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Abstract 16 

Quantile estimates are generally interpreted in association with the return period concept in 17 

practical engineering. To do so with the peaks-over-threshold (POT) approach, combined 18 

Poisson-Generalized Pareto distributions (referred to as PD-GPD model) must be 19 

considered. In this paper, we evaluate the incorporation of nonstationarity in the 20 

Generalized Pareto distribution (GPD) and the Poisson distribution (PD) using respectively 21 

the smoothing-based B-spline functions and the logarithmic link function. Two models are 22 

proposed, a stationary PD combined to a nonstationary GPD (referred to as PD0-GPD1) 23 

and a combined nonstationary PD and GPD (referred to as PD1-GPD1). The 24 

teleconnections between hydro-climatological variables and a number of large scale climate 25 

patterns allow using these climate indices as covariates in the development of nonstationary 26 

extreme value models. The case study is made with daily precipitation amount time series 27 

from Southeastern Canada and two climatic covariates, the Arctic Oscillation (AO) and the 28 

Pacific North American (PNA) indices. A comparison of PD0-GPD1 and PD1-GPD1 29 

models showed that the incorporation of nonstationarity in both POT models instead of 30 

solely in the GPD has an effect on the estimated quantiles. The use of the B-spline function 31 

as link function between the GPD parameters and the considered climatic covariates 32 

provided flexible nonstationary PD-GPD models. Indeed, linear and nonlinear conditional 33 

quantiles are observed at various stations in the case study, opening an interesting 34 

perspective for further research on the physical mechanism behind these simple and 35 

complex interactions.  36 
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1 Introduction 39 

Extreme value theory (EVT) provides a solid justification to the use of probabilistic 40 

distributions such as the generalized extreme value (GEV) and the generalized Pareto 41 

distribution (GPD) for extreme event frequency analysis purposes (Fisher and Tippett, 42 

1928; Jenkinson, 1955; Pickands, 1975; Coles, 2001). Both distributions are widely used in 43 

hydrology to fit respectively the annual maxima (AM) and the peaks-over- threshold (POT) 44 

values. With the extreme value sampling using the POT approach, two variables can be 45 

characterized, the exceedance intensity (i.e. the exceedance value) and the exceedance 46 

frequency (i.e. the yearly number of exceedances) (Lang et al., 1999). 47 

The interpretation in terms of return period of the quantiles obtained from the GPD 48 

model requires information concerning the yearly number of exceedances which is 49 

generally assumed to be Poisson distributed. The Point Process (PP) theory allows to 50 

represent the Poisson distribution (PD) and the GPD as a two-dimensional 51 

nonhomogeneous Poisson process (Katz et al., 2002). Thus, a correspondence can be 52 

established between the combined distributions PD-GPD and the GEV distribution through 53 

their parameters (Lang et al., 1999 and Silva et al., 2016). The result is a reformulation of 54 

GEV parameters as functions of those of the PD-GPD, which allows associating an annual 55 

return period to the estimated quantile. Even if this process is indirect, it has the advantage 56 

of using the POT approach, from which, more than one extreme event can be sampled each 57 

year and both processes (i.e., intensity and frequency) of the extreme events can be 58 

captured.  59 
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The classical formulation of the EVT models assumes that the observations are 60 

independent and identically distributed (iid). However, with the mounting evidence 61 

concerning climate change (IPCC, 2012), there is a growing interest in the development of 62 

nonstationary statistical methods (Khaliq et al., 2006; Katz, 2013; Dörte, 2013) which can 63 

lead to more reliable estimates of various quantiles compared to the stationary approach. A 64 

quantile is a design value associated with a given probability of non-exceedance. It is often 65 

expressed in terms of the return period concept often used in engineering applications.  66 

Nonstationary modeling commonly uses dependence between the parameters of a 67 

given probabilistic distribution and covariates. The dependence could be expressed in the 68 

form of polynomial functions (El Adlouni et al., 2007), smoothing splines (Chavez-69 

Demoulin and Davison, 2005) or smoothing based on B-spline functions (Nasri et al., 70 

2013). The B-splines are semi-parametric functions and lead to more flexible nonstationary 71 

models than the polynomial parametric functions (Padoan and Wand, 2008). Various B-72 

spline functions were evaluated with the GPD model in the work of Thiombiano et al. 73 

(2016) and allowed modeling linear as well as nonlinear interactions.  74 

Climate indices are widely used as covariates for the modeling of hydrological 75 

variables in a nonstationary framework. Indeed, significant relationships were observed 76 

worldwide between large-scale atmospheric/oceanic climate indices and hydro-77 

climatological variables thereby helping to understand the variability in such variables. The 78 

definition of climate indices from Lee et al. (2013), "time series that allow quantifying the 79 

temporal evolution of climate process in a particular region", can justify their use as 80 

explanatory variables for various hydro-climatological applications.  81 
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For example, Kenyon and Hegerl (2010) highlighted the worldwide effects of the 82 

El-Nino-Southern Oscillation (ENSO) on extreme precipitation events, and the significant 83 

response of the latter to the North Atlantic Oscillation (NAO) and the Arctic Oscillation 84 

(AO) respectively over the European continent and Northern Hemispheric midlatitude. Lee 85 

and Ouarda (2010) studied the future evolution of the regional scaled winter precipitation 86 

and the extreme hydro-climatological variables in Eastern Canada, by modeling and 87 

projecting a nonstationary oscillation process. The significant oscillation signal of the NAO 88 

winter index can be extended from the Empirical Mode Decomposition (EMD) process and 89 

used as a covariate. Zhang et al. (2010) showed that winter daily precipitation maxima over 90 

North America are significantly influenced by the ENSO and the Pacific Decadal 91 

