when compared to a linear Airy pulse [Fig. 4.14(a)]. This nonlinear 

behavior is analog to the case of a spatial Airy beam under a self-focusing nonlinearity. 

Taking a look into the spectral domain, we note that at each distance ξ the spectral content 

concentrates into a negative defect, formed by a notch with two mainly peaks outside [Fig. 

4.14(c)]. 

Under normal dispersion, the Airy pulse exhibits a main hump that broadens in time, analog to 

the nonlinear dynamics of an Airy beam under a self-focusing nonlinearity [Fig. 4.14(b)]. This 

temporal expansion indicates a slower acceleration than in the linear regime. In the Fourier 

space, the spectral content reshapes into a positive defect, constituted by one single peak at 

each propagation distance ξ [Fig. 4.14(d)]. To understand the nonlinear evolution of an Airy 

pulse as a function of the distance ξ, we can model the main hump propagation as a Gaussian 

pulse with a different carrier frequency, as seen for the linear case in the previous section. 

Similar to the nonlinear Gaussian pulse in Figs 4.12(b) and 4.12(c), the nonlinear spectrum of 

an Airy pulse under normal and anomalous dispersion exhibits a negative and positive defect, 

respectively. While the spectra in Figs 4.12(b) and 4.12(c) have no transversal shift, the 

defects induced by a mild nonlinearity, for a nonlinear Airy pulse, shift linearly with the 

propagation distance due to the fact that the frequency of the main hump undergoes a linear 

change with ξ. Although their spectral paths are expected to follow the analytical shift νd 

(white dashed lines), some discrepancies occur because of the nonlinear nature of the pulse 

propagation. This difference is more pronounced for normal than anomalous dispersion, and it 

can be understood by observing the nonlinear evolutions in the temporal regime. 

As seen in Figs. 4.14(a, b), the deviation for the nonlinear Airy pulse with respect to the linear 

trajectory is tiny under anomalous dispersion, while it is larger for normal dispersion. As a 

consequence, the path of the spectral defect in the frequency domain (see Fig. 4.14(d)) has a 

larger discrepancy with respect to the analytical value νd. Another notable feature in the 

nonlinear Airy pulse spectra is the appearance of a spectral ripple near the defects region. 

Such a ripple is more noticeable under anomalous dispersion regime (see Fig. 4.14(c)). These 

patterns are caused by the interference between the reshaped spectra of the main hump and 

those of the sub-lobes, which can also induce nonlinearity. The peak power of the sub-lobes 
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(for pulse propagation along ξ) tends to increase during propagation under anomalous 

dispersion, while it is prone to decrease under normal dispersion. This is the reason why the 

ripples in Fig. 4.14(c) are more pronounced than those in Fig. 4.14(d).  

 

 

Figure 4.14: Propagation of Airy pulses in a nonlinear optical fiber. (a) and (b) intensity 

distributions under anomalous and normal dispersion, respectively. (c) and (d) spectral distributions 

corresponding to (a) and (b). 

 

As a direct outcome of this analysis, the real spectral shift can be estimated by correcting the 

linear shift νd through a suitable parameter  as: νdc =  νd. The parameter   is smaller than 1 

for anomalous dispersion, while it is bigger than 1 for normal dispersion. Therefore, in order 

to describe the nonlinear dynamics of an Airy pulse, we can model the main hump 

propagation as a Gaussian pulse featured by a linear phase term  dcexp iv T varying along the 

propagation distance ξ as: 
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    2sgn / 2dc m mv v v       (4.57) 

For an optical fiber whose length is L, spectral defects can be controlled by shifting the cubic 

phase mask as:  

    2sgn / 2.dc m mv v v L      (4.58) 

Eq. (4.58) highlights the fact that the shift on the spectral defect is proportional to the shift of 

the cubic phase structure. On a practical point of view, this linear relationship may be used to 

measure the fiber length. 

In the next section, we will demonstrate experimentally this spectral control under both 

normal and anomalous dispersion. We will also estimate experimentally the correction 

parameter ε and compare it with the values found from our numerical study. 

 

4.11  Space-to-time pulse shaping technique 

Airy pulse lasers are still not commercially available and could be realized by reshaping a 

commonly used Gaussian pulse. A standard device used to shape ultrashort pulse is the “Pulse 

Shaper”. Before describing the experimental setup used to study the propagation of nonlinear 

Airy pulse, we briefly review the working principle for this apparatus. The scheme of a pulse 

shaper is shown in Fig. 4.15 [150-152]. It consists of a couple of diffraction gratings and 

spherical lenses, arranged in a 4f- configuration. At the back focal plane of the first lens is 

placed a programmable Spatial Light Modulator (SLM), whose goal is to encode the 

amplitude and phase mask patterns to be imposed on the input pulse. The SLM is connected to 

an external laptop used to upload the amplitude and phase mask. The working principle is 

based on a space-time conversion technique. At first, the frequency components of the input 

pulse are angularly dispersed by the first diffraction grating, and are then collimated by the 

first lens. The spectral components are thus spatially separated along the vertical direction. 

Basically, the first lens performs a Fourier transform, and therefore maps the angular 

dispersed components from the first grating to specific spatial positions at its back focal plane. 

The pattern carried by the SLM individually manipulates both the amplitude and the phase of 
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the spatially dispersed optical Fourier components. Then, the second lens and grating 

recombine all the frequencies into a single pulse, thus completing the pulse shaping.   

 

 

Figure 4.15: Scheme illustrating the working principle of a pulse shaper. 

 

In our setup, the pulse shaper has a double purpose: not only it is employed to reshape the 

input Gaussian pulse into an Airy pulse by means of a spectral cubic phase mask, but it is also 

used to electrically modify the characteristics of the phase structure. In particular, we are able 

to offset electronically the central frequency of the uploaded phase structure, thus greatly 

simplifying our experimental procedure. 

 

4.12 Experimental observation 

The scheme in Fig. 4.16 illustrates the experimental setup used to realize the above mentioned 

above spectral control. An input Gaussian pulse, generated by a wavelength-tunable sub-

picosecond fiber laser from Pritel Inc., is phase-modulated in the spectral domain through a 

cubic phase structure (ωs = 2π×1011), uploaded into a pulse shaper. In this way, the input 

Gaussian pulse is reshaped into an Airy pulse. The output Airy pulse is subsequently coupled 
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into a nonlinear fiber connected to an optical spectrum analyzer (OSA). The OSA is employed 

to measure the output spectra of the nonlinear fiber. The pulse power is tuned by means of an 

erbium-doped fiber amplifier, which is used to amplify the Airy pulse just before the 

propagation into the nonlinear fiber. 

 

 

Figure 4.16: Experimental setup for the spectral control of nonlinear Airy pulses. EDFA and 

OSA stand for erbium-doped fiber amplifier and optical spectrum analyzer, respectively. The plot 

inside the pulse shaper schematically shows the cubic phase structure wrapped between −π and π 

where the circle indicates its center. 

 

The experimental procedure is based on the spatial dependence of the nonlinear spectral 

defects: when an Airy pulse propagates under a nonlinear regime, its initial Gaussian spectrum 

reshapes into a spectral defect at high power values. Such a defect moves along the 

propagation distance z when the impressed cubic phase mask is offset. We note that the output 

spectrum can be readily controlled via different values of the center frequency of the phase 

structure, which are changed electronically in the pulse shaper. 

 

4.12.a  Propagation of Airy pulses under anomalous dispersion 

In the first set of measurements, we study the nonlinear propagation of an Airy pulse under 

anomalous dispersion. The experiment is performed using a 5 km-long Large Effective Area 

Fiber (LEAF). We tuned the fiber laser in order to generate sub-picosecond pulses in the range 

of wavelengths where the LEAF fiber manifests anomalous dispersion. In our framework, the 

central wavelength of the input Gaussian pulse was set at 1548.5 nm, with a bandwidth of 

nearly 4nm. After the pulse reshaping and the amplification, the measured average power of 

the Airy pulse at the input side of LEAF fiber was around 240 μW.  

 



172 

 

 

Figure 4.17: Frequency shift control of nonlinear Airy pulse under anomalous dispersion in a 

LEAF. Comparison between experimental results (solid blue lines) and theoretical predictions (dotted 

red lines). From top to bottom, the plots in (a-d) correspond to the experimental and analytical results 

obtained by shifting the central frequency fm of the cubic phase structure at frequencies: (a) fm = 194.2, 

(b) 194.3, (c) 194.4 and (d) 194.5 THz. (e) plots the positions of the spectral notch defects in (a) as a 

function of fm. 

 

The spectra measured by the OSA at the output of the LEAF fiber are shown in Figs. 4.17 (a-

d). These spectra correspond to different shifting positions of the central frequency fm= 2πνm    

in the cubic phase structure, uploaded into the pulse shaper. In our case, the center of the cubic 

phase mask was shifted at the frequencies: fm = 194.2, 194.3, 194.4 and 194,5 THz. Our 

experimental observations (solid blue line) show that the spectrum concentrates into two 

major peaks separated by a notch (negative defect). We also note that the negative defect 

moves towards shorter wavelength as the central frequency of the cubic phase structure is 

shifted to longer frequencies. This behavior is in good agreement with the numerical results 

obtained by simulating the nonlinear propagation of an Airy pulse with the same parameters 
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used in the experimental setting (red dotted line in Figs. 4.17 (a-d)). To estimate the correction 

parameter ε corresponding to the spectral evolution of the notch, we plotted in Fig. 4.17(e) the 

notch position as a function of the central frequency in the cubic phase structure. The notch 

position has a linear evolution with the central frequency of the mask, and the correction 

parameter ε is estimated to be 1.07 – via a linear fit of the curve. This value is close to the one 

expected from theory. 

 

4.12.b  Propagation of Airy pulses under normal dispersion 

In the second set of measurements, we study the nonlinear propagation of an Airy pulse under 

normal dispersion. We performed the experiment by injecting the Airy pulse into a 6.6 km 

dispersion-shifted fiber (DSF) whose zero-dispersion wavelength is located at 1559 nm. The 

laser fiber is tuned to produce an input Gaussian pulse with a central wavelength of 

1538.7 nm, and a bandwidth of 4.7nm. After reshaping and amplification, the reordered 

average power of the Airy pulse at the input facet of the DSF is around 630 μW. Similar to the 

anomalous dispersion case, we measured the output spectra from the DSF corresponding to 

different shifting positions of the central frequency in the cubic phase structure. Figs. 4.18(a-

d) shows the output measured spectra (blue solid line) when the central frequency fm of the 

cubic phase structure is shifted to: fm = 194.35, 194.45, 194.55 and 194.65 THz. In the 

presence of normal dispersion, the spectrum concentrate into a single peak (positive defect) 

surrounded by a tiny ripple appearing on the left-hand side. As the central frequency in the 

cubic phase mask is shifted towards longer frequencies the positive defect moves from longer 

to shorter wavelengths. Furthermore, the numerical spectra calculated by simulating the 

propagation of an Airy pulse under normal dispersion using the same parameters as in the 

experimental setup,  are depicted by the red dashed lines in Figs. 4.18(a-d), and agree 

qualitatively well with the experimental results from the OSA.  

