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Faced with ever-increasing demand, the industrial production of food animals is under
pressure to increase its production. In order to keep productivity, quality, and safety
standards up while reducing the use of antibiotics, farmers are seeking new feed
additives. In chicken production, one of these additives is selenium. This element is
expected to confer some advantages in terms of animal health and productivity, but
its impact on chicken intestinal microbiota as well as on the carriage of foodborne
pathogens is unknown. In this study, chickens raised in a level 2 animal facility were fed
or not 0.3 ppm of in-feed selenium-yeast until 35 days of age and were inoculated or
not with the foodborne pathogen Campylobacter jejuni at the age of 14 days. At the end
of the study, body weight, seric IgY, intestinal IgA, seric gluthatione peroxydase activity,
the caecal microbiota (analyzed by MiSeq 16S rRNA gene sequencing), and C. jejuni
caecal levels were analyzed. The experiment was completely replicated twice, with two
independent batches of chickens. This study revealed that, for healthy chickens raised
in very good hygienic conditions, selenium-yeast does not influence the bird’s body
weight and lowers their seric gluthatione peroxidase activity as well as their intestinal
IgA concentrations. Furthermore, selenium-yeast did not modify the caecal microbiota
or the colonization of C. jejuni. The results also showed that C. jejuni colonization
does not impact any of the measured chicken health parameters and only slightly
impacts the caecal microbiota. This study also clearly illustrated the need for true
biological replication (independent animal trials) when assessing the microbiota shifts
associated with treatments as the chickens microbiotas clearly clustered according to
study replicate.
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INTRODUCTION

Worldwide, the demand for food is increasing at an exponential
rate (National Academy of Science, 2015), putting an
ever-increasing pressure on meat production. In Canada,
compared to 1991, beef and pork consumption per capita is
declining while chicken consumption is increasing (Agriculture
and Agrifood Canada [AAFC], 2016). Chicken meat production
is following the same trend; in Canada, 610 million live birds were
produced in 2005 compared to 661 million in 2015 (Agriculture
and Agrifood Canada [AAFC], 2016). This increased production
is challenging the food production system. In response to these
challenges, the “One Health” approach – which recognizes
and puts emphasis on the direct link between production
animal health and public health – is gaining momentum in
animal husbandry. For example, in Canada, the on-farm use of
antibiotics is becoming more controlled in an effort to promote
the judicious use of antibiotics (Gazette du Canada, 2016)
and surveillance of foodborne pathogens is being tightened
(Canadian Food Inspection Agency [CFIA], 2016a). Therefore,
to continue the production of high-quality chicken proteins
while ensuring the lowest possible contamination of products
by foodborne pathogens, producers must adapt their rearing
practices. One avenue is to modify animal feed composition by
the inclusion of selected feed additives aimed at increasing the
health of chicken flocks.

One of these feed additives is selenium. Selenium can
be added to chicken feed in the organic or inorganic form
(Zoidis et al., 2014). It has been observed that selenium
in-feed supplementation increases carcass weight, oxidative stress
response, immune response and it appears to be most effective
in limiting morbidity when the broilers are exposed to disease
or environmental stress (Zhou and Wang, 2011; Chen et al.,
2014; Markovic et al., 2014; Boostani et al., 2015; Xu et al.,
2015; Sun et al., 2016). One interesting form of selenium that
is commercially available is yeast grown in a media enriched
with selenium. This selenium-enriched yeast provides a source
of organic selenium to chickens. Furthermore, yeast has been
observed to be a good feed additive for chickens as they
may act as a probiotic (Caly et al., 2015; Mountzouris et al.,
2015; Nawaz et al., 2016), making selenium-yeast an interesting
product. The impact of selenium on healthy chickens is not fully
characterized while its potential impact on chicken intestinal
health, in particularly the intestinal microbiota, remains poorly
characterized.

The chicken microbiota is defined as the microorganism
community that inhabits the chicken (Oakley et al., 2014). The
caecal microbiota is becoming increasingly characterized and
was observed to be modulated by a plethora of factors, ranging
from feed composition to disease (Thibodeau et al., 2015b;
Ajuwon, 2016; Antonissen et al., 2016). An optimal microbiota,
conferring optimal health and growth, has yet to be defined in
chickens, illustrating the need for deeper research in this field.
One particularly interesting member of the chicken microbiota is
one that often colonizes the chicken caecum and is a zoonotic
foodborne pathogen for humans: Campylobacter jejuni (Chen
and Jiang, 2014).