Oscillation (PDO) indices. Stone et al. (2000) found that the Pacific North American (PNA) 92 

climatic pattern has a stronger influence on the frequency of extreme daily precipitation 93 

amounts than their intensity in Ontario and Southern Quebec during autumn and winter 94 

seasons. Coulibaly (2006) related the change around the year 1940 in the Canadian seasonal 95 

precipitation to AO, and also observed strong correlation between the former and the PNA 96 

index after 1970. Bonsal and Shabbar (2011) synthesized the spatial and seasonal effects of 97 

ENSO, PDO, PNA, NAO, AO and the Atlantic Multi-decadal Oscillation (AMO) on the 98 

Canadian climate. Thiombiano et al. (2016) identified the AO and PNA indices as the two 99 

dominant climatic patterns that influence the intensity of extreme daily precipitation 100 

amounts over Southeastern Canada using a rank-based correlation analysis. They also 101 

found an East-West correlation sign shift between the AO index and the studied extreme 102 

precipitation events.  103 
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Evidences in the literature about climatic teleconnections are dominated by a based- 104 

prior assumption of linear interactions between these low frequency climate indices and 105 

hydro-climatological variables. However, nonlinear dependences are also observed because 106 

of the physical structure (i.e. negative and positive phases) of the climate indices. For 107 

example, using composite and correlation analyses, Shabbar et al. (1997) showed that 108 

winter precipitation in the upper St. Lawrence valley is enhanced during the La Nina phase 109 

while no significant response occurring during the El Nino years. Quadratic response of 110 

precipitation to ENSO and AO indices were found over the Northern Hemisphere by Wu et 111 

al. (2005) and Hsieh et al. (2006) based on artificial neural network analysis. By applying 112 

an Akaïke Information Criterion-based polynomial selection approach, Fleming and Dahlke 113 

(2014) detected parabolic downward and upward interactions between annual total flow 114 

volume time series and climate indices ENSO and AO over the Northern Hemisphere. 115 

Chandran et al. (2015) found through linear correlation and wavelet analyses, that the 116 

negative phase of the Southern Oscillation Index (SOI) is significantly associated with the 117 

increase in precipitation over the United Arab Emirates. Canon (2015) compared linear and 118 

nonlinear GEV models and showed that El Nino is associated with a decreased likelihood 119 

of extreme precipitation over the Great Lakes (Ohio River valley) and Western Canada 120 

(Alaska). Silva et al. (2016) found that high flood frequency and magnitude are not 121 

monotonically increasing or decreasing with the Niño3.4 index in the Itajaí River basin 122 

located in southern Brazil.  123 

Nonlinear relationships remain complex but need to be explored and used because 124 

they can improve the estimates of hydroclimatic variables. Hence, the present study aims at 125 
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investigating such interactions and developing a flexible nonstationary PD-GPD model for 126 

the statistical modeling of hydro-climatological variables of interest. The methodology is 127 

described in Section 2 and the case study is presented in Section 3. The discussion and 128 

concluding remarks follow in Section 4.  129 

2 Methods 130 

2.1 PD-GPD model 131 

The extreme value sample with the POT approach is generally constituted of all 132 

events that exceed a suitable high threshold. From the data sample, the exceedances over 133 

the threshold have the GPD as an asymptotic limiting model (Pickands, 1975) with 134 

cumulative distribution function (cdf) given by 135 

G�x, ξ, σ, u� = 
1 − 
1 − ξ ����� ����											�x − u� ≥ 0; 	ξ ≠ 0; 	σ > 0
1 − exp �− ����� � 											�x − u� ≥ 0; 	ξ = 0; 	σ > 0    (1) 136 

where x and x − u are respectively the exceedance intensity (i.e. the peak value) and the 137 

magnitude of exceedance values; !, "	#$%	& are respectively the GPD shape, scale and 138 

threshold parameters.  139 

From the POT sample, the yearly number of exceedances over a given period (i.e. 140 

the frequency of exceedances) can also be fitted by a PD whose probability mass function 141 

is given by 142 

P�m = n� = exp	�−λ� +,-! 		,			n ∈ ℕ        (2) 143 
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where m is a random variable representing the number of exceedances per year and λ is the 144 

PD rate parameter which is the expected annual frequency of the exceedances.  145 

The Quantile Q2 in the POT framework for a given non-exceedance probability p 146 

can be obtained directly by inverting the GPD cdf from equation (1) as follows 147 

Q2�p, ξ, σ� = 3
�4 51 − �1 − p�46� + u								ξ ≠ 08−σln	�1 − p�: + u														ξ = 0      (3) 148 

However, to estimate the return level of exceedances (Q;) associated with a T-years return 149 

period, the PD rate parameter needs to be incorporated as follows 150 

Q;�T, λ, ξ, σ� = 

�4 =1 − � >+;�4?� + u								ξ ≠ 0
�−σln� >+;� + u														ξ = 0       (4) 151 

In the case of a Poisson process, there is a correspondence between the POT and 152 

AM distributions (Lang et al., 1999) formulated as F�y� = BCD5−EF1 − G�x�G6 where y 153 

represents the AM values; F(y) and G(x) are respectively the GPD and GEV cdf; E is the 154 

expected annual frequency of exceedances.  155 

A straight estimate of Q; is obtained by inverting the GEV cdf (equation 5), but with its 156 

parameters expressed as function of the PD and GPD parameters.  157 

F�y, ξ, β, ψ� =
JKL
KMexp N−O1 − 4P �y − ψ�Q��R 												ξ ≠ 0; 	β > 0
exp �−exp �− �S�T�P � 																				ξ = 0; 	β > 0    (5) 158 
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where β	and	ψ		represent respectively the GEV scale and location parameters and are 159 

reparameterized as given in equation (6) (Silva et al., 2016); the shape parameter ξ is the 160 

same as in equation (1).  161 

Wβ = σ/λ4																ψ = u + β �+��>4 �           (6) 162 

Note that all the GEV parameters are deduced from the fit of those of the POT model and 163 

hence based on the sample of exceedances. Quantiles from the inverse of the GEV cdf are 164 

