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Abstract. This study investigates the utilization of hydrolog-
ical information in regional flood frequency analysis (RFFA)
to enforce desired properties for a group of gauged stations.
Neighbourhoods are particular types of regions that are cen-
tred on target locations. A challenge for using neighbour-
hoods in RFFA is that hydrological information is not avail-
able at target locations and cannot be completely replaced
by the available physiographical information. Instead of us-
ing the available physiographic characteristics to define the
centre of a target location, this study proposes to introduce
estimates of reference hydrological variables to ensure a bet-
ter homogeneity. These reference variables represent nonlin-
ear relations with the site characteristics obtained by projec-
tion pursuit regression, a nonparametric regression method.
The resulting neighbourhoods are investigated in combina-
tion with commonly used regional models: the index-flood
model and regression-based models. The complete approach
is illustrated in a real-world case study with gauged sites
from the southern part of the province of Québec, Canada,
and is compared with the traditional approaches such as re-
gion of influence and canonical correlation analysis. The
evaluation focuses on the neighbourhood properties as well
as prediction performances, with special attention devoted
to problematic stations. Results show clear improvements in
neighbourhood definitions and quantile estimates.

1 Introduction

Accurate estimates of the risk of occurrence of extreme hy-
drological events are necessary for the minimization of the
impacts of these events and for the optimal design and man-
agement of water resource systems. However, necessary in-
formation is not always available at the sites of interest.
It is hence necessary to develop procedures to transfer, or
to regionalize, the available information at existing gauged
sites to the ungauged ones. regional flood frequency analy-
sis (RFFA) represents a large class of techniques commonly
used in water sciences to evaluate the risk of occurrence
of extreme hydrological phenomena of rare magnitudes at
ungauged locations (Haddad and Rahman, 2012; Hosking
and Wallis, 1997; Laio et al., 2011; Pandey, 1998; Reis et
al., 2005).

RFFA methods are usually composed of two main steps.
The first step is the formation of homogenous regions. This
step aims at pooling together sites that are approximately
similar according to homogeneity criteria. Inside these ho-
mogenous regions, it is assumed that hydrological infor-
mation can be reasonably transferred from gauged to un-
gauged locations (Cunnane, 1988). The second step, the es-
timation of flood quantiles, consists in the calibration of a
regional model that characterizes the interrelation between
hydrological variables of interest and explanatory physio-
meteorological variables corresponding to known site char-
acteristics. Consequently, RFFA is used to study unob-
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served hydrological behaviour from available hydrological
and physio-meteorological information.

Neighbourhoods are specific forms of regions that are not
composed of a fixed set of stations, but are rather composed
of gauged sites that are the most similar to a given target site.
Hence, two distinct target locations will have their own dis-
tinct neighbourhoods which may overlap. Comparative stud-
ies have shown that neighbourhoods will lead to better re-
gional estimates than fixed regions (Burn, 1990; Ouarda et
al., 2008; Tasker et al., 1996). To identify the most similar
gauged sites in terms of hydrological properties, a notion of
distance is needed. It allows to evaluate the proximity, or rel-
evance, of each gauged site to the target location and to iden-
tify the most hydrologically similar gauged sites. However,
when the target location is ungauged, this distance cannot
be directly calculated due to the missing hydrological infor-
mation. Physio-meteorological information is hence used for
similarity evaluation. The traditional approach, based on the
distance between site characteristics, is commonly referred to
as the region of influence (ROI) model (Burn, 1990), which
received particular attention in the hydrological literature.
The focus was mainly on the estimation of the model pa-
rameters where, for instance, generalized least squares were
used to account for unequal variability in the at-site estima-
tions (e.g. Griffis and Stedinger, 2007; Stedinger and Tasker,
1985) and to deal with the presence of spatial correlation (e.g.
Kjeldsen and Jones, 2009).

Alternatively, Ouarda et al. (2001) used canonical correla-
tion analysis (CCA) to build neighbourhoods from a canoni-
cal distance that accounts for the interrelation between flood
quantiles and site characteristics. For this method, neighbour-
hoods are formed by gauged sites that are the most similar to
the target location, according to the distance between vectors
of flood quantiles corresponding to different return periods.
The CCA method in RFFA estimates the unavailable hydro-
logical variables as linear combinations of site characteris-
tics. Consequently, the available site characteristics are trans-
formed into more meaningful hydrological quantities for the
purpose of delineating neighbourhoods. However, the CCA
method suffers from some limitations, such as linearity and
normality assumptions (He et al., 2011). Subsequent studies
have aimed at improving the CCA method by improving the
CCA technique itself (Chebana and Ouarda, 2008; Ouali et
al., 2015). However, little attention has been paid to the im-
portance of properly choosing the hydrological quantities in
the delineation step, whereas much effort has been devoted to
the modelling step. Indeed, Chebana and Ouarda (2008) em-
ployed an iterative linear procedure to estimate neighbour-
hood centres and they showed that the quality of these cen-
tres’ estimates is the crucial element to the improvement of
the final model performance.

The present study aims to provide a general framework
with more flexibility regarding the linearity and normality
assumptions. This is achieved by replacing CCA in the prior
analysis of hydrological variables by projection pursuit re-

gression (PPR), a nonparametric regression method recently
considered as an estimation model in RFFA (Durocher et
al., 2015). The present study is also interested in assessing
the advantages of employing hydrological variables other
than the at-site flood quantiles in prior modelling as well
as considering a combination of these hydrological variables
with site characteristics.

