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Abstract

Since the early 1980s, populations of Americang(illa rostrata) and European eeléitguilla
anguilla) have suffered a sharp decline. The causes aof dieeline are likely multifactorial and
include chemical pollution. A field study was cowcted in eight sites varying in organic and
metal contamination along the St. Lawrence (EasBamada) and Gironde (France) systems to
investigate the relationships among contaminantgplodical characteristics and
biotransformation, antioxidant and histopatholobimamarkers in eels from both species. Bor
rostrata, no major influences of persistent organic conteamis on biomarkers were identified.
For A. anguilla, eels from the most contaminated site expressedehigsurface of
MelanoMacrophage Centers (MMCs) and eels from amnatbntaminated site expressed higher
amount of lipofuscin pigment. These two histopatigatal biomarkers were also associated with
aging. Compared to eels from the cleanest Freneh Bigher hepatic catalase activity and
density of MMC in eels from contaminated sites welated to higher concentration of organic
(DDT and metabolites, sum of PCBs, sum of PBDES)ianrganic (Hg and Cd) contaminants.
In both species, a higher deposition of spleen Isahean pigment was measured in eels from
the most brackish sites compared to eels livinffeshwater environments. Our results suggest
an association between higher hemosiderin pigmahihaetal contamination (As fét. anguilla

and Pb forA. rostrata). Parasitism byA. crassus was observeth European eels from freshwater
sites but not in eels from brackish habitats. Oljecantamination may pose a greater risk for

the health of European compared to American eels.

Keywords: EROD activity, Antioxidant enzymes, Hiséhological markers, Pollution, Atlantic

Eels
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1. Introduction

In the Northern hemisphere, the abundance of Earopsel Anguilla anguilla) and
American eel Anguilla rostrata), here called “Atlantic eels”, has severely destfirsince the
early 1980’s (FAO/ICES, 2009; Cosewic, 2012). Theuses of their decline are likely
multifactorial, including variables such as oceamapdic and climate changes, overfishing,
barriers to migration, habitat degradation, paessand chemical pollution (Castonguay et al.,
1994; Geeraerts and Belpaire, 2010). Although mamagt and restoration programs have been
conducted in several hydrosystems in Europe anthManerica, eel stocks have not recovered
to levels of the past (ICES 2016). An increasinghar of recent reports support that pollutants
might be among the possible synergistic causesribatihg to the collapse of eel stocks
(Belpaire et al. 2016). Due to their unique ecatafjiand physiological traits, eels are
particularly prone to bioaccumulation of contamitsatiirough gills, skin and contaminated food
during their feeding and growth stage (yellow eEBls are facultative catadromous fish that can
be in contact with contaminated sediments for edeerperiods, leading to the accumulation of
high concentrations of organic contaminants duethir high lipid content (Robinet and
Feunteun, 2002; Daverat and Tomas, 2006; Thibawdt.£2007). Finally, eels are considered
good bio-indicators of contaminated habitats arel expected to reflect the impacts of local
pollutants (Belpaire and Goemans, 2007).

Recently, decreasing muscle concentrations of @gaoontaminants such as
PolyChlorinated Byphenyls (PCBs) and OrganoChlofesticides (OCPs) have been reported
in eels from some historically contaminated habitahce their ban 40 years ago (Belpaire et al.,
2016). From 1988 to 2008, a decreasing trend in BRZBOCP concentrations has been reported
in the muscle oA. rostrata from the historically contaminated Lake Ontario/éB et al. 2013).
This trend was confirmed by a significant decreeseéhe embryotoxic potential of organic
mixtures extracted from Lake Ontario eels captured 988, 1998 and 2008 for developing
Fundulus heteroclitus (Rigaud et al. 2016). However, these contaminamgs peersistent in
sediments and levels of PCBs, OCPs and PolyBroednatphenyl-Ethers (PBDES) still remain
high and preoccupying in yellow eels, for exampleels from the Gironde system (Tapie et al.,
2011; Guhl et al., 2014). In addition to organiotamninants, metals such as mercury (Hg) and
cadmium (Cd) show no trend of decrease and pens@intaminated areas (Maes et al., 2008).
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Consequently, eels inhabiting contaminated areatddoe still affected by a combination of
contaminants acting synergistically.

Several field and laboratory studies have repoeféetts of contaminants in eels at several
levels of biological organization from the cellylamolecular and tissue levels to the level of
whole organisms using various biological biomarkersnvestigate their health status. They
have shown that contaminants can delay growth,ceetipid storage efficiency, cause oxidative
stress, induce DNA damage and histopathologicadieswhich can ultimately negatively affect
migratory and reproductive capacities (Couillardaéi 1997; Robinet and Feunteun, 2002;
Palstra et al., 2006; Pierron et al., 2007; Getsamnd Belpaire, 2010, Gravato et al. 2006).
Others effects such as disturbances of the immudeeadocrine systems and a reduction of
migratory and reproductive capacities have beemraigorted (Belpaire et al. 2007). In addition,
ecological gradients such as latitudinal cline, giem distances to the spawning site and
differences in salinity directly or indirectly affe growth rate, body condition, size at
metamorphosis and lipid storage, which in turn doaffect contaminant uptake (Vgllestad,
1992; Edeline et al., 2007; Thibault et al., 20Bé|paire et al., 2009; Jessop, 2010; Daverat et
al., 2012). FoA. anguilla, studies have suggested that the nematodeillicola crassus in the
swimbladder of yellow eels could affect their swimmperformance, reduce their resistance to
other stressors such as contamination and incrgalseen size, macrophage and lymphocyte
production to combat parasites (Kirk et al., 200€febvre et al., 2004).

