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Abstract. Extreme precipitation is highly variable in space
and time. It is therefore important to characterize precipi-
tation intensity distributions on several temporal and spa-
tial scales. This is a key issue in infrastructure design and
risk analysis, for which intensity–duration–frequency (IDF)
curves are the standard tools used for describing the rela-
tionships among extreme rainfall intensities, their frequen-
cies, and their durations. Simple scaling (SS) models, char-
acterizing the relationships among extreme probability dis-
tributions at several durations, represent a powerful means
for improving IDF estimates. This study tested SS models
for approximately 2700 stations in North America. Annual
maximum series (AMS) over various duration intervals from
15 min to 7 days were considered. The range of validity, mag-
nitude, and spatial variability of the estimated scaling expo-
nents were investigated. Results provide additional guidance
for the influence of both local geographical characteristics,
such as topography, and regional climatic features on pre-
cipitation scaling. Generalized extreme-value (GEV) distri-
butions based on SS models were also examined. Results
demonstrate an improvement of GEV parameter estimates,
especially for the shape parameter, when data from different
durations were pooled under the SS hypothesis.

1 Introduction

Extreme precipitation is highly variable in space and time
as various physical processes are involved in its generation.
Characterizing this spatial and temporal variability is cru-
cial for infrastructure design and to evaluate and predict
the impacts of natural hazards on ecosystems and commu-
nities. Available precipitation records, however, are sparse

and cover short time periods, making a complete and ade-
quate statistical characterization of extreme precipitation dif-
ficult. The resolution of available data, whether observed at
meteorological stations or simulated by weather and climate
models, often mismatches the resolution needed for applica-
tions (e.g., Blöschl and Sivapalan, 1995; Maraun et al., 2010;
Willems et al., 2012), thus adding to the difficulty of achiev-
ing complete and adequate statistical characterizations of ex-
treme precipitation.

The need for multi-scale analysis of precipitation has been
widely recognized in the past (Rodriguez-Iturbe et al., 1984;
Blöschl and Sivapalan, 1995; Hartmann et al., 2013; Wes-
tra et al., 2014, among others) and much effort has been
put into the development of relationships among extreme
precipitation characteristics on different scales. The conven-
tional approach for characterizing scale transitions in time
involves the construction of intensity–duration–frequency
(IDF) or the equivalent depth–duration–frequency (DDF)
curves (Bernard, 1932; Burlando and Rosso, 1996; Siva-
palan and Blöschl, 1998; Koutsoyiannis et al., 1998; Asquith
and Famiglietti, 2000; Overeem et al., 2008; Veneziano and
Yoon, 2013). These curves are a standard tool for hydraulic
design and risk analysis as they describe the relationships
between the frequency of occurrence of extreme rainfall in-
tensities (depth) Xd and various durations d (e.g., CSA,
2012). Analysis is usually conducted by separately estimat-
ing the statistical distributions ofXd at the different durations
(see Koutsoyiannis et al., 1998; Papalexiou et al., 2013, for
discussions about commonly used probability distributions).
The parameters or the quantiles of these theoretical distribu-
tions are then empirically compared to describe the variations
of extreme rainfall properties across temporal scales.
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Despite its simplicity, this procedure presents several
drawbacks. In particular, it does not guarantee the statisti-
cal consistency of precipitation distributions, independently
estimated at the different durations, and it limits IDF extrap-
olation on non-observed scales or at ungauged sites. Uncer-
tainties of estimated quantiles are also presumably larger be-
cause precipitation distribution and IDF curve parameters are
fitted separately.

Scaling models (Lovejoy and Mandelbrot, 1985; Gupta
and Waymire, 1990; Veneziano et al., 2007) based on the
concept of scale invariance (Dubrulle et al., 1997), have been
proposed to link rainfall features on different temporal and
spatial scales. Scale invariance states that the statistical char-
acteristics (e.g., moments or quantiles) of precipitation inten-
sity observed on two different scales d and λd can be related
to each other by a power law of the form:

f (Xλd)= λ
−Hf (Xd), (1)

where f (.) is a function of X with invariant shape when
rescaling the variable X by a multiplicative factor λ and for
some values of the exponent H ∈ R. In the simplest case, a
constant multiplicative factor adequately describes the scale
change. The corresponding mathematical models are known
as simple scaling (SS) models (Gupta and Waymire, 1990).
SS models are attractive because of the small number of pa-
rameters involved, as opposed to multiscaling (MS) models
which involve more than one multiplicative factor in Eq. (1)
(e.g., Lovejoy and Schertzer, 1985; Gupta and Waymire,
1990; Burlando and Rosso, 1996; Veneziano and Furcolo,
2002; Veneziano and Langousis, 2010; Langousis et al.,
2013). A single scaling exponent, H , is used to character-
ize the extreme rainfall distribution on all scales over which
the scale invariance property holds. As a consequence, a con-
sistent and efficient estimation of extreme precipitation char-
acteristics is possible, even on non-sampled temporal scales,
and a parsimonious formulation of IDF curves based on an-
alytical results is available (e.g., Menabde et al., 1999; Bur-
lando and Rosso, 1996; De Michele et al., 2001; Ceresetti,
2011).

Theoretical and physical evidence of the scaling properties
of precipitation intensity over a wide range of durations has
been provided by several studies. MS has been demonstrated
to be appropriate for modelling the temporal scaling features
of the precipitation process (i.e., not only the extreme distri-
bution) and for the extremes in event-based representations
of rainfall (stochastic rainfall modelling) (e.g., Veneziano
and Furcolo, 2002; Veneziano and Iacobellis, 2002; Lan-
gousis et al., 2013, and references therein). These multifrac-
tal features of precipitation last within a finite range of tem-
poral scales (approximatively between 1 h and 1 week) and
concern the temporal dependence structure of the process.
They have been connected to the large fluctuations of the at-
mospheric and climate system governing precipitation which
are likely to produce a “cascade of random multiplicative ef-
fects” (Gupta and Waymire, 1990).

At the same time, many studies confirmed the validity
of SS for approximating the precipitation distribution tails
in IDF estimation (for examples of durations ranging from
5 min to 24 h see Menabde et al., 1999; Veneziano and Fur-
colo, 2002; Yu et al., 2004; Nhat et al., 2007; Bara et al.,
2009; Ceresetti et al., 2010; Panthou et al., 2014). This type
of scaling is substantially different from the temporal scaling
since it only refers to the power law shape of the marginal
distribution of extreme rainfall. Application of the SS mod-
els to precipitation records showed that the scaling exponent
estimates may depend on the considered range of durations
(e.g., Borga et al., 2005; Nhat et al., 2007) and the climato-
logical and geographical features of the study regions (e.g.,
Menabde et al., 1999; Bara et al., 2009; Borga et al., 2005;
Ceresetti et al., 2010; Blanchet et al., 2016). However, the ap-
plication of the SS framework has been mainly restricted to
specific regions and small observational datasets. A deeper
analysis of the effects of geoclimatic factors on the SS ap-
proximation validity and on estimated scaling exponent is
thus needed.

The present study aims to deepen the knowledge of the
scale-invariant properties of extreme rainfall intensity by an-
alyzing SS model estimates across North America using a
large number of station series. The specific objectives of this
study are (a) assess the ability of SS models to reproduce ex-
treme precipitation distribution, (b) explore the variability of
scaling exponent estimates over a broad set of temporal du-
rations and identify possible effects of the dominant climate
and pluviometric regimes on SS, and (c) evaluate the pos-
sible advantages of the introduction of the SS hypothesis in
parametric models of extreme precipitation.

Note that, although modifications in precipitation distribu-
tions are expected as a result of climate changes (e.g., Tren-
berth et al., 2003; Hartmann et al., 2013; Westra et al., 2014),
the proposed approach implicitly relies on the assumption of
stationarity for extreme rainfall. This choice has been moti-
vated by both the limited evidence for changes in rainfall in-
tensities for North America extremes during recent decades
and the difficulties of assessing distribution changes from
short recorded series, especially for sub-daily extremes (Bar-
bero et al., 2017, and references therein).