L-moments have already been used in RFFA to test the
homogeneity of fixed regions when the target site is gauged
(Chebana and Ouarda, 2007; Hosking and Wallis, 1997). In
the present study, the prediction of the L-moments at un-
gauged sites is also considered to improve the delineation of
the neighbourhoods by reducing uncertainties. Moreover, a
conceptual advantage of using L-moments conversely to at-
site flood quantiles is that the L-moments do not depend on
the subjective selection of at-site distributions.

The present paper is organized as follows. Section 2
presents the background material for the techniques used in
the present research. Section 3 elaborates on the prior anal-
ysis of hydrological variables and their integration with the
techniques presented in Sect. 2 to form a complete proce-
dure. Section 3 also suggests criteria for the evaluation of the
predictive performances and the neighbourhood properties.
Section 4 illustrates the application of the method in a case
study. Traditional ROI and CCA methods serve as references
in order to evaluate the relative performance of the investi-
gated method. Finally, concluding remarks are provided in
Sect. 6.

2 Background

2.1 Delineation of neighbourhoods

In RFFA, neighbourhoods are used to identify gauged sites
from which information is transferred to the target loca-
tion. A neighbourhood is characterized by a centre and a
radius that delimits an area (not necessary in the geograph-
ical sense). Gauged sites inside the area delineate a region
that includes relevant sites to the target location. At each site
i = 1, . . .,n, p characteristics xi =

(
xi,1, . . .,xi,p

)
are avail-

able. Typically, the ROI method forms neighbourhoods ac-
cording to a radius based on a metric d:

d
(
xi,xj

)
=

√√√√ p∑
k=1

(xi,k − xj,k)
2

σ 2
k

, (1)

where σk is the standard deviation of
{
xi,k

}n
i=1, the kth site

characteristic (Eng et al., 2005).
Alternatively, CCA is a multivariate technique used to un-

veil the interrelation between two groups of variables. Let
Y and X be normally distributed random vectors with zero
means. The CCA method defines canonical pairs (Uk,Vk) as
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linear combinations of the original random variables:

Uk = akX, (2)
Vk = bkY, (3)

where the correlations ρk = corr(Uk,Vk) are sequen-
tially maximal for k = 1, . . .,K under the conditions
corr(Uk,Ul)= corr(Vk,Vl)= 0 for k 6= l. Only the canon-
ical pairs (Uk,Vk) with unit variances are considered.

To delineate neighbourhoods, the CCA approach con-
siders the canonical scores ui = (a1, . . .,ar)

′xi and vi =

(b1, . . .,br)
′yi that are, respectively, linear combinations of

site characteristics xi and flood quantiles corresponding to
different return periods yi for site i. Due to the missing
hydrological information at the ungauged location denoted
i = 0, the flood quantiles y0 and the corresponding linear
combination v0 are unknown. Nevertheless, CCA provides a
linear estimate v0 ≈3u0, where 3= diag(ρ1, . . .,ρK). Ac-
cordingly, a neighbourhood is delineated in the canonical
space based on the distance:

d(vi,3u0)= (vi −3u0)
′

(
I −32

)−1
(vi −3u0) . (4)

More details on the CCA approach in RFFA can be obtained
in Ouarda et al. (2001) and Ouarda (2016).

2.2 Multiple regression

In RFFA, two types of regional models are often considered
to predict flood quantiles corresponding to given return pe-
riods: the index-flood model and the regression-based model
(Ouarda et al., 2008). The index-flood model predicts a tar-
get distribution by assuming that all distributions inside the
region are proportional to a regional distribution, up to a scale
factor called index flood. The flood quantile of interest at a
target location is then calculated from the regional distribu-
tion based on the predicted index flood (e.g. Chebana and
Ouarda, 2009; Dalrymple, 1960; Stedinger and Lu, 1995).
Conversely, the regression-based model considers directly
the at-site estimates of the desired flood quantiles for predic-
tion. Flood quantiles are then predicted at their target loca-
tions by the regression equations estimated within the neigh-
bourhoods (Pandey and Nguyen, 1999).

Even though they proceed differently, both the index-flood
model and the regression-based model may use the same
multiple regression techniques to transfer information to an
ungauged location. For the sake of simplicity, the term hydro-
logical variables is used to designate the corresponding out-
put variables zi of these models at location i = 1, . . .,n. Con-
sequently, for the index-flood model, zi is the index flood,
while for a regression-based model the hydrological variable
zi is the flood quantile corresponding to the return period of
interest.

Multiple regression models assume linear interrelation be-
tween the hydrological variable zi and the site characteristics

xi . Consequently, in several cases, transformations are nec-
essary to meet this assumption. For instance, the power law
form is frequently used to model flood quantiles:

zi = e
β0 × x

β1
i,1× . . .× x

βp
i,p × εi, (5)

where β ′ =
(
β0,β1, . . .,βp

)
are parameters and εi is an error

term. Applying a logarithmic transformation is sufficient to
cast Eq. (5) into a linear model. In general, a proper transfor-
mation is assumed for the hydrological variables yi = g (zi)
being linearly related to the site characteristics.

In line with previous notations, let y = (y1, . . .,yn) be the
hydrological variables, X be the design matrix of the site
characteristics xi,j with intercept and ε = (ε1, . . .,εn) be the
error term. Hence, in matrix notation, a multiple regression
model has the form

y = Xβ + ε, (6)

and according to the least-squares theory, the estimates of the
parameters are

β̂ =
(
X′X

)−1X′y. (7)

2.3 Projection pursuit regression

Some methods predict hydrological variables without the
formation of regions, such as physiographical kriging (Cas-
tiglioni et al., 2009; Chokmani and Ouarda, 2004), general-
ized additive models (Chebana et al., 2014) and artificial neu-
ral networks (Dawson et al., 2006; Ouarda and Shu, 2009).
More recently, PPR was introduced to provide a flexible non-
parametric regression approach to describe the nonlinearity
that is present in the relationship between hydrological vari-
ables and site characteristics. PPR was used in the RFFA con-
text by Durocher et al. (2015) to directly predict flood quan-
tiles without delineation.