In a series of related studies performed by oumteéong the St. Lawrence and Gironde
hydrosystems (Eastern Canada and Southwest Fresgmectively), we have identified that
certain metals and organic contaminants could diigthysiological functions in yellow Atlantic
eels (Baillon et al., 2015a, 2015b, 2016; Caroale2016; Pannetier et al., 2016). In Baillon et
al. (2015a, 2015b, 2016), we conducted a largeesradl withouta priori transcriptomic based
approach. The global hepatic transcriptome of alsimas determined by RNA-Seq. Genes that
most likely responded to single factors were idatti We detected transcriptomic responses
typical of PCB-170 and Cd exposure in wAdanguilla collected in the most contaminated site
in the Gironde Estuary, associated with changedhertranscription levels of genes involved in
hepatic energy metabolism. In another paper (Catoal. 2016), we focused on biomarkers
involved in glycolytic, aerobic and anaerobic capes and lipid metabolism. We reported an
association between silver (Ag), lead (Pb) andracséAs) contamination in wildA. rostrata

from the St. Lawrence River system and inhibitidntree enzyme G6PDH, involved in lipid
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metabolism in liver and which also plays a rolexidative stress response. This study has also
shown an association between zinc (Zn), copper (& Pb contamination and altered
glycolytic and anaerobic capacities in wAdanguilla from the Gironde system. More recently,
we have demonstrated a significant difference ityesze-at-age (a proxy of early growth rate)
between yellow eels captured upstream comparedwmstream sites of the St. Lawrence and
the Gironde systems (Patey et al., submitted). & ldéterences were present as early as 1 year
old and could influence contaminant accumulation.

In the present study, we investigated the relalippss among tissue concentrations of
inorganic and organic contaminants, biological abteristics such as size, age, condition factor
and muscle lipids and a set of complementary bikerarsuch as hepatic biotransformation
enzymes, antioxidant enzymes and splenic histofmgioal measurements in Atlantic eels. The
selected biomarkers have been successfully useshe abr in combination, in previous
biomonitoring studies on eels (Couillard et Hodsb896; Pacheco et Santos, 2002; Van der
Oost et al., 2003; Buet et al., 2006 ) and are aniba list of recommended biomarkers in the
Report of the Workshop of the Working Group on Eatsl the Working Group on Biological
Effects of Contaminants (ICES 2016). First, we exet the induction of Cytochrome P450-
dependent monooxygenase, measured as ethoxyresQuafeethylase (EROD) in eel livers.
This biotransformation marker is involved in a waticumented biochemical reaction of fish to
organic planar contaminants such as PCBs, polycyebhmatic hydrocarbons (PAHSs), dioxins
and furans and may be related to other effects as@xidative stress (Van der Oost et al., 2003;
Whyte et al., 2008). Secondly, we measured hepativities of two antioxidant enzymes,
catalase (CAT) and superoxide dismutase (SOD), camhynused as biomarkers of antioxidant
capacities in fish and induced by several contamiévguch as PCBs, PAHs, organochlorine
pesticides (OCPs) and metals (Van der Oost etl@86; Livingstone, 2001). In addition, we
examined a suite of histopathological biomarkedsiged by chronic exposure to contaminants,
including density and surface of melano-macrophagaters (MMCs) and deposition of
lipofuscin and hemosiderin pigments in spleen (Wolk992; Couillard et al., 1997; Fournie et
al., 2001; Au, 2004). In general, biomolecular baskers such as EROD, CAT and SOD are
more sensitive and specific short-term responsags(do weeks), whereas histopathological
biomarkers are responses to chronic exposure ttamomants and reveal more persistent

damage.
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In this study, yellow eels were sampled in fosesivarying in anthropogenic pressure and
contamination level in each of the Saint Lawrengst&n (SLS, Quebec, Canada) and the
Gironde System (GS, France), for two consecutivasieThe objectives of this study were: (1)
to examine variations in responses of biomarkerwiild American and European eels among
sampling sites varying in contamination levels aetiveen sampling years within a species; (2)
to investigate the relationships between biologataracteristics, contaminants and biomarker
responses; and (3) finally, to generate a datatmabetter target and prioritize future studies on

the impacts of contaminants on eel health in thrertéie and St. Lawrence River basins.

2. Materials and methods

2.1 Sampling sites

A total of 240 yellow eels (15 yellow eels/site/y/species) were captured in eight
different sites selected according to salinity, ahanhd organic contamination gradients found in
sediments and biota along the SLS and the GS in &malyJune 2011 and 2012 as previously
described by Baillon et al. (2015b) and Laportealet(2016). ForA. rostrata, each year, 60
yellow eels were sampled in two references sitede&n River (SJR, freshwater tributary of the
Gulf of the SLS) and Sud-Ouest River (SOR, freskwatbutary of the estuary of the SLS) and
two fluvial contaminated sites, St. Pierre Lake l(5&1d St. Francois Lake (SFL). Yellow eels
from SOR and SJR were captured in running freshwadbitats, which are tributaries opening
into a brackish estuary suggesting an influenamarfine water (Thibault et al., 2007).

For A. anguilla, each year, 60 yellow eels were sampled in twwidlusites, the
Dordogne river (DOR, considered as the least contzed site in the watershed of the Gironde)
and the Garonne river (GAR, located near the ditgardeaux and contaminated), one estuarine
site, Gironde (GIR, contaminated by metals and micgaontaminants, (Kessaci et al., 2014))

and finally, one salt marsh site in the Arcachon,B2ertes (CER) considered as a reference site.

2.2 Wild eels sample collection

All yellow eels were processed using the same staiwkd protocols in France and in
Québec. European and American yellow eels wereupaghtusing fyke nets (mesh size of 6.4
mm), trawl (mesh size of 31 mm) and electro-fishioygprofessional fishers or technical staff.

Given the substantial variability in the size olsegrowing in different habitats, it was not
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possible to collect same-sized eels in each samplie. Body Length (BL) (£ 1 mm) and Body
Mass (BM) (= 0.1 g) were measured for each fislorider to estimate the condition factor K
(K=[(BM (g)/(BL (cm))?)). We also determined the ocular index (Ol) expegsin % which
reflects changes in eye diameter, a useful criterior assessing the degree of sexual
maturation/silvering in eels. Ocular enlargementuos early in the sequence of sexual
maturation (Acou et al., 2005; Durif et al., 20@5) is thought to be a requirement for migration
at depth in the ocean. Then, eels were killed as s possible by decapitation and rapidly
dissected to collect parts of liver, caudal musatel spleen for biochemical and histological
analysis. Samples of muscle were dissected inralatdized area situated at 2 cm posterior to
the anus and above the lateral line and kept imiaium foil at -20°C. Samples of liver were
stored in cryogenic tubes at -80°C and sampleplekes were fixed in bottles containing 10%
phosphate-buffered formalin. Age was determinethftansverse sections of sagittal otoliths as
described previously by Verreault et al. (2009). skla lipid content was determined by
gravimetry after filtration and evaporation of digaot of the DiChloroMethane (DCM) extract
from the same standardized area of muscle descaibede and was expressed in percentage of
dry-basis lipid content. The moisture content weterdnined as described by Tapie et al., (2011)
and expressed in percentage of wet-basis moistoméert. Finally, each swimbladder was
dissected and examined macroscopically to deteritmaeoresence of the parashe crassus
(Girard and Elie, 2007). Parasite identificationlldaed descriptions of Moravec and
Taraschewski (1988).

