

Évaluation des ressources géothermiques du bassin des Basses-Terres du Saint-Laurent

RAPPORT FINAL

Par

Karine Bédard
Félix-Antoine Comeau
Emmanuelle Millet
Jasmin Raymond
Michel Malo
Erwan Gloaguen

Soumis à l'Institut de recherche d'Hydro-Québec (IREQ)

19 octobre 2016 – Québec

Rapport de recherche 1659

Institut national de la recherche scientifique - Centre Eau Terre Environnement, 490 de la Couronne, Québec, Qc, G1K 9A9

Téléphone : (418) 654-2619 ; Télécopieur : (418) 654-2600

© INRS, Centre - Eau Terre Environnement, 2016 Tous droits réservés

ISBN: 978-2-89146-873-2 (version électronique)

Dépôt légal - Bibliothèque et Archives nationales du Québec, 2016 Dépôt légal - Bibliothèque et Archives Canada, 2016

TABLE DES MATIÈRES

LISTE DI	ES FIGURES	5
LISTE DI	ES TABLEAUX	8
LISTE DI	ES SYMBOLES	9
AVANT-	-PROPOS	10
REMERO	CIEMENTS	10
SOMMA	AIRE	11
1. INT	TRODUCTION	12
1.1. 1.2. 1.3. 1.4.	MISE EN CONTEXTE PROBLÉMATIQUE CADRE GÉOLOGIQUE MÉTHODOLOGIE	12 13
2. TEI	MPÉRATURES MESURÉES EN PROFONDEUR	
2.1. 2.2. 2.2 2.3. 2.3 2.3 2.3	2.2. Résultats CORRECTION PALÉOCLIMATIQUE	
3. GR	RADIENT GÉOTHERMIQUE	26
3.1. 3.2.	GRADIENT GÉOTHERMIQUE POUR CHAQUE DONNÉE DE TEMPÉRATURE CORRIGÉE PAR LA MÉTHODE DE HARRISON GRADIENT GÉOTHERMIQUE POUR CHAQUE DONNÉE DE TEMPÉRATURE TENANT COMPTE DE LA CORRECTION PALÉOC 26	
4. CO	ONDUCTIVITÉ THERMIQUE	27
4.1. 4.1 4.1 4.2. 4.3.	Données disponibles	27 28 29
5. GÉ	NÉRATION DE CHALEUR PAR DÉSINTÉGRATION DES ÉLÉMENTS RADIOACTIFS	32
5.1. 5.2. 5.3.	Données disponibles Constante de génération de chaleur interne des unités géologiques Constante de génération de chaleur interne effective dans le bassin	33
6. FLU	UX DE CHALEUR	36
6.1. 6.2. 6.3. 6.3	FLUX DE CHALEUR EN FOND DE PUITS FLUX DE CHALEUR EN SURFACE DISTRIBUTION DU FLUX DE CHALEUR EN SURFACE	37 41

7. M	ODÈLE	3D DE LA TEMPÉRATURE	45
7.1.	CAL	CULS	45
7.2.	EFF	TS DE LA CORRECTION PALÉOCLIMATIQUE	47
7.3.	RÉS	JLTATS	47
7.3	3.1.	Températures à différentes profondeurs	49
7.3	3.2.	Profondeur de certaines températures	51
7.3	3.3.	Effet de la conductivité thermique et de la constante de génération de chaleur	53
8. RE	ssou	RCES GÉOTHERMIQUES DES BTSL	54
8.1.	Con	CEPTS	54
8.1	1.1.	Énergie thermique contenue dans les unités réservoirs	54
8.1	1.2.	Énergie thermique récupérable	
8.1	1.3.	Puissance électrique	
8.2.		JLTATS	
8.2	2.1.	Volume et épaisseur des unités réservoirs	
8.2	2.2.	Énergie thermique totale et récupérable	
8.2	2.3.	Puissance électrique	60
9. DIS	scuss	ION ET CONCLUSIONS	62
9.1.	RÉS	JMÉ DES RÉSULTATS	62
9.2.	INFL	UENCE DES DIFFÉRENT PARAMÈTRES DANS L'ESTIMATION DE LA TEMPÉRATURE EN PROFONDEUR	62
9.2	2.1.	Modèle géologique 3D	62
9.2	2.2.	Données de température	62
9.2	2.3.	Conductivité thermique et constante de génération de chaleur	
9.3.	PER	PECTIVES FUTURES	63
RÉFÉRE	NCES		64
ANNEX	E 1.	TEMPÉRATURES DE FONDS DE PUITS ET CORRECTION DE HARRISON	68
ANNEX	E 2.	CORRECTION PALÉOCLIMATIQUE	73
ANNEX	E 3.	DONNÉES DE CONDUCTIVITÉ THERMIQUE	77
ANNEX	E 4.	DONNÉES DE GÉNÉRATION DE CHALEUR INTERNE	87
ANNEX	E 5.	FLUX DE CHALEUR EN FOND DE PUITS ET EN SURFACE	90
ANNEX	E 6.	DONNÉES DE CAPACITÉ THERMIQUE MASSIQUE ET DE DENSITÉ	94
ANNEX	E 7.	ÉNERGIE THERMIQUE TOTALE, ÉNERGIE THERMIQUE RÉCUPÉRABLE ET PUISSANCE ÉLECTRIQUI	E. 96

Liste des figures

Figure 1 − Carte géologique du bassin des BTSL. € -O : cambro-ordovicien. L'interprétation de la ligne sismique M-2001 (en rouge) se trouve sur la Figure 2
Figure 2 – Architecture du bassin des BTSL le long de la ligne sismique M-2001. Voir Figure 1 pour localisation. Modifiée de Castonguay <i>et al.</i> (2010)
Figure 3 – Modèle géologique 3D des BTSL utilisé dans cette étude. En haut : modèle volumique sans les roches couvertures. En bas : sections montrant la géométrie en profondeur
Figure 4 – Colonne stratigraphique du bassin des BTSL. Modifiée de Comeau et al. (2012.)
Figure 5 – Méthodologie suivie pour la construction du modèle 3D de température dans le bassin des BTSL 17
Figure 6 – Carte de la localisation des mesures de température dans les puits du bassin des BTSL
Figure 7 – Graphique de la correction de température appliquée selon la méthode de Harrison dans le bassin des BTSL
Figure 8 – Exemple de la détermination de la correction Horner avec trois données de température mesurées dans le puits A156. La température à l'équilibre obtenue est de 66,03 °C
Figure 9 – Graphique des paramètres de validation de la correction de Horner avec les corrections effectuées dans le bassin des BTSL. Les données à l'extérieur du rectangle bleu ne sont pas valides
Figure 10 – Graphiques des données de température corrigées selon les méthodes de Harrison (à gauche) et de Horner (à droite)
Figure 11 – Graphique de la comparaison des températures corrigées selon les méthodes de Harrison et de Horner. 21
Figure 12 – Représentation schématique des effets des corrections appliquées aux donnes de température mesurées dans les puits
Figure 13 – Chronologie des périodes glaciaires considérées dans cette étude. L'échelle de temps est en million d'années.
Figure 14 – Graphique du cadre théorique de la correction paléoclimatique à appliquer aux données du bassin des BTSL. Δt : correction à appliquer aux températures (°C). $\Delta[\Delta t/\Delta z]$: correction à appliquer au gradient géothermique associé à la mesure de température (°C/km). La correction de flux de chaleur (ΔQ) a été calculée avec une conductivité thermique de 3,8 W/m·K.
Figure 15 – Effet de la correction paléoclimatique sur la température en profondeur dans le bassin des BTSL 25
Figure 16 – Distribution des gradients géothermiques basés sur les données de température corrigées avec la méthode de Harrison dans le bassin des BTSL
Figure 17 – Distribution des gradients géothermiques corrigés pour les variations paléoclimatiques dans le bassin des BTSL
Figure 18 – Carte de la distribution spatiale des données de conductivité thermique (λ) et de génération de chaleur interne (A) et limites de sélection des données pertinentes
Figure 19 – Distributions des données de conductivité thermique pour les unités du bassin des BTSL
Figure 20 – Comparaison des valeurs de conductivité thermique choisies pour les unités géologiques du bassin des BTSL
Figure 21 – Conductivité effective dans le modèle 3D des BTSL
Figure 22 – Distributions des données de la constante de génération de chaleur issue de la désintégration des éléments radioactifs pour les unités géologiques du bassin des BTSL33
Figure 23 – Comparaison des valeurs de constante de génération de chaleur issue de la désintégration des éléments radioactifs choisies pour les unités géologiques du bassin des BTSL
Figure 24 – Graphique du flux de chaleur en fond de puits de tous les puits en fonction de la profondeur des données

de température dans le bassin des BTSL. Les trois courbes correspondent aux trois valeurs de flux de chale obtenues à partir des trois valeurs de conductivité thermique effective déterminée pour chaque mesure	
Figure 25 - Représentation schématique des différentes variables nécessaires au calcul des températures profondeur	
Figure 26 – Cas théorique de l'effet de l'utilisation de différentes valeurs de conductivité thermique et de génération de chaleur interne sur le flux de chaleur en surface. Les valeurs utilisées dans cet exemple sont celles de l'Utica, volles sections 4.2 et 5.2. Les trois valeurs en bleu représentent les flux de chaleur les moins élevé, moyen et plus éleves.	oir ڎ.
Figure 27 – Graphique de l'effet de la génération de chaleur interne sur le flux de chaleur calculé en surface fonction de la profondeur des données en fond de puits. Les trois courbes correspondent aux trois valeurs de flu calculés à l'aide des trois valeurs de génération de chaleur interne choisies pour chaque mesure	ux
Figure 28 – Distribution des flux de chaleur en surface calculés selon les trois valeurs de conductivité thermique effective et les trois valeurs de génération de chaleur interne effective associée à chacune des mesures température.	de
Figure 29 – Représentation schématique de la théorie des simulations séquentielles gaussiennes (SGS) po l'interpolation du flux de chaleur en surface (modifiée de Millet, 2013)	
Figure 30 – Flux de chaleur en surface dans la région du bassin des BTSL selon le scénario pessimiste Q0P10 . Le points blancs montrent les données utilisées pour la simulation du flux de chaleur en surface. Les ellipses roug indiquent les anomalies positives de flux de chaleur en surface. 1 : <i>Rive-Sud de Montréal</i> ; 2 : Sud du lac Saint-Pier; 3 : Sud-Est de Bécancour.	es re
Figure 31 – Flux de chaleur en surface dans la région du bassin des BTSL selon le scénario moyen Q0P50 . Le points blancs indiquent les données utilisées pour la simulation du flux de chaleur en surface. Les ellipses roug montrent les anomalies positives de flux de chaleur en surface. 1 : <i>Rive-Sud de Montréal</i> ; 2 : Sud du lac Saint-Pier; 3 : Sud-Est de Bécancour.	es re
Figure 32 – Flux de chaleur en surface dans la région du bassin des BTSL selon le scénario optimiste Q0P90 . Le points blancs montrent les données utilisées pour la simulation du flux de chaleur en surface. Les ellipses roug indiquent les anomalies positives de flux de chaleur en surface. 1 : <i>Rive-Sud de Montréal</i> ; 2 : Sud du lac Saint-Pier; 3 : Sud-Est de Bécancour.	es re
Figure 33 – Carte de la distribution de la constante de génération de chaleur interne calculée pour le soc précambrien selon le scénario moyen.	
Figure 34 – Distribution de la température selon le scénario moyen. En haut : modèle volumique des unités réservois sans les roches couvertures. En bas : sections verticales de tout le modèle 3D.	
Figure 35 – Température à 3 kilomètres de profondeur selon le scénario moyen	49
Figure 36 – Température à 5 kilomètres de profondeur selon le scénario moyen. Les pointillés rouges montrent l régions où des anomalies positives de températures sont identifiées. 1 : Anomalie de la <i>Rive-Sud de Montréal</i> . Anomalie d' <i>Arthabaska-Érable</i> .	2 :
Figure 37 – Température à 7 kilomètres de profondeur selon le scénario moyen.	50
Figure 38 – Température à 10 kilomètres de profondeur selon le scénario moyen.	50
Figure 39 – Profondeur pour atteindre 90 °C selon le scénario moyen.	51
Figure 40 – Profondeur pour atteindre 120 °C selon le scénario moyen.	51
Figure 41 – Profondeur pour atteindre 150 °C selon le scénario moyen. Les pointillés rouges montrent les régions des anomalies positives de températures sont identifiées. 1 : Anomalie de la <i>Rive-Sud de Montréal</i> . 2 : Anomald' <i>Arthabaska-Érable</i>	lie
Figure 42 – Profondeur pour atteindre 180 °C selon le scénario moyen.	
Figure 43 – Différence de température absolue moyenne entre les différents scénarios de température modélisés (fonction de la profondeur dans le modèle 3D.	en
1011-11011 de 10 p.101010-011 delle 10 1110-0010 3.5.	-

Figure 44 – Répartition du volume des unités réservoirs dans le bassin entre les différents types de roches réservoirs jusqu'à 10 kilomètres de profondeur. BTSL : unités réservoirs sédimentaires autres que le Groupe de Potsdam 56
Figure 45 – Volume des unités réservoirs d'énergie géothermique à plus de 120 °C en fonction de la profondeur dans le bassin et de la température pour le scénario moyen. BTSL : unités réservoirs sédimentaires autres que le Groupe de Potsdam
Figure 46 – Modèle géologique 3D des unités réservoirs entre 120 et 150 °C. Les pointillés noirs montrent les anomalies de température. 1 : Anomalie de la <i>Rive-Sud de Montréal</i> . 2 : Anomalie d' <i>Arthabaska-Érable</i>
Figure 47 – Modèle géologique 3D des unités réservoirs à plus de 150 °C jusqu'à une profondeur de 10 kilomètres. Les pointillés noirs montrent les anomalies de température. 1 : Anomalie de la <i>Rive-Sud de Montréal</i> . 2 : Anomalie d' <i>Arthabaska-Érable</i>
Figure 48 – Énergie thermique totale contenue dans les unités réservoirs des BTSL à plus de 120 °C pour les différents scénarios.
Figure 49 – Répartition de la quantité d'énergie thermique en place jusqu'à 10 kilomètres de profondeur dans les différentes unités réservoirs pour le scénario moyen. BTSL : unités réservoirs sédimentaires autres que le Groupe de Potsdam
Figure 50 – Énergie thermique totale contenue dans les unités réservoirs à plus de 120 °C en fonction de la profondeur dans le bassin et de la température pour le scénario moyen. BTSL : unités réservoirs sédimentaires autres que le Groupe de Potsdam
Figure 51 – Énergie thermique récupérable contenue dans les unités réservoirs des BTSL à plus de 120 °C pour les différents scénarios selon les deux facteurs de récupération utilisés
Figure 52 – Répartition de la quantité d'énergie thermique récupérable jusqu'à 10 kilomètres de profondeur dans les différentes unités réservoirs pour le scénario moyen. BTSL : unités réservoirs sédimentaires autres que le Groupe de Potsdam
Figure 53 – Énergie thermique récupérable contenue dans les unités réservoirs à plus de 120 °C en fonction de la profondeur dans le bassin et de la température pour le scénario moyen. BTSL : unités réservoirs sédimentaires autres que le Groupe de Potsdam
Figure 54 – Puissance électrique disponible dans les réservoirs des BTSL à plus de 120 °C pour les différents scénarios selon les deux facteurs de récupération utilisés
Figure 55 – Répartition de la puissance électrique jusqu'à 10 kilomètres de profondeur dans les différentes unités réservoirs pour le scénario moyen. BTSL : unités réservoirs sédimentaires autres que le Groupe de Potsdam
Figure 56 – Puissance électrique contenue dans les unités réservoirs à plus de 120 °C en fonction de la profondeur dans le bassin et de la température pour le scénario moyen. BTSL : unités réservoirs sédimentaires autres que le Groupe de Potsdam

Liste des tableaux

Tableau 1 – Données de conductivité thermique disponibles selon les unités géologiques et les deux sources données.	
Tableau 2 – Nombre de données de conductivité thermique utilisées selon la source pour la détermination de conductivité des unités géologiques.	
Tableau 3 – Statistiques et valeurs de conductivité thermique choisies pour la modélisation des unités du bassin d BTSL	
Tableau 4 – Répartition des unités géologiques du bassin des BTSL sondées par une diagraphie des spectres crayonnement gamma naturel au sein des puits utilisés dans le calcul de la constante de génération de chaleur interr	ne.
Tableau 5 – Valeurs de densité ρ pour chacune des unités géologiques du bassin des BTSL. Source des donnée Tran Ngoc <i>et al.</i> (2014)	
Tableau 6 – Statistiques des distributions de la constante de génération de chaleur issue de la désintégration déléments radioactifs selon les unités géologiques du bassin des BTSL et les valeurs choisies pour la modélisation.	
Tableau 7 – Statistiques des distributions des flux de chaleur en fond de puits selon les trois valeurs de conductive de chaleur en fond de puits selon les trois valeurs de conductive de chaleur en fond de puits selon les trois valeurs de conductive de chaleur en fond de puits selon les trois valeurs de conductive de chaleur en fond de puits selon les trois valeurs de conductive de chaleur en fond de puits selon les trois valeurs de conductive de chaleur en fond de puits selon les trois valeurs de conductive de chaleur en fond de puits selon les trois valeurs de conductive de chaleur en fond de puits selon les trois valeurs de conductive de chaleur en fond de puits selon les trois valeurs de conductive de chaleur en fond de puits selon les trois valeurs de conductive de chaleur en fond de puits selon les trois valeurs de chaleur en fond de puits selon les trois valeurs de chaleur en fond de puits selon les trois valeurs de chaleur en fond de puits selon les trois de chaleur en fond de c	
Tableau 8 – Statistiques des distributions des flux de chaleur en surface selon les trois valeurs de conductive thermique effective et les trois valeurs de génération de chaleur interne effective associée à chacune des mesures température.	de
Tableau 9 – Capacité thermique massique des unités des BTSL.	54
Tableau 10 – Puissance électrique produite au Québec (Hydro-Québec, 2016).	60
Tableau 11 – Données de température de fond de puits utilisées dans cette étude et résultats de la correction (Harrison	
Tableau 12 – Données de températures de fond de puits corrigées pour les variations paléoclimatiques	73
Tableau 13 – Données de conductivité thermique de Nasr (2016)	77
Tableau 14 – Données de conductivité thermique utilisées synthétisées provenant de Jessop et al. (2005)	85
Tableau 15 – Données utilisées dans le calcul de la constante de génération de chaleur interne du socle Précambrie Source des données : Jessop et al. (2005).	
Tableau 16 – Différents flux de chaleur calculés à l'aide des différents gradients géothermique, conductivit thermiques et constantes de génération de chaleur interne	
Tableau 17 – Données de capacité thermique massique et de densité de Nasr (2016)	94
Tableau 18 – Énergie thermique et puissance électrique pour le scénario $A_{10}\lambda_{10}$	96
Tableau 19 – Énergie thermique et puissance électrique pour le scénario $A_{10}\lambda_{90}$	97
Tableau 20 – Énergie thermique et puissance électrique pour le scénario $A_{50}\lambda_{50}$.	98
Tableau 21 – Énergie thermique et puissance électrique pour le scénario $A_{90}\lambda_{10}$.	99
Tableau 22 – Énergie thermique et puissance électrique pour le scénario $A_{90}\lambda_{90}$	00

Liste des symboles

Variable	Nom	Unité
v arrable		Onite
c	Capacité thermique mas- sique	J/kg·K
C_{v}	Capacité thermique volu- mique	J/m ³ ·K
[K]	Concentration de potassium	%
[Th]	Concentration de thorium	ppm
[U]	Concentration d'uranium	ppm
λ	Conductivité thermique	W/m·K
$\lambda_{e\!f\!f}$	Conductivité thermique effective	W/m·K
A	Constante de génération de chaleur interne	W/m ³
A_{socle}	Constante de génération de chaleur interne du socle	W/m ³
$A_{\it eff}$	Constante de génération de chaleur interne effective	W/m ³
ρ	Densité	kg/m ³
S	Diffusivité thermique	m ² /sec
$\eta_{\it th}$	Efficacité thermodyna- mique	%
E_{rec}	Énergie récupérable	J
E_{tot}	Énergie totale en place	J
e	Épaisseur	m
e_{sed}	Épaisseur de roches sédi- mentaires	m
e_{socle}	Épaisseur de socle	m
Q	Flux de chaleur	W/m ²
Q_{socle}	Flux de chaleur à la surface du socle	W/m ²
Q_z	Flux de chaleur en profon- deur	W/m ²
Q_0	Flux de chaleur en surface	W/m ²
Q_m	Flux de chaleur issu du manteau	W/m ²
ΔQ	Différence de flux de cha- leur	W/m ²
Φ_{v}	Fraction du volume du réservoir actif ou facteur de récupération	%
$[\Delta T/\Delta z]$	Gradient géothermique	°C/m
$\Delta[\Delta T/\Delta z]$	Différence de gradient géothermique	°C/m
Z _{socle}	Profondeur dans le socle	m
Z_{sed}	Profondeur dans les sédi- ments	m

Variable	Nom	Unité
z	Profondeur verticale	m
P_e	Puissance électrique	J/s ou W
r	Rayon du puits	m
T	Température	°C ou K
T_{socle}	Température à la surface du socle	°C
T_z	Température en profondeur	°C
T_0	Température en surface	°C
T_f	Température finale du réservoir	°C
T_i	Température initiale du réservoir	°C
ΔT	Différence de température	°C
t	Temps	sec
t_{v}	Durée de vie du réservoir	sec
V_r	Volume du réservoir	m^3

Unité	Nom	Équivalent
°C	Degré Celsius	
J	Joule	
MJ	Megajoule	$10^6 \mathrm{J}$
EJ	Exajoule	$10^{18} \mathrm{J}$
K	kelvin	
Kg	Kilogramme	$10^3 \mathrm{g}$
M	Mètre	
Km	Kilomètre	$10^3 \mathrm{m}$
Ppm	Partie par million	
Sec	Seconde	
W	Watt	
mW	Milliwatt	10 ⁻³ W
μW	Microwatt	10 ⁻⁶ W
MWe	Mégawatt électrique	$10^6 \mathrm{W}$

Avant-propos

Dans le cadre du programme Initiatives stratégiques pour l'innovation, l'INRS-ETE a obtenu une subvention du Fonds de recherche Nature et technologies du Québec pour un projet intitulé « Potentiel de la géothermie profonde au Québec ». Ce projet, réalisé en partenariat avec Hydro-Québec, visait à initier un programme de recherche pour développer la filière de production d'énergie électrique à partir de la géothermie. En effet, des études récentes suggèrent que le Québec pourrait comporter des ressources géothermiques hydrothermales dans les bassins sédimentaires des Basses-Terres du Saint-Laurent et des Appalaches, et des ressources liées aux systèmes stimulés par fracturation hydraulique dans les roches du socle sous-jacent. Ce projet se divise en trois volets :

- 1) l'exploration géologique et l'évaluation des ressources;
- 2) l'ingénierie des réservoirs et la simulation de l'exploitation; et
- 3) les impacts environnementaux.

Le présent rapport s'inscrit dans le cadre du volet 1 de ce projet de recherche. Il vise l'évaluation du potentiel de génération d'électricité à partir des ressources géothermiques profondes dans le bassin sédimentaire des Basses-Terres du Saint-Laurent.

Remerciements

Nous tenons à remercier Marc-André Richard de l'Institut de recherche d'Hydro-Québec (IREQ) pour sa collaboration dans la compréhension des concepts de ressources géothermiques et de puissance électrique. Nous remercions aussi Maher Nasr de l'INRS pour le partage de ses données de laboratoire acquises dans le cadre de sa maîtrise.

Ce projet de recherche bénéficie du support financier du FRQNT avec un projet de recherche initiatives stratégiques pour l'innovation ainsi que de l'Institut de recherche d'Hydro-Québec (IREQ).

Sommaire

Les bassins sédimentaires profonds sont ciblés dans le monde entier pour l'exploration des ressources géothermiques. C'est dans ce contexte que le bassin des Basses-Terres du Saint-Laurent a été étudié dans le cadre de cette étude. L'utilisation du modèle géologique 3D du bassin a permis la modélisation des paramètres géothermiques en tous points dans le modèle. En effet, la conductivité thermique et la constante de génération de chaleur ont été évaluées pour l'ensemble des unités géologiques du bassin et ont été intégrées par la suite au modèle 3D.

De plus, les données de température de fond de puits ont été utilisées comme données de base dans la modélisation de la température en profondeur dans le bassin. Ces températures ont été corrigées pour l'effet des opérations de forage de même que pour les variations paléoclimatiques. Ces données corrigées à l'équilibre ont été utilisées afin de calculer le gradient géothermique associé à chaque mesure.

L'intégration de toutes ces données dans le modèle 3D a permis de calculer le flux de chaleur en surface selon trois scénarios nommés pessimiste, moyen et optimiste. Ce flux de chaleur a été interpolé sur l'ensemble du territoire des Basses-Terres du Saint-Laurent grâce à des simulations séquentielles gaussiennes. Par la suite, la température en profondeur a été calculée en tout point du modèle 3D.

La distribution de la température en profondeur a permis d'identifier deux anomalies de température positives qui pourraient indiquer des régions plus propices au développement de la géothermie en profondeur. Il s'agit des anomalies de la *Rive-Sud de Montréal* et d'*Arthabaska-Érable*. La température à l'intérieur de ces anomalies atteint 120 °C à environ 4000 mètres de profondeur et 150 °C à environ 5000 mètres. Les températures à plus de 120 °C sont atteintes dans le socle précambrien à l'intérieur de l'anomalie de la *Rive-Sud de Montréal*. Cependant, les températures de 120 et 150 °C sont rencontrées dans les roches sédimentaires dans l'anomalie d'*Arthabaska-Érable*.

Finalement, on note que la puissance électrique disponible dans l'ensemble des BTSL est de l'ordre de 45 000 MWe avec un facteur de récupération de 20%. Cependant, seulement 4% de cette puissance électrique est contenue dans les roches sédimentaires, à des profondeurs de 4 à 7 kilomètres environ. De plus, uniquement 1% de la puissance électrique disponible est contenue dans le Groupe de Potsdam à plus de 150 °C, principalement à des profondeurs de 6 à 7 kilomètres.

1. Introduction

1.1. Mise en contexte

Au Québec, des études préliminaires ont été réalisées dans le bassin des Basses-Terres du Saint-Laurent (BTSL) afin de définir le potentiel de génération d'électricité avec les ressources géothermiques profondes (ex.: Misener et al., 1951; Saull et al., 1962; SNC-SOOUIP, 1979; Lefebvre et Trempe, 1980; Jessop et al., 1984; Majorowicz et Minea, 2012; Minea et Majorowicz, 2012; Raymond et al., 2012). Ces études suggèrent que le sud du Québec pourrait comporter des ressources géothermiques hydrothermales au sein des roches sédimentaires du bassin, mais également des ressources liées à des systèmes géothermiques ouvragés (enhanced geothermal system -EGS) dont le réservoir est développé par la stimulation hydraulique. Les ressources du socle cristallin sousjacent se limitent aux systèmes géothermiques ouvragés. Ces études s'avèrent toutefois sommaires et plusieurs incertitudes sont liées à l'estimation des ressources. En effet, un certain nombre d'améliorations peuvent être prises en compte afin de préciser les résultats. En géothermie, le terme « corrections » est couramment utilisé pour qualifier ces améliorations de calculs.

1.2. Problématique

L'énergie géothermique est une ressource durable qui utilise la chaleur de la Terre, notamment pour chauffer ou climatiser les bâtiments, mais également pour générer de l'électricité. En effet, les ressources profondes permettent de produire de la chaleur ou de l'électricité à l'aide de centrales alimentées par des puits de captage et d'injection d'eau souterraine afin d'en extraire l'énergie du sous-sol (MIT, 2006).

Un système géothermique hydrothermal doit contenir un fluide chaud dans une roche perméable et poreuse, c'est-à-dire une roche ayant un potentiel réservoir (au sens d'un système pétrolier). Une roche réservoir avec une perméabilité naturelle pourra fournir un bon débit sans recourir à la stimulation hydraulique afin d'alimenter un système binaire en surface pour la génération d'électricité.

De plus en plus, les projets en cours ou à venir considèrent une fenêtre de températures exploitables indépendamment de la nature même des « réservoirs » (de la partie supérieure du socle aux unités sédimentaires de la partie inférieure des bassins) et en réduisant le risque pris sur le couple température-perméabilité. En effet, la technologie des systèmes géothermiques ouvragés permet d'augmenter la perméabilité d'un volume de sous-sol en créant des fractures par l'injection

pressurisée de fluides afin d'améliorer la capacité de circulation d'un fluide géothermique qui permettra ensuite d'extraire l'énergie stockée en profondeur dans le sous-sol. Cette nouvelle approche conduit à repenser la notion de ressource géothermique et à redéfinir l'exploration à mener, en la basant sur la compréhension globale des systèmes et l'identification des structures géologiques les plus favorables pour atteindre les températures visées aux profondeurs optimales.

Plusieurs paramètres géothermiques doivent être pris en compte afin d'évaluer le potentiel des ressources disponibles en profondeur. En effet, la géothermie repose sur le phénomène naturel d'augmentation de la température en fonction de la profondeur du sous-sol. Le taux de cette augmentation est appelé gradient géothermique. Celui-ci est déterminé par le flux de chaleur terrestre et la conductivité thermique du milieu géologique. Il peut varier de 2 °C par 100 mètres dans les zones tectoniques stables à des valeurs dix fois supérieures dans les zones géologiques actives. De plus, le flux de chaleur terrestre provient notamment de la chaleur résiduelle produite à l'origine de la formation de la Terre, mais également de la désintégration des éléments radioactifs contenus dans les roches, ce qui induit une génération de chaleur interne.

Les bassins sédimentaires profonds sont ciblés dans le monde entier pour l'exploration des ressources géothermiques notamment en raison de la présence de quantités importantes d'eau souterraine qu'ils contiennent, mais surtout parce les roches sédimentaires de couverture possèdent généralement une faible conductivité thermique, ce qui en quelque sorte piège la chaleur en profondeur et cause des gradients géothermiques plus élevés.

C'est dans ce contexte que le bassin des BTSL a été étudié plus en détail dans le cadre de cette étude, où plus de 250 anciens puits d'exploration pétrolière et gazière sont répartis sur le territoire. À partir du modèle géologique 3D du bassin des BTSL (Bédard *et al.*, 2013a; Bédard *et al.*, 2013b), il a alors été possible d'y intégrer des données de température de fond de puits et d'ainsi modéliser des paramètres géothermiques en tous points dans le modèle.

L'originalité de la présente étude est non seulement d'intégrer des données de température dans un modèle géologique 3D, mais d'également introduire les paramètres et correctifs suivants afin de réduire les incertitudes liées à l'estimation des ressources géothermiques :

- utiliser des données de température à l'équilibre en appliquant une correction aux mesures de fond de puits, qui ont été perturbées par les opérations de forage;
- tenir compte de l'effet passé des dernières glaciations sur les mesures de température peu profondes afin d'évaluer le gradient géothermique non perturbé anticipé en profondeur :
- inclure dans les calculs de modélisation une variable pour la conductivité thermique pour chacune des unités géologiques des BTSL;
- inclure dans les calculs de modélisation une variable de génération de chaleur par désintégration des éléments radioactifs pour chacune des unités géologiques des BTSL.

1.3. Cadre géologique

Le bassin des Basses-Terres du Saint-Laurent est localisé dans le sud-ouest du Québec (Figure 1). Il est limité par les roches précambriennes de la Province de Grenville au nord-ouest et par le bassin cambroordovicien des Appalaches au sud-est. La Figure 2 montre l'architecture du bassin en coupe basée sur l'interprétation géologique du profil sismique M-2001. La succession sédimentaire repose en discordance sur le Précambrien du Grenville. De plus, le bassin des BTSL est chevauché au sud-est par le bassin cambroordovicien des Appalaches; la limite entre ces deux bassins est marquée par la Ligne Logan, qui est une importante faille de chevauchement. Des failles normales de direction SO-NE affectent la succession sédimentaire qui s'approfondit ainsi par paliers vers le sud-est (Séjourné et al., 2003; Konstantinovskaya et al., 2009; Castonguay et al., 2010). Toutefois, la plupart de ces failles normales n'affectent que le Précambrien et les unités inférieures de la séquence des BTSL et n'atteignent pas la surface (Figure 2). La géométrie des différentes unités est modélisée en 3D, ce qui permet de comprendre les relations entre ces unités et de visualiser les variations d'épaisseur et de profondeur dans le bassin. Le modèle géologique 3D utilisé dans cette étude est présenté à la Figure 3.

La succession sédimentaire du bassin des BTSL a une épaisseur totale pouvant dépasser 5000 mètres dans la partie sud-est du bassin. La séquence est divisée en neuf groupes et la colonne stratigraphique est présentée à la Figure 4 (Globensky, 1987, 1993; Lavoie, 1994; Thériault, 2012; Chen *et al.*, 2014).

Les roches des groupes de Queenston, Lorraine, Sainte-Rosalie ainsi que le Shale d'Utica sont considérées comme les roches couvertures de la succession sédimentaire du bassin des BTSL (Konstantinovskaya *et al.*, 2014). Ces unités, composées principalement de shales et de roches silico-clastiques à grains fins, agissent potentiellement comme isolant thermique de faible conductivité thermique et hydraulique.

Les roches sous-jacentes contenant des aquifères salins profonds (groupes de Trenton, de Black River et de Chazy (Tr-BR-Ch) ainsi que ceux de Beekmantown et de Potsdam) sont généralement considérées comme des roches réservoirs potentielles (Dietrich et al., 2011; Konstantinovskaya et al., 2014; Tran Ngoc et al., 2014). La porosité et la perméabilité moyenne des roches réservoirs potentielles ont été déterminées à l'aide d'échantillons de carotte, de diagraphies et d'analyse d'essais aux tiges (drill stem tests - DST) (Bédard et al., 2013b; Tran Ngoc et al., 2013; Tran Ngoc et al., 2014). Les résultats démontrent que le Groupe de Potsdam possède les valeurs les plus élevées de porosité et de perméabilité et que c'est l'unité, parmi les roches réservoirs, ayant l'épaisseur la plus importante. De plus, comme le Groupe de Potsdam est l'unité à la base du bassin des BTSL, les données de température devraient également y être les plus élevées. Ainsi, cette unité demeure la cible privilégiée pour contenir des ressources géothermiques hydrothermales.

Le bassin cambro-ordovicien des Appalaches est caractérisé par des unités ayant subi plusieurs phases de déformation, dont les orogenèses taconienne et acadienne. Il est donc difficile de caractériser de façon détaillée le bassin d'un point de vue géothermique. En effet, la géologie détaillée du bassin en 3D n'est pas interprétée, car sa géométrie est complexe. Dans ce contexte, l'ensemble du bassin a été considéré comme une seule unité uniforme lors des modélisations et calculs. Les roches du bassin cambro-ordovicien des Appalaches qui recouvrent les BTSL dans la région d'étude ne sont pas considérées comme roches réservoirs potentielles, car elles ne sont pas assez profondes.

Le Précambrien du Grenville, que l'on trouve sous le bassin des BTSL, représente une cible pour la géothermie profonde liée aux systèmes géothermiques ouvragés. Comme ce sont les roches les plus profondes de la région à l'étude, ce sont aussi au sein de celles-ci où les températures sont les plus élevées.

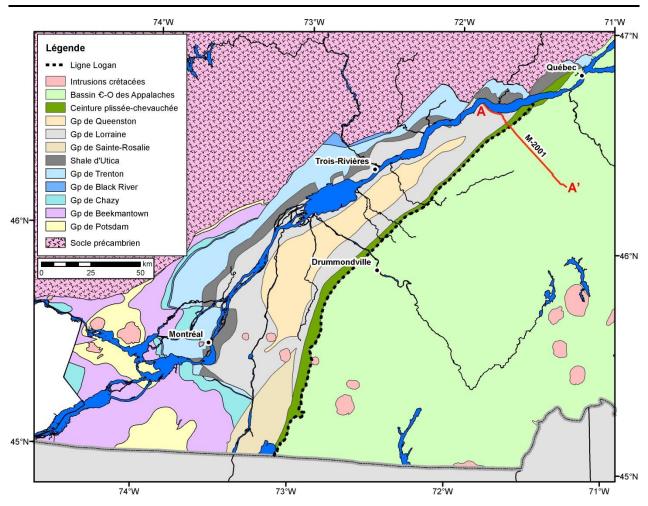


Figure 1 – Carte géologique du bassin des BTSL. **C**-O : cambro-ordovicien. L'interprétation de la ligne sismique M-2001 (en rouge) se trouve sur la Figure 2.

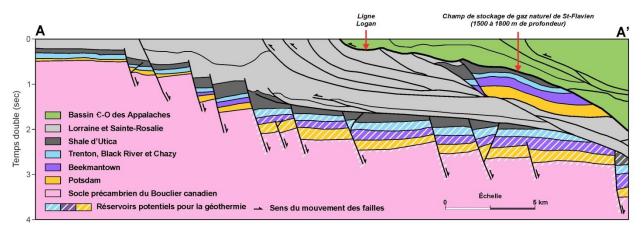


Figure 2 – Architecture du bassin des BTSL le long de la ligne sismique M-2001. Voir Figure 1 pour localisation. Modifiée de Castonguay *et al.* (2010).