The basic elements of a PPR model are k = 1, . . .,m func-
tions fk called terms and defined as

fk (X)= gk
(
α′kX

)
, (8)

where directions αk are vectors of coefficients and gk are
smooth functions. The directions αk are coefficients that re-
spect |α| = 1 and determine a predictor α′kX as relevant linear
combinations of the site characteristics X. The terms are then
combined into a regression model:

y = µ+

m∑
k=1

fk(X)+ ε, (9)

where µ is the global mean and ε is an error term. Notice
that the orthogonality between directions αk is not imposed;
hence, the predictors α′kX and α′lX for k 6= l may be corre-
lated. Consequently, PPR allows for the interaction between
site characteristics, which leads to a large variety of regres-
sion models (Hastie et al., 2009).
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The components αk and gk of the model in Eq. (9) are esti-
mated by the least-squares approach (Friedman et al., 1983).
For a unique direction (m= 1), PPR can be estimated by
standard nonlinear algorithms (Yu and Ruppert, 2002) but,
in general, a stage-wise algorithm is adopted to find a proper
solution (Friedman and Tukey, 1974). Comparative studies
show that PPR has a predictive performance that is similar to
artificial neural networks (Bishop, 1995; Hwang et al., 1994).
However, Durocher et al. (2015) indicated that in RFFA, PPR
reduces to more parsimonious models than artificial neural
networks, which provides an explicit expression of the re-
gression equations.

3 Methodology

The present study deals with neighbourhood delineation and
focuses more precisely on the identification of reliable es-
timates of the hydrological centres of these neighbourhoods.
For the sake of simplicity, the variables forming these centres
will be referred to as reference variables, because they rep-
resent the reference used to evaluate the similarity between a
target location and the gauged sites. Reference variables can
take different forms, such as site characteristics, hydrological
variables or a combination of both. Their nature is important,
because it determines the properties that are deemed to be im-
portant between close sites. The particularity of the present
method is that PPR can be used to predict these neighbour-
hood centres (prior to the RFFA modelling step) when some
of the reference variables are unknown hydrological vari-
ables. Accordingly, the proposed method will be referred to
as RVNs for reference variable neighbourhoods.

3.1 Estimation of the reference variables

The general procedure can be described by the steps below:

1. Select the reference variables.

2. If necessary, predict the reference variables that are not
available at the target site.

3. Compute the distance between sites.

4. Form the neighbourhood based on the previous dis-
tance.

5. Fit a regional model on the neighbourhood.

6. Predict the target site and evaluate a performance crite-
rion.

In step 1, the selection of a set of the reference variables
can be subjective and depends on the problem at hand. In the
present study, the backward step-wise selection procedure is
considered to remove, from an initial set of reference vari-
ables, those that do not contribute to the prediction power
of the model. This selection procedure is more objective and

2. Predict the reference variables 
that are unavailable 

at the target site

3. Calculate the distance 
between sites 

4. Form the neighbourhood based
 on the previous distance

Some 
reference variables

 are unavailable
 at target

1. Select a set of reference variables

6. Predict the target site and
evaluate the RRMSE

5. Fit a regional model 
on the neighbourhood

A new
reference variable 
can be removed 

temporarily

Yes

Remove permanently the
 reference variable 
associated with the 

best RRMSE

Removing 
one reference variable 

improves the
 RRMSE

Yes

No

No

 The final model
is found

Yes

No

Start the procedure

Backward stepwise selection

Remove the reference 
variable temporarily

Figure 1. Diagram of the RVN method using backward step-wise
selection.

depends on a performance criterion. In the present study, the
relative root mean square error (RRMSE) criterion is cho-
sen for this purpose and will be described in Sect. 3.2. The
backward step-wise selection is illustrated in Fig. 1 and con-
sists in removing in turn each reference variable temporarily
from the model and performing the remaining steps (2–6) in
order to compute the RRMSE. Therefore, the reference vari-
able whose removal leads to the best RRMSE is permanently
removed. The process is repeated until all reference variables
cannot be removed without altering the RRMSE.

Step 2 is required only if some reference variables are un-
known at the target sites. Otherwise, if we designate the tar-
get location by i = 0, the radius of the neighbourhood used
in step 3 can be computed as hi = d (t i, t0) where d is a
metric and t ′i =

(
ti,1, . . ., ti,q

)
are the reference variables of

the ith site. For simplicity, the Euclidian metric d is consid-
ered throughout the present study, but other metrics or dis-
similarity measures can be employed as well. In particular,
the Mahalanobis distance, the weighted distance or the depth
functions could be considered (Chebana and Ouarda, 2008;
Cunderlik and Burn, 2006; Ouarda et al., 2000).

If certain hydrological information is unavailable at the
target location, the estimation of the hydrological reference
variables is necessary to produce an estimate t0 = f (x0)

in step 2 from site characteristics x0 at the target loca-
tion. This substitution leads in step 3 to the distance h(i) =
d
[
t i,f (x0)

]
, which may be seen as an approximation of the

true distance hi . This study considers PPR models in order
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to fit every hydrological reference variable as described in
Sect. 2.3. The motivations for adopting PPR are that it does
not require a prior delineation of regions, it accounts for non-
linear relationships, it has good predictive performances and
it leads to a straightforward interpretation of the reference
variables when a few directions αk are necessary (Durocher
et al., 2015).