By plotting the position of spectral peak as a function of the central frequency of the phase 

structure, we found that they are related  by a linear profile, as shown in Fig. 4.18(e). The 

value of the correction parameter ε corresponding to the spectral evolution of the peak is 

estimated without fitting parameters to be 0.93. Unlike the anomalous dispersion case, the 
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experimental shift rate is bigger than the one expected from theory ( 0.73  ), but it can be 

still considered consistent. 

 

  

Figure 4.18: Frequency shift control of nonlinear Airy pulse under normal dispersion in a DSF. 

Comparison between experimental results (solid blue lines) and theoretical predictions (dotted red 

lines). From top to bottom, the plots in (a-d) correspond to the experimental and analytical results 

obtained by shifting the central frequency fm of the cubic phase structure at frequencies: (a) fm = 

194.35, (b) 194.45, (c) 194.55 and (d) 194.65 THz. (e) plots the positions of the spectral peak defects 

in (a) as a function of fm . 

 

4.13  Final remarks 

In this chapter, we analyzed the nonlinear propagation of both Airy beams and pulses. In 

space, the propagation of an optical beam is modelled by the NLPWE for diffraction. In 

particular, the nonlinear propagation of an Airy beam in a saturable PR crystal under the 

action of self-focusing and -defocusing nonlinearity has been investigated. By simply shifting 
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the applied spectral cubic phase mask, we found a method to preserve the self-accelerating 

property of an Airy beam inside PR crystals. At the same time, we achieved the control of 

both trajectories and spatial spectra. Nonlinear Airy beams have propagation characteristics 

similar to those shown in the linear regime. Conversely, their characteristics are completely 

different in the Fourier space (spatial frequency). Under a self-focusing nonlinearity, an Airy 

beam shrinks and shifts towards positive positions in the real domain, with respect to the 

linear regime. Furthermore, a Gaussian spectrum reshapes into a self-shifting spectral gap 

defect, formed by a notch and two peaks outside. Instead, in the presence of self-defocusing 

nonlinearity, an Airy beam broadens and shifts towards negative positions, with a Gaussian 

spectrum reshaping into a self-shifting spectral peak defect.  

In the temporal domain, we expected the nonlinear Airy pulse to behave as in the spatial 

regime case, due to the analogy existing between the NLPWE and the NLSE describing the 

nonlinear propagation of optical pulse (in presence of dispersion). For these reasons, we also 

investigated the self-phase modulation of an Airy pulse under both normal and anomalous 

dispersion. We have demonstrated that under normal dispersion, the spectrum of an Airy pulse 

in fiber concentrates into one self-shifting peak, while under anomalous dispersion the 

spectrum reshapes into two self-shifting peaks. By simply translating the corresponding cubic 

phase structures, we have envisaged the possibility of performing wavelength selection. 

Different wavelengths are easily selected, due to the linear dependence between frequency and 

distances in correspondence of spectral defects. Additionally, we have shown that the 

propagation length is mapped into the frequency domain. This feature can be exploited for 

metrological applications, in which the fiber length can be estimated by the spectral position 

of the defect. In the non-paraxial regime, such nonlinear control can be easily extended even 

for non-paraxial accelerating beams and pulses.  
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Chapter 5 

Résumé de thèse en langue française 

5.1 Introduction 

Contrairement à un laser classique se propageant le long d’une ligne droite, un faisceau auto-

accélérant a pour caractéristique de suivre une trajectoire courbée dans un milieu homogène 

linéaire, ce qui implique une accélération transversale. La recherche dans ce domaine a 

commencé en 2007 avec l’introduction du faisceau d’Airy dans un contexte optique. Un tel 

faisceau se propage sans diffraction le long d’une trajectoire parabolique, présentant un profil 

d’amplitude d’Airy. Une autre propriété associée au faisceau d’Airy est sa capacité d’« auto-

régénération». Si l’on essayait de bloquer une partie du faisceau à une certaine distance, le 

faisceau d’Airy se "régénérerait" pendant la propagation. Ces caractéristiques intrigantes ont 

rendu le faisceau d’Airy idéal pour plusieurs applications dans divers domaines de la science, 

tels que les balises optiques, les canaux plasma incurvés, les faisceaux accélérant d’électrons 

et les pièges optiques. Dans le domaine temporel, la contrepartie du faisceau d’Airy est une 

pulse d’Airy, montrant les mêmes propriétés dans le temps lors de la propagation dans un 

régime linéaire. Néanmoins, dans les milieux non linéaires, un paquet d’onde Airy se 

comporte différemment, en raison de la rupture de son accélération par la non-linéarité. Cela 

constitue un inconvénient évident limitant éventuellement la gamme d’applications possibles 

de ces paquets d’ondes. Cependant, au cours des dernières années, le concept d’accélération a 

été étendu au-delà du cas parabolique. En particulier, d’autres avancées de recherche sur ce 

sujet ont signalé des faisceaux auto-accélérant se propageant tout au long d’une trajectoire 

arbitraire. 

Dans cette dissertation, nous étudions numériquement et expérimentalement les dynamiques 

linéaires et non linéaires des paquets d’ondes auto-accélérant optiques. Dans le régime 
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linéaire, l’une des techniques utilisées pour générer de tels paquets d’ondes est basée sur la 

modulation spectrale d’un faisceau laser standard. Dans ce contexte, nous introduisons une 

approche analytique capable de prédire ou de concevoir les chemins courbes des paquets 

ondes auto-accélérant. Sur la base de cette étude, nous proposons et démontrons également 

une technique pratique et simple pour obtenir un confinement énergétique de ces paquets 

d’ondes. En particulier, nous montrons qu’une amélioration significative de l’intensité 

maximale de ces faisceaux peut être obtenue tout en préservant leurs propriétés intrinsèques. 

Enfin, nous étudions la propagation non linéaire des faisceaux et des pulses d’Airy. Plus 

précisément, nous montrons que ces paquets d’ondes auto-accélérants sont capables de 

préserver leurs propriétés d’accélération dans les milieux non linéaires Kerr et photoréfractifs 

lorsque leur modulation spectrale initiale est correctement conçue. 

 

5.2 Contrôle de la trajectoire et conception des faisceaux auto-accélérants 

Dans la première section, nous introduisons une méthode pour contrôler et concevoir les 

trajectoires de propagation des faisceaux auto-accélérants avec une ou plusieurs trajectoires 

grâce à une caractérisation spectre-distance. Une telle caractérisation permet non seulement 

une prédiction de l’espace de Fourier de la trajectoire de propagation sur la base de la 

connaissance a priori de la configuration de phase spectrale imposée, mais permet également 

de concevoir la phase spectrale initiale du faisceau pour générer un faisceau propageant le 

long d’une trajectoire convexe arbitraire. 

 

5.2.1 Théorie du mappage spectre-espace 

Nous commençons notre analyse en considérant l’équation de diffraction paraxiale, qui décrit 

la dynamique de propagation de l’enveloppe de champ électrique dans le régime linéaire [1]. 

  

2 2

2 2

1
0,

2
i

z k x y

   
   

   

  
  (5.1) 

Ici ϕ(x,y ,z) est l’enveloppe du champ électrique et k est le numéro d’onde. Le schéma de la 

Fig. (5.1) montre notre système. Les faisceaux auto-accélérants sont générés dans l’espace réel 
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(x-y-z), après la modulation du spectre dans le plan de Fourier. Une onde plane initiale est 

modulée en phase au plan (x’-y’) (partie gauche de la Fig. (5.1)), ce qui correspond au plan 

focal d’une lentille de focale f. Ensuite, la transformée de Fourier de l’onde plane modulée est 

réalisée dans le plan spatiale par l’utilisation d’une lentille cylindrique (ou sphérique), formant 

ainsi des faisceaux auto-accélérant (1+1) D (ou (2+1)D) dans l’espace réel (x-y-z) (partie droit 

de la Fig. (5.1)). Dans ce résumé, nous nous limitons uniquement au cas des faisceaux auto-

accélérant 1D où aucune variation par rapport à l’axe y n’est supposée. Plus de détails sur les 

faisceaux auto-accélérés à haute dimension sont rapportés dans le chapitre 3. Dans cette 

condition, l’enveloppe du champ électrique peut être décrite par cette simple expression: 

    
1

,
2

, .xixk

x xE k z dkx ez






      (5.2) 

Dans l’équation Eq. (5.2),    , exp[ , ]x xE k z i k z  est le spectre de Fourier, où le terme 

   2, / (2 )x x xk z k z k k     correspond à la phase spectrale et (kx) est la modulation de 

phase imprimée sur le plan (x’-y’). kx = x’k / f est la fréquence angulaire spatiale, dans laquelle, 

x/f  est le facteur d’échelle. 

 

Figure 5.1: Schéma du système expérimental utilisé pour générer des faisceaux auto-accélérants 

1D, dans lesquels une modulation de phase et une modulation d’amplitude sont imprimées dans 

l’espace de Fourier (x’-y’). 
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Par analogie avec le domaine temporel, où le gradient de la phase spectrale peut être lié à la 

vitesse de groupe [122], le gradient de la phase spectrale dans le domaine spatial est lié à la 

position locale de sorte que: 

 
 

 
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x x

x

x

k z k
x z k

k k


   




   (5.3) 

Le faisceau peut atteindre l’intensité maximale (IM) lorsque la condition de singularité 

 2 2, / 0x xk z k    est satisfaite. Cette singularité de densité spectrale détermine le faisceau 

caustique, strictement lié à la trajectoire suivie par le faisceau auto-accélérant. Il peut 

également s’exprimer comme suit: 

   ,x

z
k

k
    (5.4) 

reliant ainsi les fréquences spatiales à la distance de propagation z. En résolvant l’Eq. (5.4), les 

fréquences spatiales clés (kxc) déterminant la trajectoire de propagation peuvent être exprimées 

en fonction de z. En outre, par l’Eq. (5.4) et la suivante : 

 
 

,
xck zdx

dz k
   (5.5) 

la trajectoire convexe parcourue par l’intensité maximale du faisceau peut être prédite. 