Campylobacter jejuni is the most common bacterial foodborne
pathogen worldwide (Kirk et al., 2015). It colonizes the chicken
caecum at very high loads and therefore easily contaminates
chicken food products during processing (Meunier et al., 2016).
Reducing chicken C. jejuni caecal carriage would lessen the health
burden associated with this particular pathogen (Meunier et al.,
2016). C. jejuni colonization of chickens was observed to be
strain dependent and to be mediated by colonization genes that
have yet to be completely identified (Thibodeau et al., 2015a).
C. jejuni mainly uses amino acids and organic acids for its
energy production (Hofreuter, 2014). It has been shown that
C. jejuni colonization can be reduced by competitive exclusion
caused by modifications to the chicken microbiota (Laisney
et al., 2004). Food additives that could modify the chicken
microbiota, such as selenium-yeast, are of particular interest in
that context.

Consequently, the aim of this study was to assess the effect
of selenium-yeast in-feed supplementation on broiler chicken
health parameters and on the caecal microbiota, with a specific
focus on C. jejuni colonization.

MATERIALS AND METHODS

In vivo Chicken Experimentations
All animal experimentations were approved by the ethics
committee of the Faculty of Veterinary Medicine of the
University of Montreal, certificate number 14-Rech-1730. Newly
hatched broiler chickens (Ross 308) were purchased at a local
hatchery and transported to the avian research center (level
2 confinement facility) of the veterinary medicine faculty. All
chickens were vaccinated at the hatchery against Marek’s disease
and infectious bronchiolitis. The exact number of analyzed
chickens per group per experiment is presented in each table
(Tables 1–7). Chickens were placed in two different rooms: the
chickens housed in the first room were inoculated with C. jejuni
while the chickens housed in the second room were not to be
inoculated with C. jejuni. The chickens housed in each room were
further separated into two groups: one group received an in-feed
supplementation of a selenium-yeast commercial preparation at
0.3 ppm and the other did not. This selenium-yeast concentration
is the maximum supplementation allowed by the Canadian Food
Inspection Agency (Canadian Food Inspection Agency [CFIA],
2016b). All chickens were fed a standard mash diet and had ad
libitum access to water and feed.

At day 12, fresh caecal droppings were collected from each
group to confirm the absence of C. jejuni colonization. To
differentiate the effect of selenium-yeast from the eventual
effect of C. jejuni carriage on the chicken health parameters
evaluated, at 14 days of age, one room was inoculated with an
oral suspension of two deeply characterized C. jejuni strains
(A2008a and G2008b) (Thibodeau et al., 2013, 2015a,b) while
the other was not. The oral suspension was obtained from an
overnight blood agar culture of each strain that was suspended
in PBS phosphate buffered saline (PBS) to an optic density of 1.0
(at 630 nm) and further diluted to obtain a final concentration of
104 CFU per strain per inoculation.

Frontiers in Microbiology | www.frontiersin.org 2 March 2017 | Volume 8 | Article 451

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-00451 March 15, 2017 Time: 16:5 # 3

Thibodeau et al. Selenium, Chicken Microbiota, and C. jejuni

TABLE 1 | Observed mean body weight (g) for chickens according to the
use of selenium-yeast or the inoculation of C. jejuni.

Condition In-feed selenium-yeast C. jejuni inoculation

No additive Selenium-yeast C. jejuni neg C. jejuni pos

Replicate 1 2190 (160.7) 2249 (111.9) 2202 (128.1) 2235 (151.1)

Replicate 2 2190 (221.7) 2248 (214) 2254 (202.5) 2186 (230)

Replicate 1+2 2190 (190.3) 2248 (168.6) 2248 (169.2) 2211 (192.8)

Standard deviation reported in parenthesis. Replicate 1+2: combined analysis
of biological replicates. Chickens analyzed per group for Replicate 1: No
additive/C. jejuni neg = 9, No additive/C. jejuni pos = 11, Selenium-yeast/C. jejuni
neg = 10, Selenium-yeast/C. jejuni pos = 10. Chickens per group for Replicate
2: No additive/C. jejuni neg = 10, No additive/C. jejuni pos = 9, Selenium-
yeast/C. jejuni neg = 9, Selenium-yeast/C. jejuni pos = 11.

TABLE 2 | Observed seric GPX activity (U/ml) for chickens according to
the use of selenium-yeast or the inoculation of C. jejuni.

Condition In-feed selenium-yeast C. jejuni inoculation

No additive Selenium-yeast C. jejuni neg C. jejuni pos

Replicate 1 1532 (996) ∗a 680 (523) ∗b 1275 (1194) 1073 (354)

Replicate 2 1264 (673) ∗a 825 (845) ∗b 1131 (750) 958 (830)

Replicate 1+2 1394 (843) ∗a 755 (701) ∗b 1202 (993) 949 (662)

Standard deviation reported in parenthesis; On the same row, ∗a different from ∗b.
Replicate 1+2: combined analysis of biological replicates. Chickens analyzed per
group for Replicate 1: No additive/C. jejuni neg = 8, No additive/C. jejuni pos = 8,
Selenium-yeast/C. jejuni pos = 8, Selenium-yeast/C. jejuni neg = 8. Chickens per
group for Replicate 2: No Additive/C. jejuni neg = 8, No additive/C. jejuni pos = 8,
Selenium-yeast/C. jejuni neg = 8, Selenium-yeast/C. jejuni pos = 8.