If the hydrological variables t0 were known at the target
location, the distance hi would be available and the neigh-
bourhood that truly regroups the most hydrologically simi-
lar sites to the target location can be identified. However, in
practice, this true neighbourhood is unknown. Using instead
the estimate f (x0) has an effect by which some sites are
falsely suggested as more hydrologically similar than other
sites. Figure 2 illustrates a region with several sites where
two neighbourhoods result from the RVN method with differ-
ent predicted centres. The target site is illustrated as a green-
coloured circle and the neighbourhood is formed by the 10
nearest sites indicated by small empty circles. The other sites
are designated by crosses. The red and blue neighbourhoods
are delineated by circles where the radius is selected to in-
clude the 10 nearest sites. The predicted centre of the red
neighbourhood is closer to the target site. Consequently, it
can be seen that except for one site, the same sites as the tar-
get neighbourhood are included (empty circles). On the other
hand, the blue neighbourhood has a predicted centre that is
located further from the target site and hence a lower pro-
portion of the sites truly closer to the target are found. This
shows the importance of correctly predicting the neighbour-
hood centres in order to identify sites that are truly similar to
the target site.

The errors related to prediction of the hydrological refer-
ence variables suggest that the RVN method may include an
additional source of uncertainty. Indeed, the same source of
uncertainty is present among the sites of a neighbourhood
delineated on the basis of the site characteristics (i.e. that the
average of the hydrological variables in the neighbourhood is
not a perfect predictor). This could be seen as an advantage
of the RVN method since it directly assesses this source of
uncertainty and tries to reduce it.

Steps 1–3 are the particularity of the RVN method, while
the other steps are common in RFFA and are explained in
Sect. 2. In the remainder of this study, step 4 uses a specific
type of neighbourhood that is composed of a fixed number
of the nearest sites (Eng et al., 2005; Tasker et al., 1996), but
could also be constrained to the degree of the homogeneity
of the neighbourhoods (Ouarda et al., 2001). Consequently,
the selected gauged sites can be obtained by sorting h(i) and
keeping the desired number of sites. Notice that even though
h(i) does not exactly approximate hi , both distances will lead
to the same neighbourhoods if they preserve the ranks. Fi-
nally, step 5 consists in the estimation of the flood quantiles
using either the index-flood or the regression-based model.

Notice that the RVN method may be seen as a generaliza-
tion of the ROI and the CCA methods in RFFA. Indeed, the
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Figure 2. Illustration of the neighbourhoods obtained by the RVN
method.

ROI method corresponds to the RVN method for which all
the reference variables are site characteristics. In that case,
t0 = f (x0) is known and PPR is not necessary in step 2.
Similarly, the CCA approach may be seen as the special case
for which the reference variables are the canonical pairs in
Eq. (4) and CCA is used instead of PPR to predict them in
step 2.

3.2 Evaluation criteria

For the RVN method presented above, the neighbourhood
sizes must be calibrated according to an objective criterion.
In this regard, the leave-one-out cross-validation approach
is a general strategy to assess the performance of the pre-
dicted hydrological variables zi at site i = 1, . . .,n. In turn,
each gauged site i is considered an ungauged target location.
From the remaining gauged sites, predicted values z(i) can be
obtained without using the hydrological information at the
target location. Discrepancies between the sampled and the
predicted values are used to define evaluation criteria. Notice
that the hydrological variables are transformed yi = g (zi).
Hence, if y is the sample mean of the yi , then an appropriate
global performance measure is the Nash–Sutcliffe criterion:

NHS= 1−

n∑
i=1

[
yi − y(i)

]2
n∑
i=1

[
yi − y

]2 . (10)
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Additionally, the predictive performance is examined at the
original scale by the RRMSE:

RRMSE=

√√√√1
n

n∑
i=1

(
1−

z(i)

zi

)2
. (11)

The choice of the reference variables is an important aspect
and a set of reference variables should be chosen in order to
enforce the desired properties. For instance, with the index-
flood model the assumption of a regional distribution sug-
gests that, apart from the index flood, the at-site distributions
must be proportional to a regional distribution. A heterogene-
ity measure based on the dispersion of the L coefficient of
variation (LCV) is shown to be a proper way to ensure that
the LCV is relatively constant (Viglione et al., 2007). Ac-
cordingly, let Ij be the set of indices for theN nearest gauged
sites to the target location j during the cross-validation pro-
cess. The regional LCV θ̂(j) is calculated as the average,

θ̂(j) =
1
N

∑
i∈Ij

θi, (12)

of the at-site LCV θi inside the j th region. The heterogeneity
measure is defined as

H(j) =
∑
i∈Ij

(
θi − θ̂(j)

)2
. (13)

In their procedure, Hosking and Wallis (1997) used this
heterogeneity measure to test for regional homogeneity,
which implies that the regional LCV can be considered con-
stant. Hence, the result of this test allow us to decide if a re-
gion must be divided into smaller and more homogenous sub-
regions. In the present study, the size of the neighbourhoods
is the same. Hence, if a homogeneity test is performed with a
given neighbourhood size, some of the neighbourhoods will
be considered homogenous, while the others will be consid-
ered heterogeneous (Das and Cunnane, 2011). However, the
heterogeneity measure in Eq. (13) remains a useful indicator
of dispersion for the regional LCV θ̂(j) inside a neighbour-
hood. Consequently, a smallerH(j) suggests that the regional
LCV θ̂(j) is measured with less uncertainty.