Metal analyses (Ag, As, Cd, Cr, Cu, Ni, Pb, Se, Bg) were carried out in liver and
muscle samples as previously described by Panredtigt (2016). The concentrations of seven
indicators of PCBs (CB50+28, CB 52, CB 101, CB 1€8, 138, CB 153 and CB 180), eight
OCPs (2,4-DDE, 4,4-DDE, 2,4-DDD, 4,4-DDD, 24DT and 4,4-DDT,
hexachlorobenzene (HCB) and lindane) and eight FBEDE 28, 47, 49, 99, 100, 153, 154,
183, 209), were performed on muscle samples foliguihe procedures described by Caron et al.
(2016).

2.3 EROD activity
Supplies and chemicals for EROD assay were purdhiase Sigma—Aldrich (St-Louis,
MO, USA). EROD activity was measured using a spdictorimetric method adapted for
microplates by Fragoso et al. (1998). This measubased on the increase of the fluorescence in
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the reaction medium due to the transformation ethbxyresorufin (7-ER) into resorufin. EROD
activity was measured in the post mitochondrialesnatant prepared from homogenates of 50
mg crushed liver in 1 ml of N-2-hydroxyethylpipeirsez-N’-2-ethanesulfonic acid (HEPES) (0.1
M, pH = 7.8) grinding buffer and centrifuged at @00 g during 20 min at 4°C. Reaction
mixtures contained 5@l of supernatant in HEPES buffer, 10 of nicotinamide adenine
dinucleotide phosphate (NADPH, 20 mg/ml), andb@f 7-ethoxyresorufin (0.024 mg/ml) in
DiMethylSulfOxide (DMSO). The activity was quané&fl in 96-well microplates using a
Cytofluor Il® plate reader (excitation 530 nm, esiig; 590 nm, PerSeptive Biosystems,
Framingham, MA, USA). The fluorescence of resorwies measured at 60 s intervals during 13
min. Fluorescence readings were compared to aufscstandard curve. All samples were
assayed in triplicate. Total protein concentratibthe supernatant was measured with Bradford
reagent, using bovine serum albumin as a protaindsird (BIO-RAD Laboratories, Hercules,
CA, USA). EROD activity was expressed as pmolesrigsi/min/mg protein. In addition to
randomized samples from different sites on eaclraplate, a positive control was added to
assess the quality and repeatability of measurementer homogenates from pooled livers of
15 Atlantic tomcod which were injected 20 mg/kg bala]pyrene (10 mg/ml in corn oil)
intraperitoneally and sampled 48 h after treatnvesite used as positive controls (Couillard et
al., 2004). Coefficients of variation among samgad positive control replicates were < 20%,

and the coefficient of variation of the sample neans < 25%.

2.4 Antioxidant enzymes

Catalase (CAT) and superoxide dismutase (SOD) eegywere measured in cytosolic
supernatant prepared from homogenates of 50 mgeuusser in HEPES buffer. Liver samples
were constantly kept on ice during homogenizatiém. aliquot of the homogenate was
centrifuged at 1500 g for 5 min at 4°C and the sog@ant was stored at — 80°C for SOD assays
whereas a second aliquot was centrifuged at 10gdf00 15 min at 4°C and the supernatant was
stored at — 80°C for CAT assays. Catalase and Sfhiidtees were measured using commercial
kits from Cayman Chemical Company Inc. (Ann Arddi, USA) in 96 well microplates with a
UV/visible spectrophotometer (Cary 50, Varian inGhe CAT assay is based on the reaction of
the enzyme with methanol in the presence of ambtconcentration of ¥D,. The generated
formaldehyde is allowed to react with 4-amino-3-fazine-5-mercapto-1,2,4-triazole (as the

chromogen). The aldehydes, upon oxidation, changm fcolorless to a purple color that is
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measured spectrophotometrically at 540 nm. One (Whitof CAT activity is defined as the
amount of enzyme that causes the formation of 1l wnimrmaldehyde per minute at 25°C. The
SOD assay utilizes a tetrazolium salt for detectbrsuperoxide anion radicals generated by
xanthine oxidase and hypoxanthine measured spéctimmetrically at 450 nm. One unit of
SOD is defined as the amount of enzyme neededhibiex0% dismutation of the superoxide
radical. All samples were tested in triplicate aath absorbance reading was compared to a
standard curve and a positive control. Total protedbncentration of the supernatant was
determined using the Bradford (1976) method usmgre serum albumin as standard and CAT

and SOD activities were expressedwuaml/mifmgprotein.

2.5 Histopathological biomarkers

The spleen was selected as a tissue for the extomred the impacts of contaminants on
histopathological biomarkers in fish (Au, 2004).trlansversal section from the central part of
spleen was fixed in 10% phosphate-buffered formalihin minutes after death. Samples were
then embedded in paraffin and 6 pm thick sectioasevetained with Hematoxylin and Eosin
(HE) (Luna, 1968). Two additional sections of splagere stained with Perls’ Prussian blue
staining for ferric iron associated with hemosidedeposits or with Schmorl staining for
lipofuscin deposits (Luna, 1968).

To be categorised as a MMC, a MMC had to be contpboséhree or more macrophages
containing yellow to dark brown pigments within itheytoplasm (Couillard and Hodson, 1996).
In sections of spleen stained with HE, the densityMMCs was evaluated by counting the
number of MMCs at 100X magnification in three ramdyp selected microscopic fields and by
dividing this number by the area of the fields eised (2.86 mm). The surface areas of 10
randomly selected MMC were measured with an imagayais system (Image-Pro Express
software, version 6.0) and mean of surface are®IMCs were calculated for each fish. The
proportion of 25 randomly selected MMCs that stdipesitively with Perls’ Prussian Blue for
hemosiderin and Schmorl for lipofuscin was evaldae 100X magnification. The intensity of
staining was graded from 1 to 5 (1: no macroph&gjeed; 2: 0-25% stained; 3: 25-50% stained;
4: 50-75% stained and 5: > 75%). The reproducjbdit the methods was assessed by repeated
measurements of a subsampitel(0%) of slides. The coefficient of variation amahg mean of
the third quartile (Q3) for the density and for theface of MMCs separately in twelve eels were

< 25% (repeated 3 times by two different observerseach eel). All tissues were examined
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blindly and randomly without the observer knowirte tsite of origin of eels. Density was

expressed as number of MMC/hand surface as nfivIMC.