 

5.2.2 Faisceaux auto-accélérants à trajectoire unique 

Pour générer un faisceau auto-accélérant à trajectoire unique, la modulation de phase 

appliquée (kx) présente une dérivée seconde qui se comporte doucement comme une fonction 

monotone de la fréquence spectrale kx. Un cas bien connu est le faisceau d’Airy, qui est généré 

par une modulation cubique de phase, comme par exemple    
3

 /x xk k k  ( 200 a  et

 633nmk  ).  
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Figure 5.2: Le faisceau auto-accélérant à trajectoire unique généré par une modulation spectrale 

cubique en phase sous l’approximation paraxiale. (a) Estimation de la fréquence spatiale clé (ligne 

blanche pointillée) et du spectre résiduel correspondant à la bosse principale de (b); (b) trajectoire de 

propagation prédite (ligne blanche pointillée) et évolution numérique du faisceau d’intensité.  

 

Comme prévu par l’Eq. (5.4), la fréquence spatiale clé est une fonction linéaire de la distance 

de propagation z, selon 2 3/ (6 )xck k z    [ligne en pointillée sur la Fig. 5.2 (a)]. En insérant 

ce kxc estimé dans l’Eq. (5.5), la trajectoire convexe suivie par l’IM est la courbe parabolique, 

décrite par 2 3( ) / (12 )rT z kz   [ligne en pointillée sur la Fig. 5.2 (b)]. La prédiction analytique 

est encore confirmée par des simulations numériques de la propagation du faisceau obtenues 

par une transformée de Fourier de l’Eq. (5.2), comme le montre la Fig. 5.2 (b). En outre, si 

tous les sous-lobes dans la trajectoire d’intensité illustré dans la Fig. 5.2 (b) sont ensuite 

éliminés, afin de ne considérer que le lobe principal du faisceau, le spectre correspondant à la 

bosse résiduelle intense suivra l’évolution linéaire de la fréquence spatiale clé décrite ci-

dessus [Fig. 5.2 (a)]. 

 

5.2.3 Faisceau auto-accélérants à plusieurs trajectoires 

Ensuite, nous considérons le cas d’une modulation de phase spectrale arbitraire. Puisque 

( )xk  ne s’agit peut-être pas d’une fonction monotone, deux ou plusieurs fréquences 

spatiales clés pourraient être impliquées dans ce cas, afin de déterminer les localisations 

multiples des faisceaux. Les résultats pour un exemple typique de fonction non monotone 
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( )xk  sont représentés dans les Figs. 5.3(a, b). De tels résultats sont obtenus en analysant la 

modulation de phase spectroscopique sinusoïdale ( ) 130sin(80 / )x xk k k .  

 

 

Figure 5.3: Faisceaux auto-accélérant à plusieurs trajectoires générés par une modulation 

spectroscopique de phase sinusoïdale sous l’approximation paraxiale. (a) Fréquence spatiale clé à 

valeurs multiples (ligne blanche pointillée) et spectre résiduel correspondant aux trois principales 

trajectoires de bosses dans (b); (b) le chemin du faisceau prédit (lignes blanches en pointillé) et 

l’évolution numérique du faisceau. Les chiffres indiquent la correspondance entre la trajectoire et la 

fréquence clé associée. 

 

En insérant cette structure de phase dans l’Eq.(2.5), la distance de propagation z est liée à la 

fréquence spatiale clé par la relation: 

  5 ( ) 8.32 10 sin 80 / /xc xcz k k k k     (5.6) 

La fréquence spatiale clé (kxc(z)) est exprimée comme une fonction multi-valeur de z et est 

évaluée numériquement à partir de l’Eq. (5.7). Ceci est obtenu en limitant le domaine de kxc 

aux parties du spectre [souligné par les nombres 1, 2, 3 de la Fig. 5.3 (a)] où l’Eq. (5.8) donne 

une valeur unique de kxc. Si les portions monotones de la fréquence spatiale clé sont ensuite 

insérées dans l’Eq. (5.9), nous pouvons prédire que le chemin du faisceau est composé de trois 

trajectoires (ou branches). Chacune de ces trajectoires est associée à différentes composantes 

spectrales, du fait que la fréquence spatiale clé est encore monotone dans cette gamme 

spectrale. Cette correspondance est illustrée dans les Fig. 5.3(a) et (b), où, pour des raisons de 

clarté, nous avons marqué avec le même nombre chaque fréquence spatiale clé et sa trajectoire 

connexe. Comme le montre la Fig. 5.3(b), notre approche analytique est encore confirmée par 
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des simulations numériques de l’évolution du faisceau basées sur les transformées de Fourier 

de l’Eq. (5.2). En outre, si l’un des chemins de faisceau est filtré afin de ne retenir que la bosse 

principale, comme par exemple la 2ème trajectoire, le spectre résiduel tend à évoluer comme 

prévu à partir de la fréquence spatiale clé correspondante [ligne blanche en pointillée de la 

Fig. 5.3(a)]. 

 

5.2.4 Résultats expérimentaux 

Pour vérifier l’analyse ci-dessus, nous effectuons une caractérisation expérimentale à l’aide de 

la configuration illustrée dans la Fig. 5.4. Un faisceau Gaussien 2D (CW à λ = 633nm) est 

initialement tronqué par deux lames métalliques, de manière à rapprocher la distribution 

gaussienne circulaire en un faisceau gaussien 1D. Ensuite, le faisceau est modulé en phase à 

l’arrière du plan focal d’une lentille cylindrique (f = 100mm) à l’aide d’un masque de phase 

1D, qui est chargé numériquement dans un modulateur de lumière spatiale (SLM). La lentille 

cylindrique calcule la transformée de Fourier du faisceau gaussien modulé en phase au niveau 

du plan focal frontale de la lentille. Une caméra CCD est utilisée pour enregistrer l’évolution 

du faisceau et leurs spectres spatiaux correspondants. Ces derniers sont visualisés au moyen 

d’une lentille cylindrique supplémentaire (f = 100mm), tandis que le filtrage spectral de la 

bosse principale du faisceau est obtenu à l’aide d’une fente réglable composée par deux lames 

métalliques. 

 

Figure 5.4: Montage expérimental 



183 

 

Les résultats expérimentaux sont présentés dans la Fig. 5.5. Au début, nous avons mesuré à la 

fois les caractéristiques de propagation et spectrales d’un faisceau d’Airy, qui a été généré par 

le profil de phase cubique tracé dans le panneau supérieur de la Fig. 5.5(a). Comme l’illustre 

la Fig. 5.5(b), l’évolution du faisceau suit la trajectoire parabolique prédite par notre modèle et 

indiquée par la ligne blanche en pointillée de la Fig. 5.5(b). Plus intéressant, si les sous-lobes 

sont filtrés, le spectre de la bosse principale se déplace linéairement avec la distance de 

propagation z [Fig. 5.5(c)], avec une tendance similaire à la fréquence spatiale clé estimée. 

Dans un deuxième ensemble de mesures, nous avons généré deux exemples de faisceaux à 

trajectoire multiple. Dans ce cas, nous avons utilisé les deux modulations de phase 

représentées dans la Fig. 5.5(d) et (g). Les modèles de faisceau présentent, respectivement 

deux et trois bosses principales, comme l’illustrent les Fig. 5.5(e) et (h). Encore une fois, les 

modèles de faisceau sont en accord avec les prédictions analytiques indiquées par la ligne 

blanche en pointillée des Fig. 5.5(e, h). En outre, en bloquant alternativement la trajectoire du 

faisceau dans l’espace réel, chaque branche résiduelle est associée à différentes parties du 

spectre, comme le montrent les Fig. 5.5(f) et (i). En effet, pour la trajectoire du faisceau 

constitué de deux (ou trois) trajectoires principales, on peut facilement observer que deux (ou 

trois) parties spectrales différentes sont liées aux deux branches. 

Nos mesures confirment expérimentalement l’existence du mappage spectre-distance pour les 

faisceaux avec un ou plusieurs trajectoires. Bien que nous nous limitions à étudier des 

exemples particuliers d’une phase cubique spectrale, notre approche peut également être 

utilisée pour décrire une classe plus générale de faisceaux à trajectoire unique et multiple. 
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Figure 5.5: Observation expérimentale des faisceaux auto-accélérant avec une et plusieurs 

trajectoires. (a, d et g) modulations de phase k-spatiale et d’amplitude imposées sur le SLM, 

correspondant respectivement à l’évolution des faisceaux dans (b, e et h). Notez que dans (b, e et h), 

les trajectoires analytiquement prédites sont représentées par les lignes en pointillés blanches ; les 

figures (a, b) montrent un cas de faisceau auto-accélérant avec une seule trajectoire liée au faisceau 

d’Airy; la distribution de fréquence spatiale (c) associée est obtenue en traçant le spectre résiduel de la 

bosse principale en fonction de la distance de propagation après filtrage spatial. Les figures (d, e) et 

(g, h) montrent deux cas de faisceaux auto-accélérants à trajectoire multiple, avec respectivement deux 

et trois trajectoires. Pour chacun de ces cas, (f) et (i) représentent respectivement l’intensité spectrale 

des faisceaux auto-accélérants à trajectoire multiple extraits à z = 50 mm. En outre, dans les figures (f) 

et (i), les parties du spectre associées aux différentes trajectoires dans (e) et (h) sont respectivement 

marquées avec les mêmes nombres dans (e) et (h). 
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5.2.5 Faisceaux auto-accélérants (2+1)D 

Bien que toutes les analyses et observations expérimentales ci-dessus soient liées aux 

faisceaux auto-accélérant (1+1)D, notre approche peut également être généralisée pour 

(2+1)D. À titre d’exemple illustratif, dans les Fig. 5.6 et 5.7 sont rapportés les résultats 

expérimentaux illustrant la propagation et les caractéristiques spectrales associées à trois cas 

différents de faisceaux (2+1)D mono-trajectoire, se propageant respectivement le long d’un 

faisceau parabolique (Airy), un polynôme cubique et une trajectoire exponentielle. En partant 

de ces trajectoires de faisceau souhaitées, les structures de phase appropriées ont été 

implémentées au moyen du mappage spectre à espace généralisée au régime (2+1)D. 

 

 

Figure 5.6: Caractéristiques de propagation des faisceaux auto-accélérants générés par un faisceau 

circulaire gaussien. (a) Modèle de faisceau d’intensité obtenu expérimentalement à z = 4.2 cm pour la trajectoire 

parabolique (faisceau d’Airy). (b) Déplacements de la bosse principale en fonction de la distance de propagation 

mesurée le long de la direction radiale s pour trois trajectoires de faisceau sélectionnées. Les lignes se réfèrent à la 

prédiction analytique alors que les points sont les résultats expérimentaux correspondants. 