AM (QY) and are expressed in equation (7) with a non-exceedance probability p.  165 

QY�p, ξ, β, ψ� = WZ + �[\� �1 − F−ln�p�G4 								ξ ≠ 0Z − ]ln�−ln�p��																							ξ = 0     (7) 166 

2.2 Assumptions of the POT models 167 

The use of the classical POT model implies that observations are iid (Lang et al., 168 

1999). Hence, before the statistical inference, it is important to check the independence of 169 

exceedances. Moreover, the threshold is traditionally fixed so that exceedances over such a 170 

value are Poisson distributed. This assumption for the yearly number of exceedances needs 171 

to be verified because sometimes, other distributions like the Binomial or Negative 172 

Binomial can be more suitable (Bezak et al., 2014).  173 

The PD can be verified with the test based on the dispersion index I proposed by 174 

Cunnane (1979). It is defined as follows (Önöz and Bayazit, 2001) 175 

I = >_�>∑ �ab�ac �dac_ef>            (8) 176 
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where N is the number of years, in the case of annual time series; me is the number of 177 

exceedances in year i and mc  is the mean of �me�ef>,…,_. The test statistic j corresponding to 178 

this index is given by 179 

t = ∑ �ab�ac �dac_ef> = �N − 1�I        (9) 180 

The statistic d asymptotically follows a lm distribution with �N − 1� degrees of freedom. 181 

As the PD has a dispersion index I=1, the poissonian hypothesis is not rejected if the 182 

computed t value is in the range �χm	α/m, χm	>�α/m� where α is the significance level. If 183 

t < χm
α/m, the Binomial distribution must be preferred, and if t > χm>�α/m, the Negative 184 

Binomial distribution is more appropriate. The case of I >1 corresponds to what is called 185 

the overdispersion phenomenon and is indicated to be normally more realistic. However, it 186 

is possible to take it into account with a simple non-homogeneous Poisson process (Eastoe 187 

and Tawn, 2010). 188 

The independence criterion can be validated by assessing suitable thresholds (e.g., 189 

high percentiles) with the mean excess plot and the GPD shape and scale parameters 190 

stability given an increasing sequence of threshold (Davison and Smith, 1990; Lang et al., 191 

1999; Coles, 2001). To systematically meet this criterion, a declustering technique (Roth et 192 

al., 2012) is widely used and can be validated through the partial autocorrelation function 193 

and the Chi-square goodness-of-fit test for the GPD adequacy.   194 
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2.3 Nonstationary POT models 195 

The nonstationarity is commonly incorporated separately in each component of the 196 

PD-GPD model and can thus be easily integrated indirectly into the reparameterized GEV 197 

distribution (Katz, 2013).  198 

2.3.1 GPD B-spline model 199 

To take into account nonstationarity in equation (1), the GPD threshold and shape 200 

parameters were kept constant, and only the scale parameter was allowed to vary as a 201 

function of the covariate Z, referred to as "q. To assure positive values of the scale 202 

parameter, the logarithm is usually applied to "q. The link function h, defined by "q =203 

ℎ�t�, was assumed to be a linear combination of suitable basis spline (B-spline) functions 204 

Bv,w having k knots and used to form a piecewise polynomial function of degree d (Nasri et 205 

al., 2013) as follows 206 

σx = h�Z� = βz + ∑ β{B{,w�Z�v{f>        (10) 207 

where ]z	#$%	]| are the regression parameters. 208 

For example, the B-spline functions with (k, d) = (1, 1) and (k, d) = (1, 2) are special 209 

cases of polynomial linear and quadratic functions respectively. There is flexibility in the 210 

use of the B-spline functions as they allow exploring linear as well as nonlinear linkages 211 

between the variables. Moreover, such spline smooth functions are robust for extreme value 212 

modeling as the impact of the outliers and non-local effects are limited (Chavez-Demoulin 213 

and Davison, 2012). Some applications with the cubic splines and B-spline functions for a 214 
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POT framework were provided respectively in Chavez-Demoulin and Davison (2005) and 215 

Thiombiano et al. (2016). The use of B-spline functions with the GEV distribution was also 216 

proposed in Padoan and Wand (2008) and Nasri et al. (2013). The nonstationary GPD is 217 

then obtained by replacing the stationary scale parameter in equation (1) by its expression 218 

from equation (10).  219 

The Generalized Maximum Likelihood (GML) method is used to estimate the 220 

parameters of the proposed nonstationary GPD model because it can improve the 221 

estimation of the GEV or GPD shape parameter (El Adlouni and Ouarda, 2008; El Adlouni 222 

et al., 2007). It is a Bayesian estimator where a prior distribution, the Beta distribution 223 

(u=6; v=9) defined on the interval [-0.5; +0.5], is specified for the GPD shape parameter to 224 

avoid unfeasible estimates (Martins and Stedinger, 2001). The GML estimator of this 225 

parameter is the mode (or mean) of its empirical posterior distribution which is obtained 226 

using Markov Chain Monte Carlo (MCMC) computation methods.  227 

However, since the prior information is brought only for the GPD shape parameter 228 

and is the same for all GPD models, the ratio of the posterior distributions is equivalent to 229 

the likelihood ratio. Equivalence can thus be established between the Bayes factors and the 230 

AIC or Bayesian Information Criterion (Kass and Wasserman 1995; Schwarz 1978) as 231 

described in Appendix 1. Therefore, instead of using a MCMC algorithm, we proceeded by 232 

constrained minimization of the negative log-likelihood of the reparameterized GEV or 233 

GPD probability density function, depending on the assessed model. To do so, a Newton-234 

