Université du Québec INRS-ETE

Étude du potentiel des eaux de surface à Haïti pour répondre aux problèmes de pénurie d'eau potable

Par

Gonel Joseph

Mémoire présenté
Pour l'obtention
du grade de Maître ès sciences (M.Sc.)
En sciences de l'eau

Jury d'évaluation

Examinateur externe Evens Emmanuel

Université Quisqueya, Haïti

Examinateur interne Alin Carsteanu, professeur invité

INRS-EAU, Terre et Environnement

Examinateur interne Karem Chokmani, associé de recherche

INRS-EAU, Terre et Environnement

Directeur de Recherche Taha B.M.J. Ouarda, professeur

INRS-EAU, Terre et Environnement

Codirecteur de recherche André Saint-Hilaire, professeur

INRS-EAU, Terre et Environnement

Février 2006

RÉSUMÉ

Haïti connaît de sérieux problèmes en matière d'eau potable. Pour certains, ce n'est pas l'eau qui manque dans ce coin du globe, les ressources sont plutôt mal reparties dans l'espace. On a toujours considéré l'eau souterraine comme la seule ressource exploitable à des fins de consommation humaine. Les eaux de surface ne sont exploitées que pour l'irrigation. Malgré de nombreux rapports parlant de l'abondance de cette composante du bilan hydrique (eau de surface), elle demeure encore mal connue. Les précipitations, les pertes, l'infiltration, le ruissellement sont des variables qu'il faut estimer pour apporter une solution durable aux problèmes de pénurie. Notre travail a visé comme objectif le développement d'une méthodologie capable d'estimer à l'échelle spatiale et temporelle la ressource en eau de surface. Spécifiquement, la méthodologie doit permettre : l'estimation des précipitations et des pertes tant à l'échelle spatiale qu'à l'échelle temporelle, l'estimation de la lame d'eau annuelle disponible, la quantification des risques d'inondations dans les bassins jaugés. Dans la méthodologie proposée, nous avons d'abord colligé les informations que nous avons recueillies de diverses sources et constitué plusieurs banques de données (météorologiques, hydrologiques et physiographiques) à partir de ces informations. Une méthode de krigeage ordinaire a été utilisée pour l'interpolation spatiale et temporelle des précipitations et de l'évapotranspiration potentielle. La disponibilité des eaux de surface a été estimée spatialement à l'aide de deux méthodes de régionalisation: une régression linéaire établie entre le débit moyen annuel et la surface du bassin versant et une nouvelle méthode connue sous le nom de krigeage canonique (krigeage ordinaire dans l'espace physiographique). Quant aux risques d'inondations, ils ont été quantifiés par une analyse fréquentielle des débits maximums annuels. Les méthodes appliquées, compte tenu de la consistance des données que nous avons utilisées, ont conduit à des résultats satisfaisants. Par exemple, il a été possible d'estimer les précipitations totales annuelles et l'évapotranspiration potentielle (ETP) annuelle pour l'ensemble du territoire. La valeur de cette dernière a été très importante par rapport à la valeur précipitée mais il s'agit, comme nous l'avons bien précisé, d'une perte potentielle. C'est une valeur indicative, elle ne peut servir en aucun cas à faire un bilan hydrologique. La perte d'eau réelle serait une valeur bien plus faible car l'évapotranspiration réelle est une fraction de l'évapotranspiration potentielle. Cependant, l'absence d'information sur les caractéristiques de l'occupation du sol est le principal facteur limitant pour l'estimation de l'évapotranspiration réelle (ETR) afin d'établir le bilan hydrologique sur tout

le territoire. Toutefois, sans prétendre faire le bilan hydrologique, les précipitations et l'évapotranspiration potentielle ont contribué largement à identifier les zones et les périodes pour lesquelles il pourrait y avoir un déficit ou un excédent d'eau sur l'ensemble du territoire. Ce bilan en eau du territoire se ferait bien évidemment en connaissant toutes ses composantes (précipitations, évapotranspiration réelle, écoulement et infiltration).

Si les précipitations et l'évapotranspiration réelle ont été estimées à l'aide du krigeage ordinaire, la lame d'eau disponible, par contre, a été estimée en utilisant une régression linéaire et le krigeage canonique. Loin d'être parfaites, ces méthodes ont toutefois apporté une contribution scientifique importante car il serait difficile voire impossible d'établir des points de mesure hydroclimatiques sur toute l'étendue du territoire. Leur utilisation a permis toutefois de connaître en tout point du territoire, les précipitations, les pertes potentielles ainsi que la disponibilité en eau. Cependant, la régression linéaire et particulièrement le krigeage canonique ont éprouvé certaines difficultés sur des banques de données limitées. La régression a permis, quelque soit la superficie du bassin de drainage, d'estimer la lame d'eau disponible mais dans les petits bassins les résultats ne sont pas aussi satisfaisants. La lame d'eau estimée est trop élevée par rapport à la superficie considérée. C'est la raison pour laquelle tous les petits bassins, surtout côtiers de moins de 10 km² dont leur surface totale (2762 km²) représente environ 10% de la superficie du pays, ont été écartés des résultats. Le krigeage canonique, quand à lui, a éprouvé des difficultés par rapport à la consistance des données. En dehors du domaine considéré par le variogramme (4.08 km, la distance entre deux sites), le krigeage n'a pas pu estimer la lame d'eau disponible. La surface totale des points non estimés par cette méthode est de 2274 km², soit environ 8% de la superficie totale du pays.

Se basant sur la connaissance du climat, il est essentiel de signaler la variation spatiotemporelle des précipitations et des pertes potentielles et aussi la variation spatiale du
ruissellement. Les précipitations varient avec l'altitude et la direction des vents, elles sont
plus importantes dans les régions de montagnes exposées aux vents et les hauts plateaux.
Ainsi, le nord et le sud exposés aux nordés et aux alizés respectivement ainsi que la région du
centre sont les plus humides. Cependant, la grande région de la côte ouest qui est une zone
sous le vent est la moins pluvieuse. Les mois d'hiver sont ceux les plus humides pour le nord
et correspondent à la saison sèche pour le reste du pays. Dans la saison humide, pour la
plupart des régions, il existe un pic au mois de mai et un autre en octobre. Par contre, les
pertes sont presque constantes partout et toute l'année avec un pic au mois de juillet pendant
la période la plus chaude.

Le ruissellement suit le régime pluvial, il est plus important dans les bassins où les précipitations sont plus abondantes. Ainsi, la lame d'eau annuelle estimée est surtout importante dans les régions du nord, du sud et du sud-ouest. Cependant, la région du centre présente une lame d'eau plus faible malgré l'abondance des précipitations dans cette partie du territoire. La lame d'eau est plus faible du fait que le régime des cours d'eau soit influencé par un barrage de retenue, située un peu à l'est du territoire proche de la République Dominicaine, qui joue un rôle de régulateur de crues.

Loin d'être exhaustif, ce travail scientifique ouvre la voie à d'autres activités de recherche du genre notamment: l'amélioration de l'estimation de l'évapotranspiration potentielle en tenant compte de l'effet de l'altitude; l'estimation de l'évapotranspiration réelle qui tient compte des facteurs de l'occupation du sol notamment en exploitant les données de la télédétection; le développement d'une méthodologie pour estimer à l'échelle spatiale et temporelle l'infiltration de façon à établir un vrai bilan hydrologique pour tous les bassins versants délimités. Ce travail servirait également de base à de nombreux projets de développement dont l'assainissement, l'hydroélectricité, l'irrigation, la construction de réservoirs, etc.

DÉDICACES

A mon épouse GuilnieTelusmond Joseph pour son soutien moral inestimable A ma fille Guishelle Werley Joseph pour m'avoir toujours donné la joie de vivre.

G. Joseph

REMERCIEMENTS

Au terme de ce travail, je tiens à exprimer ma plus profonde gratitude à M. Taha B.M.J. Ouarda, professeur à l'Institut National de la Recherche Scientifique, Eau, Terre et Environnement (INRS-ETE) et titulaire de la Chaire de recherche du Canada en estimation des variables hydrologiques, pour avoir accepté de diriger mon mémoire et pour avoir rendu possible la réalisation de ce travail. Sans lui, ce mémoire n'aurait pas vu le jour mais grâce à sa ténacité, sa patience, je présente un travail scientifique original et de haute qualité.

Je tiens à exprimer ma reconnaissance à M. André Saint-Hilaire, professeur à l'Institut National de la Recherche Scientifique, Eau, Terre et Environnement (INRS-ETE), pour avoir accepté de codiriger mon mémoire et me donner de nombreux conseils.

Je remercie également M. Karem Chokmani, associé de recherche à l'INRS-ETE, pour m'avoir assisté tout au long de ce travail et pour y avoir mis toute son énergie. Patient et chaleureux, il mérite toutes mes sympathie et gratitude.

J'exprime ma plus profonde reconnaissance au Programme Canadien de Bourses de la Francophonie (PCBF) pour m'avoir donné l'opportunité d'accomplir une étude supérieure au Canada dans ce domaine combien important pour mon pays. J'aimerais citer nommément ma conseillère pédagogique, Madame Jovette Chouinard, pour tout son support.

Je tiens également à remercier l'Agence Canadienne de Développement International (ACDI) pour toute l'aide financière qu'elle a apportée pour l'accomplissement de ce travail.

Enfin, à tous ceux et celles qui, d'une manière ou d'une autre, ont apporté leur contribution à la réalisation de ce mémoire, je témoigne ma plus profonde reconnaissance.

TABLE DES MATIÈRES

RÉSUMÉ	I
DÉDICACES	IV
REMERCIEMENTS	v
TABLE DES MATIÈRES	
LISTE DES TABLEAUX	
LISTE DES FIGURES	
LISTE DES FIGURES	
CHADITOE I	1
CHAPITRE I	
INTRODUCTION GÉNÉRALE	
1.1 PROBLEMATIQUE	
1.2 OBJECTIF GENERAL DE LA RECHERCHE	
1.2.1 Objectifs spécifiques	
CHAPITRE II	4
MÉTHODOLOGIE	4
2.1 REVUE DES DONNEES DISPONIBLES A HAÏTI	4
2.2 ESTIMATION DES RESSOURCES EN EAU.	
2.2.1 Estimation des précipitations	
2.2.2 Estimation des pertes par évaporation et évapotranspiration	
2.2.3 Estimation des débits moyens annuels	6
2.2.4 Estimation des débits maximums annuels	6
CHAPTRE III	8
REVUE DE LITTÉRATURE DES MÉTHODES D'ESTIMATION DES	
RESSOURCES EN EAU DE SURFACE	8
3.1 APPROCHE CARTOGRAPHIQUE	
3.2 APPROCHE BASEE SUR LA TELEDETECTION ET LE SYSTEME D'INFORMATION	
GEOGRAPHIQUE	9
3.3 APPROCHE DE MODELISATION HYDROLOGIQUE	10
3.4 APPROCHE LINEAIRE ET CONCEPTUELLE	
3.4.1 Approche linéaire	
3.4.2 Approche conceptuelle par bilan hydrique	
3.5 METHODES DE REGIONALISATION	
3.5.1 La methode de transposition nyarologique	
3.5.3 Méthodes d'interpolation et de reconstitution	
x.z a since position of an iconstitution	1 /

3.5.3.1 Transfert d'information entre deux sites par régression linéaire	17
3.5.3.2 Interpolation spatiale par la méthode du « krigeage »	19
3.5.3.2.1 Analyse variographique	20
3.5.3.2.2 Mise en œuvre du krigeage	21
3.5.3.2.3 Types de krigeage	23
3.5.3.2.3.1 Krigeage simple	23
3.5.3.2.3.2 Krigeage ordinaire	25
3.5.3.2.3.3 Krigeage intrinsèque	26
3.5.3.3 Interpolation spatiale par l' « Analyse en Composantes Principales	27
3.5.4 Estimation régionale des débits	28
3.6 Analyse fréquentielle des débits maximums	30
CHAPITRE IV	36
LES ETUDES ANTERIEURES	36
4.1 Generalites	36
4.1.1 Les ressources en eau à l'échelle mondiale	
4.1.2 État de eaux de surface dans le monde	
4.2 LES RESSOURCES EN EAU DE SURFACE DE LA REPUBLIQUE D'HAÏTI	
4.3 LES USAGES ET BESOINS EN EAU	39
4.3.1 Les usages de l'eau au niveau mondial	
4.3.2 Usages de l'eau en Haïti	
4.3.3 Les besoins en eau	
4.3.3.1 Besoins domestiques	
4.3.3.2 Besoins en eau d'irrigation	
4.3.3.3 Besoins industriels	
4.4 Qualite des eaux de surface a Haïti	
CHAPITRE V.	
BANQUE DE DONNÉES	
5.1 SOURCES D'INFORMATION	
5.2 PROBLEMES RENCONTRES	
5.3 BANQUES DE DONNEES	
5.3.1 Caractéristiques générales du climat	
5.3.1 Banque de données pluviométriques	
5.3.1.1 Inventaire des stations pluviométriques	
5.3.1.2 Distribution des sites et répartition spatio-temporelle de la pluviométrie	
5.3.2 Banque de données hydrométriques	
5.3.2.1 Historique et distribution du réseau de jaugeage	
5.3.2.2 Qualité et consistance des données	
5.3.3 Banque de données physiographiques	
5.3.3.1 Situation géographique	65
5.3.3.2 Relief et topographie	
5.3.3.5 Le réseau hydrographique	
5.3.3.3 Aperçu pédologique	
5.3.3.4 Végétation naturelle	
5.3.3.5 Surfaces cultivées	
5.3.3.6 Ressources forestières	72
CHAPITRE VI	73
RÉSULTATS DE L'ESTIMATION DE LA RESSOURCE EN EAU	73

6.1 ESTIMATION DE LA PRECIPITATION	
6.1.1 Estimation de la précipitation totale à l'échelle annuelle	
6.1.2 Estimation saisonnière des précipitations totales	81
6.1.3 Estimation mensuelle des précipitations totales	
6.2 PERTES D'EAU PAR EVAPORATION ET EVAPOTRANSPIRATION	
6.3 BILAN HYDROLOGIQUE	
6.4 ESTIMATION DU RUISSELLEMENT	
6.4.1 Estimation de la lame d'eau disponible à l'échelle du territoire	
6.4.1.1 Régionalisation des débits moyens annuels	
6.4.1.1.1 Régression linéaire	
6.4.1.1.2 Krigeage canonique	
6.4.1.1.3 Variation de la lame d'eau disponible par rapport à la précipitation	
6.4.2 Étude des débits maximums annuels	
6.4.2.1 Caractérisation statistique des séries maximums annuelles	
6.4.2.2 Vérification des hypothèses de base	
6.4.2.3 Détermination des quantiles	116
CHAPITRE 7	120
CONCLUSIONS ET RECOMMANDATIONS	
7.1 CONCLUSION	120
7.1.1 Synthèse générale	120
7.1.2 Contribution scientifique et discussion sur les méthodes utilisées	
7.2 RECOMMANDATIONS	123
RÉFÉRENCES BIBLIOGRAPHIQUES	126
ANNEXES	
AINNEAES	130
ANNEXE A : SÉRIES DE DÉBITS DES COURS D'EAU ÉTUDIÉS	
ANNEXE B: DONNÉES D'ÉVAPOTRANSPIRATION ESTIMÉES PAR LA M	MÉTHODE
DE PENMAN-MONTEITH, DONNÉES D'ÉVAPOTRANS	
ESTIMÉES PAR LA MÉTHODE DE THORNTHWAITE, DON	
TEMPÉRATURE, RÉGRESSION ENTRE LA MÉTHODE DE	
MONTEITH ET CELLE DE TORNTHWAITE POUR L'ESTIMA	ATION DE
L'ÉVAPOTRANSPIRATION	TITOT DE
ANNEXE C : CARTOGRAPHIE DE L'ÉVAPOTRANSPIRATION SAISONNIÈ	RE ET
MENSUELLE	
ANNEXE D : ANALYSE DE TENDANCE ET SAUT DANS LE TEMPS DES D	ÉBITS
	~
MOYENS ANNUELS	
ANNEXE E · MÉTHODES D'A ILISTEMENT DES DÉRITS MA VIMUMS ANN	TIDI C

LISTE DES TABLEAUX

TABLEAU 3.1: DISTRIBUTION D'AJUSTEMENT	33
TABLEAU 3.2: RÉSUMÉ DES PROCÉDURES À UTILISER POUR LE CALCUL DE L'INTERVALLE DE CONFIANCE	35
TABLEAU 4.1: LES BASSINS DE DRAINAGE MAJEURS D'HAÏTI	39
TABLEAU 4.2 : CONSOMMATION D'EAU PAR RÉGION HYDROGÉOGRAPHIQUE (MM³/AN)	41
TABLEAU 4.3: INSTALLATIONS DES FORCES HYDRAULIQUES	42
TABLEAU 5.1:LISTE DES STATIONS PLUVIOMETRIQUES D'HAÏTI	50
TABLEAU 5.1:LISTE DES STATIONS PLUVIOMETRIQUES D'HAÏTI (SUITE)	51
TABLEAU 5.1:LISTE DES STATIONS PLUVIOMETRIQUES D'HAÏTI (SUITE)	52
TABLEAU 5.2: PRECIPITATIONS MOYENNES MENSUELLES ET ANNUELLES EN MM	53
TABLEAU 5.2: PRECIPITATIONS MOYENNES MENSUELLES ET ANNUELLES EN MM (SUITE)	54
TABLEAU 5.2: PRECIPITATIONS MOYENNES MENSUELLES ET ANNUELLES EN MM (SUITE)	55
TABLEAU 5.2: PRECIPITATIONS MOYENNES MENSUELLES ET ANNUELLES EN MM (SUITE)	56
TABLEAU 5.3 : LES STATIONS HYDROMETRIQUES DE LA REPUBLIQUE D'HAÏTI	61
TABLEAU 5.3: LES STATIONS HYDROMETRIQUES DE LA REPUBLIQUE D'HAÏTI (SUITE)	62
TABLEAU 5.3: LES STATIONS HYDROMETRIQUES DE LA REPUBLIQUE D'HAÏTI (SUITE)	63
TABLEAU 5.3: LES STATIONS HYDROMETRIQUES DE LA REPUBLIQUE D'HAÏTI (SUITE)	64
TABLEAU 5.4 : SUPERFICIE DES BASSINS ET ZONES HYDROLOGIQUES D'HAÏTI	67
TABLEAU 5.4 : SUPERFICIE DES BASSINS ET ZONES HYDROLOGIQUES D'HAÏTI (SUITE)	68
TABLEAU 6.1: RESULTATS DE LA VALIDATION CROISEE SUR LES PRECIPITATIONS TOTALES ANNUELLES	76
TABLEAU 6.1: RESULTATS DE LA VALIDATION CROISEE SUR LES PRECIPITATIONS TOTALES ANNUELLES (SU	ITE) 77
TABLEAU 6.2 : STATISTIQUES SUR LES RESULTATS DE LA VALIDATION CROISEE	77
TABLEAU 6.3: STATISTIQUES SUR LES RESULTATS DE KRIGEAGE DES PRECIPITATIONS TOTALES ANNUELLES	s 7 9
TABLEAU 6.4: STATISTIQUES SUR LES RESULTATS DE KRIGEAGE SAISONNIER DES PRECIPITATIONS	82
TABLEAU 6.5: PRECIPITATIONS TOTALES MENSUELLES ESTIMEES PAR KRIGEAGE SUR HAÏTI	84
TABLEAU 6.6 : ÉVAPOTRANSPIRATION TOTALE ANNUELLE, SAISONNIERE ET MENSUELLE ESTIMEES PAR KRI	GEAGE
SUR HAÏTI.	93
TABLEAU 6.7: BILAN DES PRECIPITATIONS ET DES PERTES MOYENNES EN EAU	97
TABLEAU 6.8: CARACTERISTIQUES STATISTIQUES DES DEBITS MOYENS ANNUELS	99
TABLEAU 6.8: CARACTERISTIQUES STATISTIQUES DES DEBITS MOYENS ANNUELS (SUITE)	100
TABLEAU 6.9: RESULTATS DES DIFFERENTES ETAPES DE CALCUL POUR L'ESTIMATION DU DEBIT MOYEN AN	NUEL
ET SON ECART TYPE PAR LA METHODE DU KRIGEAGE.	108
TABLEAU 6.10 : CARACTERISTIQUES STATISTIQUES DES SERIES MAXIMUMS ANNUELLES	112
TABLEAU 6.11: REGROUPEMENT DES STATIONS PAR ZONE HYDROLOGIQUE	113
TABLEAU 6.12: HYPOTHESE D'INDEPENDANCE (TEST DE WALD-WOLFOWITZ)	114
TABLEAU 6.13: HYPOTHESE DE STATIONNARITE (TEST DE KENDALL)	115
TABLEAU 6.14: HYPOTHESE D'HOMOGENEITE (TEST DE WILCOXON)	115

TABLEAU 6.14: HYPOTHESE D'HOMOGENEITE (TEST DE WILCOXON) (SUITE)	
TABLEAU 6.15: AJUSTEMENT DES LOIS STATISTIQUES AUX DEBITS MAXIMUMS ANNUELS	
TABLEAU 6.16: QUANTILES DE DEBITS DE CRUES. DEBITS MAXIMUMS ANNUELS (M³/S)	
TABLEAU 6.17: STATISTIQUES DES DEBITS DE CRUES (M³/S)	
TABLEAU 6.18: QUANTILES DE DEBITS SPECIFIQUES DE CRUES. DEBITS MAXIMUMS ANNUELS (L/S/KM²)	
TABLEAU 6.19: STATISTIQUE DES DEBITS SPECIFIQUES DE CRUES (L/S/KM²)	

LISTE DES FIGURES

FIGURE 5.1 : DISTRIBUTION SPATIALE DES STATIONS PLUVIOMETRIQUES D'HAÏTI	57
FIGURE 5.2: REPARTITION SPATIO-TEMPORELLE DE LA PLUVIOMETRIE D'APRES L'ATLAS D'HAÎTI (GRETA	FAMV,
1991)	58
FIGURE 5.3 : DISTRIBUTION SPATIALE DES STATIONS HYDROMETRIQUES D'HAÏTI	59
FIGURE 5.4 : SITUATION GEOGRAPHIQUE D'HAÏTI (GRET/FAMV, 1991)	65
FIGURE 5.5 : REGIONS HYGEOGRAPHIQUES D'HAÏTI (MARKLEY ET AL., 1999)	69
FIGURE 5.6 : CARTE DE DELIMITATION DE TOUS LES BASSINS VERSANTS D'HAÏTI	69
FIGURE 5.7 : CARTE DE DELIMITATION DES BASSINS JAUGES D'HAÏTI	70
FIGURE 5.8 : CARTE DE DELIMITATION DES BASSINS NON JAUGES D'HAÏTI	70
FIGURE 6.1 : MODELE DE SEMI-VARIOGRAMME AJUSTE SUR LES PRECIPITATIONS ANNUELLES	75
FIGURE 6.2: VALIDATION CROISEE SUR LES PRECIPITATIONS TOTALES ANNUELLES	76
FIGURE 6.3 : CARTE DES PRECIPITATIONS TOTALES ANNUELLES PRODUITE PAR KRIGEAGE	79
FIGURE 6.4 : CARTE DE PRECIPITATION SAISONNIERE (SAISON SECHE) PRODUITE PAR KRIGEAGE	83
FIGURE 6.5 : CARTE DE PRECIPITATION SAISONNIERE (SAISON HUMIDE) PRODUITE PAR KRIGEAGE	83
FIGURE 6.6 : CARTE DE PRECIPITATION MENSUELLE (MOIS DE JANVIER) PRODUITE PAR KRIGEAGE	85
FIGURE 6.7 : CARTE DE PRECIPITATION MENSUELLE (MOIS DE FEVRIER) PRODUITE PAR KRIGEAGE	85
FIGURE 6.8 : CARTE DE PRECIPITATION MENSUELLE (MOIS DE MARS) PRODUITE PAR KRIGEAGE	86
FIGURE 6.9 : CARTE DE PRECIPITATION MENSUELLE (MOIS D'AVRIL) PRODUITE PAR KRIGEAGE	86
FIGURE 6.10 : CARTE DE PRECIPITATION MENSUELLE (MOIS DE MAI) PRODUITE PAR KRIGEAGE	87
FIGURE 6.11 : CARTE DE PRECIPITATION MENSUELLE (MOIS DE JUIN) PRODUITE PAR KRIGEAGE	87
FIGURE 6.12 : CARTE DE PRECIPITATION MENSUELLE (MOIS DE JUILLET) PRODUITE PAR KRIGEAGE	88
FIGURE 6.13 : CARTE DE PRECIPITATION MENSUELLE (MOIS D'AOUT) PRODUITE PAR KRIGEAGE	88
FIGURE 6.14 : CARTE DE PRECIPITATION MENSUELLE (MOIS DE SEPTEMBRE) PRODUITE PAR KRIGEAGE	89
FIGURE 6.15 : CARTE DE PRECIPITATION (MOIS D'OCTOBRE) PRODUITE PAR KRIGEAGE	89
FIGURE 6.16 : CARTE DE PRECIPITATION MENSUELLE (MOIS DE NOVEMBRE) PRODUITE PAR KRIGEAGE	90
FIGURE 6.17 : CARTE DE PRECIPITATION (MOIS DE DECEMBRE) PRODUITE PAR KRIGEAGE	90
FIGURE 6.18 : CARTE D'EVAPOTRANSPIRATION POTENTIELLE ANNUELLE PRODUITE PAR KRIGEAGE	93
FIGURE 6.19 : CARTE DE LA LAME D'EAU NETTE (DEFICIT OU EXCEDENT D'EAU) ANNUELLE PRODUITE PAR	•
KRIGEAGE	96
FIGURE 6.20: VARIATION DE LA PRECIPITATION ET DE L'EVAPOTRANSPIRATION MOYENNES MENSUELLES.	96
FIGURE 6.21 : FREQUENCE DU NOMBRE DE STATIONS PAR NOMBRE D'ANNEES DE JAUGEAGE	101
FIGURE 6.22 : FREQUENCE DE DISTRIBUTION DE BASSINS VERSANTS NON JAUGES EN FONCTION DE LEUR	
SUPERFICIE	102
FIGURE 6.23 : REGRESSION ENTRE LE DEBIT MOYEN ANNUEL ET LA SUPERFICIE DU BV EN Km^2	103
FIGURE 6.24: VALIDATION CROISEE (METHODE REGRESSIVE)	104
FIGURE 6.25: LAME D'EAU MOYENNE ANNUELLE ESTIMEE PAR REGRESSION LINEAIRE	104

FIGURE 6.26 : ORGANIGRAMME DE L'ESTIMATION DE LA LAME D'EAU PAR KRIGEAGE CANONIQUE	07
FIGURE 6.27 : VALIDATION CROISEE (METHODE DE KRIGEAGE ORDINAIRE)	108
FIGURE 6.28 : LAME D'EAU MOYENNE ANNUELLE ESTIMEE PAR KRIGEAGE CANONIQUE	109
FIGURE 6.29 : VARIATION DE LA LAME D'EAU MOYENNE ANNUELLE PAR RAPPORT A LA PRECIPITATION TOTALE	
ANNUELLE	110

CHAPITRE I

INTRODUCTION GÉNÉRALE

1.1 Problématique

Plus d'un milliard d'êtres humains dans le monde seraient actuellement privés d'accès à l'eau potable selon les estimations présentées à la conférence mondiale des Nations Unies sur l'environnement (Johannesburg, 2001). Haïti n'est pas épargnée car seulement 20% de sa population a accès à un système d'approvisionnement en eau potable. Haïti, pays des grandes Antilles, d'une superficie de 27 750 km² et peuplé d'environ 8 millions d'habitants, est confrontée à de sérieux problèmes de pénurie d'eau potable. Haïti figure sur une liste de 46 à 52 pays qui feront face d'ici 2025 à de sérieuses pénuries d'eau si au cours de cet intervalle aucune mesure préventive n'est envisagée pour corriger la situation (Gadelle, 1995). Une estimation effectuée en 1997 chiffre les besoins en eau potable à 137 millions de m³ par an et à l'horizon 2015 ces besoins s'élèveront à 230 millions de m³ par an (MDE, 2001). D'aucuns estiment que ce n'est pas l'eau qui manque à Haïti, le problème serait lié à l'exploitation des ressources en eau. Le problème de l'eau à Haïti réside dans sa répartition territoriale et temporelle inégale et dans l'exploitation irrationnelle des ressources disponibles (OPS/OMS, 1996). L'eau souterraine est depuis longtemps considérée comme la seule ressource susceptible d'être exploitée pour approvisionner la population haïtienne en eau potable. On estime qu'elle est moins sujette à la variabilité dans le temps. Elle est en outre mieux répartie dans l'espace grâce à la présence de formations aquifères généralisées (Emmanuel et Lindskog, 2000). Profitant de la facilité d'accès à ces ressources et de leur bonne qualité, la quasi-totalité des systèmes d'approvisionnement en eau potable d'Haïti exploite les eaux souterraines, soit par des captages de sources, soit par des forages et des puits. Cependant, l'exploitation des eaux de surface aux fins de consommation domestique n'est jamais envisagée. Les eaux de surface ne sont exploitées jusqu'ici que pour l'irrigation d'une partie des terres agricoles. La ressource en eau souterraine, estimée à 56 milliards de m³ par an selon Emmanuel et Lindskog (2000), sont de loin très supérieures aux ressources en eau de surface estimées à 14 milliards de m³ par an, mais la répartition des ressources en eau souterraine se révèle très problématique car des 56 milliards de m³, 48 milliards sont emmagasinés dans les

aquifères continus généralement liés aux plaines littorales et alluviales et 8 milliards dans les aquifères discontinus des faciès calcaires karstifiés toujours selon la même source. De plus, les ressources en eau souterraine ne sont pas inépuisables et leur mise en valeur n'est pas non plus exempte de difficultés: l'exploitation des aquifères demande un suivi pour prévenir les effets non désirables comme la baisse des niveaux piézométriques, l'intrusion d'eau salée, l'effondrement des constructions en surface et les risques de pollution. Aujourd'hui, l'accroissement de l'urbanisation fait de plus en plus craindre les risques de pollution car jusqu'ici, il n'existe aucune station d'épuration d'eaux usées à Haïti. Toutes ces difficultés s'ajoutent aux risques associés aux changements climatiques qui pourraient entraîner l'augmentation moyenne du niveau de la mer qui aurait comme conséquence la salinisation des nappes phréatiques. Aussi, afin de diminuer la pression qui s'exerce sur ces ressources et réduire les effets irréversibles (intrusion d'eau salée, pollution) sommes-nous dans l'obligation de viser une solution alternative, celle de l'utilisation des eaux de surface dans la consommation en eau de la population haïtienne afin de contribuer à trouver une solution durable au problème chronique de pénurie d'eau potable. Ainsi, l'estimation des eaux de surface et leurs distributions temporelle et spatiale sont indispensables afin de connaître, d'une part, les caractéristiques globales disponibles de ces eaux pour tout le territoire haïtien, et d'autre part, pour évaluer leur disponibilité afin de maximiser leur utilisation et minimiser les risques et les impacts dévastateurs. L'évaluation du potentiel des eaux de surface pour rencontrer les besoins grandissants de la population haïtienne constitue l'axe principal et justifiant ce travail de recherche.

1.2 Objectif général de la recherche

Les eaux de surface ne sont utilisées que pour l'irrigation d'une partie des terres agricoles. Malgré de nombreux rapports parlant de l'abondance de cette ressource, elle demeure encore mal connue. L'objectif général de cette étude est de proposer une méthodologie d'estimation de la ressource en eau de surface. Ce travail de recherche se limitera à l'eau de surface, l'eau souterraine n'y sera pas considérée.

1.2.1 Objectifs spécifiques

Les objectifs spécifiques qui découlent de l'objectif général sont les suivants:

- Estimer les précipitations totales du pays à l'échelle annuelle, saisonnière et mensuelle afin d'évaluer les apports d'eau à l'échelle du territoire;
- Estimer l'évapotranspiration à l'échelle annuelle, saisonnière et mensuelle afin d'évaluer les pertes d'eau à l'échelle spatiale et temporelle;
- Estimer les débits moyens annuels des cours d'eau afin de connaître la disponibilité spatiale des eaux de surface pour l'ensemble du pays;
- Estimer les quantiles de crues dans les rivières jaugées du pays afin de quantifier les risques d'inondations.

1.3 Structure du mémoire

Le présent mémoire comprend huit parties. Le premier chapitre traite de la définition du problème et des objectifs poursuivis. Afin de permettre aux lecteurs de suivre de façon claire et nette le cheminement du travail, le second chapitre est consacré au développement de la méthodologie adoptée pour résoudre le problème et ainsi rencontrer les objectifs poursuivis. Le troisième chapitre traite de la revue de littérature qui expose les méthodes d'estimation des eaux de surface rencontrées. Le quatrième chapitre aborde les généralités et passe en revue les différents travaux antérieurs à cette étude en ce qui concerne les ressources en eau de surface à Haïti. Le cinquième chapitre fait état des différentes banques de données utilisées pour la réalisation de ce mémoire. Le sixième chapitre présente les résultats obtenus. Le septième chapitre présente la conclusion du mémoire et les recommandations découlant de ces travaux. La dernière partie est consacrée aux références bibliographiques du mémoire.

