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ABSTRACT 

Because of their multivariate nature, several hydrological phenomena can be described by more 

than one correlated characteristics. These characteristics are generally not independent and 

should be jointly considered. Consequently, univariate regional frequency analysis (FA) cannot 

provide complete assessment of true probabilities of occurrence. The objective of the present 

paper is to propose a procedure for regional flood FA in a multivariate framework. In the present 

paper, the focus is on the estimation step of regional FA. The proposed procedure represents a 

multivariate version of the index-flood model and is based on copulas and a multivariate quantile 

version with a focus on the bivariate case. The model offers increased flexibility to designers by 

leading to several scenarios associated to the same risk. The univariate quantiles represent special 

cases corresponding to the extreme scenarios. A simulation study is carried out to evaluate the 

performance of the model in a bivariate framework. Simulation results show that bivariate FA 

provides the univariate quantiles with equivalent accuracy. Similarity is observed between results 

of the bivariate model and those of the univariate one in terms of the behaviour of the 

corresponding performance criteria. The procedure performs better when the regional 

homogeneity is high. Furthermore, the impacts of small variations in the record length at gauged 

sites and the region size on the performance of the proposed procedure are not significant. 
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1 INTRODUCTION AND LITERATURE REVIEW 

Extreme events, such as floods, storms and droughts have serious economic, environmental and 

social consequences. It is hence of high importance to develop the appropriate models for the 

prediction of such events both at gauged and ungauged sites. Local and regional frequency 

analysis (FA) procedures are commonly used tools for the analysis of extreme hydrological 

events. The objective of regional frequency analysis (RFA) is to transfer information from 

gauged sites to an ungauged target site within a homogeneous region.  

Generally, hydrological events are characterized by several correlated variables. For instance, 

floods are described through their volume, peak and duration (Ashkar, 1980; Yue et al., 1999; 

Ouarda et al., 2000; Yue, 2001; Shiau, 2003; De Michele et al., 2005; Zhang and Singh, 2006; 

Chebana and Ouarda, 2008b). These studies have pointed out the importance of jointly 

considering all these variables. Depending on data sources and the number of variables that 

characterize the event, frequency analysis can be divided into four classes: univariate-local, 

univariate-regional, multivariate-local and multivariate-regional. The first two classes have been 

extensively studied, see e.g. Stedinger and Tasker (1986), Burn (1990), Hosking and Wallis 

(1993), Durrans and Tomic (1996), Nguyen and Pandey (1996), Alila (1999, 2000), Ouarda et al. 

(2001, 2006) and Chebana and Ouarda (2008a). Recently, increasing attention has been given to 

multivariate-local FA e.g., by Yue et al. (1999), Yue (2001), Shiau (2003), De Michele et al. 

(2005), Zhang and Singh (2006) and Chebana and Ouarda (2008b). However, much less attention 

is given to multivariate-regional FA. In this category, we find few references such as Ouarda 

et al. (2000) and Chebana and Ouarda (2007). 
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Justifications for adopting the multivariate framework to treat extreme events were discussed in 

several references. In bivariate FA, Yue et al. (1999) concluded that single-variable hydrological 

FA can only provide limited assessment of extreme events. A better understanding of the 

probabilistic characteristics of such events requires the study of their joint distribution. It was also 

outlined in Shiau (2003) that multivariate FA requires considerably more data and more 

sophisticated mathematical analysis. Univariate FA can be useful when only one random variable 

is significant for design purposes or when the two random variables are less dependent. However, 

a separate analysis of random variables cannot reveal the significant relationship between them if 

the correlation is an important information in the design criteria. Therefore, it is of importance to 

jointly consider all the random variables that characterize the hydrological event. 

Three main elements are treated in multivariate-local FA literature: (1) explaining the usefulness 

and importance of considering the multivariate framework, (2) modeling extreme events by 

fitting the appropriate copula and marginal distributions, and estimating the corresponding 

parameters, and (3) defining bivariate return periods. However, despite the importance of 

quantiles in FA, the literature on multivariate-local FA did not specifically address the estimation 

of multivariate quantiles. Recently Chebana and Ouarda (2008b) introduced the notion of 

multivariate quantile in hydrological FA. 

Regional FA is generally composed by two main steps: regional delineation and extreme quantile 

estimation (see e.g., GREHYS, 1996a). In the multivariate context, the delineation step was 

treated in Chebana and Ouarda (2007) where multivariate discordancy and homogeneity 

statistical tests were proposed. In univariate-regional FA different quantile estimation methods 

were proposed in the literature, such as the index-flood method and regressive models (see 

GREHYS, 1996a,b). As a natural continuation of the study by Chebana and Ouarda (2007) and in 
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order to present a complete multivariate-regional FA framework, an estimation procedure in the 

multivariate context is presented in this paper. The present procedure is an extension of the 

index-flood model to the multivariate context.  

The multivariate index-flood model is based on two main concepts: multivariate quantile curves 

and the notion of copulas. The univariate index-flood model aims to obtain an estimation of 

quantiles at ungauged sites using data (and hence quantiles) from sites within a specified region. 

The objective of FA is the quantile estimation which can be obtained through the cumulative 

distribution function or the density function. The multivariate quantile version adopted in this 

paper is a curve composed of combinations of the variables corresponding to the same risk. 

Copulas are employed in order to model the dependence between the variables describing the 

event. 

The paper is organized as follows. In Section 2, we present some background elements required 

for the development of the methodology: the index-flood model and multivariate quantile curves. 

In Section 3, we present the multivariate-index flood model. In Section 4 a simulation study is 

carried out to evaluate the performance of the proposed model with an adaptation of the 

procedure to flood events. Results and discussions are reported in Sections 5 and 6 respectively, 

whereas the conclusions are presented in the last section. 
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2 BACKGROUND 

The principal elements required for the development of the proposed estimation procedure are 

presented in this section; namely, the univariate index-flood model and bivariate quantile curves. 

2.1 Univariate index-flood model 

The index-flood model was first introduced by Dalrymple (1960). Similar models can also be 

used for other hydrological variables including droughts and storms (Pilon, 1990, Hosking and 

Wallis, 1997 and Hamza et al., 2001). In this model the region is assumed to be homogeneous. 

That is, all sites in the region have the same frequency distribution apart from a scale parameter 

that characterizes each site. Explicitly, for a region where data are available for N sites, the model 

gives the quantile ( )iQ p  corresponding to the non-exceedence probability p at site i as:  

( )  ( ),         1,...,i iQ p q p i Nμ= =     and   0 1p< <  (1) 

where iμ  represents the index-flood and q(.) is the regional growth curve. 

The index-flood parameter iμ  may be estimated, for instance, as the sample mean at site i. The 

growth curve q(.) may be estimated using the standardized data of the whole region. Usually, we 

assume known the form of q(.) through a regional distribution (.; )K θ except for some 

parameters ( )1,..., sθ θ θ= . More details about the index-flood model can be found in Hosking 

and Wallis (1993), and for a more recent review the reader is referred to Bocchiola et al. (2003).  
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2.2 Multivariate quantiles 

In the literature, several studies proposed to extend the well-known univariate quantile to higher 

dimensions. Serfling (2002) presented a review and a classification of some of these multivariate 

quantile versions. According to this classification, there are two major categories of multivariate 

quantiles: vector- and real-valued quantiles. In the vector-valued class, we find multivariate 

quantiles based on depth functions (Serfling, 2002); multivariate quantiles based on norm 

minimization defined by Abdous and Theodorecu (1992) and Chaudhuri (1996); multivariate 

quantiles as inversions of mappings studied by Koltchinskii and Dudley (1996); and data-based 

multivariate quantiles based on gradients developed by Hettmansperger et al. (1992).  

The real-valued quantile class contains the generalized quantile processes introduced by Einmahl 

and Mason (1992).  

More recently, Belzunce et al. (2007) defined another bivariate vector-valued quantile version. 