The article is structured as follows. In Sect. 2 the statis-
tical basis of scaling models is presented, while data and
their preliminary treatments are described in Sect. 3. Sec-
tion 4 presents the distribution-free estimation of SS models
and their validation using available series. Section 5 focuses
on the spatial variability of SS exponents and discusses the
scaling exponent variation from a regional perspective. Fi-
nally, the SS estimation based on the generalized extreme-
value (GEV) assumption is discussed in Sect. 6, followed by
a discussion and conclusions (Sect. 7). Table S1 of the Sup-
plement lists in alphabetic order the recurrent acronyms used
in the text.
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2 Simple scaling models for precipitation intensity

When the equality in Eq. (1) holds for the cumulative distri-
bution function (CDF) of the precipitation intensity X sam-
pled at two different durations d and λd, the SS can be
expressed as follows (Gupta and Waymire, 1990; Menabde
et al., 1999):

Xd
dist
= λHXλd , (2)

where H ∈ R and dist
= means that the same probability dis-

tribution applies for Xd and Xλd , up to a dilatation or con-
traction of size λH . An important consequence of the SS as-
sumption is that Xd and λHXλd have the same distribution.
Hence, ifXd andXλd have finite moments of order q,E[Xqd ]
and E[Xqλd ], these moments are thus linked by the follow-
ing relationship (Gupta and Waymire, 1990; Menabde et al.,
1999):

E[X
q
d ] = λ

HqE[X
q
λd ]. (3)

This last relationship is usually referred to as the wide sense
simple scaling property (Gupta and Waymire, 1990) and sig-
nifies that simple scaling results in a simple translation of the
log moments between scales:

ln
{
E
[
X
q
d

]}
= ln

{
E
[
X
q
λd

]}
+Hq lnλ. (4)

Moreover, without loss of generality, λ can always be ex-
pressed as the scale ratio λ= d/d∗ defined for a reference
duration d∗ chosen, for simplicity, as d∗ = 1. Therefore, the
SS model can be estimated and validated over a set of du-
rations d1 < d2 < .. . < dD by simply checking the linear-
ity in a log–log plot of the X moments versus the observed
durations dj , j = 1,2, . . .,D (see, for instance, Gupta and
Waymire, 1990; Burlando and Rosso, 1996; Fig. 1 of Nhat
et al., 2007; and Fig. 2a of Panthou et al., 2014). If H esti-
mated for the first moment equals the exponents (slopes) for
the other moments, the precipitation intensity X can be con-
sidered scale invariant under SS in the interval of durations
d1 to dD .

More sophisticated methods have also been proposed for
detecting and estimating scale invariance (for instance, di-
mensional analysis, Lovejoy and Schertzer, 1985; Tessier
et al., 1993; Bendjoudi et al., 1997; Dubrulle et al., 1997;
spectral analysis and wavelet estimation Olsson et al., 1999;
Venugopal et al., 2006; Ceresetti, 2011; and empirical prob-
ability distribution function (PDF) power law detection Hu-
bert and Bendjoudi, 1996; Sivakumar, 2000; Ceresetti et al.,
2010). However, estimation through the moment scaling
analysis is by far the simplest and most intuitive tool to check
the SS hypothesis for a large dataset. For this reason, the pre-
sented analyses are based on this method.

According to the literature, the values of the scaling expo-
nentsH generally range between 0.4 and 0.8 for precipitation
intensity considered on daily and shorter timescales (e.g.,

Burlando and Rosso, 1996; Menabde et al., 1999; Veneziano
and Furcolo, 2002; Bara et al., 2009) (note that for the rain-
fall depth the scaling exponent Hdepth = 1−H applies). Val-
ues from 0.3 to 0.9 have also been reported for some specific
cases (e.g., Yu et al., 2004; Panthou et al., 2014, for scaling
intervals defined within 1 and 24 h).

HigherH values have been generally observed for shorter-
duration intervals, and regions dominated by convective pre-
cipitation (e.g., Borga et al., 2005; Nhat et al., 2007; Ceresetti
et al., 2010; Panthou et al., 2014, and references therein).
Nonetheless, some studies performing spatio-temporal scal-
ing analysis reached a different conclusion. For instance,
Eggert et al. (2015), analyzing extreme precipitation events
from radar data for durations between 5 min and 6 h and spa-
tial scales between 1 and 50 km, indirectly showed that strat-
iform precipitation intensity generally displays higher tem-
poral scaling exponents than convective intensity. For short-
duration intervals (typically less than 1 h), previous stud-
ies have also reported more spatially homogeneous H es-
timates than for long-duration intervals (e.g., Alila, 2000;
Borga et al., 2005, and references therein). This suggests that
processes involved in the generation of local precipitation are
comparable across different regions.

More generally, higherH values are associated with larger
variations in moment values as the scale is changed (i.e., a
stronger scaling), while H close to zero means that the Xd
distributions for different durations d more closely match
each other.

2.1 Simple scaling GEV models

Annual maximum series (AMS) are widely used to select
rainfall extremes from available precipitation series. Vari-
ous theoretical arguments and experimental evidences sup-
port their use for extreme precipitation inference (e.g., Coles
et al., 1999; Katz et al., 2002; Koutsoyiannis, 2004a; Pa-
palexiou et al., 2013).

Based on the asymptotic results of the extreme value the-
ory (Coles, 2001), the AMS distribution of a random variable
X is well described by the GEV distribution family. If we
represent the AMS by (x1,x2, . . .,xn), the GEV CDF can be
written as follows (Coles, 2001):

F(x)= exp

{
−

[
1+ ξ

(
x−µ

σ

)]−1/ξ
}
, (5)

where ξ 6= 0,−∞< x ≤ µ+σ/ξ if ξ < 0 (bounded tail), and
1/µ+ σξ ≤ x <+∞ if ξ > 0 (heavy tail). If ξ = 0 (light-
tailed shape, Gumbel distribution), Eq. (5) reduces to the fol-
lowing:

F(x)= exp
{
−exp−

{
x−µ

σ

}}
, (6)

where −∞< x <+∞. In Eqs. (5) and (6), the parameters
µ ∈ R, σ > 0 and ξ respectively represent the location, scale,
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and shape parameters of the distribution. The shape parame-
ter describes the characteristics of the distribution tails. Thus,
high-order quantile estimation is particularly affected by the
value of ξ .

In applications, the GEV distribution is frequently con-
strained by the assumption that ξ = 0 (i.e., to the Gumbel dis-
tribution), due to the difficulty of estimating significant val-
ues of the shape parameter when the recorded series are short
(e.g., Borga et al., 2005; Overeem et al., 2008; CSA, 2012).
However, based on theoretical and empirical evidence, many
authors have shown that this assumption is too restrictive for
extreme precipitation, and may lead to important underesti-
mations of the extreme quantiles (e.g., Koutsoyiannis, 2004a,
b; Overeem et al., 2008; Papalexiou et al., 2013; Papalexiou
and Koutsoyiannis, 2013). Instead, approaches aimed at in-
creasing the sample size may be used to improve the estima-
tion of the GEV distribution shape parameter (for instance,
the regional frequency analysis (RFA), Hosking and Wallis,
1997). Among these approaches, SS models constitute an ap-
pealing way to pool data from different samples (durations)
and reduce uncertainties in GEV parameters.

For the GEV distribution it is straightforward to verify

that, if X dist
= GEV(µ,σ,ξ), then λX dist

= GEV(λµ,λσ,ξ) for
any λ ∈ R. This means that the GEV family described by
Eqs. (5) and (6) satisfies Eq. (1) and thus complies with sta-
tistical scale invariance for any constant multiplicative trans-
formation of X. Hence, when the scale invariance is further
assumed for the change of observational scale from duration
d to λd (as in Eq. 2), the wide sense SS definition (Eq. 3)
gives the following:

µd = d
Hµ∗, σd = d

Hσ∗, and ξd = ξ∗, (7)

where µ∗, σ∗, and ξ∗ represent the GEV parameters for a
reference duration d∗ chosen, for simplicity, as d∗ = 1, so
that λ= d.

2.2 SS GEV estimation

Taking advantage of the scale-invariant formulation of the
GEV distribution, many authors have proposed simple scal-
ing IDF and DDF models for extreme precipitation series
(e.g., Yu et al., 2004; Borga et al., 2005; Bougadis and
Adamowski, 2006; Bara et al., 2009; Ceresetti, 2011). In
these cases, the scaling exponent and the GEV parameters are
generally estimated in two separate steps: first, theH value is
empirically determined through a log–log linear regression,
as described above; then, GEV parameters µ∗, σ∗, and ξ∗ for
the reference duration d∗ are estimated on the pooled sample
of all available durations. In this case, classical estimation
procedures, such as GEV maximum likelihood (ML) (Coles,
2001) or probability-weighted moment (PWM) (Greenwood
et al., 1979; Hosking et al., 1985), can be used.