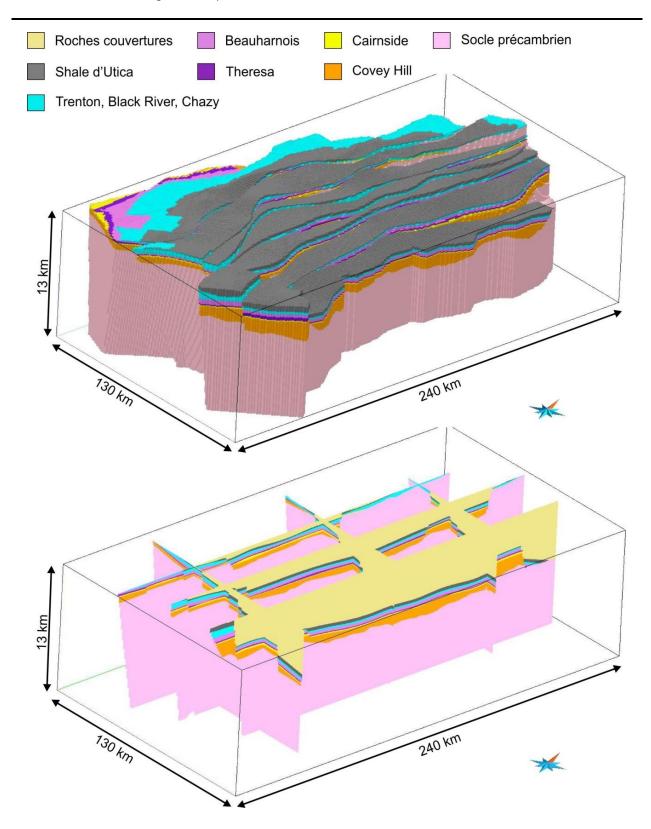


Figure 3 – Modèle géologique 3D des BTSL utilisé dans cette étude. En haut : modèle volumique sans les roches couvertures. En bas : sections montrant la géométrie en profondeur.

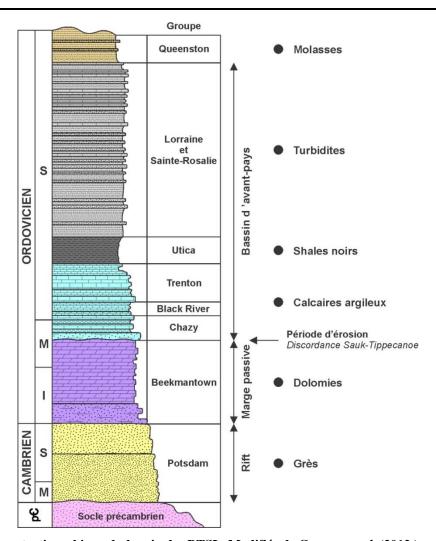


Figure 4 – Colonne stratigraphique du bassin des BTSL. Modifiée de Comeau et al. (2012.)

1.4. Méthodologie

Le premier objectif de cette étude est la construction d'un modèle 3D de température pour le bassin des BTSL. À l'aide ce modèle 3D, le second objectif de cette étude consiste à calculer les ressources géothermiques du bassin à l'échelle régionale. La méthodologie suivie pour l'obtention d'un modèle 3D de température suit la démarche qui est illustrée par la Figure 5:

- Estimer les températures à l'équilibre des températures mesurées en fond de puits en appliquant une ou des corrections de température.
- Calculer les gradients de température dans les puits après avoir effectué une correction tenant compte des variations climatiques passées, aussi appelée correction paléoclimatique.
- 3) Parallèlement, déterminer la conductivité thermique des différentes unités géologiques du bassin

- ce qui permet d'évaluer la conductivité thermique effective pour l'ensemble du bassin en 3D.
- 4) Parallèlement, déterminer les valeurs de génération de chaleur interne pour chaque unité du bassin.
- 5) Calculer le flux de chaleur en surface pour chaque mesure de température en fonction du gradient géothermique non perturbé, de la conductivité thermique et de la génération de chaleur interne des unités.
- 6) Simuler le flux de chaleur en surface pour l'ensemble du territoire du modèle à l'aide d'une interpolation des flux de chaleur dans les puits.
- 7) Calculer la température en profondeur pour l'ensemble du modèle 3D à l'aide du flux de chaleur en surface, des valeurs de conductivité thermique et de génération de chaleur interne.

Chaque étape de la méthodologie décrite ci-dessous est présentée dans une section distincte de ce rapport.

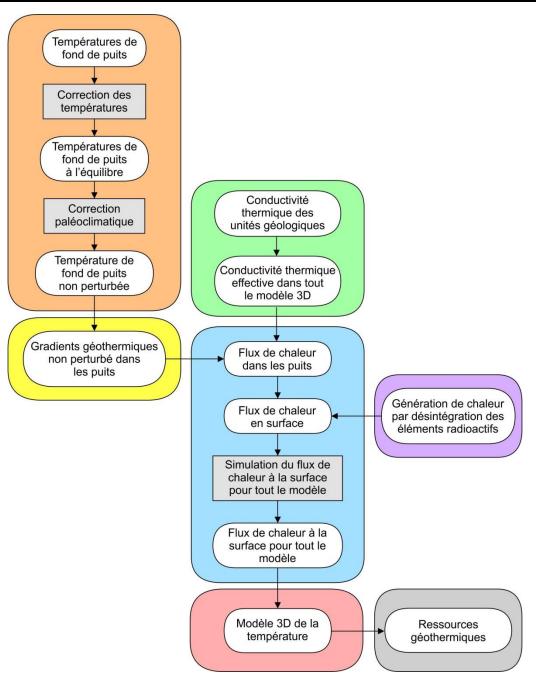


Figure 5 – Méthodologie suivie pour la construction du modèle 3D de température dans le bassin des BTSL.

2. Températures mesurées en profondeur

2.1. Données disponibles

Des données de température de fond de puits (bottomhole temperature, BHT) sont disponibles dans la base de données du Système d'information géoscientifique pétrolier et gazier (SIGPEG) du Ministère de l'Énergie et des Ressources naturelles du Québec (MERN). Ces données ont été extraites des rapports de forage et/ou de données diagraphiques d'anciens puits pétroliers et gaziers. Au total, 125 mesures de températures provenant de 93 puits ont été compilées. Il est à noter que les profondeurs mesurées (*measured depth, MD*) dans les puits ont été transformées en profondeur verticale (*true vertical depth, TVD*) en tenant compte du rapport de déviation disponible pour chaque puits.

L'ensemble des données de températures de fond de puits est présenté à l'Annexe 1.

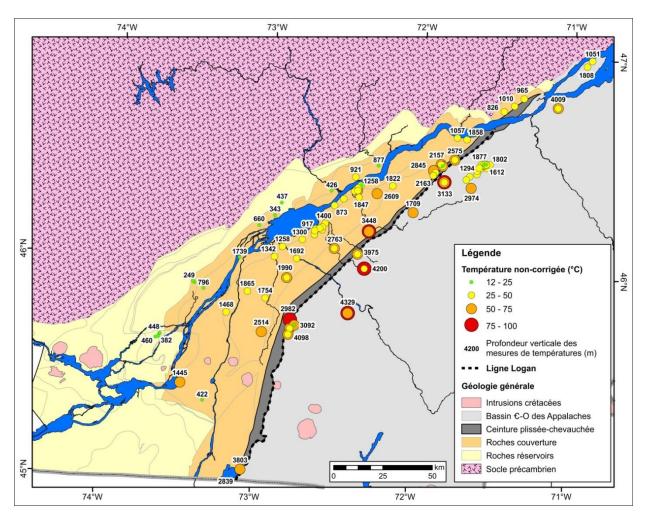


Figure 6 - Carte de la localisation des mesures de température dans les puits du bassin des BTSL.

2.2. Correction des températures de fond de puits non équilibrées

2.2.1. Concepts

Les opérations de forage ont un effet perturbateur temporaire sur la roche encaissante dû à la friction et aux échanges de chaleur avec le fluide de forage, qui ont pour effet global d'abaisser la température de la roche encaissante (Jessop, 1990). En effet, lorsqu'un puits est foré, un fluide (généralement une boue) est utilisé pour notamment lubrifier et nettoyer le puits, mais avant tout pour refroidir le trépan, l'outil rotatif qui creuse la roche. Après une période de dix à vingt fois le temps de forage, ce qui peut représenter plusieurs jours, voire plusieurs mois, la température de la roche encaissante augmente et revient à l'équilibre (Jessop, 1990; Beardsmore et Cull, 2001). Cependant,

les données de température sont généralement mesurées lors de l'enregistrement des diagraphies qui a lieu quelques heures après les opérations de forage. Ainsi, les températures mesurées sont sous-estimées, car elles ne sont pas à l'équilibre (Kehle *et al.*, 1970; Harrison *et al.*, 1983; Jessop, 1990; Beardsmore et Cull, 2001; Kutasov et Eppelbaum, 2010).

Dans le but de réduire les incertitudes liées à l'estimation des données de température à l'équilibre à partir des mesures en fond de puits, deux méthodes de correction des températures ont été comparées afin de choisir la méthode de correction la mieux adaptée au bassin des BTSL: la correction dite de Harrison et la correction dite de Horner.

Correction de Harrison

La correction de Harrison est une méthode empirique basée sur la correction des données de température de fond de puits dans l'État de l'Oklahoma, aux États-Unis, en utilisant des données d'essais aux tiges (*Drill Stem Test, DST*) pour la calibration (Harrison *et al.*, 1983). La correction d'origine utilise une relation directe entre la profondeur de la mesure et la température selon l'équation suivante pour les profondeurs entre 914 et 3048 mètres (3000 et 10 000 pieds)

$$\Delta T = -16.51 + (1.827 \times 10^{-2}z) - (2.345 \times 10^{-6}z^2)$$

 ΔT : correction de température à ajouter à la température mesurée (°C)

z: profondeur (m)

Selon des études plus récentes (Blackwell et Richards, 2004; Blackwell *et al.*, 2010; Frone et Blackwell, 2010), il est suggéré de n'utiliser cette correction que pour des données de température mesurées à des profondeurs allant de 600 à 3932 mètres (1969 à 12 900 pieds). Pour des profondeurs supérieures à 3932 mètres (12 900 pieds), Blackwell *et al.* (2010) suggèrent la correction suivante :

$$\Delta T = 34.3 \, ^{\circ}F + 0.05 \, ^{\circ}F \, (a chaque 500 pieds)$$

Cette correction est en °F et le résultat est ensuite converti en °C.

Dans le cadre de la présente étude, les données de température mesurées à des profondeurs inférieures à 600 mètres n'ont pas été considérées. Le résultat de la correction à appliquer aux mesures de températures du bassin des BTSL est montré à la Figure 7.

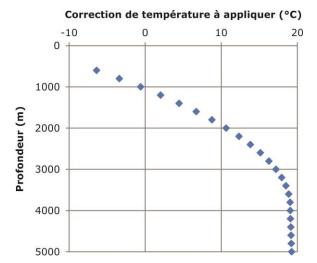


Figure 7 – Graphique de la correction de température appliquée selon la méthode de Harrison dans le bassin des BTSL.

Correction de Horner

La correction de Horner (Horner, 1951) est une méthode analytique basée sur l'équation de la source de chaleur linéaire infinie. Elle s'appuie sur le taux de réchauffement de la roche encaissante après les opérations de forage. Le principe repose sur le fait que l'enregistrement des diagraphies est pris à des temps différents après le forage. La température enregistrée devrait donc être différente pour chacun des enregistrements de diagraphies et montrer une augmentation avec le temps.

Afin de pouvoir appliquer la correction de Horner, l'intervalle de temps entre la fin des opérations de forage et la prise de mesure doit être plus grand que le temps de circulation des fluides de forage. Les données doivent donc respecter les deux validations cidessous :

• Drury (1984); Goutorbe et al. (2007)

$$\frac{r^2}{4st_a} \ll 1$$

r : rayon du puits (m)

s : diffusivité thermique $(1,2x10^{-6} \text{ m}^2/\text{sec})$

 $t_{\rm e}$: temps depuis la fin de la circulation de la boue (sec)

• Drury (1984)

$$\frac{t_e}{t_c} > 2$$

t_e : temps depuis la fin de la circulation de la boue (sec)

t_c: temps de circulation de la boue (sec)

Lorsque ces paramètres sont respectés, la relation de de T en fonction de $ln(1+t_c/t_e)$ est linéaire et l'intersection avec l'axe des y correspond à la température à l'équilibre. La Figure 8 montre un exemple de détermination de la température à l'équilibre à l'aide de la méthode de Horner.

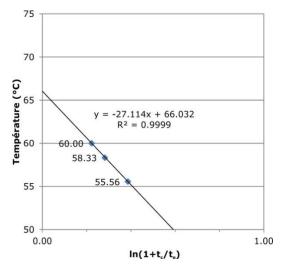


Figure 8 – Exemple de la détermination de la correction Horner avec trois données de température mesurées dans le puits A156. La température à l'équilibre obtenue est de 66,03 °C.

La méthode de Horner est plus difficile à appliquer, car plusieurs informations sont nécessaires, telles que :

- Au moins deux températures mesurées à des temps différents à la même profondeur;
- Temps de circulation de la boue de forage ;
- Temps depuis la fin de la circulation de la boue ;
- Rayon du puits.

Malgré le fait qu'elle soit couramment utilisée, il semblerait que cette méthode sous-évalue les températures à l'équilibre (Hermanrud *et al.*, 1990; Beardsmore et Cull, 2001).

2.2.2. Résultats

L'ensemble des données et des résultats des corrections de températures est présenté à l'Annexe 1.

Correction de Harrison

125 mesures de température de fond de puits provenant de 93 puits différents ont été utilisées. Ainsi, pour certains puits, plus d'une donnée de température pouvaient être disponibles. Dans ce cas, seule la température la plus profonde a été utilisée. Il est à noter que, comme dans le cas de la méthode de Harrison, les données inférieures à 600 mètres de profondeur ont été éliminées. Ainsi, 81 données de températures issues de 81 puits différents ont été corrigées avec la méthode de Harrison.

Les données de température originales varient entre 19,8 et 98,9 °C, tandis que les valeurs corrigées vont de 14,5 à 116,6 °C. La profondeur des données varie de 660 et 4329 mètres. Les températures originales et corrigées sont présentées à la Figure 10.

Correction de Horner

La correction de Horner a été appliquée à 32 jeux de mesures valides dans 19 puits différents. La Figure 9 montre que 10 jeux de données ont été éliminés, car les données ne respectaient pas les paramètres de validation définis à la section précédente.

Pour les corrections valides, les données de températures originales avaient des valeurs de 32,8 à 87,2 °C et les valeurs corrigées sont de 33,4 et 93,1 °C. La profondeur des données varie de 1258 à 3803 mètres. La comparaison entre les données originales et corrigées est montrée à la Figure 10.

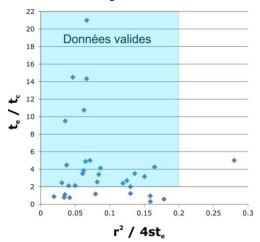


Figure 9 – Graphique des paramètres de validation de la correction de Horner avec les corrections effectuées dans le bassin des BTSL. Les données à l'extérieur du rectangle bleu ne sont pas valides.

Comparaison des méthodes de corrections

Comme décrit dans la littérature (Hermanrud *et al.*, 1990; Beardsmore et Cull, 2001), les températures corrigées à l'aide de la méthode de Horner sont plus faibles par rapport à celles corrigées par la méthode de Harrison (Figure 11). On note ainsi une relation entre les deux corrections qui se traduit par l'équation :

$$T_{Horner} = 0.818T_{Harrison} + 1.92$$

À cause de sa difficulté d'application et de la sousestimation des températures à l'équilibre, la méthode de Horner n'a été utilisée qu'à des fins de comparaison avec la correction de Harrison dans le cas de cette étude. Ce sont donc les données de température corrigées à l'aide de la méthode de Harrison qui ont été utilisées pour la modélisation.

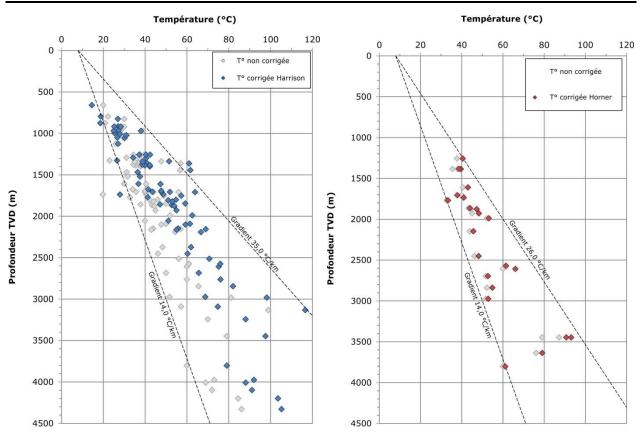


Figure 10 – Graphiques des données de température corrigées selon les méthodes de Harrison (à gauche) et de Horner (à droite).

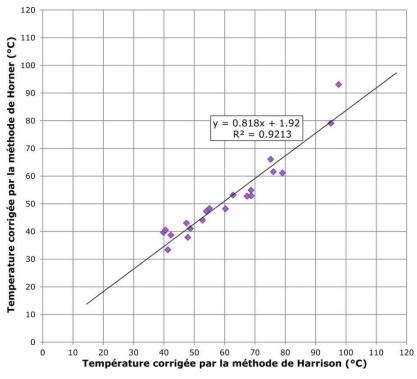


Figure 11 – Graphique de la comparaison des températures corrigées selon les méthodes de Harrison et de Horner.

2.3. Correction paléoclimatique

2.3.1. Concepts

La théorie de la correction paléoclimatique a d'abord été présentée par Birch (1948) et a été expliquée et/ou précisée par la suite par plusieurs auteurs, dont Crain (1968), Beck (1977), Jessop (1990), Jaupart et Mareschal (2011) et Westaway et Younger (2013) et Turcotte et Schubert (2014).

Au cours des 300 000 dernières années, tout le Canada et une partie du nord des États-Unis ont cycliquement été recouverts par une épaisse calotte glaciaire. Ces événements historiques ont induit des variations de température à la surface de la Terre qui se sont propagées en profondeur par diffusion thermique (Guillou-Frottier, 2006; Jaupart et Mareschal, 2011). Parce que la diffusivité thermique des roches est de l'ordre de 0,8 à 2,5 mm²/sec, il est possible d'observer la signature induite par les grandes périodes glaciaires du Quaternaire jusqu'à plusieurs centaines de mètres de profondeur (Beck, 1977; Jessop, 1990; Jaupart et Mareschal, 2011). Deux hypothèses de travail sont utilisées afin de pouvoir déterminer l'impact des variations paléoclimatiques : (1) la chaleur est seulement transportée par conduction verticale et (2) la seule cause de perturbation de la température en profondeur est la variation de température à la surface (Guillou-Frottier et al., 1998; Chouinard et Mareschal, 2009).

Comme les mesures de température en sous-surface proviennent, dans la majorité des cas, de puits peu profonds (moins de 2000 mètres), ces données de température ne sont pas à l'équilibre par rapport aux changements paléoclimatiques. En effet, les glaciations ont induit une baisse de la température qui se propage encore aujourd'hui en profondeur. Il est donc important de corriger les gradients de température en fonction des variations paléoclimatiques afin de ne pas sous-estimer les températures lors des extrapolations

en profondeur (Birch, 1948; Beck, 1977; Chouinard et Mareschal, 2009). Pour les mesures à faible profondeur, en l'absence de correction, la relation directe entre le gradient de température et le flux de chaleur implique une sous-estimation du flux de chaleur en surface et donc du potentiel pour des installations EGS (Majorowicz *et al.*, 2012). La Figure 12 démontre de façon schématique l'effet de la correction paléoclimatique sur les données de température mesurées et les gradients calculés.

Il est nécessaire de considérer chaque variation de température historique afin d'obtenir l'effet cumulatif global de la correction à apporter, car les effets s'additionnent (Jessop, 1971; Beck, 1977; Westaway et Younger, 2013). La correction effectuée dépend de la température à la base de la calotte glaciaire et des temps de début et de fin de la période glaciaire.

La correction de gradient géothermique permet d'ajuster le gradient instantané en tous points d'une courbe de température en profondeur afin d'obtenir le gradient à l'équilibre. Cependant, dans le cas de cette étude, les données de température ponctuelles utilisées ne permettent pas de calculer un gradient instantané en toutes profondeurs. On calcule plutôt un gradient moyen entre la profondeur de la mesure et la surface. Il n'est donc pas approprié d'utiliser la correction de gradient directement.

Pour ce cas-ci, il faut utiliser la correction de température qui permet d'obtenir la température théoriquement non perturbée. À partir de cette température à l'équilibre, le gradient géothermique entre la profondeur de la mesure et la surface doit être recalculé. Et c'est à partir de ce gradient géothermique que le flux de chaleur non perturbé peut finalement être calculé. L'équation utilisée afin de calculer la correction à appliquer aux températures est présentée ci-dessous (ex.: Crain, 1968; Beck, 1977; Jessop, 1990; Jaupart et Mareschal, 2011).

Correction de température

$$\Delta T = \sum_{i} (T_i) \cdot \left(erf\left(\frac{z}{\sqrt{4st_{i_1}}}\right) - erf\left(\frac{z}{\sqrt{4st_{i_2}}}\right) \right)$$

 ΔT : correction de température à additionner à la température mesurée (°C)

 T_i : variation moyenne de température entre la période glaciaire et aujourd'hui (-5 °C)

erf: fonction d'erreur

s : diffusivité thermique $(1,2x10^{-6} \text{ m}^2/\text{sec})$

 t_{i_1} : fin de la période glaciaire (sec, 31 557 600 sec/année)

 t_{i_2} : début de la période glaciaire (sec, 31 557 600 sec/année)

z: profondeur (m)

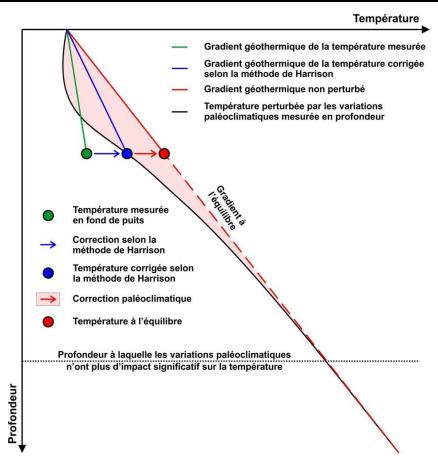


Figure 12 – Représentation schématique des effets des corrections appliquées aux donnes de température mesurées dans les puits.

2.3.2. Variations paléoclimatiques du sud du Ouébec

En se basant sur les travaux d'Emiliani (1961), Jessop (1971 et 1990) a défini les périodes glaciaires majeures pour le Canada, s'étalant entre 12 000 et 300 000 ans. Allis (1978) réévalue l'impact des corrections climatiques en utilisant la définition des périodes glaciaires utilisée par Jessop (1971). Tout comme Allis (1978), Jessop (1990) suppose que les températures moyennes, lors des périodes interglaciaires, sont globalement égales aux températures actuelles et ont varié avec une amplitude de l'ordre de 5 °C.

Dans le cadre de cette étude, la même chronologie des périodes glaciaires a été retenue en considérant un changement de 5 °C entre les températures moyennes actuelles à la surface du sol et les températures moyennes lors des périodes glaciaires. La chronologie de ces glaciations est montrée à la Figure 13. Le réchauffement ayant eu lieu pendant l'Holocène a été

négligé, car, d'après Chouinard et Mareschal (2009), l'augmentation de la température aurait possiblement été moins importante à cause de la présence de la mer de Champlain qui a submergé la région après la fonte de la calotte glaciaire. De plus, l'impact du réchauffement climatique de l'Holocène pourrait être annulé par le refroidissement associé au Petit Âge glaciaire des années 1500 à 1850 environ (Beltrami *et al.*, 2014).

Comme l'expliquent Guillou-Frottier *et al.* (1995), l'historique des glaciations proposée peut-être contesté, entre autres, car, comme mentionné ci-dessous, on ne tient pas compte des variations climatiques de l'Holocène. De plus, ils suggèrent que la température à la base des calottes glaciaires pourrait être plus froide que prévue, de l'ordre de -4 à -5 °C. Cependant, comme peu d'études présentent des chiffres précis et que les caractéristiques historiques proposées par Jessop (1990) sont souvent utilisées dans la littérature, la présente étude se base donc sur les spécifications proposée par Jessop (1990).

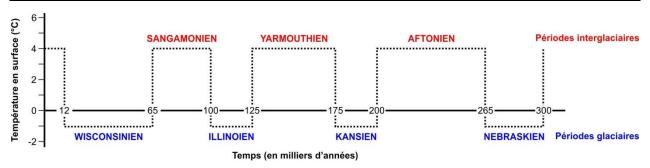


Figure 13 – Chronologie des périodes glaciaires considérées dans cette étude.

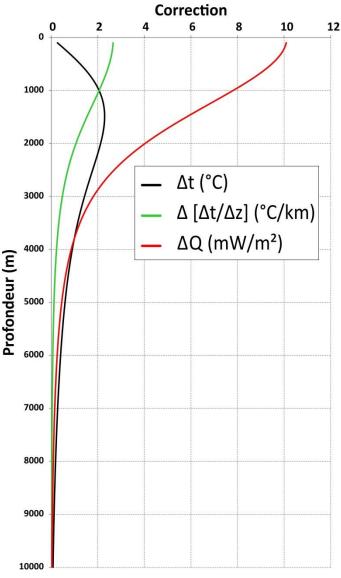


Figure 14 – Graphique du cadre théorique de la correction paléoclimatique à appliquer aux données du bassin des BTSL. Δt : correction à appliquer aux températures (°C). $\Delta[\Delta t/\Delta z]$: correction à appliquer au gradient géothermique associé à la mesure de température (°C/km). La correction de flux de chaleur (ΔQ) a été calculée avec une conductivité thermique de 3,8 W/m·K.

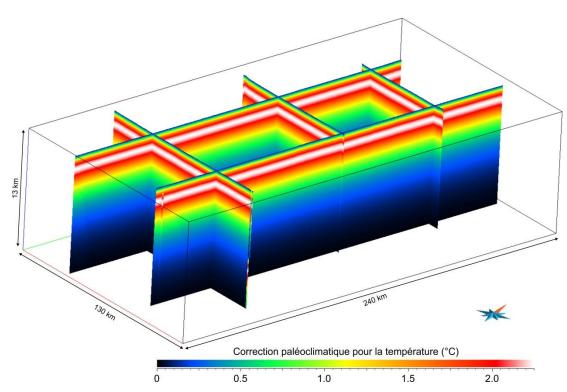


Figure 15 – Effet de la correction paléoclimatique sur la température en profondeur dans le bassin des BTSL.

2.3.3. Résultats

L'ensemble des données et des résultats de la correction de températures est présenté à l'Annexe 2.

Le cadre théorique de la correction paléoclimatique à appliquer sur les données du bassin des BTSL est présenté aux Figure 14 et Figure 15. On note que la correction de température la plus importante est de l'ordre de 2 degrés Celsius entre 1000 et 2000 mètres de profondeurs.

La correction paléoclimatique est réalisée sur les températures (en noir sur la Figure 14), mais on constate aussi son impact sur le gradient géothermique et le flux de chaleur (en noir et en rouge). Comme la correction à appliquer sur le flux de chaleur dépend de la conductivité thermique du milieu géologique, une conductivité thermique moyenne de 3,8 W/m·K a été utilisée pour calculer la variation de flux de chaleur dans la Figure 14. Cette conductivité thermique est représentative de la conductivité thermique globale du bassin des BTSL.

Selon le cadre théorique de la correction paléoclimatique pour les BTSL, on obtient une correction du flux de chaleur de l'ordre de 10 mW/m² en surface (Figure 14). Cette correction est cohérente avec les corrections présentées par Jessop (1971) (environ 0,2 µcal/cm²·sec

en surface, soit environ 8,4 mW/m²) et Beltrami *et al.* (2014) (environ 10 mW/m² en surface) pour la région à l'étude. L'augmentation diminue avec la profondeur et est de moins de 1 mW/m2 à partir d'environ 4000 mètres de profondeur.

3. Gradient géothermique

Le gradient géothermique définit comment la température varie en fonction de la profondeur dans le sous-sol et il est officiellement exprimé en degré Celsius par mètre (°C/m) (Beardsmore et Cull, 2001). Le gradient géothermique est cependant généralement exprimé en degré Celsius par kilomètre (°C/km) ce qui est le cas dans ce rapport.

Dans la réalité, la variation de la température en fonction de la profondeur n'est pas un phénomène linéaire, mais il peut cependant être approximé selon l'équation suivante :

$$\left[\frac{\Delta T}{\Delta z}\right] = \frac{T_z - T_0}{z}$$

 $\begin{bmatrix} \frac{\Delta T}{\Delta z} \end{bmatrix}$: gradient géothermique (°C/m ou °C/km)

 T_z : température en profondeur corrigée (°C)

 T_0 : température en surface (8 °C, température moyenne en surface dans le sud du Québec)

z : profondeur (m ou km)

3.1. Gradient géothermique pour chaque donnée de température corrigée par la méthode de Harrison

Après avoir corrigé les températures de fond de puits selon la méthode de Harrison et avoir tenu compte de la correction paléoclimatique, le gradient géothermique peut être calculé pour chacune des 81 données de température résultantes.

Les gradients géothermiques calculés à l'aide des données de température corrigées avec la méthode de Harrison varient entre 9,9 et 38,9 °C/km avec une moyenne de 23,1 °C/km et un écart-type de 5,0 °C/km (Figure 16). L'ensemble des données et des résultats est présenté à l'Annexe 1.

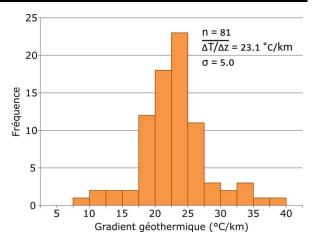


Figure 16 – Distribution des gradients géothermiques basés sur les données de température corrigées avec la méthode de Harrison dans le bassin des BTSL.

3.2. Gradient géothermique pour chaque donnée de température tenant compte de la correction paléoclimatique

Lorsque l'on tient compte des variations paléoclimatiques, les gradients géothermiques ont des valeurs entre 12,2 et 40,4 °C/km avec une moyenne 24,3 °C/km et un écart-type de 4,9 °C/km (Figure 17). L'ensemble des données et des résultats est présenté à l'Annexe 2.

Figure 17 – Distribution des gradients géothermiques corrigés pour les variations paléoclimatiques dans le bassin des BTSL.

4. Conductivité thermique

La conductivité thermique (λ) définit la capacité d'un matériau à transmettre la chaleur et elle est exprimée en Watt par mètre-Kelvin (W/m·K).

Les travaux présentés dans ce rapport tentent notamment de réduire les incertitudes liées à l'évaluation de la conductivité thermique des différentes unités lithologiques dans le bassin. En effet, l'utilisation d'un modèle géologique 3D permet d'associer une conductivité thermique à chaque unité géologique en tous points du modèle. Afin de tenir compte de l'hétérogénéité des unités géologiques, plusieurs valeurs de conductivité thermique ont été définies pour chacune d'entre elles. Ceci permet de tester différents scénarios et d'évaluer la sensibilité de ce paramètre lors des simulations de la température.

4.1. Données disponibles

L'évaluation de la conductivité thermique de chaque unité géologique présente dans le modèle 3D a été réalisée à l'aide des données de conductivité thermique provenant de deux sources :

- Les données mesurées en laboratoire lors des travaux de maîtrise de Nasr (2016).
- Une compilation des données géothermiques du Canada par Jessop *et al.* (2005).

Le Tableau 1 présente le résumé des données de conductivité thermique disponible selon ces sources et les différentes unités géologiques caractérisées. L'ensemble des données de conductivité thermique est présenté à l'Annexe 3.

Tableau 1 – Données de conductivité thermique disponibles selon les unités géologiques et les deux sources de données.

Unité géolo-	Nombre de selon la	Total	
gique	Jessop <i>et al.</i> (2005)	Nasr (2016)	Total
Couverture	18	26	44
Utica	0	20	20
Tr/BR/Ch	0	23	23
Beauharnois	0	22	22
Theresa	0	7	7
Cairnside	0	23	23
Covey Hill	0	33	33
Précambrien	1031	12	1043
Total	1049	166	1215

4.1.1. Données de Nasr (2016)

Les valeurs de conductivité thermique provenant de Nasr (2016) ont été mesurées sur des échantillons de surface et sur des carottes provenant de puits pétroliers et gaziers. La Figure 18 montre la distribution spatiale de ces données.

La conductivité thermique des échantillons de surface a été mesurée à l'aide d'une sonde à aiguille. Les mesures ont été effectuées parallèlement et perpendiculairement au litage des échantillons. Dans le cadre de cette étude, seulement les données mesurées dans la direction perpendiculaire au litage, donc verticale, ont été utilisées. Ce sont, en effet, celles qui représentent le mieux la propagation de chaleur dans le bassin, car la chaleur en profondeur a tendance à monter vers la surface. La conductivité thermique de sept échantillons qui présentaient une porosité apparente a été mesurée deux fois : une fois sur l'échantillon sec et une deuxième fois sur l'échantillon saturé en eau. Lorsque les deux mesures étaient présentes pour un échantillon, seulement la mesure de conductivité saturée a été prise en compte (voir Annexe 3.). Finalement, deux mesures de conductivité thermique ont aussi été effectuées sur un même échantillon (14MN18) ; la moyenne des deux mesures a donc été utilisée comme donnée de base.

La conductivité thermique des échantillons de carottes a été mesurée de trois façons différentes pour chaque échantillon: (1) avec les plaques chauffantes sur des échantillons saturés; (2) avec les barres divisées sur les échantillons secs; et (3) avec les barres divisées sur les échantillons saturés. La méthode de sélection de la valeur de conductivité thermique à utiliser pour chaque échantillon dépend de la qualité de l'échantillon analysé. Si l'échantillon était de bonne qualité, la mesure provenant de la méthode des barres divisées sur l'échantillon saturé a alors été priorisée. À l'inverse, si la qualité de l'échantillon est moyenne ou mauvaise, la mesure provenant de la méthode des plaques chauffantes a été sélectionnée.

Le nombre de données utilisé pour déterminer la conductivité thermique des unités géologiques est présenté au Tableau 2.

Tableau 2 – Nombre de données de conductivité thermique utilisées selon la source pour la détermination de la conductivité des unités géologiques.

Unité géolo-	Nombre de selon la	Total	
gique	Jessop et al. (2005)	Nasr (2016)	Total
Couverture	3	21	24
Utica	0	9	9
Tr/R/Ch	0	15	15
Beauharnois	0	10	10
Theresa	0	3	3
Cairnside	0	8	8
Covey Hill	0	13	13
Précambrien	17	5	22
Total	20	84	104

4.1.2. Données de Jessop et al. (2005)

Les données de conductivité thermique provenant de Jessop *et al.* (2005) couvrent une bonne partie du Canada. Dans le cadre de la présente étude, seules les données situées à proximité du bassin des BTSL ont été considérées. La Figure 18 montre la distribution spatiale de ces données et les limites à l'intérieur desquelles elles ont été jugées pertinentes pour établir la conductivité thermique des unités géologiques du bassin des BTSL ainsi que du Précambrien.

Afin de diminuer l'impact de la distribution hétérogène des données, la moyenne des valeurs de conductivité thermique d'une même localisation a été utilisée. Le nombre de données utilisé pour déterminer la conductivité thermique des unités géologique est présenté dans le Tableau 2.

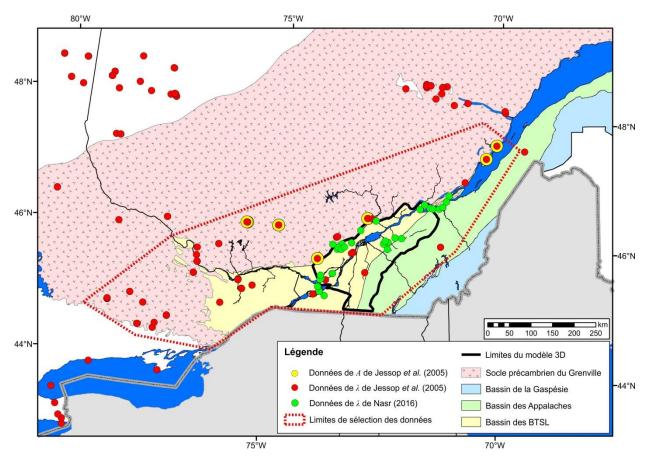


Figure 18 – Carte de la distribution spatiale des données de conductivité thermique (λ) et de génération de chaleur interne (A) et limites de sélection des données pertinentes.