2.6 Statistical analyses

Analyses of variance were conducted using Prism.@.(GraphPad Software Inc., San
Diego, CA, USA) and multivariate analyses were eoteld using XLSTAT-ADA (Addinsoft,
USA). Male eels were removed due to a small sasipke(N=3 in the GS and N=0 in the SLS).
Eels< 2 years old and 20 years old were also removed, because theymstigcted to a small
number of sites/sampling year. The total numberwrels retained for statistical analyses of
variance were 105 iA. rostrata and 111 irA. anguilla (Table 2).

Before performing the tests, homoscedasticity asminality of data were verified using
the Bartlett and the Shapiro-Wilk tests respecyivaiological characteristics, contaminant
concentrations and biomarker data were first coeghamong sampling years within sites using
the student t-test (g 0.05). Then, data were compared among samplieg siithin species
using a one-way ANOVA test followed by Tukey-KramdSD test to identify significant
differences between pairs §0.05). A non-parametric Kruskal-Wallis test (KWjllbwed by
Dunn’s test was performed when the ANOVA'’s assuan#iwere not met.

Principal Component Analyses (PCAs) and Kendalk reorrelation were performed to
explore the relationships among biomarker responsesntaminants and biological
characteristics for the two years combined in esmécies. Prior to PCA analyses, correlation
matrices were performed by category of contaminanmt®CBs, DDTs, and for PBDESs in order
to group contaminant variables correlated with eattier from the same category and improve
the quality of PCA (data not shown). Due to vempisg correlations among all PCB congeners,
the sum of 7 PCBs was used. For contaminants of DB& family, only the muscle
concentrations of 4,4-DDD, 2,4-DDE and 4,4’-DDEere retained. For contaminants of the
PBDE family, only PBDEs 47, 100, 153 and 154 weduded. Finally, essential metals (Cu, Se
and Zn) in liver and muscle were removed from thalysis since their concentrations were
unlikely to pose a risk to the health of eels (Rdien et al., 2016). Consequently, the non-
essential metals Ag, Cd, Pb, Hg and As in musctkiadiver (except for liver Hg due to high
proportion of missing values) were kept for PCAsilyOindividuals for which measurements
were available for each variable were retainedtierPCAs (N=82 foA. rostrata and N=87 for

A. anguilla).

10
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In summary, a set of 17 variables including 9 catieg of contaminants [sum of PCBs,
sum of DDT and metabolites, hexachlorobenzeneahedsum of PBDEs, muscle Ag, Cd, Pb,
Hg and As, liver Ag, Cd, Pb and As], 5 biologicalriables (BL, BM, lipids, age, number Af
crassus) and 7 biomarker variables (EROD, CAT, SOD, dgnsind surface of MMCs,
lipofuscin and hemosiderin pigments) were consui@nea total of 82 yellow eels fak. rostrata
and 87 yellow eels foA. anguilla captured in both years. For contaminants, nonetidite data
were replaced by % of their Limits of Detection Rg). Kendall rank correlations were used to
assess the strength relationships among biomart@ntaminants and biological characteristics.

The significance level (p value) of the Kendall@relations was fixed at 0.05.

3. Resultsand discussion
3.1 Morphometry and level of contaminationAnrostrata andA. anguilla

Since contamination and biological characterisbtseels from this study have been
reported in companion studies (Baillon et al., 20)1Baillon et al., 2016; Caron et al., 2016;
Laporte et al., 2016; Pannetier et al., 2016), thi#lyonly be briefly summarized here.

For A. rostrata, fish from the fluvial lakes SPL and SFL were gailg larger, older and fatter
than fish from SOR and SJR (significantly in 201it bot in 2012) and né. crassus was
detected in American eels (Tables 2 and S.1). psrted by Baillon et al. (2015b), eels from the
fluvial lakes SPL and SFL were more contaminateth warganic chemicals such as PCBs,
PBDEs and DDT and metabolites than fish from thermkiream sites SOR and SJR (Table S.2).
For non-essential metals, significantly higher @nrations of Cd and Pb were observed in eels
sampled in the downstream site SOR compared toupsgeam site SFL (Table S.3 and S.4).
Muscle Hg was significantly higher in eels from tpam sites SPL and SFL compared to SJR
(Pannetier et al., 2016). Fex. anguilla, in 2011, fish from GIR were significantly longer,
heavier and fatter than eels from all other sited e 2012, the size of eels from GIR was
comparable to that of fish from GAR and CER (Tabl&). In both years, eels from GAR were
significantly older than eels from DOR and CER a&etk from DOR were significantly smaller
and lighter than eels from the other sites. A catregion gradient of increasing organic
contamination (PCBs, PBDEs and DDT and metabolites) observed along the French sites in
the order CER-DOR-GAR-GIR (Table S.2). High tissoacentrations of Cd (muscle and liver)

and Pb (liver) were detected in ediem the most contaminated sites GIR and GAR and

11
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surprisingly also in eels from DOR, a site origipalonsidered as clean (Pannetier et al., 2016).
In both species, higher As concentrations were doanfish from the reference sites CER and
SJR and from the contaminated site GIR which hatbmmon an elevated salinity (Pannetier et
al., 2016). ForA. anguilla from the most contaminated site GIR, muscle PCBB]T [and
metabolites and Cd concentrations were 10 and l#is-feigher than irA. rostrata from the
contaminated sites SPL (Tables S.2 and S.4). Emts EPL had two-fold higher muscle PBDE
concentrations and three-fold higher muscle Hg entrations than eels from GIR (Tables S.2
and S.3). Eels from CER had three-fold higher cotrations of muscle As than eels from SJR
(Tables S.2 and S.4). Finally, the ocular indeX) (@ached 2.7 = (2.0, 3.8) (median £ (Q1, Q3);
n=108) and 3.9 £ (3.3, 4.8) (median £ (Q1, Q3); Iblfor A. rostrata and for A. anguilla
respectively. In pre-migrating silver eels, thiglex should be > 6.5 (Cottrill, 2002; Pankhurst,

1982). Hence, our eels were not pre-migrating aeckwall yellow eels.