In a few other cases, a generalized additive model ML
(GAM-ML) framework (Coles, 2001; Katz, 2013) has also
been used to obtain the joint estimate of H,µ∗,σ∗, and ξ∗

through the introduction of the duration as model covariate
(e.g., Blanchet et al., 2016).

3 Data and study region

Four station datasets were used for the construction of in-
tensity AMSs at different durations: the daily maxima pre-
cipitation data (DMPD) and the hourly Canadian precipi-
tation data (HCPD) datasets provided by Environment and
Climate Change Canada (ECCC, 2016) and the MDDELCC
(2016) (in french Ministère du Développement Durable, de
l’Environnement et de la Lutte contre les Changements Cli-
matiques) for Canada, and the hourly precipitation data
(HPD) and 15 min precipitation data (15PD) datasets made
available by the National Oceanic and Atmospheric Admin-
istration (NOAA, 2016) agency (http://www.ncdc.noaa.gov/
data-access/land-based-station-data) for the United States.
The total number of stations was approximately 3400, with
roughly 2200 locations having both DMPD and HCPD se-
ries, or both HPD and 15PD series. The majority of stations
are located in the United States and in the southern and most
densely populated areas of Canada. In northern regions the
station network is sparse and the record length does not gen-
erally exceed 15 or 20 years. Moreover, for most of DMPD
and HCPD stations, the annual recording period does not
cover the winter season and available series generally include
precipitation measured from May to October. For this reason,
the year from which the annual maxima was sampled was
limited to the recording season going from June to Septem-
ber for northern stations (stations located north of the 52nd
parallel) and from June to September for the southern sta-
tions. As a result, 122 days a year were used for northern
stations and 184 days a year for remaining stations.

Data were collected through a variety of instruments
(e.g., standard, tipping-bucket, and Fischer–Porter rain
gauges) and precipitation values were processed and quality-
controlled using both automated and manual methods (CSA,
2012, HPD and 15PD online documentation). Most often,
observations were recorded by tipping-bucket gauges with
tip resolution from 0.1 to 2.54 mm (CSA, 2012; Devine
and Mekis, 2008); 15 min series usually present the coarser
instrument resolution, with a minimum non-zero value of
2.54 mm, observed for about 80.5 % of 15PD stations. The
effects of such a coarse instrument resolution on simple scal-
ing estimates could be important, leading to empirical Xd
CDFs becoming step-wise functions with a low number of
steps. Some preliminary analyses aiming at evaluating these
effects on SS estimates are presented in the Supplement (see
Figs. S2 and S3). However, the 15PD dataset is important
considering the associated network density and its fine tem-
poral resolution, and thus it has been retained for our study.
The main characteristics of the available datasets are summa-
rized in Table 1.
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Table 1. List of available datasets and their main characteristics.

Dataset Region
No. of Operational Temporal Prevalentc

stations periodb resolution resolution (mm)

Daily maximum precipitation dataa (DMPC) Canada 370 1964–2007 1, 2, 6, 12 h 0.1 (82.25 %)
Hourly Canadian precipitation data (HCPD) Canada 665 1967–2003 1 h 0.1 (70 %)
Hourly precipitation data (HPD) USA 2531 1948–2013 1 h 0.254 (82.5 %)
15-Min precipitation data (15PD) USA 2029 1971–2013 15 min 2.54 (80.42 %)

a Daily maxima depth series over a 24 h window beginning at 08:00 LT. b Main station network operational period corresponding to 25th percentile of the
first recording year and the 75th percentile of the last recording year of the stations. c Prevalent instrument resolution, estimated by the lowest non-zero
value for each series, and corresponding percentage of stations with this resolution.

The scaling AMS datasets were constructed according to
the following steps.

i. Three duration sets were defined: (a) 15 min to 6 h
with a 15 min step, (b) 1 to 24 h with a 1 h step, and
(c) 6 to 168 h (7 days) with a 6 h step. These dura-
tion sets are hereinafter referred to as short-duration
(SD), intermediate-duration (ID), and long-duration
(LD) datasets, respectively (see Fig. 1a).

ii. Meteorological stations that were included in each final
dataset were selected according to the following crite-
ria: (1) precipitation series must have at least 85 % of
valid observations for each May-to-October (or June-
to-September) period, otherwise the corresponding year
was considered as missing; (2) each station must have
at least 15 valid years; (3) for each station, it was possi-
ble to compute AMS for all durations considered in the
scaling dataset (e.g., HCPD and HPD stations were not
included in the SD dataset because only hourly dura-
tions were available). Note that, in order to exclude out-
liers possibly associated with recording or measurement
errors, extremely large observations were discarded and
assimilated to missing data. In particular, as in some
previous studies (e.g., Papalexiou and Koutsoyiannis,
2013; Papalexiou et al., 2013), an iterative procedure
was applied prior to step (ii) (1) to discard observations
larger than 10 times the second largest value of the se-
ries.

iii. A moving window was applied to 15PD, HCPD, and
HPD series to estimate aggregated series at each dura-
tion. For DMPD series, a quality check was also imple-
mented in order to guarantee that precipitation intensi-
ties recorded each day at different durations were con-
sistent with each other. For instance, each pair of DMPD
rainfall intensity (mm) (xd1 ,xd2) observed at durations
d1 < d2 must respect the condition xd2/xd1 ≥ d1/d2 de-
rived from the definitions of daily maximum rainfall in-
tensity and depth; otherwise all DMPD values recorded
that day were discarded and assimilated to missing data.

iv. For each selected station, annual maxima were extracted
for each valid year and duration. For stations with both

Table 2. Final datasets used in scaling analysis and corresponding
AMS characteristics.

Scaling
Durations

No. of Mean series Max series
dataset Stations length (yr) length (yr)

SD∗ 15 min, 30 min, . . . , 6 h 1083 20 36
ID 1 h, 2 h, . . . , 24 h 2719 37.4 66
LD 6 h, 12 h, . . . , 168 h 2719 37.4 66

∗ Only 15PD series.

DMPD and HCPD series, or 15PD and HPD series, for
each year, the annual maxima extracted from these two
series were compared and the maximum value was re-
tained as the annual maximum for that year.

Major characteristics of each scaling AMS dataset are re-
ported in Table 2.

4 SS estimation through moment scaling analysis
(MSA)

Moment scaling analysis (MSA) for the SD, ID, and LD
datasets was carried out to empirically validate the use of
SS models for modelling AMS empirical distributions. As-
sessing the validity of the SS hypothesis for various duration
intervals also aimed at determining the presence of different
scaling regimes for precipitation intensity distributions.

In order to identify possible changes in the SS proper-
ties of AMS distributions, various scaling intervals were de-
fined for the MSA. In particular, all possible subsets with 6,
12, 18, and 24 contiguous durations were considered within
each dataset. Figures 2 and 3 show the 136 scaling inter-
vals thereby defined: 40 scaling intervals for SD and ID, and
56 scaling intervals for LD. For instance, the top-left matrix
of Fig. 2a presents the 6-duration scaling intervals 15 min–
1 h 30 min, 30 min–1 h 45 min, . . ., 4 h 45 min–6 h defined
for the SD dataset (i.e., the 19 scaling intervals containing 6
contiguous durations defined with a 15 min increment). More
schematically, Fig. 1b shows an example of the first five 6-
duration scaling intervals for the ID dataset (i.e., 1–6 h, 2–7 h,
. . ., 5–10 h, containing six contiguous durations defined with
an increment of 1 h). This procedure was defined in order

www.hydrol-earth-syst-sci.net/21/5823/2017/ Hydrol. Earth Syst. Sci., 21, 5823–5846, 2017
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Figure 1. Methodology steps: (a) definition of the SD, ID, and LD scaling datasets; (b) identification of durations and scaling intervals
within each matrix of Figs. 2 and 3; (c) moment scaling analysis (MSA) regression for the estimation of the slope coefficients Kq ; (d) slope
test: regression of Kq on the moment order q and Student’s t test for the null hypothesis H 0: ĥ1 =K1; (e) examples of valid and non-valid
SS stations according to the slope and GOF tests; (f) example of valid SS station proportion values and normalized RMSE values, rxd , as
represented, in Figs. 2 and 3.

to evaluate the sensitivity of the SS estimates to changes in
the first duration d1 of the scaling interval and in the interval
length (i.e., the number of durations included in the scaling
interval).