To facilitate the interpretation of the results and to ensure
the comparability between neighbourhoods, the heterogene-
ity measure H(j)/N is considered instead. The measure rep-
resents the sample variance of the LCV for the j th target lo-
cation. This heterogeneity measure is standardized by H/n,
where H is the heterogeneity measure in Eq. (13) calculated
on all n available gauged sites. The resulting ratio corre-
sponds to a scale-free heterogeneity measure, where a value
under one provides evidence of a less heterogeneous neigh-
bourhood in comparison to the whole data set. Therefore, the
average heterogeneity measure (AHM) criterion below is de-
fined as the average of every neighbourhood considered in

the cross-validation process:

AHM=
1

N ·H

n∑
j=1

H(j). (14)

This criterion is not specific to a given target location, but
represents the global level of heterogeneity resulting from
a given delineation method, such as ROI, CCA or RVN. In
particular, a delineation method with a smaller AHM is an
indication that, on average, a more precise regional LCV is
used to predict flood quantiles.

Another desired property for a neighbourhood is that it
leads to estimation models with less uncertainty. For the
index-flood model, this implies in particular less uncertainty
in the prediction of the index flood, while for regression-
based models, it implies less uncertainty in the prediction of
flood quantiles. For a multiple regression model, the uncer-
tainty can be quantified by the residual variance:

s2
(j) =

1
N

∑
i∈Ij

(
ei,(j)

)2
, (15)

where ei,(j) is the residual at the ith gauged site, when pre-
dicting the j th target location in the cross-validation process.
Notice that a regression model fitted on two different neigh-
bourhoods (for the same target location) can obtain identical
values, but can lead to different levels of uncertainty. In this
study, a neighbourhood with a smaller residual variance is
said to be relatively more efficient.

During the cross-validation process, the sample variance
of the regression models can be calculated for every site,
which leads to the average relative efficiency (ARE) criterion
defined by

ARE=
1
ns2

n∑
j=1

s2
(j), (16)

where the residual variance s2 is calculated from the multi-
ple regression model on the whole data set. This criterion is
similar to the AHM criterion as it is standardized to a scale-
free measure. This criterion can be used to identify the de-
lineation method which achieves, on average, the smallest
residual variances for each neighbourhood. The ARE and the
AHM criteria are used in the present study, along with the
NHS and RRMSE to access the performances of the various
models.

4 Application

4.1 Data

To validate the RVN method, RFFA is carried out in a real-
world case study using both the index-flood model and the
regression-based model. The hydrological variables of inter-
est are the flood quantiles corresponding to a return period
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of 100 years, denoted as Q100. The analysis is performed
on 151 sites located in the southern part of the Province of
Québec, Canada. Figure 3 illustrates the location of these
sites. Each site has at least 15 years of data, and the aver-
age record length is 31 years. The usual hypotheses of sta-
tionarity, homogeneity and independence are verified for all
151 data series. Only a brief description of the data and the
at-site frequency analysis is provided since the elements were
already presented in detail in previous studies (e.g. Chok-
mani and Ouarda, 2004).

The at-site distributions are selected among several fam-
ilies including generalized extreme values (GEVs), Pearson
type III (P3), generalized logistic (GLO) and log-normal with
three parameters (LN3). In general, the estimation of the at-
site distribution was achieved by maximum likelihood and
the final choices of distributions are based on the Akaike
information criterion. Recent studies on the same data set
have identified four relevant site characteristics (Chebana et
al., 2014; Durocher et al., 2015), which are used in the
present analysis: the drainage area or BV (km2), the fraction
of the basin area occupied by lakes or PLAC (%), the an-
nual mean liquid precipitation or PLMA (mm) and the lon-
gitude or LON. Proper transformations are applied to these
site characteristics in order to obtain approximately standard
normal distributions.

4.2 Determination of the neighbourhood centres

Steps 1–2 of the RVN method represent the selection of the
reference variables and, if necessary, the estimation of the hy-
drological reference variables at the target locations. Two ini-
tial groups of reference variables are considered and updated
by backward step-wise selection. The first group is based on
L-moments only and the second is based on the combination
of L-moments and site characteristics. The acronym LM for
L-moment and HYB for hybrid are used to identify the two
groups. More precisely, the L-moments considered for both
groups are the sample average (L1), the LCV, the L coef-
ficient of skewness (LSK) and the L coefficient of kurtosis
(LKT). These reference variables are transformed and stan-
dardized to obtain zero mean and unit variance. The transfor-
mation used for L1 and LCV is the logarithm, while for LSK
and LKT, the transformation is log(x−mx+1), wheremx is
the minimum of the reference variables.

A specific implementation of PPR is assumed, which con-
siders the smooth functions gk in Eq. (8) as cubic spline poly-
nomials with five equally spaced knots. The number of knots
is validated by cross validation using the NHS criterion. No-
tice that for the fitting of LSK, one site has a very low stan-
dardized residual of approximately −6. Consequently, this
site is considered an outlier and removed from the estimation
of the reference variables. In previous studies (e.g. Chokmani
and Ouarda, 2004), this site was identified as one of a few
problematic sites that are difficult to predict due to an under-
estimated drainage area or over-evaluated percentage of area

Figure 3. Location of the 151 hydrometric stations in southern
Québec, Canada.

covered by lakes. Nevertheless, in the present study, this site
is removed only during the prediction of the reference vari-
ables and all sites are included in the rest of the analysis.

