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 Obtained results reveal the importance of considering the nonlinear aspect of hydrological 

processes when dealing with frequency estimations at ungauged sites. 

Abstract 

The high complexity of hydrological systems has long been recognized. Despite the increasing 

number of statistical techniques that aim to estimate hydrological quantiles at ungauged sites, few 

approaches were designed to account for the possible nonlinear connections between hydrological 

variables and catchments characteristics. Recently, a number of nonlinear machine-learning tools 

have received attention in regional frequency analysis (RFA) applications especially for 

estimation purposes. In this paper, the aim is to study nonlinearity related aspects in the RFA of 

hydrological variables using statistical and machine-learning approaches. To this end, a variety of 

combinations of linear and nonlinear approaches are considered in the main RFA steps 

(delineation and estimation). Artificial neural networks (ANN) and generalized additive models 

(GAM) are combined to a non-linear ANN-based canonical correlation analysis (NLCCA) 

procedure to ensure an appropriate nonlinear modelling of the complex processes involved. A 

comparison is carried out between classical linear combinations (CCA combined with linear 

regression model, LR), semi-linear combinations (e.g. NLCCA with LR) and fully nonlinear 

combinations (e.g. NLCCA with GAM). The considered models are applied to three different 

datasets located in North America. Results indicate that fully nonlinear models (in both RFA 

steps) are the most appropriate since they provide best performances and a more realistic 

description of the physical processes involved, even though they are relatively more complex 

than linear ones. On the other hand, semi-linear models which consider non-linearity either in the 

delineation or estimation steps showed little improvement over linear models. The linear 

approaches provided the lowest performances.  
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1. Introduction and literature review 

Appropriate estimation of the occurrence frequency of hydrological extreme events, such as 

droughts and floods is of extreme importance for the adequate design and operation of water 

resources systems and to ensure public safety. To this end, frequency analysis of hydrological 

variables is a widely used approach when hydrological information is available at a given target 

site. Nevertheless, it is often required to estimate extreme events at ungauged sites where no 

hydrological observations are available. Regional frequency analysis (RFA) is a commonly used 

approach that aims to estimate hydrological quantiles at ungauged sites. It consists in two main 

steps, namely the identification of homogeneous regions and the transfer of hydrological 

information within the same homogeneous region [e.g. Hosking et Wallis, 1997].  

A large number of statistical techniques were proposed in the literature for each step assuming 

generally linear relationships between flood quantiles and catchment characteristics [Pandey et 

Nguyen, 1999; Ouarda et al., 2000]. However, as hydrological systems involve complex 

processes, it seems inadequate to assume a linear coupling between hydrological and physio-

meteorological variables. Indeed, the linkage between these variables is generally characterised 

by a strong nonlinearity [e.g. Sivakumar et Singh, 2012]. Therefore, a number of techniques have 

been proposed in the literature to account for possible nonlinearities in the relationships between 

variables. Recently, artificial neural networks (ANN) and generalized additive models (GAM) 

have known increasing popularity in a number of fields including hydrology. These two nonlinear 

models have also attracted significant attention in hydrological modeling as alternatives to 

classical regressive models [Shu et Burn, 2004; Chebana et al., 2014].   
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An ANN is a nonparametric computing and modeling approach inspired by the biological 

functioning of the human brain [e.g. Rumelhart et al., 1985]. Due to its capacity to detect 

complex nonlinear relationships, ANN has been widely adopted for simulating and forecasting 

hydrological processes. Different ANN configurations were used for solving numerous 

hydrological problems such as rainfall-runoff modelling, groundwater flow analysis, river ice 

modelling and streamflow forecasting [Dawson et Wilby, 2001; Zhang et Govindaraju, 2003; 

Seidou et al., 2006; Nohair et al., 2008; Gao et al., 2010; Huo et al., 2012; Aziz et al., 2014].  

Despite the extensive use of ANNs in the hydrological framework, their adoptions in RFA have 

been more modest. For instance, in Shu et Burn [2004] six various approaches have been applied 

using ANN ensembles, and compared to the single ANN model to estimate the index flood and 

the 10-year flood quantile. The application of the above models to some selected catchments 

indicated their ability to take into account nonlinear structures. In another study, Dawson et al. 

[2006] exploited the ANN ability to estimate the T-year flood events at ungauged sites. Shu et 

Ouarda [2007] introduced a one-step estimation model based on physiographical canonical 

variables produced by canonical correlation analysis (CCA), as inputs to ANN models (single and 

ensemble). Results showed that this technique provided superior estimations to those obtained in 

previous studies such as Chokmani et Ouarda [2004] and Ouarda et al. [2001]. In Shu et Ouarda 

[2008], the adaptive neuro-fuzzy inference system model was applied to 151 catchments in the 

province of Quebec, Canada, and compared to the single ANN model and the power-form 

nonlinear regression model. Results of this study suggested that the proposed model outperforms 

the nonlinear regression model and has a comparable performance to the ANN based approach. 