At 35 days of age, chickens were weighed prior to being
stunned by electronarcosis and euthanized by bleeding. On
each animal, a 10 ml blood sample, a 10 cm segment of the
ileum measured from the ileum-caecal junction, as well as
the whole caecum were collected. All samples were sent on
ice to the laboratory for immediate processing. The in vivo
experiment was replicated once more with a distinct lot of
birds.

Sample Treatment
Caecal matter was collected from the caecum. A 1 g portion
was used for the enumeration of C. jejuni while another 1 g
was flash-frozen in liquid nitrogen and kept at −80◦C for DNA
extraction (Thibodeau et al., 2015b).

Blood samples were kept 1 h at room temperature and then
centrifuged at 100× g for 15 min. The supernatant was collected
and divided into two distinct samples that were kept at −20◦C.
One sample was used to determine the seric IgY concentrations
and the other one was sent to the diagnostic laboratory of the
Veterinary medicine faculty for the determination of the total
glutathione peroxidase activity (GPX).

The 10 cm ileal segment was opened longitudinally and
emptied of its contents with a gloved finger. A sterile microscopic
glass slide was then used to scrape off the mucus which was
resuspended in 10 ml of cold PBS. The mucus suspension was
then kept at −20◦C until used for the determination of the
intestinal mucus IgA concentration.

Seric IgY and Intestinal IgA Levels
The concentration of the total seric IgY and intestinal IgA was
assessed by ELISA using commercial kits from Bethyl laboratories
(Bethyl Laboratories, Montgomery, AL, USA) for eight chickens
per experimental group. Protocols were performed according to
the manufacturer recommendations. Serum samples were used
at a dilution of 1:50,000 while the intestinal samples were used
at a dilution of 1:20. For IgY, the secondary antibody was used
at a dilution of 1:20,000 while a dilution of 1:40,000 was used for
the IgA.

DNA Extraction, Amplicon MiSeq
Sequencing, and Bioinformatics
Total DNA was extracted from all the caecal samples kept
at−80◦C using a combination of a beads-beating lysis and
phenol–chloroform purification as previously described
(Thibodeau et al., 2015b). A sample without caecal matter was
extracted at the same time as a negative control for use in the
downstream molecular biology analysis. DNA concentration was
assessed using the Qubit BR assay (Fisher Scientific, Ottawa, ON,
Canada). The DNA samples were diluted to a concentration of
10 ng/µl, separated in aliquots, and kept at−20◦C until use.

A survey of the chicken caecal microbiota was performed
by amplifying and sequencing the V4 region of the 16S

TABLE 3 | Seric IgY concentrations (µg/ml) for chickens according to the
use of selenium-yeast or the inoculation of C. jejuni.

Condition In-feed selenium-yeast C. jejuni inoculation

No additive Selenium-yeast C. jejuni neg C. jejuni pos

Replicate 1 1.68 (0.80) 2.24 (0.92) 2.01 (1.01) 1.91 (0.79)

Replicate 2 1.59 (0.66) 1.59 (1.12) 1.28 (0.74) 1.90 (0.96)

Replicate 1+2 1.64 (0.72) 1.92 (1.06) 1.64 (0.95) 1.91 (0.87)

Standard deviation reported in parenthesis. Replicate 1+2: combined analysis
of biological replicates. Chickens analyzed per group for Replicate 1: No
additive/C. jejuni neg = 8, No additive/C. jejuni pos = 8, Selenium-yeast/C. jejuni
neg = 8, Selenium-yeast/C. jejuni pos = 8. Chickens per group for Replicate 2: No
additive/C. jejuni neg = 8, No additive/C. jejuni pos = 8, Selenium-yeast/C. jejuni
neg = 8, Selenium-yeast/C. jejuni pos = 8.

TABLE 4 | Observed mean intestinal IgA concentrations (µg/ml) for
chickens according to the use of selenium-yeast or the inoculation of
C. jejuni.