Raphson algorithm (Hosking and Wallis, 1987) is used and the constraint is applied on the 235 

shape parameter. 236 
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The selection of the best model among various candidates can be obtained through 237 

the deviance statistic or more generally the AIC, which penalizes the minimized negative 238 

log-likelihood (nll) depending on the number of parameters (r) of each assessed model 239 

(Katz, 2013). The AIC computation for each model is as follows 240 

AIC (r) = 2nll (r) + 2r         (11) 241 

The number of parameters in the case of a GPD B-spline model depends on the B-spline 242 

function’s parameter (d and k) and is given by 8�d + k� + 1:. The model with the lowest 243 

AIC can be considered as the best model.  244 

An automatic selection tool based on the AIC value was thus implemented to select the best 245 

GPD-B-spline model (Thiombiano et al., 2016).  246 

2.3.2 Non-homogeneous Poisson process 247 

One of the main objectives of the present study is to incorporate the effect of 248 

nonstationarity on the distribution of the yearly number of exceedances. To this end, the PD 249 

parameter λ is also allowed to vary as a function of the covariate Z. The covariate Z can be 250 

the same or different from the one used for the GPD scale parameter. The resulting non-251 

homogeneous Poisson process with rate parameter Eq is herein investigated and given by 252 

l~�Eq = Ez + E>t          (12) 253 

The hyperparameters λz and λ> can be estimated through a generalized linear model (GLM) 254 

for the PD with the logarithmic link function.   255 
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2.3.3 Nonstationary PD-GPD model 256 

The set of stationary parameters �σ	and	λ� should now be replaced by �σx	and	λx� 257 

as formulated in equations (10) and (12), allowing subsequently to take into account the 258 

effect of the covariate in the reparameterized parameters of the GEV distribution expressed 259 

in equation (6). Two nonstationary PD-GPD models are evaluated in this paper: a stationary 260 

PD combined to a nonstationary GPD (referred to as PD0-GPD1) and a combined 261 

nonstationary PD and GPD (referred to as PD1-GPD1). These models can also be 262 

compared using the AIC.  263 

2.3.4 Quantile estimation and uncertainty measure 264 

The quantiles are estimated under the GPD model (i.e., Q2 from (3)) and the PD-265 

GPD model (i.e., QY from (7)) with the non-exceedance probability p in the stationary 266 

(without covariate Z) and nonstationary (with covariate Z) frameworks. The following 267 

models are thus used to obtain the quantiles: 268 

� Stationary quantile Q2 from the model named GPD0 expressed by (1). 269 

� Stationary quantile QY from the model named PD0-GPD0 formulated by 270 

combining (5) and (6). 271 

� Nonstationary quantile Q2 from model named GPD1 formulated by combining 272 

(1) and (10). 273 

� Nonstationary quantile QY from model named PD0-GPD1 formulated by 274 

combining (5), (6) and (10). 275 
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� Nonstationary quantile QY from model named PD1-GPD1 formulated by 276 

combining (5), (6), (10) and (12). 277 

The quantiles from models GPD0 and GPD1 are presented for comparison purpose to those 278 

estimated by the PD-GPD approach.  279 

The measure of the uncertainty associated with estimated quantiles is provided as 280 

intervals of credibility (ICs) computed for the 95% probability of confidence. An adjusted 281 

asymptotic approach is used. This new approach was proposed by Ashkar and El Adlouni 282 

(2015) who showed that it allows improving the normality of GPD-based quantiles and 283 

leads to more accurate ICs for quantiles in the right-tail of the GPD than the ICs obtained 284 

from the traditional large-sample based theory (Ashkar and Ouarda, 1996).  285 

2.4 Rank-based correlation and wavelet analyses 286 

Linear correlation analysis is widely used to statistically test the relationships 287 

between hydrological variables and large scale climate patterns. For non-normal 288 

distributions like those of the hydro-climatological extremes, this approach can be less 289 

flexible (Yue et al., 2002; Chen et al., 2012). In this paper, the rank-based correlation using 290 

the Kendall’s tau with 5% significance level is used to select the covariate Z for the 291 

development of the PD-GPD nonstationary model. The dependence between hydrological 292 

variables and potential covariates is measured for each station of a case study. Stations 293 

where significant correlation values are detected are of interest and the covariate with the 294 

highest number of stations associated with significant Kendall’s tau is selected.  295 
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A complementary method, wavelet analysis, is considered given the fact that both 296 

linear and rank-based correlation analyses identify monotonic dependence. Wavelet 297 

analysis allows capturing the time-scale changes in and between time series through the 298 

continuous wavelet transform (CWT), the cross-wavelet transform (XWT) and the wavelet 299 

transform coherence (WTC) plots (Torrence and Compo, 1998; Grinsted et al., 2004). 300 

3 Case study 301 

3.1 Data 302 

3.1.1 Precipitation 303 

The hydro-climatological variable analyzed is the observed daily precipitation 304 

amounts (code 012) obtained from Environment Canada 305 

(http://climat.meteo.gc.ca/historical_data/search_historic_data_f.html). Based on the 306 

quality of time series and on the validation of a suitable threshold for the POT sample 307 

definition, 173 stations located in Southeastern Canada were considered. Each time series 308 

must have at least 30 full years of observations (further referred to as complete years), and 309 

the threshold allowing to have the maximum number of stations where independence 310 

between exceedances is validated, is chosen. This independence criterion was evaluated 311 

using the methods presented in Section 2.2. The 99th percentile was found to be the suitable 312 

threshold to define the sample of exceedances at these 173 stations. Figure 1 shows their 313 

geographical location in this region. The stations where the PD is statistically validated are 314 

distinguished based on the index dispersion assessment. The study region is composed by 315 
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the provinces of Newfoundland (NF), Labrador (NFL), Prince Edward Island (PEI), New 316 