 

La figure 5.6 (a) montre la distribution d’intensité mesurée à z = 4.2 cm pour le cas typique 

d’une trajectoire parabolique, qui est présenté par un échantillon d’intensité ayant un lobe à 

haute intensité entouré de lobes latéraux d’intensité décroissante. Nous avons observé des 

modèles similaires à Airy pour les deux autres trajectoires considérés. Pour confirmer la 

fiabilité de notre méthode, nous avons également évalué les trajectoires de ces trois faisceaux 
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en mesurant les déplacements du lobe principal à des distances de propagation sélectionnées. 

Les résultats sont résumés dans la Fig. 5.6 (b). Les trajectoires convexes expérimentales 

(points) sont, respectivement, en excellent accord avec les évolutions attendues 

analytiquement (lignes). 

 

 

Figure 5.7: Caractéristiques spectrales des faisceaux auto-accélérants générés par un faisceau 

circulaire gaussien. (a) Le modèle d’intensité spectrale associé à la bosse principale du faisceau 

d’Airy en Fig. 5.6(a). (b) Les positions radiales spectraux des bosses principales (points) en fonction 

de la distance de propagation z mesurée pour les trois trajectoires de faisceau sélectionnées et des 

fréquences spatiales clés correspondantes de la théorie (lignes). Le code de couleur est le même que 

dans la Fig. 5.6. 

 

Dans le domaine de Fourier, le spectre global de ces faisceaux présente une forme gaussienne 

qui reste inchangée sur toute la gamme des distances de propagation. Néanmoins, en filtrant 

les lobes latéraux à partir des échantillons d’intensité, le contenu spectral associé à la bosse 

principale résiduelle se réduit à un point de petite taille, comme illustré par la Fig. 5.7(a) pour 

le cas du faisceau parabolique. Le spectre du lobe principal présente non seulement une taille 

réduite, mais il se déplace également le long de la direction radiale de ks. Dans notre 

expérience, nous avons également mesuré les déplacements de ces points spectraux en 

fonction de la distance de propagation z. Les décalages des spectres du lobe principal suivent 

à la fois des évolutions longitudinales et transversales de leurs correspondantes fréquences 

spatiales clé prédites [Fig. 5.7(b)]. 
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5.3 Amélioration du confinement énergétique des paquets d’ondes auto-

accélérant 

Dans la deuxième section, nous introduisons une méthode pratique et directe, adaptée pour 

améliorer le confinement d’énergie des paquets d’ondes auto-accélérants. Un tel confinement 

d’énergie est réalisé en récupérant une partie du contenu énergétique associé à ses sous-lobes. 

 

5.3.a Amélioration du confinement énergétique des faisceaux auto-accélérant 2D 

Sur toute la gamme des distances, les composants spectraux associés au lobe principal des 

faisceaux auto-accélérants 2D sont localisés dans la bande marquée par les lignes en pointillés 

blancs de la Fig. 5.7(a). Cela signifie que les composants spectraux à l’extérieur d’une telle 

bande spectrale sont donc connectés aux sous-lobes restants. De nombreuses applications 

impliquant des faisceaux courbes sont principalement intéressées par la propriété accélérante 

du lobe principal, de sorte que l’énergie stockée dans les sous-lobes est généralement 

considérée comme indésirable ou gaspillée. L’isolement énergétique de ces faisceaux peut être 

réalisé en illuminant le masque de phase SLM avec un faisceau elliptique gaussien dont l’axe 

principal est orienté le long de la bande spectrale délimitée par les deux lignes en pointillés 

blanches, comme le montre la Fig. 5.8(a). Le faisceau elliptique gaussien a été obtenu en 

comprimant le faisceau circulaire gaussien au moyen d’un télescope cylindrique placé devant 

le SLM dans la configuration de la Fig. 5.4, préservant ainsi la teneur énergétique initiale du 

faisceau. En utilisant les mêmes paramètres et conditions expérimentales de la contrepartie 

non comprimée, nous avons enregistré expérimentalement les trajectoires accélérantes pour 

les trois cas étudiés de trajectoire convexe générées précédemment. Comme l’illustre la Fig. 

5.8(b), les trajectoires mesurées (points) sont en excellent accord avec les prédictions 

numériques (lignes). Ces résultats confirment que les trajectoires de propagation restent 

presque inchangées par la compression spectrale du faisceau, comme le prédisait la théorie. 

Pour fournir une illustration visuelle des faisceaux auto-accélérants obtenus par le faisceau 

elliptique gaussien, nous avons mesuré leur distribution d’intensité transversale après la 

compression spectrale. À titre d’exemple, nous montrons dans les Figs. 5.8(c, d) deux 
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diagrammes d’intensité transversale correspondant au cas de la trajectoire parabolique, 

enregistrées à deux distances de propagation différentes (z = 0 et z = 5.3 cm). 

 

 

Figure 5.8: Propriétés des faisceaux auto-accélérants après compression spectrale, c’est-à-dire à 

partir d’un faisceau elliptique gaussien. (a) Masque de phase cubique enveloppé appliqué sur le 

SLM pour le cas d’une trajectoire parabolique superposée aux profils d’intensité du faisceau (coupure 

de 95%) de l’effet elliptique (zone rouge - après compression spectrale) et faisceau circulaire gaussien 

(zone bleue - avant compression spectrale). (b) Position principale de la bosse le long de la direction 

radiale s en fonction de la distance de propagation z, mesurée pour les trois trajectoires convexes. Les 

lignes se réfèrent à des prédictions analytiques, tandis que les points montrent des résultats 

expérimentaux. (c, d) Modèle d’intensité transversale d’un faisceau "à queue courte" mesuré 

expérimentalement à z = 0 et z = 5.3cm pour le cas de la trajectoire parabolique. Notez que pour plus 

de clarté, l’échelle de couleurs est ici normalisée à la valeur d’intensité maximale de chaque mesure. 
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Par rapport au cas non comprimé de la Fig. 5.6(a), les profils d’intensité transversale des 

faisceaux nouvellement obtenus présentent une queue d’expansion spatiale considérablement 

réduite. De plus, comme l’énergie est conservée avec notre méthode, l’intensité maximale du 

faisceau devrait augmenter de manière significative par rapport au cas «non comprimé». Pour 

étudier l’effet d’une telle compression spectrale d’un spectre gaussien circulaire sur 

l’amélioration de l’intensité maximale du pic, des simulations numériques ont été effectuées 

pour le cas de la trajectoire parabolique que nous étudions. Le résultat numérique est illustré 

dans la Fig. 5.9, où nous avons tracé l’amélioration de l’intensité du pic en fonction du 

diamètre mineur du faisceau elliptique gaussien, c’est-à-dire en variant sa largeur le long de la 

direction ds’ (orthogonal à ks). Selon ce résultat, le faisceau elliptique expérimental (cercle 

rouge) fournirait une intensité maximale du faisceau à queue courte environ 60% plus élevée 

que son faisceau d’Airy correspondant obtenu à partir du faisceau circulaire initial (carré 

bleu). Pour nos conditions expérimentales, la valeur optimale du confinement énergétique est 

attendue pour un diamètre mineur de 2 mm. Dans ce cas, le spectre du faisceau gaussien 

elliptique présente une superposition maximale avec les composantes spectrales du lobe 

principal du faisceau d’Airy 2D. En augmentant davantage l’excentricité de la forme du 

faisceau elliptique (c’est-à-dire pour les valeurs de ds en dessous de 2 mm), l’intensité du pic 

commence à diminuer drastiquement. 

 

 

Figure 5.9: Amélioration de l’intensité du pic pour le cas d’une trajectoire parabolique en 

fonction du diamètre mineur du faisceau Gaussien elliptique (ds’). Le diamètre principal est limité 

au diamètre circulaire du faisceau gaussien, dont la valeur expérimentale est ds = 5.96 mm. La figure 

montre que l’amélioration de l’intensité du pic la plus élevé est obtenue lorsque le diamètre mineur 

approche 2mm.  
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5.3.b Amélioration du confinement énergétique de la balle spatiotemporelle d’Airy 

Jusqu’à présent, nous avons seulement considéré le cas d’un faisceau se propageant sous vide, 

sans tenir compte de la dynamique de l’évolution temporelle du paquet d’onde. Néanmoins, 

lors de la propagation dans un milieu diélectrique homogène, un paquet d’onde optique tend 

naturellement à se propager à la fois dans l’espace et dans le temps en raison des effets 

combinés de la diffraction et de la dispersion. De manière similaire à l’analogique dans le 

domaine spatial, dans le domaine temporel, une pulse optique avec un profil temporel d’Airy 

n’est pas affectée par la dispersion lors de sa propagation (c’est-à-dire que sa forme 

temporelle reste inchangée). En particulier, le paquet d’ondes d’Airy temporel est exploité 

comme un bloc de construction clé pour la génération de balles d’Airy optiques linéaires 

(3+1)D, insensibles aux effets de diffraction et de dispersion. Parmi eux, les balles Airy3 

présentent un intérêt particulier car elles conservent toutes les propriétés de leur contrepartie 

de faisceau en une ou deux dimensions. Fig. 5.10 montre les intensités directes et d’espace de 

Fourier (isosurfaces à 95% de coupure) de la balle correspondante à deux distances de 

propagation différentes (par exemple Z = 0 et Z = 5). Dans l’espace spatio-temporel (X,Y,T), le 

paquet d’ondes d’Airy se caractérise par un lobe principal intense (en rouge), ainsi que trois 

queues principales (longues) formées de nombreux sous-lobes [Figs. 5.10(a, b)]. Bien que l’on 

puisse identifier une propagation non négligeable en s’approchant de Z = 5 (c’est-à-dire 

l’augmentation de l’expansion de la balle due à son énergie finie), nous avons vérifié que la 

balle Airy3 maintient sa forme sur une bande de propagation significative et suit de près la 

trajectoire parabolique prédite le long de la direction  
2 2 2
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Dans l’espace de Fourier, les isosurfaces d’intensité spectrale montrées dans les Figs. 

5.10(c, d) présentent une forme sphérique (isosurface bleue), une propagation invariante et 

intrinsèquement associée à la symétrie sphérique définie par l’amplitude gaussienne 3D du 

spectre d’entrée. En revanche, le contenu spectral associé au lobe principal de la balle (petite 

isosurface rouge) est situé dans la partie centrale du spectre d’entrée, mais son emplacement 

se déplace dans le spectre principal pour suivre la trajectoire définie par la fréquence spatio-
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, illustré dans la Fig. 5.10 (d). Sur toute la zone 

de propagation, le contenu spectral du lobe principal se déplace le long de l’axe 𝐾⃗⃗ 𝑆 de manière 

similaire aux cas étudiés dans le régime (2+1)D, mais ici définis comme les diagonales du 

cube [ KX, KY, ω ]. Dans ce cas, l’intensité spectrale du lobe principal reste confinée dans un 

cylindre elliptique (ombrage rouge) avec des demi-axes définis le long des directions 

(orthogonales) 𝐾⃗⃗ 𝑄 = (KX, ‒ KY, 0 ) et 𝐾⃗⃗ 𝑅 = (‒ KX, ‒ KY, 2ω ) .  