This version is not included in the review by Serfling (2002) and is focused on the bivariate 

context. Let ( , )X Y be an absolutely continuous random vector and ]0,1[p∈ . The pth bivariate 

quantile set or bivariate quantile curve for the direction ε  is defined as:  

{ }2
, ( , ) ( , ) : ( , )X YQ p x y R F x y pεε = ∈ =  (2) 

where ( , )F x yε  is one of the four following probabilities:  

{ } { }

{ } { }

( , ) Pr , , ( , ) Pr ,

( , ) Pr , , ( , ) Pr ,

F x y X x Y y F x y X x Y y

F x y X x Y y F x y X x Y y

ε ε

ε ε

++ +−

−− −+

= ≥ ≥ = ≥ ≤

= ≤ ≤ = ≤ ≥
 

which represent the probabilities of the events in the four quadrants of the plane. 
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In other words, the bivariate quantile (2) is a curve corresponding to any combination (x,y) that 

satisfies ( , )F x y pε =  (an infinity of combinations). This definition of the bivariate quantile is 

simple, intuitive and does not require any symmetry assumption. Furthermore, the bivariate 

distribution (copula and margins) appears in its evaluation. A multivariate quantile curve can be 

obtained for the uniform margins and then transformed using the univariate quantile function of 

each component. To this end, we introduce copulas as follows. A copula is a description of the 

dependence structure between two or more random variables. For more details on copula 

functions, the reader is referred for instance to Nelsen (2006) or to Chebana and Ouarda (2007). 

Sklar’s (1959) theorem is an important result which provides, for two random variables X and Y, 

the relationship between their bivariate joint distribution F , the corresponding copula C and 

marginal distributions  and X YF F . Sklar’s result states that there exists a copula C such that: 

 ( )( , ) ( ),  ( )   for all real  and  yX YF x y C F x F y x=  (3) 

In addition, if  and X YF F  are continuous, the copula C is unique. Hence, for the 

event{ },X x Y y≤ ≤ , using (2)  and (3), the quantile curve can be expressed as follows:  

{ }2 1 1
, ( ) ( , )  such that ( ), ( ); , [0,1] : ( , )X Y X YQ p x y R x F u y F v u v C u v p− −= ∈ = = ∈ =  (4) 

Consequently, in the present paper the proposed bivariate index-flood model is based on (4). The 

resolution of equation (4), using copula and margin expressions, leads to several solutions called 

combinations. These combinations constitute the corresponding quantile curve. 

The usual univariate quantiles are special cases of the bivariate quantile curve given in (2) or (4). 

Indeed, Figure 1 illustrates that the univariate quantiles represent the extreme points of the proper 

part of the bivariate quantile curve.  
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The following notations are employed throughout the paper and are illustrated in Figure 1: 

pQC  is the bivariate quantile curve associated to a risk p of the non-exceeding event on variables 

X and Y  which corresponds to , ( , )X YQC p ε − −  of equation (2) (we may denote it by 

, ( )X YQC p if it is necessary to make the emphasis on the variables); 

, ( )x yQ p  represents a point (a combination) of the curve pQC ; 

( )xQC p  and ( )yQC p  are the coordinates of the point , ( )x yQ p , that is 

( ), ( ) ( ), ( )x y x yQ p QC p QC p= . 

The univariate quantiles are denoted as ( )XQD p  and ( )YQD p  when directly evaluated and 

( )XQL p  and ( )YQL p  when deduced as extreme values from the bivariate quantile curve. A 

complete list of the notations used in the paper is presented at the end of the document. 

We close this section by summarizing some key facts that are related to the notion of bivariate 

quantile in local FA (for more details see Chebana and Ouarda, 2008b): 

1. The quantile curves, for practical reasons, are composed of two parts: naïve part and proper 

part (central part). The naïve part is composed of two segments starting at the end of each 

extremity of the proper part. These segments are parallel to the axis. The points that define 

the extremities correspond to the maximum value for each of the variables x and y in the 

empirical version of the quantile curve or in the case where the marginal distributions are 

bounded (right or left according to the considered event). In the case of quantiles 

corresponding to the parent distribution when the margins are not bounded, there are two 

options to identify the extremities of the proper part. It is possible to take the extremities to 
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be related to those of the empirical version. It is also possible to select the extremities to be 

as close as needed to the asymptotes. The first option is useful for the comparison of the 

empirical and true quantiles. For simplicity, Figure 1 presents the case where the margins 

are right-bounded. 

2. The marginal quantiles correspond to the extreme scenarios of the proper part related to the 

event. 

3. For a given sample, univariate estimation results should be used cautiously since the 

combination of the univariate quantile values of each variable does not correspond to the 

desired risk and hence may lead to wrong conclusions.  

4. Some events, relating both variables, cannot be expressed in the univariate context. 

5. The number of bivariate quantile scenarios in the proper part decreases, when the risk p 

increases, and hence the proper part of the quantile curve becomes shorter. 

These key statements are illustrated in Figure 1. In the remainder of the paper, if it is not 

specified, the quantile curve refers to the proper part of the full curve. 

Generally, explicit or analytical expressions of bivariate quantiles are not available. Hence, 

bivariate quantiles are obtained numerically by resolving equations (2) or (4). Some difficulties 

may arise when solving these equations, especially for values of p that are very close to 1 and/or 

for complex distributions (margins and copula). The procedure employed to obtain multivariate 

quantile curves is parametric. That is the joint distribution F is shown to belong to a class of 

parametric distributions with unknown parameters to be estimated. The class of parametric 

distributions is identified using goodness-of-fit tests. The parametric estimation approach is 

commonly used in hydrologic FA. In the univariate context some nonparametric approaches have 

been employed in hydrologic FA (see e.g., Adamowski and Feluch, 1990; Ouarda et al., 2001) 
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but these methods are of limited use for hydraulic design of major structures as indicated by 

Singh and Strupczewski (2002).  
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3 MULTIVARIATE INDEX-FLOOD MODEL 

The following procedure represents a complete multivariate version of regional FA. It includes 

the two main steps: delineation of a homogeneous region and estimation of the extreme event. 

The step dealing with the delineation of a region is treated in Chebana and Ouarda (2007) who 

proposed multivariate discordancy D and homogeneity H statistical tests based on multivariate L-

moments. The statistic H is also employed as a heterogeneity measure for a given region. The 

development of the estimation step is the object of the present paper. It consists in extending the 

index-flood model to the multivariate framework. For notation clarity and computation 

simplicity, the procedure is presented for the bivariate setting. Nevertheless, the procedure can be 

conceptually extended to higher dimensions. However, some theoretical and practical elements 

need to be developed such as copula modeling, parameter estimation and computational aspects. 

These elements are discussed at the end of the present section.  

Given a set of N sites with record length in  at site i, i =1,…, N, the problem is to estimate, at the 

target-site l , the quantile of interest corresponding to a given risk p, 0 1p< < (or equivalently a 

return period T). The data are of the form ( , )ij ijx y  for j = 1,…, in  and i = 1,…, N where x and y 

represent realisations of the considered variables. Let pqC be the regional growth curve which 

represents a quantile curve common to every site in the region. It can be seen as a “regional 

quantile curve” and can be obtained on the basis of the standardized data of the whole region.  

The procedure is described as follows: 

1. Identify the set of sites (region) to be used in the estimation as follows (Chebana and Ouarda, 

2007): 
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1.1. Apply the multivariate discordancy test D to identify discordant sites to be removed from 

the region, 

1.2. Check the homogeneity of the remaining sites by applying the multivariate homogeneity 

test H. Assume these sites are indexed from 1 to N ′ (with N N′ ≤ ). 

2. For each site i, i = 1,…, N ′ : 

2.1. Assess the location parameters , ,ˆ ˆand i X i Yμ μ , 

2.2. Standardize the sample ( , )ij ijx y  to be ( ), ,ˆ ˆ' ,  'ij ij i X ij ij i Yx x y yμ μ= = , 

3. Select a family of regional multivariate distributions to fit the standardized data of the whole 

region ( , )ij ijx y′ ′  for j = 1,…, in  and i = 1,…, N ′ : this includes the marginal distributions as 

well as a copula. In the present context, assume that the regional distribution depends upon s 

parameters denoted 1,..., sθ θ . 

4. Estimate the parameters of the distribution obtained in step 3: 

4.1. Obtain an estimator ( )ˆ i
kθ of the kth parameter from the standardized data of the ith site, k = 

1,…, s and i = 1,…, N ′ . The maximum likelihood method or the L-moments-based 

method can be used for the estimation.  

4.2. Obtain the weighted regional parameter estimators: 

'
( )

( ) 1
'

1

ˆ
ˆ ,            1,...,

N
i

i k
R i

k N

i
i

n
k s

n

θ
θ =

=

= =
∑

∑
 (5) 

5. Evaluate, for a given value of p, different combinations of the estimated growth curve 

,ˆ ( )x yq p  from (5) using the fitted multivariate distribution with the corresponding weighted 

regional parameters ( )ˆ R
kθ  with  k = 1,…, s. 
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6. Multiply component-wise each growth curve combination by the location parameter of the 

target-site l , ,ˆ Xμl  and ,ˆ Yμl :  

( ) ,
, ,

,

ˆˆ ˆ( ) ( )                 0 1
ˆ

X
x y x y

Y

Q p q p p
μ
μ

⎛ ⎞
= < <⎜ ⎟
⎝ ⎠

l

l
l

 (6) 

Hence the obtained result in (6) is an estimate of the local quantile curve corresponding to the 

target-site.  