Brunswick (NB), Nova Scotia (NS), Quebec (QC) and Ontario (ON) in Canada.  317 

[Figure 1] 318 

From each sample of daily precipitation amount exceedances, the intensity and 319 

frequency variables (i.e., V1 and V2 respectively) were defined for each station. The V1 320 

and V2 time series were further used for correlation and wavelet analysis with studied 321 

climate patterns. These climatic covariates describe large scale atmospheric and oceanic 322 

oscillations, while hydrological variables characterize local to regional observations (Rossi 323 

et al., 2009). Therefore, a time series smoothing is often employed to maximize the 324 

correlation results between variables like precipitation which shows an important 325 

variability, and climatic covariates (Assani et al., 2008). An annual average of V1 values 326 

was calculated for this purpose. 327 

3.1.2 Climate indices 328 

Thiombiano et al. (2016) showed that the AO and PNA indices are the two 329 

dominant climate patterns influencing the intensity of extreme daily precipitation amounts 330 

in Southeastern Canada. The former index is the first empirical orthogonal function of the 331 

Northern Hemisphere (20°-90°N) winter sea level pressure data, while the latter index is 332 

the dominant climatic pattern of low-frequency variability in the Northern Hemisphere 333 

extratropics (Rossi et al., 2011). In this paper, the same seven indices used in their study 334 

(i.e. AMO, AO, NAO, PDO, PNA, SOI and the Western Hemisphere Warm Pool 335 

(WHWP)) were considered to assess the interaction of each of these indices with the V2 336 
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time series. The monthly standardized time series of these indices were obtained from the 337 

Physical Sciences Division of the National Oceanic and Atmospheric Administration 338 

(NOAA) (http://www.esrl.noaa.gov/psd/data/climateindices/list/). With regard to the 339 

smoothing applied to the V1 series for correlation and wavelet analyses purposes, the 340 

indices time series are averaged from January to December (JD) on one hand, and on the 341 

other hand, a three-month moving average (i.e. December through February (DJF), January 342 

through March (JFM), etc.), are considered. 343 

3.2 Results 344 

3.2.1 Correlation analysis 345 

The correlation analysis between the studied climate patterns and the V1 series on 346 

one hand and the V2 series on the other hand, showed that significant correlation between 347 

the V1 (V2) series and at least one of the 7 studied climate indices, were found at 136 (138) 348 

stations of the 173 stations originally analyzed. The AO and PNA indices showed the most 349 

significant influence on the variability of both variables (i.e. V1 and V2) than the other 350 

indices. Figures 2 and 3 summarize the results of the correlation analysis.  351 

[Figure 2] 352 

The identification of the AO and PNA indices as dominant covariates is based on 353 

the counting by province of the study region, of the number of stations where significant 354 

correlation was found between each of them or both indices and the V1 and/or V2 series.  355 

[Figure 3] 356 
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The same approach was adopted to evaluate the influence of other studied indices in 357 

the study region in order to provide an overview of the co-influence of all studied indices 358 

on Southeastern Canada’s extreme precipitations (Table I).  359 

[Table I] 360 

The highest level of the influence corresponds to the index with the largest number of 361 

correlated stations, while the absence of any correlation with stations is identified by “No” 362 

influence.  363 

3.2.2 Nonstationary modeling 364 

  Among the stations where the V1 and V2 series showed significant correlations 365 

with the indices AO and/or PNA, 10 stations (15 stations) were considered for the 366 

combined nonstationary modeling of V1 and V2 using the same AO index (PNA index). 367 

The aim was to investigate the effect of AO (PNA) pattern on both the intensity and 368 

frequency of extreme precipitation in the study region. 369 

For the GPD1 model, the GPD scale parameter was allowed to vary conditionally to 370 

the AO index or the PNA index given the station, using B-spline functions with (k, d) = (2, 371 

1). This choice was based on the work of Thiombiano et al. (2016). For the PD0 model, the 372 

expected annual frequency of exceedances varied between 3 and 4 events per year. For the 373 

PD1 model, the GLM estimates of the associated rate parameter are used.  374 

Three non-exceedance probabilities (p=0.5, 0.9 and 0.99) were used for quantile 375 

estimates. The fitting of the GPD1, PD0-GPD1, PD1-GPD1 models to the 25 stations (i.e. 376 
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10 stations and 15 stations associated with the AO and PNA indices respectively), showed 377 

four types of conditional quantiles (Figure 4). 378 

[Figure 4] 379 

The concave forms of conditional quantiles are associated with the AO index and are 380 

observed in the NS and NF provinces. Only one similar form is found in a more central 381 

province (Ontario). Concerning the convex forms of conditional quantiles, they are 382 

associated with the PNA index and are rather detected in central provinces (Quebec and 383 

Ontario). At these nonlinear responses of extreme precipitations to the AO or PNA index, 384 

common linear responses are obviously observed (i.e. monotonically downward and 385 

upward dependences). To illustrate the nonlinear responses, some analyses results are 386 

proposed with two stations highlighted in red in Figure 4. 387 

3.2.3 Illustrations 388 

The V1 and V2 time series from the Upper Stewiacke (ID 8206200) and “Grandes 389 

Bergeronnes” (ID 7042840) stations located respectively in NS and QC provinces are used 390 

herein. The analysis periods for these stations are 1951-2005 and 1951-2012 respectively, 391 

leading to 53 years (with 51 complete years) and 60 years (with 57 complete years) of daily 392 

observations. At the Upper Stewiacke (Grandes Bergeronnes) station, the covariate is the 393 

AO (PNA) index. The threshold values corresponding to the 99th percentile of the daily 394 

precipitation amounts dataset are 37 mm and 32 mm respectively at stations Upper 395 