 

 

Figure 5.10: Évolution spatio-temporelle d’une balle d’Airy. (a,b) Espaces spatio-temporels et (c,d) 

intensité spectrale isosurfaces d’une balle Airy3 (énergie finie) montrée en bleu, et obtenue 

respectivement à Z = 0 et Z = 5. Les isosurfaces rouges mettent en évidence le lobe principal de la 

balle dans (a,b) et sa contrepartie spectrale dans l’espace de Fourier représenté en (c,d). Les isosurfaces 

sont extraites en utilisant un seuil d’intensité de 95%. La ligne rouge dans (c,d) correspond à la 

trajectoire de fréquence spatiale clé   SK suivie des composantes spectrales du lobe principal, dont la 

position dans l’espace de Fourier dans toute la zone de propagation est représentée par le cylindre 

rouge ombragé en (d). 
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5.3.c Balle d’Airy comprimée 

Le fait que les composantes spectrales associées au lobe principal de la balle Airy3 se trouvent 

dans un emplacement spectral spécifique est d’une importance primordiale pour l’optimisation 

mirée d’une telle balle Airy3. En effet, en remodelant l’intensité spectrale spatio-temporelle 

d’une manière efficace, nous prévoyons qu’une amélioration significative de l’intensité du 

lobe principal de la balle, associée à une réduite spatio-temporelle globale, peut être 

facilement obtenue. Cela peut être réalisé de la manière indiquée ci-dessus pour les cas de 

faisceaux auto-accélérants (2+1)D, c’est-à-dire en confinant le spectre gaussien initial de la 

balle Airy3 le long de la fréquence spatiale clé KS, ce qui comprime l’intensité spectrale spatio-

temporelle le long des directions 𝐾⃗⃗ 𝑄 = (KX, ‒ KY, 0 )  et 𝐾⃗⃗ 𝑅 = (‒ KX, ‒ KY, 2ω ) .  

 

 

Figure 5.11: Évolution spatio-temporelle d’une "balle à queue courte". (a-d) Figures isosurfaces, 

comme dans la Fig. 5.10, d’une balle comprimée avec un spectre "pressé" le long de   QK  et   RK . Avec 

un facteur de compression CQ = CR = 8, le spectre gaussien initial (sphère bleue) représenté en (c) est 

remodelé dans une forme ellipsoïde (ombre vert) correspondant de près au déplacement des 

composantes spectrales du lobe principal tout au long de la propagation [voir Fig. 5.10 (d)].  
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Dans la Fig. 5.11, nous montrons des résultats numériques en considérant les mêmes 

paramètres de la balle, mais avec une compression symétrique (CQ = CR = 8) du spectre 

spatio-temporel le long   QK  et   RK . Les facteurs de compression indiqués avec CQ et CR 

déterminent le degré de compression spectrale appliquée. Dans les Fig. 5.11(c, d) est montré 

le spectre comprimé illustré comme isosurfaces verts, par rapport au spectre gaussien initial 

(ombre bleu). Dans l’espace direct, vu dans 5.11(a) et 5.11(b), la balle comprimée globale 

(bleu) présente une expansion réduite par rapport au cas précédent, mais la forme du lobe 

principal (rouge) reste pratiquement inchangée pour les deux distances de propagation. Cette 

approche offre le double avantage non seulement de réduire l’expansion globale de la balle 

spatio-temporelle, mais aussi d’augmenter l’intensité / l’énergie du lobe principal de la balle. 

C’est à quoi l’on s’attend étant donné que l’énergie initial de la balle Airy non comprimée est 

conservée pendant la compression spectrale.  

 

 

Figure 5.12: Confinement énergétique spatiotemporel de la balle totale (ligne bleue) et son lobe 

principal (ligne rouge) en fonction de la compression spectrale. Le confinement d’énergie est 

calculé comme le rapport moyen entre l’énergie et le volume montré dans les Fig. 5.11(c, d), et 

normalisé à l’unité par rapport à la balle Airy3 (non compressée). 

 

Évidemment, ces deux aspects sont associés à une amélioration de l’isolement d’énergie de la 

balle (ici calculé comme le rapport entre l’énergie et le volume), dont l’impact est résumé 

dans la Fig. 5.12. Nous pouvons ainsi observer que le confinement d’énergie du lobe principal 

de la balle (ligne rouge) est en effet renforcé d’un facteur d’environ 3 pour un facteur de 

compression optimal de ~10 avant de diminuer après une compression spectrale 
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supplémentaire. Le principal aspect d’une telle compression est néanmoins associé au 

confinement général d’énergie de la balle, qui peut être amélioré par un facteur supérieur à 50 

pour une telle compression spectrale. 

 

5.4 Propagation non linéaire des paquets optiques d’Airy 

Dans la dernière section de la thèse, nous étudions la propagation non linéaire des faisceaux et 

des pulses d’Airy. Dans la première partie, les faisceaux d’Airy spatiaux sont étudiés à la fois 

dans les aspects théoriques et expérimentaux en considérant leur propagation dans des 

matériaux photoréfractifs (PR) polarisés, sous la condition de non linéarité auto-focalisant ou 

auto-defocalisant. Dans la deuxième partie, la propagation non linéaire des pulses d’Airy en 

fibre optique est étudiée théoriquement et expérimentalement sous l’effet combiné de la 

modulation auto-phase (SPM) et de la dispersion (GVD). 

 

5.4.1 Dynamique non linéaire des faisceaux d’Airy dans les cristaux photoréfractifs 

Plusieurs intérêts sont portés à l’étude de la propagation d’un faisceau optique dans des 

cristaux photoréfractifs (PR). Par rapport à d’autres milieux non linéaires, tels que les milieux 

de Kerr non-linéaires, les milieux PR offrent la possibilité d’observer l’action qu’a un faisceau 

laser sur le milieu lui-même, tels que des effets de focalisation et de défocalisation à très faible 

niveau de puissance (~μW). Les milieux de Kerr nécessiteraient un niveau de puissance 

beaucoup plus élevé (~W) pour observer ce type de processus d’action. En outre, comme 

l’effet électro-optique modifie l’indice de réfraction sous éclairage lumineux et en présence 

d’un champ électrique externe, un autre avantage offert par les cristaux PR est la possibilité de 

basculer le type de non linéarité en inversant simplement le champ électrique appliqué à 

l’extérieur. Selon l’approximation d’amplitude variant lentement, le modèle théorique pour 

étudier la propagation non linéaire d’un faisceau d’Airy dans une non linéarité de PR saturable 

est décrit par l’équation d’onde non linéaire (NLPWE) sans dimension suivante : 
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Avec    Ψ , , / 2 Ds A s I    est l’amplitude complexe normalisée du champ optique, η 

l’impédance moyenne, et ID l’irradiation sombre du cristal PR. s = x/x0 et ξ = z/(k0 n0x0
2
) 

correspondent aux coordonnées transversales et longitudinales normalisées, k0 le nombre 

d’onde sous vide, n0 l’indice de réfraction extraordinaire non perturbé du cristal PR, et x0 est 

une échelle de longueur arbitraire. Dans l’Eq. (5.7), 2 4 2

0 0 0 33 00.5k n x r E   représente le 

coefficient non linéaire normalisé, dans lequel E0 est le champ de polarisation externe et r33 le 

coefficient d’électro-optique pour les faisceaux extraordinairement polarisés. Le signe du 

champ électrique externe détermine le type de non-linéarité: E0 > 0 (donc γ > 0) conduit à une 

non linéarité auto-focalisante, tandis que E0 < 0 (donc γ < 0) correspond à une non linéarité 

auto-défocalisante. Lorsqu’aucun champ de polarisation n’est présent (γ = 0), l’analyse est la 

même que dans le régime linéaire. À la face d’entrée du cristal PR, nous considérons le profil 

de faisceau d’Airy suivant: 

      0Ψ ,0  exp   2  ,  mi s

ms I s Ai s i e 
    (5.11) 

Avec I0 l’intensité du pic, α est le coefficient de troncature déterminant l’énergie initiale du 

faisceau d’Airy, ωm le paramètre de lancement qui définit l’angle de lancement initial du 

faisceau d’Airy et Ai(·) la fonction Airy. La Fig. 5.13 montre les distributions d’intensité 

correspondant à trois exemples de faisceaux d’Airy linéaires et non linéaires générés 

numériquement, qui sont obtenus en lançant la condition d’entrée à ωm  = -6 et en utilisant γ = 

0, ± 2.72, I0 = 4.08 et α = 0.08 comme valeurs des paramètres. Comme le montre la Fig. 

5.13(a1), un faisceau d’Airy linéaire évolue selon une trajectoire balistique [62]. Dans le 

régime non linéaire, la dynamique du faisceau est semblable à celle représentée pour son 

homologue linéaire, comme le montre les Fig. 5.13(b1) et (c1). Néanmoins, le faisceau d’Airy 

non linéaire présente un léger déplacement vers les directions positives s ainsi qu’un léger 

retrait de la largeur lors de la propagation sous une non linéarité auto-focalisant [Fig. 

5.13(b1)]. D’autre part, une non linéarité auto-défocalisante déplace le faisceau d’Airy non 

linéaire vers les directions s négatives, tout en élargissant la largeur du faisceau [Fig. 

5.13(c1)]. Un tel déplacement transversal des faisceaux d’Airy non linéaires le long de l’axe s  
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Figure 5.13: Modifications spectrales des faisceaux d’Airy non linéaires. Les graphiques du haut, 

de gauche à droite, montrent les distributions d’intensité d’un faisceau d’Airy correspondant à un 

paramètre de décalage ωm = -6 sous une condition (a1) linéaire, (b1) auto-focalisante non linéaire et 

(c2) auto-défocalisante non linéaire. Les panneaux inférieurs (a2-c2) de gauche à droite montrent les 

distributions d’intensité spectrale correspondant respectivement à (a1-c1). Les lignes blanches 

pointillées marquent l’entrée (I), (II) le milieu et (III) la sortie du cristal PR.  

