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ABSTRACT
To date, monitoring of river ice using remote sensing has

mainly focused on the use of mono-polarized and multi-

polarized C-band radar data only. In this paper, Support

Vector Machine (SVM) classifications using polarimetric

parameters are tested to identify types of river ice. Classifica-

tion algorithms are validated on the newly available C-band

Radarsat-2 and X-band Terrasar-X data to investigate the

potential of this new imagery, acquired in winter 2009. An

electromagnetic model is improved to simulate the polarimet-

ric response of a river ice cover to understand the interactions

of the radar signal with the ice cover. At C-band, using dual-

polarized data over mono-polarized data increases by 23.9%

the final classification producer accuracy. Furthermore, the

best producer accuracy is 91.6% when using dual-pol data at

C-band, which stand for a gain of 2.2% compared to dual-pol

data at X-band

Index Terms— River ice, Classification, PolSAR data,

Electromagnetic model

1. INTRODUCTION

The development of ice covers on large rivers can result in ice

jamming and flooding of large areas. The severity and eco-

nomic impact of floods related to ice jams is exacerbated by

the danger of post-flooding freeze-up. Satellite based moni-

toring services offer an ideal solution allowing decision mak-

ers to collect information on river ice repeatedly and consis-

tently throughout the ice season. To date, monitoring of river

ice through remote sensing has mainly focused on the use of

mono-polarized and multi-polarized C-band radar data [1][2].

New satellites such as Radarsat-2 host a number of new capa-

bilities, such as super fine resolution, dual polarization mode

and full polarimetric data, which will enhance river ice moni-

toring services. Of particular interest are the identification of

scattering properties of different ice types and the improve-

ment of ice type classification accuracy. It is expected that the

results from this investigation will directly improve the qual-

ity and efficiency of satellite-based river ice monitoring. This

work evaluates the potential of dual-polarized SAR data at

X- and C-band for improved river ice classification. The first

part of this paper focuses on the polarimetric theory. Then,

interactions between river ice and signal are described, fol-

lowed by a description of field and SAR data. The fifth part

focuses on the classification used (SVM). Finally, the results

are presented and compared with ground-truth data.

2. POLARIMETRIC THEORY

The polarimetric radar measures the response of a medium

in the form of a scattering matrix S, expressed in the linear

(H,V) basis, as:

S =
[

SHH SHV

SV H SV V

]
(1)

The four elements SHH , SHV , SV H and SV V are com-

plex numbers. In the monostatic case, SHV = SV H . Thus,

polarimetric data set can be represented as a target vector k.

The covariance matrix C has a complex Wishart distribution.

k and C can be defined as:

S =
[

SHH

√
2SHV SV V

]T
and C = kk∗T (2)

where the superscript ”T” denotes the matrix transpose. The

span is a quantity giving the total power received by the four

channels of a polarimetric radar system:

span = |SHH |2 + |SHV |2 + |SV H |2 + |SV V |2 (3)

In dual-polarized configuration (HH-VV),

span = |SHH |2 + |SV V |2 (4)

The correlation between HH and VV, sensitive to the scatter-

ing mechanisms, is expressed as:

ρHHV V =
|SHHS∗

V V |√|SHH |2√|SV V |2 (5)

The entropy H is a measure of target disorder [3], with H =
1 for a completely random target for which all eigenvalues
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are equal, and H = 0 for a simple target (single scatterer).

Finally, H and θ parameters are given by:

H = −
3∑

i=1

λi

λ1 + λ2 + λ3
log2

λi

λ1 + λ2 + λ3
(6)

θ = −
2∑

i=1

λi

λ1 + λ2
log2

λi

λ1 + λ2
(7)

This last parameter can be used only for dual-polarized data.

3. INTERACTION BETWEEN RIVER ICE AND
SIGNAL

The backscattered signal from the ice cover is composed of

surface and volume scattering contributions. The surface scat-

tering is mainly influenced by the snow-ice and ice-water in-

terface roughness and dielectric constant [4]. Volume scat-

tering is caused by all the impurities inside the ice matrix.

Air inclusions are usually the most significant scatterers [5].

The snow ice is a superimposed ice which contains closely

bunched spherical air bubbles (0.001-0.25cm). The thermal

ice contains irregularly spaced spherical or tubular air bubbles

(0.1-0.3cm). The frazil ice contains closely bunched spheri-

cal and irregular bounded air inclusions (0.2-1.3cm). For this

study, four classes are defined: the Open Water (OW), the In-

tact Ice (II) which contain thermal ice or fused layers of ther-

mal and frazil ice, the floating Frazil Ice (FI) which include

slush, pans and floes, and the Consolidated Ice (CI) which is a

mix of different ice types and has typically very rough air-ice

interface.