For each scaling interval (for simplicity, their index has
been omitted), the validity of the SS hypothesis was verified
according to the following steps:

1. MSA regression: for each q = 0.2,0.4, . . .,2.8,3, the
slopes Kq of the log–log linear relationships between
the empirical q moments

〈
X
q
d

〉
ofXd1 ,Xd2 , . . ., XdD and

the corresponding durations d1,d2, . . .,dD in the scal-
ing interval [d1,dD] were estimated by ordinary least
squares (OLS) (see Fig. 1c for a graphic example). Or-
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ders q ≥ 3 were not considered because of the possible
biases affecting empirical high-order moment estimates.

2. Slope test: to verify the SS assumption that the esti-
mated Kq exponents vary linearly with the moment or-
der q, i.e., Kq ≈Hq, an OLS regression between the
MSA slopesKq and q was applied (see Fig. 1d). For the
regression line Kq = ĥ0+ ĥ1 q, a Student’s t test was
then used to test the null hypothesis H 0: ĥ1 =K1. If H 0
was not rejected at the significance level α = 0.05, the
SS assumption was considered appropriate for the scal-
ing interval and the simple scaling exponent H =K1
was retained.

3. Goodness-of-fit (GOF) test: for each duration d, the
goodness of fit of the Xd distribution under SS
was tested using the Anderson–Darling (AD) and the
Kolmogorov–Smirnov (KS) tests. These tests aim at
validating the appropriateness of the scale invariance
property for approximating the Xd CDF by the dis-
tribution of Xd,ss = d

−HXd∗ . To this end, each AMS,
xdj =

(
xdj ,1,xdj ,2, . . .,xdj ,i, . . .xdj ,n

)
, recorded at dura-

tion dj was rescaled at the reference duration d∗ by in-
verting Eq. (2):

x∗dj = (8)(
dj
Hxdj ,1,dj

Hxdj ,2, . . . ,dj
Hxdj ,i, . . .dj

Hxdj ,n

)
,

where n represents the number of observations (years)
in xdj . Then, the pooled sample, xd∗ , of the D rescaled
AMS, x∗dj , was used to defineXd∗ under the SS assump-
tion:

xd∗ =
(
x∗d1
, . . .,x∗dj , . . . ,x

∗

dD

)
. (9)

Since, in Eq. (9), D represents the number of durations
dj in the scaling interval, n×D rescaled observations
were included in xd∗ .

As in previous applications (e.g., Panthou et al., 2014),
the AD and KS tests were then applied at significance
level α = 0.05 to compare the empirical distributions
(Cunnane plotting formula, Cunnane, 1973) of the SS
sample, xd,ss = d

−Hxd∗ , and the non-SS sample, xd . In
fact, despite the low power of KS and AD tests for small
sample tests, they represent the only suitable solution
to the problem of comparing empirical CDFs when the
data do not follow a normal distribution. Because both
AD and KS are affected by the presence of ties in the
samples (e.g., repeated values due to rounding or instru-
ment resolution), a permutation test approach (Good,
2013) was used to estimate test p values. According to
this approach, data in xd and xd,ss were pooled and ran-
domly reassigned to two samples with the same sizes
as the SS and non-SS samples. Then, the test statistic
distribution under the null hypothesis of equality of the

Xd,ss and Xd distributions was approximated by com-
puting its value over a large set of random samples. Fi-
nally, the test p value was obtained as the proportion of
random samples presenting a test statistic value larger
than the value observed for the original sample.

The SS model validity and the mean error resulting from
approximating theXd distribution by the SS model were then
evaluated in a cross-validation setting. For this analysis, each
duration was iteratively excluded from each scaling interval
and the scaling model re-estimated at each station by repeat-
ing steps 1 to 3 (MSA regression, slope test, and GOF tests).
Predictive ability indices, such as the mean absolute error
(MAE) and the root mean squared error (RMSE) between
empirical and SS distribution quantiles, were then estimated
for highest quantiles for valid SS stations. In particular, to fo-
cus on return periods of practical interest for IDF estimation,
only quantiles larger than the median were considered (i.e.,
only return periods greater than 2 years).

For each station s, the normalized RMSE, εxd,s , was esti-
mated:

εxd,s =
εxd,s

xd,s
, (10)

where εxd,s and xd,s are, respectively, the RMSE and the
mean value of all Xd quantiles of order p > 0.5. Then, the
average over all stations of the normalized RMSE, εxd , was
computed for each scaling interval and duration:

εxd =
1
ns

ns∑
s=1
εxd,s , (11)

where ns is the number of valid SS stations in the dataset.
Note that εxd is a measure of error, meaning that values of
εxd,s closer to 0 correspond to a better fit than larger values.

4.1 Model estimation and validation

Figure 2 presents the results of steps 1 to 3 of the method-
ology for evaluating the SS validity. For all the three scaling
datasets, no particular pattern was observed for slope test re-
sults, and at most 2 % of the stations within each scaling in-
terval displaying a non-linear evolution of the scaling expo-
nent with the moment order. For this reason, Fig. 2a–c show,
for each scaling interval and duration, the proportion of valid
SS stations without differentiating for slope or GOF test re-
sults. As shown in the example in Fig. 1e, for each scaling
interval, valid SS stations were defined as stations that re-
jected neither the slope test for the scaling interval nor the
GOF tests for each duration included in this scaling interval.

As expected, the proportion of valid SS stations decreased
when the number of durations within the scaling interval in-
creased and with decreasing d1. This is particularly evident
for short d in SD and ID datasets. More GOF test rejections
were observed for longer scaling intervals (not shown), due
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Figure 2. Proportion of stations satisfying both the slope and GOF tests applied at the 0.95 confidence level, for each duration (vertical axis)
and scaling interval (horizontal axis) for the SD, ID, and LD datasets (panels a, b, and c, respectively). White circles indicate proportions
between 0.25 and 0.90. See Fig. 1b and f for the identification of durations and scaling intervals within each matrix.

to the higher probability of observing large differences be-
tween xd and xd,ss quantiles when xd,ss had larger sample
size and included data from more distant durations. How-
ever, several factors can impact GOF test results when shorter

d1 are considered. First, GOF tests are particularly sensitive
to the presence of very large values in short-duration sam-
ples. Second, when considering durations close to the tem-
poral resolution of the recorded series (i.e., 15 min in SD and
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Figure 3. Cross-validation normalized RMSE averaged over all valid SS stations (rxd ) for each duration (vertical axis) and scaling interval
(horizontal axis) in the SD, ID, and LD datasets (panels a, b, and c, respectively). White circles indicate values between 0.15 and 0.3. See
Fig. 1b and f for the identification of durations and scaling intervals within each matrix.

1 h in ID and LD), stronger underestimations could affect the
measure of precipitation because intense rainfall events are
more likely to be split between two consecutive time steps.
Finally, preliminary analyses (Figs. S2 and S3 in the Supple-
ment) showed that the largest GOF test rejections could also

be connected to the coarse instrument resolution of 15PD
series, which, similar to the temporal resolution effect, in-
duces larger measurement errors in the shortest duration se-
ries. Note that comparable resolution issues were previously
reported by some authors while estimating fractal and in-
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termittency properties of rainfall processes (e.g., Veneziano
and Iacobellis, 2002; Mascaro et al., 2013) and IDF (e.g.,
Blanchet et al., 2016).

Valid SS station proportions between 0.99 and 1 were al-
ways observed for GOF tests in ID and LD datasets, except
for some durations shorter than 3 h (ID dataset) or 6 h (LD
dataset). When considering both GOF and slope tests, with
the exception of some durations ≤ 1 h, the proportion of sta-
tions satisfying SS was higher than 0.9, and the majority of
scaling intervals (65, 90, and 98 % of the scaling intervals in
SD, ID, and LD, respectively) included at least 95 % of valid
SS stations. For each scaling interval, only valid SS stations
were considered in the rest of the analysis.

These findings were also confirmed by cross-validation ex-
periments. The proportion of valid SS stations resulting from
cross-validation slope and GOF tests were similar to, even
if slightly lower than, proportions displayed in Fig. 2 (see
Fig. S4 of the Supplement).

