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Detection of IKKε by immunohistochemistry
in primary breast cancer: association with
EGFR expression and absence of lymph
node metastasis
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Abstract

Background: IKKε is an oncogenic kinase that was found amplified and overexpressed in a substantial percentage
of human breast cancer cell lines and primary tumors using genomic and gene expression analyses. Molecular
studies have provided the rational for a key implication of IKKε in breast cancer cells proliferation and invasiveness
through the phosphorylation of several substrates.

Methods: Here, we performed immunohistochemical detection of IKKε expression on tissue microarrays constituted
of 154 characterized human breast cancer tumors. We further determined the association with multiple
clinicopathological parameters and 5-years overall, disease-free and distant disease free survival.

Results: We observed expression of IKKε in 60.4% of the breast cancer tumors. IKKε expression status showed no
association with a panel of markers used for molecular classification of the tumors, including ER/PR/HER2 status, or
with the molecular subtypes. However, IKKε expression was inversely associated with lymph node metastasis status
(p = 0.0032). Additionally, we identified a novel association between IKKε and EGFR expression (p = 0.0011).

Conclusions: The unexpected observation of an inverse association between IKKε and lymph node metastasis
advocates for larger scale immunohistochemical profiling of primary breast tumors to clarify the role of IKKε in
metastasis. This study suggests that breast cancer tumors expressing EGFR and IKKε may be potential targets for
drugs aiming at inhibiting IKKε activity or expression.
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Background
Breast cancer remains a leading cause of cancer-related
mortality in women [1]. Improved outcome and survival
of patients have resulted from the identification of
Estrogen Receptor (ER), Progesterone Receptor (PR),
and HER2 biomarkers that have been used to stratify
tumors and define targeted therapies [2]. However, the
morphological, clinical and molecular complexity and
heterogeneity of breast carcinomas argues for the use of

additional specific target genes and pathways as
additional biomarkers to define personalized prognostic
and predictive therapeutic approach [3]. Initiation and
progression of breast cancer relies on the deregulation
of a complex network of pathways and genes that
control cell proliferation and survival [4]. Knowledge of
these pathways provides opportunities for identification
of new biomarkers in primary tumors.
The inhibitor of NF-κB kinases (IKK) ε is a member of

the IKK family of kinases [5, 6]. IKKε is well recognized
for its role in the regulation of distinct NF-κB path-
ways [7–9] and of the interferon-mediated innate im-
munity through phosphorylation of Interferon
regulatory factors (IRFs) and signal transducer and
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activator of transcription (STAT) 1 [10–12]. Additional
studies have unveiled a key role of IKKε in mammary
epithelial cell transformation and invasiveness. Sup-
pression of IKKε by shRNA or transfection of a domin-
ant negative form results in inhibition of anchorage-
independent growth and invasiveness of breast cancer cell
lines [13, 14]. IKKε-mediated oncogenesis relies on the
phosphorylation of multiple substrates, cylindromatosis
tumor suppressor (CYLD), estrogen receptor α (ERα),
tumor necrosis factor receptor-associated factor 2
(TRAF2), Forkhead box O 3a (FOXO3a) and Akt, and on
the regulation of the expression of genes, such as CCND1,
MMP-9 and Bcl-2 [13–19]. In Triple Negative Breast Can-
cer cells (TNBC), IKKε is involved in the coordinated acti-
vation of NF-κB, STAT, and cytokine signaling [20]. IKKε
is also involved in the development of resistance to tamoxi-
fen (Tam) treatment. Silencing of IKKε expression sensi-
tizes ER+ T47D breast cancer cell line expressing high level
of IKKε cells to Tam-induced cell death and apoptosis and
to Tam-mediated inhibition of focus formation. Con-
versely, overexpression of IKKε protects the MCF-7 breast
cancer cell line from Tam-induced cell death and apoptosis
and reduced Tam-mediated inhibition of focus formation
[21].
Analysis of epithelial breast cancer cell lines and