4.2. Conductivité thermique des unités géologiques

Les distributions des valeurs de conductivité thermique des différentes unités du bassin des BTSL sont présentées à la Figure 19. Pour les calculs subséquents où une valeur de conductivité thermique est nécessaire pour chaque unité géologique, trois valeurs ont été choisies qui correspondent aux 10^e , 50^e et 90^e percentiles. Les centiles sont basés sur des distributions normales des données de conductivité thermique des unités géologiques, excepté pour les formations de Theresa et de Covey Hill qui sont plutôt basés sur des distributions uniformes. Le Tableau 3 présente les caractéristiques de chaque distribution ainsi que les valeurs choisies pour définir la conductivité thermique des unités géologiques. La Figure 20 permet de comparer l'étendue des valeurs de conductivité thermique de chaque unité géologique. L'ensemble des données de conductivité thermique est présenté à l'Annexe 3.

Les valeurs de conductivité thermique du Précambrien sont plus élevées que ce qui est présenté dans la littérature. En effet, des valeurs allant de 1,5 à 3,5 W/m·K généralement sont définies pour les roches métamorphiques semblables à celles du Précambrien du Grenville (ex.: Robertson, 1988; Jaupart et Mareschal, 2011; Eppelbaum *et al.*, 2014).

Les valeurs de conductivité thermique des unités sédimentaires sont plus faibles que celles du socle pour les roches couvertures, celles du Shale d'Utica et des celles des groupes de Tr-BR-Ch. Ces roches jouent donc un rôle d'isolant thermique qui est plus important lorsque ces roches sont plus épaisses, comme c'est le cas dans la partie Sud-Est du bassin. Les roches des groupes de Beekmantown et de Potsdam jouent cependant le rôle inverse en étant des milieux géologiques plus conducteurs que le Précambrien. La chaleur issue du flux terrestre est donc mieux conservée dans le bassin lorsque la proportion de roches isolantes augmente par rapport aux roches conductrices.

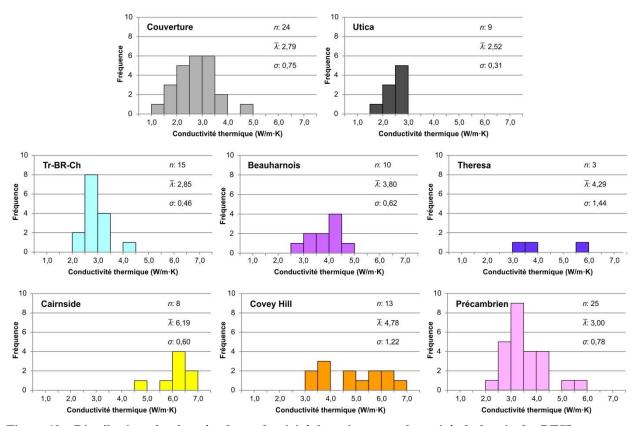


Figure 19 – Distributions des données de conductivité thermique pour les unités du bassin des BTSL.

Tableau 3 – Statistiques et valeurs de conductivité thermique choisies pour la modélisation des unités du bassin des BTSL.

	Conductivité thermique (W/m·K)							
Unités géolo-	Statistiques				Valeurs choisies			
giques	Moyenne $\overline{(\lambda)}$	Min	Max	Écart-type (σ)	Nombre de données	λ_{P10}	λ_{P50}	λ_{P90}
Couverture ¹	2,79	1,41	4,65	0,75	24	1,92	2,79	3,49
Utica	2,52	1,93	2,88	0,31	9	2,23	2,52	2,81
Tr-BR-Ch	2,85	2,19	4,15	0,46	15	2,51	2,67	3,20
Beauharnois	3,80	2,70	4,58	0,62	10	3,06	3,82	4,43
Theresa	4,29	3,08	5,88	1,44	3	3,36 ²	4,48 ²	5,60 ²
Cairnside	6,19	4,99	6,90	0,60	8	5,53	6,27	6,81
Covey Hill	4,78	3,07	6,55	1,22	13	3,42 ²	4,81 ²	6,20 ²
Précambrien	3,00	1.94	5,15	0,78	25	2,21	2,78	3,85

¹ Les données de roches couvertures comprennent les données du bassin des Appalaches ainsi que des groupes de Queenston et de Lorraine.

² Les valeurs sont basées sur une distribution uniforme des données.

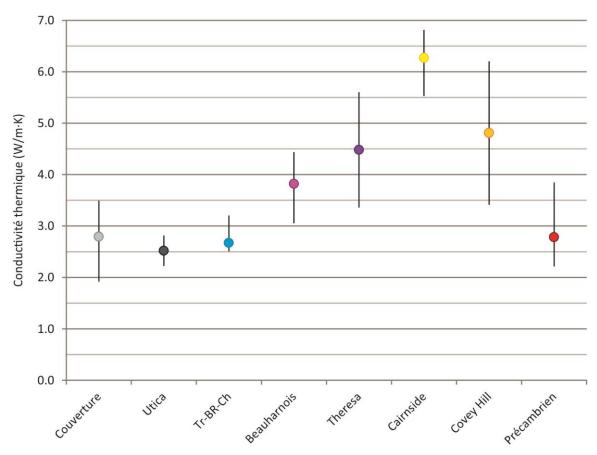


Figure 20 – Comparaison des valeurs de conductivité thermique choisies pour les unités géologiques du bassin des BTSL.

4.3. Conductivité thermique effective dans le bassin

En utilisant la valeur moyenne de conductivité thermique de chaque unité géologique, la conductivité thermique effective λ_e est calculée en tous points dans le modèle géologique 3D en se basant sur la formule d'une moyenne harmonique (Beardsmore et Cull, 2001; Jaupart et Mareschal, 2011).

$$\frac{1}{\lambda_e} = \sum \frac{\phi}{\lambda}$$

 λ_e : conductivité thermique effective (W/m·K)

φ : proportion par rapport à l'épaisseur de sédiments jusqu'à la surface

 λ : conductivité thermique de l'unité (W/m·K)

La conductivité thermique effective suppose un flux

de chaleur vertical et permet donc de tenir compte des variations de conductivité thermique entre les différentes unités géologiques du bassin à l'opposé de l'utilisation d'une valeur de conductivité unique pour l'ensemble des roches sédimentaires, comme c'est généralement le cas dans la littérature. C'est donc une valeur de conductivité thermique effective qui est utilisée dans les calculs subséquents, lorsqu'une valeur de conductivité thermique est nécessaire.

Les valeurs de conductivité thermique effective associées à chaque mesure de température en fond de puits sont présentées à l'Annexe 5.

La Figure 21 montre la distribution de la conductivité effective en trois dimensions dans les BTSL.

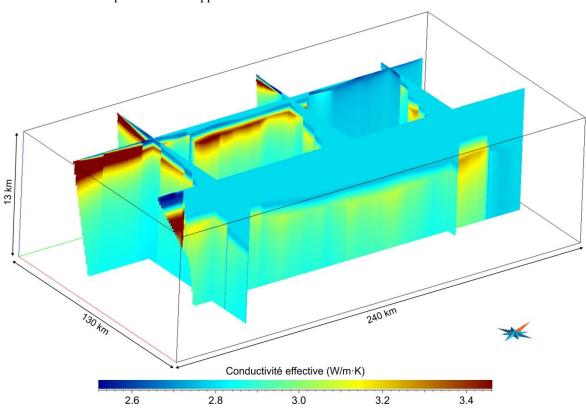


Figure 21 – Conductivité effective dans le modèle 3D des BTSL.

5. Génération de chaleur par désintégration des éléments radioactifs

La chaleur emmagasinée en profondeur dans la Terre ne provient pas exclusivement de la chaleur résiduelle produite à l'origine de la formation de la planète (Jaupart et Mareschal, 2003). En effet, une partie provient également de la désintégration des éléments radioactifs contenus dans les roches, principalement l'uranium ²³⁸U et ²³⁵U, le thorium ²³²Th ainsi que le potassium ⁴⁰K (Hamza, 1973). Ceci induit une génération de chaleur interne (*A*) significative qui doit être considérée dans le calcul du flux de chaleur. La constante de génération de chaleur par désintégration des éléments radioactifs s'exprime en micro-Watt par mètre cube (μW/m³).

Dans les régions continentales stables, la variation en surface du flux de chaleur est principalement due aux changements de composition d'éléments radioactifs dans la croûte terrestre (Jaupart et Mareschal, 2011). Les roches ignées et métamorphiques, telles que les granites et les gneiss, sont particulièrement riches en éléments radioactifs, tandis que la plupart des auteurs considèrent que la désintégration des éléments radioactifs issue des roches sédimentaires est faible, voire négligeable (Rybach, 1984).

La répartition des éléments radioactifs étant très hétérogène, même au sein d'une même unité sédimentaire (Jaupart et Mareschal, 2011), la génération de chaleur interne peut provoquer une augmentation relativement locale du flux de chaleur en surface.

5.1. Données disponibles

Au sein du bassin des BTSL, il existe six puits d'exploration pétrolière et gazière dans lesquels les spectres du rayonnement gamma naturel ont été enregistrés sous forme de diagraphies. Ainsi, les concentrations des éléments radioactifs naturels du thorium Th, de l'uranium U et du potassium K sont connues le long de ces puits. Toutefois, aucun de ces puits ne possède un enregistrement complet de la séquence du bassin des BTSL. En revanche, chacune des unités géologiques des BTSL a été sondée par ces diagraphies à au moins une reprise. Le Tableau 4 présente la distribution des données disponibles dans les unités géologiques des BTSL pour chacun des puits. La Figure 18 montre la distribution spatiale des données.

Tel qu'illustré au Tableau 4, aucun enregistrement des spectres du rayonnement gamma naturel n'est disponible pour le Précambrien du Grenville. Toutefois, la compilation réalisée par Jessop *et al.* (2005) contient des mesures de la constante de génération de chaleur interne réalisées ponctuellement à l'intérieur d'anciens puits miniers forés dans le Précambrien du Grenville en périphérie du modèle géologique (Figure 18). Au total, 33 données de la constante de génération de chaleur interne provenant de 11 puits, regroupés par la suite en six sites, ont été utilisées.

L'ensemble des données de génération de chaleur interne issue de la désintégration des éléments radioactifs est présenté à l'Annexe 4.

Tableau 4 – Répartition des unités géologiques du bassin des BTSL sondées par une diagraphie des spectres du rayonnement gamma naturel au sein des puits utilisés dans le calcul de la constante de génération de chaleur interne.

Unités géologiques	A238	A248	A252	A261	A263	A267	A270
Couverture	Х	х		х	Х	х	Х
Utica	х	х	х	х	Х	х	х
Tr-BR-Ch	х	х	х	х		х	Х
Beauharnois		х	х	х		х	
Theresa		х	х	х			
Cairnside	х	х	х				
Covey Hill			х				

5.2. Constante de génération de chaleur interne des unités géologiques

Selon Bucker et Rybach (1996), il est possible de calculer la constante de génération de chaleur interne en fonction de la concentration en éléments radioactifs avec l'équation suivante :

$$A = 10^{-5} \cdot \rho \cdot (9.52[U] + 2.56[Th] + 3.48[K])$$

A : constante de génération de chaleur interne $(\mu W/m^3)$

 ρ : densité (kg/m³)

[U]: concentration d'uranium (ppm)

[Th]: concentration de thorium (ppm)

[K]: concentration de potassium (%)

Les valeurs de densité pour chacune des unités géologiques des BTSL sont présentées au Tableau 5.

Les distributions des valeurs de la constante de génération de chaleur interne pour chacune des unités géologiques des BTSL sont présentées à la Figure 22. Pour les calculs subséquents lorsqu'une valeur de *A* est nécessaire, trois valeurs, qui correspondent aux $10^{\rm e}$, $50^{\rm e}$ et $90^{\rm e}$ percentiles, ont été choisies pour chaque

unité géologique. Les centiles sont basés sur des distributions normales des données des unités, sauf pour l'unité du Précambrien qui est basée sur une distribution uniforme. Le Tableau 6 présente les caractéristiques de chaque distribution de constante de génération de chaleur interne pour chacune des unités géologiques. La Figure 23 permet de comparer l'étendue des valeurs de la constante de génération de chaleur interne de chaque unité géologique.

Tableau 5 – Valeurs de densité ρ pour chacune des unités géologiques du bassin des BTSL. Source des données : Tran Ngoc *et al.* (2014).

Unités géologiques	Densité (kg/m³)		
Couverture	2700		
Utica	2450		
Tr-BR-Ch	2700		
Beauharnois	2740		
Theresa	2705		
Cairnside	2650		
Covey Hill	2630		

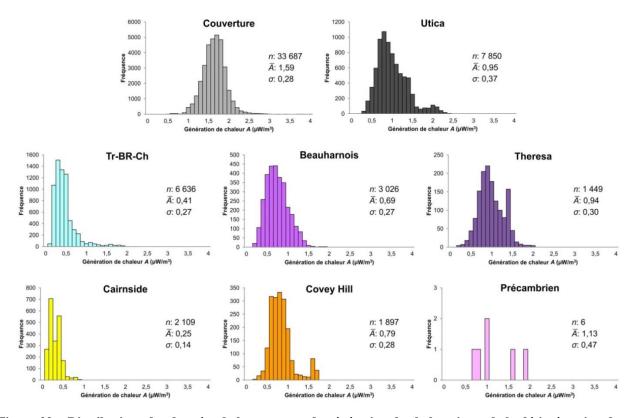


Figure 22 – Distributions des données de la constante de génération de chaleur issue de la désintégration des éléments radioactifs pour les unités géologiques du bassin des BTSL.

Tableau 6 – Statistiques des distributions de la constante de génération de chaleur issue de la désintégration des éléments radioactifs selon les unités géologiques du bassin des BTSL et les valeurs choisies pour la modélisation.

	Génération de chaleur interne (μW/m³)								
Unités géolo- giques	Statistiques				Valeurs choisies				
	Moyenne (\overline{A})	Min.	Max.	Écart-type (σ)	A_{P10}	A_{P50}	A_{P90}		
Couverture ¹	1,59	0,48	3,98	0,28	1,25	1,59	1,90		
Utica	0,95	0,20	2,37	0,37	0,55	0,87	1,41		
Tr-BR-Ch	0,41	0,04	2,14	0,27	0,17	0,36	0,70		
Beauharnois	0,69	0,12	1,88	0,27	0,37	0,66	1,07		
Theresa	0,94	0,16	1,99	0,30	0,59	0,90	1,36		
Cairnside	0,25	0,04	0,84	0,14	0,09	0,22	0,41		
Covey Hill	0,79	0,18	1,68	0,28	0,51	0,74	1,08		
Précambrien	1,13	0,65	1,84	0,47	0,77 ²	1,25 ²	1,72 ²		

¹ Les données de roches couvertures comprennent les données du bassin des Appalaches ainsi que des groupes de Queenston et de Lorraine.

² Les valeurs sont basées sur une distribution uniforme des données.

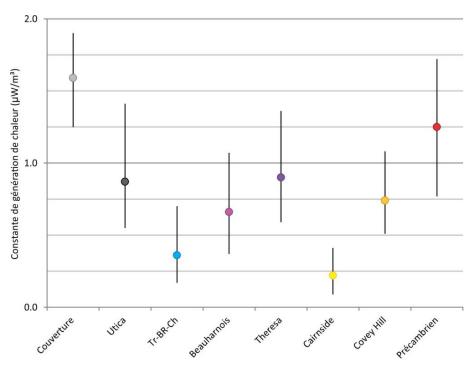


Figure 23 – Comparaison des valeurs de constante de génération de chaleur issue de la désintégration des éléments radioactifs choisies pour les unités géologiques du bassin des BTSL.

5.3. Constante de génération de chaleur interne effective dans le bassin

La constante de génération de chaleur interne effective A_e est utilisée lors de calculs qui impliquent un intervalle de profondeur où la constante est variable. La constante de génération de chaleur interne effective est calculée à l'aide d'une moyenne pondérée selon l'équation suivante :

$$A_e = \frac{\sum (A \cdot e_A)}{\sum E}$$

 A_e : constante de génération de chaleur interne effective ($\mu W/m^3$)

A : constante de génération de chaleur interne $(\mu W/m^3)$

 e_A : épaisseur de roche avec la constante de génération de chaleur donnée (m)

La constante de génération de chaleur interne effective permet donc de tenir compte des variations de constante de génération de chaleur interne entre les différentes unités géologiques du bassin à l'opposé de l'utilisation d'une valeur de constante de génération de chaleur interne unique pour l'ensemble des roches sédimentaires, comme c'est généralement le cas dans la littérature. Ce sont donc les valeurs de constante de génération de chaleur interne effective qui sont utilisées dans les calculs subséquents.

Les constantes de génération de chaleur interne effectives associées à chaque mesure de température en fond de puits sont présentées à l'Annexe 5.

6. Flux de chaleur

Le flux de chaleur (Q) correspond à la quantité de chaleur qui est transmise à travers une unité de surface pendant une unité de temps et elle est mesurée en watt par mètre carré (W/m²). La loi de Fourier régit le transport de chaleur par conduction selon l'équation suivante:

$$Q = -\lambda \left[\frac{\partial T}{\partial z} \right]$$

Q: flux de chaleur (W/m²)

 λ : conductivité thermique (W/m·K)

: gradient géothermique (K/m équivalent à °C/m)

Le signe négatif signifie que les transferts de chaleur se font dans la direction de la température décroissante (Jaupart et Mareschal, 2011; Eppelbaum et al., 2014; Turcotte et Schubert, 2014). Toutefois, la convention en géothermie est de présenter le flux de chaleur de la Terre comme une quantité positive, même si la valeur calculée est négative (Turcotte et Schubert, 2014). De plus, le flux de chaleur terrestre est généralement exprimé en milli-Watt par mètre carré (mW/m²) à l'aide cette variation de l'équation ci-dessus :

$$Q = -\lambda \left[\frac{\partial T}{\partial z} \right] \cdot 1000$$

Flux de chaleur en fond de puits

Pour chaque valeur de gradient géothermique calculée à l'aide des données de température de fond de puits, il est possible de calculer une valeur de flux de chaleur en fond de puits. Le calcul est basé sur l'équation suivante:

$$Q_z = \lambda_e \left[\frac{\Delta T}{\Delta z} \right] \cdot 1000$$

 Q_z : flux de chaleur en profondeur (mW/m²) λ_e : conductivité thermique effective (W/m·K) $\left[\frac{\Delta T}{\Delta z}\right]$: gradient géothermique (K/m ou °C/m)

La conductivité thermique effective est calculée entre la surface et le point de mesure de la température en fond de puits. Le gradient géothermique utilisé est le gradient non perturbé, obtenu après les corrections de Harrison et paléoclimatique. Pour chaque mesure de température en fond de puits, trois valeurs de flux de chaleur en fond de puits $(Q_{Z_{P10}},Q_{Z_{P50}},Q_{Z_{P90}})$ ont été obtenues à l'aide des trois valeurs de conductivité thermique déterminées $(\lambda_{e_{P10}}, \lambda_{e_{P50}}, \lambda_{e_{P90}})$ pour chacune des unités (voir section **4.2**). La Figure 24 montre les flux de chaleur en fond de puits en fonction de la profondeur de chaque mesure de température. On note

que les valeurs de flux de chaleur calculé sont relativement constantes avec la profondeur à l'échelle du bassin. On note des variations de flux de chaleur qui correspondent plutôt à des anomalies de flux de chaleur. Les statistiques des distributions des valeurs des flux de chaleur en fond de puits selon les trois valeurs de conductivité thermique effective utilisées sont présentées dans le Tableau 7.

L'ensemble des données de flux de chaleur du bassin des BTSL est présenté à l'Annexe 5.

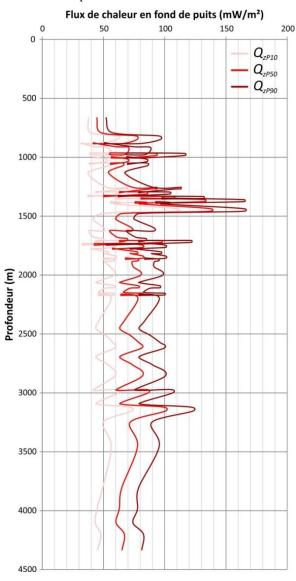


Figure 24 – Graphique du flux de chaleur en fond de puits de tous les puits en fonction de la profondeur des données de température dans le bassin des BTSL. Les trois courbes correspondent aux trois valeurs de flux de chaleur obtenues à partir des trois valeurs de conductivité thermique effective déterminée pour chaque mesure.

Tableau 7 – Statistiques des distributions des flux de chaleur en fond de puits selon les trois valeurs de conductivité thermique déterminées pour chaque mesure.

	Statistiques des	flux de chaleur fond	de puits (mW/m²)
	$Q_{z_{P10}}$	$Q_{z_{P50}}$	$Q_{z_{P90}}$
Moyenne	52	72	89
Min	31	41	50
Max	111	138	165
Écart-type	13	16	20
Nombre de données	81	81	81

6.2. Flux de chaleur en surface

Il est possible de tenir compte de la génération de chaleur par la désintégration des éléments radioactifs pour le calcul du flux de chaleur en surface. Dans ce cas, le flux de chaleur en surface est plus élevé que celui en profondeur car la génération de chaleur interne et l'épaisseur de roche entre la profondeur de la mesure et la surface sont considérées. De plus, il existe une corrélation établie entre la génération de chaleur interne et le flux de chaleur en surface dans les régions tectoniquement stables (Turcotte et Schubert, 2014).

Il existe plusieurs théories qui décrivent la relation entre le flux de chaleur en surface, le flux de chaleur en profondeur et la constante de génération de chaleur interne en fonction de la profondeur. Comme l'expliquent plusieurs auteurs (par exemple: Beardsmore et Cull, 2001; Jaupart et Mareschal, 2011; Furlong et Chapman, 2013; Eppelbaum *et al.*, 2014), aucune théorie ne fait l'unanimité au sein de la communauté scientifique.

Dans ce contexte, il a été décidé d'utiliser la théorie de la décroissance linéaire avec la profondeur pour tenir compte de la génération de chaleur interne dans les roches sédimentaires du bassin des BTSL. L'équation qui décrit la relation entre le flux de chaleur en surface, le flux de chaleur en profondeur et la génération de chaleur interne selon cette théorie est la suivante (ex.: Roy *et al.*, 1968; Jessop, 1990; Beardsmore et Cull, 2001; Jaupart et Mareschal, 2011):

$$Q_0 = Q_z + \left(\frac{A_e \cdot z_{sed}}{2 \cdot 1000}\right)$$

 Q_0 : flux de chaleur en surface (mW/m²)

 Q_0 : flux de chaleur en surface (mW/m²)

 Q_z : flux de chaleur en profondeur (mW/m²)

 A_e : constante de génération de chaleur interne effective ($\mu W/m^3$)

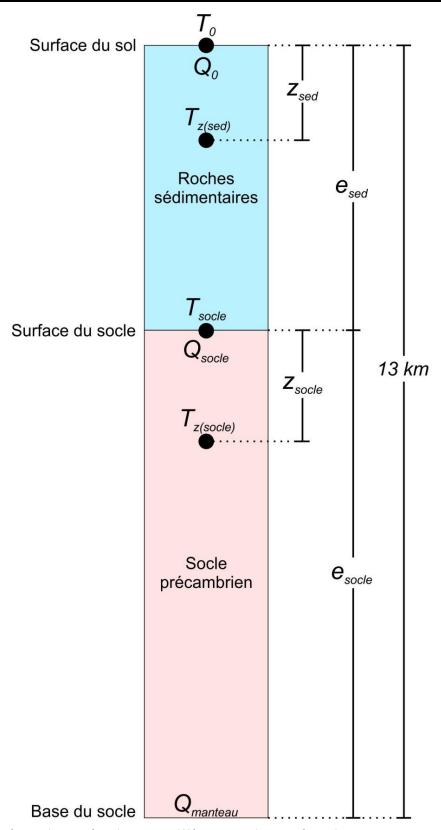
 z_{sed} : profondeur dans les roches sédimentaires (m)

Le facteur 1000 est utilisé afin de tenir compte de l'unité de mesure de la constante de génération de chaleur qui est le $\mu W/m^3$. La constante de génération de chaleur interne effective est calculée entre la surface et la profondeur de la donnée de température (voir section 0). Les différentes variables utilisées dans les équations de calcul de flux de chaleur sont illustrées à la Figure 25.

La théorie de Lachenbruch (1970) de la décroissance exponentielle avec la profondeur a été choisie afin de modéliser le flux de chaleur dans le Précambrien. Cette théorie est exprimée par l'équation suivante (ex.: Jessop, 1990; Turcotte et Schubert, 2014):

$$Q_0 = Q_z + \left(\frac{A_{socle}}{1000} \cdot e_{socle} \cdot \left[1 - exp\left(\frac{-Z_{socle}}{e_{socle}}\right)\right]\right)$$

 Q_0 : flux de chaleur en surface (mW/m²)


 Q_z : flux de chaleur en profondeur (mW/m²)

 A_{socle} : constante de génération de chaleur interne du socle ($\mu W/m^3$)

 e_{socle} : épaisseur de socle totale (m)

 z_{socle} : profondeur dans le socle (m)

Le facteur 1000 est utilisé afin de tenir compte de l'unité de mesure de la constante de génération de chaleur qui est le $\mu W/m^3$.

 $Figure\ 25\ -\ Représentation\ schématique\ des\ différentes\ variables\ nécessaires\ au\ calcul\ des\ températures\ en\ profondeur.$

Comme les données de températures en fond de puits ont été mesurées dans les roches sédimentaires ou très peu profondément dans le Précambrien, et afin de simplifier les calculs, seule l'équation associée à la théorie de la décroissance linéaire a été utilisée pour calculer le flux de chaleur en surface. La théorie de la décroissance exponentielle sera cependant utilisée lors de l'extrapolation des températures en profondeur dans le socle.

Trois flux de chaleur en surface sont calculés à l'aide des trois valeurs de conductivité thermique et de génération de chaleur interne : $Q_{0_{P10}}$ avec $\lambda_{P_{10}}$ et $A_{P_{10}}$ et $A_{P_{10}}$ avec λ_{P50} et A_{P50} ainsi que $Q_{0_{P90}}$ avec λ_{P90} et A_{P90} . La Figure 26 montre l'effet de l'utilisation des différentes valeurs de conductivité thermique et de génération de chaleur lors du calcul de flux de chaleur en surface ($z_{sed} = 1500$ m, $T_z = 35$ °C). On note que l'utilisation des valeurs les plus faibles de conductivité thermique et de génération de chaleur interne (λ_{P10} et A_{P10}) pour le calcul du flux de chaleur en surface génère le flux de chaleur le plus faible. D'autre part, les valeurs les plus élevées de conductivité thermique et de génération de chaleur interne (λ_{P90} et A_{P90}) pour

le calcul du flux de chaleur en surface génèrent le flux de chaleur le plus élevé. En calculant les trois flux de chaleur, on obtient une bonne estimation de l'intervalle des valeurs possible pour le flux de chaleur en surface pour le bassin des BTSL.

La Figure 27 montre que l'effet de la génération de chaleur interne sur le calcul du flux de chaleur en surface augmente avec la profondeur de la mesure de température. Pour des données mesurées à environ 4000 mètres de profondeur, l'effet de la génération de chaleur interne sur le calcul du flux de chaleur en surface fait augmenter ce flux d'environ 4 à 7 mW/m². Si on ne tenait pas compte de la génération de chaleur interne, on sous-estimerait le flux de chaleur en surface. Et plus les données sont mesurées profondément, plus cette sous-estimation serait importante.

Les statistiques des distributions des valeurs des flux de chaleur en surface avec la génération de chaleur interne effective selon les différentes valeurs de conductivité thermique sont présentées à la Figure 28 et dans le Tableau 8. La distribution spatiale des données est montrée aux Figure 30, Figure 31 et Figure 32. L'ensemble des données de flux de chaleur en surface dans le bassin des BTSL est présenté à l'Annexe 5.

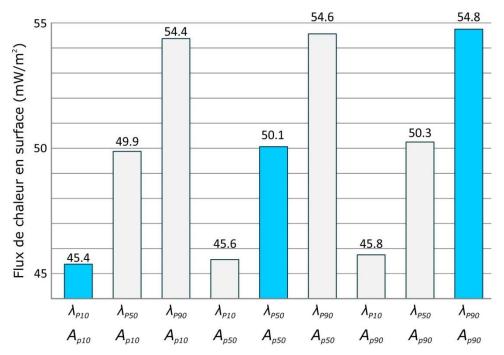


Figure 26 – Cas théorique de l'effet de l'utilisation de différentes valeurs de conductivité thermique et de génération de chaleur interne sur le flux de chaleur en surface. Les valeurs utilisées dans cet exemple sont celles de l'Utica, voir les sections 4.2 et 5.2. Les trois valeurs en bleu représentent les flux de chaleur les moins élevé, moyen et plus élevé.

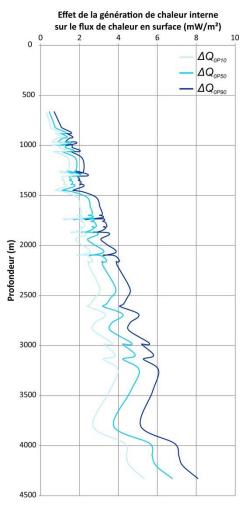


Figure 27 – Graphique de l'effet de la génération de chaleur interne sur le flux de chaleur calculé en surface en fonction de la profondeur des données en fond de puits. Les trois courbes correspondent aux trois valeurs de flux calculés à l'aide des trois valeurs de génération de chaleur interne choisies pour chaque mesure.

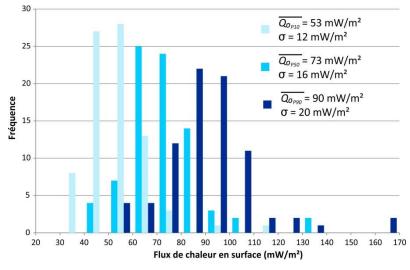


Figure 28 – Distribution des flux de chaleur en surface calculés selon les trois valeurs de conductivité thermique effective et les trois valeurs de génération de chaleur interne effective associée à chacune des mesures de température.

Tableau 8 – Statistiques des distributions des flux de chaleur en surface selon les trois valeurs de conductivité thermique effective et les trois valeurs de génération de chaleur interne effective associée à chacune des mesures de température.

	Statisti avec la génér	Statistiques des flux de chaleur en surface avec la génération de chaleur interne effective (mW/m²)										
	$Q_{0_{P10}}$	$Q_{0_{P50}}$	$Q_{0_{P90}}$									
Moyenne	53	73	90									
Min	32	42	51									
Max	112	139	166									
Écart-type	12	16	20									
Nombre de données	81	81	81									

6.3. Distribution du flux de chaleur en surface

6.3.1. Simulations séquentielles gaussiennes

À partir des données ponctuelles du flux de chaleur en surface (Q_0) calculé à la position de chaque puits, la distribution de ce flux de chaleur a été simulée pour l'ensemble du bassin des BTSL. Afin de spatialiser les mesures de Q_0 sur toute la surface du modèle, des simulations séquentielles gaussiennes (SGS) ont été utilisées. Cette méthode est bien connue pour la simulation de propriétés continues et permet d'obtenir de multiples réalisations de Q_0 (Srivastava, 1994). Par le biais d'une analyse variographique, cette méthode tient compte de la corrélation spatiale des données entre elles et permet également la reproduction de l'histogramme des données.

Afin de respecter la théorie des SGS, les données de Q_0 ont été normalisées et le variogramme expérimental a été calculé dans l'espace des données normalisées. Le variogramme expérimental a ensuite été modélisé par une fonction sphérique. Finalement, le variogramme, ainsi que les données de Q_0 , ont permis de faire le calcul de la moyenne et de la variance conditionnelle en chaque point du maillage utilisé pour la simulation. Ainsi, cette distribution a permis la construction d'une fonction de distribution cumulée normale pour laquelle une valeur entre 0 et 1 est choisie au hasard. La valeur correspondante de Q_0 a ensuite été assignée à une cellule précédemment sélectionnée de la grille de simulation 2D dont l'espacement était de 1 km². Une fois cette valeur attribuée, une autre cellule de la grille a été sélectionnée suivant un chemin aléatoire pour répéter le processus jusqu'à ce que toutes les cellules portent des valeurs de Q_0 simulées selon la méthodologie présentée à la Figure 29 (Deutsch et Journel, 1997).

En utilisant un modèle de variogramme sphérique ayant une portée de 40 000 mètres, un plateau de 1 et un effet pépite de 0,4, 100 réalisations de Q_0 ont été obtenues. Enfin, les simulations ont été retournées dans l'espace original (non gaussien) par anamorphose gaussienne inverse. Afin de conserver tous les avantages des SGS (la représentation des valeurs extrêmes entre autre), mais de manière à induire un certain degré de lissage plus réaliste pour la représentation du flux de chaleur, la moyenne des 30 simulations a été réalisée selon la méthode connue du e-type (Journel et Huijbregts, 1978, « e » est pour « expectation »). La carte du flux de chaleur en surface Q_0 a ainsi été obtenue.

6.3.2. Résultats

Les Figure 30, Figure 31 et Figure 32 montrent les cartes de flux de chaleur en surface (Q_0) qui sont créées selon les trois groupes de valeurs de flux de chaleur en profondeur (P_{10} , P_{50} et P_{90}).

On note des anomalies positives de Q_0 dans les régions suivantes (voir Figure 30, Figure 31 et Figure 32) :

- 1. Rive-Sud de Montréal
- 2. Sud du lac Saint-Pierre
- 3. Sud-Est de Bécancour

Ces anomalies positives de Q_0 pourraient être un indicateur de températures plus élevées en profondeur. Les résultats des calculs de température en profondeur sont présentés à la section suivante.

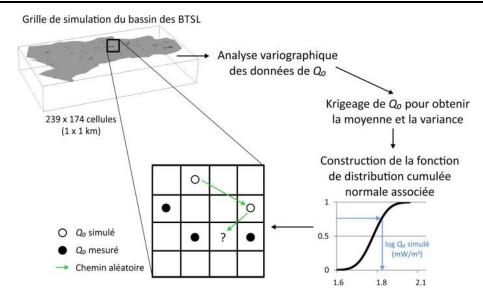


Figure 29 – Représentation schématique de la théorie des simulations séquentielles gaussiennes (SGS) pour l'interpolation du flux de chaleur en surface (modifiée de Millet, 2013).

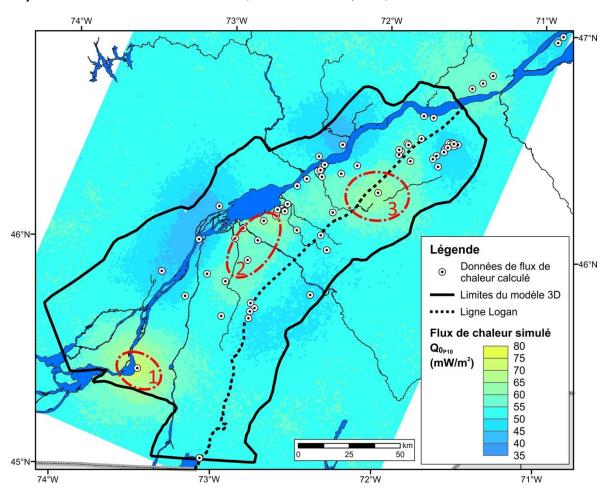


Figure 30 – Flux de chaleur en surface dans la région du bassin des BTSL selon le scénario pessimiste $Q_{0p_{10}}$. Les points blancs montrent les données utilisées pour la simulation du flux de chaleur en surface. Les ellipses rouges indiquent les anomalies positives de flux de chaleur en surface. 1 : Rive-Sud de Montréal ; 2 : Sud du lac Saint-Pierre ; 3 : Sud-Est de Bécancour.

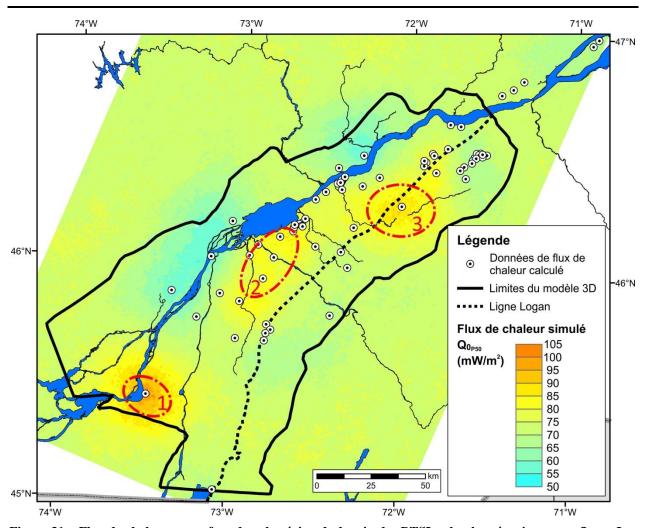


Figure 31 – Flux de chaleur en surface dans la région du bassin des BTSL selon le scénario moyen $Q_{0_{p50}}$. Les points blancs indiquent les données utilisées pour la simulation du flux de chaleur en surface. Les ellipses rouges montrent les anomalies positives de flux de chaleur en surface. 1 : Rive-Sud de Montréal ; 2 : Sud du lac Saint-Pierre ; 3 : Sud-Est de Bécancour.