Condition In-feed selenium-yeast C. jejuni inoculation

No additive Selenium-yeast C. jejuni neg C. jejuni pos

Replicate 1 3.83 (2.39) 3.19 (1.36) 2.96 (1.39) 4.06 (2.28)

Replicate 2 7.10 (5.83) ∗a 3.49 (2.27) ∗b 3.55 (3.0) ∗c 7.03 (5.54) ∗d

Replicate 1+2 5.47 (4.69) ∗a 3.34 (1.85) ∗b 3.26 (2.32) ∗c 5.54 (4.43) ∗d

Standard deviation reported in parenthesis; On the same row, ∗a different from ∗b,
∗c different from ∗d. Replicate 1+2: combined analysis of biological replicates.
Chickens analyzed per group for Replicate 1: No additive/C. jejuni neg = 8,
No additive/C. jejuni pos = 8, Selenium-yeast/C. jejuni neg = 8, Selenium-
yeast/C. jejuni pos = 8. Chickens per group for Replicate 2: No additive/C. jejuni
neg = 8, No additive/C. jejuni pos = 8, Selenium-yeast/C. jejuni neg = 8,
Selenium-yeast/C. jejuni pos = 8.
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TABLE 5 | Comparison of identified differences in diversity metrics regarding the use of selenium-yeast, C. jejuni inoculation or the study’s replicate.

Replicate Replicate 1 Replicate 2

Condition Selenium-yeast C. jejuni Selenium-yeast C. jejuni

Neg Pos Neg Pos Neg Pos Neg Pos

Coverage 0.98 (0.01) 0.98 (0.01) 0.98 (0.01) 0.98 (0.01) 0.986 (0.005) ∗a 0.982 (0.006) ∗b 0.97 (0.01) 0.97 (0.01)

Sobs 394 (100) 498 (149) 454 (153) 415 (106) 604 (201) ∗a 755 (231) ∗b 691 (257) 684 (208)

Simpson inverse 16.4 (2.6) 15.4 (3.5) 15.6 (3.3) 16.3 (2.8) 14.4 (4.5) 16.2 (6.4) 15.2 (4.8) 15.6 (6.4)

Shannon 3.5 (0.1) 3.5 (0.2) 3.5 (0.2) 3.5 (0.1) 3.5 (0.2) 3.7 (0.3) 3.6 (0.3) 3.6 (0.2)

Shannon even 0.59 (0.03) 0.58 (0.03) 0.58 (0.06) 0.58 (0.06) 0.60 (0.04) 0.60 (0.04) 0.56 (0.04) 0.56 (0.03)

Condition’s effect on the metric for selenium and C. jejuni inoculation; On the same row, ∗a different from ∗b; Neg: negative control, Pos: positive; standard deviation
in parenthesis. Chickens analyzed per group for Replicate 1: No additive/C. jejuni neg = 8, No additive/C. jejuni pos = 8, Selenium-yeast/C. jejuni neg = 8, Selenium-
yeast/C. jejuni pos = 7. Chickens per group for Replicate 2: No additive/C. jejuni neg = 5, No additive/C. jejuni pos = 8, Selenium-yeast/C. jejuni neg = 8, Selenium-
yeast/C. jejuni pos = 8.

rRNA gene from the DNA extracted from the chicken caecal
samples, according to Illumina’s “16S Metagenomic Sequencing
Library Preparation” guide (Part # 1504423 Rev. B). In each
experimental group, the DNA extracted from the ceacum of
eight chickens was used. The 16S rRNA gene PCR mastermix
(25 µl final volume per reaction) consisted of 1x KAPA HiFi
HotStart ReadyMix (Kappa Biosystems, Willington, MA, USA),
600 nM of each primer (Caporaso et al., 2012), 0.4 mg/ml BSA,
and 12.5 ng of DNA. The following PCR cycling conditions
were used: initial denaturation at 95◦C for 5 min followed
by 25 cycles consisting of a 30 s denaturation at 95◦C, a
30 s annealing at 55◦C, and an elongation of 180 s at 72◦C
that ended with a final elongation of 10 min at 72◦C. The
amplicons were purified using AMPure XP beads (Beckman

Coulter, Brea, CA, USA) according to the manufacturer
protocol.

Purified amplicons were barcoded using the Nextera XT
Index Kit (Illumina, San Diego, CA, USA) using an eight cycles
PCR: initial denaturation at 95◦C for 3 min, followed by cycles
consisting of a 30 s denaturation at 95◦C, a 30 s annealing at 55◦C,
and an elongation of 30 s at 72◦C, and then by a final elongation
of 5 min at 72◦C. Reactions consisted of 1x KAPA HiFi HotStart
ReadyMix (Kappa Biosystems), 2.5 µl of each index, and 5 µl of
the purified 16S rRNA gene amplicons. The index PCR was also
purified using AMPure XP beads (Beckman Coulter) according
to the manufacturer protocol. The purified indexed amplicons
were quantified with Qubit HS kit (Fisher Scientific) and diluted
to 2 ng/µl. Five microliters of each index PCR was pooled in a

TABLE 6 | Common OTUs associated with C. jejuni inoculation in both replicates.