The ANN approach has also been considered in Aziz et al. [2014] on an extensive dataset of 452 

gauged catchments in Australia. The authors found that the ANN-based model presents the best 

performance among all employed models. Several other relevant studies used ANN models to 
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obtain flood (or low-flow) estimations at ungauged sites, such as Hall et Minns [1998]; Ouarda et 

Shu [2009]; Besaw et al. [2010]; Alobaidi et al. [2015]; and Kumar et al. [2015]. A major 

drawback of ANN modelling, as a machine learning method, is the requirement of a large dataset 

to obtain the expected performances [Dawson et al., 2006]. Furthermore, ANN calibration is a 

somewhat complex task which requires some subjective choices since no explicit regression 

equations can be given.  

As opposed to the ANN model, the Generalized Additive Model (GAM) is an effective nonlinear 

tool defined using an explicit formulation [Hastie et Tibshirani, 1990]. Due to its considerable 

flexibility, it has been successfully applied in different fields such as medicine [e.g. Austin, 

2007], environment [e.g. Guisan et al., 2002], finance [e.g. Taylan et al., 2007] and hydrology 

[e.g. López‐Moreno et Nogués‐Bravo, 2005]. For regional estimation purposes, GAM was 

introduced in the RFA context by Chebana et al. [2014] who showed that the GAM-based 

approaches outperformed the classical ones and provided an explicit description of nonlinearities. 

However, most of the current RFA literature, including the above mentioned studies, pays 

particular attention to the integration of nonlinearity in the estimation step. There have been very 

few studies dealing with the integration of nonlinear approaches in the delineation step. For 

instance, Lin et Chen [2006] the Self-Organizing Map, trained using an unsupervised competitive 

learning algorithm, has been used to identify homogeneous regions. For each neuron, the 

algorithm calculated a similarity measure (the Euclidean distance) between the input variables 

and the associated weights, and then, selected the output neuron with the smallest distance from 

the input variables. The obtained results suggested that the Self-Organizing Map approach is an 

effective and robust tool providing accurate hydrological neighbourhoods. Recently, a nonlinear 

Canonical Correlation Analysis (NLCCA) approach was investigated by Ouali et al. [2015]. The 

authors used a coupled CCA and ANN approaches to identify hydrological neighborhoods, and 
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then combined the proposed approach to a classical log-linear regression model for the estimation 

step. The obtained results showed the importance of accounting for nonlinear statistical 

connections in the delineation step which also improved estimation performances. 

Despite previous research efforts, it is important to mention that the nonlinear techniques have 

not yet been considered simultaneously in both RFA steps. The main goal of the present paper is 

to exploit the potential of nonlinear statistical tools in the RFA procedure. This comes down to 

consider a variety of combinations of nonlinear tools in both RFA steps. A second objective is to 

identify which step is more affected by nonlinearity. Therefore, new nonlinear combinations are 

proposed, assessed and compared.  

The remainder of the present paper is organized as follows. The theoretical background of the 

techniques used in this study is given in section 2. In section 3, the description of the three case 

studies as well as the details of the ANNs and GAMs implementations in the RFA are provided. 

In section 4, the results of the application of the proposed approaches are presented and 

discussed. Finally, section 5 summarizes the main conclusions. 

2. Theoretical background 

The present paper deals with the nonlinear aspects of complex hydrological systems. Unlike 

previous RFA studies, which treated the nonlinearity in only one RFA step, either the delineation 

or the estimation, all employed estimation tools herein (for both steps) are nonlinear techniques. 

In the following, we briefly present the theoretical background of the adopted approaches in each 

step.  

2.1. Regional hydrological quantile estimation   

In this subsection, an overview of the estimation approaches adopted in the current work is 

presented, namely the ANN (single and ensemble) and the GAM models.    
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2.1.1. Single and Ensemble ANN  

To date, a number of ANN models have been developed and introduced allowing solving large 

complex problems especially in environmental concerns [Eissa et al., 2013; Anmala et al., 2014; 

Ashtiani et al., 2014; Coad et al., 2014; Benzer et Benzer, 2015; and Wang et al., 2015]. The 

differences between various ANN classes may reside, for instance, in the model topology, the 

training algorithm and the transfer function used. Among the various ANN types that are 

available, the multilayer perceptron (MLP), also known as the multilayer feed-forward network 

is, so far, the most commonly used model for hydrological applications [Chokmani et al., 2008; 

e.g. Pramanik et Panda, 2009; Zaier et al., 2010; Wu et Chau, 2011; Kia et al., 2012; Chen et al., 

2013].  