 

peut être à l’origine des structures de la phase spectrale à ωm = -6, qui sont représentées sur les 

Fig. 5.13(b2) et (c3). En regardant le régime de Fourier, le spectre linéaire d’un faisceau 

d’Airy à énergie finie suppose un profil gaussien, qui se maintient inchangé pour toutes les 

distances de propagation ξ [Fig. 5.13(a2)]. À l’inverse, le spectre gaussien se transforme en 

une encoche spectrale (pic) se déplaçant dépendamment de la position sous la non-linéarité 

auto-focalisante (auto-défocalisante) [Fig. 5.13(b2) et (c2)]. Les défauts spectraux 

apparaissent dans la région de valeurs d’intensité élevée et la plupart des contenus spectraux 
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se concentrent à proximité de défauts avec des ondulations voisines. En dehors de ces régions, 

étant donné que l’intensité du faisceau est suffisamment faible, les spectres conservent 

toujours les distributions gaussiennes. Dans ce qui suit, nous fournirons une démonstration 

expérimentale de ces faisceaux d’Airy non linéaires dans les domaines spatial et spectral. 

 

5.4.1.a  Observation expérimentale du faisceau d’Airy non linéaire dans le cristal 

photoréfractif SBN 

Pour observer expérimentalement les phénomènes obtenus numériquement ci-dessus, nous 

utilisons une configuration illustrée dans la Fig. 5.14. 

 

 

Figure 5.14: Configuration expérimentale pour mesurer la propagation non linéaire d’un 

faisceau d’Airy à énergie finie dans un milieu PR saturable (SBN: 60) sous non-linéarité auto-

focalisante et auto-defocalisante.  

 

 Un faisceau d’Airy tronqué est créé en modulant en phase un faisceau gaussien linéairement 

polarisé (λ = 532nm) à travers un masque de phase cubique, chargé dans un modulateur de 

lumière spatiale (SLM). Le SLM est placé au plan focal (f = 40mm) d’une lentille de 

transformée de Fourier cylindre. La polarisation du champ électrique est orientée le long de la 
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direction x, en parallèle avec l’axe optique c d’un cristal PR (55(c)10mm) de Nitrate Borate 

de Strontium (SBN: 60) biaisé. Après la génération, le faisceau d’Airy est livré dans le cristal 

SBN, et l’intensité de sortie et les profils spectraux sont enregistrés par des caméras CCD. 

Pour avoir un coefficient non linéaire | γ | = 2.72, une tension statique de 600 V 

(| E | = 1.2x105 V/m) est appliquée au cristal PR sur les axes optiques c. La valeur absolue de 

la tension de polarisation est maintenue constante tout au long de la mesure expérimentale. La 

détection s’effectue en capturant les échantillons de faisceau d’Airy et les spectres d’espace k 

au moyen de deux systèmes d’imagerie composés de deux lentilles sphériques et de deux 

caméras CCD. Le masque de phase cubique est déplacé électroniquement dans l’ordinateur 

par l’intermédiaire de l’interface graphique du logiciel qui gère le SLM. En outre, le masque 

de phase cubique a été mis à l’échelle intentionnellement pour correspondre à la zone 

concernée avec l’échelle longitudinale du cristal. 

 

5.4.1.b Intensité de pic du faisceau d’Airy au milieu du cristal SBN  

Dans le premier ensemble de mesures, des observations expérimentales ont été effectuées en 

décalant le masque de phase cubique dans le but d’amener l’intensité du pic au centre du 

cristal et le long de la direction de propagation ξ, comme l’indique la ligne blanche en 

pointillé II dans la Fig. 5.13 (a1). Les deux autres lignes blanches en pointillé, I et III, 

marquent la zone du défaut spectral localisée entre ξ ≈ 7 et 17. En dehors de cette zone, la 

propagation peut être considérée comme linéaire. La figure 5.15 illustre les échantillons de 

faisceau d’Airy captés à la sortie du cristal SBN. La ligne verticale des Fig. 5.15 (a1) et (c1) 

marque la position transversale de l’intensité du pic le long de la direction s pour le faisceau 

d’Airy linéaire. En effet, l’intensité de sortie d’un faisceau d’Airy linéaire a une bosse 

principale localisée à la même position transversale que celle de la face d’entrée [Fig. 5.15 

(a1)]. En présence d’une non-linéarité auto-focalisante, la Fig. 5.15 (b1) montre un modèle de 

sortie dont la bosse principale n’est pas auto-piégée et, par conséquent, conserve la propriété 

de l’auto-accélération. Cependant, le lobe principal se rétrécit et se déplace vers la droite par 

rapport au cas linéaire. À l’inverse, la non-linéarité auto-défaillante élargit la bosse principale 

de l’échantillon de sortie et entraîne un décalage vers la gauche par rapport à la sortie linéaire 

[Fig. 5.15 (c1)]. 
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Figure 5.15: Observations expérimentales des faisceaux d’Airy se propageant dans un cristal PR 

biaisé en fixant son intensité de pic au milieu du cristal. De haut en bas, les figurent correspondent à 

la propagation du faisceau sous (a) des conditions linéaires, non linéaires (b) auto-focalisantes et (c) 

auto-défocalisantes. (a1-c1) montrent les échantillons de faisceau d’Airy captés à la sortie du cristal. 

(a2-c2) montrent les spectres aux sorties de (a1-c1). Les flèches rouges dans (a2-c2) indiquent la 

position des défauts spectraux dans l’espace k. 

 

Dans le régime de Fourier, les spectres k imagés correspondants présentent un profil gaussien 

pour le faisceau d’Airy linéaire [Fig. 5.15 (a2)], et l’apparition d’un écart spectral et d’un 

défaut de pic sous des non linéarités auto-focalisants et focalisées respectivement [Figs. 

5.15(b2, c2)]. Ces défauts spectraux, dont les positons sont indiqués par les flèches rouges 

pointant vers le bas, résident au côté droit du centre k-space. 

 

5.4.1.c  Intensité de pic du faisceau d’Airy à la sortie du cristal SBN 

Dans un deuxième ensemble de mesures, nous avons déplacé la face de sortie du cristal le 

long de la direction ξ en direction de la position d’intensité de pic indiquée sur la Fig. 5.16(a1) 

par la ligne en pointillé blanc II. La sortie des faisceaux d’Airy dans les Fig. 5.16(a1) et (c1) 

présentent un comportement similaire à ceux représentés sur les Fig. 5.15(a1) et (c1). Dans 

l’espace k, le profil gaussien est toujours conservé pour le régime linéaire [Fig. 5.16(a2)], 

alors que sous une condition non linéaire, le défaut spectral se déplace vers le centre de 
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l’espace de Fourier [Fig. 5.16(b2) et (c2)]. Ce comportement non linéaire est attendu car le 

faisceau présente une distance à demi raccourcie par rapport au premier ensemble de mesures. 

 

Figure 5.16: Observations expérimentales des faisceaux d’Airy se propageant dans un cristal PR 

polarisé en fixant son intensité de pic à la sortie du cristal. De haut en bas, les figures 

correspondent à la propagation du faisceau sous (a) des conditions linéaires, non linéaires (b) auto-

focalisants et (c) auto-défocalisantes. (a1-c1) montrent les échantillons de faisceau d’Airy capté à la 

sortie du cristal. (a2-c2) montrent les spectres aux sorties dans (a1-c1). Les flèches rouges dans (a2-c2) 

indiquent la position des défauts spectraux dans l’espace k. 

 

5.4.2 Propagation non linéaire des pulse d’Airy 

Les intérêts sur les pulses d’Airy non linéaires s’inspirent du fait que l’équation non linéaire 

de Schrödinger (NLSE) décrivant la propagation des pulses dans le temps a une forme 

mathématique similaire à la NLPWE décrivant l’évolution des faisceaux dans l’espace. En 

raison de cette analogie, les pulses d’Airy dans le régime non linéaire devraient se comporter 

de manière similaire aux faisceaux d’Airy non linéaires dans le matériau PR. Nous limiterons 

notre étude à l’environnement de la fibre optique, même si les pulses d’Airy pourraient 

également être étudiées dans les médias non linéaires en vrac. Dans la fibre optique, la 

propagation de l’impulse peut être décrite en suivant NLSE sans dimension : 

  
2

2

2 2
sgn

2

i
i

 
  

 

 
   

 
  (5.12) 
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Avec    , ,T A T    l’enveloppe du pulse dans les unités normalisées 2

2 0| | /z t   et 

0/( ) /gT t z v t   la distance et le temps normalisé dans le cadre de la vitesse de groupe vg, où 

z et t sont la distance et le temps physique, β2 est le coefficient de dispersion, et t0 est une 

échelle de temps. Le symbole sgn(·) représente l’opérateur de signe, 2

0 2/ ( | |)t    le 

coefficient non linéaire normalisé, où γ est le coefficient non linéaire. Dans l’Eq. (5.12), le 

premier terme sur le côté droit explique la dispersion de vitesse de groupe (GVD), tandis que 

le deuxième terme explique la non-linéarité de Kerr. Dans le régime linéaire (η = 0), 

l’Eq. (5.12) admet la solution Airy suivante:  

 

 

   

   

2 2 2
2

3
2

3 2
2 2
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       

 

      
 

  (5.13) 

dans laquelle 22 / sgn( )mv     et comme dans le cas spatial α est le coefficient de 

troncature, vm est le paramètre de lancement, et Ai(·) est la fonction d’Airy. Le pulse d’Airy 

suit une trajectoire de temps parabolique donnée par: 

 2 2 2/ 4p mT v      (5.14) 

La puissance de pic maximale (MPP) est située à 2 2 / ( )mv sgn   . Nous établissons 

délibérément le MPP à l’intérieur de la fibre à ξ = 8, ce qui peut être atteint en définissant vm 

= -4sgn(β2 ). 

L’intensité de la bosse principale et les évolutions spectrales du pulse d’Airy décrite par 

l’Eq. (5.13) sont tracés dans la Fig. 5.17. Cette distribution d’intensité est obtenue en 

éliminant les sous-lobes du pulse d’Airy et en ne laissant que la bosse principale dont la 

puissance instantanée est supérieure à la moitié du MPP. En tenant compte des composants 

spectraux, correspondant à la bosse principale de la Fig. 5.17 (a),  nous pouvons constater que 

différentes fréquences dominent différentes distances de propagation. Sous l’effet d’une 

dispersion anormale, les fréquences plus basses sont responsables de l’évolution du pulse 
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initial et les fréquences supérieures pour les propagations ultérieures, ce qui peut être vu à 

partir de la Fig. 5.17(b). 

 

Figure 5.17: Propagation linéaire des pulses d’Airy dans une fibre optique. (a) distribution 

d’intensité de la bosse principale filtrée obtenue en éliminant les sous-lobes du pulse d’Airy linéaire. 

(b) et (c) les distributions spectrales correspondant à la bosse principale sous dispersion avec (b) 

anormales et (c) normale. 