Note that ,ˆ Xμl  and ,ˆ Yμl , representing the indices of the target-site l , are generally assumed to be 

location parameters. Particular values of these indices can be the sample median or the sample 

mean. Furthermore, for an ungauged site, they can be obtained from its meteorological and 

physiographical features, for instance, through a linear model. Since the classical index-flood 

model is based on the non-exceedance probability ( ) ( )F x P X x= ≤ , we have considered, in this 

procedure, the probability of the event { },X x Y y≤ ≤ . However, if another event is of interest, 

appropriate changes can easily be brought to the proposed model. 

To deal with step 3 in the described procedure, goodness-of-fit tests are required for copula as 

well as for marginal distributions. Such tests are well-known in the literature for univariate 

distributions. For instance, the empirical cumulative distribution function given by Cunnane 

(1978) can be used. Recently some statistical tests (numerical or graphical) have been developed 

to test copula’s goodness-of-fit (see, e.g. Fermanian, 2005 or Genest et al., 2009). 

We end this section by stating the required elements to define the above procedure in a 

multivariate setting. Let ( )1,..., dX X  be a random vector defined on dR , 1d ≥ , with joint 
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distribution F and marginal distributions 
1
,...,

dX XF F . On the basis of Sklar’s theorem, there exists 

a copula C such that ( )11 1 1( ,..., ) ( ),...,  ( )   for real ,...,
dd X X d dF x x C F x F x x x= . 

Assume that we are interested in the event { }1 1,..., d dX x X x≤ ≤ . Then the corresponding 

multivariate quantile is given by: 

{ }1

1
,..., 1 1( ) ( ,..., )  such that ( ); [0,1], 1,..., : ( ,..., )

d j

d
X X d j X j j dQ p x x R x F u u j d C u u p−= ∈ = ∈ = =  

For d = 3 the multivariate quantile represents a surface in a three-dimensional space. For the 

target-site l , equation (6) of the index-flood model becomes: 

( )
1

1 1

,

,..., ,...,

,

ˆ
ˆ ˆ( ) ( )                 0 1,

ˆ
d d

d

X

x x x x

X

Q p q p p
μ

μ

⎛ ⎞
⎜ ⎟

= < <⎜ ⎟
⎜ ⎟
⎝ ⎠

l

l

l

M  

Therefore, all the theoretical elements required to define the procedure in a d-dimensional space 

are available. However, in practice, some difficulties arise. A key point is related to the effective 

modeling of the multivariate copula. Even though some well-known classes of Archimedean 

copulas and extreme value copulas are available in the multivariate setting, they are not 

convenient to model when the dependence structure is complex. Fitting other kinds of copulas is 

a topic of continuous development. The number of parameters to be estimated (related to each 

marginal distribution and to the copula) grows quickly with the dimension d. The numerical 

difficulties encountered in the bivariate setting become even more important. 
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4 PERFORMANCE EVALUATION USING SIMULATION 

In order to evaluate the performance of the proposed model, a simulation study is carried out. 

Before starting the simulation procedure, it is required to define the regions to be simulated and 

convenient evaluation criteria. Note that these evaluation criteria are also employed in Chebana 

and Ouarda (2008b) and are adapted in the present work to the regional context. Recall that the 

variables X and Y are selected to be respectively the flood volume and flood peak (Figure 2). 

4.1 Simulated regions 

As it was already underlined, to apply the index-flood model, the region should be homogeneous. 

However, to be more realistic, the region can also be “possibly homogeneous” rather than 

“exactly homogeneous” (see Hosking and Wallis, 1997). In that case, the value of the 

corresponding heterogeneity statistical measure H should be between 1 and 2. Since, the present 

study is a continuation of the work by Chebana and Ouarda (2007), the same regional distribution 

can be considered, namely, a bivariate distribution with Gumbel margins and Gumbel logistic 

copula given respectively by:  

( ){ }( ) exp exp ,   real,  0 and realX

X

x
X X XF x xβ

α α β−= − − >  (7) 

{ }1/
( , ) exp ( log ) ( log ) ,  1 and 0 , 1C u v u v u v

γγ γ
γ γ⎡ ⎤= − − + − ≥ ≤ ≤⎣ ⎦  (8) 

By replacing each x by y in (7), we obtain the expression of the marginal distribution of the 

variable Y. The case where 1γ =  in (8) corresponds to complete independence of the two 

variables. 
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The corresponding parameters of the bivariate distribution when the region is homogeneous are: 

300.22, 1239.80,X Xα β= =  = 15.85, 51.85Y Yα β =  and =1.414γ  (9) 

This value of γ  is equivalent to the correlation coefficient 0.5ρ =  and the Kandall’s tau 

coefficient where 0.3τ =  [ ]4 ( , ) 1E F X Yτ = − . Indeed, the parameter γ  is related to 

respectively ρ  and τ  according to the following expressions (see Gumbel and Mustafi, 1967 and 

Genest and Rivest, 1993): 

1 ,    0 1
1

γ ρ
ρ

= ≤ <
−

 (10) 

  1
1
τγ
τ

= +
−

 (11) 

The parameter values in (9) are those of a real data treated in Yue and Rassmussen (2002) and 

concern the Skootamatta River in Ontario, Canada. 

Three kinds of regions are considered as follows:  

- The first region is homogeneous (Homog): all sites have the same distribution with the 

same parameters given above. 

- The second one is a 30% completely heterogeneous region (HetCo30): the scale and 

dependence parameters ( Xα , Yα  and γ ) increase linearly from the first to the last site in 

the 30% range centered around the homogeneous region parameters, e.g., for a given 

value of Xα  the variation is in the range[ ](1- 0.3/ 2),  (1 0.3/ 2)X Xα α + .  
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- The third one is a 50% heterogeneous region on the marginal parameters (HetMa50): it is 

the same as the above region but the dependence parameter γ  is fixed and the variation is 

on the marginal parameters and X Yα α .  

The representative simulated regions are composed of a number of sites N = 15 and each site 

contains n = in =30 observations where =1.414γ  (in the remainder of the paper other values of γ  

are also considered). For the regions HetCo30 and HetMa50, the corresponding mean values of 

the heterogeneity statistical measure H are respectively 1.30 and 1.36. Hence they can be 

considered effectively as “possibly homogeneous” regions. These values are obtained following 

the procedure defined in Chebana and Ouarda (2007). Note that the location parameters Xβ and 

Yβ are considered to be fixed in the generated regions at the values given in (9). These 

parameters have no effect on the heterogeneity measure H since we are interested in the 

variability aspect (see also Hosking and Wallis, 1993 or Chebana and Ouarda, 2007). 

According to the linear variation of the parameters in the regions HetCo30 and HetMa50, the 

corresponding sites are ranked from 1 to N. That is, for instance, the smallest parameter values 

and the largest ones are associated respectively to the first site and to the last site whereas the 

parameters in (9) correspond to the middle site. 

For comparison purposes, and to study the effect of various factors on the estimation results, 

other regions than the representative ones are generated: 

i. Regions Homog and HetMa50 in the independence case (γ  = 1 in the Gumbel logistic 

copula (8) with 30in n= = and N = 15 for each region. 
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ii. Regions Homog, HetCo30 and HetMa50 in the dependence case (  =1.414γ ) where n = 

30 and 60 with N = 15 for each region. 

iii. Regions Homog, HetCo30 and HetMa50 in the dependence case (  =1.414γ ) where N = 

10, 15, 20, 50 and 100 with n = 30 for each region. 

iv. Regions HetCo60 and HetCo80 (similar to HetCo30 with 60% and 80% instead of 30%) 

in the dependence case where =3.162γ  (equivalent to 0.9ρ = ) with n = 30 and N = 15 

for each region. 

The values of n and N are selected on the basis of situations commonly encountered in RFA (e.g. 

Hosking and Wallis, 1997 or Chebana and Ouarda, 2007). Note that the region HetCo30 cannot 

be considered in the independent case (i) where the parameter γ  is fixed at γ  = 1. The regions in 

(iv) are heterogeneous with heterogeneity mean measures H = 2.48 and 5.29 respectively. They 

are considered to show the effect of the heterogeneity of the region on the estimation 

performances. The value of  =3.162γ  is considered to ensure that 1γ ≥  for each site in the 

region. There are some intersections between the above considered cases, for instance, both cases 

(ii) and (iii) contain  the region HetMa50 with n = 30, N = 15 and γ  = 1.414. These repetitions 

are kept for the coherence of the result presentation. 

