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Abstract A number of non-stationary models have been developed to estimate extreme events

as function of covariates. Quantile Regression (QR) model is a statistical approach intended to

estimate, and conduct inference about the conditional quantile functions. In this article, We fo-

cus on the simultaneous variable selection and parameter estimation through penalized quantile

regression. We conducted a comparison of regularised Quantile Regression model with B-Splines

in Bayesian framework. Regularisation is based on penalty and aims to favour parsimonious mo-

del, especially in the case of large dimension space. The prior distributions related to the penalties

are detailed. Five penalties (Lasso, Ridge, SCAD0, SCAD1 and SCAD2) are considered with their

equivalent expressions in Bayesian framework. The regularized quantile estimates are then compa-

red to the maximum likelihood estimates with respect to the sample size. A Markov Chain Monte

Carlo (MCMC) algorithms are developed for each hierarchical model to simulate the conditional

posterior distribution of the quantiles. Results indicate that the SCAD0 and Lasso have the best

performance for quantile estimation according to Relative Mean Biais (RMB) and the Relative

Mean- Error (RME) criteria, especially in the case of heavy distributed errors. A case study of the

annual maximum precipitation at Charlo, Eastern Canada, with the Pacific North Atlantic climate

index as covariate is presented.

Keywords : asymmetric Laplace distribution ; Bayesian inference ; B-splines ; Lasso ; quantile re-

gression ; Ridge ; SCAD.
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1 Introduction

Least absolute deviation regression (LADR) allows to estimate the conditional median function.

Compared to ordinary least square (OLS), theLADRhas the advantage to be more robust to out-

liers. Koenker and Basset (1978) generalized the idea ofLARDand introduced quantile regression

(QR) to estimate the conditional quantile function given the covariates.QRhas attracted researcher

and has undergone several development and been applied to many areas (Huang, 2015).

For given probabilityp ∈]0,1[, the quantile regression function is defined as :Q̂p = gβ̂(xi) with

β̂ =

n∑

i=1

ρp(yi − gβ(xi)); β ∈ Rd (1)

wherexi ∈ Rd, i = 1, ...., n the vector of covariates andgβ : Rd → R is the parametric function and

ρp is the loss function.

ρp(t) = t(p− 1(t<0)) =





tp, if t ≥ 0

t(p− 1), if t < 0
(2)

with p ∈]0,1[, and asymmetric weight on positive and negative residuals. Since its first introduc-

tion, QRhas attracted researcher and has been applied in many area such as finance to estimate the

value at risk (Engel and Manganelli, 2004) ; ecology in the presence of complex interaction bet-

ween covariates (Cade and Noon, 2003) ; economics (Koenker and Hallock 2001) among others.

However the use of theQRmodels in somme areas, such as hydro-meteorological studies, remains

very limited.

In classicalQRmodel, the parameter are estimated by solving the optimization problem 1. Indeed,

Koenker and Bassett (1978) show that minimizing the loss function for given sample, leads to the

pth regression quantile. they converted problem 1 to linear program and give a detailed procedure

to solve it. Even in the absence of any model error, Koenker and Bassett (1978) show the normality

of estimatorŝβ and give its asymptotic variance.

Yu an Moyeed (2001) suggested the use of the asymmetric Laplace distribution (ALD) as residual
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distribution and show the equivalence between the quantile regression optimisation problem and

the maximum likelihood estimates of the ALD distribution. This representation of theQRestima-

tion problem offers several advantages that are also associated with the Generalized Linear Model.

Indeed,yi = xT
i β+εi, where (εi)i=1,...,n are Independent and identically distributed (iid) with standard

Asymmetric Laplace Distribution (ALD). This model can then be developed in a fully Bayesian

framework.

When estimating the parameters of theQRmodel without any constraint, the estimates often have

low bias but large variance. As in the case of Ordinary Least Squares (OLS) approach, Shrinkage,

or setting to zero some coefficients, can improve the prediction accuracy. This is equivalent to the

selection of a subset of factors with the strongest effects.

Tibshirani (1996) proposed ”Least Absolute Shrinkage and Selection Operator” (Lasso) to have

a continuous process for parameter shrinkage and stable prediction. Indeed, the alternative based

on variable selection may lead to an unstable model because of dichotomic decision to retain or

remove a factor from the model. Very different models could be selected due to small change in

the data.