 

D’autre part, en présence d’une dispersion normale, les fréquences plus élevées sont 

responsables de l’évolution du pulse initial et des fréquences inférieures pour les propagations 

ultérieures [Fig. 5.17(c)]. Un tel changement de fréquence est linéaire avec la distance ξ 

(lignes blanches en pointillé sur les Fig. 5.17(b) et (c)). La fréquence instantanée du lobe 

principal varie linéairement (lignes pointillées sur les Fig. 5.17(b) et (c)) le long de la distance 

de propagation comme suit: 

  2sgn
2

d mv v


    (5.15) 

 

5.4.2.a Propagation des pulses d’Airy non linéaires 

En présence d’un effet Kerr (η ≠ 0), le pulse d’Airy se comporte de façon très différente par 

rapport au cas linéaire. Les évolutions non linéaires sous une dispersion anormale et normale, 

respectivement, sont illustrées dans les Fig. 5.18(a) et 5.19(b). Les lignes en pointillés blancs 

marquent la trajectoire parabolique suivie par le pulse d’Airy en régime linéaire (η = 0). Les 

MPP apparaissent proches de la distance de propagation ξ = 8. Sous une dispersion anormale, 
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la bosse principale tend à réduire sa durée temporelle, ce qui montre une accélération plus 

rapide par rapport au pulse d’Airy linéaire [Fig. 5.18(a)]. Ce comportement non linéaire est 

analogue au cas d’un faisceau d’Airy spatial sous une non-linéarité auto-focalisante. En 

regardant le domaine spectral, à chaque distance ξ le contenu spectral est concentré en un 

défaut négatif, formé par une coche avec deux pics principaux à l’extérieur [Fig. 5.18(c)].  

 

 

Figure 5.18: Propagation des pulse d’Airy dans une fibre optique non linéaire. (a) et (b) 

distributions d’intensité sous une dispersion anormale et normale, respectivement. (c) et (d) 

distributions spectrales correspondant à (a) et (b). 

 

Sous l’état de dispersion normale, le pulse d’Airy présente une bosse principale qui s’élargit 

dans le temps, analogue à la dynamique non linéaire d’un faisceau d’Airy sous la non-linéarité 

auto-focalisante [Fig. 5.18 (b)]. Cette expansion temporelle indique une accélération plus lente 

que celle du régime linéaire. Dans l’espace de Fourier, le contenu spectral se transforme en un 

défaut positif constitué par un seul pic à chaque distance de propagation ξ [Fig. 5.18(d)]. Une 

autre caractéristique intéressante pour les spectres non linéaires du pulse d’Airy est une 

ondulation spectrale qui apparaît près de la région des défauts. Ces échantillons sont causés 

par l’interférence entre le spectre modifié de la bosse principale et celui des sous-lobes, ce qui 

peut également induire une non-linéarité. La puissance de pic des sous-lobes tend à augmenter 
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pendant la propagation sous la dispersion anormale, alors qu’elle tend à diminuer sous une 

dispersion normale le long de ξ. C’est la raison pour laquelle les ondulations de la Fig. 5.18(c) 

sont plus prononcées que ceux de la Fig. 5.18(d). 

Bien que les chemins spectraux soient sensés suivre le décalage analytique νd (lignes en 

pointillés blancs), un certain écart se produit en raison de la nature non linéaire de propagation 

des pulses. Cette différence est plus prononcée pour une dispersion normale que pour la 

dispersion anormale. En conséquence directe de cette analyse, le changement spectral réel 

peut être estimé en corrigeant le décalage linéaire νd  à travers le paramètre de correction  

comme: νdc =  νd. Le paramètre  est inférieur à 1 dans le cas d’une dispersion anormale, alors 

qu’il est supérieur à 1 pour une dispersion normale. 

 

5.4.2.b Observation expérimentale 

Le schéma dans la Fig. 5.19 illustre la configuration expérimentale utilisée pour réaliser le 

contrôle spectral comme mentionné ci-dessus.  

 

Figure 5.19: Configuration expérimentale pour l’observation du contrôle spectral des pulses 

d’Airy non linéaires. EDFA et OSA représentent respectivement un amplificateur à fibre dopée à 

l’erbium et un analyseur de spectre optique. La trame à l’intérieur du formateur des pulses montre 

schématiquement la structure de la phase cubique enveloppée entre -π et π où le cercle indique son 

centre. 

 

Un pulse gaussien d’entrée, générée par un laser à fibre accordable en longueur d’onde sous-

picoseconde de Pritel Inc., est modulée en phase dans le domaine spectral par une structure de 

phase cubique (ωs = 2π × 1011), téléchargée dans un modificateur des pulses. De cette façon, 

le pulse gaussien d’entrée est remodelée en pulse d’Airy. La sortie du pulse d’Airy est ensuite 

envoyée dans une fibre non linéaire connectée à un analyseur de spectre optique (OSA), utilisé 
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pour mesurer les spectres de sortie de la fibre non linéaire. La puissance du pulse est accordée 

au moyen d’un amplificateur à fibre dopée à l’erbium, qui est utilisé pour amplifier le pulse 

d’Airy juste avant la propagation dans la fibre non linéaire. 

 

 

Figure 5.20: Contrôle du changement de fréquence des pulses d’Airy non linéaires sous 

dispersion anormale dans une fibre LEAF. Comparaison des résultats expérimentaux (lignes bleues 

solides) avec les prédictions théoriques (lignes en pointillé). De haut en bas, les figures représentées 

dans (a-d) correspondent aux résultats expérimentaux et analytiques obtenus en déplaçant la fréquence 

centrale fm de la structure de phase cubique aux fréquences: (a) fm = 194.2, (b) 194.3, (c) 194.4 et 

(d) 194.5 THz. (e) trace les positions des défauts du pic spectral dans (a) en fonction de fm. 

 

Pour observer les pulses d’Airy sous une dispersion anormale, nous avons effectué 

l’expérience en injectant le pulse d’Airy dans une fibre décalée en dispersion (DSF) de 6,6 km 

dont la longueur d’onde de dispersion nulle est située à 1559 nm. Pour les pulses d’Airy sous 

dispersion normale, l’expérience a été réalisée en utilisant une fibre de grande surface efficace 

(LEAF) de 5 km de longueur. Les spectres mesurés sont représentés sur les Fig. 5.10 (a), (b), 

(c) et(d) et 5.21 (a), (b), (c) et (d). Ces spectres correspondent à différentes positions de 

déplacement de la fréquence centrale fm= 2πνm dans la structure de phase cubique du 

formateur des pulses. Nos résultats (ligne bleue solide) montrent que le spectre se concentre 

en un (défaut positif) ou deux pics majeurs (défaut négatif). Nous notons également que les 
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défauts se déplacent vers une longueur d’onde plus courte car la fréquence centrale de la 

structure de phase cubique est décalée vers des fréquences plus longues. Ce comportement est 

en accord avec les résultats numériques obtenus en simulant la propagation non linéaire d’une 

pulse d’Airy avec les mêmes paramètres utilisés dans le réglage expérimental (ligne en 

pointillé rouge sur les Fig. 5.20(a), (b), (c) et (d) et 5.21(a), (b), (c) et (d)). Pour estimer le 

paramètre de correction ε correspondant à l’évolution spectrale des défauts, nous avons tracé 

dans les Fig. 5.20(e) et 5.21(e) la position centrale des défauts en fonction de la fréquence 

centrale dans la structure de phase cubique. Les positions des défauts ont une évolution 

linéaire avec la fréquence centrale du masque et les paramètres de correction ε obtenus par un 

ajustement linéaire de la courbe sont estimés à 1,07 et 0,93 respectivement dans des 

conditions de dispersions normales et anormales. 

 

  

Figure 5.21: Contrôle du changement de fréquence des pulses d’Airy non linéaires sous 

dispersion normale dans un fibre DSF. Comparaison entre résultats expérimentaux (lignes bleues 

solides) et prédictions théoriques (lignes en pointillé). De haut en bas, les figures aux résultats 

expérimentaux et analytiques obtenus en variant la fréquence centrale fm de la structure de phase 

cubique, avec: (a) fm = 194.35, (b) 194.45, (c) 194.55 et (d) 194,65 THz. (e) représente les positions 

des défauts du pic spectral dans (a) en fonction de fm. 
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5.5 Conclusions 

Dans cette dissertation, nous avons étudié la dynamique de propagation des paquets d’ondes 

auto-accélérants dans les régimes de propagation linéaire et non linéaire. Les propriétés de ces 

paquets d’ondes ont été étudiées en analysant et réglant soigneusement les propriétés 

intrigantes de leurs composantes spectrales dans le régime de Fourier. Nous avons introduit et 

démontré expérimentalement une approche polyvalente pour générer et contrôler la 

dynamique d’espace libre des faisceaux auto-accélérant à une ou à plusieurs dimensions, 

fondée sur l’existence d’un mappage spectre-distance. Selon un tel mappage, différentes 

fréquences spatiales sont mappées à différentes positions pendant que le faisceau se propage. 

Dans notre étude, nous avons également généralisé le concept de gradient spatial de phase 

spectrale aux deux régimes de propagation (2+1) et (3+1)D. De plus, en profitant du fait que 

les spectres de lobes principaux associés à ces paquets d’ondes sont suffisamment confinés, 

nous avons également montré la possibilité d’améliorer significativement le confinement 

énergétique des faisceaux auto-accélérants 2D ainsi que des balles d’Airy linéaires optiques. 

Notre approche repose sur la modulation du spectre d’entrée afin de faire correspondre le 

contenu spectral du faisceau / balle associé au lobe principal tout au long de la propagation. 

Enfin, nous avons étudié la dynamique des faisceaux d’Airy et des pulses se propageant dans 

des conditions non linéaires. Dans le domaine spatial, nous avons proposé un contrôle des 

trajectoires et des spectres spatiaux pour les faisceaux d’Airy non linéaires se propageant dans 

un cristal photoréfractif sous l’action de non-linéarité auto-focalisante ou auto-défocalisante. 

De plus, dans le domaine temporel, nous avons étudié la modulation auto-phase des pulses 

d’Airy entrainée par la non-linéarité de Kerr (c’est-à-dire l’effet de modulation auto-phase). 

Nous avons démontré numériquement et expérimentalement qu’en déplaçant la structure de 

phase cubique dans le domaine de Fourier, les paquets spatiaux et temporels des ondes d’Airy 

sont en mesure de conserver leur propriété d’accélération sous un régime non linéaire. En 

particulier, les paquets d’ondes d’Airy non linéaires présentent des caractéristiques de 

propagation similaires à celles du régime linéaire, mais leurs caractéristiques spectrales sont 

cependant complètement différentes. 
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Conclusions 

In this thesis, we have investigated the propagation dynamics of self-accelerating wave 

packets in both the linear and nonlinear propagation regimes. The properties of such wave 

packets have been studied by carefully engineering the intriguing properties of their spectral 

components in the Fourier regime.  