Ghoudi et al. (1998) developed an algorithm for the generation of samples of a bivariate variable 

( ),X Y  according to the extreme value copula. This algorithm is used in the present case since 

the Gumbel logistic copula (8) is also an extreme value copula. The algorithm is summarized in 

Chebana and Ouarda (2007).  
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4.2 Performance evaluation criteria 

In the present multivariate context, the bivariate quantile is a curve. Hence, the estimation result 

is a curve instead of a real value as in the univariate framework. Consequently, the usual 

performance evaluation criteria are not adapted and should be defined differently. To evaluate the 

performance of the method, given the true quantile curve, an estimation of the corresponding 

quantile curve is obtained. Then, the evaluation consists in the assessment of the distance 

between the true and estimated curves.  

In the present context the quantile curve is a function. Consequently, we can adopt the notations: 

( , ( ))x g x  for the regional growth curve and ( , ( ))x G x  for the at-site quantile curve. These 

notations will ensure the clarity of the definition of the evaluation criteria. Let M be the number 

of simulation repetitions, and let [ ]ˆ ( )m
pg x  and [ ],ˆ ( )m i

pG x  be the ordinates, respectively, of the mth 

repetition of the estimated regional growth curve and site-i quantile estimate for non-exceedence 

probability p ( 0 1p< < ). Then, the corresponding coordinate-wise relative errors are given by: 

[ ]
[ ], ˆ ( ) ( )

( )
( )

m i
p pm i

p i
p

g x g x
r x

g x
−

=     and 
[ ],

[ ],
ˆ ( ) ( )

( )
( )

m i i
p pm i

p i
p

G x G x
R x

G x
−

=   (12) 

for fixed x component along the proper part of the curve where ( )i
pg x  and ( )i

pG x  are 

respectively the true at-site growth curve and quantile curve ordinates. Note that the differences 

in the numerator represent vertical distances between points of the underlying curves. As 

indicated in Section 2.2, the points that define the extremities of the proper part correspond to the 

maximum value for each of the variables x and y in the estimated quantile curve. Since the 

Gumbel distribution is not right-bounded, in order to obtain the values in (12), we select the 

extremities of the true curve according to those of the estimated curve.  
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In the coordinate-wise relative errors (12), there are three index dimensions: the index i is related 

to sites, the index m is related to the simulation replications and the last index x is related to the 

quantile combinations. Therefore, it is necessary to summarize the relative errors (12) to be 

interpretable. To avoid repetition, we focus on the relative errors related to the quantile and those 

of the growth curve can be obtained in a similar manner. 

To summarize errors (12) with respect to x, we consider distances or norms in functional spaces. 

In such spaces, some possible criteria are known as the Lr distances with 1r ≥ . They are defined 

between functions f1 and  f2 on a given space S with a positive measure λ  as 

1

1 2 1 2

r
r

r
S

f f f f dλ
⎛ ⎞

− = −⎜ ⎟
⎝ ⎠
∫ (see, e.g., Jones, 1993, Chapter 10). The particular cases L1, L2 and 

L∞  are the most commonly used. Note that the L1 distance is more intuitive and more 

representative than L2 and L∞ , but is more complex to handle in theoretical proofs because of the 

presence of the absolute value. Furthermore, when using the L1, the bias can not be evaluated 

since, as a metric, it is always positive. For this reason, and to keep the same commonly 

employed performance criteria in frequency analysis, we proceed as follows. Let i
pL be the length 

of the proper part of the true quantile curve i
pQC , then the relative integrated error is : 

*[ ] [ ],1( ) ( ) ,        1,..., ,   0 1,   1,...,
i
p

m m i
i pi

p QC

RIE p R x dx i N p m M
L

= = < < =∫  (13) 

 

Note that the integral *[ ]( )m
iRIE p  is similar to L1 but it is not a distance in the formal sense, since 

it may have negative values. To be differentiated from L1, the “pseudo-distance” associated to 

*[ ]( )m
iRIE p is denoted by L1*. *[ ]( )m

iRIE p  allows to assess the regional bias. However, it is not 
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appropriate for the variance evaluation since it may have some null values whereas the estimation 

is poor. For this reason, the root-mean-square errors are evaluated on the basis of the L1 distance. 

In the present context, the corresponding L1 distance is given by: 

[ ] [ ],1( ) ( ) ,        1,..., ,   0 1,   1,...,
i
p

m m i
i pi

p QC

RIE p R x dx i N p m M
L

= = < < =∫   (14) 

 

In order to evaluate the estimation error for a site i, on the basis of *[ ]( )m
iRIE p  and [ ]( )m

iRIE p , 

the bias and root-mean square errors are given respectively by: 

*[ ]

1

1( ) 100 ( )
M

m
i i

m

B p RIE p
M =

= ∑     and  ( )2[ ]

1

1( ) 100 ( )
M

m
i i

m

R p RIE p
M =

= ∑  (15) 

 

To summarize these criteria over the sites of the region, it is possible to average them to obtain 

the regional bias, the absolute regional bias and the regional quadratic error respectively given 

by: 

1

1( ) ( )
N

R
i

i

RB p B p
N =

= ∑ ,   
1

1( ) ( )
N

R
i

i

ARB p B p
N =

= ∑    and   
1

1( ) ( )
N

R
i

i

RRMSE p R p
N =

= ∑  (16) 

 

The role of each one of these criteria is explained, for instance, in Hosking and Wallis (1997), in 

the univariate setting. The RRB  measures the tendency of quantile estimates to be uniformly too 

high or too low across the whole region; the RARB measures the tendency of quantile estimates to 

be consistently high at some sites and low at others; and the RRRMSE  measures the overall 

deviation of estimated quantiles from true quantiles.  
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4.3 Simulation procedure 

Once the regions and the evaluation criteria are identified, the simulation procedure can be 

defined. It is mainly based on the general procedure given in Section 3. In the simulation 

procedure, there is no need to apply the discordancy test. The distribution is known a-priori. 

Hence step 3 in Section 3 is omitted. The repetition and evaluation steps are only for the 

simulation procedure and do not concern the general procedure. The simulation procedure 

consists of the following steps: 

1. Generate a region as described in Section 4.2 with data denoted as 

( , ), 1,...,  and 1,...,ij ij ix y j n i N= = .  

2. For each site i, 1,...,i N= :  

2.1. Evaluate the sample mean on both variables:  , ,ˆ ˆand i X i Yμ μ , 

2.2. Standardize the sample to obtain ( ), ,ˆ ˆ' ,  'ij ij i X ij ij i Yx x y yμ μ= = , 1,..., ij n= , 

2.3. Estimate the parameters of the standardized sample related to the bivariate distribution of 

the generated region: 

- For the marginal Gumbel distribution, the estimators ( ) ( ) ( )ˆˆ ˆ, ,i i i
X Y Xα α β  and ( )ˆ i

Yβ  are 

obtained using the L-moment method given by Hosking and Wallis (1997). 

- The parameter γ  of copula is estimated by ( )ˆ iγ  using expression (11). 

3. Obtain the regional parameters using the weighted mean given by (5). 

4. Obtain the combinations of the bivariate regional growth curve pqC  using (7) and (8) 

replaced in (4), on the basis of the standardized data, for a fixed value of the risk p (here we 

take p = 0.9, 0.99 and 0.995). 
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5. Apply the index-flood model (6) using the growth curves obtained in step 4 and location 

estimators obtained from step 2.1.  

6. Repeat steps 1 to 5 M times where M is a large number, say M = 2000. 

7. Evaluate for each site the true quantile curves pQC  using the parameters of the parent 

distribution according to the type of region (e.g. Homog, HetMa50 and HetCo30). 

8. Evaluate the true bivariate growth curves pqC  using the parameters of the parent distribution 

for each site as follows: 

8.1. Find the population means Xμ and Yμ from the distribution parameters on each variable. 

In the present case, for the Gumbel distribution, we have : 0.5772X X Xμ β α= +  and 

0.5772Y Y Yμ β α= + , 

8.2. Divide each component of the true quantiles pQC  (from step 7) by the corresponding 

population mean (from step 8.1). 

9. Evaluate the performance criteria described in equations (13) and (14), then (15) and finally 

(16). 