primary breast tumors showed copy-number gain or
amplification of the 1q32 region resulting in up to 10
copies of the IKBKE locus encoding for IKKε [13]. Gene
and protein expression studies performed in epithelial
breast cancer cell lines, primary breast tumors and in
chemically-induced murine mammary breast tumors
demonstrated that increased IKKε levels can also result
from aberrant expression without gene amplification
suggesting that analysis at genomic levels is not appro-
priate to fully characterize IKKε status in breast cancer
[13, 14, 20]. To the best of our knowledge, very limited
information is available regarding the relationship be-
tween IKKε protein expression and clinicopathological
status of primary breast tumors.
Here, we studied IKKε expression by immunohisto-

chemistry (IHC) using tissue microarrays (TMA) of 154
human breast cancer tissues and analyzed the associ-
ation with clinicopathological parameters and with a
panel of biomarkers used for molecular classification of
tumors.

Methods
Tissue microarrays
High-density tissue microarrays (TMAs) were con-
structed from formalin-fixed paraffin-embedded material
isolated from 154 primary tumor samples and normal
adjacent tissues. Tissues were fixed with 10% neutral
buffered formalin and paraffin embedded according to
usual methods. Samples were cut into 5 μm slices. Three

cores were used for each patient. Tumor samples were
obtained from patients diagnosed with primary breast
cancer at the Centre Hospitalier de l’Université de
Montréal. Tumors contained in TMAs were previously
characterized on the basis of the histological diagnosis
according to the classification of Nottingham modified
by Elston and Ellis. The cohort consists of low- and
high-grade ductal carcinomas and of medullary carcin-
omas (typical and atypical). The tumors were previously
characterized immunohistochemically for ERα, PR, ErbB2
(Her-2/neu), Ki67 and EGFR among others [22, 23].
Molecular subtypes of patients from the cohort were ob-
tained from the clinical chart and presented the following
characteristics: Luminal A: ER+/HER2−, Ki-67 < 14%;
Luminal B: ER+/HER2−, Ki-67 ≥ 14% or ER+/PR+/HER2+;
HER2: ER−/PR−/HER2+; Triple negative: ER−/PR−/HER2−.

Immunohistochemistry (IHC)
IHC was assessed according to manufacturer recommen-
dations on an immunostainer (Discovery XT system,
Ventana Medical Systems, Tucson, AZ). Antigen retrieval
was performed with proprietary reagents (cell condition-
ner 1 for 60mn, Ventana Medical Systems). Monoclonal
rabbit anti-IKKε D20G4 (1/50, Cell Signaling #2905) or
control Rabbit DA1E mAb IgG XP isotype control (Cell
Signaling #3900) antibodies were applied on every sample
at room temperature for 4 h. Sections were then
incubated with a specific secondary biotinylated antibody
for 30 mn. Streptavidin horseradish peroxidase, and 3,3-
diaminobenzidine were used according to the manufac-
turer’s instructions (DABmap detection kit, Ventana
Medical Systems). Finally, sections were counterstained
with hematoxylin. Each section was scanned at a high
resolution (Nanozo-omer, Hammamatsu Photonics K.K.).