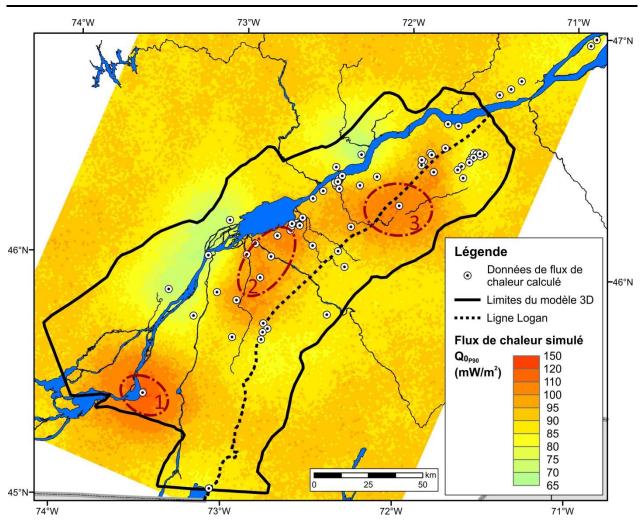


Figure 32 – Flux de chaleur en surface dans la région du bassin des BTSL selon le scénario optimiste $Q_{0p_{90}}$. Les points blancs montrent les données utilisées pour la simulation du flux de chaleur en surface. Les ellipses rouges indiquent les anomalies positives de flux de chaleur en surface. 1 : Rive-Sud de Montréal ; 2 : Sud du lac Saint-Pierre ; 3 : Sud-Est de Bécancour.

7. Modèle 3D de la température

Il est possible, à partir du flux de chaleur en surface, de calculer la température en tous points dans le modèle géologique 3D. Les différentes variables nécessaires aux calculs sont illustrées à la Figure 25.

7.1. Calculs

Comme décrit à la section 6.2, la théorie de la décroissance linéaire de la génération de chaleur interne s'applique dans la séquence de roches sédimentaires du bassin des BTSL. L'équation qui permet le calcul de la température est la suivante (ex.: Jessop, 1990; Stein, 1995; Furlong et Chapman, 2013; Turcotte et Schubert, 2014):

$$T_{z(sed)} = T_0 + \left(\frac{Q_0 \cdot z_{sed}}{\lambda_e}\right) - \left(\frac{A_e \cdot z_{sed}^2}{2\lambda_e}\right)$$

 $T_{z(sed)}$: température en profondeur dans les roches sédimentaires (°C)

 T_0 : température à la surface du sol (8 °C)

 Q_0 : flux de chaleur à la surface du sol (W/m²)

 z_{sed} : profondeur (m)

 λ_e : conductivité thermique effective (W/m·K)

 A_e : constante de génération de chaleur interne effective (W/m³)

Cette équation est ainsi utilisée afin de calculer la température dans les roches sédimentaires en profondeur jusqu'à la surface du socle. Dans le socle précambrien, c'est plutôt la théorie de la décroissance exponentielle de la génération de chaleur interne qui est appliquée pour le calcul de la température et qui se traduit par l'équation suivante (ex.: Jessop, 1990; Turcotte et Schubert, 2014):

$$T_{z(socle)}$$

$$= T_{socle} + \left(\frac{Q_{socle} \cdot Z_{socle}}{\lambda_{socle}}\right)$$

$$- \left(\frac{A_{socle} \cdot e_{socle}^2 \cdot \left[1 - exp\left(-\frac{Z_{socle}}{e_{socle}}\right)\right]}{\lambda_{socle}}\right)$$

 $T_{z(socle)}$: température en profondeur dans le socle précambrien (°C)

 T_{socle} : température à la surface du socle précambrien (°C)

 Q_{socle} : flux de chaleur à la surface du socle précambrien (W/m²)

 z_{socle} : profondeur à partir de la surface du socle précambrien(m)

 λ_{socle} : conductivité thermique du socle précambrien (W/m·K)

 A_{socle} : constante de génération de chaleur interne du socle précambrien (W/m³)

 e_{socle} : épaisseur totale de socle précambrien (m)

Il est à noter que la température à la surface du socle correspond à la température à la base de la séquence de roches sédimentaires.

Flux de chaleur à la surface du socle précambrien

Le flux de chaleur à la surface du socle précambrien correspond également au flux de chaleur à la base de la séquence de roche sédimentaire. Ainsi, ce flux de chaleur est calculé à l'aide de l'équation ci-dessous :

$$Q_z = Q_0 - \left(\frac{A_e \cdot z_{sed}}{2}\right)$$

 Q_0 : flux de chaleur en surface (W/m²)

 Q_z : flux de chaleur en profondeur (W/m²)

 A_e : constante de génération de chaleur interne effective (W/m³)

 z_{sed} : profondeur dans les roches sédimentaires (m)

Cette équation est basée sur la théorie de la décroissance linéaire de la génération de chaleur interne dans les roches sédimentaires telle qu'expliquée à la section 6.2.

Épaisseur du socle précambrien

La chaleur générée par désintégration radioactive dépend de l'épaisseur du socle précambrien considérée. La plupart des variations causées par la désintégration radioactive sont significatives jusqu'à 10 à 20 kilomètres de profondeur, ce qui est généralement interprété comme l'épaisseur du socle ou de la croûte supérieure (Roy et al., 1968; Stein, 1995; Mareschal et al., 2000; Blackwell et al., 2007). Ainsi, les variations du flux de chaleur observées sur de petites distances ne peuvent qu'être générées dans la croûte terrestre (Jaupart et Mareschal, 1999). Dans le cadre de la présente étude, il a été convenu que le socle précambrien atteignait une profondeur de 13 kilomètres afin de tenir compte de l'épaisseur des roches sédimentaires sus-jacentes tel que proposé par Blackwell et al. (2007). L'épaisseur totale du socle précambrien dépend donc de l'épaisseur des roches sédimentaires susjacentes, selon l'équation suivante :

$$e_{socle} = 13\ 000 - e_{sed}$$

 e_{socle} : épaisseur totale du socle précambrien (m) e_{sed} : épaisseur totale des roches sédimentaires (m)

Constante de génération de chaleur interne du socle précambrien

La constante de génération de chaleur interne du socle précambrien n'a toutefois pas été définie, car on suppose qu'elle varie avec la lithologie. Comme les variations de lithologies au sein du socle précambrien sous le bassin des BTSL ne sont pas connues ni interprétées, la distribution de la constante de génération de chaleur interne peut alors montrer une grande plage de valeurs. Pour pallier à ce problème, la constante de génération de chaleur interne est variable en fonction de l'équation suivante, qui permet de mettre en relation les flux de chaleur du socle et du manteau ainsi que l'épaisseur du socle précambrien (ex.: Stein, 1995; Blackwell *et al.*, 2007; Eppelbaum *et al.*, 2014; Turcotte et Schubert, 2014):

$$A_{socle} = \frac{Q_{socle} - Q_{manteau}}{z_{manteau}}$$

 A_{socle} : constante de génération de chaleur interne du socle précambrien (W/m³)

 Q_{socle} : flux de chaleur à la surface du socle (W/m²) $Q_{manteau}$: flux de chaleur provenant du manteau (W/m²)

z_{manteau}: profondeur du manteau/Moho (m)

Comme le flux de chaleur provenant du manteau varie sur de grandes longueurs d'onde dans les régions continentales stables (Jaupart et Mareschal, 1999; Mareschal et Jaupart, 2013), on peut considérer que le flux de chaleur provenant du manteau est constant à

l'échelle du bassin des BTSL. C'est ainsi qu'il est possible de calculer une constante de génération de chaleur interne en tous points dans le modèle géologique 3D. La contribution du manteau au flux de chaleur a été estimée à environ 10 à 18 mW/m² (Mareschal et Jaupart, 2013). L'estimation du flux de chaleur issu du manteau pour le socle précambrien sous le bassin des BTSL varie de 12 à 18 mW/m² (Pinet et al., 1991; Lévy et al., 2010). Dans le cas de la présente étude, une valeur de 15 mW/m² a été utilisée pour $Q_{manteau}$, car elle permet d'obtenir des valeurs de génération de chaleur interne du socle précambrien les plus vraisemblables (Lévy et al., 2010; Furlong et Chapman, 2013). Selon les interprétations de données sismiques disponibles (Pinet et al., 1991; Ludden et Hynes, 2000; White et al., 2000), la profondeur du manteau/Moho zmanteau a été définie à 40 kilomètres sous le bassin des BTSL. Ainsi, la Figure 33 montre la distribution de la constante de génération de chaleur interne du socle précambrien issue des calculs en fonction des valeurs données aux constantes Q_{socle} , Q_{mateau} et $z_{manteau}$. Il est à noter que les valeurs de A_{socle} demeurent ainsi constantes en fonction de la profondeur.

Flux de chaleur en surface, conductivité thermique et constante de génération de chaleur utilisés

Les mêmes groupes de valeurs (P10, P50, P90) de conductivité thermique et de génération de chaleur interne utilisés dans le calcul des flux de chaleur en surface doivent être utilisés avec les mêmes flux de chaleur pour le calcul des températures en profondeur. Par exemple, lorsque l'on utilise les valeurs λ_{P50} et A_{P50} pour le calcul d'un flux que l'on nomme $Q_{0_{P50}}$, les mêmes valeurs de $Q_{0_{P50}}$, λ_{P50} et A_{P50} doivent également être utilisées lors du calcul des températures en profondeur. Cependant, comme trois scénarios de température sont évalués, l'utilisation des valeurs de flux de chaleur en surface $Q_{0_{P10}}$, $Q_{0_{P50}}$ et $Q_{0_{P90}}$ avec celles de conductivité thermique λ et de génération de chaleur A correspondantes ne génèrent pas nécessairement les modèles de température les moins élevé, moyen et plus élevé.

En effet, la température en profondeur est proportionnelle au flux de chaleur en surface, mais inversement proportionnelle à la génération de chaleur interne. La conductivité thermique est à la fois proportionnelle et inversement proportionnelle à la température en profondeur, car elle intervient de façon positive et négative dans les équations. Plusieurs scénarios ont été testés afin de déterminer quels groupes de valeurs de conductivité thermique, de génération de chaleur interne et de flux de chaleur en surface génèrent les scénarios de température minimale, moyenne et maximale.

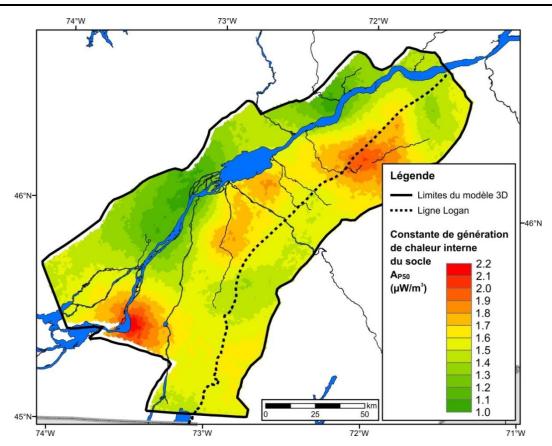


Figure 33 – Carte de la distribution de la constante de génération de chaleur interne calculée pour le socle précambrien selon le scénario moyen.

7.2. Effets de la correction paléoclimatique

Comme le flux de chaleur en surface tient compte de la correction paléoclimatique, cela crée un impact sur les températures calculées en profondeur. En effet, le flux de chaleur en surface est le flux de chaleur théorique non perturbé, ce qui engendre des températures en profondeur théoriques, c'est-à-dire non perturbées. Ces températures représentent un état théorique où les variations climatiques passées n'auraient plus d'effet en profondeur.

On sait cependant que les températures mesurées à l'heure actuelle sont plus faibles que celles non perturbées (Figure 12), car elles ont été enregistrées à des profondeurs encore perturbées aujourd'hui par le paléoclimat. On doit donc enlever l'effet de la correction paléoclimatique lors du calcul des températures en profondeur selon la méthode inverse de la section 2.3. On obtient alors les températures en profondeur réelles qui correspondent à celles qui seraient mesurées in situ.

7.3. Résultats

La distribution de la température en profondeur est

montrée à la Figure 34. Les températures calculées à différentes profondeurs sont illustrées à l'aide des Figure 35 à Figure 42 dans les deux sections suivantes.

Deux régions montrent une anomalie positive de température importante en profondeur (voir Figure 36) :

- 1. Rive-Sud de Montréal
- 2. Arthabaska-Érable

Les résultats des différents scénarios montrent relativement peu de différences les uns par rapport aux autres pour les températures calculées en profondeur (Figure 43). La moyenne des différences de température entre les différents scénarios est de moins de 10 °C à 7 kilomètres de profondeur environ.

Les résultats montrés dans les figures suivantes sont ceux du scénario moyen qui utilise les valeurs de Q_{0P50} , λ_{P50} et A_{P50} dans l'équation.

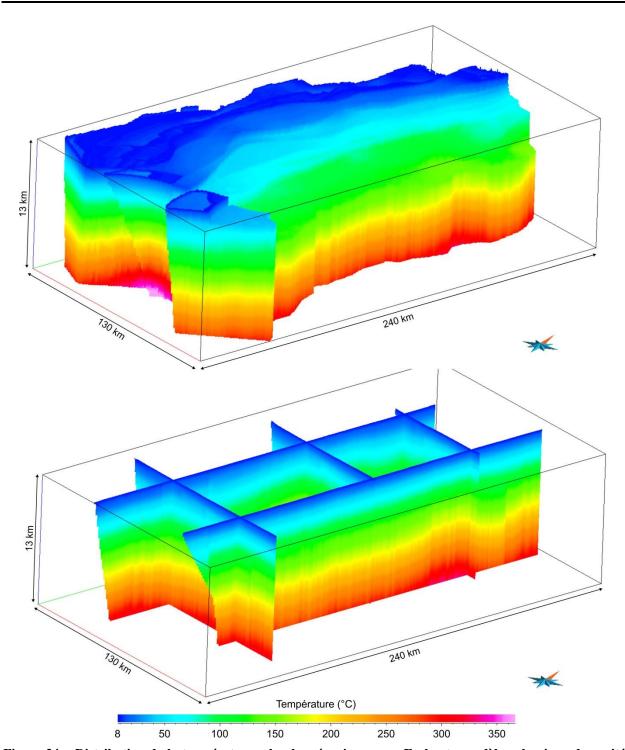


Figure 34 – Distribution de la température selon le scénario moyen. En haut : modèle volumique des unités réservoirs sans les roches couvertures. En bas : sections verticales de tout le modèle 3D.

7.3.1. Températures à différentes profondeurs

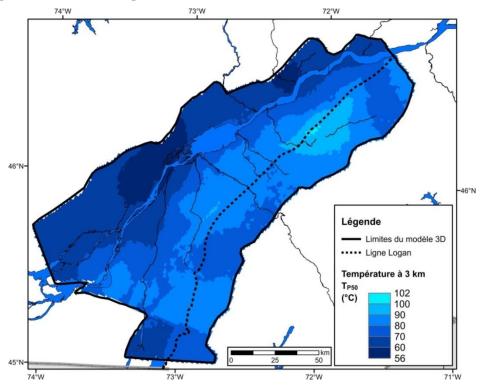


Figure 35 – Température à 3 kilomètres de profondeur selon le scénario moyen.

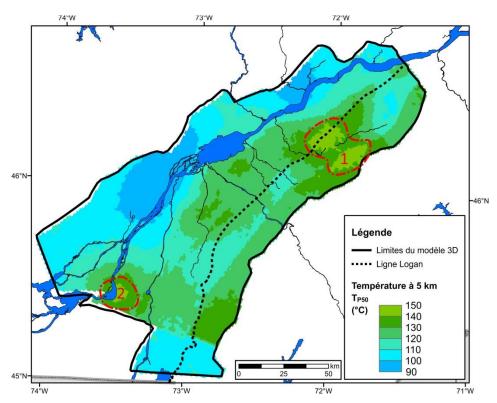


Figure 36 – Température à 5 kilomètres de profondeur selon le scénario moyen. Les pointillés rouges montrent les régions où des anomalies positives de températures sont identifiées. 1 : Anomalie de la *Rive-Sud de Montréal*. 2 : Anomalie d'*Arthabaska-Érable*.

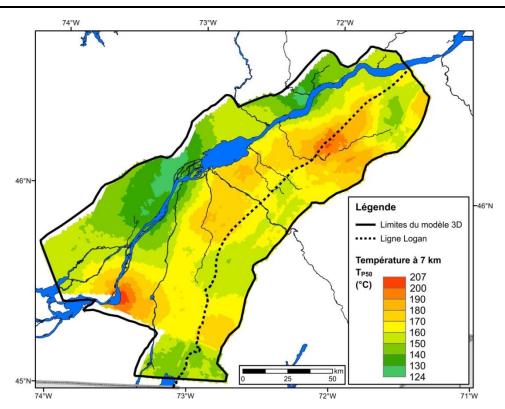


Figure 37 – Température à 7 kilomètres de profondeur selon le scénario moyen.

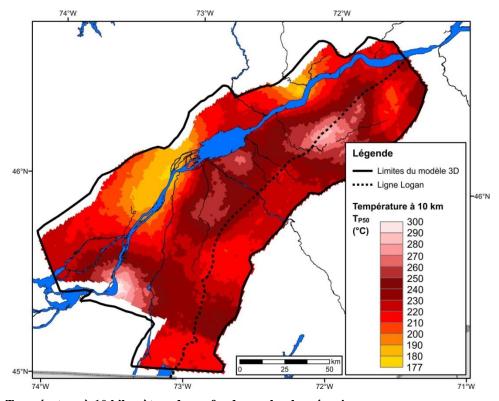


Figure 38 – Température à 10 kilomètres de profondeur selon le scénario moyen.

7.3.2. Profondeur de certaines températures

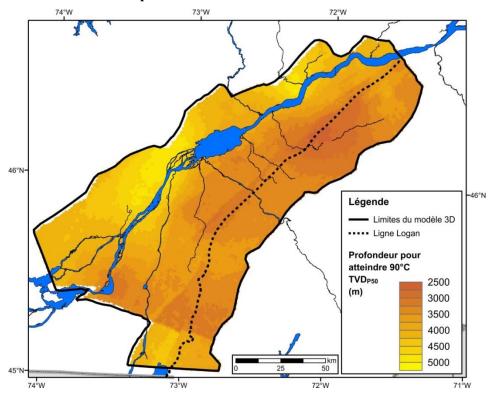


Figure 39 – Profondeur pour atteindre 90 °C selon le scénario moyen.

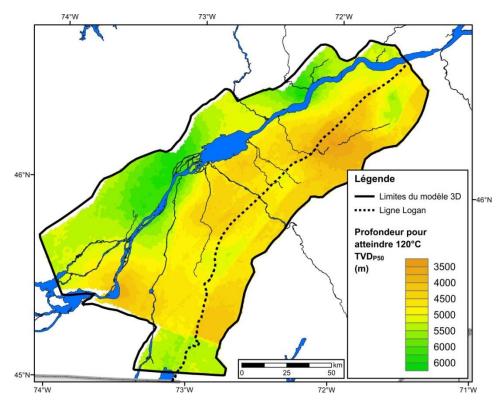


Figure 40 – Profondeur pour atteindre 120 °C selon le scénario moyen.

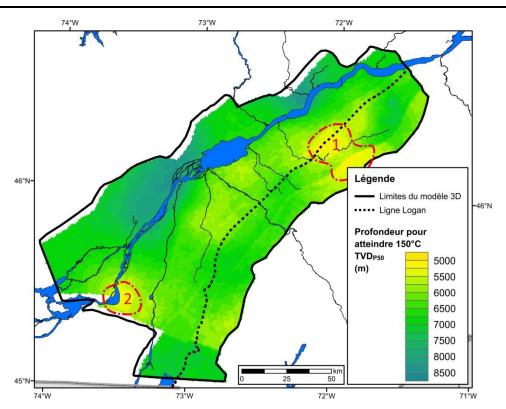


Figure 41 – Profondeur pour atteindre 150 °C selon le scénario moyen. Les pointillés rouges montrent les régions où des anomalies positives de températures sont identifiées. 1 : Anomalie de la *Rive-Sud de Montréal*. 2 : Anomalie d'*Arthabaska-Érable*.

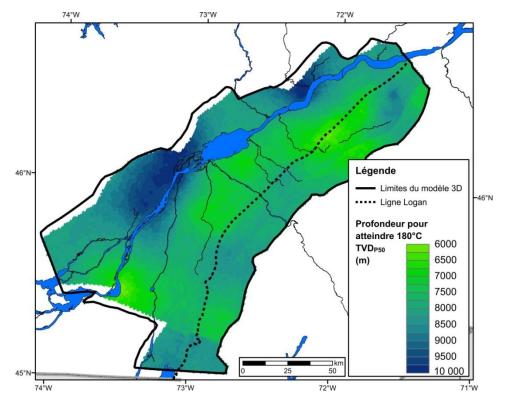


Figure 42 – Profondeur pour atteindre 180 °C selon le scénario moyen.

7.3.3. Effet de la conductivité thermique et de la constante de génération de chaleur

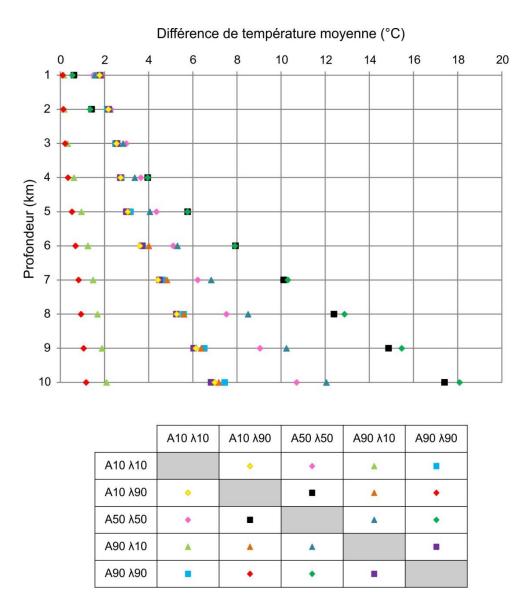


Figure 43 – Différence de température absolue moyenne entre les différents scénarios de température modélisés en fonction de la profondeur dans le modèle 3D.

8. Ressources géothermiques des BTSL

8.1. Concepts

Une des méthodes les plus fréquemment utilisées pour estimer les ressources géothermiques est de calculer le volume de chaleur ou d'énergie en place. C'est d'ailleurs la méthode d'évaluation qui a été suivie à la fois par le *Massachusetts Institute of Technology* (MIT) pour l'évaluation des ressources récupérables à l'aide de systèmes géothermiques ouvragés (MIT, 2006) et par le *United States Geological Survey* (USGS) afin de calculer des ressources géothermiques aux États-Unis (Williams *et al.*, 2008). Cette méthode est utilisée dans cette étude et est présentée ci-dessous.

8.1.1. Énergie thermique contenue dans les unités réservoirs

La quantité totale d'énergie thermique en place, exprimée en exajoule (EJ), où $1 \text{ EJ} = 10^{18} \text{ J}$, est donnée par l'équation suivante :

$$E_{tot} = \rho \cdot c \cdot V_r \cdot (T_i - T_0)$$

 E_{tot} : quantité totale d'énergie thermique en place (J)

 ρ : densité du réservoir (kg/m³)

c : capacité thermique massique du réservoir (J/kg·°C)

 V_r : volume du réservoir (m³)

 T_i : température initiale du réservoir (°C)

 T_0 : température à la surface (8 °C pour les BTSL)

La capacité thermique massique, est la quantité de chaleur nécessaire pour élever la température d'une masse unitaire de roche d'un degré Celsius. La capacité thermique volumique (*constant volume*) peut aussi être utilisée afin de caractériser les réservoirs géothermiques et elle correspond à la quantité de chaleur nécessaire pour élever la température d'un volume unitaire de roche d'un degré Celsius. La relation entre les capacités thermiques massique et volumique est :

$$c = \frac{C_v}{\rho}$$

c: capacité thermique massique (J/kg·°C)

 C_v : capacité thermique volumique (J/m³.°C)

 ρ : densité (kg/m³)

Dans le cadre de cette étude, des données de capacité thermique massique étaient disponibles pour les unités des BTSL et sont présentées au Tableau 9. Les valeurs de capacité thermique des unités des BTSL ont été évaluées à l'aide d'observations en lames minces qui ont permis de déterminer les fractions de chaque composante (minéraux, liquide, pores) des différentes unités (Nasr, 2016).

L'ensemble des données de capacité thermique massique et de densité est présenté à l'Annexe 6.

Tableau 9 – Capacité thermique massique des unités des BTSL.

Unités géolo- giques	Densité ¹ (kg/m³)	Capacité thermique massique ³ (J/kg·°C)		
Couverture	2 700	890		
Utica	2 450	835		
Tr-BR-Ch	2 700	852		
Beauharnois	2 740	862		
Theresa	2 705	847		
Cairnside	2 650	827		
Covey Hill	2 630	796		
Précambrien	2 598 ²	762		

- 1. Les valeurs de densité sont tirées de Tran Ngoc *et al.* (2014).
- 2. La valeur de densité pour le socle précambrien provient de Nasr (2016).
- 3. Les valeurs de capacité thermique massique sont tirées de Nasr (2016).

8.1.2. Énergie thermique récupérable

En raison de certaines contraintes techniques, telles que les propriétés hydrauliques des unités réservoirs, les températures de pompage et d'injection, les techniques d'exploitation, la quantité totale d'énergie thermique en place n'est pas entièrement récupérable. En effet, pour les systèmes géothermiques ouvragés, la méthode du MIT (2006) calcule l'énergie thermique récupérable en appliquant deux facteurs de réduction qui pondèrent ainsi l'énergie thermique totale de l'unité réservoir :

- la baisse de température du réservoir pendant la durée de vie du projet est limitée à 10 °C afin de conserver des conditions d'exploitation renouvelables et durables ;
- un facteur de récupération (recovery factor)
 qui représente la fraction du volume du réservoir qui est actif ou utilisé. Deux valeurs de facteur de récupération (2 et 20 %.) ont été choisies afin d'illustrer les scénarios pessimistes et optimistes.

La quantité d'énergie thermique récupérable est définie de la manière suivante (MIT, 2006):

$$E_{rec} = E_{tot} \cdot \frac{(T_i - T_f)}{(T_i - T_0)} \cdot \phi_v$$

$$E_{rec} = \rho \cdot C_p \cdot V_r \cdot (T_i - T_f) \cdot \phi_v$$

 E_{rec} : quantité d'énergie thermique récupérable (J)

 E_{tot} : quantité totale d'énergie thermique en place (J)

 T_i : température initiale du réservoir (°C)

 T_f : température finale du réservoir (°C)

 $T_i - T_f$: abaissement global de la température du réservoir (une valeur de 10 °C est utilisée)

 T_0 : température à la surface (8 °C pour les BTSL)

 ϕ_v : fraction du volume du réservoir actif ou facteur de récupération (2 ou 20%)

 ρ : densité du réservoir (kg/m³)

 C_p : capacité thermique massique du réservoir $(J/kg \cdot {}^{\circ}C)$

 V_r : volume du réservoir (m³)

Comme l'abaissement de la température du réservoir et le facteur de récupération sont constants dans les BTSL, ce sont la densité, la capacité thermique et le volume des unités réservoirs qui influencent la quantité d'énergie thermique récupérable des différentes unités réservoirs.

8.1.3. Puissance électrique

Une fois la quantité d'énergie thermique récupérable estimée, elle est convertie en énergie utilisable (MIT, 2006), c'est-à-dire de l'électricité pour le cas présent. Le cycle de puissance utilisé, la température ambiante à la surface, ainsi que la température du fluide géothermique déterminent le rendement de conversion de l'énergie. Le pourcentage de chaleur qui peut être convertie en électricité est quantitativement représenté par l'efficacité thermodynamique (η_{th}), c'est-à-dire la fraction de la chaleur totale transportée au cycle de conversion (power cycle) par le fluide géothermique qui est converti en énergie électrique (MIT, 2006). Pour les centrales binaires, dont la température du fluide géothermique utilisé se situe entre 100 et 165 °C, l'efficacité thermodynamique nette est calculée avec l'équation suivante (MIT, 2006) :

$$\eta_{th} = (0.0935 \cdot T_i) - 2.3266$$

 η_{th} : efficacité thermodynamique (%)

 T_i : température initiale du réservoir (°C)

Les expériences réalisées par le passé avec les systèmes géothermiques ouvragés ont amené à croire qu'il était possible d'extraire la chaleur de la roche sur

de longues périodes de temps. Ainsi, pour le calcul de la puissance électrique récupérable, une période de temps de 30 ans a été utilisée. Comme première approximation, la température de production du fluide au niveau de la surface est la température moyenne du volume de roche. Pour obtenir la puissance électrique récupérable, généralement exprimée en $MW_{\rm e}$, où $1~MW_{\rm e}=10^6~W$, l'équation suivante est utilisée (MIT, 2006) :

$$P_e = \frac{E_{rec} \cdot \eta_{th}}{t_n}$$

 P_e : puissance électrique (J/sec ou W)

 E_{rec} : quantité d'énergie thermique récupérable (J)

 η_{th} : efficacité thermodynamique (%)

 t_v : durée de vie du réservoir (sec, 30 années = 30 ×

31 557 600 sec/année)

8.2. Résultats

8.2.1. Volume et épaisseur des unités réservoirs

L'utilisation du modèle géologique 3D permet de calculer directement le volume des unités réservoirs. Pour bien représenter la quantité totale d'énergie thermique en place en fonction de la profondeur, les calculs ont été réalisés sur des couches d'un kilomètre d'épaisseur, de 3 à 10 kilomètres de profondeur. De plus, pour chacune de ces couches d'un kilomètre, le volume a été calculé pour deux plages de température :

- entre $120 \,^{\circ}\text{C}$ et $150 \,^{\circ}\text{C}$;
- plus de 150 °C.

Les calculs ont été réalisés pour trois entités géologiques distinctes :

- les unités réservoirs des BTSL, soit les groupes de Trenton, Black River, Chazy, Beekmantown et Potsdam;
- le Groupe de Potsdam uniquement ;
- le socle précambrien.

Les unités réservoirs des BTSL qui ont une température entre 120 et 150 °C sont présentes entre 3 et 7 kilomètres de profondeur dans le modèle 3D, tandis que le socle précambrien atteignant cette même température est présent entre 3 et 9 kilomètres de profondeur. Pour les températures supérieures à 150 °C, les unités réservoirs sédimentaires sont présentes entre 5 et 8 kilomètres de profondeur tandis que le socle précambrien se trouve entre 4 et 10 kilomètres de profondeur. La Figure 44 montre que le socle précambrien représente environ 95% du volume des unités réservoirs. La Figure 45 montre plus spécifiquement la répartition des volumes des unités réservoirs d'énergie géothermique en fonction de la profondeur et des intervalles de température pour le scénario moyen.

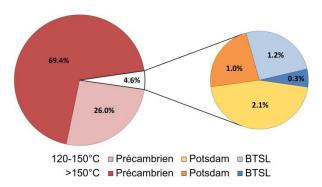


Figure 44 – Répartition du volume des unités réservoirs dans le bassin entre les différents types de roches réservoirs jusqu'à 10 kilomètres de profondeur. BTSL: unités réservoirs sédimentaires autres que le Groupe de Potsdam.

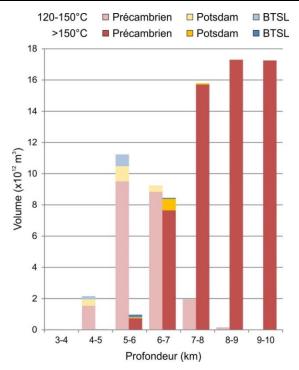


Figure 45 – Volume des unités réservoirs d'énergie géothermique à plus de 120 °C en fonction de la profondeur dans le bassin et de la température pour le scénario moyen. BTSL: unités réservoirs sédimentaires autres que le Groupe de Potsdam.

La Figure 46 montre la distribution spatiale 3D des unités réservoirs dont les températures sont entre 120 et 150 °C pour le scénario moven. L'épaisseur maximale des unités réservoirs à ces températures est de 2000 mètres. On note que l'anomalie de la Rive-Sud de Montréal permet d'atteindre 120 °C à environ 4100 à 4400 mètres de profondeur dans le socle précam-L'anomalie d'Arthabaska-Érable d'atteindre 120 °C à environ 3900 à 4300 mètres de profondeur dans la succession sédimentaire dans la partie nord de l'anomalie. On ne trouve pas de d'unités réservoirs dans la partie sud de l'anomalie car les températures de 120 à 150 °C sont rencontrées dans les roches couvertures sus-jacentes. Dans la partie nord de l'anomalie, entre 120 et 150 °C, on retrouve une épaisseur moyenne de sédiments de 925 mètres et plus spécifiquement, une épaisseur moyenne de 975 mètres pour le Groupe de Potsdam.

La Figure 47 montre la distribution spatiale 3D des unités réservoirs qui ont une température de plus de 150 °C pour le scénario moyen. On note que l'anomalie de la *Rive-Sud de Montréal* permet d'atteindre 150 °C à environ 5000 à 5500 mètres de profondeur dans le socle précambrien. L'anomalie d'*Arthabaska-Érable* permet d'atteindre 150 °C à environ 5000 à 5800 mètres de profondeur dans le

socle précambrien dans la partie nord de l'anomalie et dans la succession sédimentaire dans la partie sud de l'anomalie. Dans la partie sud de l'anomalie, à plus de 150 °C, on retrouve une épaisseur moyenne de sédi-

ments de 1170 mètres et plus spécifiquement, une épaisseur moyenne de 700 mètres pour le Groupe de Potsdam.

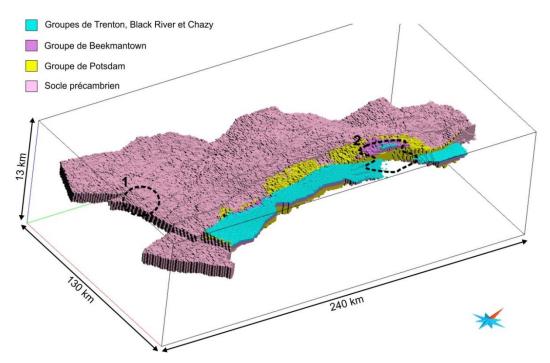


Figure 46 – Modèle géologique 3D des unités réservoirs entre 120 et 150 °C. Les pointillés noirs montrent les anomalies de température. 1 : Anomalie de la *Rive-Sud de Montréal*. 2 : Anomalie d'*Arthabaska-Érable*.

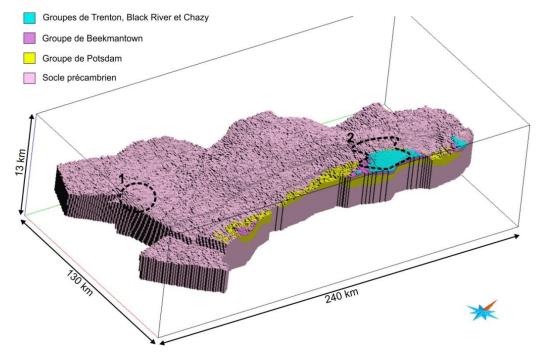


Figure 47 – Modèle géologique 3D des unités réservoirs à plus de 150 °C jusqu'à une profondeur de 10 kilomètres. Les pointillés noirs montrent les anomalies de température. 1 : Anomalie de la *Rive-Sud de Montréal*. 2 : Anomalie d'*Arthabaska-Érable*.

8.2.2. Énergie thermique totale et récupérable

La quantité totale d'énergie thermique en place est de l'ordre de 25 000 EJ pour l'ensemble des unités réservoirs des BTSL à plus de 120 °C et jusqu'à 10 kilomètres de profondeur (Figure 48). Environ 96% de cette énergie thermique est localisée dans le socle précambrien (Figure 49) qui représente aussi le plus grand volume de réservoirs du bassin (Figure 44). Seulement 4% de l'énergie thermique en place est présente dans les roches sédimentaires.

L'énergie thermique contenue dans les roches sédimentaires est surtout présente entre 4 et 7 kilomètres de profondeur et principalement à des températures entre 120 et 150 °C (Figure 50). L'énergie thermique contenue dans le Groupe du Potsdam à plus de 150 °C est principalement disponible entre 6 et 7 kilomètres de profondeur où elle est de l'ordre de 235 EJ (Figure 50).

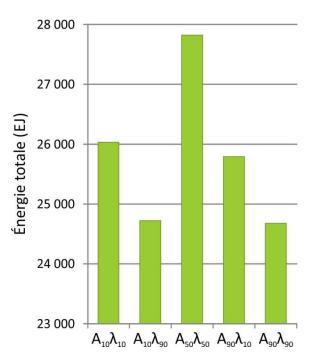


Figure 48 – Énergie thermique totale contenue dans les unités réservoirs des BTSL à plus de 120 °C pour les différents scénarios.

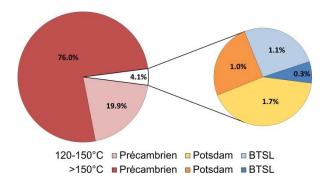


Figure 49 – Répartition de la quantité d'énergie thermique en place jusqu'à 10 kilomètres de profondeur dans les différentes unités réservoirs pour le scénario moyen. BTSL: unités réservoirs sédimentaires autres que le Groupe de Potsdam.