Step 8 is introduced to evaluate the performance of the estimation of the growth curve. In 

addition, note that step 8 produces a true growth curve for each site which is required for the 

simulation of heterogeneous regions. However, these growth curves are identical for 

homogeneous regions as it is assumed by the index-flood model. This is similar to the univariate 

setting employed, for instance, by Hosking and Wallis (1997). 

After the bivariate procedure, the univariate estimation procedure is also applied for 

comparison purposes. Note that some elements of the present simulation procedure are inspired 

by Hosking and Wallis (1997) and by Chebana and Ouarda (2007). 



 



25 

5 RESULTS 

The application of the described simulation procedure leads to the results presented herein. This 

section is divided into three parts: in the first one we present the preliminary simulations, in the 

second we present and analyse the main results and in the last part we study the effect of some 

factors on the performance of the proposed model. 

5.1 Preliminary simulations 

Before analysing the results, three preliminary simulations are produced to explain some of the 

previously introduced notions. The first one corresponds to one repetition (M = 1) of the 

simulation procedure on the region HetMa50 with p = 0.9 where n = 30 and N = 15. Figure 3a 

shows the true and estimated quantile curves of the first, the middle and the last sites in the 

region. Table 1 presents estimation relative errors related to the first, the middle and the last sites 

in the same simulated region. Relative errors for bivariate quantiles, as curves, are evaluated 

using (13). The univariate quantiles are evaluated directly or as extreme scenarios of the proper 

part of the bivariate quantile curves. The univariate estimations are evaluated on the basis of the 

usual relative errors (e.g. Hosking and Wallis, 1997). Based on criteria (13), from Table 1, we 

observe that the middle site, defined with parameters (9), of the homogeneous region, is the one 

best estimated. The estimation of the first site is acceptable whereas the estimation of the last site 

is the worst. The values in Table 1 reflect the evaluation criteria being used (13) for the bivariate 

quantile estimation. For instance, it is clear from Figure 3a that the bivariate quantile curve of the 

last site is underestimated with a high negative value (-20.94 %), the univariate quantiles are both 

underestimated and the relative error related to Y is negative with high magnitude. In addition, for 
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each site, similarity is observed between the estimation errors of the univariate quantiles 

evaluated both directly and as extreme scenarios even when only one sample is considered. Note 

that similar errors do not imply similar estimated values. Table 2 presents the true values of the 

univariate quantiles evaluated directly and as extreme scenarios of the bivariate curve. Table 2 

provides also an indication about the relative difference between the two estimates. These relative 

differences are very low (less than 0.5%). Therefore, one can consider that values obtained by the 

two different methods are almost the same. 

The second preliminary simulation results are presented in Table 3 which summarises the values 

of the criteria related to the same previously generated region for the bivariate as well as the 

univariate estimation. For the bivariate case we opted to present all possible combinations of 

criteria (RBR, ARBR and RRMSER) and “norms” (L1*, L1 and L2).. Note that the values in Table 3 

represent the whole region while values in Table 1 represent only particular sites. Bivariate 

results show, as expected, that it is appropriate to use L1* for the RBR and ARBR evaluation and L1 

for the RRMSER evaluation. The values associated to L2 are given only as an indication. Hence, 

and in order to save space in the remainder of the paper, they are omitted. Furthermore, the 

regional averages of the univariate quantile errors estimated directly or as extreme scenarios are 

similar. Figures 3b,c show the true and estimated quantile curves, respectively, for all sites of the 

generated region. It can be seen that the true quantile curves are well ordered whereas the 

estimated ones intersect. This is because in the first case the parameters are known and ordered 

whereas in the second case the parameters are estimated and do not necessarily keep their order. 

Nevertheless, the whole view of the region, composed by the two groups of curves (true and 

estimated), shows a good agreement as a region and not for each site alone. The curves in Figures 
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3b,c are also in agreement with the values corresponding to L1* in Table 3. The agreement here 

concerns the whole region (all sites together) rather than site by site.  

As it was previously indicated, univariate quantiles can be either estimated directly using the 

index-flood model or deduced from the bivariate estimation as extreme scenarios (extreme points 

of the quantile curve). Hence, in this third preliminary simulation, it is valuable to compare 

univariate quantiles obtained from both estimations. Table 4 shows, on the basis of M = 2000 

generated HetMa50 regions with p = 0.9, 0.99 and 0.995, relative errors corresponding to 

univariate quantile estimation. These results combined to those in Table 2 indicate that, for a 

given variable X or Y, directly evaluated quantile estimates are very similar to those obtained as 

extreme points of the bivariate quantile curves for all values of p and for each criterion. This 

result remains valid for the outputs of the main simulations. Consequently, results related to the 

univariate quantiles when evaluated as extreme points are omitted from the next simulation 

results. This result shows that values provided by multivariate FA are very similar to those 

obtained by the univariate FA and also with an equivalent accuracy. 

5.2 Main results 

The main simulation results are presented in Tables 5a,b for all the considered regions. Even 

though, the focus is on quantile curve estimation, the evaluation of growth curve estimation pqC  

is also reported in order to explain the quantile results. From both tables, three apparent elements 

can be observed: 

- In general, the values of the performance criteria increase with respect to the risk p in both 

univariate and bivariate settings. This behaviour, well known in the univariate FA, is not 
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systematic in the bivariate estimation, especially in terms of RRMSER. The usual explanation 

is that generally in FA, a quantile associated to a risk p is more accurately estimated than 

another one associated to a risk p′ if p < p′ (when p and p′  are close to 1). The reason is that 

for a small risk, the corresponding quantile is close to the central body of the distribution, and 

hence, an important part of the data contributes to its estimation. However, in the bivariate 

setting, the situation is not similar. Indeed, in the multivariate context, the central part of a 

distribution contains little probability mass compared to the univariate setting. This is very 

obvious in higher dimensions; see Scott (1992) for more details and examples. 

- The relative bias RBR is very small in all regions and for all values of p. However, bivariate 

RBR’s are larger than those of each one of the univariate but without exceeding 1.17%. The 

RBR low values are due to the symmetry regarding the parameters of the simulated regions. 

- The growth curve pqC  results, for each value of p, are very similar for both variables 

separately (univariate) and also jointly (bivariate), especially in terms of RRMSER. However, 

this is not the case for quantile pQC  estimation where differences are noticeable between 

bivariate and univariate results. This can be explained by the errors induced from the 

estimation of the index μ . That is, if one variable has a high error in its index μ , then, when 

multiplying it by the growth curve pqC , the final estimation result is affected accordingly. 

Note that the uncertainty related to the mean has more effect on the variability of the 

quantiles (through the RRMSER) than on the bias (RBR) because of error compensation in the 

RBR. 

In the homogeneous regions (Table 5a), the variability expressed in terms of the RRMSER in the 

growth curve estimation pqC  is small compared to that of pQC  for a fixed p. Hence, in 
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homogeneous regions, the variability in pQC  estimation originates essentially from the 

estimation of the index μ  in equations (1) and (6). However, with respect to p, the variability in 

pqC  estimation increases faster than the variability in pQC . This result may be explained by the 

fact that the mean has more influence on the central part of the distribution than on the tail. 

Hence, the contribution of the index variability decreases for large values of p.  

Table 5b presents results of Homog and HetMa50 when the variables X and Y are assumed to be 

independent, that is γ  = 1 in copula (8). From Tables 5a,b, the comparison of the dependent and 

independent cases reveals two principal elements. First, there is no significant difference in the 

univariate results: The results of univariate estimation quantiles remain almost the same in both 

dependent and independent cases. The reason is that, intuitively, the marginal distributions are 

not affected by the copula, and mathematically, the copula has always the same values in the 

extreme points, that is C(u, 1) = u and C(1,v) = v for all u, v in [0,1] (see e.g. Nelsen, 2006). 

Second, in bivariate quantile estimation, the criteria values are slightly smaller in the independent 

case than in the dependent one. This may be justified by the presence of an extra parameter to be 

estimated in the dependent case (the parameter γ ). This parameter in the independent case is not 

estimated and is fixed at γ  = 1. We conclude that univariate estimation ignores the dependence 

structure of the event. 