C. jejuni OTU classification LDA score Replicate 1 LDA score Replicate 2

Neg B(100);F (100);C(100);Cles(100);Lachno(100);Eisenbergiella(92) 4.2 4.2

B(100);F (100);C(100);Cles(100);Lachno(100);Tyzzerella_3(100) 2.9 2.6

B(100);F (100);C(100);Cles(100);Lachno(99);[Eubacterium]_hallii_group(84) 3.7 3.8

B(100);F (100);C(100);Cles(100);Ruminoc(100) 3.3 3.0

B(100);F (100);C(100);Cles(100);Ruminoc(100);Ruminoc_UCG-014(100) 3.8 3.7

B(100);F (100);C(100);Cles(100);Ruminoc(99) 4.1 3.8

B(100);F (100);C(100);Cles(100);Ruminoc(99)Anaerotruncus(98) 2.7 2.6

Pos B(100);F (100);C(100);Cles(100);Cles_vadinBB60_group(100) 2.9 3.0

B(100);F (100);C(100);Cles(100);Lachno(100) 4.1 4.4

B(100);F (100);C(100);Cles(100);Lachno(100) 3.0 3.4

B(100);F (100);C(100);Cles(100);Lachno(100) 3.1 2.8

B (100);F (100);C(100);Cles(100);Lachno(100) 3.1 2.5

B (100);F (100);C(100);Cles(100);Lachno(100) 2.3 2.8

B (100);F (100);C(100);Cles(100);Ruminoc(100);Anaerotruncus(98) 4.0 3.5

B (100);F (100);C(100);Cles(100);Ruminoc(100);Oscillibacter(99) 3.4 4.0

B(100);F (100);C(100);Cles(100);Ruminoc(100);Ruminoc_UCG-14(100) 2.0 2.1

B(100);ProteoB(100);EpsilonproteoB(100);Campyr(100);Campylo(100);Campylobacter(100) 4.5 3.5

The last returned identification for common OTUs is displayed; (): percentage of classification; OTU classification by increased alphabetical order;
B = Bacteria; F = Firmicutes; C = Clostridia; Cles = Clostridiales; Lachno = Lachnospiraceae; Ruminoc = Ruminococcaceae, Campyr = Campylobacterales;
Campylo = Campylobacteraceae; LDA: Linear Discriminant Analysis to estimate the effect size of each differentially abundant feature. Chickens analyzed per group
for Replicate 1: No Additive/C. jejuni neg = 8, No Additive/C. jejuni pos = 8, Selenium-yeast/C. jejuni neg = 8, Selenium-yeast/C. jejuni pos = 7. Chickens analyzed per
group for Replicate 2: No Additive/C. jejuni neg = 5, No Additive/C. jejuni pos = 8, Selenium-yeast/C. jejuni neg = 8, Selenium-yeast/C. jejuni pos = 8.
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single tube and sent to NRC Montréal for MiSeq Sequencing,
using the Miseq reagent 500 V2 kit (Illumina) for a 2x 250 bp
length, as specified by Illumina.

Raw demultiplexed reads were received from the sequencing
center and processed using Mothur version 1.38 (Schloss et al.,
2009), following the online MiSeq SOP1. Prior to OTU clustering,
the negative control sample and some samples containing too few
or suspicious reads were removed.

To determine OTUs, reads were clustered using Vsearch with
the AGC method at the 0.03 level. From this point on, results were
analyzed separately for birds raised during the first and second
replicate experiment. Reads were aligned and classified using the
Silva database (version 123).

For diversity analysis, reads were subsampled or rarefied to the
lowest number of reads found in a single sample. The following
alpha-diversity indices were computed and compared across
conditions: coverage, Sobs, Inverse Simpson, Shannon, and
Shannon’s evenness. Beta-diversity analysis was performed by
comparing the bird’s microbiota structure using Yue and Clayton
diversity index and analyzed by AMOVA and HOMOVA. The
composition was analyzed by LDA effect size (LEFSE) (Segata
et al., 2011) according to the experimental conditions. The bird’s
microbiota compositions were also compared by LEFSE using
the phylotype approach. For LEFSE, only significant OTU with
a LDA score over 2 were reported. Raw reads for each chicken
caecal microbiota analyzed in this study are available through the
NCBI SRA database under accession SRP094491.

C. jejuni Enumeration and PCR
For all chickens, a 1 g of fresh caecal matter was homogenized in
9 ml of a tryptone-salt solution composed of 0.1% (w/v) tryptone
(LabM, Heywood, UK) and 0.85% (w/v) NaCl (Fisher Scientific).
For the birds that were not inoculated with C. jejuni, 100 µl of
this suspension was plated on mCCDA (LabM) and immediately
incubated at 42◦C in a microaerobic atmosphere using chemical
gas pack generators (Oxoïd, Ottawa, ON, Canada) (Macé et al.,
2015). This protocol was also used for confirming the absence of
C. jejuni in all birds at day 12.