Figure 3 presents, for each scaling interval and duration,
the station average, εxd , of the normalized RMSE. These
graphics show that mean relative errors on intensity quan-
tiles did not generally exceed 5 % of the precipitation esti-
mates for 6-duration scaling intervals (Fig. 3, first column).
Greater errors were observed for durations at the border of
the scaling intervals. Not surprisingly, this result underlines
that, in a cross-validation setting, both the MSA estimation
ofH and theXd,ss approximation are less sensitive to the ex-
clusion of an inner duration of the scaling interval than to the
exclusion of d1 or dD . Conversely, the extrapolation under
SS of the Xd distribution is generally less accurate for dura-
tions at the boundaries or outside the scaling interval used to
estimate H . Moreover, as for the valid SS station proportion,
the performances of the model deteriorated with decreasing
d1 and with increasing scaling interval length, especially for
durations at the border of the scaling intervals. However, for
more that 70 % of 12-, 18-, and 24-duration scaling intervals,
εxd ≤ 0.1 for each duration included in the scaling interval.
Values of εxd ≥ 0.25 were observed for 15 min in 12-duration
or longer scaling intervals, pointing out the weaknesses of
the model in approximating short-duration extremes when
the scaling interval included durations ≥ 3 h.

4.2 Estimated scaling exponents and their variability

In order to evaluate the sensitivity of SS to the considered
scaling interval, the variability of H with d1 has been ana-
lyzed. Then, the spatial distribution of the scaling exponents
for each scaling interval was studied to assess the uncertainty
inH estimation and the dependence of SS exponents on local
geoclimatic characteristics.

Investigating the variability of the scaling exponent with
the scaling interval is particularly important since, if SS is
assumed to be valid between some range of durations, one
should expect thatH remains almost unchanged over the var-
ious scaling intervals included in this range. For this reason,

the variation 1H(j) of the scaling exponents computed for
overlapping scaling intervals with the same d1 but different
lengths was analyzed. For each station and d1,1H(j) was de-
fined as follows:

1H(j) =H(j)−H(6), (12)

where j = 12,18, or 24 represents the number of durations
considered in the specified scaling interval, H(j) is the corre-
sponding scaling exponent, and H(6) is the scaling exponent
estimated for the 6-duration scaling interval with the same
d1. If SS is appropriate over a range of durations, 1H(j) is
expected to be small for scaling intervals defined within this
range.

Figure 4i–iv show for all relevant scaling intervals the
median, interquantile range (IQR), and quantiles of order
0.1 and 0.9 of the 1H(j) distribution over valid SS stations.
Adding new durations to the scaling intervals, the median
1H(j) , as well as its IQR, increased for all d1. Nonethe-
less the median scaling exponent variation was generally
smaller than 0.05, except for a relatively small proportion
of stations. Equally important, |1H(j) | was generally cen-
tered on 0 and for all d1 ≥ 1 h more than 50 % of stations
had |1H(12) | ≤ 0.025 (SD dataset) and |1H(18) | ≤ 0.03 (ID
dataset) (Fig. 4, columns ii–iii).

For some stations, a dramatic difference could exist in IDF
estimations obtained with the different definitions of the scal-
ing interval. For instance, for the 24-duration scaling inter-
val “1–24 h” (ID dataset), the median 1H(24) was equal to
0.047 (Fig. 4b, column iv). For the interval “15 min–6 h” (SD
dataset),1H(24) was even larger, with a median scaling expo-
nent variation approximately equal to 0.087 and with 25 % of
stations having 1H(24) ≥ 0.11 (Fig. 4a, column iv). Finally,
changes inH values were also important when comparing 6-
and 12-duration scaling intervals when d1 ≤ 1 h (SD and ID
datasets) and in LD dataset (Fig. 4, column ii).

The median, Interquantile Range (IQR), and quantiles of
order 0.1 and 0.9 of the H distribution across stations, are
presented in Fig. 4, column (i), for each 6-duration scaling
interval. The smallest median H values were observed for
d1 ≤ 30 min in Fig. 4a, column (i), and for the longest d1s
in Fig. 4c, column (i). Scaling intervals beginning at 15 and
30 min also displayed the smallest variability across stations.
Although fewer stations were available for these intervals
(only 15PD stations were used and the number of valid SS
stations was smaller), this result is consistent with previous
reports in the literature demonstrating that H values are spa-
tially more homogeneous for short durations.

A larger dispersion of H values was observed when d1
ranged between approximately 1 and 5 h, in particular in the
SD dataset, for which the 10th–90th percentile difference al-
most covered the entire range of observed H values (Fig. 4,
column i). This result could be partially explained by the use
of scaling intervals with equally spaced durations. This im-
plies that the mean distance between the logarithms of dura-
tions in the scaling interval decreases as d1 increases. Hence,
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Figure 4. Column (i): median and relevant quantiles of the scaling exponent distribution over all valid SS stations for each 6-duration scaling
interval. Column (ii)–(iv): median and relevant quantiles of the distribution of the scaling exponent deviation 1H(j) (defined in Eq. 12). The
average number of valid SS stations over the scaling intervals (identified by their first duration, d1) is indicated at the top of each graph.

the OLS estimator of H used in the MSA regression may
have larger variance for longer d1, especially when scaling
intervals include few durations. Larger uncertainty may thus
have an impact on theH estimation for the longest d1 scaling
intervals of SD. However, as shown in the following sections,
H spatial distribution may also explain the greater variability
of the scaling exponent for d1 greater than a few hours.

The largest median H values were observed for d1 greater
than 10 h (Fig. 4b, column i) and lower than 2 days (Fig. 4c,
column i), with approximately half of the stations having
H ≥ 0.8. This means that a stronger scaling (i.e., larger H
values) is needed to relate extreme precipitation distributions
at approximately 12 h to distributions on daily and longer
scales. It may therefore be expected that the stations char-

acterized by H closer to 1 are located in geographical areas
where differences in precipitation distributions are important
among temporal scales included in these scaling intervals.

Examples of the spatial distributions of the scaling expo-
nent are given in Figs. 5 and 6 for the first and last d1 for
each interval length and dataset, respectively. Since only one
24-duration scaling interval was defined for both the SD and
ID datasets, only scaling intervals containing 6, 12, and 24
(Fig. 5) or 18 (Fig. 6) durations are presented. This avoids the
redundancy of showing the “15 min–6 h” (SD dataset) and
“1–24 h” (ID dataset) scaling intervals twice.

Generally, the scaling exponent displayed a strong spatial
coherence and varied smoothly in space, although a more
scattered distribution of H characterizes maps in Fig. 6. In

www.hydrol-earth-syst-sci.net/21/5823/2017/ Hydrol. Earth Syst. Sci., 21, 5823–5846, 2017



5834 S. Innocenti et al.: SS of extreme precipitation

1h − 12h

15  m −1.5  h

120° W 

100° W 
80° W 

40° N 

15  m −3  h

120° W 

100° W 
80° W 

40° N 40° N

15  m −6  h

120° W 

100° W 
80° W 

40° N 40° N

160° W 

140° W 

120° W 100° W 

80° W 

60° W 

40° N 

60° N 

1  h −12  h

40° N

60° 

1  h −24  h

160° W 

140° W 

120° W 100° W 

80° W 

40° N 

60°

40° N

60° N

1 h −6  h

140° W 

120° W 100° W 

80° W 

60° W 

60° N 

40° N

60° 

6  h −3  d

160° W 

140° W 

120° W 100° W 

80° W 

60° W 

40° N 

60°

40° N

60° N6  h −1.5  d

140° W 

120° W 100° W 

80° W 

60° W 

60°

40° N

60° N

(a
) 

S
D

 d
at

as
et

(b
) 

ID
 d

at
as

et
(c

) 
LD

 d
at

as
et

6   h −6  d

160° W 

140° W 

120° W 100° W 

80° W 

40° N 

60°60° N

40° N

Figure 5. Spatial distribution of the scaling exponent for the first (i.e., with minimum d1) 6-, 12-, and 24-duration scaling intervals (first,
second, and third column, respectively) for SD, ID, and LD datasets (panels a, b, and c, respectively). These scaling intervals correspond to
the first column of matrices in Figs. 2 and 3.

this last figure, the local variability ofH may be attributed to
the larger estimation uncertainties affecting longer d1 scaling
intervals, as previously mentioned. Meaningful spatial vari-
ability and clear spatial patterns emerged for d1 ≥ 1 h. In fact,
for stations located in the interior and southern areas of the
continent, a shift from weaker scaling regimes (smallerH ) to
higher H values was observed as d1 increases (e.g., second
and third rows of Fig. 5). On the contrary, a smoother evolu-
tion of H over the scaling intervals characterized the north-
ern coastal areas, especially in north-western regions, and the
Rockies, where H > 0.75 values were rarely observed even
for greater d1 values.