Shrinkage allows to stabilize the solution especially when the dimension ofβ is large. Most po-

pular shrinkage approaches add a regularization penalty to the objective function. The principal

regularization techniques uses different penalties, for example theLassoestimator (Tibshirani,

1996) uses theL1 norm based penalty||β||1 =
∑d

k=1 |βk|. The Ridge uses theL2 norm based penalty

||β||2 =
∑d

k=1 β
2
k (Friedman and Hastie, 2000). The elastic net, uses a mixture of theL1 Lasso andL2

(Ridge) penalties.

For a given penaltyPl(β), the quantile regression estimation corresponds to the resolution of opti-

mization problem :

β̂ = argminβ∈Rd

n∑

i=1

ρp(yi − gβ(xi)) + λPl(β) (3)

Whereλ is a tuning parameter.
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2 Bayesian Quantile Regression

2.1 The Asymmetric Laplace Distribution

As mentioned in the introduction, Yu and Moyeed (2001) suggest the use of the Asymmetric

Laplace Distribution (ALD) where the shape parameter corresponds to the probabilityp of the

quantile to be estimated. The probability density functionpd f of the ALD(μ, σ, p) distribution is

given by :

f (y) = p(1− p) exp(−
1
σ
ρp(y− μ)) (4)

For a given sample (yi)i=1,...,n and (x
′

i )i=1,...,n whereyi ∈ Rd is a realization of the vector of covariates,

and if (yi |gβ(xi))i=1,...,n areiid, with ALD(g(xi), σ, p). Then the likelihood is given by :

ln(y) = pn(1− p)n exp




−

1
σ

n∑

i=1

ρp

(
yi − gβ(xi)

)




(5)

Note that whenyi |g(xi) ∼ ALD(g(xi), τ, p) then thep− quantileis : Qp = g(xi).

The log-likelihood is given by :

log(ln(y)) = log pn(1− p)n −
1
σ

n∑

i=1

ρp

(
yi − gβ(xi)

)

This maximisation is equivalent to the minimisation of
∑n

i=1 ρp

(
yi − gβ(xi)

)
. This equivalence al-

lows to make the inference for theQRproblem through statistical properties of theALD distribu-

tion. This pseudo-likelihood is considered by Yu and Moyeed (2001) to link theQR in Bayesian

framework to the frequentist approach. They used an improper priorπ(β) ∝ 1 on the regression

parameterβ, and showed that the posterior distribution is proper. The posterior mode, which corres-

ponds to the Bayesian estimator under absolute loss function, is the same as frequentist solutions.

2.1.1 ALD and regularization

In Bayesian framework, the regularization techniques can be introduced through the parameter

priors. For example, in the case of Lasso penalty (Equation 3), Tibshirani (1996) suggests that
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Lasso estimate can be interpreted as posterior mode, when the regression parameter haveiid La-

place priors (i.e double-exponential (DE)).

Park and Casella (2008) consider a fully Bayesian analysis using a conditional Laplace prior. For

the ridge-penalty, the corresponding prior is a scaled student distribution. Fahrmeir and al. (2010)

presented a review on the regularization penalties and related Bayesian priors. Other examples of

frequent regularization penalties see (Zou, 2006 ; Kneib et al., 2009 ; Bondell and Reich, 2008).

Hanwen and Chen (2015) propose a Bayesian framework to combine weighted composite quan-

tile and Lasso regularization together to perform estimation and variable selection simultaneously

(Alhamzawi, 2015).

2.1.2 Non-linear dependence

We consider hereafter that the regression curve is modelled with a B-spline function of given

degreel and m knots at the locationsγk, k = 1, ...,m. Then the quantile regression model for

probability p ∈]0,1[ can be represented by :

Yi = gβ(xi) + εi , i = 1, ....., n (6)

Where(εi)i=1,...,n are theiid draws fromALD(0, σ, p).

Under a B-spline representation of the fitting curve of theQR model, 6 can be written as linear

model :

gβ(x) = β0 +

m+l∑

j=1

β jBj,l(x), (7)

where,

m the numbers of knots,l the degree,β j is the control points and in a regression setting will be

the coefficients of the regression model,B is the spline basis function with :
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– for j = 0,m− 2

Bj,0 =





1 si xj ≤ x ≤ xj+1

0 else

(8)

– for j = 0,m− l − 2

Bj,l(x) =
x− xj

xj+d − xj
Bj,l−1(x) +

xj+l+1 − x

xj+l+1 − xj+1
Bj+1,l−1(x) (9)

We denote :Bj(x; q) the value at pointx of jth B-spline with the knots are equidistant and the

dimension of the parameters’ space isd = m+ l + 1.