Scoring of IHC staining
IKKε expression was classified according to the following
grading system. Two independent observers, including the
expert pathologist who made the initial assessment of
tissue pathology, scored the intensity of IKKε staining, the
percentage of positive cells and the subcellular localization
(cytoplasmic and nuclear). IKKε staining intensity and
percentage of positive cells were categorized on 0–3 arbi-
trary scales (Intensity: 0 = absence, 1 = weak, 2 = moderate,
3 = high; Percentage of positive cells: 0 ≤ 1%, 1 ≤ 30%,
2 ≤ 70%, 3 > 70%). The individual categories were
multiplied to give an IHC score ranging between 0 and 9
(actual values were 0–4 and 6 and 9) so that the final IHC
score reflects the number of cells effectively stained in the
tumors tissue and the staining intensity. Localization of
IKKε was categorized as cytoplasmic or nuclear. The
staining of IKKε corresponds to the mean of staining per-
formed on 3 different cores from a single tumor.
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RNAi transfection and immunoblot
ZR75.1 and MCF7 breast cancer cell lines (obtained
from Dr. S. Mader, University of Montreal, Canada) were
cultured in RPMI 1640 medium supplemented with 10%
heat-inactivated FBS (HI-FBS) and MEM medium
supplemented with non-essential amino acids, sodium
pyruvate and 10% HI-FBS, respectively. All media and
supplements were obtained from Life Technologies.
RNAi transfection in ZR75.1 and MCF-7 cells was
performed with TransiT siQuest (Mirus) and Dharmafect
1 reagent, respectively, according to the manufacturer’s
instructions for 72 h. The sequences of control (siCTRL)
and IKKε-specific (siIKKε) RNAi oligonucleotide
sequences (Dharmacon) have been previously described
[10]. For IKKε immunoblot, cells were lysed as described
in [24]. For EGFR immunoblot, cells were lysed by
sonication after incubation for 30 min on ice in Triton-
X100 lysis buffer (50 mM HEPES pH 7.4, 1 mM EDTA,
250 mM NaCl, 1.5 mM MgCl2, 10% Glycerol and 1%
Triton-X100) containing 1 mM PMSF, 10 μg/mL aproti-
nin and 10 μg/mL leupeptin, and quantified using the
BCA protein assay (Pierce). Whole cell extracts (WCE),
were subjected to SDS-PAGE electrophoresis followed
by immunoblot analysis using monoclonal rabbit anti-
IKKε D20G4 (1/50, Cell Signaling #2905), monoclonal
rabbit anti-EGFR EP38Y (1/4000, Abcam #ab52894) and
anti-actin (Chemicon International MAB1501) anti-
bodies. Antibodies were diluted in PBS containing 5%
Tween and 5% non-fat dry milk or BSA. Immunoreac-
tive bands were visualized by enhanced chemilumines-
cence using the Western Lightning Chemiluminescence
Reagent Plus (Perkin Elmer Life Sciences) and a CCD-
camera LAS400 mini apparatus (GE Healthcare).

Statistical analysis
Associations between IKKε expression status (positive
vs. negative) and both molecular markers and clinico-
pathological parameters were tested using chi-squared
tests. P-values <0.05 were considered statistically signifi-
cant. Kaplan Meier curves were used to estimate overall
survival (OS), disease-free survival (DFS) and distant
disease free survival (DDFS) over 5 years starting at time
of surgery. Survival curves were compared using log-
rank test. P-values <0.05 were considered statistically
significant.

Results
Validation of anti-IKKε antibody
To study the expression of IKKε at the protein level, the
specificity of the commercially available monoclonal rabbit
anti-IKKε D20G4 antibody used for TMA IHC staining
was first evaluated by immunoblot. WCE derived from the
epithelial breast cancer cell line ZR75.1 transfected with
control RNAi or RNAi specifically designed to target IKKε

were examined (Fig. 1). A single band at 79 kDa corre-
sponding to the expected size of the full length IKKε was
detected. This band was dramatically decreased upon
transfection of IKKε-specific RNAi, validating the specifi-
city of the antibody and its application for IHC staining of
TMA.

IHC staining of IKKε
IKKε expression was evaluated on TMA containing trip-
licates from 154 breast cancer patients and from normal
tissues. TMA were stained with the monoclonal rabbit
anti-IKKε D20G4 or control rabbit isotype antibodies.
Representative IHC photomicrographs are shown in
Fig. 2. No significant specific staining was observed with
the control rabbit isotype antibody in normal mammary
gland or tumor breast tissues (Fig. 2b–h). Normal breast
tissues exhibited no detectable IKKε staining (Fig. 2a).
Amongst breast tumor samples, 93 out of 154 (60.4%)
showed positive IKKε staining of epithelial cancer cells
(Fig. 2c–g). In line with previous reports showing IKKε
expression in immune cells [5], IKKε was detected both in
cancer epithelial cells and invading immune cells in tumor
with immune infiltrate (data not shown). An IHC score
was determined for 148 out of the 154 samples. Six
positive samples had undetermined scores because of dis-
crepancies between the triplicate slides (Fig. 3). The scores
of epithelial cells IKKε staining amongst the positive