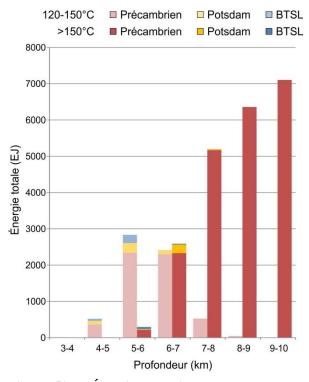


Figure 50 – Énergie thermique totale contenue dans les unités réservoirs à plus de 120 °C en fonction de la profondeur dans le bassin et de la température pour le scénario moyen. BTSL: unités réservoirs sédimentaires autres que le Groupe de Potsdam.

La quantité d'énergie thermique récupérable est de l'ordre de 320 EJ pour l'ensemble des unités réservoirs des BTSL à plus de 120 °C et jusqu'à 10 kilomètres de profondeur avec un facteur de récupération de 20% (Figure 51). Si on utilise un facteur de récupération de 2%, la quantité d'énergie thermique récupérable est plutôt de l'ordre de 30 EJ.

Environ 95% de cette énergie thermique est contenue dans le socle précambrien (Figure 52) qui représente aussi le plus grand volume d'unités réservoirs du bassin (Figure 44). Seulement 5% de l'énergie thermique récupérable est contenue dans les roches sédimentaires, en majorité dans le Groupe du Potsdam.

L'énergie thermique récupérable contenue dans les roches sédimentaires est surtout présente entre 4 et 7 kilomètres de profondeur et principalement à des températures entre 120 et 150 °C (Figure 53). L'énergie thermique récupérable contenue dans le Groupe du Potsdam à plus de 150 °C est principalement disponible entre 6 et 7 kilomètres de profondeur où elle est de l'ordre de 3 EJ pour le facteur de récupération de 20% (Figure 53).

L'ensemble des données d'énergie thermique totale et récupérable est présenté à l'Annexe 7.

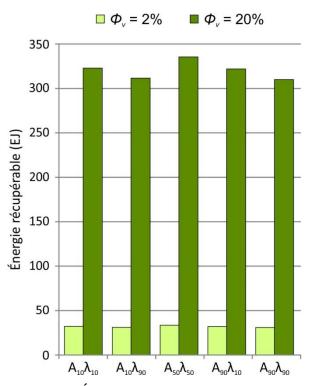


Figure 51 – Énergie thermique récupérable contenue dans les unités réservoirs des BTSL à plus de $120\,^{\circ}\mathrm{C}$ pour les différents scénarios selon les deux facteurs de récupération utilisés.

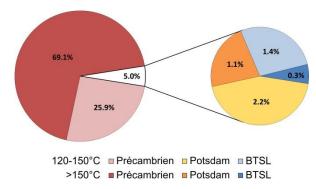


Figure 52 – Répartition de la quantité d'énergie thermique récupérable jusqu'à 10 kilomètres de profondeur dans les différentes unités réservoirs pour le scénario moyen. BTSL: unités réservoirs sédimentaires autres que le Groupe de Potsdam.

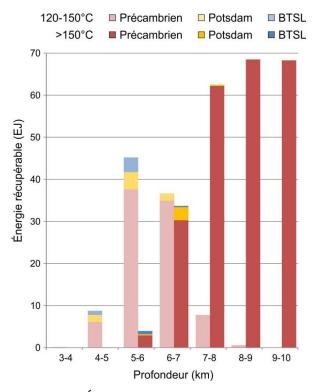


Figure 53 – Énergie thermique récupérable contenue dans les unités réservoirs à plus de 120 °C en fonction de la profondeur dans le bassin et de la température pour le scénario moyen. BTSL : unités réservoirs sédimentaires autres que le Groupe de Potsdam.

8.2.3. Puissance électrique

La puissance électrique disponible est de l'ordre de 45 000 MWe pour l'ensemble des unités réservoirs des BTSL à plus de 120 °C et jusqu'à 10 kilomètres de profondeur avec un facteur de récupération de 20% (Figure 54). À titre comparatif, cela représente sensiblement la même puissance électrique qu'offrent actuellement toutes les installations de production du Québec réunies (Tableau 10). Si on utilise un facteur de récupération de 2%, la puissance électrique disponible est plutôt de l'ordre de 4500 MWe, soit un peu moins que ce qu'offre la centrale hydroélectrique des Churchill Falls au Labrador (Tableau 10).

Environ 96% de cette puissance est contenue dans le socle précambrien (Figure 55) qui représente aussi le plus grand volume d'unités réservoirs du bassin (Figure 44). Seulement 4% de la puissance électrique est contenue dans les roches sédimentaires, en majorité dans le Groupe du Potsdam.

La puissance électrique disponible dans les roches sédimentaires est surtout présente entre 4 et 7 kilomètres de profondeur et principalement à des températures entre 120 et 150 °C (Figure 56). La puissance électrique contenue dans le Groupe du Potsdam à plus de 150 °C est principalement disponible entre 6 et 7 kilomètres de profondeur où elle est de l'ordre de 400 MWe pour le facteur de récupération de 20% (Figure 56).

L'ensemble des données de puissance électrique est présenté à l'Annexe 7.

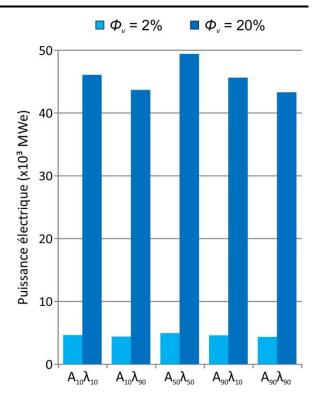


Figure 54 – Puissance électrique disponible dans les réservoirs des BTSL à plus de 120 °C pour les différents scénarios selon les deux facteurs de récupération utilisés.

Tableau 10 – Puissance électrique produite au Québec (Hydro-Québec, 2016).

Équipements de production (au 31 décembre 2014)	MW
Centrales hydroélectriques (62)	36 100
Centrale hydroélectrique des Churchill Falls (Labrador)	5428
Parc éoliens (31)	2857
Centrale nucléaire de Gentilly-2 (Fermée en 2012)	675
Centrales thermiques (25)	543
Centrales de cogénération à la biomasse (7) et biogaz (3)	206
Total	45 809

Figure 55 – Répartition de la puissance électrique jusqu'à 10 kilomètres de profondeur dans les différentes unités réservoirs pour le scénario moyen. BTSL: unités réservoirs sédimentaires autres que le Groupe de Potsdam.

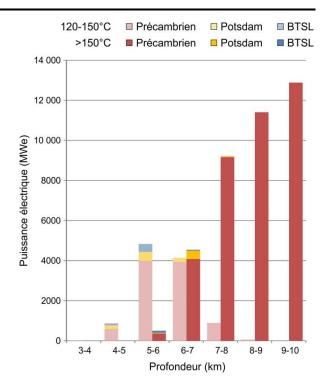


Figure 56 – Puissance électrique contenue dans les unités réservoirs à plus de 120 °C en fonction de la profondeur dans le bassin et de la température pour le scénario moyen. BTSL: unités réservoirs sédimentaires autres que le Groupe de Potsdam.

9. Discussion et conclusions

9.1. Résumé des résultats

Ce projet de recherche a permis de définir plusieurs paramètres associés à la géothermie dans le bassin des Basses-Terres du Saint-Laurent.

Les températures de fonds de puits ont été corrigées pour l'effet des opérations de forage de même que pour l'effet des variations paléoclimatiques. Ceci a permis de déterminer les gradients géothermiques à l'équilibre de chaque puits. On obtient un gradient géothermique moyen d'environ 24 °C/km dans les BTSL avec des anomalies élevées de l'ordre de 30 à 40 °C/km dans certaines régions.

La conductivité thermique et la constante de génération de chaleur des différentes unités des BTSL ont aussi été définies dans ce projet. Ces valeurs pourront être réutilisées dans des projets futurs et être bonifiées avec l'ajout de nouvelles données.

Le flux de chaleur calculé en surface montre trois anomalies positives importantes : *Rive-Sud de Montréal, Sud du Lac Saint-Pierre* et *Sud-Est de Bécancour.*

Le modèle de température en profondeur des BTSL montre deux anomalies de température élevée principales qui sont associées à deux des trois anomalies de flux de chaleur : *Rive-Sud de Montréal* et *Arthabaska-Érable*. La température à l'intérieur de ces anomalies atteint 120 °C à environ 4000 mètres de profondeur et 150 °C à environ 5000 mètres. Les températures à plus de 120 °C sont atteintes dans le socle précambrien à l'intérieur de l'anomalie de la *Rive-Sud de Montréal*. Cependant, les températures de 120 et 150 °C sont rencontrées dans les roches sédimentaires dans l'anomalie d'*Arthabaska-Érable*.

Finalement, on note que la puissance électrique disponible dans l'ensemble des BTSL est de l'ordre de 45 000 MWe avec un facteur de récupération de 20%. Ce facteur de récupération représente une valeur maximum théorique qui pourrait être atteinte dans des conditions optimales ce qui n'est probablement pas réaliste actuellement. Cependant, seulement 4% de cette puissance électrique (environ 1800 MWe avec un facteur de récupération de 20%) est contenue dans les roches sédimentaires, à des profondeurs de 4 à 7 kilomètres environ. De plus, uniquement 1% de la puissance électrique disponible est contenue dans le Groupe de Potsdam à plus de 150 °C, principalement à des profondeurs de 6 à 7 kilomètres.

9.2. Influence des différent paramètres dans l'estimation de la température en profondeur

Il n'est pas possible de quantifier l'exactitude du modèle de température en profondeur, mais on peut en relever les incertitudes.

9.2.1. Modèle géologique 3D

Le modèle géologique 3D utilisé dans ce projet afin de calculer le flux de chaleur en surface et la température en profondeur induit aussi une incertitude dans les données calculées. Il s'agit en effet d'un modèle régional basé sur des données de forage, sur la carte géologique de surface et sur des interprétations de données géophysiques qui sont distribuées de façon hétérogène sur le territoire.

La distribution spatiale des unités géologique dans le modèle est donc relativement certaine à un niveau régional mais plutôt incertaine à un niveau local. Dans les régions où plus de données sont disponibles l'incertitude diminue. Elle augmente cependant de façon générale vers le sud-est du bassin où moins de données sont disponibles et où la profondeur du bassin augmente.

9.2.2. Données de température

Plusieurs facteurs introduisent de l'incertitude dans le modèle de température à commencer par les données de température de base. En effet, les données de température utilisées sont celles issues des données de forage, les températures de fond de puits, qui peuvent être inexactes dans les rapports de forage. De plus, il existe des cas où les températures identifiées comme température de fond de puits ne soient pas enregistrées au fond du puits mais à une autre profondeur sans indication de cette profondeur. On introduit donc, dès le départ, une incertitude dans le modèle.

Par la suite, la correction des températures de fond de puits non équilibrées introduit aussi une incertitude dans le modèle. La correction de Harrison est utilisée dans ce projet car elle est bien documentée et souvent utilisées dans des projets en Amérique du Nord. Cette méthode est cependant basée sur des données de l'État de l'Oklahoma aux États-Unis et ne n'est pas nécessairement bien adaptée au bassin des BTSL. Si des données de température à l'équilibre étaient disponibles dans quelques puits du bassin, une méthode de correction plus adaptée pourrait alors être développée. Actuellement, une correction positive des températures est effectuée à partir de 600 mètres de profondeur. Cette correction atteint environ 20 °C à 3500 mètres de profondeur, ce qui n'est pas négligeable.

Le calcul de correction paléoclimatique intègre un

certain nombre d'incertitudes. La chronologie des variations climatiques est aussi sujette à des imprécisions et varie de quelques milliers d'années selon les auteurs (Beck, 1977; Chouinard et Mareschal, 2009; Majorowicz et al., 2012). De plus, la variation de température associée à chaque évènement glaciaire pourrait aussi être différente selon la littérature (ex.: Jessop, 1971; Rolandone et al., 2003; Chouinard et Mareschal, 2009). La modification de ce paramètre aurait une influence sur la température corrigée en profondeur de même que sur le gradient géothermique. Avec la méthode utilisée, une correction positive des températures est appliquée avec un maximum d'environ 2,5 °C à 1500 mètres de profondeur. L'incertitude générée par cette correction est donc mineure par rapport aux incertitudes liées aux données de base et à la correction de Harrison.

Les incertitudes sur les données de température de base utilisées comme intrants dans le modèle de température en profondeur sont sans contredit les plus importantes à garder en tête lors de l'interprétation des résultats.

9.2.3. Conductivité thermique et constante de génération de chaleur

Les valeurs de conductivité thermique ont une influence significative pour le calcul du flux de chaleur en surface (voir Figure 26). On note que la variation de la valeur de la constante de génération de chaleur influence très peu le flux de chaleur en surface mais que la variation de la conductivité thermique a un effet plus marqué. Pour les mêmes données de températures, les flux de chaleur moyens en surface calculés présentent des écarts d'environ 35 mW/m² (Figure 28). Sur ce 35 mW/m², seulement quelques mW/m² sont dus aux variations de la constante de génération de chaleur. Il est donc particulièrement important de bien définir la conductivité thermique des unités géologiques d'intérêt afin de bien déterminer un flux de chaleur valable. L'utilisation des distributions statistiques des valeurs de conductivité thermique reste aussi une option intéressante afin de bien montrer l'incertitude liée à la conductivité thermique dans le calcul du flux de chaleur.

Cependant, lors du calcul des températures en profondeur, les différents paramètres ont une influence moins marquée. La Figure 43 montre les différences entre les températures calculées pour chaque scénario avec des valeurs de conductivité thermique et de constante de génération de chaleur. On note que la différence la plus importante est de l'ordre de 18 degrés à 10 kilomètres de profondeur. On obtient cependant moins de 10 degrés d'écart entre les différents scénarios jusqu'à environ 7 kilomètres de profondeur.

Les niveaux d'écart dus à l'utilisation de différentes valeurs de conductivité thermique et de constante de génération de chaleur sont donc relativement faibles. Ceci permet de stipuler que l'utilisation des valeurs moyennes de ces paramètres donne des valeurs de température en profondeur acceptables. Il n'est donc pas nécessaire d'utiliser les distributions statistiques des paramètres afin de bien évaluer la température en fonction de différents scénarios car les différents scénarios de température obtenus sont relativement semblables.

Les résultats des calculs d'énergie thermique en place et récupérable de même que de puissance électrique montrent aussi que les paramètres de conductivité thermique et de constante de génération de chaleur ont peu d'impact sur ces calculs. En effet, les Figure 48, Figure 51 et Figure 54 montrent que les résultats des différents scénarios sont assez similaires et du même ordre de grandeur.

9.3. Perspectives futures

Plusieurs idées de recherche pourraient être poursuivies suite à ce projet.

Les données de température de base de l'ensemble du projet pourraient être améliorées grâce à l'acquisition de données de température de fond de puits à l'équilibre. Ceci permettrait de valider ou d'améliorer les corrections de température dans le cadre spécifique du bassin des BTSL.

La présence des anomalies pourrait être validée grâce à l'estimation du flux de chaleur en surface à l'aide de données de forages superficiels. De plus, les régions anomaliques pourraient aussi faire l'objet d'une modélisation plus précise à l'échelle des anomalies afin de mieux en définir les caractéristiques géologiques et géothermique.

La simulation de l'opération de centrales de productions d'électricité dans les contextes identifiés permettrait de mieux évaluer les ressources potentielles.

Finalement, l'évaluation des ressources géothermique dans le cadre d'une utilisation directe de la chaleur amènerait un point de vue différent et peut-être plus réaliste à court et moyen terme des ressources géothermiques du bassin des BTSL.

Références

- Allis, R.G. (1978) The effect of Pleistocene climatic variations on the geothermal regime in Ontario: a reassessment. <u>Canadian Journal of</u> Earth Sciences, **15** (11), 1875-1879.
- Beardsmore, G.R. et Cull, J.P. (2001) *Crustal Heat Flow A guide to measurement and modeling*. Cambridge University Press.
- Beck, A.E. (1977) Climatically perturbed temperature gradients and their effect on regional and continental heat-flow means. <u>Tectonophysics</u>, **41** (1–3), 17-39.
- Bédard, K., Comeau, F.-A. et Malo, M. (2013a) *Modélisation 3D du bassin des Basses-Terres du Saint-Laurent*. Institut national de la recherche scientifique. Québec. Rapport de recherche R-1439 (INRSCO2-2013-V1.5). 30 pages. http://espace.inrs.ca/1643/
- Bédard, K., Malo, M. et Comeau, F.-A. (2013b) CO₂ Geological Storage in the Province of Québec, Canada Capacity Evaluation of the St. Lawrence Lowlands basin. <u>Energy</u> <u>Procedia</u>, **37**, 5093-5100.
- Beltrami, H., Matharoo, G.S., Tarasov, L., Rath, V. et Smerdon, J.E. (2014) Numerical studies on the Impact of the Last Glacial Cycle on recent borehole temperature profiles: implications for terrestrial energy balance. Clim. Past, 10 (5), 1693-1706.
- Birch, A.F. (1948) The effects of Pleistocene climatic variations upon geothermal gradients.

 <u>American Journal of Science</u>, **246** (12), 729-760.
- Blackwell, D., Richards, M. et Stepp, P. (2010) *Texas Geothermal Assessment for the I35 Corridor East Final report*. SMU Geothermal Laboratory, Southern Methodist University. 78 pages.
- Blackwell, D.D., Negraru, P.T. et Richards, M.C. (2007) Assessment of the Enhanced Geothermal System Resource Base of the United States. <u>Natural Resources Research</u>, **15** (4), 283-308.
- Blackwell, D.D. et Richards, M. (2004) The 2004 geothermal map of North America. Explanation of resources and applications. GRC Transactions, 28, 317-320.
- Bucker, C. et Rybach, L. (1996) A simple method to determine heat production from gamma-ray logs. <u>Marine and Petroleum Geology</u>, **13** (4), 373-375.
- Castonguay, S., Lavoie, D., Dietrich, J. et Laliberte, J.-Y. (2010) Structure and petroleum plays of the St. Lawrence Platform and Appalachians in southern Quebec: insights from

- interpretation of MRNQ seismic reflection data. <u>Bulletin of Canadian Petroleum Geology</u>, **58** (3), 219-234.
- Chen, Z., Lavoie, D. et Malo, M. (2014)

 Caractéristiques géologiques et évaluation
 des ressources pétrolières du Shale d'Utica,
 Québec, Canada. Commission géologique du
 Canada. Dossier public 7625. 44 pages.
- Chouinard, C. et Mareschal, J.C. (2009) Ground surface temperature history in southern Canada: Temperatures at the base of the Laurentide ice sheet and during the Holocene. <u>Earth and Planetary Science Letters</u>, **277** (1–2), 280-289.
- Comeau, F.-A., Bédard, K. et Malo, M. (2012) Les régions de Nicolet et de Villeroy: état des connaissances pour la séquestration géologique du CO₂. Institut national de la recherche scientifique. Québec. Rapport de recherche R1332 (INRSCO2-2012-V1.3). 52 pages. http://espace.inrs.ca/532/
- Crain, I.K. (1968) The glacial effect and the significance of continental terrestrial heat flow measurements. <u>Earth and Planetary Science Letters</u>, **4** (1), 69-72.
- Deutsch, C.V. et Journel, A.G. (1997) GSLIB Geostatistical Software Library and user's guide. Second edition. Oxford University Press. 384 pages.
- Dietrich, J., Lavoie, D., Hannigan, P., Pinet, N., Castonguay, S., Giles, P. et Hamblin, A. (2011) Geological setting and resource potential of conventional petroleum plays in Paleozoic basins in eastern Canada. <u>Bulletin of Canadian Petroleum Geology</u>, **59** (1), 54-84.
- Drury, M.J. (1984) On a possible source of error in extracting equilibrium formation temperatures from borehole BHT data. Geothermics, **13** (3), 175-180.
- Emiliani, C. (1961) Cenezoic climatic changes as indicated by the stratigraphy and chronology of deep-sea cores of Globigerina-ooze facies.

 <u>Annals of the New York Academy of Sciences</u>, **95** (1), 521-536.
- Eppelbaum, L., Kutasov, I. et Pilchin, A. (2014)

 Applied Geothermics. Springer. Berlin, Germany. 751 pages.
- Frone, Z. et Blackwell, D.D. (2010) Geothermal Map of the Northeastern United States and the West Virginia Thermal Anomaly. GRC Transactions, **34**, 339-343.
- Furlong, K.P. et Chapman, D.S. (2013) Heat Flow, Heat Generation, and the Thermal State of the Lithosphere. <u>Annual Review of Earth and Planetary Sciences</u>, **41** (1), 385-410.

- Globensky, Y. (1987) *Géologie des Basses-Terres du Saint-Laurent*. Ministère de l'Énergie et des Ressources, Québec. MM 85-02. 63 pages.
- Globensky, Y. [ed.] (1993) Lexique stratigraphique canadien. Volume V-B: région des Appalaches, des Basses-Terres du Saint-Laurent et des Îles de la Madeleine. Gouvernement du Québec, Ministère de l'énergie et des ressources, Direction générale de l'exploration géologique et minérale. DV-91-23. 327 pages.
- Goutorbe, B., Lucazeau, F. et Bonneville, A. (2007) Comparison of several BHT correction methods: a case study on an Australian data set. <u>Geophysical Journal International</u>, **170** (2), 913-922.
- Guillou-Frottier, L. (2006) Les empreintes paléothermiques du sous-sol. <u>Geosciences</u>, **3**, 12-17.
- Guillou-Frottier, L., Mareschal, J.-C., Jaupart, C., Gariépy, C., Lapointe, R. et Bienfait, G. (1995) Heat flow variations in the Grenville Province, Canada. <u>Earth and Planetary Science Letters</u>, **136** (3–4), 447-460.
- Guillou-Frottier, L., Mareschal, J.-C. et Musset, J. (1998) Ground surface temperature history in central Canada inferred from 10 selected borehole temperature profiles. <u>Journal of Geophysical Research: Solid Earth</u>, **103** (B4), 7385-7397.
- Hamza, V.M. (1973) Vertical distribution of radioactive heat production in the Grenville geological province and the sedimentary sections overlying it. University of Western Ontario, Geophysics. London, Canada. **Ph.D.** 265 pages.
- Harrison, W.E., Luza, K.V., Prater, M.L. et Reddr, R.J. (1983) *Geothermal resource assessment in Oklahoma*. Oklahoma Geological Survey. Special Paper 83-1. 42 pages.
- Hermanrud, C., Cao, S. et Lerche, I. (1990) Estimates of virgin rock temperature derived from BHT measurements; bias and error. <u>Geophysics</u>, **55** (7), 924-931.
- Horner, D.R. (1951) <u>Pressure Build-up in Wells</u>. 3rd World Petroleum Congress, The Hague, The Netherlands, World Petroleum Congress. WPC-4135.
- Hydro-Québec. *Hydro-Québec Production* [en ligne].

 Disponible sur:
 http://www.hydroquebec.com/production/.
- Jaupart, C. et Mareschal, J.-C. (2011) *Heat generation* and transport in the Earth. Cambridge University Press. Cambridge; New York. 464 pages.
- Jaupart, C. et Mareschal, J.C. (1999) The thermal

- structure and thickness of continental roots. <u>Lithos</u>, **48** (1–4), 93-114.
- Jaupart, C. et Mareschal, J.C. (2003) Constraints on Crustal Heat Production from Heat Flow Data. *Dans:* Turekian, H.D.H.K. [ed.] *Treatise on Geochemistry*. Pergamon, Oxford, UK. p. 65-84.
- Jessop, A.M. (1971) The Distribution of Glacial Perturbation of Heat Flow in Canada. Canadian Journal of Earth Sciences, 8 (1), 162-166.
- Jessop, A.M. (1990) *Thermal geophysics*. Elsevier. Amsterdam, The Netherlands. 306 pages.
- Jessop, A.M., Allen, V.S., Bentkowski, W., Burgess, M., Drury, M., Judge, A.S., Lewis, T., Majorowicz, J., Mareschal, J.C. et Taylor, A.E. (2005) *The Canadian Geothermal Data Compilation*. Geological Survey of Canada. Open File 4887.
- Jessop, A.M., Lewis, T.J., Judge, A.S., Taylor, A.E. et Drury, M.J. (1984) Terrestrial heat flow in Canada. <u>Tectonophysics</u>, **103** (1–4), 239-261.
- Journel, A.G. et Huijbregts, C.J. (1978) *Mining* geostatistics. The Blackburn Press. New York, USA. 600 pages.
- Kehle, R.O., Schoeppel, R.J. et Deford, R.K. (1970) The AAPG geothermal survey of North America. Geothermics, **2** (1), 358-367.
- Konstantinovskaya, E., Rutqvist, J. et Malo, M. (2014)
 CO2 storage and potential fault instability in
 the St. Lawrence Lowlands sedimentary basin
 (Quebec, Canada): Insights from coupled
 reservoir-geomechanical modeling.
 International Journal of Greenhouse Gas
 Control, 22 (0), 88-110.
- Konstantinovskaya, E.A., Rodriguez, D., Kirkwood, D., Harris, L.B. et Thériault, R. (2009) Effects of Basement Structure, Sedimentation and Erosion on Thrust Wedge Geometry: An Example from the Quebec Appalachians and Analogue Models. <u>Bulletin of Canadian Petroleum Geology</u>, **57** (1), 34-62.
- Kutasov, I.M. et Eppelbaum, L.V. (2010) A new method for determining the formation temperature from bottom-hole temperature logs <u>Journal of Petroleum and Gas Engineering</u>, 1 (1), 1-8.
- Lachenbruch, A.H. (1970) Crustal temperature and heat production: Implications of the linear heat-flow relation. <u>Journal of Geophysical Research</u>, **75** (17), 3291-3300.
- Lavoie, D. (1994) Diachronous tectonic collapse of the Ordovician continental margin, eastern Canada: comparison between the Quebec Reentrant and St. Lawrence Promontory.

 <u>Canadian Journal of Earth Sciences</u>, **31** (8),

- 1309-1319.
- Lefebvre, P. et Trempe, R. (1980) Gradient géothermique dans les Basses-Terres Février 1980 Rapport #9206. Ministère des Ressources naturelles et de la Faune, Québec. 1980TA000-01. 9 pages.
- Lévy, F., Jaupart, C., Mareschal, J.C., Bienfait, G. et Limare, A. (2010) Low heat flux and large variations of lithospheric thickness in the Canadian Shield. <u>Journal of Geophysical Research: Solid Earth</u>, **115** (B6), B06404.
- Ludden, J. et Hynes, A. (2000) The Lithoprobe Abitibi-Grenville transect: two billion years of crust formation and recycling in the Precambrian Shield of Canada. <u>Canadian</u> Journal of Earth Sciences, **37** (2-3), 459-476.
- Majorowicz, J., Gosnold, W., Gray, A., Safanda, J., Klenner, R. et Unsworth, M. (2012) Implications of post-glacial warming for northern Alberta heat flow Correcting for the underestimate of the geothermal potential.

 <u>Geothermal Resources Council Transactions</u>, 36, 693-698.
- Majorowicz, J. et Minea, V. (2012) Geothermal energy potential in the St-Lawrence River area, Québec. Geothermics, **43** (0), 25-36.
- Mareschal, J.-C. et Jaupart, C. (2013) Radiogenic heat production, thermal regime and evolution of continental crust. <u>Tectonophysics</u>, **609**, 524-534.
- Mareschal, J.C., Jaupart, C., Gariépy, C., Cheng, L.Z., Guillou-Frottier, L., Bienfait, G. et Lapointe, R. (2000) Heat flow and deep thermal structure near the southeastern edge of the Canadian Shield. <u>Canadian Journal of Earth Sciences</u>, **37** (2-3), 399-414.
- Millet, E. (2013) Modélisation de l'hétérogénéité de l'aquifère deltaïque de Valcartier et son impact sur la dispersivité et l'âge de l'eau souterraine. Institut National de la Recherche Scientifique Centre Eau Terre Environnement, Sciences de la Terre. Québec, Canada. M.Sc. 106 pages.
- Minea, V. et Majorowicz, J. (2012) Preliminary assessment of deep geothermal resources in Trois-Rivieres area, Quebec. <u>Geothermal Resources Council Transactions</u>, **36**, 709-715.
- Misener, A.D., Thompson, L.G.D. et Uffen, R.J. (1951) Terrestrial heat flow in Ontario and Quebec. <u>American Geophysical Union Transactions</u>, **32**, 729-738.
- MIT (2006) The future of geothermal energy. Impact of enhanced geothermal systems (EGS) on the United States in the 21st century.

 Massachusetts Institute of Technology, Idaho

- National Laboratory. INL/EXT-06-11746. 372 pages.
- Nasr, M. (2016) Évaluation des propriétés thermiques de la séquence des Basses-Terres du Saint-Laurent : Mesures au laboratoire et approche diagraphique. Institut National de la Recherche Scientifique Centre Eau Terre Environnement, Sciences de la Terre. Québec, Canada. M.Sc.
- Pinet, C., Jaupart, C., Mareschal, J.-C., Gariepy, C., Bienfait, G. et Lapointe, R. (1991) Heat flow and structure of the lithosphere in the Eastern Canadian Shield. <u>Journal of Geophysical Research: Solid Earth</u>, **96** (B12), 19941-19963.
- Raymond, J., Malo, M., Comeau, F.-A., Bedard, K., Lefebvre, R. et Therrien, R. (2012) <u>Assessing the geothermal potential of the St. Lawrence sedimentary basin in Québec, Canada.</u> 39th IAH Congress, Niagara Falls, Canada.
- Robertson, E.C. (1988) *Thermal properties of rocks*. United States Geological Survey. Open-File Report 88-441. 106 pages.
- Rolandone, F., Mareschal, J.-C. et Jaupart, C. (2003) Temperatures at the base of the Laurentide Ice Sheet inferred from borehole temperature data. <u>Geophysical Research Letters</u>, **30** (18).
- Roy, R.F., Blackwell, D.D. et Birch, F. (1968) Heat generation of plutonic rocks and continental heat flow provinces. <u>Earth and Planetary Science Letters</u>, **5**, 1-12.
- Rybach, L. (1984) The Paleogeothermal Conditions of the Swiss Molasse Basin: Implications for Hydrocarbon Potential. Oil & Gas Science and Technology - Rev. IFP, **39** (2), 143-146.
- Saull, V.A., Clark, T.H., Doig, R.P. et Butler, R.B. (1962) Terrestrial heat flow in the St. Lawrence Lowland of Quebec. <u>Canadian Mining and Metallugicical Bulletin</u>, **65**, 63-66
- Séjourné, S., Dietrich, J. et Malo, M. (2003) Seismic characterization of the structural front of southern Quebec Appalachians. <u>Bulletin of Canadian Petroleum Geology</u>, **51** (1), 29-44.
- SNC-SOQUIP (1979) Rapport sur le potentiel en énergie géothermique de basse énergie dans les Basses Terres du St-Laurent. Ministère des Ressources Naturelles et de la Faune, Québec. 1979TA000-04. 150 pages.
- Srivastava, R.M. (1994) An overview of stochastic methods for reservoir characterization. *Dans:* Yarus, J.M. et R.L. Chambers [eds] *Stochastic modeling and geostatistics Principle, methods, and case studies.* . AAPG computer Application in geology, No. 3. American Association of Petroleum

- Geologists, Tulsa, USA. p. 3-16.
- Stein, C.A. (1995) Heat Flow of the Earth. *Dans:* Global Earth Physics. American Geophysical Union. p. 144-158.
- Thériault, R. (2012) Caractérisation du Shale d'Utica et du Groupe de Lorraine, Basses-Terres du Saint-Laurent Partie 2 : Interprétation géologique. Gouvernement du Québec, Géologie Québec, Direction de l'information géologique de Québec. DV2012-04. 79 pages.
- Tran Ngoc, T.D., Doughty, C., Lefebvre, R. et Malo, M. (2013) Injectivity of carbon dioxide in the St. Lawrence Platform, Quebec (Canada): A sensitivity study. Greenhouse Gases: Science and Technology, **3** (6), 516-540.
- Tran Ngoc, T.D., Lefebvre, R., Konstantinovskaya, E. et Malo, M. (2014) Characterization of deep saline aquifers in the Bécancour area, St. Lawrence Lowlands, Québec, Canada: implications for CO2 geological storage.

 <u>Environmental Earth Sciences</u>, **72** (1), 119-146.
- Turcotte, D.L. et Schubert, G. (2014) *Geodynamics*. *Third Edition*. Cambridge University Press. Cambridge, UK. 636 pages.
- Westaway, R. et Younger, P.L. (2013) Accounting for palaeoclimate and topography: A rigorous approach to correction of the British geothermal dataset. Geothermics, 48, 31-51.
- White, D.J., Forsyth, D.A., Asudeh, I., Carr, S.D., Wu, H., Easton, R.M. et Mereu, R.F. (2000) A seismic-based cross-section of the Grenville Orogen in southern Ontario and western Quebec. Canadian Journal of Earth Sciences, 37 (2-3), 183-192.
- Williams, C.F., Reed, M.J. et Mariner, R.H. (2008) A review of methods applied by the U.S. Geological Survey in the assessment of identified geothermal resources U.S. Geological Survey. Open File Report 2008-1296. 27 pages.

Annexe 1. Températures de fonds de puits et correction de Harrison

Tableau 11 – Données de température de fond de puits utilisées dans cette étude et résultats de la correction de Harrison.

MD : Profondeur mesurée ($Measured\ Depth$). TVD : Profondeur verticale ($True\ Vertical\ Depth$). T $^{\circ}$: Température. Tr-BR-Ch : Trenton-Black-River-Chazy. Les données de température utilisées dans cette étude sont surlignées en vert.