In the following sections, we present the penalties, for a regularized inference, with their cor-

responding prior distribution for Bayesian implementation.

2.2 Lasso penalty

2.2.1 Lasso prior

The Lasso is commonly used as regularization penalty and can be represented, in a Bayesian

framework, as a double exponential (DE) prior distribution (Park and Casella, 2008) :

π(β) =
d∏

j=1

λ

2
exp[−λ|β j |] (10)

whereλ is regularization parameter.

The DE distribution prior can also be presented as two-level hierarchical model with (β j |τ) j=1,...,d

are independent normal distribution andτ2|λ has an exponential distribution withpd f :

π(τ2|λ) =
λ2

2
exp[−λ2τ2/2] (11)

The (τ) is assumed to be the same for all the B-spline parameters. The marginal posterior distribu-

tions will be implicitly dependent.
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2.2.2 Bayesian hierarchical model for Lasso

The hierarchical model corresponding to the quantile regression model with Lasso penalty is as

follows :

Model

y ∼ ALD(gβ(x), σ, p), for p ∈]0,1[,

Penalty

pl(β) =
d∑

j=1

| β j | (L1 − norm)

Prior distribution

β j | τ ∼ N(0, τ2), j = 1, ...., d

τ2 | λ ∼ Exp{
λ2

2
}

λ2 ∼ Gam(a,b)

Posterior distribution

π(β, τ, λ | y) ∝
n∏

i=1

fALD(yi; gβ(x), σ, p)
p∏

j=1

π(σ)π(β j | τ
2)π(τ2 | λ)π(λ2).

The mixture of the first two priors define the Double-exponential distribution as prior of the para-

meters (β j) j=1,...,d and prior distribution of the parameterλ is deduced from the conjugate formula-

tion of an Exponential distribution.

The hyper-parametersa andb should be chosen adequately by model selection criteria. Generally,

in the absence of any additional prior distribution, we attribute to the parametersa andb values

that leads to a large variance of the parameterλ in order to cover the entire parameter space. The

selection of these hyper-parameters, will be illustrated in the simulation study and the case study

with meteorological data.
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2.2.3 MCMC Algorithm for the Lasso prior

For given initial values ofλ(1), τ(1, :) and fixed values of the hyper-parametersa andb and the

uth iteration values, then the (u+ 1)th iteration is given by:

Algorithm 1 Lasso

Step 1 : initial values
λ(1); τ(1) ;
for k = 2 : N do
Step 2 : Proposal distributions
Generateλ0 ; fromN(λ(k− 1), σ2

λ)
for j = 1 : d do

Generateτ0 from Exp(λ2/2) ;
Generateβ0 fromN(0, τ02) ;

end for
Step 3 : Calculate the Hastings ratio

r(β(k− 1), β0) =
π(β0 | y,X, σ, p, τ0, λ0)

π(β(k− 1) | y,X, σ, p, τ(k− 1), λ(k− 1))

where

π(β | y,X, σ, p, τ, λ) = fALD(y | gβ(x), σ, p)π(β | τ)π(τ2 | λ2/2)π(λ2; a,b)

Accept the proposed moveβ0 with probability

α(β(k− 1), β0) = min(1, r(β(k− 1), β0))

or remain in the actual stateβ(k− 1) with probability (1− α(β(k− 1), β0)).
end for
With N the length of the Markov Chain andd the dimension of the parameter space
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2.3 Ridge penalty

2.3.1 Ridge prior

As stated previously, the ridge regression the penalty correspond to thel2 − norm.

Pl(β) =
d∑

j=1

β2
j

The Bayesian formulation is then given by the posterior distribution :

l(β|data) ∝ log(pn)(1− p)n) −
∑

i=1

nρp(yi − gβ(xi)) − λ
d∑

j=1

β2
j

Hence the last term is equivalent to a normal prior. Usually, the smoothing parameterλ is given by

λ = 1
τ2

(Fahmeir et al. 2010)). Criteria such as cross validation could be considered for smoothing

selection.