Fig. 1 Specificity of the IKKε antibody. ZR75.1 epithelial breast cancer
cells expressing high levels of IKKε were transfected with control RNAi
(non-targeting) or IKKε-specific RNAi. WCE were resolved by SDS-PAGE
and analyzed by immunoblot using anti-IKKε D20G4 and anti-actin
antibodies
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tumors varied significantly, but the vast majority exhibited
low (1–3) IHC scores (79/87; 90.8%). As recent reports
described substantial nuclear localization of IKKε [25, 26],
the localization of IKKε staining in our cohort of breast
tumors was carefully assessed. IKKε was restricted to the
cytoplasm in the vast majority of tumors. Only 4 tumors
out of the 93 positive for IKKε expression exhibited both
cytoplasmic and nuclear staining. Although the low num-
ber of tumors with nuclear staining prevented correlation

studies, it is noteworthy that they were distributed
throughout a wide range of IKKε IHC scores. However,
the only two tumors with the highest IKKε IHC score of 9
showed cytoplasmic and nuclear staining (Table 1).

Association between IKKε expression and breast cancer
clinicopathological parameters
The fact that not all patients with breast cancer
expressed IKKε suggests that IKKε might be associated
with specific characteristic(s). Analysis of the association
between IKKε expression and a panel of markers used
for molecular classification of tumors and clinicopatho-
logical parameters (Table 2) did not reveal significant as-
sociation with age, specific breast tumor pathological or
molecular subtype or expression of the classical markers
ER, PR and HER2. Expression of IKKε showed a signifi-
cant inverse association with the lymph node metastasis
status (p = 0.0032), as 75.3% of breast tumors expressing
IKKε were found negative for lymph node metastasis
implicating that IKKε+ breast tumors are less likely to
present metastasis (Table 2). Amongst the molecular
markers tested, epidermal growth factor receptor

Fig. 2 Representative photomicrographs of IKKε immunohistochemical
staining of normal mammary gland and tumor breast tissues. Normal
breast tissues (a and b) and breast cancer tissues (c–h) were stained
with rabbit IKKε D20G4 antibody (a, c, e and g) or an isotype rabbit
control (b, d, f and h). Specific IKKε staining was scored on a scale of
0–3. Representative images of intensities 0 (a), 1 (c), 2 (e) and 3 (g) are
shown. Scale Bars: 100 μm

Fig. 3 IKKε IHC score distribution. Pie Chart showing the percentage
repartition of breast cancer tissues according to the IKKε IHC scores.
IKKε IHC score, calculated as detailed in the Methods section, reflects
the number of cells effectively stained in the tumors tissue and the
staining intensity. IHC score values are 0–4 and 6 and 9

Table 1 IKKε localization in breast cancer tumors

IKKe IHC score Cytoplasmic only Cytoplasmic and nuclear

0 61 0

1 11 0

2 35 1

3 31 1

4 3 0

6 3 0

9 0 2

Total 144 4
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(EGFR) expression was significantly associated with IKKε
expression (p = 0.0011), as 72% of the IKKε− breast tumors
were also negative for EGFR expression (Table 2 and Fig.
4a–d). To evaluate the possibility that EGFR expression
could be placed under the control of IKKε-dependent
signalling, the impact of IKKε silencing on EGFR expres-
sion levels was tested in MCF-7 epithelial breast cancer cell
line. MCF-7 were transfected with control or IKKε-specific
RNAi and EGFR expression was monitored by immuno-
blot. As shown in Fig. 4e and f, silencing of IKKε resulted
in the significant inhibition of EGFR expression levels.