No Puits	Nom du Puits	Année	MD (pi)	TVD (pi)	MD (m)	TVD (m)	T° mesurée (F)	T° mesurée (°C)	T° corrigée selon Harrison (°C)	Gradient géothermique non corrigé (°C/km)	Gradient géothermique corrigé selon Harrison (°C/km)	Formation géo- logique
A013	Bald Mountain, Louiseville No 2	1957	1126	1124	343	343	55.00	12.78	-	13.9	-	Theresa
A029	Caprive No 2, Trois-Rivières	1959	1400	1397	427	426	75.00	23.89	-	37.3	-	Tr-BR-Ch
A063	Laduboro No 3, La Baie Yamaska	1959	3017	3007	920	917	84.00	28.89	27.15	22.8	20.9	Tr-BR-Ch
A065	Laduboro No 5, La Baie Yamaska	1963	4441	4437	1354	1352	98.00	36.67	40.57	21.2	24.1	Précambrien
A125	Laduboro C.I.G. No 1, Nicolet	1963	4167	4125	1270	1257	94.00	34.44	37.20	21.0	23.2	Cairnside
A126	Laduboro QIG et al No 1, Yamaska	1963	4141	4127	1262	1258	98.00	36.67	39.43	22.8	25.0	Potsdam
A126	Laduboro QIG et al No 1, Yamaska	1963	4400	4386	1341	1337	118.00	47.78	51.50	29.8	32.5	Précambrien
A134	Québec Natural Gas No 10, Saint-Vincent-de-Paul	1965	1504	1498	458	457	56.00	13.33	-	11.7	-	Cairnside
A135	Québec Natural Gas No 11, Saint-Vincent-De-Paul	1965	1517	1510	462	460	58.00	14.44	-	14.0	-	Cairnside
A136	Québec Natural Gas No 12, Saint-Vincent-De-Paul	1965	1474	1474	449	449	57.00	13.89	-	13.1	-	Cairnside
A147	Québec Natural Gas No 2, Saint-Gérard-Magella	1966	821	818	250	249	54.00	12.22	-	16.9	-	Tr-BR-Ch
A148	Québec Natural Gas No 3, Saint-Gérard, Sainte- Magella	1966	860	857	262	261	55.00	12.78	-	18.3	-	Tr-BR-Ch
A149	Québec Natural Gas No 15, Saint-Vincent-de-Paul	1966	1256	1254	383	382	58.00	14.44	-	16.9	-	Beekmantown
A150	Québec Natural Gas No 16, Saint-Vincent-de-Paul	1966	1473	1471	449	448	61.00	16.11	-	18.1	-	Cairnside
A151	Louvicourt – Métal, l'Assomption No 8	1966	2614	2610	797	796	72.00	22.22	18.76	17.9	13.5	Cairnside
A152	Shell, Saint-Simon No 1	1969	5881	5779	1793	1762	93.00	33.89	42.28	14.7	19.5	Écaille
A152	Shell, Saint-Simon No 1	1969	8699	8441	2651	2573	115.00	46.11	61.08	14.8	20.6	Écaille
A152	Shell, Saint-Simon No 1	1969	10998	10643	3352	3244	158.00	70.00	88.08	19.1	24.7	Écaille
A156	Husky, Gentilly No 1	1971	8570	8559	2612	2609	140.00	60.00	75.19	19.9	25.8	Covey Hill

No Puits	Nom du Puits	Année	MD (pi)	TVD (pi)	MD (m)	TVD (m)	T° mesurée (F)	T° mesurée (°C)	T° corrigée selon Harrison (°C)	Gradient géothermique non corrigé (°C/km)	Gradient géothermique corrigé selon Harrison (°C/km)	Formation géo- logique
A157	Canac B.P. Sisque, Brossard No 1	1971	4754	4741	1449	1445	134.00	56.67	61.66	33.7	37.1	Covey Hill
A158	Husky Bruyères No 1	1971	4562	4548	1390	1386	96.00	35.56	39.86	19.9	23.0	Covey Hill
A159	SOQUIP Laduboro, Baieville No 1	1971	4278	4266	1304	1300	99.00	37.22	40.50	22.5	25.0	Précambrien
A160	CPOG SOQUIP Sisque, Île d'Orléans No 1	1971	5947	5931	1813	1808	108.00	42.22	51.07	18.9	23.8	Précambrien
A161	Shell, Sainte-Françoise-Romaine No 1	1971	6566	6525	2001	1989	126.00	52.22	62.77	22.2	27.5	Utica
A161	Shell, Sainte-Françoise-Romaine No 1	1971	8484	8439	2586	2572	142.00	61.11	76.08	20.6	26.5	Covey Hill
A161	Shell, Sainte-Françoise-Romaine No 1	1971	9382	9335	2860	2845	150.00	65.56	82.04	20.2	26.0	Précambrien
A162	Sarep Laduboro, Saint-Ours No 1	1972	6144	6119	1873	1865	110.00	43.33	52.74	18.9	24.0	Covey Hill
A163	Shell, Wickham No 1	1972	9026	8847	2751	2697	125.00	51.67	67.37	16.2	22.0	Écaille
A163	Shell, Wickham No 1	1972	12362	11936	3768	3638	169.00	76.11	95.03	18.7	23.9	Écaille
A163	Shell, Wickham No 1	1972	14985	14203	4567	4329	187.00	86.11	105.24	18.0	22.5	Écaille
A164	Shell, Saint-Flavien No 1	1972	3967	3946	1209	1203	101.00	38.33	40.40	25.2	26.9	Écaille
A164	Shell, Saint-Flavien No 1	1972	5322	5300	1622	1616	80.00	26.67	33.55	11.6	15.8	Écaille
A164	Shell, Saint-Flavien No 1	1972	7051	7026	2149	2141	113.00	45.00	56.86	17.3	22.8	Écaille
A164	Shell, Saint-Flavien No 1	1972	7816	7788	2382	2374	119.00	48.33	61.98	17.0	22.7	Écaille
A165	C.S. SOQUIP Laduboro, Nicolet No 1	1972	6365	6330	1940	1929	113.00	45.00	55.01	19.2	24.4	Précambrien
A165A	C.S. SOQUIP Laduboro, Nicolet No 1a	1972	7157	6860	2181	2091	122.00	50.00	61.44	20.1	25.6	Covey Hill
A166	Shell, Saint-Armand ouest No 1	1972	9330	9315	2844	2839	126.00	52.22	68.68	15.6	21.4	Cairnside
A166	Shell, Saint-Armand ouest No 1	1972	12492	12477	3808	3803	140.00	60.00	79.05	13.7	18.7	Covey Hill
A167	SOQUIP Shell, Sainte-Croix No 1	1973	6128	6096	1868	1858	100.00	37.78	47.12	16.0	21.1	Précambrien
A168	SOQUIP Shell, Villeroy No 1	1973	7028	6896	2142	2102	118.00	47.78	59.31	18.9	24.4	Tr-BR-Ch
A169	SOQUIP Shell, Saint-Flavien No 1	1974	8205	8043	2501	2452	115.00	46.11	60.30	15.5	21.3	Écaille
A170	C.S. SOQUIP, Yamachiche No 1	1974	1447	1434	441	437	64.00	17.78	-	22.4	-	Précambrien
A171	SOQUIP et al., Val-Alain No 1	1974	5916	5809	1803	1771	91.00	32.78	41.26	14.0	18.8	Appalaches
A172	C.S. SOQUIP S.W., Maskinongé No 1	1974	2175	2164	663	659	68.00	20.00	14.52	18.2	9.9	Précambrien
A173	SOQUIP et al., Villeroy No 2	1974	3455	3439	1053	1048	72.00	22.22	22.28	13.6	13.6	Écaille
A173	SOQUIP et al., Villeroy No 2	1974	7260	7192	2213	2192	130.00	54.44	66.71	21.2	26.8	Tr-BR-Ch
A173	SOQUIP et al., Villeroy No 2	1974	7272	7204	2217	2196	119.00	48.33	60.63	18.4	24.0	Tr-BR-Ch

No Puits	Nom du Puits	Année	MD (pi)	TVD (pi)	MD (m)	TVD (m)	T° mesurée (F)	T° mesurée (°C)	T° corrigée selon Harrison (°C)	Gradient géothermique non corrigé (°C/km)	Gradient géothermique corrigé selon Harrison (°C/km)	Formation géo- logique
A174	SOQUIP et al., Île d'Orléans No 2	1975	3462	3448	1055	1051	80.00	26.67	26.77	17.8	17.9	Lorraine
A175	SOQUIP et al., Les Saules No 1	1975	3182	3166	970	965	83.00	28.33	27.27	21.1	20.0	Précambrien
A176	SOQUIP et al., L'Ancienne Lorette	1975	3276	3313	999	1010	83.00	28.33	27.88	20.1	19.7	Précambrien
A177	SOQUIP et al., Saint-Flavien No 2	1975	5947	5288	1813	1612	105.00	40.56	47.40	20.2	24.4	Écaille
A178	SOQUIP et al., Saint-Flavien No 3	1976	5886	5694	1794	1736	105.00	40.56	48.69	18.8	23.4	Écaille
A179	SOQUIP et al., Saint-Hugues No 1	1976	9956	9784	3035	2982	178.00	81.11	98.23	24.5	30.3	Écaille
A180	SOQUIP et al., Saint-Flavien No 4	1976	7321	7047	2231	2148	111.00	43.89	55.80	16.7	22.3	Écaille
A181	SOQUIP et al., Sainte-Hélène No 1	1977	1975	1954	602	596	73.00	22.78	-	24.8	-	Écaille
A181	SOQUIP et al., Sainte-Hélène No 1	1977	10672	10144	3253	3092	135.00	57.22	74.78	15.9	21.6	Écaille
A182	SOQUIP et al., Saint-Flavien No 5	1977	5204	4994	1586	1522	89.00	31.67	37.53	15.5	19.4	Écaille
A183	SOQUIP et al., Saint-Flavien No 6	1977	6200	6158	1890	1877	112.00	44.44	53.96	19.4	24.5	Écaille
A184	SOQUIP et al., Lyster No 1	1977	10067	9758	3068	2974	125.00	51.67	68.75	14.7	20.4	Écaille
A185	SOQUIP Dome et al., Notre-Dame-du-Bon-Conseil No 1	1977	3096	3079	944	938	120.00	48.89	47.46	43.6	42.0	Appalaches
A185	SOQUIP Dome et al., Notre-Dame-du-Bon-Conseil No 1	1977	11496	11308	3504	3447	189.00	87.22	105.82	23.0	28.4	Écaille
A185	SOQUIP Dome et al., Notre-Dame-du-Bon-Conseil No 1	1977	14030	13780	4276	4200	184.00	84.44	103.55	18.2	22.7	Écaille
A186	SOQUIP, Nicolet No 1	1977	4541	4520	1384	1378	94.00	34.44	38.65	19.2	22.2	Précambrien
A187	SOQUIP et al., Du Chêne No 1 (Villeroy)	1978	3020	3006	920	916	84.00	28.89	27.15	22.8	20.9	Appalaches
A187	SOQUIP et al., Du Chêne No 1 (Villeroy)	1978	8974	8854	2735	2699	152.00	66.67	82.38	21.7	27.6	Tr-BR-Ch
A187	SOQUIP et al., Du Chêne No 1 (Villeroy)	1978	10413	10278	3174	3133	210.00	98.89	116.60	29.0	34.7	Cairnside
A188	SOQUIP, Nicolet No 2	1978	4611	4592	1405	1400	100.00	37.78	42.24	21.3	24.5	Précambrien
A189	SOQUIP, Saint-Thomas-d'Aquin No 1	1978	8320	8245	2536	2514	133.00	56.11	70.71	19.1	24.9	Tr-BR-Ch
A190	SOQUIP, Sainte-Françoise-Romaine No 1	1978	4003	3984	1220	1214	100.40	38.00	40.21	24.7	26.5	Lorraine
A190	SOQUIP, Sainte-Françoise-Romaine No 1	1978	7136	7097	2175	2163	109.40	43.00	55.03	16.2	21.7	Tr-BR-Ch
A191	SOQUIP, Saint-Janvier-de-Joly No 1	1979	9226	8807	2812	2684	122.00	50.00	65.63	15.6	21.5	Écaille
A192	SOQUIP, Sainte-Croix No 1 Lotbinière	1979	3493	3466	1065	1057	86.00	30.00	30.18	20.8	21.0	Précambrien
A193	SOQUIP, Saint-Janvier-de-Joly No 2	1979	3746	3696	1142	1126	78.80	26.00	27.09	16.0	16.9	Écaille

No Puits	Nom du Puits	Année	MD (pi)	TVD (pi)	MD (m)	TVD (m)	T° mesurée (F)	T° mesurée (°C)	T° corrigée selon Harrison (°C)	Gradient géothermique non corrigé (°C/km)	Gradient géothermique corrigé selon Harrison (°C/km)	Formation géo- logique
A194	SOQUIP, Pintendre No 1 Lévis	1979	5886	5847	1794	1782	104.00	40.00	48.60	18.0	22.8	Appalaches
A194	SOQUIP, Pintendre No 1 Lévis	1979	13264	13154	4043	4009	156.20	69.00	88.07	15.2	20.0	Écaille
A195	SOQUIP Pétrofina, Saint-Louis-de-Blandford No 1	1980	5751	5610	1753	1709	132.80	56.00	63.87	28.1	32.7	Appalaches
A196	SOQUIP Pétrofina, Bécancour No 1	1980	4493	4472	1370	1363	134.60	57.00	61.04	35.9	38.9	Précambrien
A197	Texaco SOQUIP, Baieville No 1 Yamaska	1980	4557	4543	1389	1384	100.40	38.00	42.28	21.7	24.8	Précambrien
A198	SOQUIP Pétrofina, Bécancour No 2	1981	4145	4126	1264	1258	99.86	37.70	40.46	23.6	25.8	Précambrien
A199	Texaco, Yamaska-Est No 1	1981	4423	4403	1348	1342	95.00	35.00	38.79	20.1	22.9	Covey Hill
A200	SOQUIP, Saint-Flavien No 7	1984	5853	5601	1784	1707	82.00	40.00	47.84	18.7	23.3	Écaille
A202	SOQUIP Lemaire et al., Joly No 3	1984	4357	4244	1328	1294	87.98	31.10	34.30	17.9	20.3	Écaille
A203	Tioxode, Tracy No 1	1986	5706	5704	1739	1739	67.70	19.83	28.00	6.8	11.5	Précambrien
A214	BVI et al., Saint-Simon No 1	1991	3281	3250	1000	991	84.20	29.00	28.28	21.2	20.5	Écaille
A214	BVI et al., Saint-Simon No 1	1991	10640	10573	3243	3223	138.20	59.00	77.01	15.8	21.4	Écaille
A214	BVI et al., Saint-Simon No 1	1991	13547	13444	4129	4098	161.60	72.00	91.09	15.6	20.3	Theresa
A215	SOQUIP et al., Saint-Flavien No 8	1991	5627	5597	1715	1706	96.12	35.62	43.46	16.2	20.8	Écaille
A221	SOQUIP et al., Saint-Flavien No 9	1993	5693	5500	1735	1676	93.20	34.00	41.53	15.5	20.0	Écaille
A222	BVI et al., Saint-Wenceslas No 1	1993	8105	8076	2470	2462	136.40	58.00	72.25	20.3	26.1	Lorraine
A222	BVI et al., Saint-Wenceslas No 1	1993	11342	11311	3457	3448	174.20	79.00	97.60	20.6	26.0	Covey Hill
A223	Intermont, Bécancour No 1	1993	3280	3270	1000	997	78.80	26.00	25.37	18.1	17.4	Theresa
A224	Intermont, Bécancour No 2	1993	3210	3176	979	968	78.80	26.00	24.98	18.6	17.5	Lorraine
A225	SOQUIP et al., Saint-Flavien No 10	1994	3658	3627	1115	1106	87.80	31.00	31.82	20.8	21.5	Écaille
A225	SOQUIP et al., Saint-Flavien No 10	1994	5974	5535	1821	1687	104.00	40.00	47.64	19.0	23.5	Écaille
A225	SOQUIP et al., Saint-Flavien No 10	1994	7536	6745	2297	2056	104.00	40.00	51.14	15.6	21.0	Écaille
A226	SOQUIP et al., Saint-Flavien No 11	1994	4957	4896	1511	1492	77.00	25.00	30.53	11.4	15.1	Écaille
A226	SOQUIP et al., Saint-Flavien No 11	1994	5341	5280	1628	1609	86.00	30.00	36.82	13.7	17.9	Écaille
A227	SOQUIP et al., Saint-Flavien No 12	1995	5899	5601	1798	1707	111.20	44.00	51.84	21.1	25.7	Écaille
A228	SOQUIP et al., Saint-Flavien No 13	1995	997	974	304	297	75.20	24.00	-	53.9	-	Lorraine
A228	SOQUIP et al., Saint-Flavien No 13	1995	6063	5911	1848	1802	114.80	46.00	54.79	21.1	26.0	Écaille
A229	Genoil et al., Saint-Léonard No 1	1996	8110	8081	2472	2463	95.00	35.00	49.26	11.0	16.8	Lorraine

No Puits	Nom du Puits	Année	MD (pi)	TVD (pi)	MD (m)	TVD (m)	T° mesurée (F)	T° mesurée (°C)	T° corrigée selon Harrison (°C)	Gradient géothermique non corrigé (°C/km)	Gradient géothermique corrigé selon Harrison (°C/km)	Formation géo- logique
A229	Genoil et al., Saint-Léonard No 1	1996	13238	13041	4035	3975	163.40	73.00	92.06	16.4	21.1	Cairnside
A236	Junex, Bécancour No 2	2002	3024	3013	922	918	80.60	27.00	25.29	20.7	18.8	Beauharnois
A238	Junex, Batiscan No 1	2003	2888	2877	880	877	69.62	20.90	18.61	14.7	12.1	Cairnside
A246	Junex, Bécancour No 6B	2008	4389	4357	1338	1328	73.40	23.00	26.61	11.3	14.0	Précambrien
A248	Talisman Energy, Saint-François-du-Lac No 1	2006	4245	4127	1294	1258	103.28	39.60	42.36	25.1	27.3	Cairnside
A250	Junex, Bécancour No 8	2006	3417	3361	1041	1024	88.18	31.21	30.95	22.7	22.4	Theresa
A252	Talisman, Gentilly No 1	2006	6006	5977	1831	1822	111.20	44.00	52.99	19.8	24.7	Utica
A253	Gastem et al., Saint-François-du-Lac No 1	2007	5569	5552	1698	1692	104.00	40.00	47.69	18.9	23.5	Tr-BR-Ch
A254	Gastem, Saint-Louis-de-Richelieu HZ No 1	2007	5770	5753	1759	1754	120.20	49.00	57.32	23.4	28.1	Utica
A255	Junex, Champlain No 2	2007	3049	3022	929	921	86.00	30.00	28.33	23.9	22.1	Covey Hill
A256	Gastem Intragaz, Joly No 4	2007	3337	3187	1017	971	102.20	39.00	38.02	31.9	30.9	Écaille
A257	Junex, Saint-Augustin-de-Desmaures No 1	2008	2746	2709	837	826	86.07	30.04	27.01	26.7	23.0	Précambrien
A258	Junex, Saint-Antoine-sur-Richelieu No 1	2008	4836	4817	1474	1468	88.18	31.21	36.47	15.8	19.4	Cairnside
A259	Talisman, Saint-David No 1	2009	5807	5794	1770	1766	118.40	48.00	56.44	22.7	27.4	Utica
A259	Talisman, Saint-David No 1	2009	6545	6530	1995	1990	125.60	52.00	62.56	22.1	27.4	Beauharnois
A261	Talisman, La Visitation No 1	2008	6439	6421	1963	1957	118.40	48.00	58.26	20.4	25.7	Lorraine
A261	Talisman, La Visitation No 1	2008	9085	9064	2769	2763	140.00	60.00	76.07	18.8	24.6	Theresa
A262	Junex, Bécancour No 9	2008	6235	6060	1901	1847	122.00	50.00	59.23	22.7	27.7	Beauharnois
A263	Questerre et al., Saint-Jean-sur-Richelieu No 1	2008	1398	1386	426	422	68.00	20.00	-	28.4	-	Tr-BR-Ch
A266	Talisman, Leclercville No 1	2009	4993	4978	1522	1517	104.00	40.00	45.81	21.1	24.9	Lorraine
A266	Talisman, Leclercville No 1	2009	7106	7078	2166	2157	134.60	57.00	68.99	22.7	28.3	Tr-BR-Ch
A267	Talisman, Saint-Edouard No 1	2009	7054	7025	2150	2141	122.00	50.00	61.86	19.6	25.2	Utica
A267	Talisman, Saint-Edouard No 1	2009	8478	8449	2584	2575	141.80	61.00	75.99	20.6	26.4	Beauharnois
A270	Junex, Saint-Gregoire No 3	2009	2871	2863	875	873	84.56	29.20	26.84	24.3	21.6	Tr-BR-Ch

Annexe 2. Correction paléoclimatique

Tableau 12 – Données de températures de fond de puits corrigées pour les variations paléoclimatiques.

MD : Profondeur mesurée ($Measured\ Depth$). TVD : Profondeur verticale ($True\ Vertical\ Depth$). T $^{\circ}$: Température.

Puits	MD (m)	TVD (m)	T° corrigée selon Harrison (°C)	Correction paléoclimatique (°C)	T° non-perturbée (°C)	Gradient géothermique non-perturbé (°C/km)
A063	919.58	919.58	27.15	1.96	29.12	23.0
A065	1353.62	1353.12	40.57	2.28	42.85	25.8
A125	1270.10	1260.53	37.20	2.24	39.44	24.9
A126	1341.12	1340.74	51.50	2.27	53.77	34.1
A151	796.75	796.75	18.76	1.80	20.56	15.8
A152	3352.19	3243.89	88.08	1.28	89.35	25.1
A156	2612.14	2612.14	75.19	1.70	76.89	26.4
A157	1449.02	1448.35	61.66	2.29	63.95	38.6
A158	1390.50	1390.50	39.86	2.28	42.15	24.6
A159	1303.93	1303.93	40.50	2.26	42.76	26.7
A160	1812.65	1811.27	51.07	2.22	53.29	25.0
A161	2859.63	2849.90	82.04	1.53	83.57	26.5
A162	1872.69	1870.49	52.74	2.19	54.93	25.1
A163	4567.43	4334.80	105.24	0.78	106.02	22.6
A164	2382.32	2379.09	61.98	1.86	63.84	23.5
A165	1940.05	1935.04	55.01	2.16	57.16	25.4
A165A	2181.45	2098.06	61.44	2.06	63.50	26.5
A166	3807.56	3807.56	79.05	0.98	80.04	18.9
A167	1867.81	1859.68	47.12	2.19	49.31	22.2
A168	2142.13	2105.59	59.31	2.05	61.36	25.3
A169	2500.88	2456.66	60.30	1.81	62.11	22.0
A171	1803.20	1774.99	41.26	2.23	43.50	20.0

Puits	MD (m)	TVD (m)	T° corrigée selon Harrison (°C)	Correction paléoclimatique (°C)	T° non-perturbée (°C)	Gradient géothermique non-perturbé (°C/km)
A172	662.94	662.86	14.52	1.57	16.09	12.2
A173	2212.85	2195.10	66.71	1.99	68.71	27.7
A174	1055.22	1055.22	26.77	2.11	28.87	19.8
A175	969.87	969.83	27.27	2.02	29.29	22.0
A176	998.52	997.90	27.88	2.05	29.93	22.0
A177	1812.65	1615.60	47.40	2.28	49.68	25.8
A178	1794.05	1740.56	48.69	2.24	50.93	24.7
A179	3034.59	2984.95	98.23	1.44	99.67	30.7
A180	2231.44	2152.63	55.80	2.02	57.82	23.1
A181	3252.83	3095.79	74.78	1.37	76.15	22.0
A182	1586.18	1525.96	37.53	2.29	39.82	20.9
A183	1889.76	1881.95	53.96	2.18	56.15	25.6
A184	3068.42	2979.07	68.75	1.44	70.19	20.9
A185	4276.34	4203.58	103.55	0.83	104.37	22.9
A186	1384.10	1382.48	38.65	2.28	40.93	23.8
A187	3173.88	3136.50	116.60	1.34	117.94	35.1
A188	1405.43	1404.64	42.24	2.29	44.53	26.0
A189	2536.00	2519.29	70.71	1.76	72.47	25.6
A190	2175.00	2167.65	55.03	2.01	57.05	22.6
A191	2812.00	2690.50	65.63	1.64	67.27	22.0
A192	1064.70	1060.19	30.18	2.11	32.29	22.9
A193	1141.70	1131.27	27.09	2.17	29.26	18.8
A195	1753.00	1715.50	63.87	2.25	66.12	33.9
A196	1369.50	1368.26	61.04	2.28	63.32	40.4
A197	1389.00	1388.57	42.28	2.28	44.57	26.3
A198	1263.50	1262.88	40.46	2.25	42.70	27.5
A199	1348.00	1347.14	38.79	2.27	41.06	24.5
A200	1784.00	1713.47	47.84	2.25	50.09	24.6
A202	1328.00	1296.47	34.30	2.26	36.56	22.0

Puits	MD (m)	TVD (m)	T° corrigée selon Harrison (°C)	Correction paléoclimatique (°C)	T° non-perturbée (°C)	Gradient géothermique non-perturbé (°C/km)
A203	1739.19	1739.19	28.00	2.24	30.24	12.8
A214	4129.00	4103.70	91.09	0.86	91.95	20.5
A215	1715.20	1713.03	43.46	2.25	45.71	22.0
A221	1735.07	1682.93	41.53	2.26	43.79	21.3
A222	3457.00	3454.67	97.60	1.16	98.76	26.3
A223	999.70	999.58	25.37	2.05	27.42	19.4
A224	978.50	970.16	24.98	2.02	27.00	19.6
A225	2297.00	2062.46	51.14	2.08	53.22	21.9
A226	1628.00	1616.26	36.82	2.28	39.10	19.2
A227	1798.00	1714.51	51.84	2.25	54.10	26.9
A228	1848.00	1808.68	54.79	2.22	57.01	27.1
A229	4035.00	3983.27	92.06	0.91	92.97	21.3
A236	921.60	916.98	25.29	1.96	27.25	21.0
A238	880.40	879.26	18.61	1.91	20.52	14.2
A246	1337.90	1330.09	26.61	2.27	28.88	15.7
A248	1294.00	1261.85	42.36	2.24	44.60	29.0
A250	1041.35	1026.19	30.95	2.08	33.03	24.4
A252	1830.60	1825.97	52.99	2.21	55.20	25.8
A253	1697.50	1697.32	47.69	2.26	49.95	24.7
A254	1758.60	1757.60	57.32	2.24	59.55	29.3
A255	929.30	923.09	28.33	1.97	30.29	24.2
A256	1017.00	974.99	38.02	2.03	40.05	32.9
A257	837.00	827.85	27.01	1.84	28.86	25.2
A258	1474.00	1470.25	36.47	2.29	38.76	20.9
A259	1995.00	1994.43	62.56	2.12	64.68	28.4
A261	2769.00	2766.85	76.07	1.59	77.65	25.2
A262	1900.50	1848.61	59.23	2.20	61.43	28.9
A266	2166.00	2161.42	68.99	2.02	71.01	29.2
A267	2584.00	2580.61	75.99	1.72	77.71	27.0

Évaluation des ressources géothermiques du bassin des Basses-Terres du Saint-Laurent

Puits	MD (m)	TVD (m)	T° corrigée selon Harrison (°C)	Correction paléoclimatique (°C)	T° non-perturbée (°C)	Gradient géothermique non-perturbé (°C/km)
A270	875.00	874.62	26.84	1.91	28.75	23.7

Annexe 3. Données de conductivité thermique

Les données de conductivité thermiques utilisées dans cette étude sont surlignées en vert.

Tableau 13 – Données de conductivité thermique de Nasr (2016).

ID mesure de conductivité thermique	ID échantil- lon de roche	ID échantil- lon de sur- face	ID échantil- lon de carotte	Type d'échantillon	Qualité de la carotte	Conductivité thermique mesurée (W/m·K)	Type de mesure	Spécification de la mesure	Formation géologique	Unité géologique
MC_001	ER_001	09EK304		Échantillon de surface		3.60	Sonde à aiguille	Verticale	Beauharnois	Beauharnois
MC_002	ER_002	09EK306		Échantillon de surface		3.08	Sonde à aiguille	Verticale	Theresa	Theresa
MC_003	ER_003	09EK311/2		Échantillon de surface		2.60	Sonde à aiguille	Verticale	Chazy	Tr-BR-Ch
MC_004	ER_004	09EK320/2		Échantillon de surface		2.60	Sonde à aiguille	Verticale	Trenton	Tr-BR-Ch
MC_005	ER_005	09EK323		Échantillon de surface		3.10	Sonde à aiguille	Verticale	La Gabelle	Tr-BR-Ch
MC_006	ER_006	09EK324		Échantillon de surface		4.15	Sonde à aiguille	Verticale	La Gabelle	Tr-BR-Ch
MC_007	ER_007	09EK326		Échantillon de surface		1.91	Sonde à aiguille	Verticale	Nicolet	Couverture
MC_008	ER_008	09EK330/1		Échantillon de surface		3.40	Sonde à aiguille	Verticale	Bécancour	Couverture
MC_009	ER_009	09EK330/1b		Échantillon de surface		3.38	Sonde à aiguille	Verticale	Bécancour	Couverture
MC_010	ER_010	09EK333/1		Échantillon de surface		3.33	Sonde à aiguille	Verticale	Pontgravé	Couverture
MC_011	ER_011	09EK335/3		Échantillon de surface		2.29	Sonde à aiguille	Verticale	Sainte-Sabine	Couverture
MC_012	ER_012	09EK341/1		Échantillon de surface		4.18	Sonde à aiguille	Verticale	Indéterminé	Indéterminé
MC_013	ER_013	09EK344/1		Échantillon de surface		3.00	Sonde à aiguille	Verticale	Nicolet	Couverture
MC_014	ER_014	09EK349		Échantillon de surface		2.19	Sonde à aiguille	Verticale	Sillery	Couverture
MC_015	ER_016	14MN01		Échantillon de surface		3.84	Sonde à aiguille	Verticale	Theresa	Theresa
MC_016	ER_016	14MN01		Échantillon de surface		5.88	Sonde à aiguille	Verticale saturée	Theresa	Theresa
MC_017	ER_016	14MN01		Échantillon de surface		4.07	Sonde à aiguille	Horizontale 1	Theresa	Theresa
MC_018	ER_017	14MN02		Échantillon de surface		6.29	Sonde à aiguille	Verticale	Cairnside	Cairnside
MC_019	ER_017	14MN02		Échantillon de surface		6.90	Sonde à aiguille	Verticale saturée	Cairnside	Cairnside
MC_020	ER_018	14MN03		Échantillon de surface		6.41	Sonde à aiguille	Verticale	Cairnside	Cairnside
MC_021	ER_018	14MN03		Échantillon de surface		7.00	Sonde à aiguille	Horizontale 1	Cairnside	Cairnside
MC_022	ER_018	14MN03		Échantillon de surface		6.77	Sonde à aiguille	Verticale saturée	Cairnside	Cairnside

ID mesure de conductivité thermique	ID échantil- lon de roche	ID échantil- lon de sur- face	ID échantil- lon de carotte	Type d'échantillon	Qualité de la carotte	Conductivité thermique mesurée (W/m·K)	Type de mesure	Spécification de la mesure	Formation géologique	Unité géologique
MC_023	ER_019	14MN04		Échantillon de surface		4.90	Sonde à aiguille	Verticale	Cairnside	Cairnside
MC_024	ER_019	14MN04		Échantillon de surface		5.40	Sonde à aiguille	Horizontale 1	Cairnside	Cairnside
MC_025	ER_019	14MN04		Échantillon de surface		6.43	Sonde à aiguille	Verticale saturée	Cairnside	Cairnside
MC_026	ER_020	14MN05		Échantillon de surface		5.07	Sonde à aiguille	Verticale	Covey Hill	Covey Hill
MC_027	ER_020	14MN05		Échantillon de surface		5.63	Sonde à aiguille	Verticale saturée	Covey Hill	Covey Hill
MC_028	ER_020	14MN05		Échantillon de surface		4.77	Sonde à aiguille	Horizontale 1	Covey Hill	Covey Hill
MC_029	ER_021	14MN06		Échantillon de surface		6.13	Sonde à aiguille	Verticale	Covey Hill	Covey Hill
MC_030	ER_022	14MN07		Échantillon de surface		6.55	Sonde à aiguille	Verticale	Covey Hill	Covey Hill
MC_031	ER_023	14MN08		Échantillon de surface		6.05	Sonde à aiguille	Verticale	Covey Hill	Covey Hill
MC_032	ER_024	14MN09		Échantillon de surface		2.70	Sonde à aiguille	Verticale	Beauharnois	Beauharnois
MC_033	ER_025	14MN10		Échantillon de surface		2.71	Sonde à aiguille	Verticale	Chazy	Tr-BR-Ch
MC_034	ER_026	14MN11		Échantillon de surface		4.58	Sonde à aiguille	Verticale	Beauharnois	Beauharnois
MC_035	ER_026	14MN11		Échantillon de surface		2.80	Sonde à aiguille	Horizontale 1	Beauharnois	Beauharnois
MC_036	ER_027	14MN12		Échantillon de surface		4.24	Sonde à aiguille	Verticale	Beauharnois	Beauharnois
MC_037	ER_028	14MN13		Échantillon de surface		2.94	Sonde à aiguille	Verticale	Black River	Tr-BR-Ch
MC_038	ER_028	14MN13		Échantillon de surface		2.98	Sonde à aiguille	Verticale saturée	Black River	Tr-BR-Ch
MC_039	ER_028	14MN13		Échantillon de surface		2.69	Sonde à aiguille	Horizontale 1	Black River	Tr-BR-Ch
MC_040	ER_029	14MN14		Échantillon de surface		2.63	Sonde à aiguille	Verticale	Trenton	Tr-BR-Ch
MC_041	ER_030	14MN16		Échantillon de surface		3.92	Sonde à aiguille	Verticale	Theresa	Theresa
MC_042	ER_030	14MN16		Échantillon de surface		3.90	Sonde à aiguille	Horizontale 1	Theresa	Theresa
MC_043	ER_030	14MN16		Échantillon de surface		4.17	Sonde à aiguille	Horizontale 2	Theresa	Theresa
MC_044	ER_031	14MN17		Échantillon de surface		2.50	Sonde à aiguille	Verticale	Trenton	Tr-BR-Ch
MC_045	ER_032	14MN18		Échantillon de surface		2.25	Sonde à aiguille	Verticale	Précambrien	Précambrien
MC_046	ER_032	14MN18		Échantillon de surface		2.26	Sonde à aiguille	Horizontale 1	Précambrien	Précambrien
MC_047	ER_032	14MN18		Échantillon de surface		2.22	Sonde à aiguille	Horizontale 2	Précambrien	Précambrien
MC_048	ER_032	14MN18		Échantillon de surface		2.31	Sonde à aiguille	Horizontale 3	Précambrien	Précambrien
MC_049	ER_033	14MN19		Échantillon de surface		2.19	Sonde à aiguille	Verticale	Chazy	Tr-BR-Ch
MC_050	ER_033	14MN19		Échantillon de surface		2.24	Sonde à aiguille	Horizontale 1	Chazy	Tr-BR-Ch
MC_051	ER_034	14MN20		Échantillon de surface		3.48	Sonde à aiguille	Verticale	Beauharnois	Beauharnois

ID mesure de conductivité thermique	ID échantil- lon de roche	ID échantil- lon de sur- face	ID échantil- lon de carotte	Type d'échantillon	Qualité de la carotte	Conductivité thermique mesurée (W/m·K)	Type de mesure	Spécification de la mesure	Formation géologique	Unité géologique
MC_052	ER_034	14MN20		Échantillon de surface		3.51	Sonde à aiguille	Horizontale 1	Beauharnois	Beauharnois
MC_053	ER_035	14MN21		Échantillon de surface		2.77	Sonde à aiguille	Verticale	Nicolet	Couverture
MC_054	ER_035	14MN21		Échantillon de surface		2.00	Sonde à aiguille	Horizontale 1	Nicolet	Couverture
MC_055	ER_036	14MN22		Échantillon de surface		2.80	Sonde à aiguille	Verticale	Nicolet	Couverture
MC_056	ER_037	14MN23		Échantillon de surface		3.33	Sonde à aiguille	Verticale	Nicolet	Couverture
MC_057	ER_037	14MN23		Échantillon de surface		2.53	Sonde à aiguille	Horizontale 1	Nicolet	Couverture
MC_058	ER_038	14MN24		Échantillon de surface		2.96	Sonde à aiguille	Verticale	Bécancour	Couverture
MC_059	ER_039	14MN25		Échantillon de surface		1.41	Sonde à aiguille	Verticale	Bécancour	Couverture
MC_060	ER_040	14MN26		Échantillon de surface		2.68	Sonde à aiguille	Verticale	Utica	Utica
MC_061	ER_041	14MN27		Échantillon de surface		2.52	Sonde à aiguille	Verticale	Utica	Utica
MC_062	ER_042	14MN28		Échantillon de surface		2.63	Sonde à aiguille	Verticale	Trenton	Tr-BR-Ch
MC_063	ER_043	14MN29		Échantillon de surface		2.30	Sonde à aiguille	Verticale	Utica	Utica
MC_064	ER_044	14MN30		Échantillon de surface		1.93	Sonde à aiguille	Verticale	Utica	Utica
MC_065	ER_044	14MN30		Échantillon de surface		2.06	Sonde à aiguille	Horizontale 1	Utica	Utica
MC_066	ER_045	14MN31		Échantillon de surface		2.53	Sonde à aiguille	Verticale	Trenton	Tr-BR-Ch
MC_067	ER_045	14MN31		Échantillon de surface		2.68	Sonde à aiguille	Horizontale 1	Trenton	Tr-BR-Ch
MC_068	ER_046	14MN32		Échantillon de surface		2.67	Sonde à aiguille	Verticale	Trenton	Tr-BR-Ch
MC_069	ER_047	14MN33		Échantillon de surface		2.71	Sonde à aiguille	Verticale	Précambrien	Précambrien
MC_070	ER_048	14MN34		Échantillon de surface		2.51	Sonde à aiguille	Verticale	Précambrien	Précambrien
MC_071	ER_049	14MN35		Échantillon de surface		2.26	Sonde à aiguille	Verticale	Sainte-Rosalie	Couverture
MC_072	ER_050	14MN36		Échantillon de surface		4.10	Sonde à aiguille	Verticale	Sainte-Rosalie	Couverture
MC_073	ER_050	14MN36		Échantillon de surface		4.65	Sonde à aiguille	Verticale saturée	Sainte-Rosalie	Couverture
MC_074	ER_051	14MN37		Échantillon de surface		2.47	Sonde à aiguille	Verticale	Sainte-Rosalie	Couverture
MC_075	ER_052	14MN38		Échantillon de surface		3.32	Sonde à aiguille	Verticale	Sillery	Couverture
MC_076	ER_052	14MN38		Échantillon de surface		3.51	Sonde à aiguille	Horizontale 1	Sillery	Couverture
MC_077	ER_052	14MN38		Échantillon de surface		3.41	Sonde à aiguille	Horizontale 2	Sillery	Couverture
MC_078	ER_053	14MN39		Échantillon de surface		3.53	Sonde à aiguille	Verticale	Sillery	Couverture
MC_079	ER_054	14MN40		Échantillon de surface		3.74	Sonde à aiguille	Verticale	Sillery	Couverture
MC_080	ER_055	14MN41		Échantillon de surface		2.60	Sonde à aiguille	Verticale	Citadelle	Couverture