For computational and analytical purposes, the ridge penalty prior can be present as a two-level hie-

rarchical model (Griffin and Brown, 2005). The first level, assumes that the coefficientsβ j follows

independent normal distributions with mean zero and unknown variancesτ2. (suppose without loss

of generalityβ0 = 0)

β|τ ∼
d∏

j=1

N(β j |0, τ
2) (12)

At the second level, the variancesτ2 are assumed to follow the Inverse Gamma distributionIG(ν,S2)

then :

π(τ | ν,S2) ∝ (τ2)−ν/2+1 exp{−νS2/τ2} (13)

Note that the marginal distribution of (β j) j=1,...,d will be given by a student t-distribution.
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2.3.2 Bayesian hierarchical model for Ridge

Model

y ∼ ALD(gβ(x), σ, p), for p ∈]0,1[,

Penalty

pλ(β) = λ
d∑

j=1

β2
j with L2 − norm

Prior distributions

β j | τ ∼
d∏

j=1

N(β j | 0, τ
2),

τ2 ∼ IG(ν/2,S2).

Posterior distribution

π(β, τ | y, ν,S2) ∝
n∏

i=1

fALD(yi | gβ(x), σ, p)
d∏

j=1

π(β j | τ
2)π(τ2 | ν,S2)

The MCMC algorithm is equivalent to that given for the Lasso. It will be based on the conditional

distribution of the posterior distribution ofβ given data and hyper-parameters.
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Algorithm 2 Ridge

Step 1 : Initial values

As in the Lasso algorithm
for k = 2 : N do
Step 2 : Proposal distributions
Generateλ0 ; fromN(λ(k− 1), σ2

λ)
Generateτ0 from IGam(λ2/2) ;
Generateβ0 fromN(0, τ02Id) ;

whereId is the identity matrix of dimensiond.
end for

Step 3 : Calculate the Hastings ratio

As in the Lasso algorithm

2.4 SCAD penalty

2.4.1 SCAD with fixed parameter

The Smoothimg Clipped Absolute Deviation (SCAD) penalty is defined by :

Pλ(0) =0

and

P′λ(| β j |) =λI (| β j |≤ λ) +
aλ− | β j |

a− 1
I (λ ≤| β j |≤ λa)

wherea can be chosen using cross validation or generalize cross validation. Fan and Li (2001)

show, through simulation study, thata = 3.7 is optimal.

Then the SCAD penalty is given by :

Pλ(| β j |) =





−λ | β j | if 0 ≤| β j |< λ

(a2−1)λ2−(|β j |−aλ)2

2(a−1) if λ ≤| β j |≤ aλ

1
2(a+ 1)2λ2 if | β j |> aλ
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According to Craven and Wahba (1978),a andλ can be estimated by cross validation criterion. Fan

and Li (2001) proposed a prior distribution for the vector of the parametersβ (of Rd) conditional

to a andλ. They assumed thatβ ∼ N(0, (aλ)2Id) whereId is the identity matrix with dimensiond

andλ =
√

2log(d) anda = 3.7 whend < 100.

Algorithm 3 SCAD0

Step 1 : Initial values

As in the Lasso algorithm
Step 2 : Proposal distributions
for given values ofλ =

√
2log(d) anda = 3.7

for k = 2 : N do
Generateβ0 fromN(0, (aλ)2Id) ;

Step 3 : Calculate the Hastings ratio

As in the Lasso algorithm
end for

2.4.2 SCAD with linear approximation

In this section we propose a Bayesian SCAD penalty approach based on the linearized SCAD

version ( Zou H. and Li R. 2008). Using Taylor expansion ofPλ(| β j |) we obtain the relationship

in the neighborhood of an initial solutionβ(0) as follows :

Pλ(| β |) ≈ Pλ(| β
(0)
j |) + P

′

λ(| β
(0)
j |)(| β j | − | β

(0)
j |),

for the given initial valueβ(0) ∈ Rd.

Then the QR problem with this local linear approximation of the SCAD penalty becomes :

β j minρp(yi − gβ(xi)) +
d∑

j=1

P
′

λ(| β
(0)
j |) | β j |
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This problem with linearized SCAD penalty is equivalent to the adaptive Lasso penalty (Alham-

zawi et al. 2012). The Bayesian formulation is equivalent to Normal priors of the parametersβ j

j = 1, ..., d with means zeros and variancesτ2j =
1

2P
′
λ(|β

(0)
j |)

for a given initial solutionβ(0). The Baye-

sian SCAD with linear approximation can be summarized by the following formulation :

Prior distributions

β j | a, λ ∼ N(0,
1

2P′λ(| β
(0)
j |)

),

λ =
√

2log(d) and a= 3.7.