5 Regional analysis

Regional differences in scaling exponents were investigated.
Only the results for the 6-duration scaling intervals are pre-
sented, similar results having been obtained for longer scal-
ing intervals (see the Supplement, Figs. S6 and S7, for 12-

and 18-duration scaling intervals). Stations were pooled into
six climatic regions based on the classification suggested by
Bukovsky (2012) (see Fig. 7). Stations outside the domain
covered by the Bukovsky regions were attributed to the near-
est region. Regions with less than 10 stations were not con-
sidered (regions without colored borders in Fig. 7); regions
A1 (W_Tun) and A2 (NW_Pac) were kept separated since
only 14 stations were available in region A1 (W_Tun) for ID
and LD datasets.

To provide deeper insights about regional features of pre-
cipitation associated with specific scaling regimes, two vari-
ables related to the precipitation events observed within AMS
were also analyzed: the mean number of events per year,
Neve, and the mean wet time per event, Twet, contributing
to AMS within each scaling interval. For a given year and
station, annual maxima associated with different durations
of a given scaling interval were considered to belong to the
same precipitation event if the time intervals over which they
occurred overlapped. The mean wet time per event contribut-
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Figure 6. Spatial distribution of the scaling exponent for the last (i.e., with maximum d1) 6-, 12-, and 18-duration scaling intervals (first,
second, and third column, respectively) for SD, ID, and LD datasets (panels a, b, and c, respectively). These scaling intervals correspond to
the last column of matrices in Figs. 2 and 3.

ing to AMS, Twet, was defined as the mean number of hours
with non-zero precipitation within each event. Details on the
calculation of Neve, Twet, and the corresponding results are
presented in the Supplement (Sect. S2 and Figs. S5 and S6).

5.1 Regional variation of the scaling exponents.

Figure 8 shows the distribution of H within each region.
Three types of curves can be identified. First, curves in
Fig. 8a–c have a characteristic smooth S shape. Conversely,
Fig. 8d displays a rapid increase of H for scaling intervals
defined in ID and LD datasets until d1 = 2 days, preceded
and followed by two plateaus: one plateau for the longest d1
with remarkably high H values, and one for the shortest d1
with small H values. Finally, an inverse-U-shaped curve can
be seen in Fig. 8e and f, with globally high H values already
reached at sub-daily durations in dry regions (region E).

For d1 ≤ 24 h, Fig. 8a displays lower values of H than
Fig. 8e–f, meaning that smaller variation in AMS moments
are observed in A1 and A2 when the scale is changed. This

difference can be partially explained by the weaker impact
of convection processes in generating very short-duration ex-
tremes in north-west coastal regions with respect to southern
areas (regions E and F). For northern regions, in fact, the tran-
sition between short and long duration precipitation regimes
may be smoothed out by cold temperatures which moderate
short-duration convective activity, especially for W_Tun (re-
gion A1). The topography characterizing the northern Pacific
coast may then explain the smoothing effect for the curve of
region NW_Pac (A2). In this case, in fact, the precipitation
rates on daily and longer scales are enhanced by the oro-
graphic effect acting on synoptic weather systems coming
from the Pacific Ocean (Wallis et al., 2007).

Similarly, mountainous regions in C (Fig. 8c) displayed
the smallest variations of H over d1, indicating that anal-
ogous scaling regimes characterize both short- and long-
duration scaling intervals. Again, this may be related to the
important orographic effects of precipitation in these regions
that are involved in the generation of extremes for both sub-
daily and multi-daily timescales. The mean number of events
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Figure 7. Climatic regions of Bukovsky (2012) (grey borders) and regions defined for this analysis (regions A1 to F in the legend; colored
borders). Abbreviations for each region are in parenthesis.

per year in regions A and C was higher than in regions E–F,
in particular for SD scaling intervals, and displayed steeper
decreases with increasing d1 (Fig. S5a and c in the Supple-
ment).

The main differences between regions B and A were the
stronger scaling regimes observed in B, which were mainly
due to contributions from stations located in the south-
eastern part of the E_Bor region (not shown). For scaling in-
tervals in the ID dataset, region B was also characterized by
the highest mean number of events per year, with most of the
stations presenting Neve > 2 for d1 = 1 h and d1 = 2 h and
sharp decreases of Neve with increasing d1 (Fig. S5b in the
Supplement). Moreover, a remarkably large range of Neve
was observed for 1 h≤ d1 ≤ 6 h, suggesting that B may be
highly heterogeneous.

Two distinct scaling regimes can be observed for SW_Pac
(region D) at, respectively, d1 ≤ 3 h (SD dataset) and d1 ≥

2 days (ID dataset) (region D in Fig. 8d). These plateaus
may be interpreted by recalling that 1−H =Hdepth. On the
one hand, the low and constant H observed for d1 ≤ 3 h in-
dicates that the average precipitation depth increases with
duration at the same growth rate for all these intervals. On
the other hand, H approximately equal to 0.9 at daily and

longer durations demonstrates that the average precipita-
tion depth associated with long-duration annual maxima re-
mained roughly unchanged when the duration increased from
1.5 to 7 days (λHdepth ≈ 1 in Eq. 3). This, along with the fact
that the scaling exponent increased almost monotonically for
1 h≤ d1 ≤ 24 h (ID and LD datasets), suggests that extremes
at durations shorter than∼3 h (SD dataset) drive annual max-
ima precipitation rates on longer scales, with the rapid and
continuous decay in mean intensity caused by the increasing
size of the temporal scale of observation.

For SW_Pac (region D), the relative absence of long-
lasting weather systems able to produce important extremes
for long durations was confirmed by the analysis of Neve and
T wet (see Figs. S5 and S6 of the Supplement). In fact, the
mean number of events per year was relatively high for short
durations (the median Neve is equal to 1.82 for d1 = 15 min
and to 1.4 for d1 = 1 h), while it rapidly decreased below 1.1
events per year for d1 ≥ 6 h (ID dataset) and for d1 ≥ 18 h
(LD dataset). With the exception of d1 = 6 h (LD dataset),
at least 90 % of SW_Pac stations had Neve ≤ 1.25 for all
d1 > 3 h. In other regions, median Neve were never smaller
than 1.1 for the SD and ID datasets, except for d1 ≥ 12 h in
region E.
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Figure 8. Median and interquantile range (IQR) of the scaling exponent distribution over valid SS stations within each region of Fig. 7 for
6-duration scaling intervals for the SD (left curve), ID (central curve), and LD (right curve) datasets. For each region, the mean number of
valid SS stations over the scaling intervals is indicated in brackets in the legend. See Fig. 7 for region definition.

These results suggests that both the distinctive topography
of the west coast and the characteristic large-scale circulation
of the south-west areas of the continent are crucial factors
determining the transition between the two scaling regimes
in region D.

Median H values displayed inverse-U shapes for the re-
maining regions with very small IQR, despite the high num-
ber of valid SS stations: a slow transition from lower to
higher H is observed approximately between 1 and 12 h (re-
gion E) or 30 h (region F). The strongest scaling regimes
were observed for 1 h≤ d1 ≤ 2 days in arid western regions
(Fig. 8e), while median H values greater than 0.8 were only
observed for approximately 6 h≤ d1 ≤ 2 days in more humid
areas (Fig. 8f). In both region E and F, very short-duration ex-
tremes are typically driven by convective processes, while a
transition to different precipitation regimes may be expected
between 1 h and a few hours. However, H shows a smoother
increase in Fig. 7f with respect to Fig. 7e. This may indi-

cate that in eastern areas (region F) sub-daily duration ex-
tremes are more likely associated with embedded convective
and stratiform systems, or to mesoscale convective systems,
which are less active in western dry areas of region E (Kunkel
et al., 2012). On the contrary, differences between short- and
long-duration extreme precipitation intensity seem stronger
for south-western dry regions (Fig. 8e), where less intense
summer extremes are expected compared to eastern areas
(see Supplement, Fig. S1). In particular, H tended to scatter
in a range of higher values for approximately 1 h≤ d1 ≤ 12 h,
indicating that precipitation intensity moments strongly de-
crease as the duration increases.