CHAPITRE II

MÉTHODOLOGIE

2.1 Revue des données disponibles à Haïti

Cette première étape est essentielle. Elle consiste en une recherche bibliographique visant à évaluer les données disponibles. Elle a trait au rassemblement de toute l'information disponible concernant les eaux de surface à Haïti. Elle inclut les données météorologiques, hydrométriques et physiographiques recueillies à travers les différentes sources consultées comme : le Service National des Ressources en Eau (SNRE) de la République d'Haïti ; les bases de données des stations synoptiques mondiales du Fonds des Nations Unies pour l'alimentation et l'Agriculture (FAO). D'autres documents et sites Web ont également été consultés afin de résumer les travaux antérieurs de différents auteurs sur la ressource en eau de surface à Haïti.

Cette étape nous a également permis de colliger les informations recueillies afin de constituer les banques de données à savoir, la banque de données de précipitations, la banque de données de débits et la banque de données physiographiques, présentées en détail au cinquième chapitre.

2.2 Estimation des ressources en eau

La deuxième étape de la méthodologie est consacrée à l'estimation des ressources en eau. Les matières premières sont les banques de données constituées à partir des informations recueillies. Comme mentionné dans les objectifs, pour la mise en œuvre de l'estimation, nous avons procédé en trois étapes, d'abord à l'estimation des précipitations, puis à l'estimation des pertes en eau par évapotranspiration et enfin à l'estimation de l'écoulement (l'eau disponible) dans les rivières. Cette présente étude se concentre sur les eaux de surface, elle ne vise pas l'estimation de l'infiltration quoique faisant partie du bilan hydrologique. Nous voulons estimer les précipitations et l'évapotranspiration pour avoir une connaissance des

quantités d'eau précipitées et perdues à l'échelle spatiale et temporelle. L'infiltration pourrait faire l'objet d'une future étude.

2.2.1 Estimation des précipitations

Pour estimer les précipitations sur l'ensemble du pays, nous avons utilisé comme matériels : la banque de données de précipitations constituée à cette fin et contenant des données historiques mensuelles et annuelles de 86 postes pluviométriques disponibles pour des durées variables allant de 5 à 62 ans ainsi que deux logiciels de support : GS+ (Gamma design Software, version 7.0) pour l'interpolation des données sur tout le territoire et Mapinfo (Mapinfo corporation, version 6.5) pour la cartographie de l'estimation.

Les précipitations sont estimées à l'échelle annuelle, saisonnière et mensuelle sur l'ensemble du pays en utilisant le krigeage ordinaire dont les détails mathématiques sont développés dans la revue de littérature au troisième chapitre. La méthode a été mise en oeuvre à l'aide du logiciel GS+ en suivant une procédure en trois (3) étapes :

- Une analyse variographique qui permet d'élaborer le modèle de variogramme à partir des données et informations disponibles;
- Une validation croisée qui consiste à estimer chaque donnée par krigeage puis comparer les données observées aux données estimées, ce, afin de vérifier l'adéquation entre les données et le modèle de variogramme utilisé;
- L'interpolation se fait sur une grille prédéfinie en transférant l'information des sites voisins au site en question (le point où l'estimation doit avoir lieu) à l'aide d'une combinaison linéaire qui tient compte de la structure de l'autocorrélation spatiale, qui, elle, a été identifiée et quantifiée par l'analyse variographique;

Les données estimées sont ensuite exportées dans Mapinfo pour la cartographie de l'estimation.

2.2.2 Estimation des pertes par évaporation et évapotranspiration

Pour savoir la quantité totale nette d'eau disponible pouvant être écoulée et infiltrée, les pertes par évaporation et évapotranspiration ont interpolées sur l'ensemble du territoire par une méthode de krigeage ordinaire en suivant la même procédure utilisée pour interpoler les précipitations. Il faut noter que cette approche n'est pas précise puisqu'elle ne tient pas

compte de covariables importantes telles que l'altitude, la couverture du sol et le type de végétation.

2.2.3 Estimation des débits moyens annuels

Comme indiqué dans les objectifs spécifiques, l'estimation des débits des cours d'eau se fait dans le but d'évaluer la disponibilité de la ressource en eau de surface d'un point de vue spatial à l'échelle du territoire de la République d'Haïti. Il s'agit entre autres d'analyser les séries historiques qui vont permettre de déterminer les valeurs centrales caractérisant l'abondance ou la pénurie du régime afin de justifier le potentiel des eaux de surface.

Pour y parvenir nous avons commencé par examiner les séries historiques disponibles. Nous avons pu remarquer que pour certaines stations avec des données disponibles les séries de débits moyens annuels posent des problèmes de données manquantes. Pour pallier à ces lacunes, les différents segments formant les séries ont donc été combinés et utilisés dans certains cas comme s'il s'agissait d'une série continue. Cela signifie que les années manquantes ont donc été ignorées.

Les séries de débits moyens annuels sont analysées pour estimer les caractéristiques statistiques (caractéristiques centrales, tendances et sauts dans le temps) pour les rivières jaugées. Pour quantifier la ressource en eau de surface disponible pour tout le territoire, nous avons utilisé deux méthodes d'estimation régionale: une méthode statistique qui est une régression linéaire et le krigeage canonique (krigeage ordinaire dans l'espace physiographique construit à l'aide de l'analyse canonique des corrélations). Ces deux méthodes sont présentées au troisième chapitre de ce présent mémoire. Un Modèle Numérique de Terrain (MNT) nous a permis de délimiter tous les bassins versants jaugés et non jaugés et de déterminer toutes les caractéristiques géométriques et topographiques de ces bassins dans lesquels la ressource en eau a été estimée.

2.2.4 Estimation des débits maximums annuels

L'estimation des maximums annuels permet de déterminer pour certaines périodes de retour les quantiles de crues qui, plutôt, quantifient les impacts dévastateurs des eaux. Afin de quantifier les risques d'inondations, les débits maximums annuels ont fait l'objet d'une analyse fréquentielle qui consiste à estimer les quantiles de crue. L'analyse fréquentielle est

utilisée pour estimer l'ampleur de l'événement temporel x_T auquel est associé une période de retour T (quantile de période de retour T ou de probabilité au dépassement p=1/T). L'estimation \hat{x}_T de la valeur du quantile s'obtient en ajustant une loi de probabilité $F(x;\theta)$ à un échantillon de n observations $x=\{x_1,...,x_n\}$ où θ représente le vecteur de paramètres associé à la distribution de probabilité F. L'analyse fréquentielle comprend les trois étapes suivantes:

- Caractéristiques des échantillons. Pour caractériser les échantillons nous avons déterminé les caractéristiques statistiques usuelles tels que la moyenne, l'écart type, la médiane, le coefficient de variation et le coefficient d'asymétrie;
- Vérification des hypothèses de base pour les séries de données utilisées (indépendance, homogénéité et stationnarité);
- Détermination des quantiles: ajustement de distributions statistiques; estimation des paramètres de distributions; choix de la loi qui s'ajuste le mieux aux échantillons considérés et l'estimation des quantiles correspondants aux périodes de retour choisies.

L'analyse fréquentielle étant une méthode statistique consistant à étudier les évènements passés d'un processus donné (hydrologie ou autre), afin d'en définir la probabilité au non-dépassement. Cette prédiction repose sur la définition et la mise en œuvre d'un modèle fréquentiel, qui est une équation décrivant le comportement statistique d'un processus. Ces modèles décrivent la probabilité au non-dépassement d'un évènement de valeur donnée. Il existe de nombreux types de modèles fréquentiels allant de deux à trois paramètres. A l'aide du logiciel Hyfran (Bobée et al., 1999) qui est un outil d'ajustement de lois statistiques développé par la Chaire d'hydrologie statistique de l'INRS-ETE, nous avons procédé aux ajustements de nos échantillons quoique de taille inférieure à celle requise, afin de choisir la distribution la mieux appropriée pour estimer les débits de pointe correspondant à différentes périodes de retour. Le choix de la distribution appropriée a toujours été fait en tenant compte de deux critères : le critère d'information Baysien (BIC) et le critère d'information d'Akaïke (AIC) qui permettent de construire un classement de modèles statistiques tenant compte du principe de parcimonie (Bobée et al., 1999). Les meilleurs ajustements correspondent aux valeurs les plus faibles de ces deux critères.

CHAPTRE III

REVUE DE LITTÉRATURE DES MÉTHODES D'ESTIMATION DES RESSOURCES EN EAU DE SURFACE

Selon UNESCO/OMM (1997), évaluer la quantité d'eau disponible est indispensable à la mise en valeur et à la gestion des ressources en eau, qu'il s'agisse d'eau potable pour les populations, de production agricole, industrielle ou d'énergie. Différentes méthodes pourraient être utilisées pour analyser le potentiel des ressources en eau d'un bassin, et de nombreux documents et manuels d'hydrologie expliquent comment on peut, à partir des relevés et estimations concernant les contraintes et les utilisations existantes et projetées, déterminer dans quelle mesure et sous quelle forme une exploitation rationnelle des ressources en eau est possible. Par exemple, on peut utiliser les relevés d'écoulements pour établir les débits minimum et maximum historiques ainsi que les débits moyens mensuels et annuels. Selon Cosandey et Robinson (2000), toute étude hydrologique doit se fonder sur une connaissance des écoulements; cependant, la qualité des données hydrologiques est la condition sine qua non de la qualité des études. Or, la mesure des débits est difficile, longue, coûteuse, et toujours insatisfaisante.

Dans ce présent texte, nous nous donnerons la tâche de faire une revue de certaines approches utilisées pour l'estimation de la ressource en eau de surface mais sans prétendre faire un inventaire exhaustif de toutes les méthodes utilisées à cette fin. Les techniques les plus utilisées sont principalement la cartographie, la « modélisation » et des méthodes moins complexes telle que l'interpolation linéaire (UNESCO/OMM, 1997). Cependant, il existe bien d'autres approches. Il ne s'agit pas de faire une présentation détaillée de toutes les méthodes qui seront indiquées dans les paragraphes qui suivent. Le but primordial de cette section, est de tirer au maximum de ces méthodes les démarches essentielles pouvant permettre d'estimer la ressource en eau de surface. Il sera question de considérer les objectifs et les principes relatifs à l'application de ces méthodes.

3.1 Approche cartographique

UNESCO/OMM (1997) soulignent que la cartographie est une technique qui permet d'estimer les ressources en eau de surface. La cartographie des paramètres hydrologiques et météorologiques effectuée à l'aide de techniques classiques (isolignes) n'exploite que partiellement les données physiographiques, telles que la topographie et la pédologie, dans la mesure où celles-ci sont considérées comme des indicateurs de base pour le tracé des isolignes. Par contre, une cartographie informatisée par la méthode du quadrillage présente une utilisation objective des données physiographiques.

3.2 Approche basée sur la télédétection et le système d'information géographique

Les Systèmes d'information géographique (SIG) sont devenus l'outil par excellence pour la cartographie et l'analyse des données hydrologiques (AISH, 1993).

UNESCO/OMM (1997) ont rapporté que des images satellites ont été utilisées pour une évaluation préliminaire des ressources en eau en Afrique du Nord et, à mesure que s'améliorent la qualité de l'image et le savoir-faire des modélisateurs, ces études ne manqueront pas de gagner en précision. On a également utilisé la photographie aérienne pour obtenir des données hydrométriques et hydrographiques supplémentaires dans plusieurs pays du monde. Ces données permettent une meilleure représentation spatiale, toutefois, elles sont largement tributaires des données de contrôle recueillies sur le terrain utilisées pour calibrer les données-image et nécessitent un matériel approprié et un personnel qualifié ainsi qu'un rapport continu d'images et les moyens de les procurer.

Dans certains cas, les informations dont le niveau d'eau du cours d'eau et la hauteur d'eau précipitée sont collectées en temps réel comme c'est le cas du programme MED-HYCOS installé dans la région méditerranéenne, lequel contribue à l'évaluation et à la gestion des ressources en eau en aidant les services Hydrologiques Nationaux de la région à renforcer leurs capacités (Morell 1998,). Selon UNESCO/OMM (1997), compte tenu de son coût élevé, la collecte des données en temps réel n'est pas essentielle pour l'évaluation de base des ressources en eau. Cependant, elle y contribue de diverses façons en augmentant la densité et la fréquence des données, en procurant en particulier par le moyen de satellites

météorologiques des informations de base pour l'interpolation sur le terrain des données ponctuelles.

3.3 Approche de modélisation hydrologique

Si la mesure est le point de départ incontournable de la connaissance hydrologique, elle n'est pas une fin en soi; elle demande à être complétée ou améliorée, en quelque sorte, par la modélisation. Selon Cosandey et Robinson (2000), la modélisation, c'est-à-dire l'estimation des débits par d'autres approches que des mesures, intervient à tous les niveaux des études hydrologiques. Selon eux, reconstituer des données manquantes dans une série de débits, c'est déjà une forme de modélisation. Ils citent que dans l'état actuel des techniques informatiques, il est souvent plus simple et plus rapide de produire des données hydrologiques à partir de modèles qu'à partir de mesures. La modélisation en hydrologie représente l'aboutissement normal, comme la prolongation de toute étude, d'une certaine manière sa forme achevée. Pourtant, les modèles ne sont pas sans offrir le flanc à la critique. Ce terme recouvre des réalités assez différentes.

Dans son sens le plus large, c'est simplement une représentation simplifiée de la réalité. Dans ce sens, l'emploi des modèles est très vaste. On peut en effet considérer comme modèle les méthodes utilisées pour estimer des valeurs de débits là où il n'y a pas de jaugeages. L'emploi des méthodes empiriques, la régionalisation des données hydrologiques qui a pour objet d'estimer des valeurs régionales non jaugées à partir des sites jaugées sont parmi tant d'autres des formes de modélisation.

Dans son sens plus restreint, le concept de modèle est surtout employé en hydrologie pour désigner des élaborations plus ou moins complexes fondées sur la relation pluie-débit, qui font généralement intervenir d'autres variables de nature climatique. De telles approches ont souvent pour fonction essentielle soit de prolonger des séries après une phase de mesure ayant permis de caler le modèle, soit encore de permettre d'imaginer des scénarios basés sur une modification de variables d'entrée du modèle.

L'utilisation des modèles déterministes est recommandée lorsqu'il s'agit d'évaluer ou d'estimer simultanément par zone les eaux de surface et souterraines (UNESCO/OMM, 1997).

3.4 Approche linéaire et conceptuelle

Le traitement statistique des débits représente la phase dynamique de l'analyse du régime hydrologique (Dubreuil, 1974) car elle permet de constater la distribution saisonnière des apports. Elle fait l'objet de presque toutes les études d'estimation des ressources en eau, cependant elle est souvent précédée de certaines considérations particulières comme par exemple la maximation de l'information par les modèles probabilistes.

Guiscafre et al. (1976) et Chaperon et al. (1985), dans le cadre de la mission de l'ORSTOM pour estimer les ressources en eau de surface respectivement à la Martinique et à la Guadeloupe, ont pu remarquer qu'il existe des relations évidentes entre les valeurs des précipitations journalières, mensuelles ou annuelles sur un bassin (facteur principal de l'écoulement) et les valeurs correspondantes des débits ou de lames écoulées à l'exutoire de ce bassin (variable dépendante). Ces relations sont communément appelées relations hydropluviométriques. C'est l'objet même de l'analyse hydrologique d'établir ces relations et de les utiliser, soit pour tenter d'expliquer le fonctionnement du cycle hydrologique, soit, plus généralement, pour compléter les lacunes d'information ou étendre la taille des échantillons de débits à partir des échantillons de précipitations souvent plus importants. Dans leurs travaux, ils ont utilisé deux approches : une approche linéaire et une approche conceptuelle.

3.4.1 Approche linéaire

Selon Dubreuil (1974) l'approche linéaire est un procédé visant à maximiser l'information « débit » avant même tout processus d'analyse statistique. Les modèles linéaires représentent l'ensemble des méthodes de corrélations linéaires, simples ou multiples. Selon Chaperon *et al.* (1985) cette approche linéaire permet d'établir des relations statistiques existant entre les précipitations et les débits (ou lames écoulées correspondantes) : corrélations simples (à deux variables) ou multiples (plusieurs variables explicatives). Pour les corrélations multiples, on utilise soit une régression multiple, soit une méthode graphique des déviations résiduelles. De nombreux manuels ont décrit mathématiquement ces corrélations mais ce n'est pas notre but de les présenter dans ces paragraphes.

Soulignons que cette approche pourrait être appliquée à plusieurs pas de temps pour compléter les lacunes des séries:

• Régression hydropluviométrique au pas de temps journalier (corrélation simple);

- Régression hydropluviométrique au pas de temps mensuel (régression simple et multiple);
- Corrélation débits-débits au pas de temps mensuel (cas des stations voisines): ils assimilent ces corrélations à des régressions hydropluviométriques en considérant que les débits explicatifs (variables principales) correspondent à des indices pluviométriques;
- Corrélation hydropluviométrique au pas de temps annuel;

3.4.2 Approche conceptuelle par bilan hydrique

L'approche conceptuelle tend à expliquer le fonctionnement du cycle hydrologique sur un bassin à partir d'un modèle d'écoulement basé sur l'étude du bilan hydrique. Le modèle, une fois établi, permet alors, par simulation, de produire, à partir d'un échantillon réellement observé ou tiré au hasard dans une population de précipitations, les écoulements correspondants à condition d'avoir estimé les autres termes du bilan. :

$$P = ER + EC + INF (3.1)$$

Où:

P représente la précipitation moyenne sur le bassin ;

ER l'évapotranspiration réelle du bassin, inférieure ou égale à l'évapotranspiration potentielle ETP, sur le bassin ;

EC l'écoulement immédiat en ruissellement de surface et écoulement oblique ;

INF l'infiltration.

3.5 Méthodes de régionalisation

La technique de régionalisation est un procédé qui consiste à estimer la valeur d'une variable quelconque en des points non jaugés à partir des mesures locales. Il existe une grande diversité de méthodes de régionalisation en hydrologie. Présentement, l'intérêt pour ces méthodes ne concerne que les aspects qui contribuent à la régionalisation des ressources en eau de surface. Nous allons présenter quelques-unes dans les paragraphes qui suivent.

3.5.1 La méthode de transposition hydrologique

Cette méthode présentée par CADIER (1993) a été expérimentée dans le Nordeste, une région semi-aride du Brésil. L'un des aspects importants de cette méthode consiste en une estimation simple des ressources en eau en considérant certains facteurs au niveau du bassin versant comme le type de sols, la pluviométrie moyenne du bassin versant ainsi que d'autres facteurs correctifs. Le but est de déterminer au niveau du bassin versant le **volume écoulé annuel moyen** V_e dont le calcul nécessite de connaître les informations suivantes :

- a) La surface du bassin versant d'alimentation (BV);
- b) La classification hydrologique ou hydropédologique du bassin;
- c) Le total pluviométrique annuel et la zone climatique ;
- d) La lame d'eau écoulée

A- Surface du bassin d'alimentation (BV)

Elle est considérée dans cette méthode comme une information connue et il n'est pas nécessaire de faire des détails sur les principes de délimitation du bassin versant et du calcul de sa surface. Il existe toutefois de nombreux procédés pour délimiter la surface d'un bassin versant qui ne font pas l'objet de cette étude.

B- Classification hydrologique du bassin

Elle requiert la détermination d'un coefficient L_{600} du bassin qui correspond à la lame écoulée moyenne interannuelle que l'on observerait si le bassin était situé sous l'isohyète 600 mm. Le calcul de ce coefficient se fait grâce à une classification hydropédologique du bassin utilisant les cartes de sol qui couvrent tout le bassin versant, puis on estime un certain nombre de facteurs correctifs qui permettent de corriger la valeur brute de L_{600} . La formule de calcul de ce coefficient est la suivante :

$$L_{600}brut = L_{600}(TS_1) * S(TS_1) / S + L_{600}(TS_2) * S(TS_2) / S + etc...$$
(3.2)

 $S(TS_1)$, $S(TS_2)$ étant les surfaces des différentes unités de types de sols dans le bassin; S correspond à la surface totale du bassin.

La valeur $L_{600}brut$ est corrigée par des facteurs correctifs suivant l'occupation du sol de chaque unité pédologique. Elle permettra de calculer ultérieurement la lame d'eau écoulée sur le bassin versant :

$$L_{600}corrig\acute{e}e = L_{600}brut*CV*CA*CL$$
(3.3)

Où:

- CV est le facteur correctif de végétation ;
- CA est le facteur correctif de présence de barrage en amont (le cas échéant);
- CL est le facteur correctif de présence de zones de rétention d'eau (sols sableux dans le lit des rivières et dans les parties basses des versants).

C- Évaluation de la pluviométrie et du facteur climatique

Il s'agit d'estimer la précipitation moyenne annuelle sur le bassin à l'aide d'une carte d'isohyètes. Pour chaque unité pédologique on estime la précipitation moyenne annuelle.

Le facteur climatique (C) varie progressivement d'une zone climatique à l'autre et prend des valeurs de 1 jusqu'à 0.5 dans ce cas précis.

D- Calcul de la lame écoulée L(P)

Une fois déterminé la précipitation moyenne annuelle, on procède au calcul de la lame écoulée correspondante. La lame partielle de chaque unité pédologique peut être calculée à partir de son L₆₀₀ corrigé, de la précipitation moyenne P(i) et du facteur climatique C. Le calcul est donné par la relation suivante en utilisant un abaque destiné à cette fin:

$$L(P_{(i)}) = L_{600}(i) corrigée * C * e^{A(P(i)-600)}$$
 (3.4)

P(i) est la précipitation moyenne de l'unité pédologique i;

A est un coefficient qui prend des valeurs selon la grandeur de L_{600} brut du bassin ;

C est le facteur climatique.

La lame écoulée totale est donnée par la formule :

$$L_{(P)} = \sum \left(L(P_{(i)}) * S_{(i)} / S \right) \tag{3.5}$$

Calcul du volume moyen écoulé (Ve)

Enfin le volume écoulé moyen annuel V_e (en m³) est calculé d'après la formule :

$$V_e = S * L_{(P)} * 1000 (3.6)$$

Où:

S est la surface du bassin versant en km²;

L(p) est la lame écoulée moyenne en mm qui est la moyenne pondérée $S_{(i)}$ par la surface des $L(P_i)$ des diverses unités du bassin.

Il est important de noter dans cette méthode que tous les coefficients mentionnés ci-dessus peuvent prendre une valeur unitaire sauf dans le cas où le bassin présente des caractéristiques très spéciales.

Cette méthode de transposition peut paraître à l'origine très simple mais présente des limitations en ce qui a trait à son utilisation. Les limites sont fonction du domaine géographique et de la taille du bassin.

En voici, quelques exemples de limites d'application :

- C'est une méthode régionale qui consiste à déterminer le volume écoulé en un site donné sans toutefois permettre d'apprécier la distribution saisonnière des apports;
- La partie hydrologique est conçue pour être utilisée pour des pluviométries inférieures à 800 mm. Pour des zones de pluviométrie comprises entre 800 et 1000 mm, la méthode sera utilisée mais avec une précision inférieure;
- Elle est conçue pour estimer les écoulements sur des bassins de taille comprise entre 0.1 et 500 km². Cependant, l'évaluation des ressources en eau des bassins qui ont une surface comprise entre 10 et 500 km² est la plus facile. Cela signifie que la méthode ne performe pas pour les petites surfaces;
- Entre 10 ha et 10 km² il faudra vérifier la proportion et les types de sols existants réellement sur le bassin ;
- L'évaluation des volumes moyens annuels pourrait être utilisée pour des bassins de taille supérieure à 500 km² à condition d'effectuer des vérifications complémentaires;

3.5.2 Le modèle hydropluviométrique appliqué au Bénin

Selon le Barbé *et al.* (1993) le terme « eaux de surface » englobe la pluie, les écoulements et les eaux stockées dans les lagunes. Leur description comporte deux phases : une analyse des apports (importance et répartition saisonnière) et des crues.

Généralement, les débits des grands fleuves sont bien suivis par des stations hydrométriques. Mais, il n'y a pas que ces grands fleuves, il y a aussi d'autres rivières qui forment une richesse potentielle et pour lesquelles on ne dispose pas toujours d'observations directes des écoulements. Pour estimer les régimes hydrologiques de ces sites non jaugés une étude régionale s'avère indispensable. L'une des méthodes utilisées pour combler les lacunes des séries chronologiques des données et pour l'estimation régionale des apports annuels aux sites non jaugés est un modèle hydropluviométrique (Le barbé *et al.*, 1993). Selon ce modèle, on admet que l'écoulement annuel à l'exutoire d'un bassin peut être considéré comme résultant de l'intégration spatiale d'écoulements ponctuels qui peuvent être estimés par l'expression suivante :

$$E_a = Ph * \exp(-0.75 * (\alpha * Nh/Ph)^{0.75})$$
(3.7)

Où:

 E_a est l'écoulement annuel en mm;

 P_h est la somme des pluies des mois d'hivernage en mm;

 α est une fonction décroissante de P_h à déterminer pour chaque région homogène, à la fois du point de vue du « paysage » et de celui de la répartition temporelle des pluies. Pour chaque bassin délimité par une ou deux stations hydrométriques, on calcule la fonction moyenne de α ; ce qui permet d'identifier les zones homogènes. Et, à l'intérieur de chacune d'elles, on procède à une optimisation de la fonction α de façon à reconstituer le mieux possible l'ensemble des modules observés aux diverses stations hydrométriques.

 N_h : La somme des nombres d'averses les plus probables. Elle se calcule par la formule.

$$Nh = \sum ni \tag{3.8}$$

 n_i : Le nombre le plus probable d'averses au cours du mois i sachant la hauteur Pi tombée au cours du mois. La formule de calcul de n_i est la suivante :

$$n_i = I - 0.5 + \sqrt{\frac{Si.Pi}{Hi}} + .25I \tag{3.9}$$

Où:

 S_i et H_i : étant respectivement les paramètres de forme et d'échelle d'une loi des fuites décrivant la pluviométrie du mois i et où P_i est la pluie tombée au cours du mois i; I: l'indice d'humidité du sol.

3.5.3 Méthodes d'interpolation et de reconstitution

Pour des raisons économiques et techniques évidentes, il est impossible de mesurer tout et partout. On choisit dans le cas idéal des emplacements de mesure de telle sorte qu'à partir de cette information il soit possible d'« estimer » les valeurs de la variable pluviométrique ou hydrologique en tout point d'un champ spatial. Selon Miquel (2001), les modèles d'interpolation et de reconstitution sont des outils permettant de reconstituer tout ou partie de l'information manquante lorsqu'en un point donné, un dispositif de mesures de débit par exemple tombe en panne momentanément. Dans tous les cas le principe est le même : il s'agit de « reconstituer » au mieux la réalisation d'un processus dont on ne connaît qu'une partie, et ceci compte tenu des structures de processus que l'on mettra en évidence. Considérons parmi ces modèles les trois grandes catégories suivantes :

- a) transfert d'information entre deux sites par régression linéaire;
- b) interpolation spatiale par la méthode du « krigeage »;
- c) interpolation spatiale par l'« Analyse en Composantes Principales »

3.5.3.1 Transfert d'information entre deux sites par régression linéaire

Considérons deux séries de débits par exemple en deux points d'un même cours d'eau, l'une X de n observations $x_i(i)$ régulièrement espacées, et l'autre Y de k observations $y_i(i)$ concomitantes avec une partie des observations de X (autrement dit k < n). Pour reconstituer les informations manquantes de la série Y, on commence par établir une relation de régression linéaire simple sur les k observations communes, puis on estime les informations manquantes à partir de cette régression. Dubreuil (1974) présente une méthode de régression qui permet d'étendre une série de débits courte à l'origine à l'aide d'une autre série de débits observée pendant une période beaucoup plus longue sur une même rivière ou à proximité.

Les estimations des valeurs annuelles et des paramètres statistiques de la série Y de k années observées à un poste B, à partir de la série X de n valeurs observées en A, sont fournies par les formules suivantes (les k années d'observation de Y étant incluses dans les n années de X):

a)
$$y_x = \overline{y}_k +_k r_{xy} \frac{k^S y}{k^S x} (x - \overline{x}_k)$$
 (3.10)

Dans laquelle on a:

 y_x : Moyenne conditionnelle de y en x

 \overline{x}_k et \overline{y}_k : moyennes interannuelles de x et de y calculées respectivement à partir de k valeurs de x et de y observées simultanément;

 $_{k}r_{xy}$: Coefficient de corrélation estimé entre x et y à partir des k couples de valeurs observées simultanément;

 $_k S_x$ et $_k S_y$: écart-types de x et y estimés à partir des échantillons de k valeurs.

b)
$$\hat{\overline{y}} = \overline{y}_k +_k r_{xy} \frac{k^S y}{k^S x} (\overline{x}_n - \overline{x}_k)$$
 (3.11)

Dans laquelle on a:

 \hat{y} : Estimation de la moyenne de y (dont l'espérance mathématique \bar{y} toujours inconnue) à partir de la première estimation \bar{y}_k , des autres paramètres statistiques des échantillons de valeurs observées et du coefficient de corrélation entre x et y;

 \overline{x}_n : Moyenne interannuelle de x calculée à partir des n valeurs observées.

L'équation (3.11) est de même forme que l'équation (3.10); c'est d'ailleurs elle que l'on utilise si l'on veut une meilleure estimation de la moyenne Y; on utilise seulement (3.10) pour reconstituer chaque valeur estimée de Y pour les n-k années non observées à l'aide des valeurs correspondantes de X, si l'on a besoin de ces valeurs par exemple pour une corrélation ultérieure.

c)
$$\hat{\sigma}_y^2 =_k s_y^2 +_k r_{xy}^2 \frac{k s_y^2}{k s_x^2} (n s_x^2 -_k s_x^2)$$
 (3.12)

Dans laquelle on a:

 $\hat{\sigma}_y^2$: Estimation de la variance de y (dont l'espérance mathématique est σ_y^2), à partir de la première estimation $_k s_y^2$, et des estimations de la variance de x et du coefficient de corrélation entre x et y;

 $_{n}s_{x}^{2}$: Variance estimée à partir de l'échantillon de n valeurs.

Le résultat donné par la formule (3.12) est celui que l'on trouverait en appliquant la formule de définition de la variance

$$_{n}s_{y}^{2} = \frac{\sum (y_{i} - \overline{y}_{n})^{2}}{n-1}$$
 (3.13)

à la série composite des k valeurs y_i observées et des (n-k) valeurs estimées par la formule (3.10);

A côté des paramètres moyenne et variance de la série étendue Y qui sont calculés par les équations (3.11) et (3.12), on doit noter que la nature de la régression de Y en X est modifiée également par cette extension et qu'en conséquence une nouvelle estimation du coefficient de corrélation doit être recherchée. A cela, répond l'équation (3.14) :

d)
$$\hat{p} = {}_{k} r_{xy} \frac{{}_{k} S_{y}}{{}_{k} S_{x}} \frac{{}_{n} S_{x}}{\hat{\sigma}_{y}}$$
 (3.14)

3.5.3.2 Interpolation spatiale par la méthode du « krigeage »

Le krigeage est une technique géostatistique d'estimation locale. Il s'agit d'estimer la valeur d'une variable régionalisée en un point X non mesuré à partir d'observations faites en K points X_k . Ceci est particulièrement utile pour tracer des courbes isovaleurs d'une grandeur répartie spatialement comme par exemple pour la pluie. L'application complète de la méthode comprend plusieurs étapes.

3.5.3.2.1 Analyse variographique

L'interpolation est précédée d'une analyse variographique qui consiste à élaborer un modèle de covariance ou de variogramme à partir des données et informations disponibles. C'est ce modèle qui va permettre de construire l'estimation locale, en tenant compte à la fois de la géométrie des données et des caractéristiques propres de la régionalisation, et de mesurer, de manière élémentaire, la précision de l'estimation par l'intermédiaire d'une variance. La covariance et le variogramme sont deux outils équivalents dans un cadre stationnaire. La covariance mesure la ressemblance entre les valeurs en fonction de leur séparation, le variogramme, au contraire, mesure la variabilité ou la dissemblance entre les valeurs en fonction de leur séparation. Dans les applications pratiques on préfère souvent utiliser le variogramme, qui est un outil plus général que la covariance. Il convient de souligner que la qualité de l'estimation et l'appréciation de sa précision ne sont pas des propriétés inhérentes au phénomène, mais reposent entièrement sur le modèle variographique utilisé. Cette étape est fondamentale avant la mise en oeuvre du processus de krigeage car un mauvais ajustement ne pourra donner de bonnes estimations. En cas d'isotropie, toutes les directions sont équivalentes, les lignes d'isovaleurs dessinent des cercles ou des sphères concentriques, on calculera un variogramme expérimental qui ne dépendra que de la distance, tandis qu'en cas d'anisotropie, il faut tenir compte de la distance mais aussi de son orientation. Le variogramme doit être ajusté par une courbe théorique qu'on appelle semi variogramme. L'équation mathématique du variogramme expérimental s'écrit comme suit.

$$\hat{\gamma}(h) = \sum_{i=1}^{n(h)} (v_i - v_j)^2$$
(3.15)

D'un point de vue stationnaire, nous nous limiterons à la présentation de trois types des modèles théoriques décrits par (Kitanidis, 1992) en cas d'isotropie :

Modèle gaussien :

$$\gamma(h) = \sigma^2 \left[1 - \exp\left(-\frac{h^2}{L^2}\right) \right]$$
 (3.16)

 γ (h) est la fonction de semi-variogramme.