ID mesure de conductivité thermique	ID échantil- lon de roche	ID échantil- lon de sur- face	ID échantil- lon de carotte	Type d'échantillon	Qualité de la carotte	Conductivité thermique mesurée (W/m·K)	Type de mesure	Spécification de la mesure	Formation géologique	Unité géologique
MC_081	ER_056	14MN42		Échantillon de surface		3.17	Sonde à aiguille	Verticale	Citadelle	Couverture
MC_082	ER_015	EK-10-04b		Échantillon de surface		3.10	Sonde à aiguille	Verticale	Black River	Tr-BR-Ch
MC_083	ER_057		14CR01A	Carotte	Bonne	4.37	Barres divisées	Saturée	Beekmantown	Beekmantown
MC_084	ER_058		14CR02A	Carotte	Moyenne	3.21	Barres divisées	Saturée	Beekmantown	Beekmantown
MC_085	ER_060		14CR05A	Carotte	Bonne	3.09	Barres divisées	Saturée	Trenton	Tr-BR-Ch
MC_086	ER_061		14CR05B	Carotte	Bonne	3.27	Barres divisées	Saturée	Trenton	Tr-BR-Ch
MC_087	ER_062		14CR06A	Carotte	Moyenne	3.50	Barres divisées	Saturée	Beauharnois	Beauharnois
MC_088	ER_063		14CR06B	Carotte	Bonne	3.53	Barres divisées	Saturée	Beauharnois	Beauharnois
MC_089	ER_064		14CR07A	Carotte	Mauvaise	4.76	Barres divisées	Saturée	Cairnside	Cairnside
MC_090	ER_065		14CR07B	Carotte	Moyenne	5.91	Barres divisées	Saturée	Cairnside	Cairnside
MC_091	ER_066		14CR08A	Carotte	Moyenne	5.08	Barres divisées	Saturée	Covey Hill	Covey Hill
MC_092	ER_067		14CR08B	Carotte	Moyenne	4.74	Barres divisées	Saturée	Covey Hill	Covey Hill
MC_093	ER_068		14CR09A	Carotte	Bonne	2.64	Barres divisées	Saturée	Précambrien	Précambrien
MC_094	ER_069		14CR09B	Carotte	Mauvaise	2.67	Barres divisées	Saturée	Précambrien	Précambrien
MC_095	ER_070		14CR10A	Carotte	Bonne	4.78	Barres divisées	Saturée	Covey Hill	Covey Hill
MC_096	ER_071		14CR10B	Carotte	Moyenne	2.95	Barres divisées	Saturée	Covey Hill	Covey Hill
MC_097	ER_072		14CR11A	Carotte	Moyenne	2.32	Barres divisées	Saturée	Covey Hill	Covey Hill
MC_098	ER_073		14CR11B	Carotte	Mauvaise	3.29	Barres divisées	Saturée	Covey Hill	Covey Hill
MC_099	ER_074		14CR12A	Carotte	Bonne	4.07	Barres divisées	Saturée	Potsdam	Potsdam
MC_100	ER_075		14CR12B	Carotte	Moyenne	4.69	Barres divisées	Saturée	Potsdam	Potsdam
MC_101	ER_076		14CR13A	Carotte	Moyenne	2.03	Barres divisées	Saturée	Beauharnois	Beauharnois
MC_102	ER_077		14CR13B	Carotte	Moyenne	2.09	Barres divisées	Saturée	Beauharnois	Beauharnois
MC_103	ER_078		14CR14A	Carotte	Moyenne	4.06	Barres divisées	Saturée	Beauharnois	Beauharnois
MC_104	ER_079		14CR15A	Carotte	Bonne	6.19	Barres divisées	Saturée	Cairnside	Cairnside
MC_105	ER_080		14CR15B	Carotte	Bonne	6.35	Barres divisées	Saturée	Cairnside	Cairnside
MC_106	ER_081		14CR16A	Carotte	Moyenne	5.53	Barres divisées	Saturée	Cairnside	Cairnside
MC_107	ER_082		14CR17A	Carotte	Bonne	2.93	Barres divisées	Saturée	Trenton écaille	Trenton écaille
MC_108	ER_083		14CR17B	Carotte	Moyenne	3.13	Barres divisées	Saturée	Trenton écaille	Trenton écaille
MC_109	ER_084		14CR18A	Carotte	Mauvaise	3.32	Barres divisées	Saturée	Beekmantown_ecaille	Beekmantown_ecaille

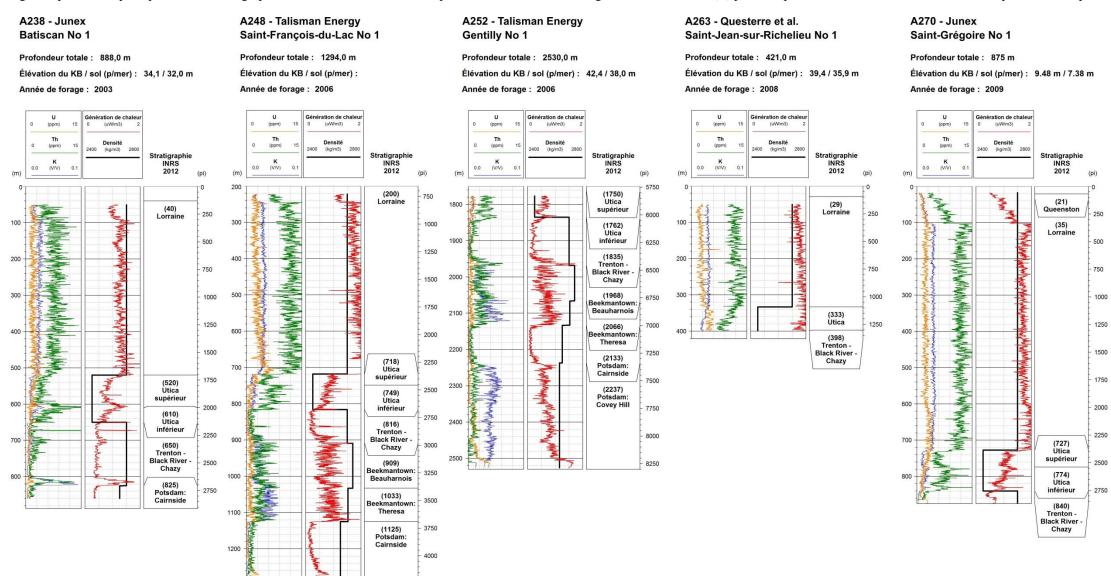
ID mesure de conductivité thermique	ID échantil- lon de roche	ID échantil- lon de sur- face	ID échantil- lon de carotte	Type d'échantillon	Qualité de la carotte	Conductivité thermique mesurée (W/m·K)	Type de mesure	Spécification de la mesure	Formation géologique	Unité géologique
MC_110	ER_085		14CR19A	Carotte	Moyenne	3.22	Barres divisées	Saturée	Covey Hill	Covey Hill
MC_111	ER_086		14CR19B	Carotte	Moyenne	2.96	Barres divisées	Saturée	Covey Hill	Covey Hill
MC_112	ER_087		14CR19C	Carotte	Moyenne	2.39	Barres divisées	Saturée	Covey Hill	Covey Hill
MC_113	ER_088		14CR20A	Carotte	Bonne	5.56	Barres divisées	Saturée	Potsdam	Potsdam
MC_114	ER_089		14CR20B	Carotte	Bonne	6.02	Barres divisées	Saturée	Potsdam	Potsdam
MC_115	ER_090		14CR21A	Carotte	Moyenne	3.22	Barres divisées	Saturée	Utica	Utica
MC_116	ER_091		14CR21C	Carotte	Bonne	2.88	Barres divisées	Saturée	Utica	Utica
MC_117	ER_092		14CR24A	Carotte	Moyenne	2.15	Barres divisées	Saturée	Utica	Utica
MC_118	ER_093		14CR24B	Carotte	Moyenne	0.95	Barres divisées	Saturée	Utica	Utica
MC_119	ER_094		14CR25A	Carotte	Mauvaise	1.16	Barres divisées	Saturée	Utica	Utica
MC_120	ER_095		14CR26A	Carotte	Moyenne	2.97	Barres divisées	Saturée	Beekmantown écaille	Beekmantown écaille
MC_121	ER_096		14CR26B	Carotte	Moyenne	2.99	Barres divisées	Saturée	Beekmantown écaille	Beekmantown écaille
MC_122	ER_097		14CR27A	Carotte	Moyenne	2.68	Barres divisées	Saturée	Beekmantown écaille	Beekmantown écaille
MC_123	ER_098		14CR27B	Carotte	Moyenne	1.88	Barres divisées	Saturée	Beekmantown écaille	Beekmantown écaille
MC_124	ER_057		14CR01A	Carotte	Bonne	2.74	Barres divisées	Sèche	Beekmantown	Beekmantown
MC_125	ER_058		14CR02A	Carotte	Moyenne	2.79	Barres divisées	Sèche	Beekmantown	Beekmantown
MC_126	ER_060		14CR05A	Carotte	Bonne	3.09	Barres divisées	Sèche	Trenton	Tr-BR-Ch
MC_127	ER_061		14CR05B	Carotte	Bonne	2.82	Barres divisées	Sèche	Trenton	Tr-BR-Ch
MC_128	ER_062		14CR06A	Carotte	Moyenne	2.81	Barres divisées	Sèche	Beauharnois	Beauharnois
MC_129	ER_063		14CR06B	Carotte	Bonne	2.74	Barres divisées	Sèche	Beauharnois	Beauharnois
MC_130	ER_064		14CR07A	Carotte	Mauvaise	4.70	Barres divisées	Sèche	Cairnside	Cairnside
MC_131	ER_065		14CR07B	Carotte	Moyenne	3.40	Barres divisées	Sèche	Cairnside	Cairnside
MC_132	ER_066		14CR08A	Carotte	Moyenne	3.85	Barres divisées	Sèche	Covey Hill	Covey Hill
MC_133	ER_067		14CR08B	Carotte	Moyenne	4.26	Barres divisées	Sèche	Covey Hill	Covey Hill
MC_134	ER_068		14CR09A	Carotte	Bonne	2.35	Barres divisées	Sèche	Précambrien	Précambrien
MC_135	ER_069		14CR09B	Carotte	Mauvaise	2.72	Barres divisées	Sèche	Précambrien	Précambrien
MC_136	ER_070		14CR10A	Carotte	Bonne	2.61	Barres divisées	Sèche	Covey Hill	Covey Hill
MC_137	ER_071		14CR10B	Carotte	Moyenne	2.15	Barres divisées	Sèche	Covey Hill	Covey Hill
MC_138	ER_072		14CR11A	Carotte	Moyenne	1.11	Barres divisées	Sèche	Covey Hill	Covey Hill

ID mesure de conductivité thermique	ID échantil- lon de roche	ID échantil- lon de sur- face	ID échantil- lon de carotte	Type d'échantillon	Qualité de la carotte	Conductivité thermique mesurée (W/m·K)	Type de mesure	Spécification de la mesure	Formation géologique	Unité géologique
MC_139	ER_073		14CR11B	Carotte	Mauvaise	2.39	Barres divisées	Sèche	Covey Hill	Covey Hill
MC_140	ER_074		14CR12A	Carotte	Bonne	2.58	Barres divisées	Sèche	Potsdam	Potsdam
MC_141	ER_075		14CR12B	Carotte	Moyenne	3.06	Barres divisées	Sèche	Potsdam	Potsdam
MC_142	ER_076		14CR13A	Carotte	Moyenne	1.19	Barres divisées	Sèche	Beauharnois	Beauharnois
MC_143	ER_077		14CR13B	Carotte	Moyenne	1.81	Barres divisées	Sèche	Beauharnois	Beauharnois
MC_144	ER_078		14CR14A	Carotte	Moyenne	3.70	Barres divisées	Sèche	Beauharnois	Beauharnois
MC_145	ER_079		14CR15A	Carotte	Bonne	3.07	Barres divisées	Sèche	Cairnside	Cairnside
MC_146	ER_080		14CR15B	Carotte	Bonne	3.92	Barres divisées	Sèche	Cairnside	Cairnside
MC_147	ER_081		14CR16A	Carotte	Moyenne	2.97	Barres divisées	Sèche	Cairnside	Cairnside
MC_148	ER_082		14CR17A	Carotte	Bonne	2.87	Barres divisées	Sèche	Trenton écaille	Trenton écaille
MC_149	ER_083		14CR17B	Carotte	Moyenne	3.00	Barres divisées	Sèche	Trenton écaille	Trenton écaille
MC_150	ER_084		14CR18A	Carotte	Mauvaise	3.22	Barres divisées	Sèche	Beekmantown écaille	Beekmantown écaille
MC_151	ER_085		14CR19A	Carotte	Moyenne	2.53	Barres divisées	Sèche	Covey Hill	Covey Hill
MC_152	ER_086		14CR19B	Carotte	Moyenne	2.00	Barres divisées	Sèche	Covey Hill	Covey Hill
MC_153	ER_087		14CR19C	Carotte	Moyenne	1.72	Barres divisées	Sèche	Covey Hill	Covey Hill
MC_154	ER_088		14CR20A	Carotte	Bonne	4.51	Barres divisées	Sèche	Potsdam	Potsdam
MC_155	ER_089		14CR20B	Carotte	Bonne	5.09	Barres divisées	Sèche	Potsdam	Potsdam
MC_156	ER_090		14CR21A	Carotte	Moyenne	3.66	Barres divisées	Sèche	Utica	Utica
MC_157	ER_091		14CR21C	Carotte	Bonne	3.03	Barres divisées	Sèche	Utica	Utica
MC_158	ER_092		14CR24A	Carotte	Moyenne	1.48	Barres divisées	Sèche	Utica	Utica
MC_159	ER_093		14CR24B	Carotte	Moyenne	0.72	Barres divisées	Sèche	Utica	Utica
MC_160	ER_094		14CR25A	Carotte	Mauvaise	1.46	Barres divisées	Sèche	Utica	Utica
MC_161	ER_095		14CR26A	Carotte	Moyenne	3.36	Barres divisées	Sèche	Beekmantown écaille	Beekmantown écaille
MC_162	ER_096		14CR26B	Carotte	Moyenne	2.40	Barres divisées	Sèche	Beekmantown écaille	Beekmantown écaille
MC_163	ER_097		14CR27A	Carotte	Moyenne	2.56	Barres divisées	Sèche	Beekmantown écaille	Beekmantown écaille
MC_164	ER_098		14CR27B	Carotte	Moyenne	1.58	Barres divisées	Sèche	Beekmantown écaille	Beekmantown écaille
MC_165	ER_057		14CR01A	Carotte	Bonne	4.64	Plaques chauffantes	Saturée	Beekmantown	Beekmantown
MC_166	ER_058		14CR02A	Carotte	Moyenne	2.57	Plaques chauffantes	Saturée	Beekmantown	Beekmantown
MC_167	ER_059		14CR04A	Carotte	N/D	1.67	Plaques chauffantes	Saturée	Nicolet	Couverture

ID mesure de conductivité thermique	ID échantil- lon de roche	ID échantil- lon de sur- face	ID échantil- lon de carotte	Type d'échantillon	Qualité de la carotte	Conductivité thermique mesurée (W/m·K)	Type de mesure	Spécification de la mesure	Formation géologique	Unité géologique
MC_168	ER_060		14CR05A	Carotte	Bonne	2.87	Plaques chauffantes	Saturée	Trenton	Tr-BR-Ch
MC_169	ER_061		14CR05B	Carotte	Bonne	3.34	Plaques chauffantes	Saturée	Trenton	Tr-BR-Ch
MC_170	ER_062		14CR06A	Carotte	Moyenne	3.10	Plaques chauffantes	Saturée	Beauharnois	Beauharnois
MC_171	ER_063		14CR06B	Carotte	Bonne	4.38	Plaques chauffantes	Saturée	Beauharnois	Beauharnois
MC_172	ER_064		14CR07A	Carotte	Mauvaise	4.99	Plaques chauffantes	Saturée	Cairnside	Cairnside
MC_173	ER_065		14CR07B	Carotte	Moyenne	6.13	Plaques chauffantes	Saturée	Cairnside	Cairnside
MC_174	ER_066		14CR08A	Carotte	Moyenne	5.33	Plaques chauffantes	Saturée	Covey Hill	Covey Hill
MC_175	ER_067		14CR08B	Carotte	Moyenne	5.83	Plaques chauffantes	Saturée	Covey Hill	Covey Hill
MC_176	ER_068		14CR09A	Carotte	Bonne	2.89	Plaques chauffantes	Saturée	Précambrien	Précambrien
MC_177	ER_069		14CR09B	Carotte	Mauvaise	3.13	Plaques chauffantes	Saturée	Précambrien	Précambrien
MC_178	ER_070		14CR10A	Carotte	Bonne	3.43	Plaques chauffantes	Saturée	Covey Hill	Covey Hill
MC_179	ER_071		14CR10B	Carotte	Moyenne	3.60	Plaques chauffantes	Saturée	Covey Hill	Covey Hill
MC_180	ER_072		14CR11A	Carotte	Moyenne	4.54	Plaques chauffantes	Saturée	Covey Hill	Covey Hill
MC_181	ER_073		14CR11B	Carotte	Mauvaise	3.36	Plaques chauffantes	Saturée	Covey Hill	Covey Hill
MC_182	ER_074		14CR12A	Carotte	Bonne	4.46	Plaques chauffantes	Saturée	Potsdam	Potsdam
MC_183	ER_075		14CR12B	Carotte	Moyenne	5.13	Plaques chauffantes	Saturée	Potsdam	Potsdam
MC_184	ER_076		14CR13A	Carotte	Moyenne	4.30	Plaques chauffantes	Saturée	Beauharnois	Beauharnois
MC_185	ER_077		14CR13B	Carotte	Moyenne	4.42	Plaques chauffantes	Saturée	Beauharnois	Beauharnois
MC_186	ER_078		14CR14A	Carotte	Moyenne	4.04	Plaques chauffantes	Saturée	Beauharnois	Beauharnois
MC_187	ER_079		14CR15A	Carotte	Bonne	5.91	Plaques chauffantes	Saturée	Cairnside	Cairnside
MC_188	ER_080		14CR15B	Carotte	Bonne	6.04	Plaques chauffantes	Saturée	Cairnside	Cairnside
MC_189	ER_081		14CR16A	Carotte	Moyenne	5.77	Plaques chauffantes	Saturée	Cairnside	Cairnside
MC_190	ER_082		14CR17A	Carotte	Bonne	2.69	Plaques chauffantes	Saturée	Trenton écaille	Trenton écaille
MC_191	ER_083		14CR17B	Carotte	Moyenne	3.35	Plaques chauffantes	Saturée	Trenton écaille	Trenton écaille
MC_192	ER_084		14CR18A	Carotte	Mauvaise	3.48	Plaques chauffantes	Saturée	Beekmantown écaille	Beekmantown écaille
MC_193	ER_085		14CR19A	Carotte	Moyenne	3.63	Plaques chauffantes	Saturée	Covey Hill	Covey Hill
MC_194	ER_086		14CR19B	Carotte	Moyenne	3.59	Plaques chauffantes	Saturée	Covey Hill	Covey Hill
MC_195	ER_087		14CR19C	Carotte	Moyenne	3.07	Plaques chauffantes	Saturée	Covey Hill	Covey Hill
MC_196	ER_088		14CR20A	Carotte	Bonne	6.02	Plaques chauffantes	Saturée	Potsdam	Potsdam

Évaluation des ressources géothermiques du bassin des Basses-Terres du Saint-Laurent

ID mesure de conductivité thermique	ID échantil- lon de roche	ID échantil- lon de sur- face	ID échantil- lon de carotte	Type d'échantillon	Qualité de la carotte	Conductivité thermique mesurée (W/m·K)	Type de mesure	Spécification de la mesure	Formation géologique	Unité géologique
MC_197	ER_089		14CR20B	Carotte	Bonne	3.40	Plaques chauffantes	Saturée	Potsdam	Potsdam
MC_198	ER_090		14CR21A	Carotte	Moyenne	2.79	Plaques chauffantes	Saturée	Utica	Utica
MC_199	ER_091		14CR21C	Carotte	Bonne	3.08	Plaques chauffantes	Saturée	Utica	Utica
MC_200	ER_092		14CR24A	Carotte	Moyenne	2.80	Plaques chauffantes	Saturée	Utica	Utica
MC_201	ER_093		14CR24B	Carotte	Moyenne	2.30	Plaques chauffantes	Saturée	Utica	Utica
MC_202	ER_094		14CR25A	Carotte	Mauvaise	2.45	Plaques chauffantes	Saturée	Utica	Utica
MC_203	ER_095		14CR26A	Carotte	Moyenne	4.65	Plaques chauffantes	Saturée	Beekmantown écaille	Beekmantown écaille
MC_204	ER_096		14CR26B	Carotte	Moyenne	4.81	Plaques chauffantes	Saturée	Beekmantown écaille	Beekmantown écaille
MC_205	ER_097		14CR27A	Carotte	Moyenne	3.31	Plaques chauffantes	Saturée	Beekmantown écaille	Beekmantown écaille
MC_206	ER_098		14CR27B	Carotte	Moyenne	3.79	Plaques chauffantes	Saturée	Beekmantown écaille	Beekmantown écaille

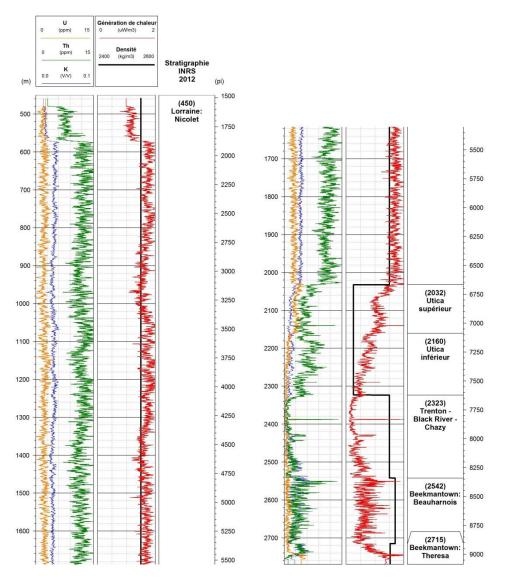

Tableau 14 – Données de conductivité thermique utilisées synthétisées provenant de Jessop et al. (2005).

Nom du site	Groupe géologique	ID du puits	Conductivité thermique moyenne par puits (W/m·K)	Conductivité thermique moyenne par site (W/m·K)		
Ottawa	Précambrien	1001	2.41	2.41		
St. Jerome	Précambrien	5001	2.54	2.54		
Franktown	Précambrien	51001	3.52	3.52		
Thetford	Appalaches	10003001	2.78	2.78		
Calumet	Précambrien	10004001	3.54	3.54		
St. Hyacinthe	Appalaches	10011001	2.19	2.19		
Lanoraie	Lorraine	10012001	1.94	1.94		
		10102001	2.95			
Ct. Flie des Ferry	Précambrien	10102002	2.36	2 24		
St. Elie des Eaux	Precambrien	10102003	3.05	3.24		
		10102004	4.58			
Notre Dame de Pontmain	Précambrien	10105001	3.00	3.00		
		10121001	4.63			
Renfrew	Précambrien	Précambrien	Précambrien	10121002	4.81	4.75
		10121003	4.80			
		10123001	4.45			
Portage du Fort	Précambrien	10123002	3.56	3.91		
		10123003	3.73			
		10127001	3.02			
Canalaua Mina	Du é a sua hari a sa	10127002	2.78	2.02		
Cordova Mine	Précambrien	10127003	2.75	2.92		
		10127004	3.12			

Nom du site	Groupe géologique	ID du puits	Conductivité thermique moyenne par puits (W/m·K)	Conductivité thermique moyenne par site (W/m·K)
		10143001	3.21	
		10143002	3.63	
Construction	Dućas valavia v	10143003	3.64	2.75
Snowdown	Précambrien	10143004	4.03	3.75
		10143005	3.70	
		10143006	4.27	
Lineaviele	Précambrien	10144001	2.80	3.00
Limerick	Precambrien	10144002	2.59	2.69
St. Tites des Caps	Précambrien	10145001	3.02	3.02
St. Beatrix	Précambrien	10146002	2.25	2.25
Walada :	Du é a contrair o	10147001	2.91	2.74
Kaladar	Précambrien	10147004	2.50	2.71
Cardiff	Précambrien	10148002	2.09	2.09
La Malbaie	Précambrien	10167001	5.15	5.15
Les Eboulement	Précambrien	10168001	3.23	3.23

Annexe 4. Données de génération de chaleur interne

Logs composites des puits possédant des diagraphies de [U], [Th] et [K] utilisées pour calculer la constante de génération de chaleur (A) pour chaque unité des BTSL. La densité est celle qui est utilisée pour le calcul de A.



A261 - Talisman Energy La Visitation No 1

Profondeur totale: 2770,0 m

Élévation du KB / sol (p/mer): 58,9 / 54,9 m

Année de forage : 2008

A267 - Talisman Energy Saint-Édouard No 1

Profondeur totale: 2584,0 m

Élévation du KB / sol (p/mer): 93,4 / 88,7 m

Année de forage : 2009

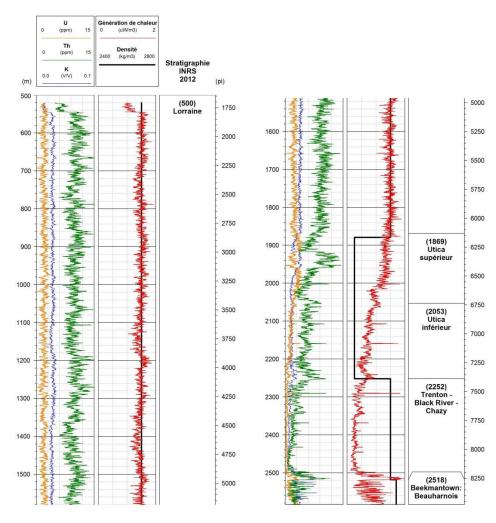


Tableau 15 – Données utilisées dans le calcul de la constante de génération de chaleur interne du socle Précambrien. Source des données : Jessop et al. (2005).

Nom du site	ID du puits	Nombre de données	A moyen par puits (μW/m³)	A moyen par site (μW/m³)
St. Jerome	5001	9	0.65	0.65
	10102001	5	0.97	
St. Elie des Eaux	10102002	1	1.25	0.99
	10102003	3	0.95	
	10105001	1	0.30	
Notre Dame de Pontmain	10105002	1	0.64	1.84
	10105003	1	4.59	
Minerve	10106001	1	1.09	1.00
Williel Ve	10106002	1	0.82	1.00
La Malbaie	10167001	4	0.73	0.73
Les Eboulements	10168001	6	1.55	1.55

Annexe 5. Flux de chaleur en fond de puits et en surface

Tableau 16 – Différents flux de chaleur calculés à l'aide des différents gradients géothermique, conductivités thermiques et constantes de génération de chaleur interne.

TVD: Profondeur verticale (*True Vertical Depth*).

Grad_{Har}: Gradient géothermique de la température de Harrison.

Grad_{n-p}: Gradient géothermique non-perturbé.

 λ_e : Conductivité thermique effective.

A_{eP10}: Constante de génération de chaleur effective.

Q_{Harrison}: Flux de chaleur perturbé en fond de puits. Q_z: Flux de chaleur en fond de puits non perturbé.

Q₀: Flux de chaleur calculé en surface en tenant compte de la génération de chaleur interne.

En vert : les P_{10} . En vert : les P_{50} . En rouge : les P_{90} .

Puits	TVD (m)	Grad _{Har} (°C)	Grad _{n-p} (°C)	λ _{еР10} (W/m·K)	λ _{eP50} (W/m·K)	λ _{eP90} (W/m·K)	A_{eP10} (μ W/m 3)	A_{eP50} (μ W/m 3)	A_{eP90} ($\mu W/m^3$)	$\begin{array}{c} Q_{\text{Harrison}} \\ (\lambda_{\text{P10}}) \\ (\text{mW/m}^2) \end{array}$	Q_z (λ_{P10}) (mW/m^2)	Q_0 (λ_{P10}, A_{P10}) (mW/m ²)	$\begin{array}{c} Q_{\text{Harrison}} \\ (\lambda_{P50}) \\ (\text{mW/m}^2) \end{array}$	Q_z (λ_{P50}) (mW/m^2)	Q_0 (λ_{P50} , A_{P50}) (mW/m ²)	$\begin{array}{c} Q_{Harrison} \\ (\lambda_{P90}) \\ (mW/m^2) \end{array}$	Q_z (λ_{P90}) (mW/m^2)	Q ₀ (λ _{P90} , Α _{P90}) (mW/m ²)
A063	919.58	20.9	23.0	2.03	2.81	3.46	1.07	1.39	1.72	42	47	47	59	65	65	72	79	80
A065	1353.12	24.1	25.8	2.36	3.20	3.90	0.84	1.13	1.46	57	61	61	77	82	83	94	100	101
A125	1260.53	23.2	24.9	2.08	2.92	3.60	1.08	1.40	1.72	48	52	53	68	73	74	83	90	91
A126	1340.74	32.5	34.1	2.32	3.13	3.84	0.86	1.15	1.48	75	79	80	102	107	108	125	131	132
A151	796.75	13.5	15.8	2.47	3.02	3.59	0.58	0.85	1.23	33	39	39	41	48	48	49	57	57
A152	3243.89	24.7	25.1	1.96	2.84	3.55	1.22	1.55	1.86	48	49	51	70	71	74	88	89	92
A156	2612.14	25.8	26.4	2.24	3.07	3.77	0.92	1.22	1.55	58	59	60	79	81	83	97	99	101
A157	1448.35	37.1	38.6	2.88	3.58	4.29	0.49	0.75	1.12	107	111	112	133	138	139	159	166	167
A158	1390.50	23.0	24.6	2.36	3.20	3.92	0.83	1.11	1.44	54	58	59	73	79	79	90	96	97
A159	1303.93	25.0	26.7	2.36	3.20	3.91	0.84	1.14	1.46	59	63	63	80	85	86	97	104	105
A160	1811.27	23.8	25.0	2.01	2.85	3.55	1.12	1.45	1.77	48	50	51	68	71	73	84	89	90
A161	2849.90	26.0	26.5	2.22	3.07	3.77	0.94	1.25	1.58	58	59	60	80	81	83	98	100	102
A162	1870.49	24.0	25.1	2.33	3.11	3.77	0.82	1.11	1.45	56	58	59	74	78	79	90	95	96
A163	4334.80	22.5	22.6	1.96	2.85	3.56	1.23	1.56	1.86	44	44	47	64	64	68	80	80	85
A164	2379.09	22.7	23.5	1.96	2.84	3.55	1.23	1.56	1.87	44	46	47	64	67	69	81	83	86

Puits	TVD (m)	Grad _{Har} (°C)	Grad _{n-p} (°C)	λ _{eP10} (W/m·K)	λ _{eP50} (W/m·K)	λ _{еР90} (W/m·K)	$ m A_{eP10}$ ($\mu W/m^3$)	$ m A_{eP50}$ ($\mu W/m^3$)	$ m A_{eP90}$ ($\mu W/m^3$)	$\begin{array}{c} Q_{Harrison} \\ (\lambda_{P10}) \\ (mW/m^2) \end{array}$	Q_z (λ_{P10}) (mW/m^2)	Q_0 (λ_{P10}, A_{P10}) (mW/m ²)	$\begin{array}{c} Q_{Harrison} \\ (\lambda_{P50}) \\ (mW/m^2) \end{array}$	Q_z (λ_{P50}) (mW/m^2)	Q_0 (λ_{P50}, A_{P50}) (mW/m^2)	$Q_{Harrison} \ (\lambda_{P90}) \ (mW/m^2)$	Q_z (λ_{P90}) (mW/m^2)	Q_0 (λ_{P90} , A_{P90}) (mW/m ²)
A165	1935.04	24.4	25.4	2.16	2.91	3.57	0.91	1.23	1.58	53	55	56	71	74	75	87	91	92
A165A	2098.06	25.6	26.5	2.22	2.96	3.62	0.88	1.18	1.52	56	59	60	75	78	80	92	96	97
A166	3807.56	18.7	18.9	2.57	3.39	4.11	0.70	0.98	1.34	48	49	50	63	64	66	77	78	80
A167	1859.68	21.1	22.2	2.21	3.03	3.74	0.94	1.24	1.56	46	49	50	64	67	69	79	83	85
A168	2105.59	24.4	25.3	2.00	2.80	3.45	1.13	1.46	1.79	49	51	52	68	71	73	84	87	89
A169	2456.66	21.3	22.0	1.96	2.84	3.55	1.23	1.56	1.87	42	43	45	60	63	65	76	78	81
A171	1774.99	18.8	20.0	1.96	2.84	3.55	1.23	1.56	1.87	37	39	40	53	57	58	67	71	73
A172	662.86	9.9	12.2	3.02	3.59	4.20	0.38	0.62	1.00	30	37	37	35	44	44	41	51	52
A173	2195.10	26.8	27.7	2.01	2.80	3.43	1.11	1.43	1.77	54	56	57	75	77	79	92	95	97
A174	1055.22	17.9	19.8	1.92	2.79	3.49	1.25	1.59	1.90	34	38	39	50	55	56	62	69	70
A175	969.83	20.0	22.0	2.48	3.06	3.82	0.58	0.89	1.29	49	55	55	61	67	68	76	84	84
A176	997.90	19.7	22.0	2.47	3.05	3.80	0.59	0.90	1.31	49	54	55	61	67	67	76	84	84
A177	1615.60	24.4	25.8	1.95	2.84	3.55	1.23	1.56	1.87	48	50	51	69	73	75	87	92	93
A178	1740.56	23.4	24.7	1.95	2.84	3.55	1.23	1.56	1.87	46	48	49	66	70	71	83	88	89
A179	2984.95	30.3	30.7	2.03	2.83	3.49	1.08	1.40	1.73	61	62	64	86	87	89	105	107	110
A180	2152.63	22.3	23.1	1.95	2.84	3.55	1.23	1.56	1.87	43	45	47	63	66	67	79	82	84
A181	3095.79	21.6	22.0	1.96	2.84	3.56	1.23	1.56	1.86	42	43	45	61	63	65	77	78	81
A182	1525.96	19.4	20.9	1.95	2.84	3.55	1.23	1.56	1.87	38	41	42	55	59	60	69	74	75
A183	1881.95	24.5	25.6	1.96	2.84	3.56	1.23	1.56	1.86	48	50	51	69	73	74	87	91	93
A184	2979.07	20.4	20.9	1.95	2.84	3.55	1.23	1.56	1.87	40	41	43	58	59	62	72	74	77
A185	4203.58	22.7	22.9	2.06	2.89	3.57	1.08	1.41	1.73	47	47	49	66	66	69	81	82	86
A186	1382.48	22.2	23.8	2.35	3.20	3.92	0.85	1.15	1.48	52	56	57	71	76	77	87	93	94
A187	3136.50	34.7	35.1	2.09	2.89	3.53	1.02	1.34	1.67	73	73	75	100	101	103	122	124	126
A188	1404.64	24.5	26.0	2.28	3.15	3.86	0.92	1.23	1.56	56	59	60	77	82	83	94	100	101
A189	2519.29	24.9	25.6	2.01	2.80	3.44	1.10	1.42	1.76	50	51	53	70	72	73	86	88	90
A190	2167.65	21.7	22.6	2.00	2.81	3.47	1.14	1.46	1.79	43	45	46	61	64	65	75	79	80
A191	2690.50	21.5	22.0	1.96	2.84	3.56	1.23	1.56	1.86	42	43	45	61	63	65	76	78	81
A192	1060.19	21.0	22.9	2.38	2.88	3.76	0.60	0.98	1.41	50	54	55	60	66	67	79	86	87

Puits	TVD (m)	Grad _{Har} (°C)	Grad _{n-p} (°C)	λ _{eP10} (W/m·K)	λ _{eP50} (W/m·K)	λ _{eP90} (W/m·K)	A_{eP10} (μ W/m 3)	A_{eP50} (μ W/m 3)	$ m A_{eP90}$ ($\mu W/m^3$)	$\begin{array}{c} Q_{Harrison} \\ (\lambda_{P10}) \\ (mW/m^2) \end{array}$	Q_z (λ_{P10}) (mW/m^2)	Q_0 (λ_{P10}, A_{P10}) (mW/m ²)	$\begin{array}{c} Q_{Harrison} \\ (\lambda_{P50}) \\ (mW/m^2) \end{array}$	Q_z (λ_{P50}) (mW/m^2)	Q_0 (λ_{P50} , A_{P50}) (mW/m ²)	$\begin{array}{c} Q_{Harrison} \\ (\lambda_{P90}) \\ (mW/m^2) \end{array}$	Q_z (λ_{P90}) (mW/m^2)	Q_0 (λ_{P90} , A_{P90}) (mW/m ²)
A193	1131.27	16.9	18.8	1.95	2.83	3.54	1.23	1.57	1.87	33	37	37	48	53	54	60	67	68
A195	1715.50	32.7	33.9	1.96	2.84	3.55	1.23	1.56	1.87	64	66	67	93	96	98	116	120	122
A196	1368.26	38.9	40.4	2.36	3.29	4.08	0.89	1.18	1.49	92	95	96	127	133	134	158	165	166
A197	1388.57	24.8	26.3	2.38	3.22	3.94	0.83	1.12	1.45	59	63	63	80	85	86	97	104	105
A198	1262.88	25.8	27.5	2.33	3.16	3.89	0.86	1.14	1.46	60	64	65	81	87	88	100	107	108
A199	1347.14	22.9	24.5	2.43	3.27	3.97	0.80	1.09	1.42	55	60	60	75	80	81	91	97	98
A200	1713.47	23.3	24.6	1.95	2.84	3.55	1.23	1.56	1.87	45	48	49	66	70	71	83	87	89
A202	1296.47	20.3	22.0	1.95	2.83	3.55	1.23	1.56	1.87	40	43	44	58	62	63	72	78	79
A203	1739.19	11.5	12.8	2.55	3.33	4.11	0.67	0.96	1.31	29	33	33	38	43	43	47	53	54
A214	4103.70	20.3	20.5	2.07	2.91	3.58	1.07	1.39	1.72	42	42	45	59	59	62	73	73	77
A215	1713.03	20.8	22.0	1.95	2.84	3.55	1.23	1.56	1.87	40	43	44	59	62	64	73	78	80
A221	1682.93	20.0	21.3	1.95	2.84	3.55	1.23	1.56	1.87	39	42	43	57	60	62	71	75	77
A222	3454.67	26.0	26.3	2.12	2.93	3.60	1.01	1.33	1.66	55	56	57	76	77	79	93	95	98
A223	999.58	17.4	19.4	2.13	2.88	3.52	0.94	1.25	1.59	37	41	42	50	56	57	61	68	69
A224	970.16	17.5	19.6	2.02	2.88	3.59	1.14	1.46	1.77	35	40	40	50	56	57	63	70	71
A225	2062.46	21.0	21.9	1.95	2.84	3.55	1.23	1.56	1.87	41	43	44	59	62	64	74	78	80
A226	1616.26	17.9	19.2	1.95	2.84	3.55	1.23	1.56	1.87	35	38	39	51	55	56	63	68	70
A227	1714.51	25.7	26.9	1.95	2.84	3.55	1.23	1.56	1.87	50	53	54	73	76	78	91	95	97
A228	1808.68	26.0	27.1	1.96	2.84	3.55	1.23	1.56	1.87	51	53	54	73	77	78	92	96	98
A229	3983.27	21.1	21.3	2.06	2.91	3.61	1.08	1.41	1.73	44	44	46	61	62	65	76	77	80
A236	916.98	18.8	21.0	2.00	2.83	3.51	1.13	1.46	1.77	38	42	43	53	59	60	66	74	75
A238	879.26	12.1	14.2	2.19	2.88	3.53	0.86	1.16	1.49	26	31	32	35	41	42	43	50	51
A246	1330.09	14.0	15.7	2.36	3.18	3.94	0.83	1.12	1.45	33	37	38	44	50	51	55	62	63
A248	1261.85	27.3	29.0	2.40	3.23	3.91	0.81	1.09	1.42	65	70	70	88	94	94	106	113	114
A250	1026.19	22.4	24.4	2.14	2.87	3.51	0.92	1.22	1.57	48	52	53	64	70	71	78	86	86
A252	1825.97	24.7	25.8	1.99	2.81	3.46	1.15	1.48	1.81	49	51	52	69	73	74	85	90	91
A253	1697.32	23.5	24.7	2.01	2.79	3.42	1.10	1.43	1.77	47	50	50	65	69	70	80	84	86
A254	1757.60	28.1	29.3	1.99	2.79	3.42	1.13	1.46	1.80	56	58	59	78	82	83	96	100	102

Évaluation des ressources géothermiques du bassin des Basses-Terres du Saint-Laurent

Puits	TVD (m)	Grad _{Har} (°C)	Grad _{n-p} (°C)	λ _{eP10} (W/m·K)	λ _{eP50} (W/m·K)	λ _{eP90} (W/m·K)	A_{eP10} (μ W/m 3)	A_{eP50} (μ W/m 3)	$ m A_{eP90}$ ($\mu W/m^3$)	$\begin{array}{c} Q_{Harrison} \\ (\lambda_{P10}) \\ (mW/m^2) \end{array}$	Q_z (λ_{P10}) (mW/m^2)	Q_0 (λ_{P10}, A_{P10}) (mW/m ²)	$\begin{array}{c} Q_{Harrison} \\ (\lambda_{P50}) \\ (mW/m^2) \end{array}$	Q_z (λ_{P50}) (mW/m^2)	Q_0 (λ_{P50} , A_{P50}) (mW/m ²)	$Q_{Harrison}$ (λ_{P90}) (mW/m^2)	Q_z (λ_{P90}) (mW/m^2)	Q ₀ (λ _{P90} , Α _{P90}) (mW/m²)
A255	923.09	22.1	24.2	2.18	2.90	3.64	0.88	1.23	1.59	48	53	53	64	70	71	80	88	89
A256	974.99	30.9	32.9	1.95	2.83	3.54	1.23	1.57	1.87	60	64	65	87	93	94	109	117	117
A257	827.85	23.0	25.2	2.48	3.05	3.81	0.58	0.89	1.30	57	62	63	70	77	77	87	96	96
A258	1470.25	19.4	20.9	2.32	3.11	3.77	0.83	1.13	1.48	45	49	49	60	65	66	73	79	80
A259	1994.43	27.4	28.4	2.05	2.81	3.44	1.04	1.36	1.70	56	58	59	77	80	81	94	98	100
A261	2766.85	24.6	25.2	2.11	2.90	3.55	1.00	1.32	1.66	52	53	54	71	73	75	87	89	92
A262	1848.61	27.7	28.9	2.07	2.85	3.49	1.03	1.35	1.68	57	60	61	79	82	84	97	101	102
A266	2161.42	28.3	29.2	2.00	2.79	3.42	1.12	1.45	1.79	56	58	60	79	81	83	97	100	102
A267	2580.61	26.4	27.0	2.12	2.91	3.56	0.99	1.30	1.64	56	57	59	77	79	80	94	96	98
A270	874.62	21.5	23.7	2.00	2.80	3.44	1.11	1.44	1.78	43	48	48	60	66	67	74	82	82

Annexe 6. Données de capacité thermique massique et de densité

Tableau 17 – Données de capacité thermique massique et de densité de Nasr (2016).