Prognostic significance of IKKε expression in breast cancer
To further assess the clinical relevance of IKKε expression
in breast tumors, we analyzed the 5-year after surgery
overall survival (OS), disease-free survival (DFS) and distant
disease free survival (DDFS) follow-up information available
from IKKε negative (n = 26) and IKKε positive (n = 60)
tumors (Fig. 5). Comparison of survival curves by log-rank
test in Kaplan-Meier survival analyses showed that patients
in the IKKε+ subgroup exhibit no significant differences of
OS, DFS or DDFS compared to IKKε− subgroup.

Discussion
The implication of IKKε in breast cancer tumorigenesis
provides opportunities for targeted therapies. However,
the relationship between IKKε expression in primary
breast carcinomas and clinicopathological markers
remained to be established. Previous genomic and gene
expression analyses have highlighted increased IKKε
expression, accompanied or not by gene amplification,
in 30% of breast tumors [13, 14, 20]. This same percent-
age was also observed by IHC staining of a very limited
number of primary breast tumors (n = 20) [13]. Here,
IHC staining of 154 tumor breast tissues revealed a

Table 2 Molecular and clinicopathological parameters correlation
according to IKKε expression in breast cancer patients

Parameters IKKε positive
n (%)

IKKε negative
n (%)

P-value

Age <45 11 (11.8) 4 (6.6) 0.4231

≥45 82 (88.2) 57 (93.4)

Pathological type Ductal 63 (67.8) 47 (77) 0.2855

Medullary 30 (32.3) 14 (23)

Grade I 12 (12.9) 3 (4.9) 0.1561

II 8 (8.6) 3 (4.9)

III 73 (78.5) 55 (90.2)

unknown 0 0

Molecular subtypes Triple
negative

54 (58) 40 (65.6) 0.4439

other 39 (42) 21 (34.4)

HER2 7 (7.5) 6 (9.8) 0.8707

Luminal A 8 (8.6) 8 (13.1)

Luminal B 2 (2.2) 3 (4.9)

unknown 22 4

Lymph Node
Metastasis

positive 23 (24.7) 30 (49.2) 0.0032

negative 70 (75.3) 31 (50.8)

unknown 0 0

ERα positive 20 (21.5) 15 (24.6) 0.8872

negative 70 (75.3) 46 (75.4)

unknown 3 0

PR positive 13 (14) 6 (9.8) 1

negative 71 (76.3) 50 (82)

unknown 9 1

HER2 positive 18 (19.4) 6 (9.8) 0.1196

negative 67 (72) 54 (88.5)

unknown 8 1

EGFR positive 47 (50.5) 16 (26) 0.0011

negative 38 (40.9) 44 (72)

unknown 8 1

Ki67 positive 83 (89.2) 51 (83.6) 0.1061

negative 5 (5.4) 9 (14.8)

unknown 5 1

p53 positive 30 (32.2) 10 (16.4) 0.5735

negative 42 (45.2) 20 (32.8)

unknown 21 31

CK5/6 positive 46 (49.5) 21 (34.4) 0.0568

negative 42 (45.2) 39 (64)

unknown 5 1

CK14 positive 34 (36.6) 16 (26.2) 0.0869

negative 48 (51.6) 45 (73.8)

unknown 11 0

Table 2 Molecular and clinicopathological parameters correlation
according to IKKε expression in breast cancer patients (Continued)

GATA3 positive 17 (18.3) 8 (13.1) 0.797

negative 55 (59.1) 20 (32.8)

unknown 21 33

CD276 positive 37 (39.8) 13 (21.3) 0.3007

negative 22 (23.7) 14 (23)

unknown 34 34

Galectin 7 positive 38 (40.9) 12 (19.7) 0.4758

negative 38 (40.9) 18 (29.5)

unknown 17 31

P-values were computed using a chi-squared test. Observations with parameter
values ‘unknown’ were omitted from the test
P-values <0.05 were considered statistically significant and indicated as
bold italized

Table 2 Molecular and clinicopathological parameters correlation
according to IKKε expression in breast cancer patients (Continue)

Parameters IKKε positive
n (%)