Posterior distribution

π(β, a, λ | y) ∝
n∏

i=1

fALD(yi | gβ(x), σ, p)
d∏

j=1

π(β j | a, λ)

The MCMC algorithm is equivalent to that given for the Lasso. It will be based on the conditional

distribution of the posterior distribution ofβ given data, the initial solution of the vectorβ(0) and

the hyper-parameters.

Algorithm 4 SCAD1

Step 1 : Initial values

for given initial solutionβ(0),
for k = 2 : N do
Step 2 : Proposal distributions

Generateβ0 fromN(β(k− 1), σβ2Id) ;

whereId is the identity matrix of dimensiond.
end for

Step 3 : Calculate the Hastings ratio

As in the Lasso algorithm
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2.4.3 SCAD with quadratic approximation

In this section we present a Bayesian approach based on the local quadratic approximation of

the SCAD penalty ( Fan J., Li R. 2001) for the quantile regression model. For given initial value

β(0) ∈ Rd the local quadratic approximation is given by :

Pλ(| β |) ≈
n∑

j=1

Pλ(| β
(0)
j |) +

P
′

λ(| β
(0)
j |)

2 | β(0)
j |

(β2
j − β

(0)
j

2
),

Then the QR problem related to local quadratic approximation of the SCAD penalty becomes :

β̂ = argmin
n∑

j=1

ρp(yi − gβ(xi)) +
d∑

j=1

P
′

λ(| β
(0)
j |)

2 | β(0)
j |
β2

j

The Bayesian formulation is equivalent to Normal priors of the parametersβ j j = 1, ..., d with

means zeros and variancesτ2j =
|β(0)

j |)

P
′
λ(|β

(0)
j |)

for a given initial solutionβ(0). The Bayesian SCAD with

quadratic approximation can be summarized by the following formulation :

Prior distributions

β j | a, λ ∼ N(0,
| β(0)

j |)

P′λ(| β
(0)
j |)

),

λ =
√

2log(d) and a= 3.7.

Posterior distribution

π(β, a, λ | y) ∝
n∏

i=1

fALD(yi | gβ(x), σ, p)
d∏

j=1

π(β j | a, λ)

The MCMC algorithm is equivalent to that given for the Lasso. It will be based on the conditional

distribution of the posterior distribution ofβ given data, the initial solution of the vectorβ(0) and

the hyper-parameters. All approaches are implemented in Matlab environment.
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Algorithm 5 SCAD2

The same as SCAD1 algorithm. The unique modification concerns the variance of the prior
distribution of the parametersβ.

3 Simulation studies

In this section, we perform a Monte Carlo simulations to investigate the performance of the

parameter estimators of the quantile regression model by the regularisation penalties. All regulari-

zed estimation methods are compared to the maximum likelihood estimates in order to assess the

estimator’s behaviours for small and moderate sample sizes.

The first model (Pratesi, Ranalli and Salvati (2009)) is considered to generate the theoretical

underlying relationship between the covariateX and the response variableY = gβ(X) + ε and

ε ∼ GEV(μ = 0, σ = 100, ξ = 0.2) with :

Cycle :gβ(x) = 10. ∗ sin(6X) andX ∼ Uni f [0,1]

For all the studied penalties, letβ̂L, β̂R, β̂S0, β̂S1, β̂S2 andβ̂M denote the parameter estimators cor-

responding to Lasso, Ridge, SCAD0, SCAD1 and SCAD2, respectively.

For a simulated example we consider a large number of Knots (m = 20) to assess the sparsity of

the penalties. For a given probabilityp , the Relative Absolute Bias (RAB) and Relative Mean

Square error (RMSE) are computed for performances comparison. We considered samples of size

n = 20 : 20 : 200 and simulateR= 1000 replicates fromM.

For given penaltyPλ, the estimate (̂QPλ) is then carried out through the MCMC algorithm. Table

1 summarizes the simulation results for the modelM and withp = 0.9. Results show that the bias

and the mean error decrease with sample size for all proposed approaches.