Figure 4 shows the quantile estimation performance with respect to the 15 sites within the same 

simulated regions HetMa50 presented in Table 5a. The Bi and Ri, defined in (15), represent 

respectively the RB and the RRMSE for a site i. Similar results are obtained for the other types of 

regions and hence they are omitted. From Figure 4 the behaviours of both the RB and the 

RRMSE, obtained from the bivariate or univariate models are similar. It is observed that for each 
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value of p, the bias is positive for the first half of the sites (from the 1st to the 8th site) and 

negative for the other half (from the 9th to the 15th site). This fact is observed in the univariate 

setting as well as in the bivariate one. It may be explained as follows: In the first half, the true 

quantile Q is smaller than the average quantile over the region Q , Q Q≤ , since small values of 

the scale parameter α  reduce quantile values in regions like HetMa50. Furthermore, the average 

quantile value should be very close to the estimated one Q̂  ( ˆQ Q≈ ). Therefore, the quantile 

relative error is positive since it is greater than the negligible difference error between the 

estimate and the average quantiles ( ˆ ˆ 0Q Q Q Q− ≥ − ≈ ). The other half of the sites, where the 

bias is negative, can be treated similarly. Furthermore, we note that the RRMSE is small for sites 

with parameters close to those of the homogeneous region given in (9) and it increases according 

to the deviation of the site parameters from the central one. This is more apparent for high values 

of p. This behaviour of the RB and RRMSE with respect to site number is also observed in the 

univariate index-flood model (Hosking and Wallis, 1997). 

5.3 Effect of various factors on the estimation results  

The proposed estimation model (6) may be affected by several factors. In this section, we present 

a short study dealing with the impact of the record length n, the region size N as well as the 

degree of region heterogeneity. Table 6 presents estimation results for the Homog, HetCo30 and 

HetMa50 regions when the variables are dependent where N = 15 and n = 30, 60 and 100. To 

facilitate comparisons, results for n = 30 are taken from Table 5a. We observe that when n 

increases, the main improvement is related to the RRMSER for each value of p. However, the RBR 

and the ARBR remain almost constant. Note that the values of the RBR and the ARBR are very low 

and their variations can be considered as proportionally similar to those of the RRMSER. On the 
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one hand, the improvement of the RRMSER, with respect to n, is related to the heterogeneity 

degree of the region. That is, the improvement decreases slightly from Homog to HetMa50. On 

the other hand, the improvement for the bivariate estimation is slightly more important than for 

the univariate estimation in all considered regions.  

Similarly to Table 6, Table 7 presents estimation results of 0.99-quantiles for Homog, HetCo30 

and HetMa50 regions when the variables are dependent where n = 30 and N = 10, 15, 20, 50 and 

100. In order to simplify the comparison, results for N = 15 are taken from Table 5a. We observe, 

for a given type of region, a very slight improvement (less than 1%) of the RRMSER in both 

univariate and bivariate estimations whereas the RBR and the ARBR are almost constant but with a 

variability proportionally similar to the variability of the RRMSER. This behaviour with respect to 

N is similar for the three region types although the values are different. The results corresponding 

to the 0.9- and 0.995-quantiles lead to similar conclusions and hence are not presented. 

An important assumption of RFA (and the Index-flood model) is the homogeneity of the region 

which is checked in the delineation step. To study the effect of the heterogeneity degree of a 

region, we consider five regions with different heterogeneity degrees: one homogeneous region, 

two possibly homogeneous regions and two heterogeneous regions. The corresponding results are 

presented in Table 8. They indicate that, for each fixed value of p in the univariate as well as the 

bivariate settings, the quantile and the growth curve estimation errors increase with respect to the 

heterogeneity degree expressed through the mean values of H. It can be concluded that the 

heterogeneity degree has a negative effect on the performance of the estimation procedure. 

We conclude from Tables 6 and 7 that the impact of n and N is not significant on regional 

quantile estimation. Note that, in the hydrological context, the variations of n and N are generally 
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small. However, as concluded in Chebana and Ouarda (2007), the effect of n and N is very 

important in the delineation step. Hence, the impact of the record length n and the region size N is 

indirect on the estimation step through the homogeneous region selection in the delineation step. 

Even though the estimation is not greatly affected by increasing values of N, there is still 

significant gain for carrying out the regionalisation (transfer of information from other sites in the 

region). Indeed, when N = 1, if the target-site contains enough data, then quantile estimation can 

be obtained directly by local FA. The regional methodology is of interest when the target-site is 

ungauged or partially ungauged so that the local estimation is not possible or not efficient. The 

homogeneity or the possible homogeneity of regions are important conditions to the good 

performance of the procedure. The above conclusions are similar to those obtained by Hosking 

and Wallis (1997) for the univariate model. 

In the previous results, univariate and bivariate estimates were shown to be different in terms of 

values but similar in terms of behaviour. The explanation lies partially in the difference in the 

criteria employed to evaluate the performances of each model. Furthermore, the main differences 

between univariate and bivariate models are conceptual. The univariate estimation results are 

presented only to be compared to the extreme points of the bivariate quantiles. 
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6 CONCLUSIONS AND FUTURE WORK 

In the present paper we proposed an extension of the index-flood model to the multivariate 

context. The proposed estimation procedure with the multivariate discordancy and homogeneity 

tests constitute a complete multivariate RFA procedure. Even though the procedure is shown to 

be valid in the multivariate setting, the present paper focuses on the bivariate case. The proposed 

model is based on copulas and on a bivariate quantile version. The bivariate quantile version 

employed is a curve composed by several statistically similar combinations, since they lead to the 

same risk. The univariate estimated quantiles, correctly combined, are particular cases 

corresponding to the extreme scenarios of the bivariate quantile curve. According to the available 

resources and the nature of the project, one or more convenient scenarios may be selected. Hence, 

the bivariate setting offers more flexibility to designers than the univariate framework.  

Simulation results of the bivariate version of the index-flood model are similar to those of the 

univariate model in terms of behaviour of the corresponding performance criteria. The results of 

univariate FA are provided (as extreme points) by the multivariate FA, and with an equivalent 

accuracy. The proposed model performs better when the region is close to homogeneity. Its 

performance is not significantly affected by small variations of the record length of sites or the 

region size. However, the whole regionalization procedure is affected by these factors through the 

delineation step. On the other hand, the univariate estimation results remain almost unchanged if 

the variables are dependent or independent. Hence, the univariate quantile estimates do not take 

into account the dependence structure of the variables characterizing the event.  
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In the present study several elements of multivariate RFA are treated. Nevertheless, the following 

issues, among others, should have the merit to be developed in future efforts: 

- Adaptation of the model for the estimation of other events of interest such as the 

simultaneous exceedence event expressed as { },X x Y y≥ ≥ , 

- Estimation of the multivariate index-flood μ  for ungauged sites using their 

physiographical characteristics, 

- Definition of sharp criteria to measure the model performances. Indeed, if other 

phenomena and other types of copula are considered, then “distances” will be between 

sets instead of functions, since generally a quantile curve is a “set of points” and not 

necessarily a function (which is a particular case), 

- Development of confidence bands associated to the regional estimates of the quantile 

curves.  This is of interest to evaluate the amount of variation in the curve estimation. 

- A thorough sensitivity study of the impact of different factors that may affect the 

performances of the model, separately or combined. Such factors include: the estimation 

method of the distribution parameters, the fitted regional distribution including copula, as 

well as the effect of a misspecification of the bivariate distribution. 
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NOTATION LIST 

, ,  ,  X X Y Yα β α β
 

Parameters of the marginal Gumbel distributions 
γ  Dependence parameter in the Gumbel logistic copula 
ρ  Correlation coefficient 
τ   Kendall tau coefficient 

,  and X YF F F  Joint distribution and marginal distributions for the random variables X  and Y  
(.,.)C γ  Gumbel logistic copula with parameter γ  

D Bivariate discordancy test 
H  Bivariate homogeneity test 
n or in  Site record length (of site i)
N  Number of sites in a region
M Number of replicates for the simulations

pQC  Bivariate quantile curve associated to a risk p of the non-exceeding event

, ( )x yQ p  A point (a combination) of the curve pQC
( )xQC p  

and ( )yQC p  
Coordinates of the point , ( )x yQ p , that is ( ), ( ) ( ), ( )x y x yQ p QC p QC p=  

( )XQD p  
and ( )YQD p  Univariate quantiles when directly evaluated 

( )XQL p  
and ( )YQL p  

Univariate quantiles when deduced as extreme values from the bivariate quantile 
curve 

[ ], (.)m i
pR  Coordinate-wise relative errors of the proper part of the quantile curve of site i 

corresponding to the replication m  and for a risk p 
i
pL  Length of the proper part of the true quantile curve i

pQC  of site i and for a risk p 
*[ ]( )m
iRIE p  Relative integrated error related to [ ], (.)m i

pR  
[ ]( )m
iRIE p  Relative integrated error related to [ ], (.)m i

pR  

( )iB p  Bias for a site i evaluated on the basis of  *[ ]( )m
iRIE p   

( )iR p  Root-mean square error for a site i evaluated on the basis of [ ]( )m
iRIE p  

( )RRB p    Regional bias evaluated as a mean over the region of ( )iB p  
( )RARB p  Regional absolute bias  evaluated as a mean over the region of  ( )iB p  

( )RRRMSE p  Regional quadratic error evaluated as a mean over the region of ( )iR p  
 
The notations employed for the quantile curve are valid for the growth curve quantile by replacing 
Q by q 
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Table 7: Estimation results (%) of 0.99-quantiles for regions with different sizes (N = 10, 15, 20, 

50 and 100 with n = 30). 