A typical architecture of a MLP network is characterized by an input layer, one or more hidden 

layers and an output layer. Each layer contains computational units directly interconnected in a 

feed-forward way. Connections between neurons of two succeeding layers are performed using 

transfer functions designed through estimating appropriate parameters. Indeed, during the training 

process, the ANN parameters are estimated using an optimisation procedure [Park et al., 1991]. A 

number of training algorithms for MLP network are proposed in the literature among which the 

basic back propagation algorithm is the most popular [Shu et Burn, 2004]. More technical details 

about this algorithm are provided in Haykin et Lippmann [1994] and Werbos [1994]. 

A generalization of the single ANN abilities may show a significant improvement in its 

robustness and reliabilities by combining several ANNs into an Ensemble of ANNs (EANN). The 

EANN approach has received considerable attention in the hydrological literature [e.g. Cannon et 

Whitfield, 2002; Araghinejad et al., 2011; Demirel et al., 2015]. Although combining identical 

single ANNs may appear redundant, this generalized approach offers a better performance than 

This article is protected by copyright. All rights reserved.



8 
 

the single ANN [Shu et Burn, 2004]. The principal idea is to train each network differently 

through, for example, considering different training sets, and then to combine all ANN 

estimations to provide a single output. To this end, boosting and bagging approaches are two 

popular training methods. Several ways to combine all network outputs were proposed in the 

literature, such as averaging and stacking. For more details about these techniques, the reader is 

referred to Schwenk et Bengio [2000], Breiman [1996], Bishop [1995] and Wolpert [1992]. 

2.1.2.  Generalized Additive Model (GAM) 

Before presenting the Generalized Additive Model (GAM), it is of interest to introduce the 

Generalized Linear Model (GLM). The latter is a flexible extension of the ordinary linear 

regression model allowing for the response distribution to be non-Gaussian and relating a 

response variable Y to explanatory variables X via a link function g [McCullagh et Nelder, 

1989]. GAMs, initially introduced by Hastie et Tibshirani [1986], are an extension of GLMs 

linking, via a link function g, a non-Gaussian response to a sum of (nonlinear) smooth functions 

of explanatory variables.  

The basic model formulation, using m explanatory variables iX , is explicitly given by [Wood, 

2006]: 

    
1

m

i i

i

g Y f X 


    (1) 

where g is a monotonic link function, if  is a smooth function of explanatory variable,   is the 

intercept coefficient and   is the error term. 

This model allows accounting for nonlinear connections between response and explanatory 

variables through the smooth functions. Accordingly, the first step in GAM estimation is to 

estimate the smooth functions such that: 
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        
1

q

i ij ij

j

f x b x


                  (2) 

where ijb  are basis functions and ij  are the q parameters to be estimated for the i
th

 explanatory 

variable. Typically, smooth functions can take both parametric and nonparametric forms. Note 

that Spline functions are the most commonly used basis to characterize smooth functions [Wahba, 

1990]. Overall, the ability to consider non-parametric fitting with relaxed linear as well as 

Gaussian assumptions provides the potential for GAM to better describe regression relationships. 

 

2.2.  Delineation of homogeneous regions 

CCA is one of the most recommended approaches adopted in RFA for identifying hydrological 

neighborhoods [Ouarda et al., 2001]. To represent the relationship between two groups of 

variables, this technique consists on constructing new canonical variables resulting from linear 

combinations of physiographical and hydrological variables (X and Y respectively).  

Recent research efforts have shown increased interest in the nonlinear dynamics of hydrological 

processes. In this regard, the nonlinear CCA (NLCCA) based on ANN approach [Ouali et al., 

2015] is considered in the current study. This method consists in establishing non-linear 

combinations between original variables (X and Y) and the new canonical variables (U and V) via 

a transfer function. Consider the following hidden layer: 

                                          ( ) ( ) ( )x x x

k
k

h f W x b  
 

    ;         1,...,k l            (3)
                                                                                                                                                            

  
                       

                                

                                         ( ) ( ) ( )y y y

n
n

h f W y b  
 

   ;         1,...,n l                           (4)         
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where x and y denotes the observations vectors of the variables X and Y, respectively, )(xW and 

)( yW  are weight matrices, )(xb and )( yb  are vectors of biased parameters, k and n denote 

respectively the indices of the vector’s elements )(xh and )( yh and l denotes the number of hidden 

neurons. Therefore, canonical variables U and V are determined from a linear combination of 

)(xh and )( yh as:  

                                                                  
( )( ) ( ) xx xU w h b                (5)            

         
( )( ) ( ) yy yV w h b               (6) 

where 
( )xw and 

( )yw  are weight vectors estimated during the map from the hidden neurons ( )(xh

and )( yh ) to the canonical variables. 

A more detailed description of the properties of NLCCA can be found in Hsieh [2000] whereas 

the adaptation and application to the RFA context can be found in Ouali et al. [2015]. 