For the C. jejuni inoculated birds, the caecal suspensions
were diluted up to 106 and the last four dilutions were plated
on mCCDA (LabM) and immediately incubated at 42◦C in a
microaerobic atmosphere (Oxoïd). The positive control used for
monitoring the adequate C. jejuni growth was C. jejuni strain
ATCC 33291. After 48 h of incubation, typical colonies were
enumerated and the results were log 10 transformed to assess the
effect of selenium-yeast supplementation on the chicken C. jejuni
carriage.

To corroborate the colonization status determined by culture,
all culture negative and culture positive C. jejuni samples were
confirmed by PCR (Yamazaki-Matsune et al., 2007). The PCR mix
(25 µl) was composed of primers (C412F at 200 nM, C1228R
at 200 nM, C-1 at 800 nM, and C-3 at 800 nM), 1 unit of Taq
DNA polymerase (Bio Basic, Markham, ON, Canada), MgSO4 at
2 mM, and dNTPs at 200 mM. PCR amplicons were visualized on
a 1% agarose (Fisher Scientific) gel stained with Sybrsafe (Fisher

1https://www.mothur.org/wiki/MiSeq_SOP

Scientific). Positive control consisted of DNA extracted from
C. jejuni strain ATCC 33291 while the negative control contained
no DNA.

Statistical Analysis
Comparison of the chicken’s body weight, C. jejuni colonization
levels, seric total GPX activity, seric IgY concentrations, intestinal
IgA concentrations, and alpha-diversity indices were analyzed in
GraphPad Prism 5 (GraphPad Software, La Jolla, CA, USA). Prior
to selecting the correct statistical analysis, the distribution of the
data was inspected. When the normality was confirmed, data
were analyzed using parametric tests. Otherwise, non-parametric
analyses were conducted. An alpha of 0.05 was set to assess
significance. Results, with the exception of the microbiota, were
analyzed separately for the first or second replicate according to
the selenium-yeast or C. jejuni status before being pooled for the
analysis of the global effect observed in this study.

RESULTS

Chicken Body Weight
After 35 days of growth, no significant difference (p > 0.05) was
observed in regards to the chicken final body weight, though the
use of selenium-yeast consistently yielded chickens with higher
mean body weight values in both replicates (Table 1).

Seric GPX Levels
Seric GPX levels were observed to be significantly lower
(p < 0.05) for the chickens fed selenium-yeast (Table 2). No
significant difference (p > 0.05) was observed for chickens
inoculated with C. jejuni, although consistent lower mean
values for the inoculated chickens were observed. A large inter-
individual variation was also observed, as exemplified by the high
standard deviation values.

Immunoglobuline Concentrations
No significant difference (p > 0.05) was measured regarding
total seric IgY concentrations (Table 3). For the intestinal IgA
recovered from the ileal mucus layer (Table 4), significantly lower
concentrations were observed in selenium-yeast supplemented
chickens, but only for the second experimental replicate
(p < 0.05). Similarly, IgA concentrations were significantly lower
in chickens not inoculated with C. jejuni (p < 0.05), but only for
the second experimental replicate.

Microbiota
A total of 8,438,914 sequences were obtained after assembly.
Prior to OTU clustering, a total of 4,978,059 sequences
remained, representing 308,896 unique sequences. The two
negative controls included in this study contained 260 and 427
sequences. Two chicken caecal samples returned numbers of
sequences similar to the negative controls (328 and 348) and were
discarded from the analysis. Two more samples, originating from
chickens not inoculated with C. jejuni, returned unexpectedly
high numbers of reads classified as Campylobacter, in similar
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proportions to all other samples originating from inoculated
birds. Further PCR analyses confirmed the samples negative for
C. jejuni while all C. jejuni inoculated birds returned a strong PCR
signal (data not shown); these samples were removed from the
analysis. After this, the lowest number of sequences in a chicken
sample was 14,482 while the highest was 161,901.

Alpha-diversity indices (Table 5) were first compared based
on the use of selenium-yeast in the feed or the inoculation with
C. jejuni. Coverage over 97% was observed in all treatments. In
experimental replicate 2, the use of yeast-selenium significantly
increased (P < 0.05) the coverage and richness (Sobs) of the bird’s
microbiota but this was not observed in experimental replicate
1. Richness (Sobs) was significantly different between the two
experimental replicates regardless of the experimental condition
(p < 0.001), with mean values of 435 (±130) and 687 (±225) for
experimental replicate 1 and 2, respectively. The observed mean
Shannon indices (3.50 ± 0.15 and 3.62 ± 0.25 for experimental
replicates 1 and 2, respectively) and Shannon Evenness indices
(0.58 ± 0.03 and 0.56 ± 0.03 for experimental replicates 1 and 2,
respectively) were also significantly different (p= 0.001) between
replicates.

The difference in the microbiota structure according to the
experimental conditions was investigated. In both replicates,
selenium-yeast supplementation (Figure 1) did not influence
the microbiota structure, while the inoculation with C. jejuni
(Figure 2) did influence the caecum bacterial community.
When analyzing all chickens together, the bacterial community
structure was significantly different between the experimental
replicates (AMOVA p < 0.001, HOMOVA p= 0.2).