Où $\sigma^2 > 0$ et L > 0 sont les deux paramètres de ce modèle.

 $\alpha = 7 \frac{L}{4}$; La portée α est définie dans la pratique comme la distance à laquelle la corrélation est 0.05.

Ce modèle est indéfiniment dérivable et décrit un phénomène extrêmement régulier dans l'espace. On définit une portée pratique égale $L\sqrt{3}$, pour laquelle le variogramme atteint 95% de la valeur du palier.

Modèle exponentiel:

$$\gamma(h) = \sigma^2 \left[1 - \exp\left(-\frac{h}{l}\right) \right]$$
 (3.17)

Où $\sigma^2 > 0$ et l > 0; la portée est $\alpha = 3l$

En toute rigueur, le palier n'est jamais atteint et la portée de ce modèle est infinie. On définit toutefois comme dans le cas du modèle gaussien une portée pratique égale à 3*l* pour laquelle le variogramme atteint 95% de son seuil. C'est un modèle populaire dans les applications hydrologiques, parce qu'il est variable et a une forme analytique simple.

Modèle sphérique :

$$\begin{cases} \gamma(h) = \left(\frac{3}{2} \frac{h}{\alpha} - \frac{1}{2} \frac{h^3}{\alpha^3}\right) & \text{pour } 0 \le h \le \alpha \\ \gamma(h) = \sigma^2 & \text{pour } h > \alpha \end{cases}$$
(3.18)

Où σ^2 = variance ou palier et $\alpha = port\acute{e}e$

3.5.3.2.2 Mise en œuvre du krigeage

La mise en œuvre de la technique de krigeage passe d'abord par:

- Le calcul du variogramme expérimental ;
- L'ajustement d'un variogramme théorique ;
- La construction du système de krigeage ou la matrice de covariance ;
- Le choix d'un voisinage;
- L'estimation des poids;

• L'estimation des valeurs krigées.

Voisinage du krigeage

C'est le domaine du champ qui contient le site à estimer et les données utilisées dans l'estimation. Selon Arnaud et Emery (2000), dans la plupart des applications pratiques, il n'est pas raisonnable de conserver toutes les données, soit parce qu'elles sont trop nombreuses, soit parce qu'elles sont trop éloignées. On ne retient que les données voisines du site à estimer : ceci correspond à la notion de voisinage glissant, par opposition à celle du voisinage unique où toutes les données sont prises en compte.

La taille du voisinage doit être un compromis entre plusieurs facteurs : d'une part, l'hypothèse de stationnarité retenue et le modèle variographique doivent être acceptables à l'échelle de ce voisinage ; d'autre part, le voisinage doit contenir un nombre suffisant de données (par exemple environ quinze ou plus) pour conduire à une estimation précise et peu sensible à l'ajout ou au retrait d'une donnée périphérique. On pourra tester plusieurs tailles de voisinage par validation croisée, et choisir celle qui donne les meilleurs résultats.

Cependant, l'anisotropie du modèle variographique doit guider le choix de la forme du voisinage. En effet, en présence d'une anisotropie, une donnée éloignée mais située le long de la direction de plus grande continuité peut avoir plus d'influence sur le site à estimer qu'une donnée proche. Idéalement, on devrait choisir un voisinage ayant la forme des courbes d'isovaleurs de la carte variographique, qui sont des courbes d'iso corrélations en fonction de leur séparation. En pratique, on se limite souvent à un voisinage en forme d'ellipse ou d'ellipsoïde.

Construction du système de krigeage

Le but du krigeage est de fournir l'estimation la plus précise possible de la grandeur recherchée à l'aide d'une combinaison linéaire pondérée des données disponibles à l'intérieur du voisinage. Le critère de précision est la minimisation de l'erreur quadratique moyenne. Ces conditions se traduisent en l'écriture de quatre (4) types de contraintes :

- Contrainte de linéarité;
- Contrainte d'autorisation ;
- Contrainte de non-biais ;
- Contrainte d'optimalité.

23

Les équations de krigeage sont obtenues au terme de ces quatre contraintes.

3.5.3.2.3 Types de krigeage

Selon Arnaud et Emery (2000), il existe plusieurs types de krigeage :

Krigeage simple (moyenne connue);

• Krigeage ordinaire (moyenne inconnue et stationnaire);

• Krigeage intrinsèque (identique au krigeage ordinaire, c'est pourquoi on l'appelle dans

la littérature krigeage ordinaire);

Krigeage universel (krigeage dans le cadre non stationnaire en présence d'une

dérive);

Krigeage intrinsèque généralisé (une forme généralisée de toutes les formes de

krigeage mentionnées ci haut).

Pour la présentation des équations de la construction du système de krigeage, nous nous

limiterons aux trois premiers types (simple, ordinaire, intrinsèque) dont leur démonstration est

empruntée à Arnaud et Emery, (2000).

3.5.3.2.3.1 Krigeage simple

Lorsqu'on parle de krigeage simple cela sous-entend que la stationnarité s'applique à toute la

zone. La notion de stationnarité signifie que la moyenne est connue et constante partout sur

toute l'étendue du voisinage considéré.

On suppose qu'ici Z est une réalisation d'une fonction aléatoire stationnaire du second ordre

telle que :

 $\forall x \in v, E[Z(x)] = m$ connue

$$\forall x, x+h \in v, \operatorname{cov} \left[Z(x+h), Z(x) \right] = c(h)$$

Où v désigne le voisinage de krigeage utilisé.

Considérons les contraintes suivantes qui définissent la construction du système de krigeage :

- linéarité : on pose

$$\hat{Z}(x_0) = a + \sum_{i=1}^{n} \lambda_i Z(x_i)$$
(3.19)

- autorisation: la contrainte d'autorisation est inactive parce qu'on se trouve dans un cadre stationnaire à moyenne connue;

- non-biais : l'espérance de l'erreur d'estimation doit être nulle, soit :

$$E = \left[\hat{Z}(x_0) - Z(x_0)\right] = a + \sum_{i=1}^{n} \lambda_i E[Z(x_0)] - E[Z(x_0)] = a + \left[\sum_{i=1}^{n} \lambda_i - 1\right] m = 0$$
 (3.20)

Ce qui entraîne:

$$a = m \left[1 - \sum_{i=1}^{n} \lambda_i \right]$$
 (3.21)

-optimalité : la variance de l'erreur d'estimation est définie à l'aide de la fonction de covariance :

$$\operatorname{var}\left[\hat{Z}(x_{0}) - Z(x_{0})\right] = C(0) + \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \lambda_{j} C(x_{i} - x_{j}) - 2 \sum_{i=1}^{n} \lambda_{i} C(x_{i} - x_{0})$$
(3.22)

Le minimum de cette expression est obtenu en annulant les dérivées partielles par rapport aux poids inconnus λ_i . On obtient un système linéaire de n équations à n inconnues, dont la résolution donnera les pondérateurs recherchés.

$$\sum_{j=1}^{n} \lambda_{j} C(x_{i} - x_{j}) = C(x_{i} - x_{0}) \quad \forall i = 1...n$$
(3.23)

La valeur minimale de la variance de l'erreur d'estimation au point x_0 , appelée variance de krigeage, vaut :

$$\sigma_{Kx}^{2}(x_{0}) = \text{var}\Big[\hat{Z}(x_{0}) - Z(x_{0})\Big] = C(0) - \sum_{i=1}^{n} \lambda_{i} C(x_{i} - x_{0})$$
(3.24)

L'estimateur s'écrit alors sous la forme :

$$\hat{Z}(x_0) = \sum_{i=1}^n \lambda_i Z(x_i) + \left[1 - \sum_{i=1}^n \lambda_i\right] m$$
(3.25)

On voit que la moyenne intervient explicitement dans l'estimation et est affectée d'un poids complémentaire au poids cumulé des données. Le poids de la moyenne va augmenter à mesure que x_0 s'éloigne des sites d'observations : dans les zones peu échantillonnées, l'estimation par krigeage simple se rapproche de la valeur connue de la moyenne qui compense en quelque sorte le manque d'information apportée par les données.

3.5.3.2.3.2 Krigeage ordinaire

Il est souvent préférable de considérer cette moyenne comme inconnue; cela permet d'assouplir l'hypothèse de stationnarité, car la moyenne peut varier d'une zone à l'autre dans le champ, pourvu qu'elle restera à peu près constante à l'échelle d'un voisinage de krigeage. C'est le cas du krigeage ordinaire.

Écrivons le système correspondant.

- *linéarité* : l'estimateur de Z en x_0 est défini par :

$$\hat{Z}(x_0) = a + \sum_{i=1}^n \lambda_i Z(x_i)$$
(3.26)

- autorisation : pas de contrainte effective dans le cadre stationnaire ;
- non-biais : l'espérance de l'erreur d'estimation s'écrit :

$$E[\hat{Z}(x_0) - Z(x_0)] = a + \sum_{i=1}^n \lambda_i E[Z(x_i) - Z(x_0)] = a + \left[\sum_{i=1}^n \lambda_i - 1\right] = 0$$
(3.27)

Or, m étant inconnue, le seul moyen de garantir le non-biais est de poser :

$$a=0$$
 et $\sum_{i=1}^{n} \lambda_i = 1$;

On retrouve la contrainte rencontrée dans la plupart des méthodes déterministes d'estimation locale : la somme des poids doit être égale à 1.

- optimalité : la variance de l'erreur d'estimation se développe en :

$$\operatorname{var}\left[\hat{Z}(x_0) - Z(x_0)\right] = C(0) + \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_i \lambda_j C(x_i - x_j) - 2\sum_{i=1}^{n} \lambda(x_i - x_0)$$
(3.28)

La minimisation de cette variance sous la contrainte de non-biais (somme des poids égale à 1) nécessité d'introduire une inconnue supplémentaire ν appelée multiplicateur de Lagrange. On aboutit au système :

$$\begin{cases}
\sum_{i=1}^{n} \lambda_{j} C(x_{i} - x_{j}) + \mu = C(x_{i} - x_{0}) & \forall i = 1 \dots n \\
\sum_{i=1}^{n} \lambda_{i} = 1
\end{cases}$$
(3.29)

Ce système comporte une inconnue et une équation de plus que celui du krigeage simple. On peut le réécrire à l'aide du variogramme $\gamma(h) = C(0) - C(h)$:

$$\begin{cases}
\sum_{i=1}^{n} \lambda_{j} \gamma(x_{i} - x_{j}) - \mu = \gamma(x_{i} - x_{0}) & \forall i = 1...n \\
\sum_{j=1}^{n} \lambda_{j} = 1
\end{cases}$$
(3.30)

La variance du krigeage au point x_0 s'écrit :

$$\sigma_{k_0}^2(x_0) = C(0) - \sum_{i=1}^n \lambda_i C(x_i - x_0) - \mu = \sum_{i=1}^n \lambda_i \gamma(x_i - x_0) - \mu$$
(3.31)

3.5.3.2.3.3 Krigeage intrinsèque

Considérons à présent une fonction aléatoire intrinsèque, que l'on désire estimer au point x_0 à partir des observées en x_i , i=1...N. Les étapes du krigeage s'écrivent :

- linéarité:
$$\hat{Z}(x_0) = \sum_{i=1}^{n} \lambda_i Z(x_i);$$
 (3.32)

- autorisation : l'erreur d'estimation doit être une combinaison linéaire de poids total nul, ce qui conduit à : $\sum_{i=1}^{n} \lambda_i = 1$;

- non-biais : cette condition est automatiquement satisfaite ;

-optimalité: par rapport au cas stationnaire, la variance de l'erreur d'estimation s'exprime en remplaçant la covariance par l'opposé du variogramme:

$$\operatorname{var}\left[\hat{Z}(x_0) - Z(x_0)\right] = \underbrace{-\gamma(0)}_{0} - \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_i \lambda_j \gamma(x_i - x_j) + 2 \sum_{i=1}^{n} \lambda_i \gamma(x_i - x_0).$$
(3.33)

La minimisation sous la contrainte d'autorisation est identique à celle effectuée dans le cadre stationnaire. Il vient :

$$\begin{cases} \sum_{j=1}^{n} \lambda_{j} \gamma \left(x_{i} - x_{j} \right) - \mu = \gamma \left(x_{i} - x_{0} \right) & \forall i = 1...n \\ \sum_{i=1}^{n} \lambda_{i} = 1 \end{cases}$$

$$(3.34)$$

Où μ est un multiplicateur de Lagrange.

La variance de krigeage a pour expression :

$$\sigma_{k0}^{2}(x_{0}) = \sum_{i=1}^{n} \lambda_{i} \gamma(x_{i} - x_{0}) - \nu.$$
(3.35)

Ces équations sont identiques à celles obtenues dans le cadre stationnaire à moyenne inconnue; c'est pourquoi ce krigeage est également appelé krigeage ordinaire. La contrainte que la somme des poids soit égale à 1 a cependant une interprétation différente : ce n'est plus une contrainte de non-biais.

3.5.3.3 Interpolation spatiale par l' « Analyse en Composantes Principales

Il s'agit également de calculer la valeur d'une variable régionalisée Z en un point X non mesuré, à partir d'observations faites en k points X_k mais cette fois en supposant qu'il existe un processus sous jacent Y. D'un point de vue pratique cela permet de rechercher les 2 ou 3 facteurs explicatifs prépondérants d'un phénomène spatial observé (Miquel, 2001). L'analyse en composante principale s'apparente au krigeage généralisé au cadre non stationnaire lorsque l'espérance de la fonction aléatoire Z(x) varie dans l'espace, ce qui traduit une « tendance » ou « dérive » de la variable régionalisée z(x).

Le principe consiste à décomposer la fonction aléatoire Z(x) non stationnaire en une dérive déterministe m(x), qui va prendre en compte la tendance et un résidu aléatoire Y(x), sur lequel vont porter les hypothèses de stationnarité :

$$Z(x) = Y(x) + m(x) \tag{3.36}$$

Comme dans le cas du krigeage, le système s'obtient en écrivant les quatre étapes classiques.

3.5.4 Estimation régionale des débits

Cette pratique de régionalisation concerne la restitution d'informations locales sous une forme cartographique (Ouarda *et al.*, 1999). L'objectif est davantage d'appréhender la variabilité spatiale des écoulements, que d'estimer ceux-ci en tout point. Une méthode classique, pour l'étude de la ressource en eau, consiste à cartographier le débit moyen annuel ou mensuel sous forme de lame d'eau écoulée. Ouarda *et al.* (1999) proposent d'interpoler la caractéristique de débit dans un espace à trois dimensions : la position géographique (deux dimensions x et y) et la taille du bassin versant (une dimension S). La cartographie est réalisée avec une technique de krigeage ordinaire utilisant la distance d qui combine l'information des trois variables spatiales:

$$d^{2} = (x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2} + \lambda \cdot (LogS_{2} - LogS_{1})^{2}$$

$$avec \quad \lambda = Max \left[(x_{j} - x_{i})^{2} + (y_{j} - y_{i})^{2} \right] / \left[(LogS_{j} - LogS_{i})^{2} \right]$$
(3.37)

Cette technique de cartographie permet par exemple de visualiser le cycle annuel des écoulements et de mettre en évidence, pour chaque période de l'année, les zones présentant la plus forte production. Elle évite dans la technique d'interpolation d'accorder le même poids à deux informations issues de points géographiquement voisins, mais relatifs à deux bassins versants de taille différente (cas d'une confluence entre un affluent de faible taille et un grand cours d'eau sur la fin de son parcours).

Chokmani et Ouarda (2004) ont proposé une méthode d'estimation régionale des crues qui emploie le krigeage canonique dans l'espace physiographique. Mais cette méthode pourrait être utilisée aussi pour estimer le débit moyen annuel ou la lame d'eau moyenne annuelle. La méthode est basée sur l'utilisation des coordonnées des bassins dans l'espace physiographique

pour interpoler la variable hydrologique d'intérêt dans le domaine physiographique plutôt que d'utiliser l'espace géographique. Une fois construit l'espace physiographique, ils ont utilisé une méthode de krigeage ordinaire pour interpoler la variable hydrologique d'intérêt. Selon Chokmani et Ouarda (2004), il existe divers moyens de construire l'espace physiographique, mais dans leurs travaux ils ont choisi d'utiliser l'analyse canonique des corrélations (ACC) et l'analyse en composantes principales (ACP).

La méthode d'analyse canonique des corrélations est un outil statistique multivarié lequel permet de décrire la relation de dépendance existant entre deux séries de variables aléatoires. Il permet la détermination de paires de combinaisons linéaires de chaque série de variables, qu'on appelle les variables canoniques. Considérons par exemple, une série de variables hydrologiques X et une série de variables physiographiques Y caractérisant le bassin d'intérêt. Pour construire l'espace physiographique, on choisit V pour les vecteurs des variables physiographiques et W pour les variables hydrologiques. V et W sont définis comme des combinaisons linéaires de X et Y. Les coefficients des combinaisons linéaires sont estimés par maximisation de la corrélation entre les variables aléatoires V et W. Connaissant les coefficients des vecteurs de la combinaison linéaire, on peut précisément localiser chaque bassin jaugé disponible à l'intérieur de l'un ou de l'autre espace. Pour des détails en ce qui concerne la description mathématique de l'ACC il est possible de se référer à Ouarda et al. (2001).

L'analyse en composantes principales (ACP) est plutôt une méthode statistique exploratoire multivariée pour la simplification des séries de données complexes. L'ACP est utilisée pour générer une nouvelle série de variables appelées composantes principales. Chaque composante principale est une combinaison linéaire des variables originales. L'ACP consiste en une transformation (rotation) de l'axe originale de l'espace physiographique/climatique multidimensionnel par exemple où les axes sont définies à l'aide de chaque variable physiographique, en un nouveau système d'axe défini à l'aide des composantes principales orthogonales qui sont des combinaisons linéaires des variables originales. La variance des données de chaque axe est alors maximisée.

L'espace physiographique étant construit, il ne reste qu'à utiliser le krigeage ordinaire pour interpoler la variable hydrologique d'intérêt. Cette méthode testée sur les données des 151 stations de jaugeage de la partie sud de la province de Québec pour estimer les quantiles de crues correspondant aux périodes de retour 10, 50 et 100 ans, donne des résultats satisfaisants.

Les résultats montrent aussi d'après les auteurs que la méthode fonctionne mieux quand l'espace physiographique est construit en utilisant l'analyse canonique des corrélations.

3.6 Analyse fréquentielle des débits maximums

Comme mentionné précédemment, les écoulements représentent à la fois une ressource qu'il convient d'évaluer pour la gérer au mieux des besoins et un danger contre lequel il faut se prémunir. Dans ce cadre-là, leur description pourrait être vue en deux phases : une analyse des apports et une analyse des crues. La deuxième partie est de notre intérêt dans cette présente section. Dès que l'on veut construire une station de traitement d'eau potable, un système d'irrigation, un pont, un barrage, bref un ouvrage fluvial quelconque exposé aux débits extrêmes (crues), se pose le problème du dimensionnement (Miquel, 2001) : qu'il s'agisse de l'application d'une norme ou du résultat d'une étude économique, on est forcément amené à choisir un débit de conception, et donc un risque de dépassement de ce débit. Une erreur sur le risque associé à ce débit peut avoir des conséquences catastrophiques, d'un point de vue économique (ruine de l'ouvrage), parfois humaine (rupture de barrage par exemple). Pour pallier à ces inconvénients majeurs, l'exploitation des données hydrologiques à l'aide d'une analyse fréquentielle s'avère indispensable.

Dubreuil (1974) souligne que l'ingénieur d'aménagement se pose souvent la question à savoir quelle valeur prend le débit pour une probabilité au dépassement donnée? Et avec quelle précision est estimée cette valeur? L'auteur estime que lorsqu'il ne s'agit pas de la valeur moyenne du débit, le choix de la probabilité dépend des considérations économiques (durée de vie probable de l'aménagement, coût, risque de destruction, etc); la précision est indispensable car elle donne son vrai sens à l'estimation statistique et apporte une garantie supplémentaire au projeteur, puisqu'elle dépend également d'une probabilité de risque à choisir a priori selon des critères comparables.

La réponse concrète veut qu'on utilise généralement un échantillon de la variable débit soumise à un traitement statistique complet visant à définir les régimes à travers certaines valeurs caractéristiques et représentatives qui sont de deux sortes : les valeurs centrales et les valeurs extrêmes.

Les valeurs centrales caractérisent l'abondance des régimes tandis que les valeurs extrêmes caractérisent les quantiles qui explicitent la valeur que prend le débit pour une certaine probabilité choisie à l'avance (Dubreuil, 1974). C'est le domaine de l'analyse fréquentielle.

L'analyse fréquentielle est une méthode statistique de l'estimation consistant à étudier les évènements passés, caractéristiques d'un processus donné (hydrologique ou autre), afin d'en définir les probabilités de dépassement. Elle fait appel à diverses techniques statistiques et constitue une procédure complexe qu'il convient de traiter avec beaucoup de rigueur. Les diverses étapes sont résumées comme suit:

Analyse de l'échantillon pour déterminer ses caractéristiques à partir des indicateurs statistiques usuels tels que la fréquence de chaque évènement, la moyenne, l'écart type, le coefficient de variation et le coefficient d'asymétrie;

Il existe diverses formules pour déterminer la fréquence comme par exemple la formule de cunane (Bobée *et al.*, 1999). Dubreuil (1974) a proposé les formules suivantes pour déterminer la fréquence:

Une fréquence expérimentale de r réalisations dans un échantillon E pourrait s'exprimer comme suit :

$$f = \frac{n}{N} \qquad \text{ou}$$

$$f = \frac{\left(n - \frac{1}{2}\right)}{N} \qquad \text{ou}$$

$$f = \frac{n}{(N+1)}$$
(3.38)

On a dans ces formules:

f est la fréquence

n, après classement par ordre décroissant, représente le rang, à compter de 1, de la réalisation r,

N, le nombre de réalisations de l'échantillon.

La formule de cunnane est présentée comme suit :

$$F[x(k)] = \frac{k - 0.4}{N + 0.2} \tag{3.39}$$

Dans laquelle F représente la fréquence;

k: le rang;

N : la taille de l'échantillon.

L'échantillon est souvent caractérisé par certaines variables centrales et de dispersion dont :

La moyenne:
$$\overline{x} = \frac{\sum x_i}{N}$$
 (3.40)

La variance:
$$s^2 = \frac{1}{N-1} \left[\sum_{i=1}^{N} (x_i - \overline{x})^2 \right] = \frac{1}{N-1} \left[\sum_{i=1}^{N} x_i^2 - N\overline{x}^2 \right]$$
 (3.41)

L'écart-type:
$$s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{N-1}}$$
 (3.42)

Vérification des hypothèses de base pour les séries de données utilisées (indépendance, homogénéité et stationnarité). On peut utiliser :

- o Le test de Wald-Wolfowitz pour vérifier l'hypothèse d'indépendance ;
- o Le test de wilcoxon pour vérifier l'hypothèse d'homogénéité et ;
- o Le test de kendall pour vérifier l'hypothèse de stationnarité.

Ces trois tests sont largement décrits par (Bobée et al., 1999).

Détermination des quantiles qui passe par :

- a) le choix du type de loi qui s'ajuste le mieux aux échantillons;
- b) l'estimation des paramètres de la loi et vérification de son adéquation;
- c) l'estimation de la valeur de la variable pour la probabilité P retenue, et calcul de l'intervalle de confiance au seuil de risque α choisi.

Choix du type de loi

Après avoir déterminé les caractéristiques de l'échantillon, vérifié les hypothèses de base, il s'agit de trouver une loi de probabilité susceptible de s'ajuster de manière adéquate à cet échantillon. Les lois les plus fréquemment utilisées en hydrologie sont : la loi normale ou loi de Gauss, la loi de Gumbel, les lois de Pearson, les lois exponentielles et la loi de Poisson (Miquel, 2001).

D'autres auteurs estiment qu'il existe plusieurs autres types de lois qui peuvent être considérées. Elles sont résumées au tableau 3.1. Ces lois sont les distributions de probabilités

qui sont utilisées dans le logiciel *Hyfran* développé par la Chaire en Hydrologie Statistique de l'INRS-ETE (Bobée *et al.*, 1999).

Tableau 3.1 : Distribution d'ajustement

Loi	Fonction de densité de probabilité	Paramètres
Exponentielle	$f(x) = \frac{1}{\alpha} \exp\left\{-\frac{x-m}{\alpha}\right\}$	α, m
GEV	$f(x) = \frac{1}{\alpha} \left[1 - \frac{k}{\alpha} (x - u) \right]^{t/k - 1} \exp \left\{ - \left[1 - \frac{k}{\alpha} (x - u) \right]^{t/k} \right\}$	α , u , k
Gumbel	$f(x) = \frac{1}{\alpha} \exp\left[-\frac{x-u}{\alpha} - \exp\left(\frac{x-u}{\alpha}\right)\right]$	u, a
Normal	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$	μ, σ
Log-Normal 2	$f(x) = \frac{1}{x \sigma \sqrt{2\pi}} \exp\left\{-\frac{(\ln x - \mu)2}{2\sigma^2}\right\}$	μ, σ
Log-Normal 3	$f(x) = \frac{1}{(x-m) \sigma \sqrt{2\pi}} \exp \left\{ -\frac{\left[\ln(x-m) - \mu\right]^2}{2 \sigma 2} \right\}$	m , μ, σ
Weibull	$f(x) = \frac{c}{\alpha} \left(\frac{x}{\alpha} \right)^{c-1} \exp \left[-\left(\frac{x}{\alpha} \right)^{c} \right]$	æ, c
Gamma	$f(x) = \frac{\alpha^{\lambda}}{\Gamma(\lambda)} x^{\lambda - 1} e^{-\alpha x}$	α,λ
Pearson type 3	$f(x) = \frac{\alpha^{\lambda}}{\Gamma(\lambda)} x^{\lambda - 1} e^{-\alpha x}$ $f(x) = \frac{\alpha^{\lambda}}{\Gamma(\lambda)} (x - m)^{\lambda - 1} e^{-\alpha (x - m)}$	α, λ, m
Gamma Généralisée	$f(x) = \frac{ s \alpha^{s\lambda}}{\Gamma(\lambda)} x^{s\lambda-1} e^{-(\alpha x)^{s}}$	α, λ, S
Gamma inverse	$f(x) = \frac{\alpha^{\lambda}}{\Gamma(\lambda)} \left(\frac{1}{x}\right)^{\lambda+1} e^{-\alpha/x}$	α,λ
Log-Pearson Type 3	$f(x) = \frac{\alpha^{\lambda}}{x \Gamma(\lambda)} (\ln x - m)^{\lambda - 1} e^{-\alpha (\ln x - m)}$	α, λ, m
Halphen (A)	$f(x) = \frac{1}{2m^{\nu} K_{\nu}(2\alpha)} x^{\nu-1} \exp\left[-\alpha \left(\frac{x+m}{m+x}\right)\right]$	α, m, υ
Halphen (B)	$f(x) = \frac{2}{m^{2\nu} e f_{\nu}(\alpha)} x^{2\nu-1} \exp\left[-\left(\frac{x}{m}\right)^2 + \alpha\left(\frac{x}{m}\right)\right]$	Ø, m, u
Halphen (B ⁻¹)	$f(x) = \frac{2m^{2\nu}}{ef_{\nu}(\alpha)} x^{-2\nu-1} \exp\left[-\left(\frac{m}{x}\right)^2 + \alpha\left(\frac{m}{x}\right)\right]$	α, m, υ

Source: Bobée et al. (1999)

Estimation des paramètres de la loi et de son adéquation

Le choix d'une loi de probabilité étant arrêté, il faut estimer les paramètres de cette loi à partir de l'échantillon. On applique soit la méthode des moments, soit la méthode du maximum de vraisemblance pondérée. Les méthodes d'estimation sont purement du domaine de la statistique mais le caractère très particulier des échantillons de l'hydrologue impose à ce dernier un travail personnel de recherche des meilleurs estimateurs (*Dubreuil*, 1974). On montre que les meilleurs estimateurs des paramètres de la loi normale, par exemple, sont la moyenne \bar{x} et la variance s^2 calculés sur l'échantillon. A titre d'exemple, Dubreuil exprime le moment centré d'ordre 3 comme suit :

$$\frac{s^4}{\mu^3} = \frac{\left(\overline{x} - x_0\right)^3}{s^2 + 3\left(x - x_0\right)^2}$$
 (3.43)

$$\mu^{3} = \frac{1}{(n-1)(n-2)} \left[n \sum_{i=1}^{n} x_{i}^{3} - 3 \sum_{i=1}^{n} x_{i} \cdot \sum_{i=1}^{n} x_{i}^{2} + \frac{2}{n} \left(\sum_{i=1}^{n} x_{i} \right)^{3} \right]$$
(3.44)

En exagérant légèrement, on pourrait dire que sur un échantillon de taille réduite comme c'est toujours le cas en hydrologie, où les séries dépassent rarement quelques dizaines d'années une loi de probabilité est ajustable et que la multiplication de la taille par 2, 3 ou plus, permettrait de vérifier l'adéquation de cet ajustement bien que les propriétés asymptotiques ne sont pas toujours vérifiées suivant ce procédé. On juge généralement l'adéquation d'une loi à un échantillon par le test de χ^2 , variable aléatoire dont la distribution a été étudiée par Pearson (Dubreuil, 1974). La statistique du test est calculée d'après la formule suivante (Lachance, 2000) :

$$\chi^{2} = \sum_{j=1}^{k} \left[\frac{\left(O_{j} - E_{j} \right)^{2}}{E_{j}} \right]$$
 (3.45)

O_i: la fréquence observée

 E_i : fréquence attendue

On détermine la valeur critique de χ^2_{α} avec $\nu = \kappa$ -p-1 degrés de liberté.

k : le nombre de catégories (classes);

p : le nombre de paramètres connus de la distribution

Calcul de l'intervalle de confiance

L'intervalle de confiance permet d'expliciter l'importance des erreurs d'échantillonnage. Son calcul et son choix découlent de l'étude des distributions d'échantillonnage, c'est-à-dire des lois auxquelles sont soumises les caractéristiques empiriques déduites des échantillons. Les niveaux de confiance que l'on retient habituellement sont 95% et 99%. Ce choix est justifié par le souci d'éviter un type d'erreurs que l'on peut commettre lorsqu'on effectue des tests de comparaison. Le tableau suivant résume l'ensemble des procédés utilisés dans le calcul des intervalles de confiance. Notons que dans Hyfran (Bobée *et al.*, 1999), on utilise aussi une méthode de rééchantillonnage pour le calcul des intervalles de confiance.

Tableau 3.2: Résumé des procédures à utiliser pour le calcul de l'intervalle de confiance

Cas	Hypothèse	Hypothèse	Hypothèse	Table	Intervalle de
	sur la taille	Sur la population	sur l'écart type		confiance
A	<i>N</i> ≥ 30	Aucune	σconnu	Z	$\bar{x} \pm z_{\alpha/2} \sigma / \sqrt{N}$
В	<i>N</i> ≥ 30	aucune	σ inconnu	Z	$\overline{x} \pm z_{a/2} \sqrt[S]{N}$
С	N < 30	normale	σ connu	Z	$\bar{x} \pm z_{\mathscr{C}_2} \sqrt[\sigma]{N}$
D	N<30	normale	σ inconnu	t(df = N-1)	$\frac{1}{x \pm t_{\alpha/2}} \sqrt[S]{N}$

Source: Lachance (2000).

CHAPITRE IV

LES ETUDES ANTERIEURES

4.1 Généralités

4.1.1 Les ressources en eau à l'échelle mondiale

D'après l'Organisation des Nations Unies pour l'Alimentation et l'Agriculture (FAO, 2002), la planète disposerait d'environ 1 400 000 de km³ d'eau, dont 35 millions de km³ (2,5%) d'eau douce. Les grandes quantités d'eau douce contenues dans les calottes glacières et les glaciers et dans les sols en profondeur ne sont pas accessibles et ne peuvent donc pas être utilisées. L'eau douce utilisable provient essentiellement des précipitations qui tombent sur le continent au cours du cycle hydrologique. L'eau est continuellement recyclée du fait de l'évaporation provoquée par l'énergie solaire.

Les précipitations annuelles au-dessus des terres s'élèvent en moyenne à 119 000 km³, dont 74 000 km³ s'évaporent dans l'atmosphère. Les 45 000 km³ restants s'écoulent dans les lacs, réservoirs et cours d'eau ou s'infiltrent dans le sol et réapprovisionnent les nappes souterraines. Ils représentent ainsi ce que l'on appelle communément les «ressources en eau». En fait ce n'est qu'une partie de ces 45 000 km³ qui est accessible ou utilisable car une partie de l'eau s'écoule dans des rivières inaccessibles. Il ne resterait donc que 9 000 à 14 000 km³ d'eau économiquement viables pour la consommation humaine, soit une goutte d'eau dans l'océan par rapport à la totalité des quantités d'eau dont dispose notre planète.