After a succinct overview of the state-of-the-art of the field and associated concepts, we have 

introduced and experimentally demonstrated, in Chapter 2, a versatile approach to generate 

and control the free-space dynamics of 1D single- or multi-path self-accelerating beams. 

Based on the concept of spatial phase gradient, we reported on the existence of a spectrum-to-

distance mapping. According to such a correspondence, different spatial frequencies are being 

mapped to different positions while the beam is propagating. For self-accelerating beams with 

a single convex path, the key frequency monotonously varies along propagation. When the 

beam sub-lobes are filtered out, the spectrum associated to the residual main lobe follows the 

evolution of the key spatial frequency. For multi-path self-accelerating beams, each beam 

component traveling along a different trajectory is related to a different portion of the 

spectrum. At different distances, the main lobe spectrum of each beam component is linked to 

a different key spatial frequency within the corresponding spectral portion. The properties of 

these beams, such as self-bending and self-healing, are endowed with a new understanding in 

term of frequency. Thanks to our approach, the beam path can be predicted from the a priori 

knowledge of the applied phase modulation in the Fourier domain. Conversely, the spectral 

phase to be imprinted on the spectrum can be readily estimated from theory, and this for any 

desired convex beam path. We have also proved that our scheme can be applied to large angle 

(i.e. non-paraxial) and vector self-accelerating beams. Incidentally, these results provide a 
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clear explanation of the fact that Airy beam are breaking down while propagating under non-

paraxial condition.  

In addition, we also studied the combined effects of both phase and amplitude spectral 

modulation on the propagation dynamics of both paraxial and non-paraxial accelerating 

beams. By applying a Heaviside-shape amplitude modulation, we observed that the convex 

path corresponding to the suppressed key spatial frequencies was modified and turned into a 

straight path. When considering a “spectral well” amplitude structure, we reported the 

formation of a “V”-shaped beam path, that we used as an elementary cell for constructing 

periodic self-accelerating beams. Such periodic beams can be properly described through the 

concept of spectrum-to-distance mapping. 

In Chapter 3, we have generalized the concept of spatial spectral phase gradient to the both 

(2+1) and (3+1) D propagation regimes. We demonstrated that the trajectory of higher 

dimension wave packets can also be determined by a spectrum-to-distance mapping, where 

different key frequencies in the spectrum are mapped to different main hump localizations. 

We numerically verified our analysis by designing the spectral phase modulations 

corresponding to three typical beam trajectories in the (2+1) D regime. Furthermore, by taking 

advantage of the fact that the main lobe spectra associated to these wave packets are confined 

in both the (2+1) and (3+1) D regimes, we also showed the possibility of significant energy-

confinement enhancement of both 2D self-accelerating beams and optical linear Airy bullets. 

Our approach is based on reshaping the input spectrum in order to match the spectral content 

of the beam/bullet associated to the main lobe throughout propagation.  

For 2D self-accelerating beams, the spectrum associated to the filtered main lobe is reduced to 

a small spot, progressively shifting along the 45o radial direction of the Fourier plane during 

propagation. As a consequence, the entire main lobe spectrum remains confined within a 

“spectral stripe” with the same orientation. The residual spatial frequencies located outside 

this stripe are only ‘in charge’ of the beam sub-lobes. Therefore, we proposed a rather 

straightforward way to generate energetically-confined 2D self-accelerating beams by 

reshaping the input circular Gaussian beam into an elliptical Gaussian shape, and illuminating 

the SLM phase mask with a spectral energy mostly concentrated within this spectral stripe. 
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For several convex trajectories, we experimentally observed a significantly increase of the 

peak intensity (more than 60% compared to traditional 2D self-accelerating beams), and a 

corresponding reduction of the beams transverse spatial expansion. We also verified that the 

newly obtained “short-tail beams” are capable of preserving all the intrinsic characteristics of 

2D self-accelerating beams, such as bending propagation and self-healing.  

In the (3+1) D regime, the spectrum associated to main lobe of an“classical” Airy3 bullet 

exhibits a small sphere-shaped profile. In the spatio-temporal Fourier space, the main lobe 

spectrum evolves along a diagonal in such a way that its entire spectral content is localized 

into an elliptical cylinder. By appropriately compressing the input spectrum of an Airy3 bullet 

in order to match closely this spectral cylinder, we numerically demonstrated a significant 

enhancement of its spatio-temporal energy confinement. We observed that the spectral 

compression has the potential to generate an Airy3 bullet of a greatly reduced spatio-temporal 

expansion. The overall energy confinement of the compressed bullet can be improved by a 

factor above 50. In this case, we once again verified that the bullet peculiar properties (i.e. 

non-diffractive, non-dispersive and self-healing) are conserved for the desired trajectory over 

the whole propagation range considered. 

In Chapter 4, we investigated the dynamics of both Airy beams and pulses propagating under 

nonlinear conditions. In the spatial domain, we proposed a way to control both trajectories and 

spatial spectra for nonlinear Airy beams propagating in a saturable photorefractive (PR) 

crystal, under the action of either a self-focusing or defocusing nonlinearity. In the temporal 

domain, we studied the self-phase modulation (SPM) of Airy pulses mediated by a Kerr 

nonlinearity, when those propagate in optical fibers featured with either a normal or 

anomalous dispersion. In general, an Airy wave packet tends to break up, especially under a 

self-focusing nonlinearity. Nevertheless, we have demonstrated numerically and 

experimentally that by shifting the cubic phase structure in the Fourier domain, spatial and 

temporal Airy wave packets are able to preserve their accelerating property in the presence of 

either a self-focusing or -defocusing nonlinearity. In particular, nonlinear Airy wave packets 

show propagation features similar to those shown in the linear regime, but their spectral 

characteristics are completely different. In the temporal domain, under the action of 
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nonlinearity, the profile of an Airy beam is shifted transversally over propagation, while its 

main lobe exhibit either a spatial compression/expansion depending on the sign of 

nonlinearity. However, the most relevant effect of nonlinearity is observed in the Fourier 

space, for which the Gaussian spectrum associated to a linear Airy beam undergoes a dramatic 

reshaping. Under a self-focusing nonlinearity, the spectrum of the nonlinear Airy beam 

exhibits a self-shifting spectral defect, resulting in a notch between two peaks. Conversely, in 

the presence of a self-defocusing nonlinearity, the nonlinear spectrum presents a self-shifting 

spectral defect, formed by a single peak. Similar spectral reshaping is also observed when 

considering an Airy pulse within a temporal framework. Indeed, the linear Gaussian spectrum 

of an Airy pulse under the combined effects of nonlinearity and dispersion is reshaped into a 

self-shifting spectral peak, or a self-shifting spectral notch (depending on the sign of the 

dispersion), analogously to its spatial counterpart. We observed that, in the nonlinear regime, 

it is possible to establish a linear correspondence between the central frequency of the defect 

and the propagation distance. We furthermore provide a physical explanation to the observed 

preservation of the bending acceleration, by studying the nonlinear accelerating modes in 

photorefractive media. We have found that such a spectral reshaping is associated with the 

evolution of these modes. In particular, their spectral profiles show similar defect shapes as 

observed for nonlinear Airy beams, indicating that the Airy beam preserve its acceleration as 

it evolves into one nonlinear mode. In the temporal domain, we also envisaged the possibility 

of wavelength section by simply shifting the applied cubic phase structures. Furthermore, we 

have demonstrated that the propagation length can be retrieved from the characterization of 

the spectral defect observed at the output of the fiber.  

In conclusion, we have shown that self-accelerating wave packets are characterized by 

intriguing spectral features. Notably, it is possible to define a correspondence between the real 

and Fourier domain. In the linear regime, the propagation distance is mapped into the 

spectrum of the main lobe while in the nonlinear regime (typically induced in Kerr and 

photorefractive media), we found out the existence of another type of mapping induced by the 

nonlinearity itself, i.e. between the central frequency of the defect and the propagation 

distance. Using these properties, not only we can generate arbitrary trajectory convex paths, 
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but we have shown the ability to control and optimize their linear and nonlinear propagation, 

as well as their associated energy confinement enhancement. We therefore expect that the 

work reported in this thesis will find direct and widespread applications in optics, as well as in 

other areas of physics, especially due to the ubiquitous nature of such peculiar wave-packets 

in numerous systems intrinsically described by wave propagation dynamics.  
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Appendix A 

A.1 Software and numerical methods    

Numerical simulations reported in this thesis have been carried out by using the tools provided 

with the commercial software MATLAB®. The wave packets evolutions shown in Chapter 2 

and 3 have been computed by solving the (1+1)D, (2+1)D and (3+1)D Helmholtz equations in 

the paraxial approximation (i.e. by neglecting the second derivative along the propagation 

direction) via the Fast Fourier Transform (FFT) method. In particular, for the (1+1)D and 

(2+1)D, a number of points equal to 4096 has been used for each coordinates, both in real and 

spatial domain. For the (3+1)D, only 1028 points have been computed for each direction, 

since in the latter case the requirement of memory storage for too much demanding for the 

available workstation. The time of execution was around 5 minutes for the simulations 

accounting until two dimensions, whereas each simulation regarding the Airy bullet took more 

than half an hour. The intensity field distributions have been plotted by using the MATLAB 

functions: plot, pcolor, and isorsurface. The main lobe spectral evolutions are obtained by 

truncating the wave packet main lobes from the overall wave packet intensity profiles with 

opportunely designed rectangular filters. The wave packet trajectories have been extracted 

from Eq. (2.5) by writing an opportune sub-routine in order to isolate the key spatial 

frequencies from the applied phase mask and to estimate the trajectory from Eq. (2.6). The 

phase mask structures numerically calculated in Chapter 2 have been extracted by solving an 

integral equation that involves the phase modulation derivative   /x xk k   which is 

analytically retrieved from Eqs. (2.5) and (2.3). 

In the nonlinear regime, the Airy wave packet evolutions have been carried out by using the 

standard Split Step Fourier Transform method (SSFM). This method consists in the separation 
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of the linear from the nonlinear part of the differential equation. In such a way, the pulse 

propagation have been solved by alternatively solving first the linear term (by FFT) and then 

the nonlinear term by following particular procedures depending on the computational 

complexity of the solution. In particular, some different cases have been treated by changing 

the values of amplitude and nonlinearities. The nonlinear accelerating modes have been found 

by using the Runge-Kutta (R4K) numerical method. They have been found by choosing as 

initial conditions an Airy solution and its first-order derivative for different values of their 

amplitude. Once obtained, the accelerating mode propagations have been simulated by SSFM 

using as initial condition the estimated nonlinear mode.   
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