3. Applications and numerical implementations 

In the following, we present the datasets used in this work as well as details of the study design.  

3.1. Datasets  

In this work, the proposed models and methods are applied to real-world case studies and each 

model performance is then compared to the performance of a number of classical approaches. For 

comparison purposes, case studies already used in previous studies are also adopted in the present 

study.  

The first considered data base is inherent from the hydrometric station network of the southern 

part of the province of Quebec, Canada. A total of 151 stations located between the 45
o
 N and the 

55
o
 N were selected (Chokmani and Ouarda 2004). Three types of variables are identified namely 
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physiographical, meteorological and hydrological. The physiographical variables, as identified in 

Chokmani and Ouarda (2004), are the basin area (BV), mean basin slope (MBS) and the fraction 

of the basin area covered with lakes (FAL). The meteorological variables are the annual mean 

total precipitation (AMP) and the annual mean degree days over 0
o 

C (AMD). The hydrological 

variables correspond to the specific at-site flood quantiles QST corresponding to a given return 

period T. A summary of all data statistics is provided in Table 1. 

Two other case studies are also considered in this work, namely the hydrometric networks of the 

states of Arkansas and Texas in the United States with 204 and 69 catchments respectively. The 

employed basin characteristics are the same as in Ouali et al. [2015], explicitly, the basin area 

(BV), the slope of the main channel (S), the annual mean total precipitation (AMP), the mean 

basin elevation (EL) and the length of the main channel (L). The hydrological variables are the 

specific at-site flood quantiles, QST, corresponding to 10, and 50 years return periods. 

3.2. Model designs for RFA 

One important issue to address in this study is the use of considered nonlinear techniques in both 

delineation and estimation steps. Consequently, several regional models will be developed. 

Because of space limitations, model implementations and results associated to the Quebec case 

study are reported in details whereas those of Texas and Arkansas are briefly presented. In Table 

2 a recapitulation of all adopted regional models as well as the list of selected explanatory 

variables for the Quebec case study are presented. It is worthwhile to note that NLCCA 

implementation is carried out as in Ouali et al. [2015]. 

a. ANN and EANN implementation 

In the present study, the MLP was selected to design both the ANN and EANN models. The 

model inputs are the standardized catchment characteristics (BV, MBS, FAL, AMP and AMD) 
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that may affect the watershed hydrological behaviour. Model outputs are the log-transformed at-

site estimated specific quantiles. According to the literature, the adopted transfer functions for 

both the hidden and the output layers are respectively the tan-sigmoid and the linear function. As 

mentioned in previous studies [Shu et Ouarda, 2007; Ouarda et Shu, 2009], seeking the optimal 

number of neurons in the hidden layer is a crucial step when designing an ANN model. Indeed, 

this number should neither be too high, to avoid overfitting, nor too low to avoid underfitting. In 

Shu et Burn [2004], five neurons in the hidden layer lead to accurate results.  

After testing several ANN configurations including for instance varying the number of hidden 

neurons from 1 to 15, models using four neurons were selected since they allowed optimising the 

mean squared error (MSE) criterion. The Levenberg-Marquardt (LM) training algorithm (Hagan 

and Menhaj, 1994) was employed for training both ANN and EANN. Although it requires more 

memory than other algorithms, it is much faster and more efficient than the basic back-

propagation algorithm. It has also the ability to resolve several complex problems through 

proposing optimal solutions [Shu et Burn, 2004]. Depending on the initial value of the learning 

parameter , which appears in the LM algorithm weights, the LM algorithm behaves as a gradient 

descent method for large values of  and as the Gauss-Newton method when  is close to zero 

[Ouarda et Shu, 2009]. Similar to Shu et Ouarda [2007], an initial value of  is given in the 

current work as 0.005.   

For the EANN, a bagging with averaging approach is adopted. To achieve sufficient 

generalization ability, the ensemble size should be well selected. Indeed, if the size is too large, 

the training time increases whereas if the size is too small, no significant improvement in the 

generalization ability can be obtained [Shu et Ouarda, 2007]. In previous studies by Agrafiotis et 

al. [2002] and Shu et Burn [2004], an ensemble size of 10 was found to lead to satisfactory 
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results. In Shu et Ouarda [2007], where the same case study of the province of Quebec was 

treated, an ensemble of 14 ANNs yielded the best results. In the current work, using the bagging-

averaging configuration, different network sizes were trained (including 14 and 10 ANNs) with 

randomly sampled training data. The ensemble output is obtained after averaging all ANN 

outputs. According to the criteria presented hereafter, results indicated that using a network size 

of 10 achieved the best performance.   

b. GAM implementation 

In this application, GAM was implemented based on the mgcv package in the R language and 

environment [Wood, 2006]. Due to their theoretical motivations, the thin plate regression splines, 

which are a generalisation of cubic splines, are considered as basis ijb  in the smoothing functions 

if  as in (2). Note that this class of basis is characterized by its high computational speed and 

includes a reduced number of parameters compared to other smoothing functions [Wood, 2003]. 