ID lame mince	ID échantillon de roche	ID échantillon de surface	Capacité thermique calculée (W/m·K)	Densité (kg/m³)	Formation géologique	Unité géologique
LM_001	ER_001	09EK304	850.66	2.74	Beauharnois	Beekmantown
LM_002	ER_003	09EK311/2	857.96	2.68	Chazy	Tr-BR-Ch
LM_003	ER_004	09EK320/2	846.62	2.69	Trenton	Tr-BR-Ch
LM_011	ER_016	14MN01	874.45	2.63	Theresa	Theresa
LM_012	ER_017	14MN02	782.22	2.60	Cairnside	Cairnside
LM_013	ER_018	14MN03	837.23	2.54	Cairnside	Cairnside
LM_014	ER_019	14MN04	863.03	2.64	Cairnside	Cairnside
LM_015	ER_020	14MN05	799.35	2.62	Covey_Hill	Covey Hill
LM_016	ER_021	14MN06	773.36	2.62	Covey_Hill	Covey Hill
LM_017	ER_022	14MN07	776.29	2.63	Covey_Hill	Covey Hill
LM_018	ER_023	14MN08	835.58	2.57	Covey_Hill	Covey Hill
LM_019	ER_024	14MN09	829.04	2.70	Beauharnois	Beauharnois
LM_020	ER_025	14MN10	845.67	2.69	Chazy	Tr-BR-Ch
LM_021	ER_026	14MN11	843.02	2.68	Beauharnois	Beauharnois
LM_022	ER_027	14MN12	868.14	2.81	Beauharnois	Beauharnois
LM_023	ER_028	14MN13	866.06	2.68	Black_River	Tr-BR-Ch
LM_024	ER_029	14MN14	845.67	2.69	Trenton	Tr-BR-Ch
LM_025	ER_030	14MN16	819.25	2.64	Theresa	Theresa
LM_026	ER_031	14MN17	884.41	2.64	Trenton	Tr-BR-Ch
LM_027	ER_032	14MN18	763.89	2.59	Precambrien	Précambrien
LM_028	ER_033	14MN19	878.31	2.63	Chazy	Tr-BR-Ch
LM_029	ER_034	14MN20	917.06	2.73	Beauharnois	Beauharnois
LM_030	ER_035	14MN21	937.81	2.54	Nicolet	Couverture

ID lame mince	ID échantillon de roche	ID échantillon de surface	Capacité thermique calculée (W/m·K)	Densité (kg/m³)	Formation géologique	Unité géologique
LM_031	ER_037	14MN23	934.35	2.54	Nicolet	Couverture
LM_032	ER_038	14MN24	934.84	2.54	Becancour	Couverture
LM_033	ER_041	14MN27	829.96	2.70	Utica	Utica
LM_034	ER_042	14MN28	833.73	2.70	Trenton	Tr-BR-Ch
LM_035	ER_043	14MN29	834.91	2.71	Utica	Utica
LM_036	ER_044	14MN30	839.85	2.71	Utica	Utica
LM_037	ER_045	14MN31	829.96	2.70	Trenton	Tr-BR-Ch
LM_038	ER_046	14MN32	829.96	2.70	Trenton	Tr-BR-Ch
LM_039	ER_047	14MN33	769.80	2.58	Precambrien	Précambrien
LM_040	ER_048	14MN34	752.60	2.62	Precambrien	Précambrien
LM_041	ER_049	14MN35	847.21	2.72	Sainte-Rosalie	Couverture
LM_042	ER_050	14MN36	796.51	2.67	Sainte-Rosalie	Couverture

Annexe 7. Énergie thermique totale, énergie thermique récupérable et puissance électrique

Tableau 18 – Énergie thermique et puissance électrique pour le scénario $A_{10}\lambda_{10}.$

					$A_{10}\lambda_{10}$			
	Dásamusin	1//10 ⁹ m ³)	T (9C)	c (c)	Фи	= 2%	Φ ν =	20 %
	Réservoir	V (10 ⁹ m ³)	T _i (°C)	E _{tot} (EJ)	E _{rec} (EJ)	P_e (MWe)	E _{rec} (EJ)	P_e (MWe)
	3-4 km, 120-150 °C	54.6	122.5	14.4	0.0	2.4	0.3	24.2
	3-4 km, > 150 °C	-	-	-	-	-	-	-
	4-5 km, 120-150 °C	704.7	128.1	184.5	0.3	31.3	3.1	313.3
/Po	4-5 km, > 150 °C	0.1	153.4	0.0	0.0	0.0	0.0	0.0
/8k	5-6 km, 120-150 °C	1 655.9	137.8	474.0	0.7	81.4	7.3	814.4
\ \ 2	5-6 km, > 150 °C	331.1	157.5	111.8	0.1	19.6	1.5	195.9
RÉSERVOIR BTSL (Tr-BR-Ch/Bk/Po)	6-7 km, 120-150 °C	360.0	145.8	104.3	0.2	18.1	1.5	180.8
SL (1	6-7 km, > 150 °C	823.5	162.6	269.6	0.3	47.4	3.5	474.4
BTS	7-8 km, 120-150 °C	-	-	-	-	-	-	-
OIR	7-8 km, > 150 °C	77.9	169.3	26.3	0.0	4.7	0.3	46.5
ERV	8-9 km, 120-150 °C	-	-	-	-	-	-	-
RÉS	8-9 km, > 150 °C	-	-	-	-	-	-	-
	Total 120-150 °C	2 775.2	-	777.1	1.2	133.3	12.1	1 332.6
	Total > 150 °C	1 232.6	-	407.8	0.5	71.7	5.3	716.9
	TOTAL	4 007.8	-	1 184.9	1.7	204.9	17.5	2 049.4
	3-4 km, 120-150 °C	13.3	122.8	3.3	0.0	0.6	0.1	5.6
	3-4 km, > 150 °C	-	-	-	-	-	-	-
	4-5 km, 120-150 °C	465.2	128.0	117.6	0.2	20.0	2.0	199.6
	4-5 km, > 150 °C	0.1	153.4	0.0	0.0	0.0	0.0	0.0
ΣA	5-6 km, 120-150 °C	945.0	136.8	256.7	0.4	44.1	4.0	440.6
SD,	5-6 km, > 150 °C	116.9	154.7	36.4	0.0	6.4	0.5	63.7
PO	6-7 km, 120-150 °C	349.8	145.7	101.0	0.1	17.5	1.5	175.0
OIR	6-7 km, > 150 °C	758.2	162.4	245.8	0.3	43.2	3.2	432.4
ERV	7-8 km, 120-150 °C	- 77.0	- 160.2	-	-	- 4.7	-	-
RÉSERVOIR POTSDAM	7-8 km, > 150 °C	77.9	169.3	26.3	0.0	4.7	0.3	46.5
	8-9 km, 120-150 °C	-	-	-	-	-	-	-
	8-9 km, > 150 °C Total 120-150 °C	1 772 2	-	470.6	- 0.7	- 02.1	- 7.F	- 020.0
	Total > 150 °C	1 773.2		478.6	0.7	82.1	7.5	820.8
	TOTAL	953.0 2 726.2	-	308.5 787.1	0.4	54.3 136.3	4.0 11.5	542.6
	3-4 km, 120-150 °C	3.3	122.4	0.7	0.0	0.1	0.0	1 363.4 1.2
	3-4 km, > 150 °C	-	-		-	0.1		1.2
	4-5 km, 120-150 °C	863.3	125.5	200.8	0.3	34.0	3.4	339.6
	4-5 km, > 150 °C	0.1	150.7	0.0	0.0	0.0	0.0	0.1
z	5-6 km, 120-150 °C							
3RIE	5-6 km, > 150 °C	7 831.0 407.5	131.3 155.5	1 912.0 119.0	3.1 0.2	326.0 20.8	31.0 1.6	3 259.7 208.1
RÉSERVOIR SOCLE PRÉCAMBRIEN	6-7 km, 120-150 °C	10 007.8	137.3	2 561.1	4.0	439.8	39.6	4 398.1
₹ÉC/	6-7 km, 120-130 °C	5 622.0	160.2	1 694.2	2.2	297.5	22.3	2 975.4
E P	7-8 km, 120-150 °C	3 856.8	141.3	1 017.6		175.5	15.3	1 755.4
OCL	7-8 km, 120-150 °C	13 865.0	170.5	4 460.9	1.5 5.5	789.6	54.9	7 896.0
IR S	8-9 km, 120-150 °C					29.3		
300		618.7	145.8	168.8	0.2 6.7		2.4	292.6
ÉSEI	8-9 km, > 150 °C	16 843.3	186.5	5 950.8	6.7	1 064.2	66.7	10 642.1
~	9-10 km, 120-150 °C 9-10 km, > 150 °C	0.4	150.4 206.2	0.1 6 761.4	0.0	0.0	0.0	0.2
		17 229.3			6.8	1 221.8	68.2	12 217.8
	Total 120-150 °C	23 181.3	-	5 861.2	9.2	1 004.7	91.8	10 046.8
	Total > 150 °C	53 967.3	-	18 986.3	21.4	3 393.9	213.7	33 939.3
	TOTAL	77 148.6	-	24 847.5	30.5	4 398.6	305.5	43 986.1
	Total 120-150 °C	27 729.7	-	6 638.3	10.4	1 137.9	103.9	11 379.3
	Total > 150 °C	56 152.9	-	19 394.1	21.9	3 465.6	219.0	34 656.2
	TOTAL	83 882.6	-	26 032.4	32.3	4 603.6	322.9	46 035.5

Tableau 19 – Énergie thermique et puissance électrique pour le scénario $A_{10}\lambda_{90}$.

					$A_{10}\lambda_{90}$			
	Pácarvoir	V (10 ⁹ m ³)	T (°C)	E (EI)	Φν	= 2%	Φ ν =	= 20%
	Réservoir	ν (10 m)	<i>T_i</i> (°C)	E _{tot} (EJ)	E _{rec} (EJ)	P_e (MWe)	E _{rec} (EJ)	P_e (MWe)
	3-4 km, 120-150 °C	18.4	121.6	4.7	0.0	0.8	0.1	8.0
	3-4 km, > 150 °C	-	-	-	-	-	-	-
	4-5 km, 120-150 °C	627.5	127.0	163.0	0.3	27.6	2.7	276.2
/Po	4-5 km, > 150 °C	-	-	-	-	-	-	-
/Bk	5-6 km, 120-150 °C	1 674.1	138.0	408.1	0.6	70.1	6.3	701.4
ک ک	5-6 km, > 150 °C	293.3	157.0	99.1	0.1	17.4	1.3	173.6
RÉSERVOIR BTSL (Tr-BR-Ch/Bk/Po)	6-7 km, 120-150 °C	307.7	146.5	89.3	0.1	15.5	1.3	155.0
). IS	6-7 km, > 150 °C	878.1	162.2	286.7	0.4	50.4	3.7	504.3
BT	7-8 km, 120-150 °C	-	-	-	-	-	-	-
OIR	7-8 km, > 150 °C	77.9	169.5	26.3	0.0	4.7	0.3	46.6
ERV	8-9 km, 120-150 °C	-	-	-	-	-	-	-
RÉS	8-9 km, > 150 °C	-	-	-	-	-	-	-
	Total 120-150 °C	2 627.7	-	665.2	1.0	114.1	10.4	1 140.6
	Total > 150 °C	1 249.3	-	412.1	0.5	72.4	5.4	724.4
	TOTAL	3 877.0	-	1 077.3	1.6	186.5	15.8	1 865.0
	3-4 km, 120-150 °C	7.2	121.8	1.8	0.0	0.3	0.0	3.0
	3-4 km, > 150 °C	-	-	-	-	-	-	-
	4-5 km, 120-150 °C	406.1	126.9	101.7	0.2	17.2	1.7	172.3
	4-5 km, > 150 °C	-	-	-	-	-	-	-
Σ	5-6 km, 120-150 °C	947.2	137.1	258.0	0.4	44.3	4.0	442.9
SD/	5-6 km, > 150 °C	95.2	154.7	29.7	0.0	5.2	0.4	52.0
PO .	6-7 km, 120-150 °C	305.0	146.5	88.5	0.1	15.3	1.3	153.4
OIR	6-7 km, > 150 °C	806.0	162.0	260.6	0.3	45.8	3.4	458.2
ERV	7-8 km, 120-150 °C	- 77.9	160.5	26.3	-	- 4.7	- 0.2	-
RÉSERVOIR POTSDAM	7-8 km, > 150 °C	77.9	169.5	20.5	0.0	4.7	0.3	46.6
	8-9 km, 120-150 °C	-	-	_	_	_	_	_
	8-9 km, > 150 °C Total 120-150 °C	1 665.5	-	449.9	0.7	77.2	7.0	771.7
	Total > 150 °C	979.1	-	316.6	0.4	55.7	4.1	556.8
	TOTAL	2 644.6	-	766.5	1.1	132.8	11.1	1 328.4
	3-4 km, 120-150 °C	2.6	122.3	0.6	0.0	0.1	0.0	1.0
	3-4 km, > 150 °C	-	-	-	-	-	-	-
	4-5 km, 120-150 °C	735.6	126.1	171.0	0.3	28.9	2.9	289.4
	4-5 km, > 150 °C	-	-	-	-	-	-	-
Z	5-6 km, 120-150 °C	7 034.2	131.5	1 712.5	2.8	292.0	27.7	2 919.9
IBRI	5-6 km, > 150 °C	283.4	155.0	82.2	0.1	14.4	1.1	143.8
βA	6-7 km, 120-150 °C	9 764.3	137.0	2 486.2	3.9	426.8	38.6	4 267.9
PRÉ	6-7 km, > 150 °C	4 672.4	159.7	1 400.2	1.8	245.8	18.5	2 457.8
CLE	7-8 km, 120-150 °C	5 320.0	139.4	1 381.2	2.1	237.8	21.0	2 377.6
SO	7-8 km, > 150 °C	12 249.2	169.5	3 909.8	4.8	691.5	48.4	6 915.2
RÉSERVOIR SOCLE PRÉCAMBRIEN	8-9 km, 120-150 °C	1 488.2	143.7	399.3	0.6	69.1	5.9	690.5
ER\	8-9 km, > 150 °C	16 016.1	183.1	5 546.9	6.3	990.0	63.4	9 900.0
RÉS	9-10 km, 120-150 °C	93.5	148.9	26.0	0.0	4.5	0.4	45.3
	9-10 km, > 150 °C	17 163.6	200.3	6 529.2	6.8	1 176.4	67.9	11 764.1
	Total 120-150 °C	24 438.2	-	6 176.8	9.6	1 059.2	96.5	10 591.6
	Total > 150 °C	50 384.7	-	17 468.3	19.9	3 118.1	199.3	31 180.9
	TOTAL	74 822.9	-	23 645.1	29.6	4 177.2	295.8	41 772.5
	Total 120-150 °C	28 731.4	-	6 841.9	10.7	1 173.2	106.9	11 732.2
	Total > 150 °C	52 613.1	-	17 880.5	20.5	3 190.5	204.7	31 905.3
	TOTAL	81 344.5	-	24 722.4	31.2	4 363.7	311.5	43 637.5

Tableau 20 – Énergie thermique et puissance électrique pour le scénario $A_{50}\lambda_{50}$.

					$A_{50}\lambda_{50}$			
	Dásamusin	V (10 ⁹ m ³)	T (9C)	F /FI\	Фи	= 2%	Φ ν =	20%
	Réservoir	ν (10 m)	<i>T_i</i> (°C)	E_{tot} (EJ)	E _{rec} (EJ)	P_e (MWe)	E _{rec} (EJ)	P_e (MWe)
	3-4 km, 120-150 °C	21.5	121.6	5.5	0.0	0.9	0.1	9.3
	3-4 km, > 150 °C	-	1	1	-	-	-	-
	4-5 km, 120-150 °C	611.2	126.9	158.5	0.3	26.9	2.7	268.5
/Po	4-5 km, > 150 °C	-	-	-	-	-	-	-
/Bk	5-6 km, 120-150 °C	1 718.1	137.3	490.4	0.8	84.2	7.6	842.1
2	5-6 km, > 150 °C	230.0	157.0	77.9	0.1	13.6	1.0	136.4
RÉSERVOIR BTSL (Tr-BR-Ch/Bk/Po)	6-7 km, 120-150 °C	392.0	146.0	113.7	0.2	19.7	1.6	197.1
). - -	6-7 km, > 150 °C	799.4	161.0	259.0	0.3	45.5	3.4	455.1
BTS	7-8 km, 120-150 °C	0.0	150.8	0.0	0.0	0.0	0.0	0.0
OIR	7-8 km, > 150 °C	77.9	167.0	25.9	0.0	4.6	0.3	45.8
ERV	8-9 km, 120-150 °C	-	-	-	-	-	-	-
RÉS	8-9 km, > 150 °C	-	-	-	-	-	-	-
	Total 120-150 °C	2 742.8	-	768.1	1.2	131.7	12.0	1 317.1
	Total > 150 °C	1 107.3	-	362.8	0.5	63.7	4.8	637.3
	TOTAL	3 850.1	-	1 130.9	1.7	195.4	16.8	1 954.5
	3-4 km, 120-150 °C	8.0	121.9	2.0	0.0	0.3	0.0	3.3
	3-4 km, > 150 °C	-	- 427.0	- 100 5	-	- 47.0	-	- 470.2
	4-5 km, 120-150 °C	401.2	127.0	100.5	0.2	17.0	1.7	170.3
	4-5 km, > 150 °C	-	- 426.5	-	-	-	-	-
Σ	5-6 km, 120-150 °C	962.0	136.5	260.9	0.4	44.8	4.1	447.6
rsD/	5-6 km, > 150 °C	66.4	154.7	20.7	0.0	3.6	0.3	36.3
PO	6-7 km, 120-150 °C	381.8	145.9	110.4	0.2	19.1	1.6	191.4
OIR	6-7 km, > 150 °C	734.0 0.0	160.8 150.8	235.5 0.0	0.3	41.4	3.1	413.8
RÉSERVOIR POTSDAM	7-8 km, 120-150 °C	77.9	167.0	25.9	0.0	4.6	0.3	45.8
RÉS	7-8 km, > 150 °C	-	-	-	-	-	-	-
	8-9 km, 120-150 °C 8-9 km, > 150 °C	_	_	_	_	_	_	_
	Total 120-150 °C	1 753.0	-	473.7	0.7	81.3	7.4	812.6
	Total > 150 °C	878.3	-	282.2	0.4	49.6	3.7	495.8
	TOTAL	2 631.3	-	755.9	1.1	130.8	11.1	1 308.4
	3-4 km, 120-150 °C	4.0	121.7	0.9	0.0	0.2	0.0	1.5
	3-4 km, > 150 °C	-	-	-	-	-	-	-
	4-5 km, 120-150 °C	1 523.6	125.9	355.7	0.6	60.2	6.0	602.0
	4-5 km, > 150 °C	0.2	150.7	0.1	0.0	0.0	0.0	0.1
Z	5-6 km, 120-150 °C	9 489.1	132.4	2 337.6	3.8	399.1	37.6	3 990.9
3RIE	5-6 km, > 150 °C	721.3	155.7	210.9	0.3	36.9	2.9	369.0
₽	6-7 km, 120-150 °C	8 821.8	139.2	2 290.8	3.5	394.2	34.9	3 942.4
RÉSERVOIR SOCLE PRÉCAMBRIEN	6-7 km, > 150 °C	7 634.1	161.8	2 324.7	3.0	408.8	30.2	4 087.8
E P	7-8 km, 120-150 °C	1 941.1	142.8	518.0	0.8	89.5	7.7	895.0
)0C	7-8 km, > 150 °C	15 688.2	174.3	5 164.2	6.2	916.5	62.1	9 164.8
JR S	8-9 km, 120-150 °C	136.8	148.4	38.0	0.1	6.6	0.5	66.0
RVC	8-9 km, > 150 °C	17 281.2	193.7	6 351.7	6.8	1 140.5	68.4	11 405.1
ÉSE	9-10 km, 120-150 °C	-	-	-	-	-	-	-
~	9-10 km, > 150 °C	17 229.3	216.1	7 097.7	6.8	1 288.2	68.2	12 882.0
	Total 120-150 °C	21 916.3	-	5 541.0	8.7	949.8	86.8	9 497.8
	Total > 150 °C	58 554.3	-	21 149.3	23.2	3 790.9	231.8	37 908.8
	TOTAL	80 470.6	-	26 690.3	31.9	4 740.7	318.6	47 406.6
	Total 120-150 °C	26 412.1	-	6 309.1	9.9	1 081.5	98.8	10 814.9
	Total > 150 °C	60 539.9	-	21 512.1	23.7	3 854.6	236.6	38 546.1
	TOTAL	86 952.1	-	27 821.2	33.5	4 936.1	335.4	49 361.1
	IUIAL	00 332.1		27 021.2	55.5	7 550.1	333.4	75 501.1

Tableau 21 – Énergie thermique et puissance électrique pour le scénario $A_{90}\lambda_{10}$.

		$A_{90}\lambda_{10}$						
	Dásamusin	V (10 ⁹ m ³)	- (0c)	5 (E1)	Φv = 2%		Φv = 20%	
	Réservoir	ν (10 m)	<i>T_i</i> (°C)	E_{tot} (EJ)	E _{rec} (EJ)	P_e (MWe)	E _{rec} (EJ)	P_e (MWe)
RÉSERVOIR BTSL (Tr-BR-Ch/Bk/Po)	3-4 km, 120-150 °C	34.8	121.9	9.1	0.0	1.5	0.2	15.3
	3-4 km, > 150 °C	-	-	1	-	-	-	-
	4-5 km, 120-150 °C	618.4	127.2	160.8	0.3	27.3	2.7	272.6
	4-5 km, > 150 °C	0.1	150.4	0.0	0.0	0.0	0.0	0.0
	5-6 km, 120-150 °C	1 715.5	136.5	487.1	0.8	83.6	7.6	835.6
	5-6 km, > 150 °C	202.3	157.2	68.8	0.1	12.1	0.9	120.6
	6-7 km, 120-150 °C	526.5	144.5	151.3	0.2	26.2	2.2	261.9
	6-7 km, > 150 °C	662.0	160.5	213.8	0.3	37.6	2.8	375.6
BTS	7-8 km, 120-150 °C	0.7	149.7	0.2	0.0	0.0	0.0	0.3
OIR	7-8 km, > 150 °C	77.7	163.9	25.3	0.0	4.5	0.3	44.6
ERV	8-9 km, 120-150 °C	-	-	-	-	-	-	-
₹Ś!	8-9 km, > 150 °C	-	-	-	-	-	-	-
	Total 120-150 °C	2 895.8	-	808.4	1.3	138.6	12.7	1 385.8
	Total > 150 °C	941.9	-	308.0	0.4	54.1	4.1	540.8
	TOTAL	3 837.8	-	1 116.4	1.7	192.7	16.7	1 926.5
	3-4 km, 120-150 °C	9.4	122.0	2.3	0.0	0.4	0.0	3.9
	3-4 km, > 150 °C	-	-	-	-	-	-	-
	4-5 km, 120-150 °C	401.1	127.3	100.8	0.2	17.1	1.7	170.8
	4-5 km, > 150 °C	0.1	150.4	0.0	0.0	0.0	0.0	0.0
Σ	5-6 km, 120-150 °C	949.4	135.9	256.2	0.4	43.9	4.0	439.3
SDA	5-6 km, > 150 °C	50.9	154.7	16.0	0.0	2.8	0.2	27.9
TO	6-7 km, 120-150 °C	506.3	144.5	144.8	0.2	25.1	2.1	250.7
IR F	6-7 km, > 150 °C	607.1	160.3	194.1	0.3	34.1	2.5	340.9
N.	7-8 km, 120-150 °C	0.7	149.7	0.2	0.0	0.0	0.0	0.3
RÉSERVOIR POTSDAM	7-8 km, > 150 °C	77.7	163.9	25.3	0.0	4.5	0.3	44.6
~	8-9 km, 120-150 °C	-	-	-	-	-	-	-
	8-9 km, > 150 °C	-	-	-	-	-	-	-
	Total 120-150 °C	1 866.9	-	504.3	0.8	86.5	7.9	865.1
	Total > 150 °C	735.7	-	235.5	0.3	41.4	3.1	413.5
	TOTAL	2 602.7	-	739.8	1.1	127.9	11.0	1 278.6
	3-4 km, 120-150 °C	2.0	122.2	0.5	0.0	0.1	0.0	0.8
	3-4 km, > 150 °C	-	-	-	-	-	-	-
	4-5 km, 120-150 °C	758.4	125.2	176.0	0.3	29.8	3.0	297.6
_	4-5 km, > 150 °C	-	-	-	-	-	-	-
REN	5-6 km, 120-150 °C	7 841.4	131.0	1 908.8	3.1	325.3	31.0	3 252.6
MB	5-6 km, > 150 °C	307.0	154.8	89.2	0.1	15.6	1.2	156.0
ÉCA	6-7 km, 120-150 °C	10 539.7	137.4	2 699.8	4.2	463.7	41.7	4 636.8
PR	6-7 km, > 150 °C	5 189.2	159.4	1 555.7	2.1	273.0	20.5	2 730.2
CLE	7-8 km, 120-150 °C	3 852.3	141.7	1 019.4	1.5	175.9	15.3	1 759.2
s sc	7-8 km, > 150 °C	13 894.3	169.1	4 431.1	5.5	783.5	55.0	7 835.1
RÉSERVOIR SOCLE PRÉCAMBRIEN	8-9 km, 120-150 °C	552.2	146.0	151.0	0.2	26.2	2.2	261.7
SER	8-9 km, > 150 °C	16 904.4	185.1	5 927.4	6.7	1 059.2	66.9	10 592.0
RÉ	9-10 km, 120-150 °C	-	-	-	-	-	-	-
	9-10 km, > 150 °C	17 229.3	204.9	6 717.5	6.8	1 213.1	68.2	12 131.0
	Total 120-150 °C	23 546.0	-	5 955.4	9.3	1 020.9	93.2	10 208.7
	Total > 150 °C	53 524.2	-	18 720.9	21.2	3 344.4	211.9	33 444.2
	TOTAL	77 070.2	-	24 676.3	30.5	4 365.3	305.2	43 652.9
	Total 120-150 °C	28 308.7	-	6 763.8	10.6	1 159.4	105.9	11 594.4
	Total > 150 °C	55 201.9	-	19 028.9	21.6	3 398.5	216.0	33 985.0
	TOTAL	83 510.6	-	25 792.7	32.2	4 557.9	321.9	45 579.4

Tableau 22 – Énergie thermique et puissance électrique pour le scénario $A_{90}\lambda_{90}$.

		$A_{90}\lambda_{90}$						
	_, .	146.59 3.		_ />	Φv = 2%		Φv = 20%	
	Réservoir	V (10 ⁹ m ³)	<i>T_i</i> (°C)	E _{tot} (EJ)	E _{rec} (EJ)	P_e (MWe)	E _{rec} (EJ)	P_e (MWe)
RÉSERVOIR BTSL (Tr-BR-Ch/Bk/Po)	3-4 km, 120-150 °C	14.7	121.4	3.8	0.0	0.6	0.1	6.3
	3-4 km, > 150 °C	-	-	-	-	-	-	-
	4-5 km, 120-150 °C	589.6	126.6	152.6	0.3	25.9	2.6	258.6
	4-5 km, > 150 °C	-	-	-	-	-	-	-
	5-6 km, 120-150 °C	1 704.7	137.3	486.8	0.8	83.6	7.5	836.0
	5-6 km, > 150 °C	226.0	156.9	76.6	0.1	13.4	1.0	134.1
	6-7 km, 120-150 °C	397.6	145.9	115.2	0.2	20.0	1.7	199.7
	6-7 km, > 150 °C	793.5	160.9	257.0	0.3	45.2	3.4	451.6
BTS	7-8 km, 120-150 °C	0.0	150.3	0.0	0.0	0.0	0.0	0.0
OIR	7-8 km, > 150 °C	77.9	166.4	25.8	0.0	4.6	0.3	45.6
ERV	8-9 km, 120-150 °C	-	-	-	-	-	-	-
RÉSI	8-9 km, > 150 °C	-	-	-	-	-	-	-
	Total 120-150 °C	2 706.6	-	758.4	1.2	130.1	11.8	1 300.6
	Total > 150 °C	1 097.4	-	359.4	0.5	63.1	4.7	631.2
	TOTAL	3 804.0	-	1 117.8	1.7	193.2	16.6	1 931.8
	3-4 km, 120-150 °C	6.3	121.6	1.6	0.0	0.3	0.0	2.6
	3-4 km, > 150 °C	-	-	-	-	-	-	-
	4-5 km, 120-150 °C	382.3	126.7	95.5	0.2	16.2	1.6	161.8
	4-5 km, > 150 °C	-	-	-	-	-	-	-
Σ	5-6 km, 120-150 °C	947.1	136.6	256.9	0.4	44.1	4.0	440.8
SDA	5-6 km, > 150 °C	63.7	154.7	19.9	0.0	3.5	0.3	34.8
RÉSERVOIR POTSDAM	6-7 km, 120-150 °C	389.5	145.9	112.5	0.2	19.5	1.6	195.0
	6-7 km, > 150 °C	726.0	160.7	232.8	0.3	40.9	3.0	409.0
	7-8 km, 120-150 °C	0.0	150.3	0.0	0.0	0.0	0.0	0.0
ίέSΕ	7-8 km, > 150 °C	77.9	166.4	25.8	0.0	4.6	0.3	45.6
<u> </u>	8-9 km, 120-150 °C	-	-	-	-	-	-	-
	8-9 km, > 150 °C	- 4 705 0	-	-	-	-	-	-
	Total 120-150 °C	1 725.2	-	466.5	0.7	80.0	7.3	800.3
	Total > 150 °C	867.6	-	278.5	0.4	48.9	3.6	489.4
	TOTAL	2 592.8	-	745.0	1.1	129.0	10.9	1 289.7
	3-4 km, 120-150 °C	2.4	121.3	0.5	0.0	0.1	0.0	0.9
	3-4 km, > 150 °C	-	-	-	-	-	-	-
	4-5 km, 120-150 °C	702.8	125.41	163.4	-	-	-	-
_	4-5 km, > 150 °C	-	-	-	-	-	-	-
RIEN	5-6 km, 120-150 °C	6 956.6	130.8	1 691.2	2.8	288.1	27.5	2 881.3
MB	5-6 km, > 150 °C	251.6	154.4	72.9	0.1	12.7	1.0	127.4
ÉCA	6-7 km, 120-150 °C	10 073.3	136.6	2 564.0	4.0	440.0	39.9	4 399.5
PR	6-7 km, > 150 °C	4 439.3	159.0	1 327.4	1.8	232.9	17.6	2 328.9
CLE	7-8 km, 120-150 °C	5 357.6	139.4	1 393.6	2.1	239.9	21.2	2 399.0
RÉSERVOIR SOCLE PRÉCAMBRIEN	7-8 km, > 150 °C	12 250.4	168.4	3 889.9	4.9	687.5	48.5	6 874.6
NO.	8-9 km, 120-150 °C	1 437.5	143.7	386.2	0.6	66.8	5.7	667.9
SER	8-9 km, > 150 °C	16 065.3	182.2	5 539.8	6.4	988.2	63.6	9 881.8
RÉ	9-10 km, 120-150 °C	78.8	148.9	22.0	0.0	3.8	0.3	38.2
	9-10 km, > 150 °C	17 175.5	199.5	6 510.5	6.8	1 172.6	68.0	11 725.8
	Total 120-150 °C	24 609.0	-	6 220.9	9.5	1 038.7	94.6	10 386.9
	Total > 150 °C	50 182.0	-	17 340.5	19.9	3 093.8	198.7	30 938.5
	TOTAL	74 791.1	-	23 561.5	29.3	4 132.5	293.3	41 325.4
	Total 120-150 °C	29 040.8	-	6 979.3	10.6	1 168.7	106.5	11 687.4
	Total > 150 °C	52 147.1	-	17 699.9	20.3	3 157.0	203.4	31 569.7
	TOTAL	81 187.9	-	24 679.3	31.0	4 325.7	309.9	43 257.2