Gherboudj [6] has developed a backscatter model describ-

ing the river ice medium in order to understand the interac-

tions of the radar signal with the river ice cover. The proposed

model is based on the Vector Radiative Transfer (VRT) theory

and the Integral Equation Model (IEM) [7]. The model, built

to estimate the total response (HH, VV and HV channels)

from the ice cover, is improved to be a full polarimetric model

(hence including the phase values). This model requires the

following input data: ice cover thickness, ice cover porosity

p, size of scatterers (radius r and length h) within each ice

layer and boundary characteristics of the main medium (sur-

face height standard deviation (kσ), correlation length (kLc)

and correlation function) (k is the wave number of the host

medium). The contribution of each the above mentioned pa-

rameters to the overall backscattering response was assessed

using a series of modelling experiments, and the main results

are presented in section 6.1 and in Fig.1.

4. FIELD AND SAR DATA

4.1. Field data

The test site is the Saint-Francois River (45o50N ; 72o22W ),

located in southern Quebec and upstream from the town of

Fig. 1. Simulation results for three ice covers. (kσ,kLc) for

both air-ice and ice-water boundaries is (0.15,1)

Fig. 2. Weather conditions for winter 2003, 2008 and 2009

Drummondville. The stream flow is roughly south to north.

The study section is approximately 30km long. Channel

width varies from 100m to 850m and the depth reaches 2-4m

in general. Ground-truth data have been measured the same

days as the satellite overpass on the Saint-Francois River in

Winters 2008 and 2009. Ice cores were extracted and ana-

lyzed for ice type and porosity. Ice cores and ground photos

are conjointly used to establish validation sites for the ice

cover classification. Ice thicknesses (between 0.3m-2m) were

also measured using a Ground Penetrating Radar. The cu-

mulative freezing-degree days (Fig.2) also provide a useful

tool that can explain the presence of frazil and air inclusions

in the ice cover. This parameter has higher values for the

2009 season. Such values indicate the high rate of freezing

required for frazil formation to occur, and show an increase

in the amount and/or the size of air bubbles.

4.2. SAR data

Single-polarized Radarsat-1 images were acquired on Febru-

ary 3 and 27 and on March 6 2009. Furthermore, five

Radarsat-2 full polarimetric images in quad-fine mode were

also acquired. Three datasets were acquired over the Saint-
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Francois River on February 5 and 28 2009 and on March 14

2009. Due to its system configurations, the German satellite

Terrasar-X also provides an excellent data base regarding the

monitoring of river ice distribution as well as for its character-

ization. In fact, because of the low dielectric constant of the

river ice, even high frequencies will penetrate it. Short wave-

lengths (9.65GHz) and polarimetric data contribute to the

separation of volume and surface scattering. A total of four

coherent dual-polarized Terrasar-X images were acquired

over the Saint-Francois River on February 17 2008, March

10 2008, February 3 2009 and February 25 2009. Each time,

Single-Look Complex (SLC) are available. Data have been

multi-looked. A 7*7 window size Lee filter was also applied

to reduce the speckle effect.

5. CLASSIFICATION USED

Support Vector Machines (SVM) is a useful technique for

data classification and recently became one of the most pop-

ular classification methods. It has been used in a wide variety

of applications such as text classification, facial expression

recognition, gene analysis and many others. The theoreti-

cal foundation of this method is given by statistical learn-

ing theory. SVM can be thought of as a method for con-

structing a special kind of rule, called a linear classifier, in

a way that produces classifiers with theoretical guarantees of

good predictive performance (the quality of classification on

unseen data). SVM delineates two classes by fitting an op-

timal separating hyperplane to the multidimensional feature

space. This optimization bases on structural risk minimiza-

tion and tries to maximize the margin between the hyperplane

and the closest training data points, the so-called support vec-

tors. Thus, SVM only considers training samples close to the

class boundary and might work well with small sample sets.

For linearly not separable classes the input data are mapped

into a high dimensional space wherein the newly spread data

point distribution enables the fitting of a linear hyperplane. A

detailed description on the concept of SVM is given in [8].