In summary, these results suggest a regional effect on pre-
cipitation scaling of both local geographical characteristics,
such as topography or coastal effects, and general circulation
patterns. In general, the weakest scaling regimes were ob-
served for short d1 and along the west coast of the continent
and seem to be connected to scaling intervals and climatic ar-
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eas characterized by homogeneous weather processes. Low
H values correspond in fact to small variations in AMS dis-
tribution moments. On the contrary, stronger scaling regimes
were observed for longer d1 in the other regions of the study
area. This indicates that important changes occur in AMS
moments across duration and, thus, in extreme precipitation
features. According to these results, it would be important
to take into account the climatological information included
in the scaling exponent to improve SS and IDF estimation.
Even more important, these results give useful guidelines for
modeling the spatial distribution of H , which could help for
the definition of IDF relationships at non-sampled locations.

6 Simple scaling GEV estimation

Results presented in this section are limited to a descriptive
analysis of GEV parameter estimates for 6-duration scaling
intervals. Similar results were generally obtained for 12-,18-,
and 24-duration intervals (see Supplement, Figs. S10–S16).
An assessment of the potential improvements carried out by
simple scaling GEV (SS GEV) models with respect to non-
SS GEV models is also presented.

In our study, the PWM procedure was applied to esti-
mate SS GEV parameters µ∗, σ∗, and ξ∗ (Eq. 7) from xd∗

(Eq. 9). For each duration d, PWM were also used to estimate
non-SS parameters µd , σd , and ξd from each of the non-SS
samples xd . Preliminary comparisons of various estimation
methods (PWM, classical ML estimators, and GAM-ML; see
Sect. 2.2), showed that PWM slightly outperformed the other
methods.

Quantiles estimated from the SS and the non-SS GEV
were compared with empirical quantiles. Global perfor-
mance measures, such as RMSE, were computed to evalu-
ate the overall fit of the estimated GEV to the empirical Xd
distributions. In particular, mean errors between SS and non-
SS quantile estimates and empirical quantiles were compared
using the relative total RMSE ratio,Rrmse, defined as follows:

Rrmse =

[
Rss−Rnon-ss

]
Rnon-ss

, (13)

where

Rmod =

D∑
d=d1

εd,mod

xd
(14)

represents the normalized mean square difference between
model and empirical quantiles of order p > 0.5 for all the
durations included in the scaling interval. See Eq. (10) for
the definition of εd,mod for each station.

6.1 Estimated SS GEV parameters

Figure 9 presents the distributions over valid SS stations of
the SS GEV parameters rescaled at d∗ = 1 h (Fig. 9a and b)
and d∗ = 24 h (Fig. 9c).

For the SD dataset, even for scaling intervals which did not
include the reference duration d∗, the µ∗ and σ∗ distributions
appeared to be similar to the non-SS µd and σd distributions
(Fig. 9, first row). Similarly, for 6 h≤ d1 ≤ 2 days in the LD
dataset, the SS location and scale parameter distributions are
in relatively close agreement with the corresponding non-SS
parameter distributions. Conversely, for the ID dataset, both
µ∗ and σ∗ distributions are more positively skewed than the
corresponding non-SS distributions. Finally, for d1 ≥ 2 days
in the LD dataset, µ∗ and σ∗ had distributions shifted toward
lower values than µ24 h and σ24 h. Moreover, the relative dif-
ferences 1µ = (µ∗−µd)/µd and 1σ = (σ∗− σd)/σd were
estimated for each station, duration, and scaling interval. Two
important results came out of this analysis (see Figs. S11
and S12 of the Supplement). On the one hand, median values
of 1µ and 1σ were generally smaller than ±5 and ±10 %,
respectively. On the other hand, 1σ showed large positive
values when ξd = 0 (i.e., Gumbel distributions), while small
1σ < 0 were estimated when ξd 6= 0 (not shown for concise-
ness). These results are interesting since the estimation of the
scale parameter σ of a GEV distribution may be biased when
the shape parameter is spuriously set to zero (ξ = 0). Hence,
while non-SS µd values can be considered to be accurate
estimates of the Xd location parameter, small uncertainties
should be expected for the scale parameter only when the ξd
value is correctly assessed. In addition, µ∗ and σ∗ displayed
a strong spatial coherence. Their spatial distributions were
characterized by an obvious north-west to south-east gradi-
ent (Fig. 10 shows examples for the scaling intervals 15 min–
1.5 h, 1–6 h, and 6–36 h).

Notable differences between SS GEV and non-SS GEV
estimates were observed for the shape parameter (Fig. 9,
third column, and Fig. 11). Firstly, for cases that have
shape parameters strictly different from zero (third column
of Fig. 9), ξ∗ absolute values were smaller than non-SS ξd
absolute values. Secondly, the distributions of ξ∗ across sta-
tions were generally more peaked around their median value
than the corresponding non-SS distributions. Finally, for the
non-SS model the majority of stations had shape parame-
ter ξd non-significantly different from zero, while the frac-
tion of SS GEV shape parameters ξ∗ 6= 0 was always greater
than 39 % (asymptotic test for PWM GEV estimators applied
at level 0.05; Hosking et al., 1985). In particular, for each
duration, non-SS models estimated light-tailed distributions
(i.e., ξd = 0) for more than 85 % of the stations, except that
for d = 15 min and d = 30 min (Fig. 11, first column). Con-
versely, for all scaling intervals with d1 > 15 min, SS GEV
shape parameters were significantly different from zero for
40 to 45 % of valid SS stations (Fig. 11, second column).
Moreover, when using scaling intervals of 12 durations or
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Figure 9. Distribution over valid SS stations of SS GEV parameters (grey and black lines) for 6-duration scaling intervals and non-SS GEV
parameters (red solid and dashed lines) for reference durations. Location and scale parameters (first and second column, respectively) are
scaled at d∗ = 1 h (SD and ID datasets) and d∗ = 24 h (LD dataset). Distributions for the shape parameter (third column) are presented for
ξ > 0 and ξ < 0, excluding cases where ξ = 0 (Gumbel distribution).

more, the proportion of ξ∗ > 0 was always important (greater
than 35 % for all 18- and 24-duration scaling intervals; see
the Supplement, Fig. S10).

The previous results suggest that pooling data from several
durations may effectively reduce the sampling effects im-
pacting the estimation of ξ , allowing more evidence of non-
zero shape parameters, and, in many cases, of heavy-tailed
(ξ > 0) AMS distributions. This conclusion is consistent
with previous reports, namely that 100- to 150-year series are
necessary to unambiguously assess the heavy-tailed charac-
ter of precipitation distributions (e.g., Koutsoyiannis, 2004b;
Ceresetti et al., 2010). These studies typically reported val-
ues of ξ ≈ 0.15 (e.g., Koutsoyiannis, 2004b), which are close
to ξ∗ values estimated in the present analysis for cases with
ξ∗ > 0.

However, uncertainties on ξ∗ estimates remain important.
Support for this comes from the spatial distribution of ξ∗,
which was still highly heterogeneous, with local variability
dominating on small scales (e.g., Fig. 10, third column).

6.2 Improvement with respect to non-SS models

The proportion of series for which the SS model RMSE,
εd,ss, was smaller than the non-SS GEV RMSE, εd,non-ss,
was analyzed (see the Supplement, Fig. S11). For cases with
non-zero ξ∗, more than 60 % of stations had εd,ss < εd,non-ss
over most scaling intervals and durations. The 6-duration
scaling intervals “15 min–1 h 30 min” (SD dataset) and “1–
6 h” (ID dataset) showed the largest fractions of stations
with increasing errors. On the contrary, increasing errors
(εd,ss > εd,non-ss) were observed for all scaling intervals and
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grey symbols indicate Gumbel distributions, ξ∗ = 0) parameters scaled at d∗ = 1 h for the first 6-duration scaling interval (i.e., interval with
minimum d1) of SD (a), ID (b), and LD (c) datasets.

durations for most stations (generally more than 70 %) with
ξ∗ = 0.