3.2 Patterns of biological characteristics, contemis and biomarker responsesAin
rostrata

The first 3 principal components of the PCA (PCC2Pand PC3) covered 37 % of the
total variability of the overall data (Table 1).irkiipal component 1 was mainly composed of
biological variables and organic and inorganic aambants and it separated in two distinct
clusters eels from the contaminated sites SFL dpld fom the reference sites SOR and SJR
(Figs. 2 a and b). The previously described assonm between high concentrations of
persistent organic contaminants, higher fat contend older age (Larsson et al, 1990) are
illustrated on this axis. No significant associatibetween muscle lipids and biomarker
responses were observed although muscle lipids pasiively correlated to concentrations of
lipophilic organic contaminants (Table S.6). Thiligre is no evidence of a detrimental effect of
these compounds on lipid accumulation in yellowseérincipal component 2 was mainly
composed of metal contaminants (Figs. 2 a and he majority of eels from SJR were
associated with muscle and liver As in agreemerth viiigher As levels (although non-
significant, Tables S.3 and S.4) compared to tloeigiof eels from SOR which was associated
with liver Cd. Higher As concentrations in fish finoSJR are typical of fish living in marine
environments (Pannetier et al., 2016) and couldekglained by differences in migratory
behavior, spatial distribution and feeding. Furtlstudies combining chemical analyses of

otoliths with biomarker and contaminant measuresieamte recommended to verify this
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hypothesis. No biomarker variables were distribatieeshg the PC1-axis or the PC2-axis (Table 1
and Fig. 2 a). Since PC1 and PC2 discriminated Bagngites, our results are consistent with the
absence of significant differences for most bioreesk(EROD activity, density, surface and
accumulation of pigments in splenic MMC) among skmgpsites and between years presented
in Table 2.

The density and surface of MMCs and the depositbmemosiderin pigments were
distributed along the PC3-axis (Table 1). Hemosndeigments in spleen MMC were associated
to a group of eels from SOR and SJR sites (Fig. Rareover, they were negatively correlated
with size and organic contaminants and weakly p@sdyt correlated with muscle and liver Pb
(Table S.5). An experimental study using commonp c@@yprinus carpio L.) has already
demonstrated hemosiderin deposition in fish exposedmixture of metals (Cd, Pb, Cr and Ni)
compared to controls (Vinodhini and Narayanan, 208®wever, given the weak correlation
and the lack of significant difference among s{fég. 2 a), it seems difficult to conclude for an
effect of Pb on deposition of hemosiderin pigmexibte however that in a companion study
from the same research project, Caron et al. (2@iEdified an association between Ag, Pb and
As contamination and an inhibition of the hepahezyame G6PDH in the same eels as those used
in this study, suggesting an effect of metal comtaton in these eels. This enzyme is involved
in lipid metabolism and is closely related to ariiiant response (Martinez-Alvarez et al., 2005).
Differences in environmental conditions in estuarmompared to fluvial sites could contribute to
increase hemosiderin deposition in SJR and SORs shieough exposure to an unknown
biological or chemical hemolytic agent.

Catalase and SOD activities were not significaotlgrelated with PC1, PC2 or PC3 axes
and their explained variance (%) was low (TableAldhough CAT activity was not correlated
with biological characteristics or contaminants lEa S.5), eels from SOR expressed
significantly higher activities of hepatic CAT th&sh from other sites in 2011 (but not in 2012)
and a significant inter-annual difference was obserwith higher CAT activity in 2011 in SOR
(Table 2). SOD activity was negatively correlatedhwsize, muscle lipid content and PCBs,
more weakly with age, PBDEs and DDT and metaboliteswas associated with a group of eels
from SOR and with some fish from SPL (Fig. 2 andl€aS.5). This observation is consistent
with significantly higher liver SOD activity founih eels from SOR in both years and with the
significant inter-annual difference observed forCs@igher in 2012 in SPL fish (Table 2). SOD
activity was weakly positively correlated to lived which could possibly explain the high level

13



389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419

of SOD activity in SOR and SPL fish (Table S.5). gkown in Fig. 2, a majority of eels from
SOR and some eels from SFL were associated withivite Cd vector in agreement with the
significantly higher liver Cd observed in eels fr&d®R compared to eels from SJR and SFL
(Table S.4). Similar results were observed by Ma#iAlvarez et al. (2005), who reported that
Cd exposure could cause an increase in antioxglatmes by competing with essential metals
on protein-binding sites. Further experimental &sidre needed to confirm the potential cause-
effect relationship behind this weak association.

Although EROD activity did not vary significantlymeong sites and years, in 2011
however, EROD activity was highly variable in etsm SPL compared to the other sites (with
a high 78" percentile of 31.6 compared to 15.7 and 10.3 0RSand SJR sites respectively,
Table 2).

Previous studies conducted in the Gironde and &trénce River systems have reported
that some eels during their growth phase migrate fthe upstream to the downstream sections
and inversely (Daverat and Tomas, 2006; Thibauklgt2007). Inter-individual variations in
migratory behaviour and growth rates (Patey etsalbmitted), in addition to variations in diet
selection (Pegg et al., 2015) could affect contaminuptake. Although a wide range of
persistent contaminants (PCBs, PBDESs, pesticiddsnagtals) were measured in eels in this
study, other contaminants could influence the bideraresponses. PAHs are known to induce
both EROD and antioxidant enzyme activities (MathAlvarez et al., 2005; Whyte et al.,
2008). For example, in field and experimental stadiGravato et al. (2006, 2010) reported
significant increases in liver EROD activity andtiakidant capacities in European eels
contaminated by PAHs. Seasonal or inter-annuaatranis in natural factors such as temperature
and salinity could also influence antioxidant defeand biotransformation enzyme activities in
fish, even if exposure remains constant (Martindzarez et al., 2005; Whyte et al., 2008;
Chainy et al., 2016). Eels sampled in tributariesnfthe downstream St. Lawrence system (SOR
and SJR), exposed to a strong salinity gradient awahort distance, are possibly more prone to
variations in salinity, metal contaminants and termapure which may possibly cause inter-

annual variations in antioxidant enzymes (Thibaukll., 2007; Pannetier et al., 2016).