Stewiacke and Grandes Bergeronnes, leading to a sample of one day declustered 396 

exceedances containing 210 and 207 independent events respectively. The average intensity 397 
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value of exceedances is 49 mm and 46 mm respectively over the respective analyzed 398 

periods, while the expected annual frequency of exceedances is between 3 and 4. The 399 

dispersion index is 1.06 at the Upper Stewiacke station and 1.26 at the Grandes 400 

Bergeronnes station. The statistic t associated to these values validated the PD assumption, 401 

allowing the use of the PD-GPD model. 402 

The Kendall tau measured with 5% significance level between 13 time series of the 403 

AO (PNA) index and variables V1 and V2 are presented in Table II for both stations with 404 

significant correlations highlighted in bold.  405 

[Table II] 406 

The average of the AO values from the months of September to November (SON) and 407 

October to December (OND) constituted the covariate AO data respectively for V1 and V2 408 

variables for nonstationary modeling at the Upper Stewiacke station. In the case of the 409 

Grandes Bergeronnes station, DJF and JD time windows were retained for V1 and V2 410 

respectively. 411 

The assessment of the CWTs of the V1, V2, AO and PNA analyzed time series, 412 

showed the presence of significant features of variability predominately in the range of 413 

periods spanning 2-8 years. This detection of variability is more physically meaningful than 414 

the simple correlation analysis, thus sustaining the nonstationary frequency analysis 415 

framework. Common and coherent significant features were also clearly highlighted by the 416 

XWT and WTC plots between the explored variable-covariate datasets. These wavelet 417 

results can comfort or not the correlation results by comparing the direction of the 418 
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interaction arrows as pointing right (or left) means a positive (negative) correlation. The 419 

wavelet analysis results for V1-AO (Upper Stewiacke station) and V2-PNA (Grandes 420 

Bergeronnes station) interactions are proposed in Figures 5 and 6.  421 

[Figure 5] 422 

In Figures 5 and 6, the thick black contour designates the 5% significance level against the 423 

red noise and, the cone of influence where the edge effects might distort the picture is 424 

shown in a lighter shade. The darker the red colour is in the enclose feature, the stronger the 425 

variability is. The phase relationship between the time series (see XWTs and WTCs plots) 426 

is represented as arrows with in-phase pointing right (positive correlation) and anti-phase 427 

pointing left (negative correlation).  428 

Significant features are found from the Upper Stewiacke station V1 time series in 429 

the 2-3 year and the 5-8 year periods respectively around the decades 1960-1970 and 1980-430 

1990 (Figure 5a). In its corresponding covariate AO data, a 3-5 year feature can also be 431 

observed around the year 1980 (Figure 5b). Common significant features effectively appear 432 

from 1960 to 1990 in the 2-7 year period between these two correlated datasets (Figure 5c), 433 

with a strong covariance between them in the 2-5 year period during the decade 1970-1980 434 

(Figure 5d). Moreover, the XWT and WTC results highlight that these datasets are in-435 

phase, confirming the significant positive correlation between them (Table II).  436 

[Figure 6] 437 

At the Grandes Bergeronnes station, significant features are also present in the 438 

different time series (Figure 6) with, however, less strong and synchronized enclosed 439 
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features. Nevertheless, arrows in the XWT (Figure 6c) and WTC (Figure 6d) plots show 440 

that these datasets are also phase-locked, sustaining the positive significant correlation 441 

observed between them (Table II). 442 

The choice of the best GPD1 model for Upper Stewiacke and Grandes Bergeronnes 443 

stations is highlighted in bold in Table III where comparative values of the AIC for nine 444 

GPD1 models are indicated given the B-spline function parameter (k, d) evaluated. 445 

[Table III] 446 

The combination (k, d) resulting in the smallest AIC value is highlighted in bold and is 447 

considered as the best GPD1 model to be used. At both stations, a B-spline with 2 knots 448 

and 1 degree (2, 1) is the best combination with AIC values of 360.22 and 433.76 449 

respectively. These values are smaller than the AIC associated with the GPD0 model 450 

(364.22 and 434.11 respectively).  451 

Figures 7 and 8 illustrate the quantiles associated with a non-exceedance probability 452 

p=0.9 at the Upper Stewiacke and Grandes Bergeronnes stations respectively. These 453 

quantiles are estimated using the models defined in Section 2.3.4 (GPD0, GPD1, PD0-454 

GPD0, PD0-GPD1 and PD1-GPD1). The purpose of adding the AM observations on these 455 

Figures is to understand the difference between estimated quantiles resulting from a simple 456 

GPD versus a combined PD-GPD model. For the POT observations, they are independent 457 

exceedances of daily precipitation amounts. The same monthly value of the climatic 458 

covariate is thus used for exceedances that occurred in that same month, hence, the 459 

alignment of some observations.  460 
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The quantiles estimated using GPD0 and GPD1 are systematically inferior to the T-461 

year return quantiles obtained from models PD0-GPD0, PD0-GPD1 and PD1-GPD1. The 462 

comparison between PD0-GPD0 and PD0-GPD1 then PD1-GPD1, shows a difference in 463 

values at around 40 mm and 70 mm respectively. In the nonstationary case, the estimates 464 

depend on the value of the covariate and show a clear nonlinear association between the 465 

climate index and precipitation extremes. In both concave (Figure 7) and convex (Figure 8) 466 

nonlinear structures, the AM quantiles obtained from the PD0-GPD1 model are superior 467 

(inferior) to those from the PD1-GPD1 model during the negative (positive) phase of the 468 

index. These results suggest that PD0-GPD1-based quantiles are not systematically above 469 

or below the PD1-GPD1-based quantiles for all covariate values. 470 

[Figure 7] 471 

At the Upper Stewiacke station (Figure 7), the quantile estimates increase with the 472 

increase in the absolute value of the AO index for both positive and negative index values. 473 