Les prélèvements annuels en eau pour la consommation humaine s'élèvent à environ 3 600 km³. Il faut laisser une partie des eaux de surface suivre son cours naturel pour assurer la dilution des effluents et la protection des écosystèmes aquatiques. La proportion exacte d'eau qu'il faut laisser s'écouler dans une rivière varie selon le moment de l'année et un ensemble de facteurs propres à chaque bassin fluvial. Bien qu'il y ait encore des progrès à faire dans la compréhension des écosystèmes complexes des rivières, le débit minimum à conserver dans les cours d'eau a été évalué à 2 350 km³ par an. En ajoutant ce chiffre à la quantité d'eau

prélevée pour la consommation humaine, on parvient à un total de 5 950 km³ de ressources en eau douce facilement accessibles.

Les projections démographiques et les prévisions des besoins en eau futurs indiquent que la situation devient de plus en plus précaire. L'eau et les populations étant inégalement réparties, certains pays et certaines régions sont déjà en position critique. Le nombre de régions qui, dans le monde, souffrent d'une pénurie d'eau douce ne cesse d'augmenter et les usagers se disputent de plus en plus l'accès à l'eau. Margat (1997) estime que plus de 80 pays connaissent des pénuries, avec des effets néfastes sur l'agriculture et parfois de désastreuses famines.

D'après Morell (1998) indique que la forte pression exercée sur les ressources en eau associées aux incertitudes portant sur de probables évolutions climatiques incitent à porter un effort spécifique à l'évaluation de leur disponibilité et de leur variabilité. Cette connaissance passe inévitablement par l'acquisition puis l'analyse de données hydrologiques denses, homogènes et fiables.

4.1.2 État de eaux de surface dans le monde

D'après Neuvy (1991) les eaux continentales de surface (sources, rivières, lacs) sont des endroits où l'eau est facilement utilisable. Cependant, l'évaluation de la quantité disponible revient à faire des mesures de débits ou de volumes. Les résultats étant liés à la pluviosité; ils varient donc au cours des mois et aussi sur une série de plusieurs années ; d'où la nécessité de faire un grand nombre d'observations, à des intervalles de temps réguliers. Les cours d'eau étant donc les indices témoignant de l'abondance des ressources en eau dans une région. Selon *SPE* (1993), l'eau de surface et dans l'atmosphère, essentielle à la vie sur la planète, n'est que de 139 000 km³. De cette quantité d'eau relativement faible 125 000 km³, ou 90% se retrouvent dans les lacs. Des 14 000 km³ restants, seuls 10% se trouvent dans les cours d'eau, fleuves et rivières, et 90% sont en circulation dans l'atmosphère.

L'eau de surface, contenue dans les lacs et les rivières, représente la principale source d'approvisionnement durable soutenant les activités humaines. Elle ne correspondrait qu'à 0.26% des réserves d'eaux douce (Neuvy 1991; Sasseville 1997). Le Canada par exemple

possède à lui seul 6% du ruissellement terrestre et à l'échelle continentale, le ruissellement est de l'ordre de 280 mm, soit plus de 35% des précipitations totales (Musy, 2000).

4.2 Les ressources en eau de surface de la république d'Haïti

Selon Trac (1990), Haïti dispose des ressources en eau considérables dont la seule partie renouvelable est estimée à quelques 12 milliards de m³ par an. En 1990, moins de 10% de ce potentiel était exploité. Les écoulements superficiels représentent à eux seuls plus de 90% du total des ressources en eau potentielles. En 1997, grâce à un système d'information géographique le potentiel des ressources en eau renouvelable contrairement à l'estimation précédente a été évalué à 14 milliards de m³ par an dont 12,5 milliards correspondent aux écoulements superficiels (Emmanuel et Lindskog, 2000). Selon eux, la répartition géographique des ressources en eau et leur mode d'exploitation résultent en une insuffisance de systèmes adéquats d'approvisionnement en eau potable, une faible couverture en périmètres irrigués et l'existence d'un système d'assainissement déficient dans les principales villes du pays. D'après Thys (1997), les ressources en eau sont abondantes mais la plupart des eaux de surface d'un débit annuel estimé à 9,5 milliards de m³ ne sont ni aménagées ni utilisées. Selon Emmanuel et Lindskog (2000), hydrologiquement, l'eau ne varie pas. La variation existe au niveau du ruissellement et de l'infiltration. Cette variation est fonction de l'occupation de l'espace, de l'activité anthropique, des activités économiques et de l'incompréhension humaine du cycle hydrologique. De ce fait, il faudrait tenir compte de l'adaptation de la société face aux conditions hydrologiques du milieu avant toute confrontation entre les besoins et les disponibilités.

Le débit des principaux cours d'eau du pays oscille entre 10 et 100 m³/s. Cependant, les ressources sont mal réparties car cinq rivières concentrent à peu près 60% des ressources en eau du pays (MDE, 1998). Cette même source indique que le fleuve Artibonite, avec son bassin hydrographique de 9550 km² dont le tiers se trouve en République Dominicaine, représente le plus important cours d'eau du pays. Son potentiel hydroélectrique est exploité grâce au barrage de Péligre dont la capacité installée s'estime à 47,1 mégawatts. En plus, le même barrage joue un rôle de régulation des crues et d'approvisionnements des communautés avoisinantes. Le tableau 4.1 présente les bassins de drainage majeurs.

Tableau 4.1 : Les bassins de drainage majeurs d'Haïti

Numéro de bassin	Nom de rivière	Surface de drainage (km²)	Débit maximum journalier (m³/s)	Débit minimum journalier (m³/s)	Débit moyen journalier (m³/s)
III	Les trois rivières	897	1 500	0,3	13,3
VI	Rivière du Limbé	312	485	0,3	4,29
VIII	Grande Rivière du Nord	663	390	0,02	7,66
X	Rivière de L'Estère	834	95,3	1,85	18,76
XI	Rivière de l'Artibonite	6 862	2 500	8,4	101,4
XIII	Rivière Grise	290	475	0,31	3,97
XVI	Rivière Momance	330	420	0,6	5,88
XVII	Grande Rivière de Jacmel	560	800	0,12	4,67
XXII	Rivière de Cavaillon	380	1 035	07	9,42
XXIV	Ravine du Sud	330	350	0,28	4,86
XXVI	Rivière Grand'Anse	541	850	0,7	26,85

Source: Ehrlich (1985).

4.3 Les usages et besoins en eau

4.3.1 Les usages de l'eau au niveau mondial

Selon l'Organisation des Nations Unies pour l'Alimentation et l'Agriculture (FAO, 1993) souligne que la surexploitation de l'eau souterraine est devenue un problème aiguë dans de nombreuses régions du monde, telle la Chine, l'Inde, l'Indonésie, le Mexique, la Thaïlande, le Proche-Orient, l'Afrique du Nord ou dans l'ouest des États-unis et dans nombre de pays insulaires où l'eau de mer fait intrusion dans les nappes. Le pompage excessif dans les couches aquifères provoque non seulement un appauvrissement des nappes qui les rend impropres à une exploitation fiable, mais provoque aussi l'affaissement des terrains susjacents, ce qui peut provoquer dans les cas extrêmes de lourds dégâts dans les constructions en surface. Les villes de Bangkok et de Mexico en sont des exemples notoires. Fort de ce constat, l'exploitation de l'eau de surface est devenue de plus en plus une alternative importante.

Selon Neuvy (1991), on distingue quatre grands secteurs d'utilisation d'eau. Ils concernent la consommation pour l'homme et le bétail, l'eau pour les cultures, les besoins industriels avec la production d'énergie électrique, et la navigation fluviale.

Dans le monde actuel, l'agriculture continue d'être la plus forte consommatrice d'eau parmi les activités humaines (FAO, 1993). Les exigences, tant quantitatives que qualitatives, en ce qui concerne l'eau, accusent de fortes différences selon le type d'utilisation. A l'échelle mondiale, environ 70 % de l'eau détournée de son cours naturel sont destinés à l'agriculture irriguée.

L'industrie utilise de grandes quantités d'eau, mais la majeure partie de celle-ci est recyclée dans le système hydrologique. Le principal problème tient au fait que cette eau retourne à la nature polluée, car chargée de déchets, de produits chimiques et de métaux lourds. Plus de 85% de l'eau consommée au total par l'industrie retourne à la nature sous forme d'eaux usées. Un rapport de *l'Unesco* (2003) souligne que l'industrie consomme 22% des ressources en eau mondiale en moyenne : 59% dans les pays à revenus élevés, 8% dans les pays à faibles revenus. Le rapport prévoit que cette moyenne atteindra 24% en 2025, quand l'industrie utilisera environ 1 170 km³ par an.

Tandis que l'utilisation en eau pour les usages collectifs (8%) est modérée par rapport aux usages agricoles et industriels, mais les exigences de qualité sont élevées.

4.3.2 Usages de l'eau en Haïti

En Haïti, l'eau est utilisée de façon irrationnelle et répartie de manière inéquitable entre les secteurs. Seulement 10% des ressources en eau disponibles est utilisée. L'agriculture en consomme à elle seule environ 90% et dont les eaux de surface en fournissent à peu près 92% pour un total de 70.000 hectares de terres effectivement irrigués. En 1996, on estimait à 1 170 millions de m³ la consommation de l'agriculture irriguée (tableau 4.2).

La consommation domestique est surtout assurée par de l'eau de sources et le pompage des eaux souterraines. Toutefois, une bonne partie de la population fait usage des eaux de surface avec très peu de traitement. L'approvisionnement en eau de consommation est assuré par divers organismes (publics et ONGs). Markley *et al.* (1999) ont souligné dans une étude d'évaluation des ressources en eau en Haïti que trois organismes autonomes (CAMEP, SNEP, POCHEP) et plusieurs organisations non gouvernementales assurent l'approvisionnement de l'eau. Cette gestion multipartite constitue une entrave à l'inventaire et à l'utilisation des ressources en eau disponible.

La région métropolitaine de Port-au-Prince, principal centre urbain du pays, par son importance en termes de concentration de la population et des services urbains, connaît de graves problèmes dans les domaines d'approvisionnement en eau et de l'assainissement. En effet, l'espace urbain de Port-au-Prince, caractérisé par une grande concentration humaine et une expansion extrêmement rapide, semble sombrer de plus en plus dans une situation de pénurie d'eau potable. Avec une disponibilité de 23,7 millions de m³ d'eau par an seulement 11,85 millions de m³/an sont fournis aux 2 millions d'habitants de la région (LGL, 1989). Or, les besoins minimaux domestiques pour une vie saine est de l'ordre de 100 litres environ par jour et par personne (soit 36,5 m³/an). Les statistiques de 1996 estiment à 35% le pourcentage de la population métropolitaine ayant accès à un système d'approvisionnement en eau potable. En moyenne pour l'ensemble du pays on estime à environ 20% le taux de la population haïtienne ayant accès à un système d'approvisionnement en eau potable (Markley et al., 1999).

L'usage industriel demeure encore le secteur agroalimentaire et dans une certaine mesure la consommation hydroélectrique. Le secteur agroalimentaire tire principalement son eau dans les eaux souterraines. Ce secteur utilise à peu près 4 millions de m³ par an. Une statistique de 1996 chiffre à 55 MW, la capacité hydroélectrique installée (*tableau 4.3*). Cependant, les autres usages industriels sont mal connus.

Tableau 4.2: Consommation d'eau par région hydrogéographique (Mm³/an)

Région	Provision d'eau	Irrigation	Autre	Total	Total
	potable			consommé	disponible
Centre Nord	8	410,0	-	418	3,800
Centre Sud	80	333,5	4	417,5	1,100
Nord	5	8,4	0,4	13,8	1,000
nord-ouest	11	161	-	172	1,200
sud-est	1,5	69	-	70,5	800
sud-ouest	5,5	187	0,25	192,75	4,700
Total	111	1,168.9	4,65	1,284.55	12,600

Source: OPS/OMS (1996)

Tableau 4.3: Installations des forces hydrauliques

Projet	Nom de la rivière	Capacité installée (MW)
Péligre	Rivière de l'Artibonite	47,1
Drouet	Rivière de l'Artibonite	2,5
Saut Mathurine	Rivière de Cavaillon	2,4
Grande Rivière du Nord	Rivière Caracol	0,9
Montrouis	Rivière Déluge	0,9
Jacmel	Rivière Gaillard	0,9
Belladère	Rivière Onde verte	0,3
Total		55

Source: OPS/OMS (1996).

4.3.3 Les besoins en eau

Chaque organisme vivant est caractérisé par son besoin minimal en eau. A l'origine, la répartition des ressources en eau dans le sol et en surface a donc délimité nettement les zones d'habitat sur le globe terrestre. Par son pouvoir créateur, l'homme peut maintenant modifier localement la répartition de ces ressources; ceci implique qu'il puisse parfaitement définir les besoins en eau. Or, (Neuvy, 1991) estime que dans les projets, les besoins sont souvent sous-estimés. Cette réalité provient du fait que la consommation en eau est d'autant plus forte que les moyens mis en œuvre pour la distribuer sont plus perfectionnés.

Sironneau (1996) décrit l'eau naturelle comme une matière première considérée comme étant le produit de consommation et le facteur de production dans tous les secteurs économiques. Pour lui, il s'agit d'une matière première exceptionnelle vitale. Dans cette perspective, il semblerait que la rareté de l'eau constitue une condition critique ou un handicap au développement des pays les plus pauvres.

Falkenmark et Widstrand (1992), considèrent qu'une disponibilité en eau par habitant inférieure à 1700 m³/an pose des problèmes de développement, qu'une dotation en dessous de 1000 m³/an est considérée comme une limite importante à la production alimentaire, au développement économique et à la protection des écosystèmes et entraîne du même coup une situation de pénurie relative, voire absolue en dessous de 500 m³/an. Sasseville (1997) cite

que 26 pays et 232 millions de personnes tombent dans cette catégorie de région où la rareté de l'eau devient un problème critique de développement. Ces considérations témoignent l'hétérogénéité dans la distribution de l'eau douce sur la planète. Notons que dans les paragraphes qui suivent les informations qui seront mentionnées ne concerneraient que le cas d'Haïti.

4.3.3.1 Besoins domestiques

En ce qui concerne les besoins domestiques, les informations divergent selon les sources. La déclaration d'Haïti (2001) à Johannesburg à la conférence des Nations Unies sur l'environnement mentionnait que seulement 20% de la population a accès à un système d'approvisionnement en eau potable. 70 à 80% de la population est alimenté par des sources non aménagées dont le débit diminue continuellement à cause de la déforestation (Neuvy, 1991). D'après Banque Mondiale (2004), en 2002, près la moitié de la population urbaine est couverte par les services d'eau potable. En 2001, 27% des ménages des villes secondaires et 50% des ménages vivant en milieu rural s'approvisionnaient en eau à boire à partir d'une source non aménagée ou à une rivière.

Selon *MDE* (2001), les besoins en eau potable du pays sont élevés. En 1997, les besoins en eau potable sont évalués à 137 millions de m³, dont 52 millions pour le milieu rural et 85 millions pour le milieu urbain, dont 33.5 millions de m³ pour la seule ville de Port-au-Prince. A l'horizon 2015, ils devraient s'élever à 230 millions de m³, dont 65 millions pour le milieu rural et 165 millions pour le milieu urbain, dont 68 millions de m³ pour la seule ville de Port-au-Prince.

On constate que selon ces prévisions, qu'entre 1997 et 2015, alors que les besoins du monde rural auront augmenté de 25%, ceux de Port-au-Prince auront plus que doublé. Les besoins en eau potable sont en outre inégalement répartis dans l'espace.

4.3.3.2 Besoins en eau d'irrigation

Dans le secteur agricole, *Trac* (1990) estime que le potentiel des terres irrigables du pays est de l'ordre de 180 000 hectares. Le MDE (2001) a estimé les besoins en eau d'irrigation pour l'année 1997 et pour l'horizon 2050, date à laquelle le potentiel des 180 000 hectares de terres irrigables serait susceptible d'être mis en valeur. Considérant l'efficience des systèmes

d'irrigation se situant entre 25 et 50%, la demande totale en eau en 1997 est de l'ordre de 750 millions à 1.5 milliard de m³. En se référant au *tableau 4.2* on voit que les besoins actuels de l'agriculture irriguée et même dans un futur proche sont inférieurs à la consommation, cela sous-entend qu'il y a des pertes énormes d'eau au niveau des systèmes d'irrigation. En supposant, pour l'avenir une efficience comprise entre 30 et 70%, la demande en 2050 serait comprise entre 2,3 et 4,3 milliards de m³. Le sous-secteur de l'irrigation reste le plus grand consommateur d'eau avec environ 90% de la demande.

4.3.3.3 Besoins industriels

Ces besoins prennent en compte la production hydroélectrique, l'élevage, la pisciculture, le tourisme et les mines. Saint- Jean (1997) avance que la production électrique à partir des ressources hydrauliques a débuté en 1971 avec une capacité installée de 47.1 MW. En outre, un programme de développement de mini centrales totalisant 7.8 MW a été réalisé par la suite. Jusqu'en 1973, l'énergie hydroélectrique représentait 94% de l'offre en énergie électrique du pays. Au fil des années la proportion a baissé jusqu'à atteindre de nos jours 40% de l'offre. Les prévisions pour les prochaines années accusent une tendance à la baisse.

Quant à la satisfaction des besoins en eau d'élevage, de pisciculture, des mines et du tourisme, etc., le *MDE* (2001) a estimé qu'ils ont une demande encore très faible.

4.4 Qualité des eaux de surface à Haïti

En Haïti, la chloration reste le seul mode de traitement appliqué à l'eau brute destinée à la consommation humaine (Emmanuel et Lindskog, 2000). Théoriquement, la désinfection au chlore est très économique et très efficace mais il y a des risques qui y sont associés. Le chlore, réagissant à des substances organiques contenues dans l'eau, formes des trihalométhanes qui sont susceptibles d'être des produits ayant des effets cancérigènes.

Une étude menée par Markley et al. (1999) indique que la contamination de l'eau de surface d'origine domestique et industrielle a lieu un peu partout dans le pays surtout près des zones extrêmement peuplées (Port-au-Prince, 2 millions habitants). L'information spécifique sur la qualité n'est pas disponible soulignent-ils, mais beaucoup de sources indiquent que la contamination de l'eau de surface a augmenté significativement ces dernières années. Les eaux usées domestiques et l'eau de drainage agricole causent la contamination biologique de

l'eau de surface à proximité et en aval des rivières des zones peuplées. La contamination chimique peut être un problème sérieux près des grandes villes et des sites industriels.

CHAPITRE V

BANQUE DE DONNÉES

5.1 Sources d'information

Pour mener à bien la recherche et obtenir les données nécessaires à la réalisation du mémoire, nous avions commencé au début du mois de mars 2004 à échanger des correspondances avec les responsables du Service National des Ressources en Eau (SNRE) chargé de la gestion des informations hydrométéorologiques en Haïti. Nous avions eu la garantie de ces responsables que les données nous allaient transmises au moment opportun. Pourtant nous avions dû attendre plus de 6 mois avant d'avoir une partie des données dont nous avions besoin. Dans l'intervalle, nous avions contacté plusieurs institutions internationales (UNESCO, OMM, FAO) ainsi que divers autres centres de recherche comme GRDC CATALOG (http://www.grdc.bafg.de), hydronet (http://www.hydronet.sr.unh.edu) répertoriées à travers l'Internet et parcouru les sites de certaines bibliothèques canadiennes (Centre de documentation de l'INRS, Université Laval) à la recherche de l'information hydrométéorologique d'Haïti. Parmi ces institutions internationales seulement la FAO a archivé dans sa base de données des stations synoptiques mondiales les données météorologiques d'Haïti qu'elle nous a transmises suite à notre demande. Les données hydrométriques nous ont cependant été fournies par le SNRE. Les sources d'information de ce mémoire demeurent le SNRE, la FAO, les rapports des travaux précédents et l'Internet.

5.2 Problèmes rencontrés

Les problèmes rencontrés sont liés aux conditions politiques et socio-économiques même dans lesquelles évolue Haïti depuis un certain nombre d'années. C'est pourquoi les méthodes de collecte des données se sont révélées très pénibles. Sur le plan organisationnel, Haïti régresse davantage. Les difficultés que nous avons eues sont liées à trois types de phénomènes très chroniques en Haïti :

1) Mode de gestion des informations

Jusqu'à ce jour les structures mises en place pour la gestion des données hydrométéorologiques sont révélées très anciennes. Les banques de données ne sont jusqu'ici pas informatisées. Ces problèmes justifient tout le temps nécessaire pour avoir les premières données. Pourtant, dans certains pays comme le Canada, en une journée on pourrait avoir accès à toutes les données nécessaires. En Haïti, dans la plupart des cas, les informations sont recueillies principalement pour le développement de certains projets spécifiques. Les projets, une fois terminés, les gestionnaires ne manifestent aucun intérêt pour la suite. Les informations sont laissées à la dérive. Markley *et al.* (1999) ont souligné dans un rapport qu'une étude de SNRE et ASSODLO (1994) a fait état des problèmes de budget ayant causé la détérioration du rassemblement des données du réseau de jaugeage d'Haïti. Ils ont cité également que les deux organismes ont souligné que des 183 jauges hydrométéorologiques trouvées dans leur recensement, seulement 25% fonctionnaient. Les responsables du SNRE déclaraient en 1998 que seulement 3 de leurs 45 stations de jaugeage fonctionnaient.

2) Instabilité politique

L'instabilité politique en Haïti représente un grand défi pour le monde scientifique. L'absence de continuité au niveau de l'administration publique haïtienne est le plus grand obstacle à surmonter. Généralement, les projets arrivent à terme si le mandat du régime politique est plus long que leur durée. Durant ces dernières années, le pays a connu trois successions de régimes politiques (1986, 1991 et 2004) les plus difficiles qu'il ait jamais vécues. Certains projets dont la reprise des mesures hydrométriques qui a débuté vers la fin des années 80 s'est arrêtée à cause du manque de volonté et de l'instabilité politique (Markley *et al*, 1999).

3) Vandalisme

Chaque fin de régime entraîne des actes de vandalisme qui se traduisent toujours par des scènes de pillage. Qu'elle soit du secteur privé ou public, aucune institution n'est épargnée au vandalisme. Les plus récents actes de vandalisme ont lieu en février 2004, le service national des ressources en eau (SNRE) de la République d'Haïti, entité étatique chargée de l'acquisition et de la gestion des informations hydrométéorologiques, n'a pas été épargné.

Une partie des informations disponibles a disparu dans les flammes et dans le pillage. Même les universités dont celle de l'État ont également été pillées, leurs bases de données ont été vandalisées. Certaines informations pourraient être reconstituées si les institutions internationales disposaient des données d'Haïti. Ce qui n'est malheureusement pas le cas.

5.3 Banques de données

Vu l'objectif de ce projet, les données sont principalement des variables météorologiques (précipitations), hydrologiques (débits journaliers des cours d'eau), et des données des caractéristiques physiographiques. Les données seront présentées de façon détaillée dans les paragraphes qui suivent. Avant même la présentation détaillée des différentes banques de données mentionnées ci-dessus, il est essentiel de faire une brève description des caractéristiques générales du climat d'Haïti.

5.3.1 Caractéristiques générales du climat

Haïti est un pays tropical aux climats extrêmement variés. La variation du relief explique la succession surprenante de microclimats très différents à l'intérieur d'un rayon de quelques kilomètres.

La température moyenne annuelle à la grandeur du pays varie entre 15°C et 35°C (MDE, 2001). En raison de l'altitude et de la continentalité, les températures présentent une grande variabilité dans l'espace, en plus de variabilité saisonnière. En général, l'année comprend deux saisons: une saison très chaude, de mars à novembre culminant en juillet et août, et une saison moins chaude entre décembre et février (Emmanuel et Lindskog, 2000).

L'insolation du pays dépasse 3 000 heures par année. Les valeurs hygrométriques passent par un minimum de 63%, une moyenne de 75% et un maximum de 80% (Blaise, 1987).

Les vents soufflent avec une vitesse de 7,5 à 10 Km/h tout au long de l'année. Cependant, sporadiquement des cyclones avec des pointes de 150 Km/h peuvent être enregistrés, surtout dans la partie méridionale du pays. Exceptionnellement, les vents peuvent atteindre une vitesse de l'ordre de 250 Km/h (GRET/FAMV, 1991).

Les précipitations, quant à elles, se produisent sous forme liquide. La pluviosité est fonction de l'altitude, du relief et de l'exposition relative aux facteurs favorables à la précipitation. Si

certaines régions sont humides d'autres sont très marquées par la sécheresse, caractère parfois accentué par l'érosion et le déboisement de vastes zones (GRET/FAMV, 1991).

Les systèmes climatiques de l'Amérique du Nord influencent beaucoup le climat du pays. Cependant, il y a lieu de relever des variations régionales dues à la topographie et à la direction des vents. Les vents véhiculent des masses d'air humide souvent à la limite de l'instabilité. Lorsqu'elles rencontrent un relief suffisamment élevé, ces masses d'air subissent un refroidissement par élévation, ce qui provoque des précipitations sur le versant au vent. A l'inverse, la descente de l'air sous le vent entraîne son réchauffement et donc la disparition rapide de la nébulosité et des précipitations, ce phénomène est connu principalement sous le nom d'effet de foehn. Les chaînes de montagnes du pays étant perpendiculaires à la direction des vents et ainsi les empêchent d'atteindre de la même manière toutes les régions : les versants exposés au vent et les sommets des massifs sont les plus pluvieux ; inversement, les versants sous le vent et les dépressions (vallées et bassins) représentent les zones les plus sèches.

À Haïti comme dans le monde tropical, les saisons se présentent sous la forme d'une alternance de périodes sèches et de périodes pluvieuses avec de faibles variations de température annuelle. Selon les régions, l'influence des alizés, des vents locaux et des fronts froids est plus ou moins marquée. La répartition des pluies dans l'année y est donc différente.

5.3.1 Banque de données pluviométriques

5.3.1.1 Inventaire des stations pluviométriques

Pour la construction de la banque de données pluviométriques, nous avons effectué un inventaire le plus exhaustif possible des stations pluviométriques de la République d'Haïti. Au total, 94 sites ont été recensés, parmi lesquels :

- 4 n'ont aucune donnée disponible ;
- 31 ont des observations pendant moins de 20 ans ;
- 18 pendant une période allant de 20 à 30 ans ;
- 14 pendant 30 ans et plus;
- 14 entre 40 et 50 ans;
- 10 pendant 50 ans et plus;
- 3 ont des observations sur une soixantaine d'année;

Aucune donnée journalière n'a été trouvée. Pour la plupart de ces stations on ignore la date même de début des observations. Seules des valeurs moyennes mensuelles et annuelles sont disponibles pour une période variable comme mentionnée précédemment. Toutes les stations recensées sont présentées au *tableau 5.1*. Nous donnons dans ce tableau, suivant un ordre alphabétique, la liste des stations, leurs coordonnées géographiques (longitude et latitude) et l'altimétrie. Les moyennes mensuelles et annuelles sont présentées au *tableau 5.2*. Rappelons que les données de précipitations nous viennent des bases de données des stations synoptiques mondiales de la FAO. Ces données seront utilisées pour estimer les apports en eau sur l'ensemble du pays.

Tableau 5.1:Liste des stations pluviométriques d'Haïti

No	Station	Longitude	Latitude	Élévation
				(m)
1	Anse-à-Galet	-72,85	18,82	75
2	Anse-à-Veau	-73,33	18,48	81
3	Aquin	-73,38	18,27	5
4	Arcahaie	-72,52	18,73	60
5	Bainet	-72,73	18,17	81
6	Banane	-71,75	18,13	340
7	Baumont	-73,95	18,48	650
8	Belladère	-71,75	18,83	285
9	Belle-anse	-72,05	18,22	2
10	Billiguy	-72,2	19,23	260
11	Bombardopolis	-73,32	19,68	485
12	Borgne	-72,52	19,83	10
13	Cabaret	-72,35	18,72	81
14	Campérin	-73,87	18,3	300
15	Cap-Haitien	-72,18	19,75	3
16	Cavaillon	-73,63	18,28	20
17	Cayes	-73,67	18,17	22
18	Cerca-la-source	-71,73	19,15	610
19	Chantal	-73,87	18,18	40
20	Chappelle-LA	-72,28	18,9	113
21	Chauffard	-72,37	18,43	1300
22	Chevallerie-LA	-72,08	19,68	30
23	Cornillon	-72	18,65	1000
24	Croix-des-	-72,22	18,57	50
	Bouquets			
25	Damiens	-72,28	19,28	360

Tableau 5.1:Liste des stations pluviométriques d'Haïti (suite)

No	Station	Longitude	Latitude	Élévation
				(m)
26	Desdunes	-72,63	19,28	30
27	Despuzeau	-72,1	18,55	40
28	Dessalines	-72,48	19,27	200
29	Duvalierville	-72,4	18,72	70
30	Ennery	-72,47	19,47	300
31	Fonds-des-Nègres	-73,22	18,37	300
32	Fonds parisien	-71,97	18,5	30
33	Fonds Verrettes	-71,83	18,38	760
34	Forêts des Pins	-71,77	18,32	1830
35	Furcy	-72,27	18,4	1540
36	Gaillard	-72,4	18,25	655
37	Ganthier	-72,07	18,52	70
38	Gde Riv, Nord- HA	-72,2	19,6	60
39	Gonaives	-72,68	19,45	5
40	Grand Bassin	-72	18,68	75
41	Grands-Bois	-71,83	18,75	939
42	Grande Rivière	-72,17	19,57	70
43	Gros-Morne	-72,67	19,65	220
44	Hinche	-72	19,15	260
45	Jacmel	-72,53	18,23	81
46	Jacmel-R	-72,5	18,2	20
47	Jean-Rabel	-73,2	19,85	80
48	Jérémie	-74,08	18,62	30
49	Juvenat-Haiti	-72,3	18,5	300
50	Kenscoff	-72,28	18,45	1400
51	La Tortue	-72,62	19,95	0
52	Lascahobas	-71,92	18,82	210
53	Léogâne	-72,62	18,5	15
54	Les-Cayes	-73,73	18,18	2
55	Lesson	-74,35	18,57	60
56	Limbé	-72,4	19,7	20
57	Limonade	-72,08	19,72	10
58	Maissade	-72,13	19,17	305
59	Marfranc	-74,2	18,6	40
60	Marmelade	-72,37	19,52	750
61	Mirebalais	-72,1	18,83	120
62	Môle Saint-	-73,38	19,82	10
62	Nicolas	71.77	10.29	630
63	Mont-Organisé	-71,77	19,38	50
64	Ouanaminthe	-71,72	19,53	
65	Pétion-ville	-72,28	18,5	399
66	Petit-Gôave	-71,47	18,47	15

Tableau 5.1:Liste des stations pluviométriques d'Haïti (suite)

No	Station	Longitude	Latitude	Élévation
				(m)
67	Petite Rivière	-72,52	19,1	210
68	Phaeton	-71,88	19,65	10
69	Pilate	-72,53	19,65	324
70	Plaisance	-72,45	19,57	420
71	Pont-Sondé	-72,6	19,13	20
72	Port-à-piment	-74,08	18,23	5
73	Port-au-Prince	-	-	-
	(Damien)			
74	P-au-P (aéroport)	-72,3	18,57	34
75	Port-de-Paix	-72,83	19,93	6
76	Saltrou	-72,1	18,2	-
77	San-Juan-de-la-	-71,2	18,8	415
	mag			
78	Saut Mathurine	-73,82	18,33	200
79	Savanne Zombi	-71,8	18,27	1432
80	Seguin	-72,23	18,32	1680
81	Sercey	-72,57	18,45	70
82	Sources Chaudes	-72,9	19,62	
83	Saint-Marc	-72,68	19,1	0
84	St-Michel	-72,42	19,4	429
85	St-Raphael	-72,2	19,4	-

Source : FAO (2000)

Tableau 5.2 : Précipitations moyennes mensuelles et annuelles en mm

No	Station	J	F	M	A	M	J	J	A	S	0	N	D	Total	Nombre
														Annuel	d'années
1	Anse-à-Galet	20	20	26	50	132	84	86	101	114	138	47	23	841	41
2	Anse-à-Veau	41	37	51	102	170	125	119	130	117	128	86	30	1136	48
3	Aquin	25	23	59	97	139	94	72	90	161	227	73	23	1083	11
4	Arcahaie	19	34	45	45	148	91	82	102	111	95	60	20	852	59
5	Bainet	48	65	102	186	215	126	108	153	168	200	94	53	1518	54
6	Banane	25	20	50	44	151	103	67	93	132	179	118	55	1037	24
7	Baumont	89	71	51	105	322	115	96	143	169	282	331	35	1809	10
8	Belladère	13	31	49	135	231	168	128	156	190	183	77	18	1379	46
9	Belle-anse	25	24	29	47	86	51	29	77	88	87	42	26	611	37
10	Billiguy	14	24	28	165	294	184	108	177	192	138	54	17	1395	7
11	Bombardopolis	16	27	21	34	93	99	92	136	115	143	78	45	899	7
12	Borgne	182	127	123	167	155	95	77	84	115	208	380	196	1909	11
13	Cabaret	20	26	54	76	174	84	85	114	137	100	53	22	945	30
14	Campérin	92	94	104	200	364	200	135	191	245	479	143	83	2330	20
15	Cap-Haitien	191	128	100	125	106	98	34	67	99	140	245	225	1558	20
16	Cavaillon	67	60	97	139	179	153	127	142	168	321	80	77	1610	17
17	Cayes	83	69	87	151	270	174	177	198	223	307	119	66	1924	20
18	Cerca-la-source	7	42	33	64	188	239	189	181	280	253	101	38	1615	10
19	Chantal	145	123	140	264	335	250	168	172	355	325	81	106	2464	9
20	Chappelle-LA	12	22	22	84	222	227	194	218	194	184	54	12	1445	46
21	Chauffard	14	39	68	231	363	273	245	359	285	226	89	68	2260	11
22	Chevallerie-LA	48	95	50	83	125	53	21	30	79	114	165	90	953	19
23	Cornillon	29	57	53	163	197	128	174	211	201	138	125	47	1523	6
24	Croix-des-Bouquets	18	31	50	103	176	70	59	123	121	116	50	21	938	37
25	Damiens	30	37	66	107	183	77	66	125	131	134	77	34	1067	34