IKKε negative
n (%)

P-value
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substantially higher percentage (60.4%) of tumor exhibit-
ing IKKε protein expression. The vast majority of breast
tumors in our cohort exhibited low staining levels (IHC
score: 1–3) and the detection was restricted to the
cytoplasm. In contrast to previous reports showing
prominent nuclear staining of IKKε in human prostate
cancer and Kaposi sarcoma tumors [25, 26], only 4 out
of the 93 IKKε+ tumors showed localization of IKKε in
the nucleus. The molecular mechanisms and functional
significance of the nuclear localization of IKKε still re-
mains elusive, but would benefit from further molecular
studies and larger scale correlation analyses.
Corroborating previous observations made by gene ex-

pression studies [13, 20], we failed to find an association
with tumor subtypes or with ER/PR/HER2 status. How-
ever, IKKε protein expression exhibited a significant
inverse association with lymph node metastasis. This re-
sult differs from the absence of correlation previously
observed between IKBKE copy-number gain and the
presence of lymph node involvement at diagnosis [13].
However, in the latter study, only 30 breast tumor speci-
mens were analyzed and thus the lack of correlation may
be due to the small number of specimens studied. The
discrepancy with our study might also reflect the previ-
ous observation that IKKε levels in breast cancer does
not solely results from gene amplification, but also

occurs as a result of aberrant expression due to yet to be
fully characterized mechanisms [13, 14, 20]. Thus, breast
tumors harboring IKBKE copy-number gain studied by
Boehm and coll. represent only a subset of IKKε-positive
tumors [13]. The inverse association between IKKε and
lymph node metastasis was unexpected considering previ-
ously published molecular studies performed in cell lines,
which were paradoxically suggestive of a potential associ-
ation between IKKε expression and invasiveness. Indeed,
silencing of IKKε or expression of a dominant negative
form of IKKε in the SK-BR-3 or NF639 breast cancer cell
lines resulted in a defect of cell migration and invasion
abilities, two properties essential for the spreading of can-
cer cells and metastasis [14, 18]. Although these in vitro
assays performed using single cell types provide informa-
tion regarding cell autonomous mechanisms contributing
to metastasis, they do not take into account the in vivo
microenvironment of the tumor, which is also important
in the metastatic process. Further in vivo mechanistic
studies will be required to clarify the role of IKKε in the
metastasis process. Additionally, larger scale IHC profiling
of primary breast tumors including TNM stage classifica-
tion will allow assessment of the association with distant
metastases that were not evaluated in our cohort.
To the best of our knowledge our study is the first to

report an association between IKKε and expression of

a b e

c d f

Fig. 4 Association between IKKε and EGFR expression. Representative photomicrographs of IKKε (a, c) and EGFR (b, d) immunohistochemical
staining of tumor breast tissues are shown. Representative images of staining in IKKε−/EGFR− (a and b) and IKKε+/EGFR+ (c and d) breast cancer
tissues are shown. Scale Bars: 100 μm. In (e and f), control RNAi (non-targeting) or IKKε-specific RNAi were transfected into MCF-7 cells. Efficiency
of IKKε silencing and the impact on EGFR expression were analyzed by immunoblot (IB) using specific antibodies. Actin was used as loading
control (e). EGFR levels normalized over actin levels were quantified by densitometric analysis using the ImageQuant software. In (f), Quantification
data are expressed as mean ± SEM from n = 4 independent experiments and analyzed using a t-test (**p < 0.01)
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the EGFR marker in breast tumors. The observation that
silencing of IKKε in epithelial breast cancer cells signifi-
cantly diminishes EGFR expression levels, suggest that
the association between IKKε and EGFR might result at
least in part from EGFR expression levels being placed
under the control of IKKε-dependent signalling. EGFR is
a tyrosine kinase receptor in the HER family, which is
either overexpressed or mutated in breast cancer cells
[27, 28] and is involved in cancer pathogenesis and
progression [29]. EGFR is overexpressed in all subtypes
of breast cancer, but is more frequently associated
with aggressive TNBC and inflammatory breast tu-
mors [30, 31]. Here, we did not observe an association
between IKKε and TNBC. Several EGFR-targeting