The considered link function g in (1) is the identity function since the log-transformed quantiles 

are approximately normally distributed (as in Chebana et al. [2014]). 

A critical task when dealing with GAMs consists in selecting the appropriate smoothing level for 

each explanatory variable. This is achieved using the concept of effective degrees of freedom 

(edf) [Guisan et al., 2002]. The total edf number used for all explanatory variables must be lower 

than the total number of observations (in the RFA context, it corresponds to the number of sites 

belonging to a given homogeneous region). In the current work, edf values are estimated using a 

stepwise procedure.  

A stepwise selection procedure was also carried out to ensure an objective selection of the 

explanatory variables. As indicated in Chebana et al. [2014], the correlation-based selection 

method is a linear tool which seems to be more adequate with the CCA concept. Accordingly, in 
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this study significant variables were selected using an automatic stepwise procedure within GAM. 

Prediction error criteria such as the Generalized Cross Validation score (GCV) and the Akaike 

Information Criterion (AIC) are adopted to select appropriate variables. As a result, identified 

variables were found to be the same as in Chebana et al. [2014], namely BV, FAL, AMD, LAT 

and LONG with edf respectively 1, 4, 4, 1 and 2.   

Once a RFA model is established, a cross validation procedure (also called jackknife or leave-

one-out procedure) is used to assess model performance. To this end, the following evaluation 

indices are employed:  

          Efficiency Coefficient:     

 

 

2

1

2

1

ˆ

1

N

i i

i

N

i

i

y y

EC

y y







 






   (7) 

Relative root mean square error:      

2

1

ˆ1 N
i i

i i

y y
RRMSE

N y

 
  

 
    (8) 

Relative bias:      
1

ˆ1 N
i i

i i

y y
RBIAS

N y

 
  

 
    (9) 

where 
iy  denotes the local estimated quantile at the site i and ˆ

iy  is the regional estimated one. N 

is the total number of sites [Hassanzadeh et al., 2011; Abdi et al., 2016]. 

4. Results and discussion  

Both ANN and GAM models were combined to the NLCCA in the delineation step and applied 

to the three considered datasets.  

4.1.  Results of the Quebec case study 

The obtained results for the province of Quebec, using the cross-validation procedure for all 

considered combinations, are presented in Figure 1. Accordingly, the best overall performances 
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are those obtained from the full nonlinear model NLCCA-GAM first when the explanatory 

variables are those identified in Chokmani et Ouarda [2004], followed by the case when variables 

are selected with a stepwise technique (mainly in terms of RRMSE). In the following, we denote 

by NLCCA-GAM the model using BV, MBS, AMP, FAL and AMD variables. According to the 

high EC values (more than 0.8) and the lowest RRMSE values (28.35% for QS100), the NLCCA-

GAM model provides the most accurate estimates compared to all other approaches. Based on the 

RBIAS, results show that, even though all models underestimate flood quantiles, the CCA-GAM 

is the least biased model (-3.7 % for QS100). However, compared to the NLCCA-GAM approach, 

the difference is not significant (a difference of -1.3 % for QS100).  

Results indicate also that the NLCCA-GAM approach yields more accurate estimates when 

compared to the same approach using variables identified by stepwise, despite the fact that the 

difference is not too large. This may be explained by the fact that criteria used to select the 

variables (GCV and AIC) are not the same criteria used to evaluate model performances (EC, 

RRMSE, RBIAS). In addition, in the case of the stepwise based combination, the used NLCCA 

solution is the same as in the NLCCA-GAM. Hence, through a more advanced NLCCA 

parameterization, better results could be achieved by using the stepwise approach.  

Moreover, the obtained results reveal that, when using the same gauged sites meaning the same 

delineation method, GAM outperforms ANN-based approaches (ANN and EANN) in terms of all 

evaluation criteria. This is probably attributable not only to the flexibility of GAM and its ability 

to adequately account for the nonlinearities, but also to the data size. Indeed, since the considered 

dataset is relatively not too large (151 catchments), the ANN-based models might not be properly 

trained. On the other hand, an expected finding is that, overall, the NLCCA-EANN approach 

outperforms ANN-based approaches (CCA-ANN, CCA-EANN and NLCCA-ANN). This is due 

This article is protected by copyright. All rights reserved.



16 
 

to the combination of the advantages of the nonlinear delineation method and the generalization 

ability of the nonlinear estimation method.  