Figure 4 shows the fitting of the four reference variables
by the PPR models. Cross validation has selected PPR mod-
els with a unique direction α for all reference variables. The
PPR equations that describe the relation between the refer-
ence variables and the site characteristics are explicit; for in-
stance, the regression equation for the LCV has the form

log(LCV)=−1.80+ 0.26× f
[
−0.67× log(BV)− 0.09

×
√

PLAC+ 1.27× log(PLMA)+ 0.06×LON− 1.32
]
. (17)

Notice the constant term −1.32 and the norm of direction
|α| 6= 1 inside the function f in Eq. (17). The difference be-
tween Eq. (17) and the general form of the PPR model in
Eq. (9) is the consequence of transformations on the explana-
tory variables. Indeed, during the optimization procedure of a
PPR model, it is suggested to scale the explanatory variables
in order to avoid the scale effect in the coefficients of the di-
rection α (Hastie et al., 2009). Nevertheless, it is important
to notice that the formula inside the function f corresponds
to a linear model.

Figure 4a shows a strong linear relationship between L1
and the predictor α′X. Conversely, Fig. 4b, c and d show
mild nonlinearity and hence indicate the need for more flexi-
ble models, such as PPR. The predictive performances of the
reference variables are evaluated by the NHS criterion with
values 91.5, 33.3, 6.7 and 55.7 %, respectively, for L1, LCV,
LSK and LKT. These results show that L1 is accurately pre-
dicted by the site characteristics, while a poor fit is associated
with LSK. Indeed, Fig. 4c suggests that apart from a few sites
on the right of the curve, LSK does not appear highly related
to the predictor α′X. In comparison, linear models applied to
the same reference variables will lead to the following val-
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Figure 4. Residuals of the reference variables by PPR methods.

ues of the NHS criterion: 90.9, 28.2, 7.8 and 48.1 %, respec-
tively. Notice that the NHS criterion is calculated by cross-
validation; consequently, even though the improved perfor-
mances by the PPR method appear moderate they represent
true fitting improvements.

Due to its poor fit, LSK may not be a proper reference
variable for the delineation step. To validate this assumption,
the neighbourhoods are formed with and without using LSK
and the rest of the analysis is carried out for both scenarios.
Based on the RRMSE criterion, LSK must be maintained,
as it is associated with better predictive performances. This
strategy is part of the backward step-wise selection procedure
as described in Sect. 3.1. Overall, it leads to discarding LKT
and to maintaining L1, LCV and LSK. The second group
of reference variables contains both the L-moments and the
site characteristics. As with the first group, backward step-
wise selection is performed and the final reference variables
are BV, PLAC, LCV and LSK. In order to distinguish the
two groups of reference variables, RVN-LM will designate
the first group with the L-moments only and RVN-HYB will
designate the second group with both the L-moments and the
site characteristics.

4.3 Results of the index-flood model

At this point, the steps 1–4 of the RVN methodology are per-
formed and the neighbourhoods are identified. Notice that for
the RVN-LM method, the reference variables include the first
three L-moments, which could be used as a moment estima-
tor to deduce the target distribution. This approach is, how-
ever, not generally applicable to the present methodology as

the reference variables are selected by a step-wise procedure.
Moreover, it is necessary to identify a proper family of dis-
tributions from regional information, which is achieved here
by analysing the distribution of the gauged sites inside the
neighbourhoods. The index-flood model and the L-moments
algorithm were proven to lead to a reliable procedure to iden-
tify a regional distribution and to estimate its parameters
(Hosking and Wallis, 1997). In this model, the regional quan-
tile corresponding to a return period r at a target location i is
written Qi(r)= µiQ(r), where µi is the index flood. In the
present study, the index flood is taken to be the means of the
at-site distributions and is predicted at the target location by
multiple regression.

The index-flood model is fitted inside the neighbourhoods
obtained by each one of the four methods: ROI, CCA, RVN-
LM and RVN-HYB. For CCA, two canonical pairs are calcu-
lated using flood quantiles corresponding to the 10- and 100-
year return periods as hydrological variables, as described in
Sect. 2.1. The choice of the regional distribution is made be-
tween the four common families of distributions that were
mentioned earlier: GEV, GLO, LN3 and P3. The parameters
of the regional quantile function Q(r) are calculated from
the regional LCV and the regional LSK as the respective av-
erages (see Eq. 12). Figure 5a shows the L-moment ratio di-
agram for the regional LSK and LKT with RVN-LM. For
each neighbourhood, the distribution family is selected as the
one having the nearest regional LKT to the theoretical value,
given the regional LSK. RVN-HYB is omitted in Fig. 5 to im-
prove the clarity of the illustration, but has similar behaviour
to RVN_LM.

Figure 5b, c and d present the L-moment ratio diagrams
of the at-site LCV and LSK for three given target locations
as an illustration of the gauged sites found in the respective
neighbourhoods. In these diagrams, the nearest gauged sites
selected for RVN-LM, CCA and ROI are highlighted. Fig-
ure 5b shows that RVN_LM has a denser cluster of gauged
sites in terms of LCV and is approximately centred on the
true target. Conversely, Fig. 5c and d show situations where
the true targets do not correspond to the predicted target. Al-
though, all the reference variables are known at the target
location for the ROI method, Fig. 5b and c show that the se-
lected sites are not located around the true target. This finding
is consistent with the results of GREHYS (1996a, b) which
indicates that delineation according to physiographical sim-
ilarity can lead to substantially different regions than delin-
eation according to hydrological similarity.