Tableau 5.2 : Précipitations moyennes mensuelles et annuelles en mm (suite)

No	Station	J	F	M	A	M	J	J	A	S	0	N	D	Total	Nombre
								_						Annuel	d'années
26	Desdunes	4	10	6	20	63	91	101	98	89	70	30	5	587	44
27	Despuzeau	11	23	31	79	129	58	49	96	99	156	56	22	809	25
28	Dessalines	6	12	15	31	92	168	158	142	160	100	28	8	920	47
29	Duvalierville	22	32	66	104	184	166	105	138	151	147	80	25	1220	9
30	Ennery	31	25	43	129	213	180	123	152	205	203	95	51	1450	10
31	Fonds-des-Nègres	39	44	53	119	182	129	129	181	146	217	95	32	1366	13
32	Fonds parisien	-	-	-	-	-	-	-	-	-	-	-	-	-	-
33	Fonds Verrettes	41	37	82	185	340	211	156	258	274	254	159	39	2036	43
34	Forêts des Pins	24	29	53	68	225	197	90	179	240	214	54	41	1414	7
35	Furcy	30	49	68	129	310	254	155	200	279	255	126	33	1888	38
36	Gaillard	54	69	119	186	284	151	130	207	217	237	122	59	1835	44
37	Ganthier	11	22	38	101	145	49	35	68	106	125	56	56	812	52
38	Gde Riv, Nord-HA	156	137	103	141	240	208	120	106	202	179	157	179	1928	20
39	Gonaives	8	6	14	10	60	96	83	73	64	52	16	1	483	10
40	Grand Bassin	21	71	53	106	175	139	49	66	89	193	107	56	1125	10
41	Grands-Bois	22	28	59	166	241	125	122	182	187	181	108	30	1451	28
42	Grande Rivière	95	94	85	118	204	158	100	114	169	165	173	127	1602	62
43	Gros-Morne	25	36	35	90	225	200	120	143	172	140	109	50	1345	48
44	Hinche	13	16	34	127	286	209	170	171	207	179	52	15	1479	37
45	Jacmel	41	56	76	128	196	107	80	142	133	136	78	33	1206	20
46	Jacmel-R	49	56	60	132	153	84	94	124	114	169	77	30	1142	10
47	Jean-Rabel	86	56	63	53	109	74	35	40	88	96	139	83	922	28
48	Jérémie	70	59	58	72	102	81	43	54	59	107	113	125	943	20
49	Juvenat-Haiti	31	45	71	199	233	113	85	139	173	181	95	23	1388	20
50	Kenscoff	18	39	53	206	334	184	104	181	252	254	67	46	1738	13
51	La Tortue	145	65	61	132	156	80	35	83	96	179	355	252	1639	10

Tableau 5.2 : Précipitations moyennes mensuelles et annuelles en mm (suite)

No	Station	J	F	M	A	M	J	J	A	S	O	N	D	Total	Nombre
														Annuel	d'années
52	Lascahobas	30	45	84	175	339	240	176	216	218	249	102	39	1913	33
53	Léogâne	33	44	71	164	207	143	130	171	189	178	92	39	1461	20
54	Les-Cayes	83	69	87	151	270	174	177	198	223	307	119	66	1924	54
55	Lesson	108	70	114	149	323	262	170	193	158	175	134	147	2003	55
56	Limbé	98	140	131	169	120	120	96	107	167	209	328	167	1852	30
57	Limonade	86	80	87	103	184	104	74	78	138	125	258	83	1400	20
58	Maissade	23	23	37	133	310	276	181	181	269	201	56	26	1716	46
59	Marfranc	98	80	28	132	230	164	85	123	170	190	170	215	1685	17
60	Marmelade	74	70	68	129	252	203	132	174	193	209	174	105	1783	42
61	Mirebalais	24	39	72	193	327	262	240	307	316	253	103	36	2172	45
62	Môle Saint-Nicolas	21	40	27	52	63	57	26	38	51	71	100	43	589	_
63	Mont-Organisé	71	92	72	127	305	207	141	179	199	205	156	121	1875	38
64	Ouanaminthe	42	35	44	67	170	153	83	109	137	128	102	53	1123	55
65	Pétion-ville	24	46	86	192	256	125	86	152	187	179	78	30	1441	61
66	Petit-Gôave	24	41	71	149	194	114	123	159	146	137	68	29	1255	54
67	Petite Rivière	10	20	21	73	185	243	221	207	188	142	42	15	1367	10
68	Phaeton	54	51	42	79	139	91	32	44	81	103	117	76	909	10
69	Pilate	64	74	73	137	246	188	140	171	202	199	188	102	1784	51
70	Plaisance	76	69	67	127	246	207	165	185	223	215	216	125	1921	37
71	Pont-Sondé	9	14	17	41	121	170	131	133	144	122	31	8	941	25
72	Port-à-piment	66	58	67	126	155	111	107	145	181	280	132	66	1494	38
73	Port-au-Prince (Da)	33	35	69	155	215	91	83	137	155	176	87	41	1277	-
74	P-au-P (aéroport)	38	33	30	108	117	49	67	91	102	102	100	18	855	30
75	Port-de-Paix	118	79	58	65	93	82	68	85	111	120	200	141	1220	54
76	Saltrou	12	24	30	44	59	56	24	114	92	148	23	10	636	10
77	San-Juan-de-la-mag	12	19	22	84	144	90	121	119	124	125	56	64	980	20

Tableau 5.2 : Précipitations moyennes mensuelles et annuelles en mm (suite)

78	Saut Mathurine	282	205	172	325	430	349	254	409	533	532	253	251	3995	9
79	Savanne Zombi	31	37	73	106	353	222	173	260	349	388	110	60	2162	28
80	Seguin	35	38	74	125	237	175	166	181	180	391	98	33	1733	15
81	Sercey	41	46	69	172	239	148	141	187	182	180	102	46	1553	28
82	Sources Chaudes	-	-	-	_	-	-	-	-	-	-	-	-	-	-
83	Saint-Marc	8	10	36	56	141	165	176	172	84	94	21	39	1002	10
84	St-Michel	13	18	34	74	206	199	109	130	178	138	54	19	1172	53
85	St-Raphael	31	29	57	37	156	187	113	61	129	78	33	40	951	10
86	SaintLouis du Nord	156	113	109	113	153	133	95	102	120	193	341	247	1875	44
87	Saint-Louis du Sud	52	78	84	144	253	168	153	213	225	339	131	62	1902	54
88	St-Michel Attalaye	13	17	33	72	207	200	110	127	173	138	54	54	1198	61
89	Terre-Neuve	18	27	30	86	182	228	160	166	197	159	79	27	1359	36
90	Thomazeau	10	20	35	86	143	58	57	94	116	124	55	13	811	51
91	Tiotte	54	58	64	165	286	192	114	228	300	438	132	99	2130	15
92	Trou du Nord	56	44	59	65	206	135	80	94	130	105	199	116	1289	30
93	Vallières	89	78	66	127	305	300	223	237	291	237	210	155	2318	10
94	Verettes	7	22	29	74	203	204	188	220	184	149	37	12	1329	45

Source : FAO (2000)

5.3.1.2 Distribution des sites et répartition spatio-temporelle de la pluviométrie

Toutes stations confondues, quelque soit leur durée d'observation, le réseau de mesure présente une densité moyenne de l'ordre de 0.34 stations par 100 km². L'altitude varie entre 0 et 1800 mètres et les stations recensées sont réparties sur l'ensemble du territoire selon la *figure 5.1*.

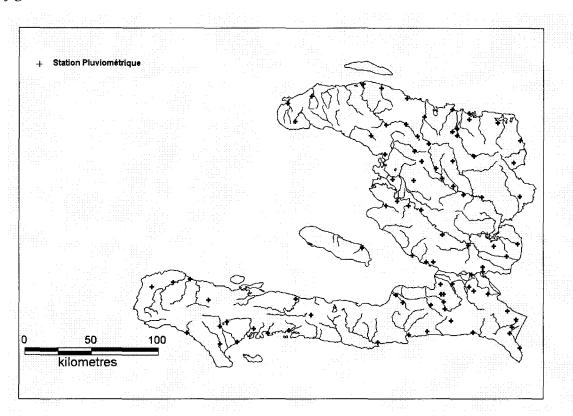


Figure 5.1 : Distribution spatiale des stations pluviométriques d'Haïti

En ce qui a trait à la hauteur d'eau précipitée, on observe un décalage des pluies entre le nord, le sud et le centre du pays selon l'Atlas d'Haïti (*figure 5.2*). Les mois les plus humides (novembre, décembre et janvier) dans le nord correspondent à la saison sèche sur la plus grande partie du pays. Inversement, l'été qui est la saison sèche dans le Nord correspond aux mois les plus pluvieux dans la partie centrale. Généralement, la saison sèche s'étend de novembre à mars et la saison pluvieuse d'avril à octobre.

Du nord au sud il existe une succession de bandes bien arrosées correspondant aux côtes et aux massifs montagneux exposés aux vents pluvieux, et de bandes sèches constituées par les dépressions et les côtes sous le vent (*figure 5.2*). Pour l'ensemble des régions les plus sèches, les précipitations moyennes annuelles sont inférieures à 1000 mm. Environ le quart de la superficie d'Haïti reçoit moins de 1200 mm. Les zones les plus arrosées reçoivent des précipitations supérieures à 1500 mm. Ces dernières correspondent aux massifs montagneux puisque la pluviosité augmente avec l'altitude, et en particulier les versants exposés au vent. En Haïti, on distingue huit (8) grandes régions climatiques caractérisées par la répartition de la pluviométrie. Ces régions sont identifiées par les précipitations moyennes mensuelle et annuelle dans les stations de Jérémie, Môle Saint-Nicolas, Cap-Haïtien, Gonaïves, Les Cayes, Port-au-Prince, Jacmel et Mirebalais résumées à la *figure 5.2* tirée de (*GRET/FAMV*, 1900).

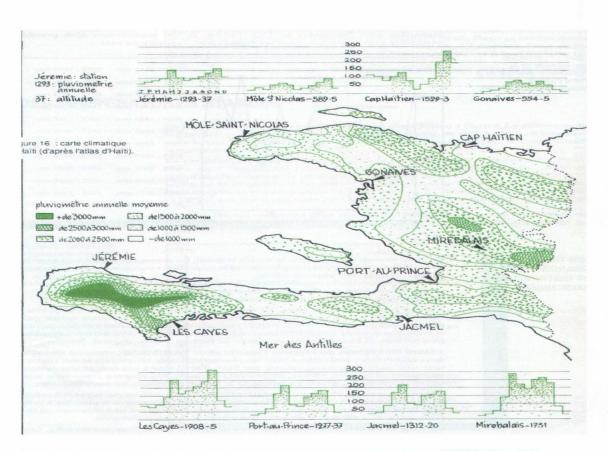


Figure 5.2 : répartition spatiale-temporelle de la pluviométrie d'après l'Atlas d'Haïti (GRET/FAMV, 1991)

5.3.2 Banque de données hydrométriques

5.3.2.1 Historique et distribution du réseau de jaugeage

Les premières mesures hydrologiques à Haïti remontent à 1919. Des stations permanentes de mesure de débit furent en opération de 1919 à 1943 et ensuite de 1961 à 1966. Le premier annuaire hydrologique d'Haïti fut élaboré par la firme d'ingénieurs conseils LGL et publié en 1977 par l'Agence Canadienne de Développement International (ACDI). Il constitue le seul document hydrologique officiel du pays disponible au Service National des Ressources en Eau (SNRE) d'Haïti. Durant sa période d'exécution (1976-1977), le projet d'inventaire des ressources hydrauliques (*LGL*, 1977) avait fait des mesures de débits sur des cours d'eau déjà jaugés et aussi sur certains cours d'eau qui n'avaient jamais fait l'objet de mesure. Cependant, des mesures ont été effectuées sur certains cours d'eau pendant les années 80 par le SNRE. Les stations de jaugeage sont réparties géographiquement sur l'ensemble du pays d'après la *figure 5.3*.

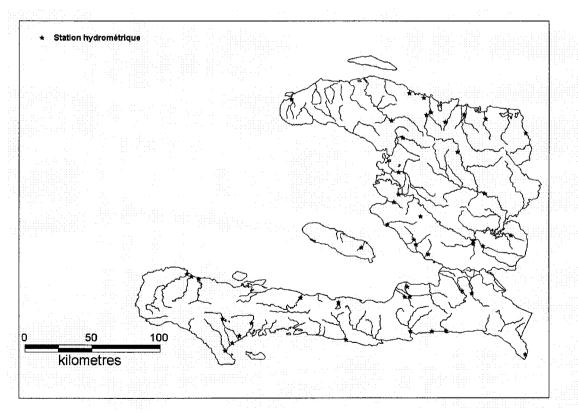


Figure 5.3 : Distribution spatiale des stations hydrométriques d'Haïti

5.3.2.2 Qualité et consistance des données

Les données hydrologiques obtenues sont de qualité très diverse. Elles sont très anciennes pour la plupart. L'annuaire contient à 95%, des données recueillies au cours de la première moitié du 20^e siècle (1919-1943). Les mesures ont été interrompues pendant plus d'une décennie avant d'être reprises durant les années 60 de façon très limitée et irrégulière dans certains cours d'eau pour une très courte durée (inférieure à 5 ans). La reprise des mesures dans les années 80 a aussi été marquée par de très fortes irrégularités.

L'annuaire hydrologique contient des données pour 71 stations, 60 sur des rivières et 11 sur des sources. Ces données sont de consistance très variables. Si l'on tient compte de l'ensemble des stations, 19 sur 71 ont été observées pendant 15 ans et plus et en moyenne de 1922 à 1940. Pour le reste, les observations sont très irrégulières. Notons toutefois que les données de débits sont des données journalières. Ces chroniques sont complétées par des mesures qui ont été effectuées à la fin des années 70 et au début des années 80.

Les stations hydrométriques sont présentées au *tableau 5.3* et on y indique le nom de la rivière, la station de jaugeage, l'identificateur, les coordonnées géographiques, l'altitude, la superficie drainée et la période d'enregistrement. Il est important de souligner que pour certaines stations les superficies ne sont pas indiquées. Ce sont pour la plupart des sources qui ne représentent pas l'exutoire du bassin versant. Les données sont présentées à l'annexe A, on y trouve le débit moyen journalier, le débit maximum journalier et le débit minimum journalier.

Tableau 5.3 : Les stations hydrométriques de la République d'Haïti

No	Cours d'eau	Station	Identificateur	Coordonnées	Altitude (m)	Superficie	Période
						(Km ²)	d'enregistrement
1	Limbé	Pont Christophe	010301	7223W1942N	28	252	1922-1930; 1976-1979;
							1988-1990
2	Limbé	Roche Haleine	010302	7225W1941N	50	117	1922-1940
3	Haut du Cap	Pasquier	010402			67	1922-1923
4	Gallois	Grison Garde	010403	7217W1938N	30	22	1922-1931
5	Gallois	Passe Orangers	010404	7218W1935N	115	4,8	1928-1931
6	Source Eau froide		010481	7218W1936N	90		1928-1931
7	Source Église		010482	7218W1936N	105		1928-1931
8	Gde Rivière du Nord	Pont parois	010501	7209W1941N	2	600	1923-1940 ; 1976-1979
9	Trou du Nord	Chabert	010601	7200W1939N	15	110	1926-1929 ; 1976-1978
10	Massacre	Ouanaminthe	010901	7243W1933N	35	400	1922-1940
11	La Quinte	Pont Gaudin	020101	7240W1926N	8	675,5	1965-1966
12	La Quinte	Mapou Chevalier	020102	7238W1930N	50	465,7	1965-1966
13	Ennery	Passe Joly	020111	7235W1932N	148	121,7	1924-1931/1965-1966
14	Bayonnais	Terre Rouge	020121	7235W1928N	80	87,3	1965-1966
15	Bayonnais	Caster	020122	7231W1925N	125	17,3	1965-1966
16	Boucan Thomas	Odigé	020131	7231W1926N	180	5,5	1965-1966
17	Labranle	Barrage	020141	7238W1936N	175	54	1965-1966
18	Moustique	Tête Vache	020601	7257W1949N	160	92,8	1966
19	Trois-Rivières	Paulin Lacorne	020701	7251W1956N	12	895,2	1965-1966
20	Trois-Rivières	Gros-Morne	020702	7240W1939N	198	271	1923-1940/1961-1966;
							1976-1979

Tableau 5.3 : Les stations hydrométriques de la République d'Haïti (suite)

No	Cours d'eau	Station	Identificateur	Coordonnées	Altitude (m)	Superficie	Période
						(Km ²)	d'enregistrement
21	Trois-Rivières	Plaisance	020703	7228W1935N	338	51	1925-1930/1965-1966
22	Montrouis	Pont Toussaint	030101	7242W1857N	20	166	1924-1930
23	Artibonite	Pont Sondé	030201	7237W1909N	18	8695	1922-1943 ; 1976-1977
24	Artibonite	Mirebalais	030202	7206W1850N	95	7463	1922-1940
25	Bois	Verrettes	030211	7228W1902N	90	59,9	1924-1940
26	La Thème	Passe Fine	030221	7206W1849N	100	299	1923-1931
27	Fer-à-cheval	Pont-Pétion	030231	7202W1848N	155	482	1923-1931 ; 1976-1980
28	Onde verte	Onde verte	030241	7150W1852N	207	45	1927-1930
29	Guayamunc	Hinche	030251	7201W1909N	238	1877	1926-1931 ; 1976-1980
30	Bouyaha	St-Raphaël	030252	7212W1926N	372	135	1923-1941
31	Source Saut D'eau		030281	7214W1849N	420		1926-1929
32	Source Merlingue		030282	7212W1925N	378		1933-1938
33	Estère	Pont Benoît	030301	7230W1910N	20	133	1922-1931
34	Estère	Pont de l'Estère	030302	7237W1918N	10	630	1965-1966
35	St-Marc	Corbay	030404	7239W1906N	72	94	1925-1930
36	Corbay	Corbay	030405	7239W1906N	78	16	1925-1930
37	Source Lafortune		030481	7238W1905N	125		1927-1931
38	Source Gilbert		030482	7238W1905N	140		1927-1930
39	Rouyonne	Deslandes	040101	7235W1828N	53	29	1921-1923
40	Sources des Pères		040181	7234W1833N	11		1922-1929
41	Momance	Buissonnière	040201	7233W1828N	70	238	1921-1940
42	Marion	Jovin Supplice	040205	7234W1832N	23	11	1921-1923
43	Source Mme Verguier		040281	7240W1830N	2		1922-1938

Tableau 5.3 : Les stations hydrométriques de la République d'Haïti (suite)

No	Cours d'eau	Station	Identificateur	Coordonnées	Altitude (m)	Superficie	Période
						(Km ²)	d'enregistrement
44	Bois-de-Chène	Port-au-Prince	040401	7220W1832N	30	13	1925-1927
45	Grise	Amont du bassin	040501	7211W1830N	220	276	1919-1940 ; 1976-1981
46	Blanche	La Gorge	040601	7207W1829N	240	170	1922-1940 ; 1976-1979
47	Blanche	Petite Source	040602	7207W1830N	26 0	172	1919-1923
48	Bretelle	Sabourin	040701	7224W1845N	80	94	1922-1923
49	Source Despuseau		040781	7207W1834N	42		1921-1923/1926-1938
50	Source Palmiste clair		040782	7206W1834N	45		1922-1923/1927-1938
51	Torcelle	Massaye	040801	7225W1845N	55	79	1922-1941 ; 1976-1978
52	Courjolle	Bassin Proby	040901	7230W1849N	90	83	1922-1939 ; 1976-1979
53	Matheux	Arcahaie	041001	7231W1851N	130	68	1922-1936 ; 1976-1978
54	Source Anse-à-galets		041181	7253W1848N	370		1928-1931
55	Jacmel	Jacmel	050201	7233W1814N	3	506	1926-1931 ; 1976-1980
56	Trouin	Trouin	050211	7241W1822N	300	20	1927
57	Cayes-Jacmel	Cayes-jacmel	050301	7224W1814N	10	23	1928-1930
58	Des plantils	Marigot	050401	7218W1814N	18	130	1928-1931
59	Des pédernales	Anse-à-pitres	050901	7145W1804N	60		1929-1930
60	Torbeck	Torbeck	060401	7348W1810N	3	89	1923-1930
61	Ravine du Sud	Camp Perrin	060501	7352W1820N	200	65	1923-1935
62	Cavaillon	Cavaillon	060601	7340W1818N	20	311	1924-1941 ; 1976-1980
63	Cotes de fer	Cotes-de-Fer	060801	7300W1811N	10	305	1928-1930
64	Islet	Les Cayes	061001	7345W1813N	10	93	1923-1931
65	Acul du Sud	Dubreuil		7351W1807N		-	1984-1989
66	Miragôane	Pont Olivier	061301	7303W1826N	50	152	1926-1930

Tableau 5.3 : Les stations hydrométriques de la République d'Haïti (suite)

No	Cours d'eau	Station	Identificateur	Coordonnées	Altitude (m)	Superficie	Période
						(Km ²)	d'enregistrement
67	Des Roseaux	Monferi	070101	7402W1836N	2	283	1929-1930
68	Voldrogue	Passe Laraque	070201	7405W1837N	2	203	1928-1930
69	Grande Anse	Passe Ranja	070301	7407W1838N	1	550	1925-1931
70	Source Martineau		070481	7412W1839N	220		1929
71	Source Débarrasse		070482	7412W1839N	220		1929

Source : LGL (1977)

5.3.3 Banque de données physiographiques

5.3.3.1 Situation géographique

La République d'Haïti, située entre les latitudes 18° et 20° 6' Nord et les longitudes 71° 20' et 74° 30' Ouest, est comprise en totalité dans la zone tropicale. Elle est limitée au Nord par l'Océan Atlantique, au Sud et à l'Ouest par la mer des Caraïbes, à l'Est par la République Dominicaine (*figure 5.4*).

Elle s'étend sur une superficie de 27750 km², incluant celle des cours d'eau, des étangs et des îles de la Gonâve, de la Tortue et de l'île à vache. Le pays a un littoral marin évalué à 1771 kilomètres (Emmanuel et Lindskog, 2000).

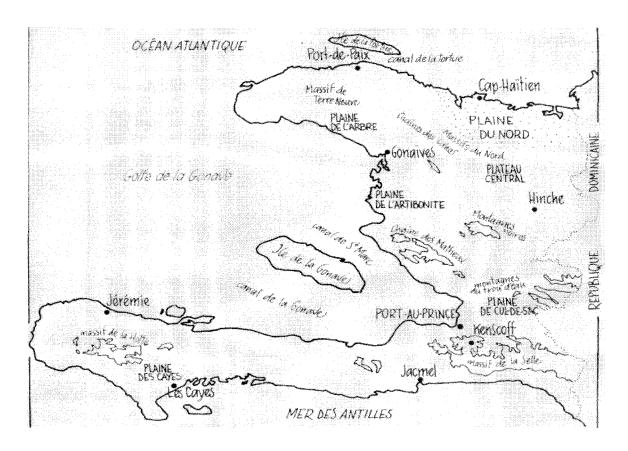


Figure 5.4 : Situation géographique d'Haïti (GRET/FAMV, 1991)

5.3.3.2 Relief et topographie

Le relief du pays est très accidenté et correspond à une topographie caractérisée par des plissements structuraux et synclinaux. Cinq chaînes de montagne (Massif du Nord, Massif des Montagnes Noires, Chaîne des Matheux, Massif de la Hotte, Massif de la Selle) couvrent 75% de l'étendue du territoire. Le plus haut sommet (Massif de la Selle) culmine à une élévation de 2 689 mètres. Le 1/3 restant est constitué de plaines dont les quatre (4) parties majeures sont celle du Nord entre l'Océan Atlantique et le Massif du Nord, la plaine de l'Artibonite au nord de la chaîne des Matheux, la plaine du Cul-de-sac entre la chaîne des Matheux et le Massif de la Selle, et le plateau central à l'Est des montagnes Noires. Elles sont toutes indiquées à la *figure 5.4*. Les pentes varient de zéro à plus de 40% et se distribuent par rapport à la superficie comme suit :

Classes de pentes	Superficie (Km ²)
0-10%	8 085
10-20%	2 166
20-40%	2 755
>40%	14 744

Source: MDE, 2001

5.3.3.5 Le réseau hydrographique

La République d'Haïti est divisée en 30 zones ou grands bassins hydrologiques (*tableau 5.4*) et découpée en six grandes régions hydrogéographiques (*figure 5.5*). Dans ces zones on dénombre plus de 100 bassins versants. Les limites et par conséquent, le potentiel hydrologique et hydrogéologique de la grande majorité de ces bassins sont encore inconnus (*Blaise, 1987*). Selon cette source la superficie totale (26 823 km²) de l'ensemble de ces grands bassins hydrologiques ne couvre pas toute l'étendue du territoire (27 750 km²) soit une incertitude d'environ 9.7% dans la méthode ou le système de découpage utilisé. Il se pourrait que la superficie de certains lacs et étangs n'y soit pas incluse.

Il existe un très grand nombre de bassins et sous-bassins dans ces zones hydrologiques. Des données numérisées à l'aide des images radar acquises en 1999 sur l'ensemble de l'île (Haïti et République Dominicaine) nous ont permis après le traitement de délimiter tous les bassins versants d'Haïti (grands, moyens et petits). On en dénombre plus d'une centaine de bassins dont leur taille varie de moins d'un kilomètre carré à plus de 8 000 kilomètres carrés. On en

dénombre plus d'une centaine. Toutes les caractéristiques géométriques et topographiques de ces bassins ont ainsi été calculées à l'aide du modèle numérique de terrain d'une résolution de 90 m (Kunzel, 1999). De ce fait, on dispose présentement des données sur tous les bassins versants d'Haïti en ce qui a trait aux caractéristiques géométriques et topographiques dont la surface, le périmètre, le coefficient de forme, la longueur du cours d'eau drainant le bassin, l'altitude et la pente. Certaines superficies ont été délimitées à partir du modèle numérique d'altitude grâce à la localisation de leurs stations de jaugeage connues en fonction de leurs coordonnées géographiques. Pour les bassins qui n'ont pas de stations de jaugeage nous avons considéré l'exutoire comme le point le plus bas drainant la totalité du bassin. Ainsi, chaque bassin a été identifié et délimité et nous avons déterminé pour chacun toutes les caractéristiques géométriques et topographiques. Étant trop nombreux, les bassins et leurs caractéristiques ne sont pas présentés dans ce texte. Tous les bassins délimités sont représentés cartographiquement à partir des données mentionnées ci-dessus. La figure 5.6 est celle qui représente la totalité des bassins versants d'Haïti (grands, moyens et petits). Les figures 5.7 et 5.8 sont respectivement les bassins jaugés et non jaugés.

Les cours d'eau de ces bassins délimités coulent dans toutes les directions et se jettent dans l'Atlantique et dans la mer des Caraïbes ou dans des marais et des lacs. D'une manière générale, les cours d'eau ont un régime torrentiel qui reflète assez bien le régime pluviométrique. Il existe des cours d'eau éphémères ou ravines sèches, des intermittents et des pérennes, dont le débit varie tout au long de l'année (Blaise, 1987).

Tableau 5.4 : Superficie des bassins et zones hydrologiques d'Haïti

N0	Bassins ou Zones hydrologiques	Superficie (Km²)	Occupation du sol
I	Môle Saint-Nicolas	987	Aride
II	Bombardopolis – Gonaïves	1147	Aride
Ш	Trois Rivières	897	Semi boisée
IV	Port-de-Paix - Port Margot	543	Boisée, culture
V	La Quinte	690	Déboisée
VI	Limbé	312	Semi boisée, culture
VII	Cap-Haïtien	312	Semi boisée, culture
VIII	Grande Rivière du Nord	699	Semi boisée, culture
IX	Limonade – Ouanaminthe	1065	Culture

Tableau 5.4 : Superficie des bassins et zones hydrologiques d'Haïti (suite)

N0	Bassins ou Zones hydrologiques	Superficie (Km ²)	Occupation du sol
X	Estère	834	Semi boisée,
			culture
XI	Artibonite	6 828	Semi boisée
XII	Saint Marc- Arcahaie	1 090	Semi aride
XIII	Cul-de-Sac	1 580	Semi aride
XIV	Fonds Verrettes	190	Semi aride
XV	Cayes-Jacmel - Anse-à-pitre	1 219	Semi boisée,
			culture
XVI	Léogane –Carrefour	651	Semi boisée,
	·		culture
XVII	Grande Rivière de Jacmel	535	Semi boisée
XVIII	Côte de Fer	1 060	Semi-aride
XIX	Petite Rivière de Nippes - Grand	661	Semi boisée,
	Gôave		culture
XX	Saint-Louis du sud – Aquin	706	Semi-aride
XXI	Grande Rivière de Nippes	459	Semi boisée,
			culture
XXII	Cavaillon	380	Semi boisée,
			culture
XXIII	Corail-Anse à Veau	977	Semi boisée,
			culture
XXIV	Cayes	634	Culture
XXV	Roseaux-Voldrogue	540	Culture
XXVI	Grand-Anse	556	Boisée, culture
XXVII	Jérémie - Les irois	364	Boisée, culture
XXVIII	Tiburon - Saint Jean	660	Boisée, culture
XXIX	Île de la Tortue	179	Semi aride
XXX	Île de la Gonâve	68	Semi aride
Total	: (1007)	26 823	

Source: Blaise (1987)

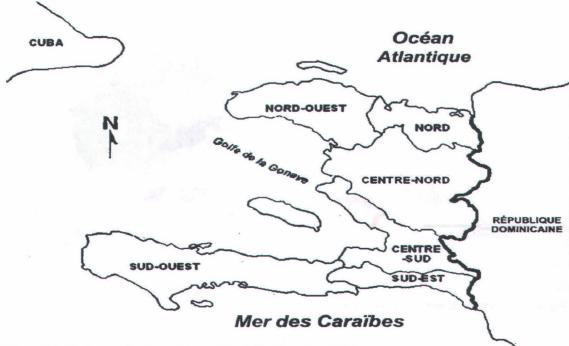


Figure 5.5 : Régions hydrogéographiques d'Haïti (Markley et al., 1999)

Figure 5.6 : Carte de délimitation de tous les bassins versants d'Haïti

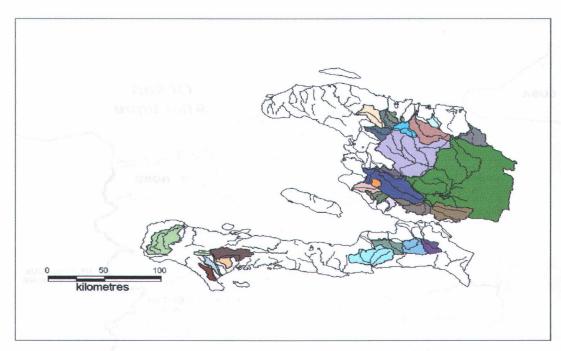


Figure 5.7 : Carte de délimitation des bassins jaugés d'Haïti

Figure 5.8 : Carte de délimitation des bassins non jaugés d'Haïti

5.3.3.3 Aperçu pédologique

Les substrats géologiques sur lesquels se développent les sols d'Haïti sont divers et variés (MDE, 2001). Parmi ceux-ci, les plus répandus sont : les roches ignées (basaltes, granites, granodiorites, andésites), les roches sédimentaires calcaires (Karst, calcaire cristallin, calcaire crayeux, calcaire corallin), les roches sédimentaires détritiques. Généralement, en montagne, les sols se développent sur le basalte et le calcaire. Les plaines, elles, sont constituées de matériaux alluvionnaires. Les sols d'Haïti présentent une grande diversité dont les plus fréquents, selon Magny (1991), sont:

- Les lithosols (constitués uniquement de pierres et impropres à la culture) et régosols sur fortes pentes ;
- Les rendzines (sols peu évolués) sur les versants calcaires ;
- Les oxysols profonds et bien drainés ;
- Les ultisols rouges jaunâtres, le plus souvent associés aux oxysols ;
- Les vertisols dans les zones de piedmonts et les bas-fonds ;
- Les inceptisols et antisols développés sur calcaire dur et sur les dépôts alluvionnaires dans les plaines et vallées.