3.3 Patterns of biological characteristics, contemis and biomarker responsesAin

anguilla

14
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The first 3 principal components of the PCA coveB&d % of the variability of the
overall data (Table 1). PC1 was mainly composedg#, organic and inorganic contaminants
and mainly contributed to separate the most comat®ad sites GIR and GAR from the reference
site CER (Fig. 3 and Table 1). Like fAr rostrata, A. anguilla muscle lipids were significantly
correlated with morphometric and organic contami®iaand no strong correlations were
observed among biomarker responses and muscls (ikehdall rank correlation < 0.200, Table
S.6) suggesting no impairment of contaminants breterves.

Hemosiderin pigment deposition in splenic MMC wastributed along the PC2-axis
(Table 1 and Fig. 3 a). Hemosiderin pigment, muaad liver As scored positively on PC2 and
were significantly and positively correlated withch other (Fig. 3 a and Table S.6). Moreover,
vectors of these variables are oriented betwees ®ein CER and GIR (Fig. 3 b). This
observation is consistent with significantly highedues in fish from the salt marsh site CER
and intermediate values in fish from the estuasite GIR observed in both years (Fig. 1 a).
Moreover, it was in agreement with the observatiost eels living in brackish or saltwater
environments accumulate more As than their fresewedunterparts (Pannetier et al., 2016).
Sorensen and Smith (1981) demonstrated the preséreein hemosiderin granules in the liver
of adult channel catfishHdtalurus punctatus) exposed experimentally to As and suggested that
this deposit constituted a mechanism for storagedatoxification. The presence of hemosiderin
pigments is linked to a breakdown of red blood scedthich could cause hemosiderosis,
especially in the spleen, and increase the size taednumber of MMCs in fish from
contaminated areas (Khan and Kiceniuk, 1984). larstudies are needed to determine if eels
living in saltwater environments are exposed, iditaoh to As, to other chemical or biological
hemolytic agents leading to increased depositidmeafosiderin in their spleen.

Although other biomarkers were not significantlyretated with PC1, PC2 and PC3 axes
and their explained variance (%) were low (Table chntrary to what was observed far
rostrata, in A. anguilla most biomarkers displayed significant spatial andr-annual variations
(Table 2). Variations in lipofuscin pigments shovgghificant differences among sites in 2011,
with higher values in fish from GAR compared tohfifom DOR (Fig. 1 b). Lipofuscin
deposition in splenic MMC was more associated &gh and GAR fish (Table S.6 and Fig. 3 b).
Moreover, eels from GAR were older than fish frothey French sampling sites (Table S.1).
Lipofuscin is known as an “aging pigment” and aar@ase in lipofuscin pigments in MMCs is
generally found in older fish (Wolke, 1992; AgiusdaRoberts, 2003). Therefore, Ananguilla,
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lipofuscin pigments globally increased in older andre contaminated fish, mostly found in
GAR, in contrast withA. rostrata in which lipofuscin deposition was not significantorrelated
to either of these variables.

Values of density of MMCs were significantly higher GAR compared to DOR, with
intermediate values for fish from GIR and CER ii2@Table 2). In 2011, the surface of MMCs
expressed significantly higher values in eels frGiR compared to DOR. The PCA analysis
showed that the strongest correlations were betwleasity of MMC and muscle Hg and Cd
(Kendall's tau = 0.281 and 0.235 respectively) dstlveen surface of MMC and age, BL and
BM (Kendall's tau = 0.384, 0.337 and 0.317, respebtt, Table S.6). Several studies have
reported on correlations between increased numb&MC in fish exposed to Hg and other
metals (Meinelt et al., 1997; Agius and Robert9)2®chwindt et al., 2008). Khan et al. (1994)
observed an increase in the size of splenic MMQh wicreasing length and weight of winter
flounder living in a contaminated area and Coullland Hodson (1996) also reported an
increase of surface of MMCs in the spleen of oltdwtlantic tomcod collected from estuarine
sites receiving pulp and paper mill effluents. Saupgd by these studies, the increase in the
density of MMCs in eels from GAR with Hg and Cd tamination and the increase in the
surface of spleen MMCs in eels from GIR was pogsi#dsociated with aging. Since the
Kendall's tau of these correlations was weak, we rdi exclude that other potential
contaminants and/or natural factors not measureddcmfluence the response of these
biomarkers.

Catalase activity was more strongly correlated withther organic contaminants such as
DDT and metabolites, PBDEs and PCBs and assodiatedls from GAR and GIR (Fig. 3 and
Table S.6). In addition, fish from GIR, GAR and D@Rpressed significantly higher liver CAT
activities compared to CER fish in 2011 (Tablel2)2012, only fish from GIR had significantly
higher CAT activities compared to GAR fish (Table River CAT activity was significantly
higher in 2012 than in 2011 but only in fish frorBR, in contrast to liver SOD which remained
unchanged for these fish, but which decreased letv2011 and 2012 in GAR and GIR. To
support the possible effect of organic contaminamshepatic CAT enzyme in GAR and GIR,
other field studies have reported significant iases in CAT activity in yellowA. anguilla
exposed to organic contaminants (Regoli et al.328Gimad et al., 2006; Buet et al., 2006).

No significant relationships between EROD activignd tissue contaminant

concentrations were observed indicating that tihosnbrker response was not associated with
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exposure to the measured persistent contaminanite iGironde system (Tables S.6). Although
concentrations of organic contaminants in eels f@AR and GIR were higher in 2011, EROD
activity was twice higher in 2012 in fish from Gl®mpared to fish from DOR and CER and
was also higher in fish from GAR compared to DORME 2). We hypothesize that other
chemical factors not measured, such as PAHs, mag ¢entributed to the higher EROD activity
found in eels from GAR and GIR in 2012. Elevatediaantrations of PAHs and pyrene were
detected in the muscle tissue of European flouEletichthys flesus) in the Gironde Estuary
(Laroche et al. 2012). Further studies are needednfirm the link between PAH exposure and
EROD induction in eels from GAR and GIR.

Finally, the parasité. crassus was detected only iA. anguilla (Table 2). The number of
A. crassus was not correlated with any biological, contaminan biomarker variables (Table
S.6). In 2011, fish from the freshwater sites DOR &AR presented a significantly higher rate
of infection compared to samples from the brackisiter site GIR and the salt marsh site CER,
consistent with field and experimental studies hgwilemonstrated that infection levels Af
crassus decrease with an increase in salinity (Kirk ef 2000; Morrison et al., 2003; Lefebvre
and Crivelli, 2012).