Results of the cross-validation are presented in Fig. 6.
The evaluation criteria are calculated for every neighbour-
hood with a size greater than 15 in order to calibrate the
model. The tendency illustrated in this figure helps to vi-
sualize the evolution of these criteria with better perspec-
tive. The comparison of Fig. 6a and b indicates that the op-
timal neighbourhood sizes for RRMSE and NHS are not al-
ways in agreement. In particular, the best RRMSE for the
RVN-HYB method is achieved with 24 sites, while the best
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Figure 5. L-moments ratio diagram for index-flood model. (a) Re-
gional L-moments for RVN-LM with 29 gauged sites. (b, c, d) Re-
gional L-moments based on the 15 nearest gauged sites for 3 se-
lected target locations.

NHS is achieved with nearly 80 sites. Nevertheless, the op-
timal values for the three other methods are obtained with
approximately 30 sites for both criteria. Figure 6b indicates
that all methods have a relatively stable NHS between 86
and 87 %, but the best NHS is obtained by RVN-LM. Con-
versely, Fig. 6a shows clearer improvements of the calibra-
tion in terms of the RRMSE criterion. Hence, the calibrated
models are set according to the RRMSE criterion and are rep-
resented by circles in Fig. 6. The results are summarized in
Table 1. RVN-HYB, with a RRMSE of 40.1 %, outperforms
the other methods. In particular, a difference of 6.1 and 5.3 %
is observed, respectively, with the traditional ROI and CCA
methods.

Figure 6c and d present, respectively, the AHM and the
ARE criteria obtained from the considered methods. The
AHM criterion indicates that the ROI and the CCA meth-
ods have lower heterogeneity than the whole data set in gen-
eral, but are largely outperformed by the RVN-LM and RVN-
HYB methods especially for smaller neighbourhoods. This
is not surprising as the RVN-LM and RVN-HYB pool to-
gether sites with similar L-moments, but this quantifies the
intuitive assumption that the regional LCV is calculated with
less uncertainty when the L-moments are directly considered
instead of other reference variables. In particular, the AHM
of the ROI method is 72.8 % with the optimal neighbour-
hood size of 30. In comparison, the AHM of the RVN-LM
method is 14.5 % with the optimal neighbourhood size of
29 sites, which is considerably lower. Figure 6c shows that
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Figure 6. Evaluation criteria for the index-flood model. Calibrated
models are represented by circles.

the AHM criterion of the RVN-LM method does not reach
a similar level to the ROI method until as many as 120 sites
are used. These results indicate that even for relatively small
neighbourhoods, the ROI method identifies regions that are
only slightly less hydrologically heterogeneous than all sites
pooled together. This suggests that, in the present case study,
the ROI method has difficulties identifying sites that are sim-
ilar to the target site in terms of LCV.

As mentioned in Sect. 4.2, previous studies have identified
a few problematic stations in the considered data set. Figure 7
presents the residuals between different methods. As it may
be difficult to see small improvements by uniquely observ-
ing points around the y = x lines, the visualization of Fig. 7
is improved by adding a flexible fit of the point cloud, using a
standard smoothing spline approach. The resulting red lines
indicate, if close to x, that the residuals are lower on average
for one of the two methods. In general, the points associated
with the largest relative discrepancies are close to the y = x
line, which indicates that the sites that are difficult to predict
are essentially the same for all methods. However, Fig. 7a
and b show that the RVN-HYB method specifically improves
the prediction of the sites with the lowest and largest rela-
tive discrepancies as the red line is clearly located under the
y = x lines, which explains the improved RRMSE in Table 1.
On the other hand, Fig. 7c and d indicate that at the logarith-
mic scale, the RVN-LM method achieved predicted values
that are mostly similar to the ROI and CCA methods, which
explains the similarity of the NHS criteria for all the com-
pared methods.
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Table 1. Evaluation criteria for the RVN method for optimal neighbourhood sizes.

Model Size RRMSE NHS AHM ARE

Index flood

ROI 30 46.2 86.5 72.8 57.3
CCA 28 45.4 86.2 41.7 42.9
RVN-LM 29 45.0 87.1 14.5 36.9
RVN-HYB 24 40.1 86.2 16.5 43.1

Regression based

ROI 30 44.9 86.9 72.8 64.7
CCA 28 43.5 86.1 41.7 30.6
RVN-LM 39 41.7 87.6 17.9 39.8
RVN-HYB 24 39.5 86.2 16.5 42.5

Best criteria is written in bold.
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Figure 7. Comparison of the cross-validation residuals for Q100
for different methods. The black line is the unitary slope and the red
line is a smooth fitting of the residuals.

The present case study is an example of a region where
some sites are problematic for any method. In practice, the
residuals are not known; consequently, we do not know if the
target sites of interest will be problematic or not. Globally,
what Fig. 7a indicates is that the RVN-HYB model is some-
how more robust, because for the sites that are well predicted
by simpler models, such as ROI, RVN-HYB will perform
similarly on average. However, if the target site is predicted
less accurately, the RVN-HYB model will (on average) be
better in terms of RRMSE. Consequently, the overall gain
may seem of moderate magnitude. However, for some prob-
lematic stations, the gain could be more substantial. In par-
ticular, the red lines in the left part of Fig. 7a appear mostly
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Figure 8. Evaluation criteria for the regression-based model. Cali-
brated models are represented by circles.

influenced by two points, but the two improvements are of
77.2 and 68.5 %, which is considerable.

4.4 Results of the regression-based model

Prediction of Q100 at the target location is also carried out by
the regression-based model using the same delineation meth-
ods as with the index-flood model, but with potentially dif-
ferent calibration values for the neighbourhood sizes. Conse-
quently, the descriptions of steps 1–4 (in Sect. 3.1) are identi-
cal to those of the index-flood approach and are not repeated
here.