5.3.3.4 Végétation naturelle

La végétation d'Haïti n'a cessé de se réduire au cours de ces dernières décennies. Cependant, on peut encore dire qu'elle est variée. Il existe seize (16) catégories de couverture végétale dont six (6) intéressent directement ou indirectement le secteur forestier. La végétation se répartit comme suit sur le territoire national (MDE, 2001): Broussailles (22,7%); mangliers, forêts de pins et végétation dense (18.25%). De ce total, les forêts de pins et mangroves occupent respectivement : 0,97% et 0,53%.

5.3.3.5 Surfaces cultivées

Haïti est un pays essentiellement agricole. En effet, 43% de sa superficie est consacré à cette activité (MDE, 1998) dont la plupart des exploitations agricoles ont une taille inférieure à un (1) hectare. Les plus pratiquées étaient les cultures industrielles dont le café, le cacao, le sisal.

Ces dernières perdent de plus en plus de place au profit des cultures vivrières dont les principales sont : le maïs, le sorgho, le riz, la banane, le haricot, les tubercules (IHSI, 1996).

5.3.3.6 Ressources forestières

Les principales formations forestières et un certain nombre d'espaces plus ou moins boisés en Haïti sont réparties comme suit :

- La forêt des pins, réserve forestière de 32 000 hectares située à l'Est du pays;
- Le Pic Macaya, parc national de 2 000 hectares situé au Sud-Ouest du pays;
- Le parc La visite, parc national de 2 000 hectares situé au Sud-Est du pays.

Les espaces plus ou moins boisés peuvent se classer en forêts claires, très claires et dégradées, les mangroves et les cultures sous couvert arboré (caféier, cacoyer).

L'état des ressources forestières se révèle désastreux. Au début de la dernière décennie, selon les estimations officielles, la République d'Haïti disposerait d'à peu près 2% de couverture végétale (MDE, 2001). La déforestation en Haïti constitue un des principaux problèmes environnementaux les plus spectaculaires. C'est impressionnant même pour ceux qui vivent quotidiennement avec le problème. Selon MDE (1998), 25 des 30 grands bassins hydrographiques du pays sont nus. Selon OPS/OMS (1996), la déforestation a comme conséquences principales, l'érosion des sols (36 millions de tonnes métriques de terres arables sont perdus chaque année), la sédimentation des plans d'eau et la diminution du débit des sources. En dépit de toutes ces informations, il n'existe aucune donnée numérisée sur l'occupation du sol, ce qui limite la banque de données physiographiques.

CHAPITRE VI

RÉSULTATS DE L'ESTIMATION DE LA RESSOURCE EN EAU

6.1 Estimation de la précipitation

a) objectifs et principes

Comme indiqué dans la méthodologie, il s'agit d'estimer la précipitation totale annuelle et mensuelle sur l'ensemble d'un territoire. L'approche utilisée est une méthode d'interpolation spatiale par krigeage ordinaire dont la description mathématique est présentée au chapitre 3 de ce présent mémoire. Cette méthode est mise en oeuvre avec l'aide du logiciel GS⁺ (Gamma design software, version 7.0). Les coordonnées géographiques (latitude et longitude) des sites d'observations disponibles pour l'interpolation sont converties en projection UTM (Universal Transversal Mercator) pour leur représentation spatiale dans l'espace à deux dimensions de coordonnées X et Y en mètres. L'interpolation a lieu dans cet espace géographique et nécessite une procédure en trois (3) étapes : 1) analyse variographique ; 2) validation croisée ; et 3) estimation.

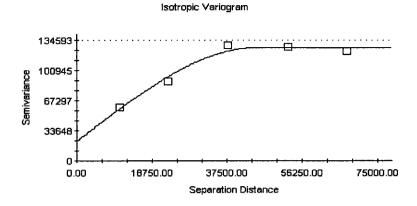
1) Analyse variographique

L'analyse variographique permet d'élaborer un modèle de variogramme à partir du variogramme expérimental calculé avec des données et informations disponibles. C'est ce modèle qui permettra de construire l'estimation et de mesurer sa précision par l'intermédiaire d'une variance. La qualité de l'estimation et l'appréciation de sa précision reposent sur le modèle variographique utilisé.

2) Validation croisée

Elle consiste à estimer chaque donnée par krigeage en ne tenant compte que des autres données, puis comparer la valeur estimée à la valeur observée. En statistique, cette méthode est également sous le nom d'estimation par « Jacknife ». Cette comparaison permet de vérifier l'adéquation du modèle variographique utilisé. A partir de cette étape on réalise une étude statistique des erreurs commises pour l'ensemble des données

utilisées. Le modèle sera satisfaisant si le biais moyen est proche de 0 et la dispersion (variance) la plus faible possible.


b) Application

Cette procédure en trois (3) étapes a été appliquée aux banques de données de précipitations d'Haïti présentées au chapitre 5 pour estimer la précipitation totale sur l'ensemble du territoire tant à l'échelle annuelle qu'à l'échelle saisonnière (saison humide, saison sèche) ainsi qu'à l'échelle mensuelle.

6.1.1 Estimation de la précipitation totale à l'échelle annuelle

1) analyse variographique

Sur une distance de 75 kilomètres, un intervalle constant de 15 kilomètres entre les sites d'observations a été considéré. Le modèle de variogramme qui est ajusté le mieux aux données est un modèle sphérique parce qu'il a atteint rapidement le seuil et pour lequel nous avons observé un coefficient de détermination de 0,98 (figure 6.1). Au départ, parmi les 86 sites pluviométriques disponibles pour l'analyse, nous avons pris en compte tous les sites qui ont été mesurés pendant 15 ans et plus. Au total, 51 ont été retenus, 35 sites sont éliminés dont 2 n'ayant aucune donnée, 21 mesurés pendant moins de 15 ans, et 12 éliminés pour cause de valeurs douteuses (certains sites ont des valeurs trop élevées par rapport à leurs voisins immédiats tandis que d'autres ont des valeurs trop faibles). Ainsi, la méthode a été calibrée en fonction de ces sites d'observations en tenant compte de la valeur de la régression qui est de 0.979. Chaque point du variogramme expérimental étant une moyenne de points plus nombreux. Les cinq points d'ajustement du modèle sphérique (figure 6.1) représentent chacune une moyenne d'une certaine quantité de sites permettant l'ajustement à la distance correspondante.

Spherical model (Co = 21600.0000; Co + C = 126500.0000; Ao = 45100.00; r2 = 0.979; RSS = 7.866E+07)

Figure 6.1 : modèle de sémi-variogramme ajusté sur les précipitations annuelles

2) validation croisée

Afin de vérifier l'adéquation entre les données et le modèle variographique ajusté, nous avons procédé à une validation croisée qui nous a permis, entre autre, d'estimer chaque poste par krigeage en considérant un domaine d'une distance maximale de 50 kilomètres entre deux postes et un nombre maximum de 12 sites par estimation. Puis, les valeurs estimées sont donc comparées aux valeurs observées. Les résultats de cette validation ont donné une pente de 1,050, une régression de 0,55 et une déviation standard de 291,830 (figure 6.2). Les valeurs observées et estimées sont présentées au tableau 6.1.

Pour évaluer la performance de cette méthode utilisée, nous avons considéré un certain nombre de critères d'évaluation: le <u>coefficient</u> de Nash, l'erreur quadratique moyenne (REQM) et le biais moyen dont leurs formules sont présentées ci-après. Les statistiques de la validation croisée sont présentées au *tableau 6.2*.

Normalement, le modèle serait très satisfaisant si d'abord le Nash était très proche de 1, puis le biais moyen (BM) nul et l'erreur quadratique moyenne la plus faible possible. A première vue, le coefficient de Nash de valeur 0,55 est faible, ce qui indique une précision moyenne, le biais moyen (-12,13) n'est pas trop élevé mais la racine carrée de l'erreur quadratique moyenne (291,56) est importante. Cependant, si nous analysons en terme relatif nous trouverons pour la REQMr et le BMR des valeurs de -31,3% et -7,2% respectivement. A partir de ces valeurs relatives, nous pouvons dire que la méthode a une précision acceptable compte tenu de la nature du paramètre (précipitation) estimé. De plus, l'EQM étant égale à la somme de la variance et le carré du biais moyen, par cette relation nous avons déterminé l'écart type de notre modèle de manière à faire le lien entre le biais

moyen et la REQM. Ainsi, l'écart-type d'une valeur 291,830 mm déduit de la différence entre l'EQM et le carré du biais moyen sera toujours élevé et entraîne un accroissement de l'EQM même en présence d'un faible biais moyen (tableau 6.2). Notre conclusion de cette analyse stipule que notre modèle est d'une précision moyenne. C'est un modèle peu biaisé en terme relatif mais ayant une erreur relative importante du fait de la valeur de l'écart-type. Les formules des critères de performances considérées pour évaluer le modèle sont présentées immédiatement après le tableau 6.2.

Nash = 0.551 REQM = 291.56 mm REQMr = 31.3% BM = 17.2% 1000 1000 500 1000 1500 2000 2500 3000

Z observé

Validation croisée sur les précipitations totales annuelles

Figure 6.2 : validation croisée sur les précipitations totales annuelles

S
٤

Stations retenues	Z observée	Z estimée	Stations retenues	Z observée	Z estimée
1	841	1085.265	41	1 602	1515,526
2	1 136	1521,538	42	1 345	1449,495
4	852	1107,625	43	1 479	1621,492
5	1 518	1345,87	44	1 206	1326,914
6	1 037	1175,12	46	922	1730,395
7	1 809	1622,848	48	1 388	1580,141
8	1 379	1363,946	50	1 461	1446,679
9	611	1333,967	51	1 924	2073,812
10	1 395	1395,648	52	2 003	1698,664
12	1 909	1625,005	53	1 852	1906,311
13	945	1037,301	54	1 400	1057,784
14	2 330	2050,377	55	1 716	1468,517

Tableau 6.1 : Résultats de la validation croisée sur les précipitations totales annuelles (suite)

Stations	Z	Z	Stations	Z	Z
retenues	observée	estimée	retenues	observée	estimée
15	1 558	1498,301	56	1 685	1446,749
16	1 610	1820,026	57	1 783	1754,354
17	1 615	1617,027	60	1 875	1352,507
18	2 464	2052,699	64	909	1386,773
19	1 445	1117,487	65	1 784	1730,744
21	953	1321,882	66	1 921	1751,199
23	938	872,908	67	941	993,719
24	1 067	1213,469	68	1 494	1911,832
25	587	866,431	69	855	1055,513
26	809	816,132	73	1 733	1537,598
27	920	921,93	74	1 553	1385,128
29	1 450	1385,987	75	1 002	948,73
30	1 366	1383,266	76	1 172	1278,947
32	2 036	1317,258	77	951	1453,514
33	1 414	1687,384	78	1 875	1548,563
34	1 888	1540,828	79	1 902	1656,244
36	812	937,147	80	1 198	1015,554
37	1 928	1509,707	81	1 359	1150,03
38	483	1156,861	82	811	968,078
39	1 125	1110,672	84	1 289	1680,784
40	1 451	1372,7	86	1 329	1133,783

Tableau 6.2 : Statistiques sur les résultats de la validation croisée

CRITÈRES D'ÉVALUATION	VALEURS
Coefficient de Nash (1)	0,55
REQM (2)	291,56
REQMr (3)	31,3%
BM (4)	-12,13
BMR (5)	-7,2%
Ecart Maximum	587
Ecart Moyen	224,98
Ecart Minimum	7,11

(1)
$$Nash = 1 - \frac{\sum_{i=1}^{n} (z_i - \hat{z}_i)^2}{\sum_{i=1}^{n} (z_i - \overline{z}_i)^2} ; \qquad (2) \qquad REQM = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (z_i - \hat{z}_i)^2}$$

(3)
$$REQMr = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(\frac{z_i - \hat{z}_i}{z_i} \right)^2}$$
; (4) $BM = \frac{1}{n} \sum_{i=1}^{n} \left(z_i - \hat{z}_i \right)$

(5)
$$BMr = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{z_i - \hat{z}_i}{z_i} \right)$$

n: nombre de valeurs

z_i: valeurs observées

 \hat{z}_i : valeurs estimées

3) L'estimation proprement dite

L'estimation est effectuée par krigeage ordinaire comme mentionné précédemment. Pour l'interpolation nous avons considéré une grille uniforme de 94 colonnes et de 75 lignes. Chaque cellule ayant chacune une taille de 4x4 kilomètres est estimée dans un domaine de 50 kilomètres de rayon en allant chercher un maximum de 10 stations. Le nombre de stations ayant utilisées par estimation varie de 1 à 8. La meilleure estimation est obtenue lorsqu'il existe le maximum de stations dans le domaine. Une fois terminé, les données estimées sont exportées dans Mapinfo (Mapinfo corporation version 6.5) pour la cartographie de l'interpolation. La *figure 6.3* représente la carte de krigeage des précipitations totales annuelles et de l'écart-type de krigeage associé. Ce sont les précipitations estimées qui apparaissent dans le fond de la carte et le coefficient de variation apparaît sur les isolignes. Ce coefficient de variation est représenté sur la carte par les contours. Plus le coefficient de variation est faible plus l'écart-type est faible et plus l'estimation est bonne.

Selon les statistiques effectuées sur l'interpolation, la valeur moyenne annuelle des précipitations totales estimée pour l'ensemble du territoire est de 1 452 millimètres et l'écart-type correspondant est de 329 millimètres, soit une variation de 22,6% (*tableau 6.3*). C'est la quantité moyenne d'eau qui arrive sur le pays par précipitations et qu'on pourrait espérer selon la méthode d'interpolation utilisée.

Tableau 6.3 : Statistiques sur les résultats de krigeage des précipitations totales annuelles

Caractéristiques	Précipitation estimée (mm)	Écart-type sur l'estimation (mm)
Minimum	721	224
Maximum	2 344	403
Médiane	1 456	329
Moyenne	1 452	329
Coefficient de variation		22 (09/
		22,60%

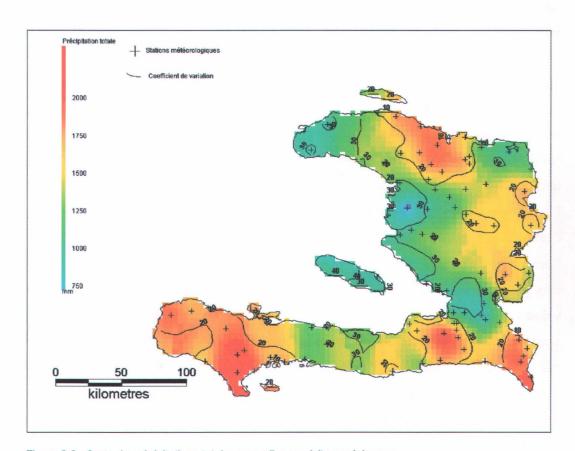


Figure 6.3 : Carte de précipitations totales annuelles produite par krigeage

4) Discussion

L'observation de la cartographie (figure 6.3) montre un certain contraste dans les apports totaux de précipitations sur le pays car les valeurs précipitées observées sur l'échelle varient de 750 à plus de 2 000 mm. Plus on se rapproche du rouge en observant les couleurs de la carte, plus la valeur estimée est élevée (>2000 mm). Comparée à la figure

5.2, la figure 6.3 montre à peu près les mêmes contrastes. Les côtes Nord, Sud, Sud-Est et Sud-Ouest sont les régions qui reçoivent de plus grande quantité de précipitations au cours de l'année. Ce constat reflète assez bien la formation des précipitations dans les zones tropicales. La côte Nord étant soumise aux vents des Nordés en provenance de l'Atlantique Nord, les masses d'air humides s'abattent sur les sommets des montagnes du nord et provoquent la formation des précipitations constatées. Ce sont donc des pluies orographiques qui se produisent par effet de foehn. Les côtes Sud et Sud-Est étant soumises, elles, aux vents alizés en provenance de la mer des caraïbes, les masses d'air humides rencontrent les sommets des massifs du Sud et entraînent de fortes précipitations sur ces régions. Par contre plus on se rapproche du bleu plus la valeur précipitée est faible. Le long de la côte Ouest représente une grande zone qui reçoit la plus faible quantité de précipitations au cours de l'année. C'est une grande zone sous le vent qui subit l'effet de l'assèchement de l'air qui, après avoir traversé les sommets, perd son humidité, devient plus sec et dense et du même coup entraîne la diminution des hauteurs de pluie ce qui explique le caractère aride de cette vaste zone sur la carte.

On remarque aussi que l'écart sur les valeurs estimées est plus important dans la partie du territoire qui reçoit la plus faible quantité de précipitation. On ne voit pas la valeur de l'écart type sur la carte mais le coefficient de variation déterminé entre l'écart-type et l'estimation a témoigné de son existence. Plus le coefficient de variation est faible, plus l'écart-type est faible et plus l'estimation est bonne. On a pu remarquer que les écart-types sont plus faibles là où les valeurs estimées sont plus élevées. Cela signifie que plus les valeurs estimées sont bonnes et élevées moins il y a de variations. Les coefficients de variation pour l'ensemble de la cartographie varient de 10 à 40% avec une moyenne autour de 23% (tableau 6.3). Par contre, ce qui est important à signaler, compte tenu des statistiques que nous avons obtenues, dans les zones tropicales, la précipitation représente un phénomène localisé et qu'il est souvent difficile à l'interpoler du fait que c'est un paramètre très dépendant des conditions orographiques, de l'altitude et de la direction des vents. Normalement, pour un meilleur résultat le coefficient de variation ne devrait pas dépasser les 10% mais tous ces phénomènes que nous venons de mentionner expliquent sa valeur de 22,6%, ce qui est quand même acceptable, vu la nature de la variable interpolée.

6.1.2 Estimation saisonnière des précipitations totales

La définition des saisons dans cette présente section est basée sur l'abondance ou non de la précipitation au cours de l'année. Bien qu'il existe de grandes variations liées à l'existence de divers microclimats à Haïti, dans ce cadre-là nous ne retenons que deux grandes saisons concernant les précipitations à savoir la saison sèche qui va de novembre à mars et la saison humide d'avril à octobre. Signalons toutefois que la saison humide au nord du pays (novembre à mars) correspond à la saison sèche dans le reste du pays.

Les procédures pour estimer les précipitations saisonnières étant les mêmes que celles utilisées pour estimer les précipitations annuelles à savoir une analyse variographique, une validation croisée et une interpolation. Dans cette section, nous ne reprenons pas toutes les démarches pour arriver à l'estimation proprement dite. Nous nous contentons de présenter les cartographies et les statistiques associées en utilisant les mêmes démarches.

L'estimation saisonnière a lieu afin d'observer la répartition temporelle des précipitations sur les saisons. En observant les statistiques au tableau 6.4 on peut remarquer que durant la saison sèche, le pays ne recoit en moyenne que 307 mm, soit 21,14% de la précipitation annuelle totale tandis que toutes les eaux annuelles sont pratiquement précipitées pendant la période d'avril à octobre, soit une valeur de 1 093 mm ce qui représente plus de 75% de la valeur annuelle totale. Ces valeurs saisonnières représentent les précipitations moyennes qu'on peut espérer durant les deux plus grandes saisons sur l'ensemble du territoire. Les écarts types associés à ces valeurs sont de 90 et 254 mm respectivement pour la saison sèche et la saison humide. Il est à remarquer aussi, dans les statistiques, qu'il y a beaucoup plus de dispersion pendant la saison sèche, car les valeurs estimées sont plus faibles. Les cartographies nous montrent une distribution spatiale qui reflète pratiquement l'allure de la répartition annuelle totale de la précipitation. On observe les mêmes zones de faibles précipitations (figure 6.4) et les mêmes zones de fortes précipitations (figure 6.5). La côte Ouest est la région la moins pluvieuse du pays tandis que les côtes Sud et Sud-Est et le centre du pays demeurent les régions qui reçoivent de plus grandes quantités de précipitations. Bien que déjà signalée précédemment, la grande différence entre les deux saisons, c'est la variation des écarts types entre les valeurs estimées. Durant la saison sèche (figure 6.4), les coefficients de variations atteignent même les 80% tandis que durant la saison humide ce coefficient n'atteint même pas 40%. Il faut également souligner que dans les deux cas les variations sont plus importantes là où les sites pluviométriques sont dispersés. Donc, la distribution spatiale des sites pluviométriques tout comme au niveau annuel influence la qualité du modèle d'interpolation ce qui se traduit par un écart-type élevé.

Tableau 6.4 : Statistiques sur les résultats de krigeage saisonnier des précipitations

Caractéristiques	Saison	sèche	Saison humide			
	Précipitation	Ecart type	Précipitation	Ecart type sur		
	estimée	sur	estimée	l'estimation		
	(mm)	l'estimation	(mm)	(mm)		
		(mm)				
Minimum	79	72	562	66		
Maximum	564	123	1 746	309		
Moyenne	307	90	1093	254		
Médiane	288	90	1 103	265		
Coefficient de variation	29,3	2 %	23,	24%		

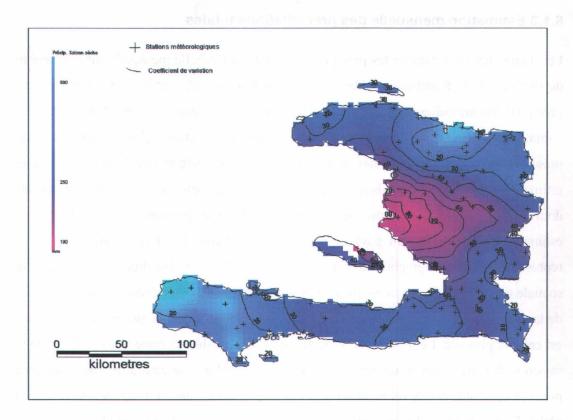


Figure 6.4 : Carte de précipitation saisonnière (saison sèche) produite de krigeage

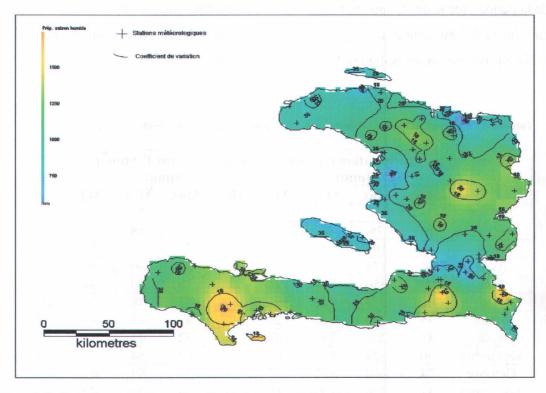


Figure 6.5 : Carte de précipitation saisonnière (saison humide) produite par krigeage

6.1.3 Estimation mensuelle des précipitations totales

Les démarches pour estimer les précipitations totales à l'échelle mensuelle sur l'ensemble du territoire de la République d'Haïti sont les mêmes que celles utilisées pour estimer les précipitations annuelles et saisonnières. Dans ce cas, les détails ne seront pas présentés comme dans le cas des précipitations totales annuelles. Dans cette section, nous ne présentons que les cartographies et les statistiques. Rappelons que l'objectif de cette estimation mensuelle est d'observer la répartition temporelle des précipitations sur les douze mois de l'année. Ainsi, les statistiques des précipitations totales mensuelles estimées sur l'ensemble du pays se résument au tableau 6.5. Les figures 6.6 à 6.17 représentent les cartographies des estimations montrant la distribution temporelle et spatiale des précipitations mensuelles. Les parties hachurées du tableau 6.5 sont les mois de la saison humide. Le mois de mai est celui le plus humide tandis que le mois de février est celui le plus sec. Le mois de Novembre est celui considéré comme étant le début de la saison sèche mais statistiquement sa valeur estimée indique le contraire, elle représente presque le double de la valeur de n'importe quelle valeur des autres mois de la saison sèche. La variation la plus importante (69%) est celle du mois de décembre qui fait partie de la période sèche de la majeure partie du pays. Rappelons que les valeurs du CV indiqué au tableau 6.5 est celui obtenu en faisant les statistiques du krigeage, celui des points de grille est indiqué sur les isolignes dans les cartographies.

Tableau 6.5 : précipitations totales mensuelles estimées par krigeage sur Haïti

Mois	Précipitation estimée (mm)				Écart	CV (%)			
	Min	Max	Moy	Md	Min	Max	Moy	Md	
Janvier	9	93	42	38	17	22	20	20	47
Février	16	78	46	46	14	20	18	18	39
Mars	13	107	58	59	15	27	22	21	37
Avril	74	171	121	121	25	32	30	30	24
Mai	114	356	218	214	11	68	60	64	27
Juin	62	273	162	161	9	57	48	51	29
Juillet	39	236	122	120	7	49	41	43	33
Août	41	260	145	146	8	52	43	45	29
Septembre	90	329	172	167	11	62	54	59	31
Octobre	74	460	192	177	13	71	63	68	32
Novembre	31	296	106	95	34	64	50	49	46
Décembre	13	151	56	48	34	43	39	38	69

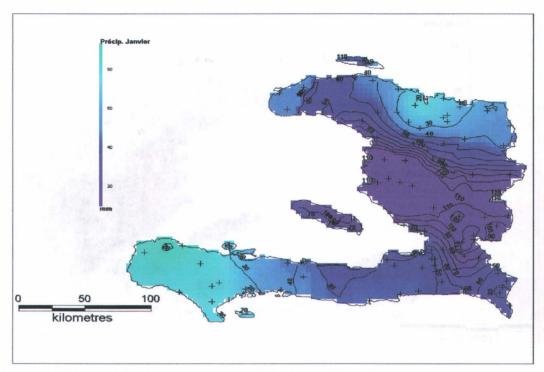


Figure 6.6 : Carte de précipitation mensuelle (mois de janvier) produite par krigeage

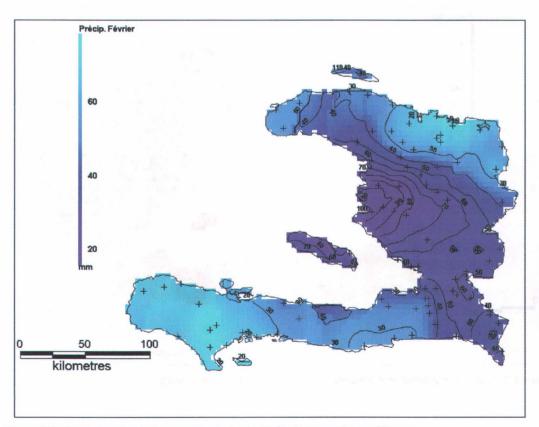


Figure 6.7 : Carte de précipitation mensuelle (mois de février) produite par krigeage

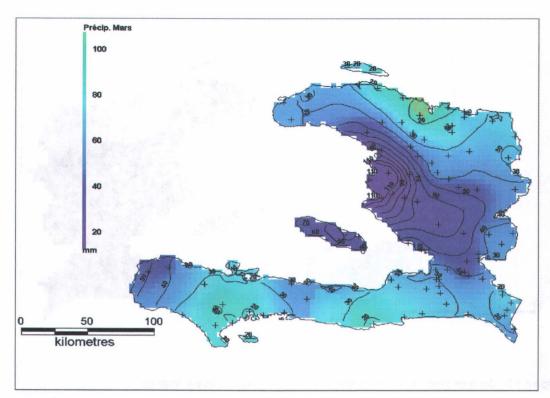


Figure 6.8 : Carte de précipitation mensuelle (mois de mars) produite par krigeage

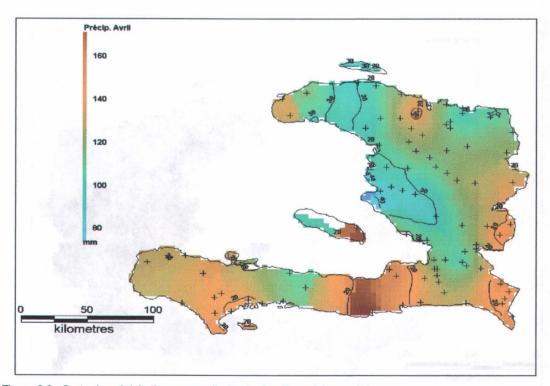


Figure 6.9 : Carte de précipitation mensuelle (mois d'avril) produite par krigeage

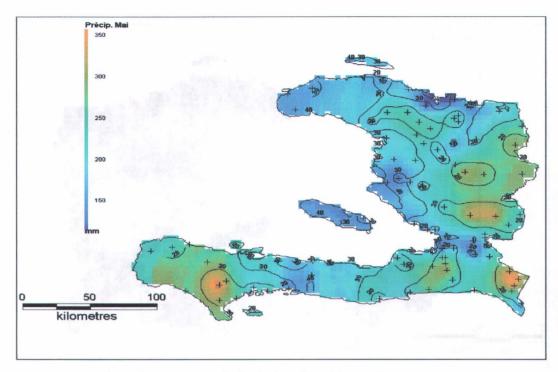


Figure 6.10 : Carte de précipitation mensuelle (mois de mai) produite par krigeage

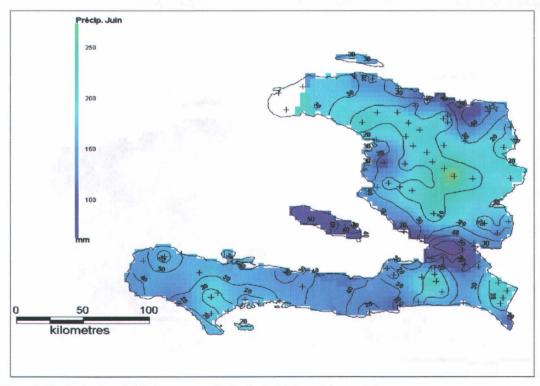


Figure 6.11 : Carte de précipitation mensuelle (mois de juin) produite par krigeage

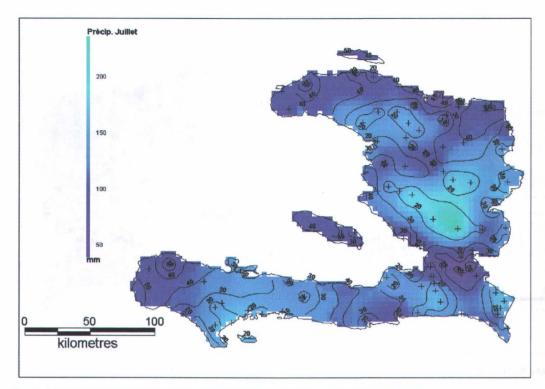


Figure 6.12 : Carte de précipitation mensuelle (mois de juillet) produite par krigeage

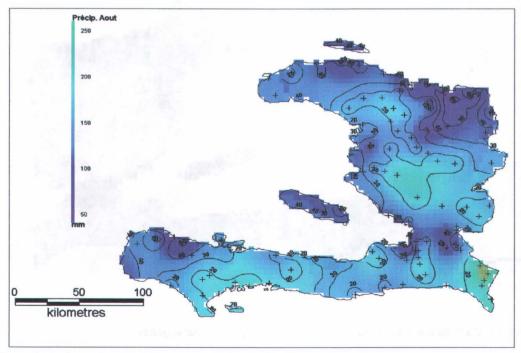


Figure 6.13 : Carte de précipitation mensuelle (mois d'Août) produite par krigeage

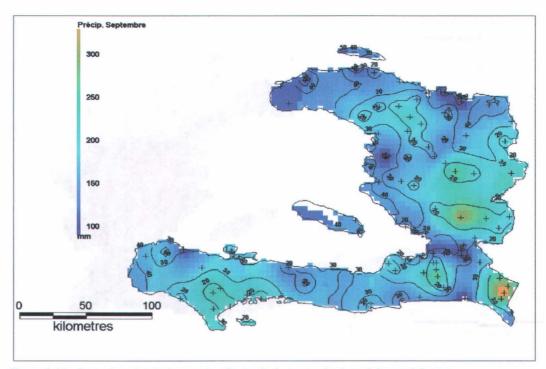


Figure 6.14 : Carte de précipitation mensuelle (mois de septembre) produite par krigeage

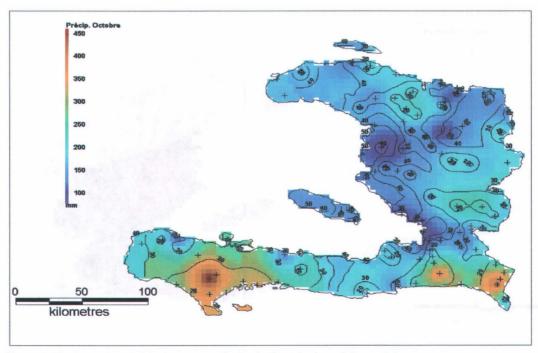


Figure 6.15 : Carte de précipitation mensuelle (mois d'octobre) produite par krigeage

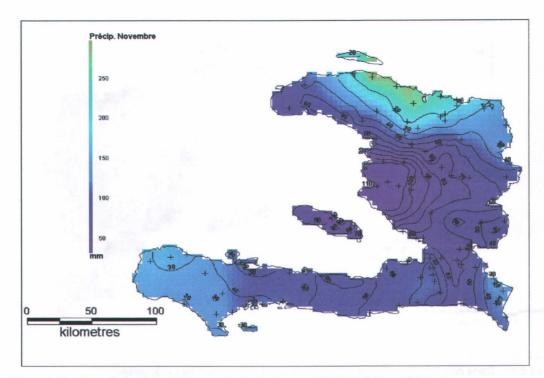


Figure 6.16 : Carte de précipitation mensuelle (mois de novembre) produite par krigeage

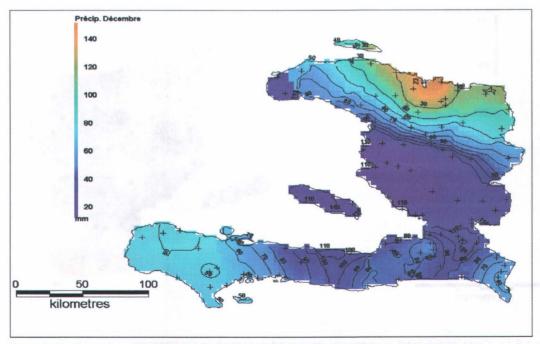


Figure 6.17 : Carte de précipitation mensuelle (mois de décembre) produite par krigeage

6.2 Pertes d'eau par évaporation et évapotranspiration

Pour faire un bilan hydrologique sur une surface donnée, il est indispensable de connaître les entrées et les sorties d'eau sur cette surface. Après avoir estimé les précipitations, il est plus qu'évident de savoir la quantité perdue par évaporation et évapotranspiration. Il existe diverses méthodes permettant d'estimer les pertes d'eau dues à l'évaporation et à l'évapotranspiration. Entre autres, des méthodes de mesures directes comme les bacs évaporatoires et d'autres indirectes basées sur la mesure d'un certain nombre de paramètres comme : la température, la pression atmosphérique, le rayonnement solaire, le vent, l'humidité de l'air, les caractéristiques de la végétation, etc. Parmi les méthodes utilisant ces paramètres selon (Roche, 1963) on retrouve la loi de Dalton, la méthode de Penman-Monteith, le bilan énergétique, la méthode de Turc et dans une moindre mesure la méthode de Thornthwaite qui, elle, ne tient compte que de la température mesurée à une hauteur standard de 2 mètres au dessus du sol. Le problème avec ces méthodes, pour les utiliser, constitue au fait que la connaissance des paramètres cités plus haut est indispensable, ce qui n'est jamais facile à l'échelle d'un pays et encore moins dans le cas de Haïti. Par conséquent, on a souvent tendance à utiliser les méthodes incluant le moins de paramètres possibles, on cite le cas de la méthode de Thornthwaite bien que les valeurs estimées ne reflètent pas toujours la réalité observée. A Haïti particulièrement, il est difficile d'estimer les pertes d'eau par les méthodes à plusieurs paramètres (Penman-Monteith par exemple) sur toute la grandeur du pays parce que dans la grande majorité des régions, ces paramètres ne sont pas connus. Ainsi, dans le cadre de cette recherche nous disposons des données qui ont été estimées par la méthode de Penman-Monteith seulement pour 17 stations. Afin d'estimer l'évapotranspiration moyenne sur l'ensemble du territoire nous avons, d'une part, estimé la perte d'eau par la méthode de Thornthwaite en utilisant les données de température mesurée dans ces mêmes stations citées plus haut, et, d'autre part, établi une régression entre les valeurs estimées par les deux méthodes (Thornthwaite et Penman-Monteith). Étant donné la bonne corrélation observée dans ce cas précis entre les valeurs estimées à l'aide de ces deux méthodes, malgré l'existence d'un biais entre les deux, sans toutefois déterminer laquelle est biaisée, nous avons choisi de compléter les 17 séries de données disponibles en utilisant la méthode de Thornthwaite afin de générer une plus grande série de données qui permettent d'interpoler les pertes d'eau enregistrées sur l'ensemble du territoire sans toutefois ignorer les limitations de cette méthode qui ne tient compte que de la température comme variable. Les données estimées par la méthode de Penman-Monteith, celles estimées par la méthode de Thornthwaite, les données de température ainsi que les détails relatifs à la régression entre les méthodes de Thornthwaite et de Penman-Monteith sont présentés à l'annexe B. La bonne corrélation entre les deux méthodes justifie l'utilisation formelle de la méthode de Thornthwaite pour compléter les séries disponibles.