The LEFSE analysis identified OTUs that were consistently
associated with the inoculation of C. jejuni or the use of
selenium-yeast. When using C. jejuni inoculation as a class
and selenium-yeast as a subclass, 75 OTUs were identified in
replicate 1 and 71 OTUs in replicate 2. Of these, only 17 OTUs
were consistently associated in both replicates (Table 6). On
the contrary, when using selenium-yeast as the class and the
inoculation with C. jejuni as a subclass, for replicate 1, five
OTUs were identified compared to two OTUs in replicate 2. For
selenium-yeast, no OTU were common to both replicates. All
LEFSE results, broken down per replicate, are available in the
Supplementary Material.

Using phylotype analysis with genera as the cutoff (mothur
taxlevel = 1), 23 OTUs were found to be associated with
C. jejuni inoculation for experimental replicates 1 and 2,
and the six following OTUs were found for both replicates:
unclassified_ Ruminococcaceae, Eisenbergiella, Tyzzerella_3,
and [Eubacterium]_hallii_group were associated with
the non-inoculated birds while Lachnoclostridium and
Campylobacter were associated with the inoculated birds.
For supplementation with selenium-yeast, two OTUs were
identified in each of the experimental replicates, but none were
shared. Apart from the obvious association of sequences from
the C. jejuni lineage (Proteobacteria; Epsilonproteobacteria;
Campylobacterales; Campylobacteraceae) with C. jejuni
inoculated chickens, no other association with treatments were
found when using different taxonomical levels (mothur taxlevel
2, 3, 4 or 5) in LEFSE analysis. All LEFSE phylotype results,

broken down per replicate, are available in the Supplementary
Material.

C. jejuni Colonization
In experimental replicate 1, the C. jejuni caecal concentrations
were found to be slightly but significantly higher for the chicken
supplemented with selenium-yeast (Table 7) (p < 0.05). The
opposite effect was observed for experimental replicate 2. When
all the birds from the two replicates were used together in the
same analysis, no significant difference remained (p > 0.05).
Confirmation of the presence of C. jejuni in the inoculated
chickens was carried out by PCR and culture, which confirmed
that all inoculated chickens were infected by C. jejuni while the
all the non-inoculated chickens were not.

DISCUSSION

The aim of this study was to assess the impact of a selenium-yeast
feed additive on some chicken health related parameters as well as
on the caecal colonization of C. jejuni. Based on the observations
made during this study, it cannot be concluded that the use of
yeast-selenium positively modulated the parameters measured in
healthy chickens.

Nevertheless, a non-significant trend of increased perfor-
mances in terms of weight gain was observed in the present
study, an observation also reported by some other studies (Jensen
and Mc, 1960; Choct et al., 2004; Markovic et al., 2014; Suchy
et al., 2014). The present study was conducted in a level 2 facility
that allows precise control of the chickens’ rearing environment,
therefore reducing confounding factors and allowing the study
of individual conditions. Raising chickens with high biosecurity
clearly maximizes chicken growth, limiting the chances that a
supplement will further increase the performance of chickens.

In this study, it was also observed that the use of selenium-
yeast could lower slightly, but significantly seric GPX levels
in both biological replicates as well as the intestinal IgAs in
replicate 2 and when combining both replicate results. We also
observed a high and unexpected variation between individual
samples. This observation is in opposition with the current
literature where the use of selenium is usually associated with
increased levels of immunoglobulins and GPX, factors associated

TABLE 7 | Observed C. jejuni caecal colonization levels (log 10) for
chickens according to the use of selenium-yeast.

Condition In-feed selenium-yeast

No additive Selenium-yeast

Replicate 1 7.1 (0.63) ∗a 7.8 (0.51) ∗b

Replicate 2 6.0 (0.71) ∗a 5.2 (0.60) ∗b

Replicate 1+2 6.57 (0.84) 6.43 (1.41)

Standard deviation reported in parenthesis. On the same row, ∗a different from
∗b. Replicate 1+2: combined analysis of biological replicates. Chickens analyzed
per group for Replicate 1: No additive/C. jejuni pos = 11, Selenium-yeast/C. jejuni
pos = 10. Chickens analyzed per group for Replicate 1: No additive/C. jejuni
pos = 9, Selenium-yeast/C. jejuni pos = 11.