4. Conclusions

Our study revealed similarities in the biomarkexarained betweer. anguilla andA.
rostrata, supporting their use in comparative ecotoxicatabstudies. The basal levels of EROD
activity and of biomarkers of histopathology wemaitar in eels of both species from reference
sites. A high deposition of hemosiderin was obsgiaesels from the most brackish sites in both
species. However, the cause of this depositionnettain. InA. anguilla, it was strongly
associated to As accumulation wherea#\imostrata, it was weakly associated to Pb. Further
studies are needed on the relationship betweemagmvental variations, migration and feeding
patterns and accumulation of potentially hemolyggents in Atlantic eels growing in saline
water, and on the potential impact of this accutmhaon blood cells integrity and on the
immune function.

In comparison to its American cousin from the Sawkence systemA. anguilla from
Southwest France may be more affected by contansindigher CAT activity, density of MMC
and hemosiderin pigment were observed in eels ft@contaminated sites GAR and GIR and

were related to organic and metal contaminants aadbDTs, PCBs, PBDEs and muscle Hg and
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Cd. This, in association with the higher concerdret of PCBs, DDTs and metals observed in
the tissues oA. anguilla from GAR and GIR compared fo rostrata, suggests a more important
risk of impacts of these contaminants in these eetspared to American eels from the more
contaminated sites SPL and SFL. Forrostrata, in both study years, neither the PCA nor
ANOVA identified major influences of persistent argc or inorganic contaminants on EROD,
catalase or histopathological biomarkers.

Field studies have already reported that the seigiof biomarkers could vary from one
habitat to another in response to the complex mestof contaminants and other environmental
conditions (Wolke, 1992; Van der Oost et al., 20@X)ntaminants such as PAHSs, dioxins and
furans, not measured in our study, are known taidedbiotransformation and antioxidant
enzymes in the short-term and histopathologicambidkers over longer periods of exposure
(Van der Oost et al., 2003). The yellow stage dhlxpecies are not strictly catadromous and
perform short migrations in order to forage foodmnore productive environments (Daverat and
Tomas, 2006; Thibault et al., 2007). Even if thesgrations are shortz(10 km) compared to
the reproductive migration of silver eels, they afeonsiderable importance because they occur
during the prolonged growth stage and involve dvifig between environments varying widely
in contaminants and other abiotic factors sucleagperature and salinity (Thibault et al., 2007).
Finally, the small number of eels that could beeméd in this study and the wide range of
estimated age (2 to 18 years old) may constituedsi and impose a requirement to be prudent
regarding the overall conclusions. The peculiatdgy of these species, which grow at widely
different rates depending on their habitat (Pateyale submitted), makes it impossible to
eliminate biases such as size and age among stadyFor that purpose, complementary studies
with larger sample size and a greater number e$ site recommended. Nevertheless, this study
provides a database to better target and prioritizge studies on the impacts of contaminants
on eel health in the Gironde and St. Lawrence Riyasins. Combined with others (Pierron et al.,
2013; Baillon et al., 2015a; Baillon et al., 2018zillon et al., 2016; Caron et al., 2016) it
supports that contamination represents a risk eéohialth of European eels from the Gironde

system that could be contributing to the lack abreery of these fish.
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1 Table 1: Explained variance (%) for each significant prpaticomponent (PC) of the three different PCA fakol by the significant variables in each PC.
2 Variables significantly correlated with the prinalzomponents (PC1, PC2, PC3) in each PC are imotzald.