L'approche pour estimer les pertes en eau à l'échelle du territoire de Haïti est une méthode de krigeage ordinaire, la même procédure que celle utilisée pour interpoler les précipitations totales annuelles, saisonnières et mensuelles. Les détails du krigeage ne seront pas présentés dans cette section. Nous donnerons à titre d'exemple les statistiques au tableau 6.6 et la cartographie annuelle à la figure 6.18. Les cartographies saisonnières et mensuelles figureront à l'annexe C.

Selon les statistiques présentées au *tableau* 6.6 le coefficient de variation (CV) indiquant le rapport entre l'écart-type et la moyenne montre que les variations des valeurs estimées dans le cas de l'évapotranspiration sont très faibles par rapport à celles des précipitations. La plus grande variation observée est de 15% tandis que dans le cas des précipitations, le CV dépasse même les 60% pour les valeurs mensuelles (*tableau* 6.5).

A première vue, nous pouvons dire par exemple que l'évapotranspiration moyenne annuelle (1 391 mm) est très importante par rapport aux précipitations (1 452 mm). La figure 6.18 montre que l'évapotranspiration est élevée partout sur le territoire sauf pour certaines régions de montagnes humides où elle est moins élevée. Mais, ce n'est pas en réalité une valeur aussi élevée par rapport aux précipitations puisqu'il s'agit d'une perte potentielle. L'évapotranspiration réelle serait plus faible puisqu'elle représente une fraction de l'évapotranspiration potentielle.

Il est important de souligner que les méthodes mentionnées plus haut n'estiment pas l'évapotranspiration réelle mais l'évapotranspiration potentielle qui est la quantité maximale d'eau susceptible d'être évaporée sous un climat donné par un couvert végétal continu bien alimenté en eau. Ceci dit, les valeurs obtenues à partir de ces méthodes ne peuvent être incluses dans un bilan hydrologique puisqu'elles ne reflètent pas les quantités totales d'eau qui s'évaporent du sol et des plantes lorsque le sol est à son taux d'humidité naturelle, ce qu'on appelle l'évapotranspiration réelle. Connaissant l'évapotranspiration potentielle et les paramètres de l'occupation du sol, il deviendrait alors facile d'évaluer les pertes d'eau réelles. Voilà la limite de notre méthodologie pour estimer les pertes d'eau réelles.

Tableau 6.6 : Évapotranspiration totale annuelle, saisonnière et mensuelle estimées par krigeage sur Haïti.

Période	ETP estimée				Écart-type sur l'estimation				CV (%)
	(mm)								
	min	Max	Moy	Md	Min	Max	Moy	Md	
Annuelle	618	1995	1391	1439	5	265	161	165	11
Saison sèche	355	772	590	597	8	98	77	76	13
Saison Humide	367	1102	793	808	0	153	97	103	12
Janvier	40	116	85	87	0	15	10	11	11
Février	47	115	90	93	2	16	13	13	14
Mars	49	137	99	101	2	18	15	15	15
Avril	64	133	109	111	9	17	12	12	11
Mai	66	145	120	123	9	19	13	12	10
Juin	69	164	130	134	10	24	16	16	12
Juillet	72	172	134	138	9	24	16	15	11,9
Août	57	226	138	142	0.8	30	18	18	13
Septembre	69	160	134	138	8	23	16	16	12
Octobre	55	214	127	130	1	25	16	17	12,5
Novembre	50	167	111	112	1	19	13	14	11,7
Décembre	43	143	93	95	0	17	10	11	10,7

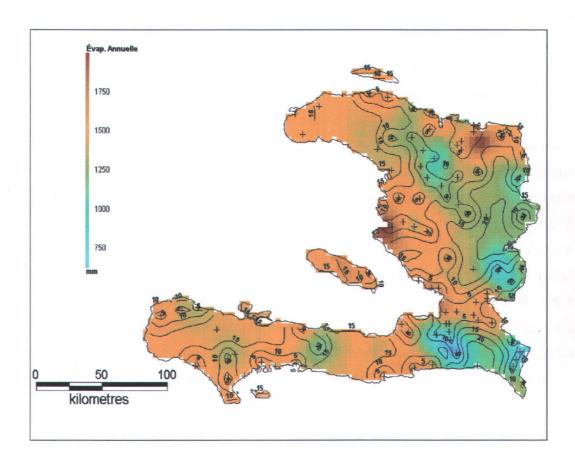


Figure 6.18 : Carte d'évapotranspiration potentielle annuelle produite par krigeage

6.3 Bilan hydrologique

Le bilan hydrologique est une équation qui permet d'établir la différence entre les entrées et les sorties d'eau quel que soit l'intervalle de temps considéré mais ayant une signification hydrologique (année hydrologique). Il se situe à l'échelle d'un bassin versant (quelle que soit sa taille) qui est donc considéré comme un système fermé. Dans l'équation du bilan hydrologique :

$$P = ER + EC + INF$$

P: est la précipitation qui représente les entrées du système ;

ER : est la perte d'eau (évapotranspiration réelle);

EC : est l'écoulement à l'exutoire ou la lame d'eau disponible (ruissellement) et;

INF: l'infiltration.

Généralement, la précipitation et l'écoulement à l'exutoire sont connus parce qu'ils sont mesurés. Le plus complexe à déterminer est le terme INF qui représente la partie de la précipitation qui pourrait s'infiltrer dans le sol.

L'évapotranspiration réelle pourrait être estimée en connaissant l'évapotranspiration potentielle et les caractéristiques de l'occupation du sol. Comme nous venons de le faire, l'évapotranspiration potentielle (ETP) est estimée à partir de certains paramètres climatiques qui, eux, sont mesurés. Dans le cadre de cette étude, il est difficile d'établir un bilan hydrologique en tant que tel puisque tous les termes du bilan ne sont pas connus. Mais, ceci n'empêche qu'on est en mesure d'identifier les zones et les périodes pour lesquelles il pourrait avoir un déficit ou un excédent d'eau. Dans ce cas, la valeur qui ressort de la différence entre les précipitations et l'évapotranspiration potentielle entre autre « la lame d'eau nette » prendra en compte à la fois le ruissellement et l'infiltration.

La figure 6.19, résultant de la différence entre la précipitation totale annuelle et l'évapotranspiration potentielle annuelle, indique les zones potentiellement déficitaires et excédentaires, là où les précipitations sont inférieures ou supérieures à l'évapotranspiration potentielle. La lame d'eau nette est plus importante dans les régions où les précipitations sont plus importantes. Les zones déficitaires sont celles dont les précipitations sont faibles et où l'évapotranspiration potentielle est plus importante.

Par contre, la *figure 6.20* montre la variation des précipitations et des pertes à l'échelle temporelle. Dans cette figure, les valeurs estimées des précipitations et des pertes d'eau

sont réparties sur toute l'année. Pour les précipitations, on observe deux pics dont le plus important se situe au mois de mai tandis que les pertes varient très peu au cours de l'année. Ce qui est important à souligner dans cette figure aussi, c'est que les pertes sont plus importantes quand les précipitations sont plus faibles.

Au tableau 6.7, les valeurs nous montrent un excédent d'eau relativement important pendant la saison humide. Par contre, pour la saison sèche on observe un déficit énorme qu'il faut combler. Au niveau mensuel, le nombre de mois déficitaires et celui pour lesquels il y a un excédent d'eau se partage à moitié mais la somme des excédents d'eau mensuels (252 mm) dépasse l'accumulation des déficits mensuels (141 mm). Ce qui fait que la différence annuelle en considérant les 12 mois est de l'ordre de 111 mm. Pourtant, les données annuelles donnent un excédent seulement de 61 mm. Si on examine le tableau 6.7 on peut facilement observer les périodes pour lesquelles il pourrait avoir de quantités d'eau relativement importantes dans les rivières si à l'échelle du temps considéré on faisait l'hypothèse que le terme INF soit négligeable dans le bilan hydrologique. La disponibilité de l'eau dans les cours d'eau n'est pas simplement fonction des précipitations mais aussi des pertes. Plus il y a des pertes, moins il y a de l'eau disponible à s'écouler. L'analyse des précipitations n'est donc pas suffisante par exemple dans le cadre d'un projet de retenues d'eau, il faut prendre en compte les pertes surtout celles dues à l'évapotranspiration.

Puisqu'il ne peut dissocier l'infiltration du ruissellement, ce bilan est loin d'être suffisant pour estimer la disponibilité de l'eau à la surface, un des objectifs de ce présent travail. La prochaine section sera consacrée à la présentation de deux méthodes utilisées afin d'estimer la lame d'eau de surface disponible (ruissellement) à l'échelle du territoire de Haïti.

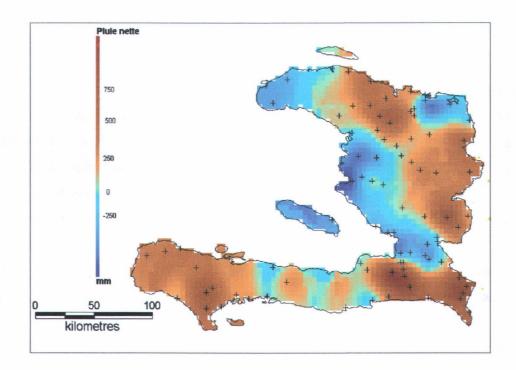


Figure 6.19 : Carte de la lame d'eau nette (déficit ou excédent d'eau) annuelle produite par krigeage

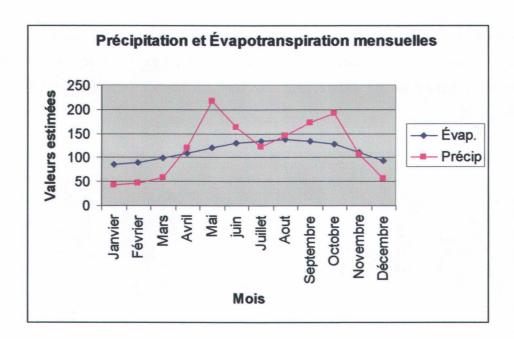


Figure 6.20 : Variation de la précipitation et de l'évapotranspiration moyennes mensuelles.

Tableau 6.7 : Bilan des précipitations et des pertes moyennes en eau

Période	Précipitation Totale (mm)	Évapotranspiration Potentielle (mm)	Excédent ou déficit
Année	1452	1391	61
Saison sèche	307	590	-283
Saison Humide	1093	793	300
Janvier	42	85	-43
Février	46	90	-44
Mars	58	99	-41
Avril	121	109	12
Mai	218	120	98
Juin	162	130	32
Juillet	122	134	-12
Août	145	138	7
Septembre	172	134	38
Octobre	192	127	65
Novembre	106	111	-5
Décembre	56	93	-37

6.4 Estimation du ruissellement

Après avoir estimé les précipitations annuelles, saisonnières et mensuelles ainsi que l'évapotranspiration potentielle. Il existe soit un déficit dans la plupart des cas, soit un excédent d'eau disponible à être infiltré pour alimenter les nappes et à être écoulé dans les cours d'eau. L'estimation globale des précipitations et de l'évapotranspiration potentielle ne permet pas, cependant, de séparer l'infiltration de l'écoulement à l'exutoire dans le bilan. Les écoulements à l'exutoire étant connus pour certains bassins, ils feront directement l'objet d'études statistiques à travers les séries mesurées. A rappeler que l'estimation des débits des cours d'eau comme indiquée dans les objectifs spécifiques a pour but de quantifier la ressource en eau de surface disponible à l'échelle spatiale. Cette estimation comprend deux niveaux: 1) une étude des débits moyens annuels afin d'estimer la ressource pour la gérer au mieux des besoins; 2) une étude des débits maximums annuels afin de quantifier les risques d'inondation contre lesquels il faut se prémunir.

6.4.1 Estimation de la lame d'eau disponible à l'échelle du territoire

Pour estimer la lame d'eau annuelle disponible nous avons considéré les débits moyens annuels. L'étude des débits moyens annuels consiste à déterminer les caractéristiques statistiques (temporelle et spatiale) à travers des indicateurs usuels tels que la moyenne, la médiane, l'écart-type et le coefficient de variation afin d'observer la disponibilité de l'eau à la surface. L'étude de stationnarité des séries permettront de détecter l'existence de tendance et saut dans le temps. Chaque station pour laquelle nous déterminons les caractéristiques statistiques représente une zone hydrologique ou un bassin versant identifié à travers la *figure 6.21*. Sur les 71 stations de jaugeage répertoriées à travers l'annuaire hydrologique d'Haïti seulement 30 d'entre elles ont pu faire l'objet d'étude statistique. La longueur des séries de ces stations retenues varie de 6 à 28 ans. Les stations négligées ont été mesurées pendant 6 ans et moins ou ont beaucoup de données manquantes difficiles voire même impossibles à remplacer. Les séries des stations retenues ont été analysées afin de connaître leurs caractéristiques statistiques, leur tendance, puis régionalisées afin d'estimer la lame disponible à l'échelle du territoire.

A- caractéristiques statistiques des séries retenues

Pour caractériser les échantillons retenus nous avons déterminé une valeur moyenne, une valeur médiane, un écart-type et un coefficient de variation.

Les valeurs moyennes de toutes les séries confondues varient de 1,12 à 108 m³/s, les médianes de 0,43 m3/s à 104 m³/s. Ces caractéristiques moyennes sont des indices qui permettent d'apprécier l'abondance ou la pénurie du régime d'un bassin à l'autre. Seulement trois (3) bassins, ceux qui sont hachurés au *tableau* 6.8 se détachent des autres. Compte tenu de leur superficie, ils présentent des valeurs de débits plus élevées que les autres. Cependant, les petits bassins ont un débit spécifique plus important étant donné qu'il varie de manière inversement proportionnelle à la surface sur laquelle il est calculé. Les écart-types variant de 0,32 à 25,75 m³/s montrent qu'il n'y a pas trop de dispersion des valeurs observées autour des valeurs moyennes calculées. Le CV étant une caractéristique de dispersion relative, il mesure entre autres le degré d'homogénéité des éléments des séries. Plus ce coefficient est grand, plus il y a de l'irrégularité d'une année à l'autre dans les séries. Il varie dans ce cas de 0,09 à 2,8. Les valeurs de CV dépassant les 100% pourraient être considérées comme étant exceptionnelles ou singulières puisqu'elles ont toutes été observées pour des stations n'atteignant pas 10 ans d'observation.

B- Caractéristiques de tendance et saut dans le temps

La construction d'un graphique présentant la chronologie des évènements hydrologiques annuels a été effectué afin de détecter l'existence de tendance et saut dans les séries étudiées. Il y a des variations d'une année à l'autre dans les séries mais vu leurs courtes longueurs, même s'il y a un changement brusque il est difficile de l'attribuer à un saut, cela pourrait être une valeur aberrante ou singulière. Mais, l'application du test de « Grubbs and Beck » (Bobée et al., 1991) pour détecter l'existence de valeurs singulières dans les séries a rejeté cette dernière hypothèse. Toutes les valeurs soupçonnées d'être des valeurs singulières dans les séries se sont retrouvées dans l'intervalle défini par le test. Pour certaines stations nous avons même tenté de séparer les séries en deux parties afin d'observer si la liaison des segments n'ont pas eu d'influence sur les caractéristiques recherchées. Un saut a été détecté pour la station 040601 identifiée au tableau 6.8. Le saut a débuté à la fin du premier segment de la série. Étant donné l'existence d'un grand intervalle séparant les deux segments et vu la courte longueur (4 valeurs) du deuxième segment, nous sommes dans l'impossibilité de le considérer comme une série, nous avons choisi d'éliminer le deuxième segment et considérer seulement le premier segment pour la suite. Les graphiques de l'étude des tendances et saut des 30 séries analysées sont présentés à l'annexe D.

Tableau 6.8 : Caractéristiques statistiques des débits moyens annuels

No	Rivière et	Année	BV	Moy	Moy	Md	Écart type	CV
Station	situation		(km ²)	(m^3/s)	$(l/s/km^2)$	(m^3/s)	(m^3/s)	
-	Acul du sud à Dubreuil	6	-	3.48	-	3,59	0,328	0,09
030202	Artibonite à Mirebalais	17	7 463	88,6	11,87	85,9	22,6	0,26
030201	Artibonite à Pont Sondé	22	8 695	108	1,24	104	25,9	0,24
040601	Blanche à La gorge	22	170	1,86	10,94	1,78	0,514	0,28
030211	Bois à Verrettes	12	59,9	2,32	38,73	1,95	1,14	0,5
030252	Bouyaha à St- Raphaël	19	135	3,59	26,59	3,74	1,77	0,49
060601	Cavaillon à Cavaillon	22	311	8,31	26,72	7,61	3,46	0,42
040901	Courjolle à Bassin Proby	21	83	1,22	14,69	1,16	0,501	0,41
020111	Ennery à Passe Joly	9	121,7	6,03	49,54	0,66	15,7	2,61

Tableau 6.8 : Caractéristiques statistiques des débits moyens annuels (suite)

Station	Rivière et	Année	BV	Moy	Moy	Md	Écart type	CV
	situation		(km ²)	(m^3/s)	$(1/s/km^2)$	(m^3/s)	(m^3/s)	
030301	Éstère à Pont Benoit	10	133	3,69	27,74	3,09	2,54	0,69
030231	Fer-à-cheval à Pont Pétion	14	482	9,99	20,72	8,3	5,1	0,51
010403	Gallois à Grison garde	9	22,4	6,61	297,74	0,43	18,5	2,8
010501	Grande rivière du Nord à Pont parois	21	600	8,28	13,8	8,09	4,12	0,5
070301	Grande Anse à Passe Ranja	7	550	30,8	56	25,5	11,3	0,37
040501	Grise à Amont du Barrage	28	276	4,17	15,11	3,87	1,34	0,32
010901	Massacre à Ouanaminthe	18	400	5,35	13,37	4,46	2,43	0,46
041001	Matheux à Arcahaie	18	68	1,46	21,47	1,17	0,893	0,61
040201	Momance à Buissonnière	20	238	5,96	25,04	5,53	1,87	0,31
030101	Montrouis à Pont Toussaint	7	166	1,89	11,38	1,34	1,16	0,61
060501	Ravine du Sud à Campérin	12	65	4,89	75,23	4,86	1,38	0,28
060401	Torbeck à Torbeck	8	89	2,56	28,76	2,5	1,14	0,45
040801	Torcelle à Massaye	22	79	1,12	14,17	1,1	0,313	0,28
020702	Trois rivières à Gros morne	27	271	7,03	25,94	6,43	2,58	0,37
010601	Trou du Nord à Chabert	7	110	9,96	90,54	4,03	12,6	1,27

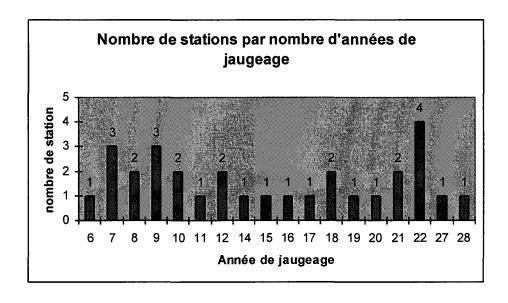


Figure 6.21 : fréquence du nombre de stations par nombre d'années d'observation

6.4.1.1 Régionalisation des débits moyens annuels

A Haïti, il existe un réseau hydrographique assez dense mais la plupart des cours d'eau ne sont pas jaugés. Il est très difficile d'estimer la lame d'eau de surface disponible uniquement à partir des statistiques des stations de jaugeage locales. La régionalisation est l'une des méthodes utilisées pour transférer les données d'une zone à l'autre dans un espace homogène lorsque ces problèmes se présentent. Certains éléments ou indicateurs de base sont aussi nécessaires à l'application des méthodes de régionalisation comme par exemple les caractéristiques physiographiques des bassins versants : la superficie, le périmètre, le coefficient de forme, la longueur du cours d'eau principal, l'altitude et la pente. Dans cette étude, toutes ces caractéristiques ont été calculées grâce à l'utilisation d'un modèle numérique de Terrain d'une résolution spatiale de 90 m. Les bassins de drainage des stations jaugées ont d'abord été localisés puis délimités. Également, les bassins non jaugés ont été délimités en considérant l'exutoire comme le point le plus bas drainant le bassin. Ainsi, les 30 bassins jaugés ont été localisés (figure 5.7) et un nombre important (> 100) de bassins non jaugés a aussi été délimité (figure 5.8). Les superficies des bassins non jaugés varient de moins d'un kilomètre carré à plus de mille kilomètres carrés. La figure 6.22 présentée ci-dessous donne la distribution des bassins en fonction de leur superficie.

Tous les bassins versants (jaugés et non jaugés) ont été délimités, leurs caractéristiques géométriques et topographiques déterminées. Il reste à appliquer la ou les méthodes de régionalisation pour estimer la lame d'eau moyenne annuelle disponible sur tout le territoire. Deux approches ont été considérées : une régression linéaire établie entre le débit moyen annuel et la superficie du bassin versant et une méthode de krigeage canonique (krigeage ordinaire dans l'espace physiographique). Pour la calibration et la validation de ces deux méthodes, les données des 30 stations de jaugeage mentionnées précédemment ont été considérées. Parmi ces stations seulement 21 d'entre elles ont pu être utilisées. Celles qui sont mesurées pendant moins de 10 ans n'ont pas été considérées.

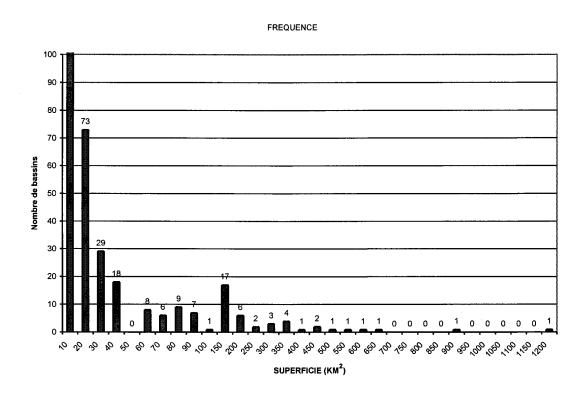


Figure 6.22 : fréquence de distribution de bassins versants non jaugés en fonction de leur superficie

6.4.1.1.1 Régression linéaire

C'est une régression simple établie entre le débit moyen annuel et de la superficie du bassin de drainage. Cette méthode a été calibrée et validée avec les données de 21 des 30 stations de jaugeage répertoriées dans le réseau de jaugeage d'Haïti. Il existe une très bonne corrélation entre le débit et la superficie. L'écart-type sur le débit annuel moyen a aussi une très bonne corrélation avec la superficie. Quand la superficie augmente on

constante un accroissement du débit dans le même sens (figure 6.23). Lorsque toutes les stations sont prises en compte, on trouve un coefficient de détermination entre le débit moyen annuel et la superficie de 0.96 tandis que pour les stations de 10 ans d'observation et plus soit un nombre de 21 la régression s'améliore soit une valeur de 0,99. Pour l'écart type du débit moyen annuel et la superficie en considérant les 21 stations la régression est de 0,97. Pour tester de la performance du modèle nous avons procédé à une validation croisée (figure 6.24) qui donne une erreur quadratique moyenne relative (REQMr) de 8,2% et un biais moyen relatif (BMR) de -20%. Cette méthode, quelque soit la superficie du bassin versant, permet de déterminer le débit moyen annuel. Ainsi, nous avons estimé le débit moyen annuel puis nous l'avons transformé en lame d'eau pour tous les bassins versants d'Haïti sauf pour certains ayant moins de 10 km² dont leur surface totale (2 762 km²) représente près de 10% de la surface totale du territoire. Cette superficie n'a pas été considérée puisque dans les bassins de moins de 10 km² la lame d'eau estimée est erronée, elle ne correspond pas à la réalité hydrologique. Une carte de ruissellement (figure 6.25) a donc été produite. Pour n'importe quelle zone du territoire continental on peut identifier la lame d'eau de surface disponible avec une moyenne d'environ 924 mm. Les îles adjacentes n'ont pas été considérées dans cette démarche puisque nous n'avons aucune donnée disponible et exploitable dans ces parties du territoire. Pour cette raison elles apparaissent sur la carte comme des zones blanches.

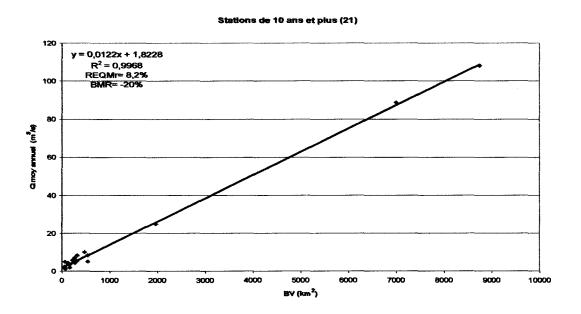


Figure 6.23 : régression entre le débit moyen annuel et la superficie du BV en Km².

Validation croisée (méthode régressive)

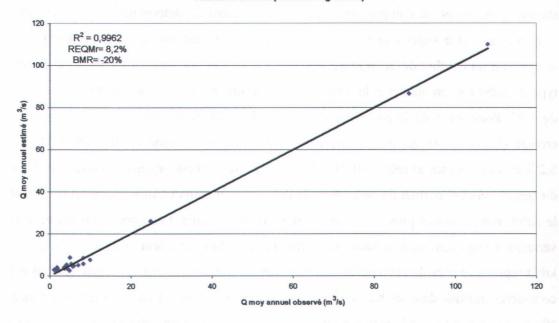


Figure 6.24 : Validation croisée (méthode régressive)

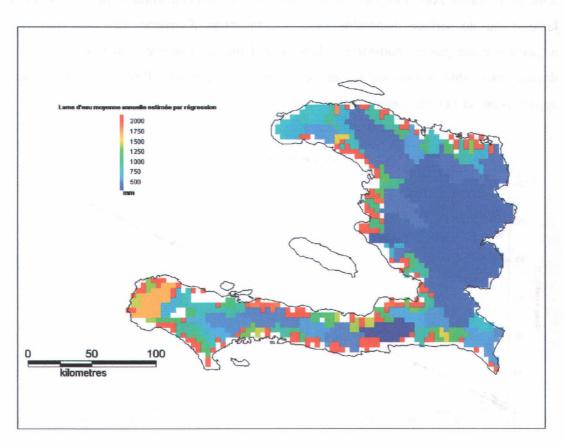


Figure 6.25 : Lame d'eau moyenne annuelle estimée par régression linéaire

6.4.1.1.2 Krigeage canonique

Cette méthode a été développée par Chokmani et Ouarda (2004). Elle permet entre autre d'interpoler une variable hydrologique d'intérêt dans un espace physiographique en utilisant les coordonnées des bassins versants. Des détails relatifs à la description de la méthode ont été donnés au chapitre 3 du présent document. Pour interpoler la variable hydrologique d'intérêt (débit moyen annuel dans ce cas précis) diverses étapes nécessaires à cette démarche ont été considérées (figure 6.26) entre autre : 1) la définition des variables (hydrologiques et physiographiques) à prendre en compte ; 2) la transformation de ces variables pour rendre les distributions symétriques; 3) la standardisation pour éliminer l'effet d'échelle; 4) la création du jeu de données standardisées; 5) la définition des vecteurs canoniques physiographiques (w1 et w2) et hydrologiques (v1et v2); 6) le passage dans GS+ avec les coordonnées définies pour l'analyse variographique et la validation croisée. A noter que pour le choix des variables, nous avons effectué un test de corrélation entre les différentes variables disponibles de façon à choisir celles ayant une plus forte corrélation (statistique du test plus élevée et P-value la plus faible). Comme l'indique la figure 6.26, pour les variables hydrologiques, nous avons retenu, le débit moyen annuel et l'écart-type et parmi les variables physiographiques, nous avons retenu, la superficie (A), le périmètre (P), le coefficient de forme (Kc), la longueur du cours d'eau (L), l'altitude médiane (Amed) et la pente médiane (Smed). Certaines de ces variables ont subi des transformations afin de normaliser leur distribution symétrique avant leur utilisation. Les variables (débit, écart-type, altitude médiane) ont subi une transformation logarithmique; la superficie, une transformation racine réciproque $(1/X^{1/2})$; le périmètre et la longueur, une transformation (1/X). Pour la suite des autres étapes (standardisation, définition des ACC, définition des vecteurs canoniques, etc), il est conseillé de consulter Chokmani et Ouarda (2004). La méthode a été calibrée avec les données des 21 stations de jaugeage mentionnées précédemment en considérant la valeur de la régression. Puis, la méthode a été validée avec les données de 21 des 30 stations de jaugeage mentionnées cidessus dont les résultats sont présentés au tableau 6.9. Nous avons obtenu un coefficient de détermination de 0,81 pour le débit moyen annuel (figure 6.27) et 0,79 pour l'écarttype. Pour tester de la performance de la méthode, trois critères essentiels ont été définis dont le coefficient de Nash de valeur 0,78, une erreur quadratique moyenne relative de 29,6% et un biais moyen relatif de -13%. Si l'on tient compte de la valeur de ces trois

critères de performance, nous pouvons dire à prime abord que la méthode performe assez bien compte tenu de la quantité et de la qualité des données utilisées pour la valider.

Pour les sites non jaugés la même procédure a été reprise sauf que nous ne pouvons pas définir de variables hydrologiques car c'est la variable d'intérêt à régionaliser en tenant compte des données locales. L'espace physiographique étant donc construit, il ne reste qu'à « kriger » dans cet espace pour régionaliser la valeur du débit moyen annuel par la méthode validée ci-dessus.