Results show that the SCAD0 penalty leads to the smaller RAB and RMSE especially for small

sample sizes. Note that the SCAD0, as proposed by Fan and Li (2001), assumes a normal dis-
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tribution as prior for the vector of the parametersβ (of Rd and d = 24) with fixed values of

λ =
√

2log(d) anda = 3.7. The other penalties improve clearly the maximum likelihood (ML)

estimation for small sample sizes.

We note also that for the Lasso and Ridge penalties, the RAB remains nearly the same for alln. The

RMSE for the penalties SCAD1 et SCAD2 are similar for almost all sample sizes. All penalties

perform better than the ML especially for very small sample sizes.

Figure 1 illustrates the quantile curves for the simulated modelM andp = 0.9. We considered the

same conditions withm = 20 knots and degreel = 3. The conditional curves illustrate clearly the

superiority of the SCAD0 penalty to reproduce the same shape as the theoretical curve computed

from the simulated modelM.

In order to assess the estimator properties of the proposed approaches, with respect to the tail

behaviour of the errors’ distribution, three other scenarios have been added to the simulation study.

The first scenario is generated with quadratic dependence and normally distributed errors. This

model represents case with light tail, modelM1. The two other models have the same dependence

structure asM1 for the location parameter and the Generalized Extreme Value (GEV) distribution

for the errors. Two tail behaviors of the GEV have been considered : (a) moderate tail with the shape

parameterκ = 0.1 (modelM2) and heavy tail with shape parameterκ = 0.3 (M3). A summary of

the models for the tail behaviour study :

– Model M1 :Y ∼ N(a+ bX2, σ) with X ∼ N(0,3) ; a = 10 ;b = 1.2 ;σ = 1.

– Model M2 :Y ∼ GEV(a+ bX2, σ, κ) with X ∼ N(0,3) ; a = 10 ;b = 1.2 ;σ = 1 andκ = 0.1.

– Model M3 :Y ∼ GEV(a+ bX2, σ, κ) with X ∼ N(0,3) ; a = 10 ;b = 1.2 ;σ = 1 andκ = 0.3.

For given penalty, two sample sizes (n = 30andn = 100) and two probabilitiesp = 0.9 and

p = 0.99 the Relative Mean Bias (RMB) and the Relative Mean Error (RME) over all covariate

values and based onNs = 1000 simulated datasets.The RMB and RME are computed with respect

to the theoretical valuesQth.
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Table 2 summarizes the simulation results for these three modelsM1, M2 andM3 for p = 0.9

andp = 0.99 and two ample sizesn = 30 andn = 100.

Results show that the bias and the mean error decrease with sample size for all proposed ap-

proaches. However, in the case of high probability of non-exceedance, which corresponds to ex-

treme quantiles, the RMB is negative. High values of RMB are obtained especially for heavy tailed

distributions.

Lasso and SCAD0 lead to the best performances in terms of RMB and RME especially in the

case of extremes (p = 0.99) and heavy tailed distribution (M3, κ = 0.3). The reduction of the bias

is very important for these two methods.

Figure 2 illustrates results of this comparison for the three models for both probabilities of non-

exceedance (p = 0.9 and 0.99). It shows the superiority of the Lasso and SCAD0 penalties espe-

cially in the case of modelM3 andp = 0.99.

4 Case study : Annual maximum precipitation

In this section the regularized quantile regression with SCAD0 penalty is considered to esti-

mate the effect of climate index on the variability of extreme precipitation. The main purpose of

modeling extreme rainfall is to determine the frequency of certain exceptional values and deduce

their return periods.

The concept of return period is very important for risk assessment in civil engineering. This is, on

average, the time between two events of the same intensity. For example, to estimate the time sepa-

rating two events with the same intensityQ0, we consider the random variableQ with cumulative
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distributionFQ then ; the probability to not exceedQ0 is :

p0 = FQ(Q0) = P(Q ≤ Q0)

Thus :

P(Q > Q0) = 1− p0

This is equivalent to :

B0 =





0 si Q ≥ Q0

t(p− 1) si sinon

whereB0 parameter follows a Bernoulli distribution with parameterP(Q > Q0).

Let n0 be a variable that corresponds to the number of time steps (year) separating two events such

that ”Q > Q0”.