Species Anguilla rostrata Anguilla anguilla
Years 2011-2012 2011-2012
PC1 PC2 PC3 PC1 PC2 PC3
Explained variance (%) 2221 807 663 1972 1105 801
Variables
Body Length (mm) 11.39 2.64 0.09 5.37 9.82 3.36
Body Mass () 11.56 3.67 0.15 4.67 11.39 3.81
Lipid content(%) 8.36 5.4¢ 0.01 4.4¢4 5.01 2.22
Age (year, 2.2¢ 6.3¢ 12.09 8.61 0.0z 7.4%
NumberA. crassus 0.00 0.00 0.00 0.07 9.26 1.02
EROD (pmol/min/mgrotein) 0.67 0.18 4.88 0.36 0.03 9.66
Catalase(mol/min/mg protein) 0.07 1.66 1.71 3.58 0.01 1.00
Superoxide dismutaspmol/min/mg protein 2.4t 0.7z 1.2¢ 0.0¢ 0.11 4.1¢
Density of MMCs (number/mf 0.04 0.38 16.08 1.37 1.06 3.28
Surface of MMC{MMC/mn?) 0.0¢ 1.9¢ 21.72 3.54 2.0¢ 5.4t
Hemosiderin pigment (median of grades) 1.68 158 1377 0.00 11.29 5.24
Lipofuscin pigment (median of grades) 0.02 0.01 0.01 1.91 0.00 0.59
Hexachlorobenzene (ngdgv) 6.64 6.51 211 5.72 0.32 6.12
Lindane (ng/glw) 0.04 0.10 0.14 0.18 7.67 9.81
Sum of DDT and metabolite(ng/g dw) 10.57 1.9¢ 0.0C 12.08 1.6¢ 1.1z
Sum of PBDE¢(ng/gdw) 8.27 0.3t 0.3 9.33 3.6( 1.07
Sum of PCBs (ng/dw) 11.30 0.14 0.01 10.77 1.10 3.59
Muscle As (ug/g dw) 4.87 14.33 0.00 0.39 1252 4.64
Muscle Ag (p1g/g dw) 0.32 7.54 0.02 0.03 0.84 2.60
Muscle Cd (ng/g dw) 0.65 0.79 3.71 0.19 2.04 5.95
Muscle Pk(pgig dw) 0.4C 2.27 0.01 0.07 2.32 0.4¢
Muscle Hg(ng/g dw) 4.7¢ 8.01 4.3¢ 7.57 1.8¢ 2.5¢
Liver As (ng/g dw) 3.96 13.44 0.71 0.17 12.50 3.98
Liver Ag (1g/g dw) 3.13 7.67 0.00 6.08 0.65 0.13
Liver Cd (pg/g dw) 0.50 849 1333 7.03 2.05 0.36
Liver Pb (pg/g dw) 5.99 3.77 3.50 6.39 0.74 10.34
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Table 2: Spatial and temporal variations of hepatic EROBviyg, antioxidant enzymes, splenic melanomacragheenters (MMCs) and numberAfcrassus
(median (Q1; Q3) (n)) of yellovA. rostrata in the St. Lawrence system aAdanguilla in the Gironde system in 2011 and 2012. Differetitels indicate
significant differences among sites within speeied within sampling years (ANOVA or KW,90.05). An asterisk * indicates a significant difface between
2011 and 2012 (T-test, p < 0.05). DOR= DordogneR&A&saronne; GIR= Gironde; CER= Certes; SFL = SBmancois Lake; SPL = Saint-Pierre Lake; SOR =
Sud-Ouest River; SJR = Saint-Jean River; NA= Absent
Species Anguilla rostrata Anguilla anguilla
Biomarkers  Years SFL SPL SOR SIJR DOR GAR GIR CER
Liver EROD 2011 7.1(5.7;88) 8.9 (5.2; 31.6) 105 (7.9; 15.7) 8.7 (7.6; 10.3) 11.9 (6.3;13.9) 72(6.1;14.2) 104 (6.9; 12.4) 88 (5.1;11.2)
(pmol/min/mg (15) (7) (15) (12) (13) (14) (15) (11)
protein)
012 5167:117) 7.1(6.1;9.9) 11.6 (8.9; 15.9) 11.4 (8.5; 22.5) 9.9(6.2,11.0) 18.6(13.9;257)  19.7(16.9;402)  13.3(8.9,16.9)
12) (14) (15) (15) ¢ AB A BC
(15 (15) (14 (14
Liver Catalase 2011 2368 1827 2896) 4078 2657 5638) 3991 3102 4312) 2246 1971 2647) 23191902 2581, 2263 1455 2904) 3515 2495 4931) 893631, 984
(umol/min/mg BC AB A* C A A A B
protein) (14) ™ (12) (15) ®) (14) (14) (10)
201  216€(13233319°  226((1534 3598,  195:(1663 2641  235( (1523 2887 1961(1567 2408)  183<(1606 2039  276€ (2296 3589)  191¢ (1544 3148)
(12) (14) (13) (15) AB B A AB*
(12) (13) (14) (12)
Liver superoxide 5322 (2635; 7629) 962 (619; 2044) 5404 (4627, 7261) 5058 (3793; 5850) 3910 (3061; 4694) 4281 (2933; 4901) * 3651 (3161; 5261) * 3857 (2762; 4482)
dismutase 2011 A B A A @®) (14) (14) (10)
(umol/min/mg (12) (5) (12) (14) .
protein) 2012 3320 (2092; 5498 3851 (3346;5305) 6275 (4605; 7646) 4345 (3008; 6620) 2O (2?55)4175' 276¢ (1(1;? 3623 23%¢ (1333 3155 303 (1(?; 3838
B AB* A AB
(12) (14) (14) (15)
Density of 2011 211.428) 28(1.7:45 241731 241731 4212851 2812139 3812445 2812445)
MMCs (15) (] (15) (15) (13) (14) (15) (11)
(number/mm)
2012 2.8(2.4;3) 26(1.7;3.2) 3.5(2.4;38) 2.8(2.1;3.5) 2.8(2.1;4.2) 45 (2.4;6.3) 2.8(2.3;5.8) 1.9(1.7;2.3)
(12) (14) (15) (15) AB A AB B
(15) (15) (14) (12)
Surface of 2011  0.003 (0.002; 0.005)0.005 (0.003; 0.006) 0.005 (0.003; 0.007) 0.002 (0.002;0.004)  0.003 (0.002; 0.005) 0.004 (0.003; 0.007) 0.007 (0.006; 0.01) 0.003 (0.002; 0.007)
MMCs (15) (7) (15) (15) B AB A* AB
(MMC/mm?) (13) (14) (15) (11)
2012  0.004 (0.004; 0.006)0.003 (0.002; 0.004) 0.005 (0.003; 0.007) 0.003 (0.001;0.006)  0.005 (0.004; 0.008) * 0.006 (0.004; 0.008) 0.005 (0.003; 0.005) 0.005 (0.003; 0.008)
(12) (14) (15) (15) (15) (15) (14) (12)
Number ofA. 2011 NA NA NA NA 1(053) 25(0;43) 0 0
crassus A* A B B
(13) (14) (15) (11)
2012 NA NA NA NA 0(0;0) 0(0;5) 0(0;1) 00;0.3)
(15) (15) (14) (14
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Figure 1. Spatio-temporal variations of the relative propm§ of A. rostrata in the St.
Lawrence System and. Anguilla in the Gironde System with different grades af
hemosiderin and) lipofuscin pigment depositions in spleen MMCs @12 and 2012.
Sample size (n) is indicated in parentheses. [@ffetetters indicate significant differences

among sites within species and within a samplingr y&ruskal-Wallis test, p< 0.05).
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Figure 2. Principal component analysis (PCA) (n=82) illutrg: a) Relationships between patterns of contation (red),
biomarker response (blue) and biological charasties (green) irA. rostrata in 2011 and 2012 and b) Screening of eels from two
fluvial contaminated sites, Lake St. Pierre (LSRJ &ake St. Francois, (LSF) and two references,sié Jean River (SJR) and Sud-
Ouest River (SOR). Scores for the principal comptsé and 2 were 22.21% and 8.07%, respectivelgs $ff capture are identified
for each individual. BM: Body Mass, BL: Body LengtidMCs: Melano-Macrophage centers, SOD: superogidmutase and CAT:

catalase.
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Figure 3. Principal component analysis (PCA) (n=87) illutrg: a) Relationships existing between the pattdroontamination (red),
biomarker responses (green) and biological chaiatits (blue) inA. anguilla in 2011 and 2012 and b) Screening of eels from
contaminated sites, Gironde estuary (GIR) and Gerdtiver (GAR) and two references sites, DordogrneDOR) and the salt marsh
Certes (CER). Scores for the principal componerasdl2 were 19.72% and 11.05%, respectively. Siteapture are identified for each
individual. BM: Body Mass, BL: Body Length, MMCs: &ano-Macrophage centers, SOD: superoxide dismatad€AT: catalase



Highlights

» Patterns of contaminants and biological characteristics differed among sites and species.

* In American eels, biomarker responses did not differ clearly among sites and years.

In European edls, biomarker responses were higher in contaminated sites.

» High spleen hemosiderin deposition was observed in eels from the most brackish sites.

European eels may be more affected by contaminants than American eels.