The conditional quantile curve has a concave form, highlighting clearly the nonlinear 474 

response of precipitation extreme events to AO index at this station. With regard to the 475 

comparison of models PD0-GPD0, PD0-GPD1 and PD1-GPD1 through AIC values, it is 476 

observed that the second model outperforms the third model which is better than the first 477 

model. This result suggests that incorporation of nonstationarity only in the estimation of 478 

the GPD scale parameter provided a better model. 479 

[Figure 8] 480 
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At the Grandes Bergeronnes station (Figure 8), the nonlinear dependence between 481 

precipitation extremes and the PNA index takes a convex form in comparison to the 482 

concave form observed in Figure 7. Hence, the estimated quantiles decrease with the 483 

increase in the absolute value of the PNA index for both positive and negative values. 484 

However, the model PD1-GPD1 leads to the lowest AIC value. This model outperforms 485 

PD0-GPD1 which was found to be better than the PD0-GPD0 model. Thus, incorporation 486 

of nonstationarity both in the GPD scale and PD intensity parameters provides a better fit at 487 

this station.  488 

4 Discussion and conclusion 489 

In the present study, the PD-GPD model was suggested to estimate quantiles by 490 

statistically testing the nonstationarity hypothesis and modeling simple and complex 491 

interactions between large scale climate patterns and hydro-climatological variables. For 492 

this purpose, a nonstationary GPD model where the scale parameter is allowed to vary as a 493 

B-spline function of a climatic covariate is combined to a nonhomogeneous PD. In this 494 

latter process, the rate parameter is a logarithm function of the same covariate.  495 

The use of the B-spline function instead of the classical polynomial function, 496 

allowed to automatically analyze various nonstationary GPD and PD-GPD models. This 497 

flexibility of the B-spline functions has attracted progressive interest in hydrology over the 498 

last 10 years (Padoan and Wand 2008; Nasri et al. 2013; Thiombiano et al. 2016). The use 499 

of such type of linkage must then be promoted for nonstationary statistical modeling in 500 

hydrology because of the physical structure of climate indices which are widely used as 501 
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covariates, given the well-established interactions between large-scale atmospheric and 502 

oceanic variability and hydro-climatological variables. However, in addition to the 503 

statistical significance found in many studies as well as in the present paper, there are 504 

underlying physical mechanisms related to the flux dynamics of the air masses. 505 

For example, Trenberth (1990) indicated that the shift in atmospheric circulation 506 

constitutes the principal cause of regional variability in observed wind, temperature, 507 

precipitation and other climatic variables. Thompson and Wallace (2001) also explained the 508 

association between the sea level pressure variability, wind direction and the warm-cool 509 

phases of AO, NAO and PNA. Wu et al. (2005) mentioned that anomalous northerlies from 510 

the Arctic area transferred colder air over Northeastern Canada, leading to negative 511 

temperature anomalies there, while, the anomalous alongshore flow along the West coast of 512 

North America brings the normal moist westerly flow farther North, generating negative 513 

precipitation anomalies from Oregon to Southern British Columbia. The identification of 514 

AO and PNA indices as potential dominant modes of daily precipitation amounts extremes 515 

variability in Southeastern Canada, must be sustained by similar physical explanations in 516 

future research. This additional exercise will result in the suggestion of these climate 517 

indices as covariates for precipitation quantiles prediction over (or in some part of) the 518 

Southeastern Canada. 519 

Indeed, from the case study, the correlation results showed that AO and PNA 520 

indices have the highest influence on both the intensity and frequency of extreme 521 

precipitation time series. Moreover, the modeling results obtained from the 10 (15) stations 522 

where the AO (PNA) index showed significant correlations with both the V1 and V2 series, 523 
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provided some insight about the risk of underestimation or overestimation of quantiles 524 

when assuming stationary distributions or linear dependences in the case of non-525 

stationarity. It is thus important to go beyond the correlation results and understand the 526 

physical mechanism behind these teleconnections. Mainly, the concave and convex 527 

relationships found in this study must be confirmed with larger time series by using for 528 

example adjusted and homogenized hydro-climatological datasets. The correlation and 529 

wavelet analysis results can also be helpful to study the combined effect of more than one 530 

climatic covariate on modeling results.  531 
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Illustration of Tables 669 

Table I. Level of influence of seven climate indices on daily precipitation amount extremes 670 

by province in Southeastern Canada  671 

Indices AO NAO AMO PNA PDO SOI WHWP 

Provinces        

NF        

L        

PEI        

NS        

NB        

QC        

ON        

Legend of the influence range level 

    

High Medium Less No 

  672 
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Table II. Kendall’s Tau (in %) with significant correlation in bold 673 

 Climate index windows 

JD DJF JFM FMA MAM AMJ MJJ JJA JAS ASO SON OND NDJ 

 Upper Stewiacke station 

AO&V1 +20 -3 +2 +1 +10 +17 +15 +12 +15 +18 +25 +16 +7 

AO&V2 +14 +7 +6 +2 -7 -9 -4 +6 +13 +5 +15 +23 +22 

 Grandes Bergeronnes station 

PNA&V1 +8 +18 +15 +5 -3 -4 +9 +3 +5 -1 +2 +1 +11 

PNA&V2 +26 +6 +3 +14 +20 +24 +14 +12 +11 +16 +20 +22 +18 

 674 

Table III. AIC values for different GPD B-spline models with the lowest AIC in bold 675 