N0 follows a Geometric distribution with parameterP(Q > Q0) = 1−p0. Then the expected number

of years to observe, for the first time, the eventQ > Q0 is :

E[N0] =
1

P(Q > Q0)

Thus the return periodT0 = E[N0] = 1
1−p0

, i.e. p0 = 1− 1
T0

.

The return periodT0 is the average duration between two successive eventsQ > Q0. In other

words, the probability that the thresholdQ0 is exceeded on average once everyT0 years.

4.1 Precipitation at Charlo (NB)

Located in the northeast of the province of New Brunswick (Canada). The meteorological sta-

tion Charlo is considered to illustrate the regularized quantile regression approach based on the

SCAD0 penalty. This region of Canada is affected by several climatic phenomena. Disturbances in

the Arctic north, those in the south-east Atlantic and the West from the great lakes. Such studies
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aim to explain the inter-annual variability of extreme precipitation (Thiombiano et al. 2015).

For the Charlo station, when compared to other climate indices, the Pacific North American (PNA)

leads to the largest value of the Spearman correlation coefficient. Figure 3 displays the time series

of the annual maximum precipitation at Charlo and the Max(PNA) index. For details on this cor-

relation study see Thiombiano et al. (2015).

Regularized quantile regression is performed using the SCAD0 penalty in order to estimate ex-

treme events for fixed probability of non-exceedence. The results are shown through the figures

below.

As mentioned in the methodology, the main advantage of the Bayesian framework is to include

all uncertainty related to data and the parameters’ estimation in the inference process through

the posterior distribution. The empirical posterior distributions of the quantiles are deduced from

that of the parameters provided by the MCMC algorithms. Figure 4 represents the outputs of the

MCMC algorithm, forN = 30.000, corresponding to SCAD0 penalty of the shape, the scale and

the four first parameters of the B-spline function with degreel = 3 andm = 6 knots. Thus the di-

mension of the estimated parameters’ space isd = 10. All the generated Markov chains converge to

their stationary distribution after some iterations (Figure 4). For more complex behaviour conver-

gence assessment test should be considered. For more details on the convergence assessment of

the MCMC chains see for example El Adlouni et al. (2006).

Figure 5 presents the the conditional curve of the precipitation event of return periodT0 = 10

years as function of the max(PNA) index at the Charlo station. The central curve constitutes the

Maximum a Posteriori (MAP) estimates of the quantiles which correspond to the mode of the em-

pirical conditional distributions. The credibility intervals corresponds to the 95% bounds, the 2.5%

and 97.5% of the a posterior distribution of the quantile.

19
ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT

Unlike the frequency approach based on asymptotic normality, the Bayesian framework, allows

to describe the all distribution of the quantiles. Thus the credibility intervals illustrates the pro-

perties of the quantile distribution such as, the skewness and the uncertainty for some particular

value of the covariate (the PNA climate index). Indeed, these characteristics may depend on the

covariate values and then on the dependence structure. Conditional quantile curve indicates a si-

gnificative increasing of the precipitation events, with return periodT0 = 10years, for the values

of the max(PNA) that exceedmax(PNA) = 2 (Figure 5).

5 Conclusion

Quantile regression allows estimating conditional distributions of extreme events as function of

explanatory variables. The addition of covariates always improves the estimates in terms of bias

of extreme events. However, the size of the parameter space increases estimators’ variance. It is

therefore important to have effective tools for choice of parameters of the most significant decline.

Indeed, when the parameter space is higher dimension, the solution of the optimization problem

for the parameters estimation, is not unique even in the case of negligible effects of certain com-

ponents of the model. One solution may assign high values preserving a low bias value. However,

the estimators’ variance can be very high in the case of over-parameterizations. A solution to this

problem is the integration of a penalty in the parameter estimation process by additional constraints

to limit the parameter space.

The objective of this work was to compare the effect of the penalty constraints on the quan-

tile estimators. Five penalties were considered in this work : Lasso, Ridge, SCAD0, SCAD1 and

SCAD2 and were implemented with Bayesian approach. The introduction of the penalties is equi-
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valent to the insertion of an additional term in the objective function to be maximised. In Bayesian

framework, this term corresponds to the logarithm of the prior distribution of the parameters. The

posterior distributions are then deduced for all the penalties with their hierarchical Bayesian mo-

dels. MCMC Gibbs algorithms are developed to simulate the empirical posterior distributions and

deduce the conditional predictive distribution of the quantiles. A simulated study shows that the