In addition, the gauged sites included in the homogeneous region when using the NLCCA 

approach lead to significant improvements in regional flood estimations when compared to sites 

retained using the linear CCA approach. More precisely, based on the RRMSE criterion (Figure 

1-b), a relative improvement of 20% for the QS100 estimates is obtained when considering the 

NLCCA-LR approach compared to the basic CCA-LR model. Regarding the estimation step, a 

relative improvement of 22% is recorded when considering CCA-GAM, and only 7% when 

considering the CCA-EANN approach. However, when we account for nonlinearity in both RFA 

steps, especially NLCCA combined with GAM, the relative gain reaches 45% (compared to the 

full linear model CCA-LR). This illustrates clearly the importance of the proposed approaches 

based on nonlinear tools in both RFA steps. In fact, an improvement in the estimation accuracy of 

quantiles at ungauged sites would significantly reduce flood damages, losses and costs.  

The comparison can also be extended to other regional models in the literature, such as the depth-

based approach [Wazneh et al., 2013], the EANN in the CCA space [Shu et Ouarda, 2007; Khalil 

et al., 2011] and the projection pursuit regression approach [Durocher et al., 2015]. In the two 

latter approaches the delineation step is not considered (one-step RFA models) and, in addition, 

the estimation models are nonlinear. Table 3 reports the results of the above-listed studies. It 

indicates that, in terms of RRMSE and EC, the NLCCA-GAM model outperforms considerably 

all other approaches. However, the RBIAS values indicate that the depth-based approach 

performs slightly better.      

To further explain the above results, the relative errors over sites associated to the best model in 

each category of combinations, CCA-GAM, NLCCA-LR, NLCCA-EANN and NLCCA-GAM, 
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are presented in Figure 2. One can notice that the lowest errors are associated to the full nonlinear 

combination NLCCA-GAM. Note also that, for some sites, the NLCCA-LR and NLCCA-EANN 

approaches show comparable performances. Furthermore, for a small number of sites the CCA-

GAM approach seems to perform poorly. Indeed, a number of problematic stations corresponding 

to atypically large relative errors for most of the considered approaches have been identified 

(stations with identification numbers: 030401, 041901, 041903, 042607, 050701, 076601, 081002 

and 092711). Some of these stations (030401, 041903 and 042607) were also identified in 

previous studies treating the same case study [Chokmani et Ouarda, 2004; Durocher et al., 2015]. 

These sites were found to have under-evaluated areas (Chokmani and Ouarda 2004). Using the 

NLCCA-GAM approach, the estimations corresponding to these particular sites are significantly 

improved as shown in Figure 2.  

On the other hand, the exploration of the variability of errors as a function of the at-site QS100 is 

shown in Figure 3 (because of space limitations and the similarity between results, those 

corresponding to QS10 and QS50 are not presented). One can see that the lowest specific quantile 

values are poorly estimated by all approaches except when using the full nonlinear combination, 

NLCCA-GAM, which provides accurate estimates. 

At-site versus regional quantile estimates are presented in Figure 4 for QS100. To this end, five 

models are considered (CCA-LR, NLCCA-LR, NLCCA-EANN, CCA-GAM, and NLCCA-

GAM) where LR-based ones (CCA-LR and NLCCA-LR) are considered as benchmarks and the 

NLCCA-EANN is selected as the best ANN-based model. According to Figure 4 the full 

nonlinear models show better overall performances (NLCCA-GAM followed by NLCCA-

EANN). Indeed, associated at-site and regional estimations are very close since the points are less 

dispersed around the diagonal line. Moreover, higher specific quantile values are somewhat 

underestimated leading to the above obtained negative RBIAS values. These large quantile values 
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were found to be associated to small basins (the area is less than 800 km²), which seems to be 

systematically explained by their sharp hydrological responses. On the other hand, one can see, 

again, that the lowest specific quantile values are often overestimated except when using the full 

nonlinear model, NLCCA-GAM, by which they are well estimated. Note that these sites are the 

same ones identified as problematic in Figure 2. These sites, whose geographical locations are 

indicated in Figure 5, were found to have large basin areas (such as sites 030401, 076601, 081002 

and 092711) or to be located in the limit of the province with medium size catchments (041901, 

041903, 042607 and 050701).   

As opposed to previous studies, where problematic sites were often removed to improve the 

model and the overall estimation results, in this work these stations are preserved. Figure 6 shows 

specifically relative errors for these sites. It indicates that the NLCCA-GAM model yields the 

best estimations for these particular sites and significant improvements are obtained which 

explain the overall high performance. In particular, the NLCCA-GAM model leads to an accurate 

estimate at the site 042607 which is the most notable station in previous studies and models. This 

site belongs to the drainage basin of the Kipawa River with a moderate catchment area of 2110 

km
2
. Examination of the at-site estimation quantiles shows that this site has the lowest at-site 

quantile values for all return periods (64 m³/s for QS100). Hence, unlike the classical regressive 

models, the high flexibility offered by GAM leads to a better modelling of the complex 

hydrological phenomena and to a much improved estimation. This finding points out a significant 

advantage of nonlinear models, in particular the NLCCA-GAM approach. Indeed, it shows that 

there is no need to develop specific models for different classes of basins according to their size, 

slope, or streamflow magnitude.  
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4.2. Results of the Arkansas and Texas case studies  