Table 8: Quantile estimation results (%) for regions with different heterogeneity degrees for p 

=0.99 with n= 30 and N = 15. 

 

Figure 1: Illustration of the bivariate and univariate quantiles corresponding to the non-

exceedence probability p 

Figure 2: Typical flood hydrograph 

Figure 3: Illustration of the proper parts of estimated and true 0.9-quantile curves (sample 

generated from HetMa50) : a) For the 1st site, the 8th site and the last site; b); True 

quantile curves of the whole region c) Estimated quantile curves of the whole region. 

In a) and b) the gray level is light from the first site to black for the last site.  

Figure 4: RB and RRMSE with respect to site number in the dependence case ( 1.414γ = ) of the 

HetMa50 region for the quantile curve associated to p= 0.9 (first column) p= 0.99 

(second column) and p= 0.995 (last column) 
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Table 1: Relative errors (%) corresponding to the 1st site, the 8th site and the last site of the 0.9-

quantile estimates. The generated region is HetMa50 with n = 30 and N = 15. The 

univariate quantiles are evaluated directly and as extreme points of the bivariate 

quantile curves. The relative errors of the bivariate quantiles are evaluated using (13)  

 1st site 8th site 15th site 

    
 RIE*

i(p) for QCp 3.78 2.09 -20.94 

Relative error for QLX 1.22 0.33 -6.23 

Relative error for QDX 1.24 0.42 -6.09 

Relative error for QLY 1.41 2.14 -15.90 

Relative error for QDY 1.44 2.24 -15.77 
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Table 2: True values of the univariate quantiles evaluated directly and as extreme points of the 

bivariate quantile curve using the parameters of site 8.  

  Direct As extreme point Relative difference* 

p = 0.9 X 2016.7 2021.4 0.23 % 

 Y 92.8 93.1 0.32 % 

p =0.99 X 2828.0 2832.3 0.15 % 

 Y 135.7 135.9 0.15 % 

p =0.995 X 3068.2 3081.8 0.44 % 

 Y 148.4 149.1 0.47 % 

 

* In the relative difference we assume that the direct quantile value is the reference value, hence 

relative difference = (As extreme point-Direct)/Direct 
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Table 3: Relative errors (%) corresponding to the 0.9-quantile estimates of the generated 

region. The generated region is HetMa50 with n = 30 and N = 15. The univariate 

quantiles are evaluated directly and as extreme points of the bivariate quantile curves. 

The relative errors of the bivariate quantiles are evaluated using (16) 

 

 

 

 

 Bivariate Univariate  evaluated 

  as extreme points Directly 
 L1* L1 L2 QLX QLY QDX QDY 

RRB  0.20 9.55 11.24 -0.06 0.14 0.02 0.24 
RARB  9.03 9.55 11.24 4.61 6.31 4.61 6.33 

RRRMSE  9.03 9.55 11.24 4.61 6.31 4.61 6.33 
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Table 4: Relative errors (%) of univariate quantiles evaluated directly and as extreme points of 

the bivariate quantile curve. The corresponding region is HetMa50 with n = 30 and 

N = 15. 

 

  p=0.9 p=0.99  p=0.995 

  QLX QLY QDX QDY  QLX QLY QDX QDY  QLX QLY QDX QDY 

RRB   -0.03 0.04 0.01 0.09 0.32 0.37 0.35 0.41 0.17 0.30 0.23 0.37 
RARB   3.12 3.50 3.08 3.47 5.50 5.87 5.48 5.86 5.98 6.45 5.93 6.41 

RRRMSE   6.20 7.33 6.18 7.32 8.03 9.12 8.02 9.12 8.42 9.53 8.40 9.51 
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Table 5a: Estimation results (%) for the considered regions when the variables are dependent 

(N=15, n=30) 

 

*The RRB and RARB are evaluated using *[ ]( )m
iRIE p  and the RRRMSE is evaluated using [ ]( )m

iRIE p  

 

    Quantile estimation  Growth curve estimation  
    Biv.* QDX QDY  Biv.*  qDX qDY  
Homog  P = 0.9          
(H mean ≈  0)   RRB  -0.22 -0.13 -0.08  -0.23 -0.07 -0.04  
   RARB  0.22 0.13 0.12  0.23 0.07 0.04  
   RRRMSE  9.18 5.14 6.21  0.98 0.93 1.08  
  P=0.99          
   RRB  -0.07 -0.04 -0.07  -0.22 -0.06 -0.08  
   RARB  0.13 0.09 0.11  0.22 0.06 0.08  
   RRRMSE  9.93 5.37 6.50  1.67 1.71 1.84  
  p=0.995          
   RRB  -0.48 -0.24 -0.16  -0.45 -0.22 -0.14  
   RARB  0.48 0.24 0.17  0.45 0.22 0.14  
   RRRMSE  9.10 5.42 6.43  2.06 1.79 1.91  
HetCo30  p = 0.9          
(H mean = 1.30)   RRB  -0.10 -0.08 -0.02  -0.16 -0.02 0.01  
   RARB  3.18 1.85 2.09  1.89 1.85 2.07  
   RRRMSE  9.75 5.52 6.62  2.18 2.16 2.43  
  p=0.99          
   RRB  0.21 0.01 0.04  -0.16 0.01 0.06  
   RARB  5.86 3.25 3.45  3.48 3.25 3.50  
   RRRMSE  11.56 6.47 7.53  3.96 3.82 4.09  
  p =0.995          
   RRB  -0.16 -0.04 -0.01  -0.54 -0.02 -0.00  
   RARB  5.89 3.57 3.81  3.83 3.54 3.77  
   RRRMSE  11.06 6.71 7.74  4.34 4.11 4.43  
HetMa50  p = 0.9          
(H mean = 1.36)   RRB  0.34 0.01 0.09  -0.05 0.06 0.12  
   RARB  6.51 3.08 3.47  3.73 3.09 3.46  
   RRRMSE  11.52 6.18 7.32  3.90 3.30 3.72  
  p =0.99          
   RRB  1.17 0.35 0.41  0.00 0.33 0.40  
   RARB  10.58 5.48 5.86  6.30 5.45 5.87  
   RRRMSE  14.76 8.02 9.12  6.63 5.87 6.31  
  p =0.995          
   RRB  0.77 0.23 0.37  -0.52 0.25 0.38  
   RARB  10.69 5.93 6.41  6.70 5.93 6.33  
   RRRMSE  14.42 8.40 9.51  7.04 6.35 6.79  
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Table 5b: Estimation results (%) for the considered regions when the variables are independent 

(N=15, n=30) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*The RRB and RARB are evaluated using *[ ]( )m
iRIE p  and the RRRMSE is evaluated using [ ]( )m

iRIE p  

    Quantile estimation  Growth curve estimation  

    Biv.* QDX QDY  Biv.*  qDX qDY  

Homog  p = 0.9          

   RRB  -0.07 -0.04 -0.06  -0.11 -0.08 -0.06  

   RARB  0.18 0.10 0.15  0.11 0.08 0.06  

   RRRMSE  7.86 5.10 6.18  1.01 0.96 1.05  

  p =0.99          

   RRB  -0.12 -0.13 -0.04  -0.13 -0.09 -0.07  

   RARB  0.15 0.13 0.11  0.13 0.09 0.07  

   RRRMSE  8.25 5.39 6.46  1.61 1.69 1.81  

  p =0.995          

   RRB  -0.34 -0.16 -0.17  -0.26 -0.15 -0.17  

   RARB  0.34 0.17 0.18  0.26 0.15 0.17  

   RRRMSE  7.21 5.41 6.49  1.81 1.84 1.93  

HetMa50  p  = 0.9          

   RRB  0.53 0.09 0.11  0.03 0.05 0.11  

   RARB  7.06 3.06 3.47  4.22 3.09 3.46  

   RRRMSE  10.90 6.14 7.28  4.39 3.32 3.71  

  p =0.99          

   RRB  1.09 0.26 0.41  0.02 0.30 0.39  

   RARB  10.60 5.43 5.91  6.43 5.45 5.87  

   RRRMSE  13.82 8.02 9.14  6.71 5.86 6.31  

  p =0.995          

   RRB  0.87 0.31 0.38  -0.53 0.32 0.37  

   RARB  10.30 5.91 6.32  6.89 5.93 6.33  

   RRRMSE  13.11 8.40 9.48  7.20 6.37 6.79  
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Table 6: Quantile estimation results (%) for regions with different record lengths (n= 30, 60 

and 100 with N = 15) 