Figure 12 presents the Rrmse distribution over valid SS sta-
tions. When the SS shape parameters were not significantly
different from zero (Fig. 12, second column), the relative in-
creases in total RMSE were usually smaller than 0.1 in SD
dataset, and only scaling intervals with d1 < 1 h had greater
Rrmse. For the ID and LD datasets, the medians of the total
relative RMSE ratio distributions were smaller than 0.05 for
d1 ≥ 4 h and d1 ≥ 24 h, respectively. Furthermore, more than
90 % of stations had Rrmse < 0.125 for d1 ≥ 6 h (ID dataset)
and d1 ≥ 30 h (LD dataset). When ξ∗ 6= 0, an increase of the
mean error in high-order quantile estimates was observed
for d1 = 15 min (SD dataset) and d1 = 1 h (ID dataset) for
at least half of the stations (Fig. 12, first column; note the
different scale on the y axis). However, for all other d1, neg-
ative Rrmse values were observed for the majority of stations
for all scaling intervals, with a median reduction up to 30 %

of the mean error. Note that also for 12- and 18-duration scal-
ing intervals the median Rrmse where generally negative for
d1 > 1 h and ξ∗ 6= 0 (Figs. S14 and S15 of the Supplement).
Conversely, Rrmse increased for the majority of stations in all
24-duration scaling intervals with d1 < 12 h (Fig. S17 of the
Supplement).

Note also that no particular spatial pattern characterized
the Rrmse estimates.

7 Discussion and conclusion

This study investigated simple scaling properties of extreme
precipitation intensity across Canada and the United States.
The ability of SS models to reproduce extreme precipita-
tion intensity distributions over a wide range of sub-daily to
weekly durations was evaluated. The final objective was to
identify duration intervals and geographical areas for which
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the SS model can be used for an efficient production of IDF
curves.

The validity of SS models was empirically confirmed for
the majority of the scaling intervals. In particular, based on
the comparison of SS distributions to empirical quantiles,
the hypothesis of a scale-invariant shape of the Xd distri-
bution held for all duration intervals spanning from 1 h to
7 days. Less convincing results were obtained for durations
shorter than 1 h, especially for the longest scaling intervals
(24-duration intervals). One possible explanation is that the
coarse instrument resolution of the available 15 min series
may strongly impact both the validation tools (for instance,
GOF tests) and SS estimates. These results provide impor-
tant operative indications concerning the inner and outer cut-
off durations for AMS scaling and show the importance of a
deeper analysis to evaluate the impact of dataset character-
istics (e.g., their temporal and measurement resolutions, or
the series length) on the scale-invariant properties of extreme
precipitation.

The majority of the estimated scaling exponents ranged
between 0.35 and 0.95, showing a smooth evolution over the
scaling intervals and a well-defined spatial structure. Six ge-
ographical regions, initially defined according to a climato-
logical classification of North America into 20 regions, dis-
played different features in terms of scaling exponent values.
Specifically, distinct median values of H were observed for
the various geographical regions, each characterized by a dif-
ferent precipitation regime. This is consistent with results re-
ported in the literature for some specific regions and smaller
observational datasets (e.g., Borga et al., 2005; Nhat et al.,
2007; Ceresetti et al., 2010; Panthou et al., 2014, and refer-
ences therein). Moreover, while small and smooth changes
ofH over the scaling intervals were observed in regions con-
taining the majority of stations, one region, SW_Pac, dis-
played two dramatically distinct scaling regimes separated
by a steep transition occurring between a few hours and 24 h.
These results limit the applicability of SS models in SW_Pac,
and were connected to the local features of intense precipita-
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Figure 12. Distribution of the relative total RMSE ratio, Rrmse, for ξ∗ < 0 (first column), ξ∗ = 0 (second column), and ξ∗ > 0 (third column)
for 6-duration scaling intervals in SD (a), ID (b), and LD (c) datasets. The average number of valid SS station over the scaling intervals is
indicated in the right-top corner of each graph.

tion events by the analysis of the mean number of events per
year and the mean wet time of these events.

Weak scaling regimes, characterized by relatively smallH
values (H close to 0.5), were generally observed for scal-
ing intervals containing very short durations (e.g, less than
2 h) and for regions on the west coast of the continent (re-
gions A1, A2, and D; see Fig. 8). For these scaling inter-
vals and regions, we can expect that extreme precipitation
events observed at various durations will have similar statisti-
cal characteristics, being governed by homogeneous weather
processes.

The interpretation of high H values (e.g., H > 0.8), ob-
served between 1 and several days, depending on the region,
is more complex. These scaling regimes correspond to mean
precipitation depth that varies little with duration. This sug-
gests an important change in precipitation regimes occurring
at some durations included in the scaling interval. One in-
teresting example was region SW_Pac (region D) for scaling

intervals of durations longer than 1 day. In this case, the anal-
ysis of the mean number of events per year sampled in AMS
suggested that very few long-duration extreme events were
produced by large-scale dynamic precipitation systems.

For scaling intervals of durations longer than 4 days,
scaling exponents seemed to converge to approximately 0.7
for all regions, except west-coast regions (regions A1, A2,
and D).

These results suggest that SS represents a reasonable
working hypothesis for the development of more accurate
IDF curves. This may have important implications for in-
frastructure design and risk assessment for natural ecosys-
tems, which would benefit from a more accurate estimation
of precipitation return levels. In addition, the spatial distri-
bution of the scaling exponent and its dependency on clima-
tology should be taken into account when defining SS dura-
tion intervals for practical estimation of IDF. The accuracy
of the SS approximation may in fact depend on the range
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of considered temporal scales. Equally critical, estimated H
values were found to gradually evolve with the considered
scaling intervals. In this respect, interesting extensions of the
analysis should consider methods for the quantification of
the uncertainty in H estimations as well as the possibility
of modeling the scaling exponent as a function of both the
observational duration and the AMS distribution quantile or
moment order, i.e., by the use of a multiscaling framework
for IDFs. Equally important, the events sampled by the AMS
also showed different statistical features within different ge-
ographical regions, and some specific results (e.g., for the
SW_Pac region) stimulate the interest for an analysis of the
scaling property of extreme precipitation by the use of a tem-
poral stochastic scaling approach.

The evaluation of SS model performances under the as-
sumption of GEV distributions for AMS intensity was then
performed. Results indicate that the proposed SS GEV mod-
els may lead to a more reliable statistical inference of ex-
treme precipitation intensity than that based on the conven-
tional non-SS approach. In particular, a better assessment of
the GEV shape parameter seems possible when pooling data
from several durations under the scaling hypothesis. The use
of the SS approximation may introduce biases in high quan-
tile estimates when AMS distributions move drastically away
from perfect scale invariance (short durations and/or longest
scaling intervals). Nonetheless, decreases in the SS GEV
RMSE with respect to non-SS GEV models for d1 longer
than a few hours and/or scaling intervals shorter than 24 du-
rations indicate that quantile errors in IDF estimates can be
generally reduced.

Caution is advised when interpreting these results due to
the fact that high-order empirical quantiles were used as
reference estimates of true Xd quantiles, which could be a
misleading assumption, especially when available AMS are
short. Moreover, two important limitations of the presented
SS approach must be stressed. Firstly, a more comprehensive
assessment of the scaling exponent uncertainty and of the in-
fluence of dataset characteristics on the estimation of AMS
simple scaling is recommended for a reliable estimation of
simple scaling IDF curves. Secondly, the proposed model re-
lies on the implicit hypothesis of stationarity of AMS over
the observed period while growing evidence supports the on-
going changes in extreme precipitation intensity, frequency,
duration, and spatial patterns as a result of climate change
(e.g., Hartmann et al., 2013; Westra et al., 2014; Donat et al.,
2016). In particular, short-duration extreme rainfall is ex-
pected to respond to global warming with a different sen-
sitivity to temperature than those expected on daily or longer
timescales (e.g., Westra et al., 2014; Lenderink and Attema,
2015; Wasko and Sharma, 2017; Barbero et al., 2017), which
implies a change in the temporal scaling properties of precip-
itation over time.

Hence, considering these limitations and our general re-
sults, any future extension of this study should investigate
the possibility of introducing spatial information in scaling

models as well as the characterization of the possible evolu-
tion of the scaling exponent in a warmer climate in order to
identify valuable approaches allowing non-stationarity of SS
model parameters.
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