6. RESULTS

6.1. Simulations of the electromagnetic model

Superposing snow ice (thickness = 30cm, r = 0.05cm and p =

18.2%) and thermal ice (r = 0.05cm) causes a small increase

in θ (1.1% with p = 1.8% at C-band with thickness ranging

from 30cm to 40cm) when the porosity and the thickness in-

crease (Fig.1). An increase in the frequency leads to a small

increase in θ. Superposing snow ice and frazil ice (r = 0.2cm)

causes a strong increase in θ (16.6% with p = 7.3% at C-band

with thickness ranging from 30cm to 40cm) when the poros-

ity and the thickness increase (Fig.1). θ is logically higher at

X-band than at C-band. Even at higher frequencies, the snow

ice causes a very small increase in θ when the porosity and the

thickness increase. Thus, the snow ice is almost transparent

for radar signals, and the increased θ observed for snow ice

superposed on thermal ice is caused by the multiple scattering

occurring between scatterers of different ice layer. These re-

sults confirm the observations of the polarimetric parameters

behaviour depending on the type of ice.

6.2. Classifications

Classes are derived using the total power (span) and θ pa-

rameter at X-band, and intensity values in HH and VV and ρ
parameter at C-band (Fig.3). For each ice class, training sites

are selected and their probability density functions were plot-

ted for different polarimetric parameters. The above parame-

ters are chosen because the corresponding Bhattacharrya and

Chi2 distances separating the density probability functions of

the training sites are the shortest. Furthermore, the θ and ρ
parameters are independent of the span information. These

parameters are thus complementary.

The results in Fig.4a demonstrate that dual-polarized

(HH-VV) C-band data produce superior classification re-

sults over the dual-polarized (HH-VV) X-band data. Using

dual-polarized dataset at C-band versus X-band causes an

increase in the producer accuracy (from 2.2% to 3.8% de-

pending on the dataset) and in the user accuracy (from 10.8%

to 14.4%). The results in Fig.4b demonstrate that at C-band,

dual-polarized (HH-VV) SAR data produce superior classifi-

cation results over the single-polarized data, causing a strong

increase in the producer accuracy (from 15.9% to 23.9%) and

in the user accuracy (from 17.1% to 22.5%). A confusion

matrix, which illustrates the results of the SVM algorithm

on the 5 February 2009 Radarsat-2 dataset, is shown as an

example in Fig.5. There are few open water pixels but they

are well classified. Consolidated ice could be better classified

(81.4% of producer accuracy). The algorithm is stable in the

detection of the intact ice (95.9% of producer accuracy) but

overestimates it (66.7% of user accuracy). Fig.6 shows the

result of a five-class hierarchical classification. A fifth class

was added to detect the eventual presence of frazil floes on

the river. However, on February 5, 2009, no frazil floes were

seen during the field campaign (February 4-5) and open water

could (in blue) only be noticed on the northern section of the

river. The two main ice classes shown on this classification

are Intact Ice (thermal ice only) and Consolidated Ice. The

ice core samples also confirm the presence of those two types

of ice. The zoomed area shows that in case of Radarsat-2

dataset, the detected open water area is more homogenous

than Radarsat-1 dataset.

7. CONCLUSION

The major objectives of this project were to evaluate the util-

ity of dual-polarized SAR to develop river ice classification

algorithms data for river ice monitoring. Various classifi-

cation algorithms have been compared and the SVM is re-

tained because it shows a greater ability to generalise. The
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Fig. 3. SVM classification scheme at (a) X-band (b) C-band.

In this study, CI1 and CI2 are merged. OW=Open Water;

CI=Consolidated Ice; II=Intact Ice; FI=Frazil Ice

(a) (b)

Fig. 4. (a) Validation with dual-pol February 3-5 (left) and 25-

28 (right) 2009 SAR data. (b) Validation with C-band Febru-

ary 3-5 (left) and 27-28 (right) 2009 SAR data

Fig. 5. SVM confusion matrix with dual-pol February 5 2009

SAR data at C-band

availability of Radarsat-2 data in 2009 provides the opportu-

nity to validate these algorithms and to estimate the potential

of polarimetric data for classifying river ice. All classifica-

tions of Radarsat-2 SAR data show no ambiguities between

water and ice discrimination, contrary to classification with

single-polarized data. This work has demonstrated that dual-

polarized (HH-VV) SAR data produce superior classification

results over the single-polarized data (respectively 15.9% and

23.9% of increase of the producer accuracy). Besides Further-

more, the best producer accuracy is 91.6% when using dual-

pol data at C-band, a gain of 2.2% compare to dual-pol data

at X-band. In the near future, Radarsat-2 data should provide

Fig. 6. SVM classification with dual-pol February 5 2009

SAR data at C-band

improved ice edge detection, ice topography and structure in-

formation.
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d’une rivière de taille moyenne à l’aide des images du satel-
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