Results of the Arkansas and Texas case studies are presented in Tables 4 and 5. It can be seen 

that, again, the NLCCA-GAM approach provides the most accurate estimates especially in terms 

of RRMSE. In fact, for Texas, the NLCCA-GAM performs well in terms of all evaluation 

criteria. However, the relative improvement was not as large as in the case of the province of 

Quebec. Indeed, the comparison of NLCCA-GAM and CCA-LR shows that a relative 

improvement of only 31% has been achieved in Texas for QS10 against 48% in the case of 

Quebec. Results associated to Arkansas reveal that the NLCCA-GAM approach is recommended 

when considering the RRMSE which is the most important criterion [Hosking et Wallis, 1997]. 

Compared to the fully linear combination, the relative improvement reaches 35% for QS10. This 

large difference between the NLCCA-GAM results in the three considered case studies can be 

explained by the fact that the nonlinearity is not as pronounced in the Arkansas and Texas case 

studies as it is the case of Quebec.  

Figure 7 illustrates the smooth functions of the response variables as a function of the explanatory 

variables for the three considered case studies. One can effectively notice the difference in the 

degree of nonlinearity between the three regions. Indeed, the most complex relations between 

explanatory and response variables appear in the case of the province of Quebec which explains 

the high gain recorded when using the fully nonlinear combination NLCCA-GAM (48%). Note 

also, from these figures, that the Texas region seems to represent the simplest linear case study 

(linear smooth function curves and low edf values) which justify the smallest relative 

improvement (31%).  

 

 

5. Conclusions  
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The main objective of this study is to investigate the potential of nonlinear approaches in both 

RFA steps, simultaneously. This allows taking full advantages of the nonlinearity considered in 

one of the two steps. To this end, a number of combinations of delineation methods (CCA and 

NLCCA) and regional estimation methods (LR, GAM, ANN and EANN) are considered. To 

illustrate the potential of the proposed approaches, these latter were applied to three different case 

studies in North America.  

The obtained results reveal that considering nonlinear techniques in both RFA steps would 

significantly improve the performance of the regional model and, consequently, engender more 

accurate flood quantiles estimations at ungauged sites. This can have positive implications for the 

risk assessment of extreme hydrological events. In fact, the regional model combining the 

NLCCA approach for the delineation step with the GAM for the estimation step (NLCCA-GAM) 

was found to be the most appropriate model followed by the NLCCA-EANN approach for the 

Quebec case study.  

Another noteworthy result is related to the importance of considering nonlinearity in the 

delineation or in the estimation step. It was found that considering nonlinearity in the delineation 

or in the estimation step lead to comparable results. Indeed, improvement in the overall model 

performance requires the integration of nonlinear tools in both steps. In summary, despite the 

relative complexity of the NLCCA-GAM approach, it is worthwhile to consider such model to 

adequately account for the nonlinearities of complex hydrological phenomena. Actually, a 

reliable regional model could be particularly useful for water resources managers. 

In this study, the focus was on assessing the performances of the ANN and GAM models, 

combined to the NLCCA approach. In further efforts, it may be of interest to proceed with other 
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statistical techniques such as the projection pursuit regression, as a generalization of these two 

techniques, coupled to a delineation approach.  
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Table 1. Descriptive statistics of hydrological and physio-meteorological variables-Quebec 

Variable  Min 

 

Mean Max STD 

Mean Basin Slope (MBS) (%)  0.96 2.43 6.81 0.99 

Fraction of the basin area covered with lakes (FAL) (%) 0.00 7.72 47.00 7.99 

Annual mean total precipitation (AMP) (mm)  646 988 1534 154 

Annual mean degree days over 0
o  

(AMD) (
o 
C)  8589 16346 29631 5382 

Basin area (BV) (km²)  208 6255 96600 11716 

Latitude (LAT) (°N) 45 48 54 2 

Longitude (LONG) (°W) 58 72 79 4 

Flood quantile of 10 year return period (m³/s) 53 698 5649 828 

Flood quantile of 50 year return period (m³/s) 61 851 6642 985 

Flood quantile of 100 year return period (m³/s) 64 913 7013 1048 

 

 

Table 2. Summary of all considered regional models. 