therapies have been developed, but have shown limited
benefit and resistance has been observed, leading to the
search of additional biomarkers that could be targeted
simultaneously [32, 33]. Interestingly, a functional rela-
tionship between IKKε and EGFR has also been described
in the context of non-small lung cancer cells harboring ac-
tivating EGFR mutations [34]. EGFR directly interacts
with and phosphorylates IKKε leading to activation of
downstream Akt pathway. Silencing of IKKε or treatment
with the IKKε inhibitor amlexanox selectively decreased
cell survival, providing rational support to target IKKε as a
therapeutic strategy for non-small lung cancer [34]. Our
observation warrants further studies to determine the
functional relationship between IKKε and EGFR in breast
cancer. Particularly, mechanistic studies will be necessary
to determine how IKKε-dependent signaling cascade(s)
contributes to EGFR expression and if IKKε expres-
sion correlates with mutated EGFR. Alternatively,
based on the positive association between IKKε and
EGFR expression it would also be interesting to deter-
mine whether EGFR activation is required for IKKε
expression in IKKε+/EGFR+. This knowledge will help
determine if therapeutic strategies targeting IKKε are
relevant for IKKε+/EGFR+ breast tumors.
In ovarian cancer, IKKε expression was found to be a

relatively strong predictor of poor clinical outcome [35].
In contrary, expression of IKKε and the closely related
kinase TBK1 in gastric cancer was not associated with
difference in survival when compared to IKKε−/TBK1−

subgroup [36]. Although Kaplan-Meier curves show a
tendency of IKK+ subgroup to have a better OS, analysis
of our cohort did not show statistically significant
relationship between IKKε expression and the clinical
outcome. However, we cannot exclude that the absence
of statistical significance could be due to a limitation of
our follow-up study in term of number of patients
examined and low number of events in the subgroups.
Therefore, additional studies including larger cohort of
patients will be required to verify the association of IKKε
expression with breast cancer prognosis.
Compelling evidence of the involvement of IKKε in

the pathophysiology of breast cancer and other dis-
eases provided the rational for the search of thera-
peutic inhibitor of IKKε [37]. IKKε and TBK1 share
an overall 65% sequence similarity and 72% identity
in the kinase domain [38]. A series of dual TBK1/
IKKε inhibitor compounds have been identified with
relative specificities amongst other kinase [37, 39–42].
Some of these compounds exhibit antiproliferative
activity in breast cancer cell lines [42]. Recently, the
antiallergic small molecule amlexanox was found to
be a selective inhibitor of TBK1/IKKε [43, 44]. Add-
itionally, we showed that the redox-regulating com-
pounds triphenylmethane dyes, Gentian Violet and

Fig. 5 Kaplan-Meier survival curves of breast cancer patients according
to IKKε expression. Data correlating the expression of IKKε with the
estimates of overall survival (OS), disease free survival (DFS) and distant
disease free survival (DDFS) in breast cancer patients over 5 years after
surgery are shown. A log-rank test was used to calculate
statistical significance
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Brilliant Green, and nitroxide Tempol inhibit IKKε,
but not TBK1, expression in breast cancer cells [24].
This finding offers alternative therapeutic avenue to
target IKKε in breast cancer.

Conclusions
Immunohistochemical analysis of IKKε expression in
our cohort of primary breast tumors revealed an unex-
pected inverse association with lymph node metastasis
and a positive association with EGFR status. Both obser-
vations advocate additional studies, including larger scale
IHC profiling of primary breast tumors, to determine
the functional relationship between EGFR and IKKε and
importantly to clarify the role of IKKε in metastasis.
Additionally, these studies will be essential to confirm
if IKKε can be used as a biomarker to define person-
alized prognostic and the potential of targeting IKKε
for therapeutic opportunities, particularly in EGFR+
breast tumors.
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