SCAD0 penalty leads to very small bias and standard error even for small sample sizes. The Quan-

tile Regression model with SCAD0 penalty has been considered for a case study to estimate the

quantile of annual maximum precipitation at Charlo station in New-Brunswick, Canada. Results

illustrates the use of the regularized quantile regression to estimate the conditional distribution of

the extreme event corresponding to a given return period. Results are presented for a return per-

iod T = 10 years, i.e. for probability of non-exceedancep = 0.9. One of the advantages of the

Bayesian framework is the possibility to estimate all of the quantile distribution of the quantile

conditional to the covariates and then to estimate the uncertainty related to data and the parame-

ters’ estimation in the inference process. The empirical posterior distributions of the quantiles are

deduced from that of the parameters provided by the MCMC algorithms and allow to estimate the

credibility intervals.

Simulation study show that Lasso and SCAD0 penalties lead to the best performances in terms of

RMB and RME especially in the case of extremes (p = 0.99) and heavy tailed distribution (GEV

distribution withκ = 0.3). The reduction of the bias is very important for these two methods.

Note that in the Quantile Regression model, the inference is done for only one given probability.

When, more than one quantile should be estimated, the inference is conducted separately. Thus the

order condition may be violated. This situation, known as crossing problem, could be solved by

simultaneous estimation of the conditional curve. An ongoing study is devoted to this problem for

regularly varying tail behaviour.
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n Lasso Ridge SCAD0 SCAD1 SCAD2 ML
20 36(37) 45(50) 22(32) 31(46) 33(53) 74(93)
40 32(29) 38(32) 12(21) 25(28) 27(31) 54(72)
60 28(26) 29(29) 8(18) 22(25) 25(23) 33(43)
80 26(19) 24(27) 3(10) 19(18) 24(15) 25(31)
100 19(18) 20(26) 1(7) 18(16) 19(9) 22(22)
150 15(15) 19(19) -2(5) 12(15) 17(9) 21(22)
200 14(13) 19(16) -1(4) 9 (15) 16(9) 18(22)

Table 1 – RAB (RMSE) of the quantile estimators with the studied penalties.
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M1 (p = 90%) M1 (p = 99%)
Approach n = 30 n = 100 n = 30 n = 100

ML 19 (26) 9(22) -14(20) 2(13)
Lasso 5(10) 3(6) -13(18) -3(10)
Ridge 19(26) 9(22) -14(19) 2(13)

SCAD0 9(26) 5(16) -7(13) 4(8)
SCAD1 16(31) 11(23) -10(18) 8(18)
SCAD2 20(29) 11(25) -12(19) 5(16)

M2 (p = 90%) M2 (p = 99%)
Approach n = 30 n = 100 n = 30 n = 100

ML 9 (28) 3(18) -17(26) -16(32)
Lasso 8(25) 4(13) -5(12) -7(10)
Ridge 9(29) 3(18) -17(27) -16(32)

SCAD0 5(27) 3(18) -8(15) -3(13)
SCAD1 10(31) 4(21) -13(24) -11(28)
SCAD2 9(30) 2(22) -15(24) -10(37)

M3 (p = 90%) M3 (p = 99%)
Approach n = 30 n = 100 n = 30 n = 100

ML 31 (48) 10(22) -39(45) -28(34)
Lasso 17(23) 12(10) -18(30) -7(21)
Ridge 23(39) 10(22) -39(40) -27(34)

SCAD0 21(28) 9(12) -12(20) -9(15)
SCAD1 32(50) 11(16) -40(31) -25(23)
SCAD2 32(49) 10(15) -36(33) -27(25)

Table 2 – RAB (RMSE) of the quantile estimators for tail behaviour effects.
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Figure 1 – Illustration of the quantile estimates for the ML, Lasso, Ridge, SCAD0, SCAD1 and
SCAD2 penalties for the modelM with probability p = 0.9

28
ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT

Figure 2 – RMB and RME for the estimated quantiles corresponding to modelsM1, M2 andM3.
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Figure 3 – Annual maximum precipitations at Charlo-NB and Max(PNA) time series.
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Figure 4 – MCMC output of the algorithm for estimating model parameters of the QR model with
SCAD0 penalty : Annual maximum precipitations at Charlo-NB.
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Figure 5 – Conditional curve of the precipitation event of return periodT0 = 10yearsas function
of the max(PNA) index (Charlo-NB).
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