Knots k 2 3 4 

Degree d Upper Stewiacke station 

1 360,22 362,50 362,70 

2 362,83 362,52 363,73 

3 363,17 363,78 365,92 

Degree d Grandes Bergeronnes station 

1 
433,76 436,33 437,78 

2 
436,56 437,65 439,58 

3 
437,10 439,51 440,65 

  676 
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Title of Figures 677 

Figure 1. Southeastern Canada (a) and location of the 173 stations (b) with identification of 678 

stations where the PD, or BD or BND was validated.  679 

Figure 2. Identification of stations where the AO and PNA indices were significantly 680 

correlated to the V1 series among the 136 stations where V1 series showed significant 681 

correlation with at least one of the seven studied climate indices.  682 

Figure 3. Identification of stations where the AO and PNA indices were significantly 683 

correlated to the V2 series among the 138 stations where V2 series showed significant 684 

correlation with at least one of the seven studied climate indices.  685 

Figure 4. Linear and nonlinear response of extreme precipitations to AO and PNA indices 686 

at 25 stations in Southeastern Canada. Highlighted stations in red are selected for 687 

illustrative purpose. 688 

Figure 5. Wavelet analysis results with CWT illustration for V1 (a) and AO index: SON 689 

window (b). XWT (c) shows the common features between (a) & (b). WTC (d) highlights 690 

the covariance between (a) & (b). 691 

Figure 6. Wavelet analysis results with CWT illustration for V2 (a) and PNA index: JD 692 

window (b). XWT (c) shows the common features between (a) & (b). WTC (d) highlights 693 

the covariance between (a) & (b).   694 
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Figure 7. Estimated quantiles from stationary (GPD0, PD0-GPD0) and nonstationary 695 

(GPD1, PD0-GPD1, PD1-GPD1) models, using the Arctic Oscillation as a covariate, 696 

associated with a non-exceedance probability of 0.9. Lower (BIC) and upper (BSC) 5% 697 

confidence intervals are also shown. Illustrated observations are independent daily peaks 698 

(POT) and annual maxima (AM) precipitation values for the Upper Stewiacke station. 699 

Figure 8. Same description as in Figure 7, but using the Pacific North American index as a 700 

covariate for the Grande Bergeronnes station.   701 
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Appendix 1. Bayes factors and Laplace approximation 702 

The selection of the most appropriate model is usually based on the Bayes factors when the 703 

inference is done in a Bayesian framework. Let M be a candidate model; the posterior 704 

distribution associated to model M is obtained through conditional probability formula and 705 

is given by  706 

���	|	�� = ∫����	|	�, ��	���	|	��%� 

Where ���|�,�� represents the likelihood of data D associated to model M and its vector 707 

of parameters �; Ω is the dimension of parameters and ���|�� the prior distribution of the 708 

parameter. 709 

To compare two models M1 and M2, the Bayes factors ratio �>m is  710 

�>m = ���	|	�>����	|	�m� . ���>����m� 

Where ����� is the prior probability associated to model �� 		, � = 1, 2. 711 

In absence of any prior discrimination between models M1 and M2, then ���>� = ���m� 712 

and the Bayes factor is equivalent to the posterior distributions ratio.  713 

The resulting integrals are often complex to assess, leading often to some approximations 714 

based on Laplace development (Kass and Wasserman, 1995). 715 

When the prior distributions ���|�>� and ���|�m� of models M1 and M2 parameters are 716 

similar, the Laplace approximation is  717 
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�>m ≈ ���	|	�>�,�>����	|		�m�,�m� . ��>�>	�	�>���m�>	�	�m���
>/m � $2����m��>�/m

 

With �>�>	�	�>�� representing the Hessian matrix of the prior distribution; n the sample size; 718 

$� the parameter dimension of model ��		, � = 1, 2. 719 

In this study, the same prior distribution for the shape parameter is used for all models. 720 

Therefore, the Hessian matrix ratio equals 1. Consequently, the Bayes factors ratio is 721 

equivalent to the Schwartz criterion (Schwartz, 1978).  722 
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Figure 1. Southeastern Canada (a) and location of the 173 stations (b) with identification of stations where 
the PD, or BD or BND was validated.  
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Figure 2. Identification of stations where the AO and PNA indices were significantly correlated to the V1 
series among the 136 stations where V1 series showed significant correlation with at least one of the seven 

studied climate indices.  
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Figure 3. Identification of stations where the AO and PNA indices were significantly correlated to the V2 
series among the 138 stations where V2 series showed significant correlation with at least one of the seven 

studied climate indices.  
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Figure 4. Linear and nonlinear response of extreme precipitations to AO and PNA indices at 25 stations in 
Southeastern Canada. Highlighted stations in red are selected for illustrative purpose.  
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Figure 5. Wavelet analysis results with CWT illustration for V1 (a) and AO index: SON window (b). XWT (c) 
shows the common features between (a) & (b). WTC (d) highlights the covariance between (a) & (b).  
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Figure 6. Wavelet analysis results with CWT illustration for V2 (a) and PNA index: JD window (b). XWT (c) 
shows the common features between (a) & (b). WTC (d) highlights the covariance between (a) & (b).  
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Figure 7. Estimated quantiles from stationary (GPD0, PD0-GPD0) and nonstationary (GPD1, PD0-GPD1, PD1-
GPD1) models, using the Arctic Oscillation as a covariate, associated with a non-exceedance probability of 
0.9. Lower (BIC) and upper (BSC) 5% confidence intervals are also shown. Illustrated observations are 
independent daily peaks (POT) and annual maxima (AM) precipitation values for the Upper Stewiacke 

station.  
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Figure 8. Same description as in Figure 7, but using the Pacific North American index as a covariate for the 
Grande Bergeronnes station.  
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Using statistical tools like the Cross Wavelet analysis illustrated in the above Figure, 

common features of variability are found between precipitation extreme events and the 

Artic Oscillation index at the Upper Stewiacke station located in Nova Scotia (Canada). 

Using this index as covariate, we developed nonstationary Poisson-Generalized Pareto 

models, which allow observing conditional quantiles with concave form. The proposed 

models are more flexible than classical extreme value nonstationary models which often 

used prior assumption of linear dependence. 
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