*The RRB and RARB are evaluated using *[ ]( )m
iRIE p  and the RRRMSE is evaluated using [ ]( )m

iRIE p  

 n = 30  n = 60  n = 100 
 Biv.* QDX QDY  Biv.* QDX QDY Biv.* QDX QDY 
Homog p = 0.9                                    

RRB  -0.22 -0.13 -0.08  0.00 0.01 -0.01  0.00 -0.02 -0.01 
RARB  0.22 0.13 0.12  0.11 0.04 0.08  0.08 0.04 0.06 

RRRMSE  9.18 5.14 6.21  6.67 3.64 4.39  5.26 2.83 3.43 
 p=0.99 

RRB  -0.07 -0.04 -0.07  -0.05 -0.02 -0.07  -0.04 -0.07 -0.01 
RARB  0.13 0.09 0.11  0.09 0.05 0.09  0.07 0.07 0.03 

RRRMSE  9.93 5.37 6.50  7.13 3.76 4.56  5.57 2.93 3.52 
 p=0.995 

RRB  -0.48 -0.24 -0.16  -0.04 -0.03 0.00  -0.15 -0.08 -0.08 
RARB  0.48 0.24 0.17  0.12 0.06 0.08  0.19 0.10 0.10 

RRRMSE  9.10 5.42 6.43  6.83 3.81 4.64  5.42 2.98 3.56 
HetCo30 p = 0.9 

RRB  -0.10 -0.08 -0.02  0.07  0.03 0.01  0.12 0.03 0.04 
RARB  3.18 1.85 2.09  3.27  1.87 2.04  3.28 1.82 2.03 

RRRMSE  9.75 5.52 6.62  7.43  4.19 4.98  6.34 3.47 4.12 
 p=0.99 

RRB  0.21 0.01 0.04  0.39 0.13 0.09  0.46 0.10 0.19 
RARB  5.86 3.25 3.45  6.09 3.24 3.47  6.26 3.26 3.55 

RRRMSE  11.56 6.47 7.53  9.71 5.24 5.97  8.69 4.59 5.23 
 p =0.995 

RRB  -0.16 -0.04 -0.01  0.30 0.15 0.16  0.27 0.14 0.13 
RARB  5.89 3.57 3.81  6.13 3.53 3.76  6.26 3.51 3.77 

RRRMSE  11.06 6.71 7.74  9.34 5.45 6.17  8.47 4.81 5.43 
HetMa50 p = 0.9 

RRB  0.34 0.01 0.09  0.51 0.08 0.14  0.55 0.12 0.14 
RARB  6.51 3.08 3.47  6.67 3.09 3.46  6.75 3.07 3.46 

RRRMSE  11.52 6.18 7.32  9.72 4.97 5.83  8.84 4.38 5.10 
 p =0.99 

RRB  1.17 0.35 0.41  1.19 0.31 0.42  1.26 0.35 0.45 
RARB  10.58 5.48 5.86  10.91 5.47 5.87  11.04 5.44 5.86 

RRRMSE  14.76 8.02 9.12  13.34 6.97 7.75  12.71 6.45 7.16 
 p =0.995 

RRB  0.77 0.23 0.37  1.10 0.40 0.50  1.07 0.44 0.45 
RARB  10.69 5.93 6.41  10.83 5.93 6.33  10.96 5.93 6.37 

RRRMSE  14.42 8.40 9.51  13.08 7.39 8.19  12.46 6.91 7.60 
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Table 7: Estimation results (%) of 0.99-quantiles for regions with different sizes (N = 10, 15, 

20, 50 and 100 with n = 30) 

*The RRB and RARB are evaluated using *[ ]( )m
iRIE p  and the RRRMSE is evaluated using [ ]( )m

iRIE p  

Biv.* QDX QDY Biv.* QDX QDY Biv.* QDX QDY Biv.* QDX QDY Biv.* QDX QDY 

 N = 10 N = 15 N = 20 N = 50 N = 100 

 n = 30, Homog and p = 0.99 
RRB  -0.08 -0.10 -0.04 -0.07 -0.04 -0.07 -0.18 -0.08 -0.14 -0.24 -0.16 -0.11 -0.20 -0.11 -0.11 

RARB  0.17 0.12 0.10 0.13 0.09 0.11 0.20 0.12 0.15 0.27 0.17 0.13 0.24 0.12 0.14 

RRRMSE  10.21 5.59 6.65 9.93 5.37 6.50 9.75 5.25 6.35 9.49 5.09 6.18 9.42 5.04 6.14 

 n = 30, HetCo30 and p = 0.99 
RRB  0.21 -0.01 0.06 0.21 0.01 0.04 0.30 0.08 0.08 0.17 0.01 0.03 0.11 -0.01 -0.00 

RARB  6.05 3.35 3.63 5.86 3.25 3.45 5.85 3.21 3.46 5.64 3.09 3.31 5.64 3.07 3.32 

RRRMSE  12.06 6.77 7.81 11.56 6.47 7.53 11.54 6.39 7.49 11.22 6.16 7.22 11.16 6.10 7.17 

 n = 30, HetMa50 and p = 0.99 
RRB  1.01 0.23 0.36 1.17 0.35 0.41 1.10 0.35 0.39 0.94 0.21 0.32 0.89 0.24 0.26 

RARB  10.81 5.62 6.05 10.58 5.48 5.86 10.36 5.32 5.74 10.16 5.20 5.59 10.06 5.13 5.53 

RRRMSE  15.17 8.32 9.45 14.76 8.02 9.12 14.57 7.89 9.01 14.16 7.61 8.71 14.04 7.53 8.61 
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Table 8: Quantile estimation results (%) for regions with different heterogeneity degrees for 

p = 0.99 with n= 30 and N = 15. 

*The RRB and RARB are evaluated using *[ ]( )m
iRIE p  and the RRRMSE is evaluated using [ ]( )m

iRIE p  

**The dependence parameter for these regions is 3.162γ =  

   Quantile estimation  Growth curve estimation  
   Biv.* QDX QDY  Biv.* qDX qDY  

Homog  RRB  -0.07 -0.04 -0.07  -0.22 -0.06 -0.08  

(H mean ≈  0)  RARB  0.13 0.09 0.11  0.22 0.06 0.08  

  RRRMSE  9.93 5.37 6.50  1.67 1.71 1.84  

HetCo30  RRB  0.21 0.01 0.04  -0.16 0.01 0.06  
(H mean = 1.30)  RARB  5.86 3.25 3.45  3.48 3.25 3.50  
  RRRMSE  11.56 6.47 7.53  3.96 3.82 4.09  

HetMa50  RRB  1.17 0.35 0.41  0.00 0.33 0.40  
(H mean = 1.36)  RARB  10.58 5.48 5.86  6.30 5.45 5.87  
  RRRMSE  14.76 8.02 9.12  6.63 5.87 6.31  

HetCo60**  RRB  1.45 0.44 0.56  0.24 0.47 0.58  
(H mean = 3.23)  RARB  11.42 6.54 7.05  6.31 6.56 7.07  
  RRRMSE  15.78 8.88 10.01  6.66 6.93 7.47  

HetCo80**  RRB  2.65 0.96 1.11  0.43 0.91 1.07  
(H mean = 5.29)  RARB  15.39 8.87 9.54  8.45 8.84 9.55  
  RRRMSE  19.08 10.83 12.04  8.73 9.13 9.86  
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Figure 1: Illustration of the bivariate and univariate quantiles corresponding to the non-

exceedence probability p 
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Figure 2: Typical flood hydrograph 
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Figure 3: Illustration of the proper parts of estimated and true 0.9-quantile curves (sample 

generated from HetMa50) : a) For the 1st site, the 8th site and the last site; b); True 

quantile curves of the whole region c) Estimated quantile curves of the whole region. 

In a) and b) the gray level is light from the first site to black for the last site.  
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Figure 4: RB and RRMSE with respect to site number in the dependence case ( 1.414γ = ) of the 

HetMa50 region for the quantile curve associated to p= 0.9 (first column) p= 0.99 

(second column) and p= 0.995 (last column) 



 

 

 