 

 
Delineation 

step (D) 

Estimation 

step (E) 

Regional model 

notation 
Reference 

Physiographical 

variables 

Linear D & E  CCA LR CCA-LR Ouarda et al. [2001] 
BV, MBS, FAL, 

AMP, AMD 

Linear D &  nonlinear E 

CCA ANN CCA-ANN 
Current work BV, MBS, FAL, 

AMP, AMD 

 

CCA EANN CCA-EANN 

CCA GAM CCA-GAM Chebana et al. [2014] 

Nonlinear D & linear E NLCCA LR NLCCA-LR Ouali et al. [2015] 
BV, MBS, FAL, 

AMP, AMD 

 

Nonlinear D & E  

NLCCA ANN NLCCA-ANN 

Current work 

BV, MBS, FAL, 

AMP, AMD 
NLCCA EANN NLCCA-EANN 

NLCCA GAM NLCCA-GAM 

 NLCCA GAM 
NLCCA-

GAM/STPW 

BV, FAL, 

AMD, LAT, LONG 
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Table 3. Comparison of NLCCA-GAM with a number of RFA approaches from previous studies applied 

to the same dataset, Quebec. 

Regional model 
Hydrological 

variables 
EC 

RRMSE 

(%) 

RBIAS 

(%) 

ANN- Linear CCA [Shu et Ouarda, 2007] 
QS10 

QS100 

0.84 

  0.78 

37 

45 

-5 

-6 

Optimal depth-based approach [Wazneh et al., 2013] 
QS10 

QS100 

- 

- 

38 

44 

-3 

-2 

Projection pursuit regression_STPW [Durocher et al., 

2015] 

QS10 

QS100 

0.82 

0.79 

34 

40 

-4 

-6 

NLCCA-GAM  
QS10      0.87 23     -4 

QS100 0.82 28      -5 

Best results are in bold character. 

 

 
Table 4. Jackknife Validation Results- Arkansas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Best results are in bold character. 

 

 

Regional model 
Hydrological 

variables 
EC RRMSE (%) RBIAS (%) 

CCA-LR 
QS10 0.75 47.70 -3.04 

QS50 0.73 61.36 -5.76 

CCA-ANN 
QS10 0.71 63.58 -19.35 

QS50 0.71 66.27 -14.80 

CCA-EANN 
QS10 0.74 61.63 -16.83 

QS50 0.73 68.97 -19.12 

CCA-GAM 
QS10 0.74 40.54 -10.39 

QS50 0.72 52.37 -13.50 

NLCCA-LR 
QS10 0.72 37.23  6.27 

QS50 0.71 44.78 5.54 

NLCCA-GAM 
QS10 0.73       31.10 8.70 

QS50 0.72  34.50 8.40 

NLCCA-ANN 
QS10 0.65 49.71  8.16 

QS50 0.67 51.30  2.71 

NLCCA-EANN 
QS10 0.69  41.35  4.14 

QS50 0.70  45.93  3.66 
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Table 5. Jackknife Validation Results- Texas 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Best results are in bold character. 

  

Regional model 
Hydrological 

variables 
EC RRMSE(%) RBIAS(%) 

CCA-LR 
QS10 0.35 44.75 -7.56 

QS50 0.13 54.88 -4.11 

CCA-ANN 
QS10 0.49 52.46 -10.85 

QS50 0.46 58.82 -14.91 

CCA-EANN 
QS10 0.53 44.92 -14.90 

QS50 0.41 56.52 -18.75 

CCA-GAM 
QS10 0.55 40.24 -3.49 

QS50 0.49 44.72 -6.72 

NLCCA-LR 
QS10 0.53 42.85 -5.64 

QS50 0.44 51.11 -7.09 

NLCCA-GAM 
QS10 0.68 30.7 -2.9 

QS50 0.61 38.4 -5.2 

NLCCA-ANN 
QS10 0.56 43.26 -9.11 

QS50 0.53 45.70 -7.33 

NLCCA-EANN 
QS10 0.57 41.90 -12.65 

QS50 0.46 52.73 -16.40 
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Figure 1. Jackknife validation Results- Quebec. 
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Figure 2. Relative errors associated to QS100 calculated at each site using CCA-GAM, NLCCA-LR, 

NLCCA-EANN and NLCCA-GAM. 

                           

 

 

 

 

 

 

 

 

 

             

Figure 3. Relative errors using CCA-LR, CCA-GAM, NLCCA-LR and NLCCA-GAM as a function of 

QS100 for Quebec. 
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Figure 4. Jackknife estimation using the CCA-LR, CCA-GAM, NLCCA-LR, NLCCA-EANN, and the 

NLCCA-GAM approaches for QS100. Red asterisks are associated to estimations at particular sites. 
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Figure 5. Geographical location of the identified particular stations in southern Quebec, Canada 

 

 

Figure 6. Relative errors for identified problematic sites using several approaches, QS100. 
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Figure 7.  Smooth functions of QS10 as a function of the explanatory variables of the NLCCA-GAM 

model for Quebec, Arkansas and Texas, with associated 95% confidence intervals (dotted lines) and the 

estimated degree of freedom of the smooth (labelled in the vertical axes). 
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