Frontiers in Microbiology | www.frontiersin.org 6 March 2017 | Volume 8 | Article 451

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-00451 March 15, 2017 Time: 16:5 # 7

Thibodeau et al. Selenium, Chicken Microbiota, and C. jejuni

FIGURE 1 | NMDS graphic representation of caecal microbiota diversity according to the use of selenium-yeast or not. The gray windows represent the
chickens that did not receive selenium-yeast while the black circles represent the chickens that did. (A) Replicate 1: AMOVA: p > 0.05; HOMOVA: p > 0.05; lowest
stress: 0.091; R2: 0.939. (B) Replicate 2, AMOVA: p > 0.05; HOMOVA: p > 0.05; lowest stress: 0.098; R2: 0.958.

FIGURE 2 | NMDS graphic representation of caecal microbiota diversity according to C. jejuni inoculation or not. The gray windows represent the
chickens that were not inoculated with C. jejuni while the black circles represent the chickens that were. (A) Replicate 1, AMOVA: p < 0.001; HOMOVA: p > 0.05;
lowest stress: 0.091; R2: 0.939. (B) Replicate 2, AMOVA: p < 0.001; HOMOVA: p > 0.05; lowest stress: 0.098; R2: 0.958.

with healthy chickens (Chen et al., 2014; Placha et al., 2014;
Boostani et al., 2015). Under our experimental settings, the
exact mechanisms driving these unexpected results remained
unidentified.

This study was also the first to look at the potential
impact of selenium-yeast on the chicken microbiota. Despite
the observation of some biological modifications due to
selenium-yeast supplementation, no impact on both alpha and
beta diversity was observed. This study was conducted under
controlled conditions where the available bacteria that might
contribute to the development of the chicken microbiota are
expected to be limited and quite different from the ones field
chickens could encounter. Our experiment should therefore be
replicated in commercial settings to fully understand the effects
of selenium-yeast supplementation of the chicken microbiota.

When using plate counts, no significant differences in C. jejuni
colonization were observed when the selenium-yeast was used
as a feed-additive, which is in agreement with the lack of
modulation of the caecal microbiota observed in selenium-yeast
supplemented chickens. Under experimental conditions less
favorable to chicken health, selenium supplementation was

reported to be beneficial for chicken (Xu et al., 2015). It
has been observed that the competition for zinc within the
chicken microbiota plays a role in the effective colonization
of C. jejuni (Gielda and DiRita, 2012). It could therefore be
interesting to monitor C. jejuni colonization under various levels
of competition for selenium acquisition. Using different C. jejuni
strains might also lead to different results since the impact of
selenium on the overall C. jejuni population has yet to be fully
characterized.

Campylobacter jejuni colonization of the caecal microbiota
was confirmed here to slightly reorganize the caecal microbiota,
in keeping with past results obtained using the same C. jejuni
strains and with birds raised within similar parameters
(Thibodeau et al., 2015b). However, when analyzing the
shift in microbiota composition associated with C. jejuni
colonization, different results were obtained. In our previous
study, C. jejuni colonization was associated with changes in
the relative abundance of the genera Streptococcus, Blautia,
Anaerofilum, Faecalibacterium, Clostridium, Coprobacillus,
and Anaeroplasma, which was not the case in the current
study.
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The few studies that evaluated the impact of C. jejuni
colonization on the chicken caecal microbiota all showed
that the microbiota structure is somewhat affected, but
different conclusions were reached when comparing microbiota
compositional changes (Johansen et al., 2006; Sofka et al., 2015;
Saint-Cyr et al., 2016). This might be due to the use of different
DNA extraction methods, different 16S rRNA gene regions
being sequenced, and different bioinformatics pipelines used
to process raw sequences (de la Cuesta-Zuluaga and Escobar,
2016). Even when taking in account technical discrepancies
and the differences observed between replicates in the present
study, these results, when taken together, clearly indicate that
the existing chicken caecal microbiota reacts somewhat to the
presence of C. jejuni, regardless of the initial microbiota of
the chicken. This indicates a potential commensal lifestyle for
C. jejuni that would act as a super colonizer. This strongly
suggests that the on-farm control of C. jejuni via modification
of the caecal microbiota only is a titan’s task, which is reflected
in the lack of recent significant advances in the control of the
colonization of chicken by C. jejuni using feed additives.

CONCLUSION

We observed here that selenium-yeast supplementation
modified, but did not improve the general health of
broiler chickens at slaughter age and that selenium-yeast
supplementation could even be somewhat detrimental when
chickens are raised in controlled conditions maximizing their
health. These changes were not associated with any modification
of the caecal microbiota. This suggests that the microbiota
is not always linked to the animal’s health parameters and
that healthy animal do not exhibit a common and defined
microbiota, highlighting the need for further studies to define
a truly healthy microbiota. Moreover, the use of selenium-yeast
supplementation did not modify the chicken colonization by
C. jejuni. This study also confirmed that C. jejuni colonization
can slightly modify the caecal microbiota, an observation in line
with the potential commensal lifestyle of C. jejuni. This study
also illustrated the importance of true biological replicates when

studying the chicken intestinal microbiota, especially when the
observed changes are subtle.
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