Cross-validation criteria for the regression-based model
are presented in Fig. 8 and summarized in Table 1. As
with the index-flood model, Table 1 reveals that the RVN-
HYB method leads to the best performance in terms of the
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RRMSE. Although all methods differ by less than 2 % in
terms of NHS, results indicate that NHS values correspond-
ing to CCA and RVN-HYB are inferior to those correspond-
ing to the regression model applied to all gauged sites, which
corresponds to n= 150 in Fig. 8b. However, CCA leads to
the best relative efficiency as indicated by the ARE criterion
in Table 1. Hence, CCA corresponds to the regression mod-
els with, on average, the lowest uncertainties. This indicates
that flood quantiles may be better reference variables for the
regression-based model than for the index-flood model and
suggests that, in general, different reference variables may be
more appropriate for different situations. Nevertheless, the
two close lines in Fig. 8d reveal that, for the same neigh-
bourhood size, the RVN-LM method has ARE values that
are similar to CCA. In terms of AHM, Fig. 8c is identical to
Fig. 5c, except that new neighbourhood sizes are indicated in
circles.

The fit of the regression-based model is graphically as-
sessed in Fig. 9 by quantile–quantile plots. It is shown that,
for all the delineation approaches, the regression-based mod-
els correctly predict the flood quantile Q100 at target loca-
tions, as it correctly follows the y = x line. However, the
comparison between the methods ROI and RVN-HYB shown
in Fig. 8a, c and the methods CCA and RVN-LM shown in
Fig. 8b, d do not show clear differences. A more precise as-
sessment would be obtained by comparing the residuals in-
stead, as it is done in Fig. 7. However, the predictions of
the regression-based models are very similar to those of the
index-flood models and they will lead to very similar figures,
which are not reported here. Table 1 also provides a compari-
son of the performance of the index-flood and the regression-
based models. In terms of RRMSE and NHS criterion, the
two approaches will lead to very similar results, which is
consistent with what it is reported in other studies (GRE-
HYS, 1996a, b; Haddad and Rahman, 2012). Therefore, sim-
ilar conclusions can be drawn from the two approaches. For
instance, in both cases, the RVN-HYB method leads to the
best results in terms of RRMSE.

5 Conclusions

A general methodology was investigated to improve ho-
mogenous properties of neighbourhoods in RFFA. A proce-
dure to calculate relevant reference variables at a target lo-
cation prior to the RFFA was proposed to improve neigh-
bourhood properties and to reduce uncertainties. The pre-
dicted values of reference variables represent the unknown
centres of neighbourhoods delineated according to a distance
of gauged sites with respect to the centres. The proposed
method represents a generalization of both ROI and CCA
methods in RFFA. The proposed RVN method has the ad-
vantage of accepting various groups of reference variables,
considering nonlinear interrelations and being more objec-
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Figure 9. Quantile–quantile plot of Q100 for the RVN method with
the regression-based model.

tive since L-moments are used instead of estimated flood
quantiles from at-site analysis.

In this study, the reference variables correspond to trans-
formed L-moments. The resulting RVN-LM and RVN-HYB
methods were applied to sites located in the southern part of
the province of Québec, Canada, to predict flood quantiles
corresponding to the 100-year return period by both index-
flood and regression-based models. The prediction of the ref-
erence variables at target locations showed that, after proper
transformations, L1 can be linearly related to the site char-
acteristics, but no proper transformations are found for the
other L-moments. This justifies the consideration of the PPR
method to account for the nonlinearity in the prediction of
the reference variables. In general, other models, such as gen-
eralized additive models or artificial neural networks, could
be considered instead of PPR to account for the nonlinear-
ity. Nevertheless, the PPR approach unveils direction vectors
that provide explicit, parsimonious and meaningful regres-
sion equations.

Although none of the methods performed best for all crite-
ria, cross-validation showed that the proposed RVN method
performs well in comparison to the traditional ROI and CCA
methods. In both the index-flood and the regression-based
models, the best RRMSE is obtained by RVN-HYB and
the best NHS is obtained by RVN-LM. In particular, the
favourable RRMSE values obtained by RVN-HYB are due
to a more robust estimation of problematic sites. However,
RVN-LM has the best balance, because it achieves the best
or the second-best values for all criteria. Most importantly,
the utilization of hydrological reference variables with the
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CCA and RVN methods has reduced the uncertainty on the
regional LCV, the index flood and the predicted flood quan-
tiles, in comparison to ROI. Consequently, prior modelling
of hydrological reference variables was shown to be advan-
tageous for the delineation of neighbourhoods in RFFA.

The present study has made specific assumptions in order
to investigate the RVN method in well-defined conditions.
Nevertheless, the approach that consists in predicting hydro-
logical reference variables in an a priori analysis remains
valid when other choices of regression models, neighbour-
hood forms and metrics are considered. More comparative
studies should be carried out to evaluate alternatives to fixed
size neighbourhoods and Euclidian distances in the specific
context of the RVN framework.

The L coefficient of skewness is commonly used in RFFA
to describe the shape of a distribution. Consequently, to im-
prove the result of the RVN method, further research efforts
could focus on improving the prediction of this crucial refer-
ence variable. One way to improve the prior analysis of the
hydrological reference variables is the consideration of the
unequal sampling error. This aspect is often considered in
the estimation of flood quantiles in RFFA, but may also play
an important role in the prior analysis of the RVN method.

6 Data availability

The raw hydrological data can be obtained from the En-
vironment Ministry of the Province of Quebec (http://
www.mddelcc.gouv.qc.ca/), and the raw meteorological data
can be obtained directly from the website of Environment
Canada (http://climate.weather.gc.ca/).
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