Le débit moyen annuel a été interpolé dans un rayon de 4.08 défini par le variogramme avec un nombre maximum de 20 sites par estimation. Tous les sites se trouvant en dehors de ce domaine n'ont pas pu être estimés à partir de ce modèle. Les bassins de moins de 10 km² n'ont pas été pris en compte, quelques autres de plus de 10 km² en dehors du domaine n'ont pas pu être pris en compte également. La surface totale de bassins non estimés est de 2274 km², ce qui représente environ 8,2% de la surface totale du territoire. Par cette méthode, la valeur du débit moyen annuel a été régionalisée. Ainsi, nous avons déterminé la lame d'eau moyenne annuelle disponible pour tout le territoire haïtien avec une moyenne d'environ 1 056 mm un petit plus que la valeur (924 mm) obtenue par la régression linéaire. Toutefois, seule la surface continentale a été considérée puisque aucune donnée exploitable n'est disponible pour les îles adjacentes. Une carte de ruissellement (figure 6.28) indiquant la lame d'eau de surface disponible pour toutes les régions du territoire a été produite. Les îles adjacentes apparaissent blanches sur cette carte puisqu'elles n'ont pas été prises en compte.

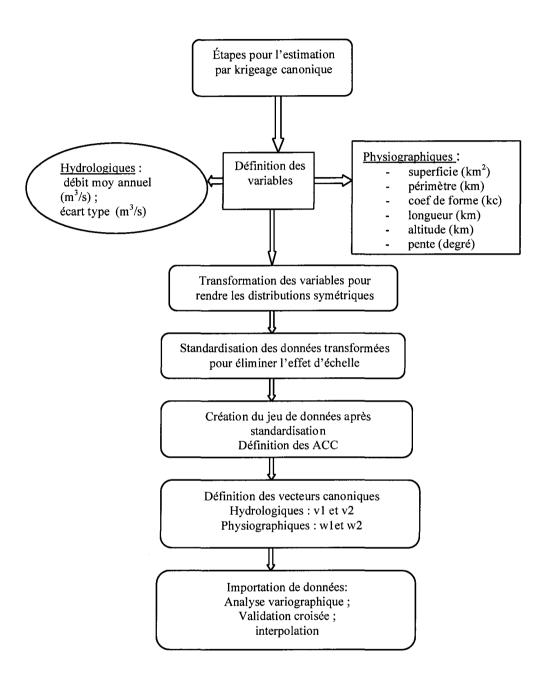


Figure 6.26 : Organigramme de l'estimation de la lame d'eau par krigeage canonique.

Tableau 6.9 : Résultats des différentes étapes de calcul pour l'estimation du débit moyen annuel et son écart type par la méthode du krigeage.

ID	w1	w2	Q	ET	Qt	ETt	Qts	ET	Q	Q	ET	ET
			obs					ts	tsestK	estK	tsestK	estK
1	1,52	-0,021	88,6	22,6	4,5	3,1	2,3	2,1	1,6	41,1	1,7	14,7
2	2,88	-1,394	108	25,9	4,7	3,3	2,4	2,2	2,7	141,4	1,8	17,1
3	-0,45	-0,973	1,86	0,514	0,6	-0,7	-1,0	-1,3	-0,6	2,9	-0,7	1,0
4	-1,3	0,326	2,32	1,14	0,8	0,1	-0,8	-0,6	-1,0	1,8	-0,7	1,0
5	-0,3	-0,238	3,59	1,77	1,3	0,6	-0,4	-0,2	-0,3	3,8	-0,4	1,5
6	0,46	1,217	8,31	3,46	2,1	1,2	0,3	0,4	0,3	8,0	0,4	3,5
7	-1,01	-1,34	1,22	0,501	0,2	-0,7	-1,3	-1,4	-0,7	2,6	-1,2	0,6
8	-0,1	2,554	3,69	2,54	1,3	0,9	-0,4	0,1	-0,4	3,8	-0,1	2,1
9	0,53	-0,819	9,99	5,1	2,3	1,6	0,5	0,7	0,5	10,1	0,3	3,2
10	0,63	0,498	8,28	4,12	2,1	1,4	0,3	0,5	0,8	15,4	0,8	5,8
11	-0,21	-0,526	4,17	1,34	1,4	0,3	-0,3	-0,5	-0,3	3,9	-0,4	1,5
12	0,88	0,626	24,9	8,6	3,2	2,2	1,2	1,2	0,9	17,8	0,9	6,1
13	0,28	0,181	4,99	2,18	1,6	0,8	-0,1	0,0	0,4	9,2	0,5	4,0
14	-0,28	0,057	5,71	2,95	1,7	1,1	0,0	0,2	-0,4	3,7	-0,3	1,6
15	-0,47	-0,124	4,38	1,68	1,5	0,5	-0.2	-0,3	-0,5	3,1	-0,5	1,3
16	0,3	1,928	5,35	2,43	1,7	0,9	-0,1	0,1	-0,1	5,3	0,2	2,8
17	-1,27	0,072	1,46	0,893	0,4	-0,1	-1,2	-0,8	-0,8	2,3	-0,8	0,9
18	0,19	-0,971	5,96	1,87	1,8	0,6	0,0	-0,2	-0,1	5,4	-0,1	2,1
19	-1,13	-0,811	4,89	1,38	1,6	0,3	-0,1	-0,4	-1,3	1,2	-1,5	0,4
20	-1,14	-0,401	1,12	0,313	0,1	-1,2	-1,4	-1,8	-0,7	2,4	-0,7	1,0
21	-0,01	0,159	7,03	2,58	2,0	0,9	0,2	0,1	-0,1	5,2	0,1	2,4

Validation croisée (méthode de krigeage)

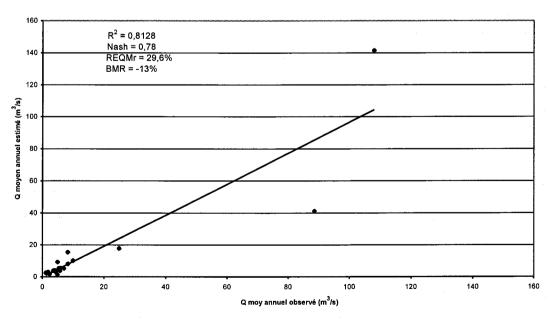


Figure 6.27 : validation croisée (méthode de krigeage ordinaire)

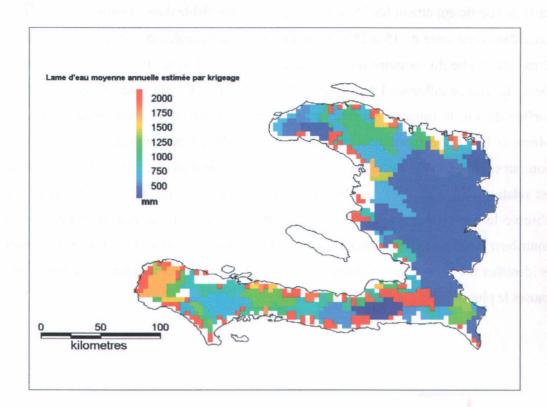


Figure 6.28 : Lame d'eau moyenne annuelle estimée par krigeage canonique.

6.4.1.1.3 Variation de la lame d'eau disponible par rapport à la précipitation

La lame d'eau moyenne annuelle vient d'être estimée selon deux méthodes de régionalisation. Comme pour la précipitation elle a été interpolée sur toute l'étendue du territoire. Il est important de savoir comment varie cette quantité d'eau ruisselée à la surface du sol par rapport à celle des précipitations. Le rapport entre la lame d'eau ruisselée et les précipitations défini le coefficient de ruissellement (C_r) qui est un des éléments caractérisant le bilan hydrologique d'un bassin. Ce coefficient varie en général entre 0 et 100%. Mais, dans certains cas il peut prendre des valeurs supérieures à 100% lorsqu'il y a échanges entre les bassins via le système géologique en présence de milieu karstique. Dans ce travail, en dehors de toute interprétation de bilan hydrologique, nous essayons d'expliquer la réaction ou l'état de la surface du sol en établissant un rapport entre la lame d'eau annuelle estimée et la précipitation moyenne annuelle (figure 6.29). Dans la figure, le fond représente la précipitation totale annuelle estimée, et, les isolignes, le rapport entre la lame d'eau moyenne et la précipitation. Ce rapport est le coefficient de ruissellement dont les valeurs sont exprimées en pourcentage. Dans certaines parties de la

carte ce coefficient atteint les 75%. Le C_r apparaît plus faible dans la partie Est, sa valeur varie dans cette zone de 15 à 25%. C'est une zone où l'écoulement est contrôlé car c'est dans cette partie du territoire que se situe le plus grand barrage hydroélectrique d'Haïti. Donc, la retenue influence l'écoulement. Par sa valeur, le C_r met en évidence l'état de la surface du sol, la capacité du sol à retenir l'eau, l'existence ou absence de végétation. Même si les informations relatives à l'occupation du sol ne sont pas disponibles cela pourrait supposer que lorsque le C_r est faible, il y a moins d'eau qui ruisselle, la végétation est relativement abondante, une bonne partie de l'eau s'infiltre. Lorsqu'il est élevé, on observe le contraire. En gros, le C_r est un indice important, sa connaissance pourrait contribuer à mieux gérer la ressource en eau de surface disponible, à relever les faiblesses et identifier les zones d'intervention prioritaire de façon à limiter les impacts dévastateurs causés le plus souvent par les pluies diluviennes.

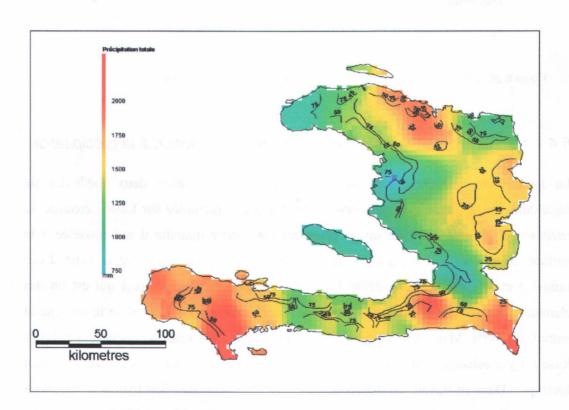


Figure 6.29 : Variation de la lame d'eau moyenne annuelle par rapport à la précipitation totale annuelle.

6.4.2 Étude des débits maximums annuels

L'étude des débits maximums annuels consiste à déterminer les quantiles de crue afin de quantifier les risques d'inondations probables pour des bassins versants jaugés du pays. Connaissant la superficie des bassins jaugés, il est possible de déterminer les débits spécifiques de crue (débit par unité de surface). La notion de débit spécifique est très utilisée dans la pratique car, elle permet de comparer le régime hydrologique de plusieurs bassins versants. Habituellement les débits spécifiques varient de façon inversement proportionnelle à la surface sur laquelle ils sont calculés. Quand la taille des bassins augmente les débits spécifiques diminuent. Dans le cadre de cette présente recherche, le débit spécifique calculé pour les bassins jaugés donnera une idée des débits de crue pour les bassins non jaugés.

Comme indiqué dans la méthodologie, la détermination des quantiles nécessite un ensemble de procédés, de la détermination des caractéristiques statistiques en passant par la vérification des hypothèses de base jusqu'au calcul des quantiles.

6.4.2.1 Caractérisation statistique des séries maximums annuelles

Des 71 stations hydrométriques recensées à travers l'annuaire hydrologique seulement 25 d'entre elles ont été prises en compte dans le cadre de cette analyse fréquentielle. Les stations retenues ont été mesurées pendant 10 ans et plus avec exception faite pour quatre (4) d'entre elles qui ont moins de 10 ans de données (tableau 6. 10). Elles ont été retenues afin de considérer le maximum de zones hydrologiques possibles. Les stations retenues sont également regroupées par zones hydrologiques parmi lesquelles figurent les 11 plus grands des 30 bassins et zones hydrologiques du pays (tableau 6.11). Les zones hydrologiques sont numérotées en chiffres romains afin de considérer un caractère semblable au tableau 4.1.

Les maximums annuels que nous avons étudiés, toutes séries confondues, varient entre 1,02 m³/s et 1 500 m³/s. Deux critères importants ont été considérés afin d'apprécier la qualité des séries retenues : le coefficient de variation (CV) et le coefficient d'asymétrie (CS).

Le coefficient de variation (CV) étant une mesure de dispersion relative, il permet de voir l'évolution des débits de crue d'une année à l'autre. Il mesure entre autre le degré d'homogénéité des éléments de la série. Plus ce coefficient est grand plus l'irrégularité d'une année à l'autre est importante, plus le groupe est hétérogène. Dans ce groupe, quatre

(4) stations montrent particulièrement une grande irrégularité parce qu'elles se démarquent nettement des autres stations par leur CV élevé. Ce que nous constatons, lorsque les valeurs minimales et maximales sont loin de la moyenne, l'écart type prend une valeur élevée et fait augmenter le CV.

Le coefficient d'asymétrie (CS) mesure l'étalement des valeurs par rapport à la moyenne. Elle permet de constater si les données sont étalées à gauche ou à droite de la moyenne selon qu'il est négatif ou positif. Les coefficients calculés montrent que les données des maximums annuels des 25 séries considérées sont d'une asymétrie positive à l'exception d'une seule station.

Tableau 6.10 : caractéristiques statistiques des séries maximums annuelles

Station	Cours d'eau	Année	BV (km²)	Min	Max	Moy	Md	Ec	CV	CS
030202	Artibonite	17	7463	286	1150	606	560	199	0,33	1,25
030201	Artibonite	22	8695	247	550	419	420	83,7	0,2	-0,39
040601	Blanche	22	170	2,64	206	14,9	4,86	42,8	2.87	4,66
030211	Bois	12	59.9	2,55	20.3	11,7	12,1	6,57	0,56	0,09
030252	Bouyaha	19	135	12,3	129	66,7	71,5	39,9	0,6	0,08
060601	Cavaillon	22	311	13,6	645	250	207	217	0,87	0,44
040901	Courjolle	21	83	2,2	20,6	6,82	5,2	5,17	0,76	1,59
020111	Ennery	9	121,7	1,74	16,4	5,72	4,32	4,59	0,8	1,88
030301	Éstère	10	133	5,1	51	26,4	26,6	11,7	0,44	0,37
030231	Fer-à-cheval	14	482	4,6	345	95,2	76,4	94,2	0,99	1,44
010403	Gallois	9	22,4	1,5	10,9	4,66	4,09	2,93	0,63	1,39
010501	Grande rivière	21	600	16,6	332	133	123	80,3	0,6	0,75
	du nord									
070301	Grande Anse	7	550	150	791	416	380	225	0,54	0,49
040501	Grise	28	276	6,14	168	29,4	13,6	44,2	1,5	2,6
030251	Guayamunc	11	1877	43	665	166	146	178	1,07	2,54
061001	Islet	9	93	1,02	150	67,4	83	57,4	0,85	0,87
050201	Jacmel	10	506	8,45	800	101	18,2	246	2,43	3,13
010302	Limbé	16	117	17,7	233	73,9	45,5	62	0,84	1,46
010901	Massacre	18	400	23,9	320	79,5	65,3	66,8	0,84	3,01
041001	Matheux	18	68	1,55	70	9,83	5,04	15,7	1,59	3,71
040201	Momance	20	238	13	190	49,8	36	46	0,92	2,02
060501	Ravine du Sud	12	65	47,6	209	106	104	46	0,43	1,01
040801	Torcelle	22	79	1,47	23,2	8,22	5,85	6,19	0,75	1,07
020702	Trois rivières	27	271	18,2	585	140	101	122	0,87	2,16

Tableau 6.11: Regroupement des stations par zone hydrologique

Station	Cours d'eau	Zone
		hydrologique
020702	Trois rivières	III*
020111	Ennery	V
010302	Limbé	VI*
010403	Gallois	VII
010501	Grande Rivière du Nord	VIII*
010901	Massacre	IX*
030211/030301	Bois/Estère	X*
030201/030202	Artibonite	XI*
030252/030231/030251	Bouyaha/Fer-à- cheval/Guayamunc	XI*
040801/040901/041001	Torcelle/ Courjolle/Matheux	XII
040501/040601	Grise/Blanche	XIII*
040201	Momance	XVI*
050201	Jacmel	XVII*
060601	Cavaillon	XXII*
060501/061001	Ravine du Sud/ Islet	XXIV*
070301	Grande Anse	XXVI*

^{* :} Bassin et zone hydrologique majeurs

6.4.2.2 Vérification des hypothèses de base

Dans une analyse fréquentielle, la vérification des hypothèses de base est une étape prépondérante permettant de vérifier l'indépendance, la stationnarité et l'homogénéité des séries. Celle-ci est importante du fait que dans la pratique, certaines stations hydrométriques pourraient être déplacées, certains instruments de mesure pourraient avoir été remplacés. Dans ces circonstances, les conditions de mesure étant modifiées, il est essentiel de vérifier s'il n'y a pas d'auto-corrélation entre les observations (propriété d'indépendance). En général, le débit maximum annuel est une variable indépendante. Si les caractéristiques statistiques (moyenne, variance) des données ne se varient pas dans le temps, l'échantillon observé est dit stationnaire et enfin si les données proviennent de la même distribution, l'échantillon est dit homogène. Cette dernière hypothèse est vérifiée en comparant les moyennes de deux sous échantillons. Ces trois conditions essentielles doivent être vérifiées pour permettre une bonne analyse fréquentielle. Dans le cadre de cette présente recherche nous avons utilisé à travers le logiciel Hyfran les tests de Wald-Wolfowitz, de Kendall et de Wilcoxon pour vérifier respectivement les trois hypothèses précitées. Les résultats contiennent généralement la valeur de la statique du test et le Pvalue associé. Les équations mathématiques qui caractérisent ces tests ne sont pas développées dans ce texte, elles figurent dans des manuels statistiques spécialisés et particulièrement dans le guide du logiciel utilisé que les lecteurs pourront consulter (Bobée *et al.*, 1999).

Les résultats des tests effectués sont présentés aux tableaux 6.12, 6.13 et 6.14.

L'hypothèse d'indépendance a été rejetée par le *test de Wald-wolfowitz* à une fois à un niveau de signification de 5% et une fois à 1%. Tandis que l'hypothèse de stationnarité a été rejetée par le *test de Kendall* 7 fois à un niveau de signification de 5% et une fois à 1%. L'hypothèse d'homogénéité quand à elle a été rejetée par le *test de Wilcoxon* à 3 reprises à un niveau de signification de 5% et à deux reprises à niveau de 1%. En dépit de ces rejets compte tenu de la quantité de stations que nous avons pour l'analyse fréquentielle, les stations rejetées, bien qu'elles ne respectent pas les hypothèses de base, ont été conservées pour faire l'objet d'ajustement statistique à titre indicatif. Cependant, la station (040801) a été enlevée puisqu'elle a été rejetée à trois reprises à un niveau de signification de 1%.

Tableau 6.12 : hypothèse d'indépendance (test de Wald-wolfowitz)

Station	Rivière et situation	Statistique	p-value	Rejetée	Acceptée
030202	Artibonite à Mirebalais	0,97	0,332		5%
030201	Artibonite à Pont Sondé	0,529	0,597		5%
040601	Blanche à La gorge	1,21	0,225		5%
030211	Bois à Verrettes	0,0227	0,982		5%
030252	Bouyaha à St-Raphaël	0,127	0,899		5%
060601	Cavaillon à Cavaillon	1,02	0,31		5%
040901	Courjolle à Bassin Proby	0,147	0,883		5%
020111	Ennery à Passe Joly	0,516	0,592		5%
030301	Éstère à Pont Benoit	0,286	0,775		5%
030231	Fer-à-cheval à Pont Pétion	1,01	0,312		5%
010403	Gallois à Grison garde	0,429	0,668		5%
010501	Grande rivière à Pont	0,991	0,322		5%
	parois				
070301	Grande Anse à Passe	0,181	0,857		5%
	Ranja			ļ	
040501	Grise à Amont du Barrage	1,93	0,053		5%
030251	Guayamunc à Hinche	0,087	0,93		5%
061001	Islet à Les Cayes	0,358	0,721		5%
050201	Jacmel à Jacmel	2,45	0,014	5%	1%
010302	Limbé à Roche à L'Inde	0,894	0,371		5%
010901	Massacre à Ouanaminthe	0,086	0,931		5%
041001	Matheux à Arcahaie	1,87	0,061		5%
040201	Momance à Buissonnière	0,276	0,783		5%
060501	Ravine du Sud à	1,04	0,299		5%
	Campérin				
040801	Torcelle à Massaye	3,12	0,001	1%	
020702	Trois rivières à Gros	0,174	0,862		5%
	morne				

Tableau 6.13 : Hypothèse de stationnarité (test de Kendall)

Station	Rivière et situation	Statistique	p-value	Rejetée	Acceptée
030202	Artibonite à Mirebalais	0,761	0,446		5%
030201	Artibonite à Pont Sondé	0,659	0,51		5%
040601	Blanche à La gorge	1,07	0,284		5%
030211	Bois à Verrettes	1,44	0,15		5%
030252	Bouyaha à St-Raphaël	0	1		5%
060601	Cavaillon à Cavaillon	2,48	0,013	5%	1%
040901	Courjolle à Bassin Proby	2,42	0,015	5%	1%
020111	Ennery à Passe Joly	0,313	0,754		5%
030301	Éstère à Pont Benoit	1,25	0,21		5%
030231	Fer-à-cheval à Pont Pétion	1,53	0,125		5%
010403	Gallois à Grison garde	1,15	0,251		5%
010501	Grande rivière à Pont	1,24	0,216		5%
	parois				}
070301	Grande Anse à Passe	0	1		5%
	Ranja				
040501	Grise à Amont du Barrage	1,74	0,082		5%
030251	Guayamunc à Hinche	1,87	0,062		5%
061001	Islet à Les Cayes	1,77	0,076		5%
050201	Jacmel à Jacmel	2,15	0,032	5%	1%
010302	Limbé à Roche à L'Inde	2,38	0,017	5%	1%
010901	Massacre à Ouanaminthe	1,44	0,15		5%
041001	Matheux à Arcahaie	1,78	0,075	5%	1%
040201	Momance à Buissonnière	2,17	0,029	5%	1%
060501	Ravine du Sud à	0,343	0,732		5%
	Campérin				
040801	Torcelle à Massaye	3,89	0,0001	1%	
020702	Trois rivières à Gros morne	2,29	0,022	5%	1%

Tableau 6.14 : Hypothèse d'homogénéité (test de Wilcoxon)

Station		Statistique	p-value	Rejetée	Acceptée
Station	Rivière et situation				
030202	Artibonite à Mirebalais	0,033	0,973		5%
030201	Artibonite à Pont Sondé	0,433	0,665		5%
040601	Blanche à La gorge	0,553	0,58		5%
030211	Bois à Verrettes	1,14	0,256		5%
030252	Bouyaha à St-Raphaël	0,286	0,775		5%
060601	Cavaillon à Cavaillon	3,06	0,002	1%	
040901	Courjolle à Bassin Proby	2,33	0,019	5%	1%
020111	Ennery à Passe Joly	0,732	0,464		5%
030301	Éstère à Pont Benoît	0,418	0,676		5%
030231	Fer-à-cheval à Pont Pétion	1,73	0,083		5%
010403	Gallois à Grison garde	0,857	0,391		5%
010501	Grande rivière à Pont	0,672	0,502		5%
	parois				
070301	Grande Anse à Passe	0,177	0,86		5%
	Ranja				

Tableau 6.14 : Hypothèse d'homogénéité (test de Wilcoxon) (suite)

Station		Statistique	p-value	Rejetée	Acceptée
040501	Grise à Amont du Barrage	1,99	0,046		5%
030251	Guayamunc à Hinche	2,65	0,008	1%	
061001	Islet à Les Cayes	1,59	0,111		5%
050201	Jacmel à Jacmel	2,09	0,036	5%	1%
010302	Limbé à Roche à L'Inde	1,84	0,066		5%
010901	Massacre à Ouanaminthe	0,971	0,331		5%
041001	Matheux à Arcahaie	2,37	0,001	5%	1%
040201	Momance à Buissonnière	1,78	0,075		5%
060501	Ravine du Sud à	0,721	0,471		5%
L	Campérin				
040801	Torcelle à Massaye	2,68	0,007	1%	
020702	Trois rivières à Gros	1,67	0,094		5%
	morne				

6.4.2.3 Détermination des quantiles

La conception d'un ouvrage hydraulique comme indiqué dans la littérature au chapitre 3 repose sur la détermination d'un débit de projet. Ce débit correspond à une probabilité au dépassement P dont l'inverse est la période de retour ou l'intervalle de récurrence que l'on note généralement T. La période de retour est le nombre d'années qui sépare en moyenne deux évènements du même genre. La probabilité au dépassement et la période de retour sont liées par la relation T=1/P. Pour les détails de formulation mathématique nous invitons le lecteur à consulter les ouvrages d'hydraulique et d'hydrologie spécialisés ou encore le guide du logiciel Hyfran 1.0 (*Bobée et al. 1999*).

Quand on veut déterminer un quantile de crue il revient d'abord à choisir à priori la probabilité P et déterminer la période de retour correspondante. Diverses lois de distributions sont applicables mais elles ne donnent pas toutes dans tous les cas de meilleurs résultats. Dans ce cas, la sélection de la distribution appropriée se fait en respectant un certain nombre de critères. Dans le cadre de cette présente recherche, les périodes de retour choisies sont : 2, 10, 20, 50, 100, et 1000 ans. Le choix de la distribution qui s'ajuste le mieux aux séries que nous avons analysées a été fait en considérant un critère d'information Baysien (BIC) et un critère d'information Akaïke (AIC), tous deux définis dans le logiciel Hyfran 1.0 utilisé pour estimer les quantiles. Ces deux critères permettent de construire un classement de modèles statistiques tenant compte du principe de parcimonie. Les meilleurs ajustements correspondent aux valeurs les plus faibles de ces deux critères. Nous avons considéré un ensemble de modèle qui sont

présentés au chapitre 3, ceux qui s'ajustent le mieux aux séries retenues pour lesquelles la vérification des hypothèses a été effectuée sont présentés au *tableau 6.15*. Les lois exponentielles à deux paramètres et Log-Normale sont celles les plus retenues, respectivement 10 et 4 fois, puis vient la loi Weibull, 5 fois), et le reste, une fois chacune. Les graphiques montrant la forme de ces distributions sont présentés à l'*annexe E*.

Les quantiles de crues estimés sont présentés au *tableau 6.16* et les quantiles de débit spécifique de crues au *tableau 6.18*. Rappelons que l'estimation des quantiles est faite dans l'objectif de quantifier les risques d'inondation. Les bassins n'étant pas tous jaugés, l'estimation des quantiles de débits par unité de surface (débit spécifique) laisse présager ce qui pourrait avoir lieu dans les bassins non jaugés dont leur taille est similaire. Nous avons pu remarquer que les quantiles de débits spécifiques de crue sont plus importants quand la superficie du bassin est plus faible. Le débit spécifique est une quantité inverse de la superficie du bassin versant. Ceci dit, un petit bassin versant soumis aux mêmes conditions qu'un autre de taille plus grande aura un débit spécifique de crue supérieur et entraîne des crues plus intenses et plus rapides en dépit du temps de concentration plus faible que met la goutte d'eau quelque soit son origine pour atteindre l'exutoire.

Tableau 6.15 : Ajustement des lois statistiques aux débits maximums annuels

Station	Rivière et situation	Lois de probabilités ajustées
030202	Artibonite à Mirebalais	Gumbel à 2 paramètres
030201	Artibonite à Pont Sondé	Weibull à 2 paramètres
040601	Blanche à La gorge	Exponentielle à 2 paramètres
030211	Bois à Verrettes	Weibull à 2 paramètres
030252	Bouyaha à St-Raphaël	Weibull à 2 paramètres
060601	Cavaillon à Cavaillon	Exponentielle à 2 paramètres
040901	Courjolle à Bassin Proby	Exponentielle à 2 paramètres
020111	Ennery à Passe Joly	Exponentielle à 2 paramètres
030301	Éstère à Pont Benoit	Normale à 2 paramètres
030231	Fer-à-cheval à Pont Pétion	Weibull à 2 paramètres
010403	Gallois à Grison garde	Log-Normale à 2 paramètres
010501	Grande rivière à Pont parois	Loi des fuites à 2 paramètres
070301	Grande Anse à Passe Ranja	Weibull à 2 paramètres
040501	Grise à Amont du Barrage	Exponentielle à 2 paramètres
030251	Guayamunc à Hinche	Exponentielle à 2 paramètres
061001	Islet à Les Cayes	Gamma
050201	Jacmel à Jacmel	Exponentielle à 2 paramètres
010302	Limbé à Roche à L'Inde	Exponentielle à 2 paramètres
010901	Massacre à Ouanaminthe	Log-Normale à 2 paramètres
041001	Matheux à Arcahaie	Exponentielle à 2 paramètres
040201	Momance à Buissonnière	Exponentielle à 2 paramètres
060501	Ravine du Sud à Campérin	Log-Normale à 2 paramètres
020702	Trois rivières à Gros morne	Log-Normale à 2 paramètres

Tableau 6.16 : Quantiles de débits de crues. Débits maximums annuels (m³/s)

Station	BV	Période de retour (années)					
	(Km ²)	1000	100	50	20	10	2
030202	7 463	1 620	1 250	1 140	989	875	575
030201	8 695	621	581	566	541	518	426
040601	170	25,8	18,0	15,7	12,6	10,3	4,81
030211	59,9	36	29,1	26,8	23,3	20,3	10,9
030252	135	228	180	164	141	121	60,6
060601	311	1 710	1 140	971	744	573	174
040901	83	35,5	24,3	21	16,5	13,2	5,33
020111	121,7	32,2	21,9	18,8	14,7	11,6	4,35
030301	133	62,7	53,7	50,5	45,7	41,5	26,4
030231	482	660	439	373	286	219	65,9
010403	22,4	25,3	16	13,6	10,6	8,55	3,96
010501	600	474	366	330	281	240	121
070301	550	1 160	961	890	786	695	397
040501	276	66,9	46,5	40,4	32,3	26,1	11,9
030251	1 877	966	654	560	436	342	125
061001	93	552	357	298	222	166	41,2
050201	506	125	85,6	73,7	58	46,1	18,4
010302	117	428	290	248	193	152	55,5
010901	400	422	266	225	176	141	64,9
041001	68	253	177	155	128	108	59,1
040201	238	278	189	162	127	100	37,9
060501	65	370	266	237	199	170	97,9
020702	271	1 310	697	557	398	295	102

Tableau 6.17 : Statistiques des débits de crues (m³/s)

Statistique	Période de retour (années)							
	1000	100	50	20	10	2		
Max	4 890	4 410	1 820	989	875	575		
Min	25,3	16	13,6	10,6	8,55	3,96		
Ecart type	1 007	885,06	436,83	274,81	231,1	147,19		
Médiane	422	266	237	193	152	55,5		
Moyenne	681,5	515,72	370,18	266,27	211,94	100,9		

Tableau 6.18 : Quantiles de débits spécifiques de crues. Débits maximums annuels (l/s/km²)

Station	BV	Période de retour (années)						
	(Km ²)	1000	100	50	20	10	2	
030202	7 463	217,07	167,49	152,75	132,52	117,24	77,04	
030201	8 695	71,42	66,82	65,09	62,21	59,57	48,99	
040601	170	151,76	105,88	92,35	74,11	60,58	28,29	
030211	59,9	601	485,8	447,42	388,98	338,9	181,9	
030252	135	1688,88	1333,33	1214,8	1044,44	896,29	448,88	
060601	311	5498,39	3665,59	3122,18	2392,28	1842,44	559,48	
040901	83	427,71	292,77	253,01	198,79	159,03	64,22	
020111	121,7	264,58	179,95	154,47	120,78	95,32	35,74	
030301	133	471,42	403,75	379,7	343,6	312,03	198,49	
030231	482	1369,29	910,78	773,85	593,36	454,35	136,72	
010403	22,4	1129,46	714,28	607,14	473,22	381,69	176,78	
010501	600	790	610	550	468,33	400	201,66	
070301	550	2109,09	1747,27	1618,18	1429,09	1263,36	721,82	
040501	276	242,39	168,47	146,37	117,02	94,56	43,11	
030251	1 877	514,65	348,42	298,34	232,28	182,2	66,59	
061001	93	5935,48	3838,7	3204,3	2387,09	1784,94	443,01	
050201	506	247,03	169,16	145,65	114,62	91,11	36,36	
010301	252	19404,7	1 7500	7222,22	2337,3	1043,65	139,68	
010302	117	3658,12	2478,63	2119,65	1649,57	1299,14	474,35	
010901	400	1055	665	562,5	440	352,5	162,25	
041001	68	3720	2603	2279	1882,35	1588,23	869,11	
040201	238	1168,06	794,11	680,67	533,61	420,16	159,24	
060501	65	5692,3	4092,3	3646,15	3061,53	2615,38	1506,15	
020702	271	4833,94	2571,95	2055,35	1468,63	1088,56	376,38	

Tableau 6.19 : Statistique des débits spécifiques de crues (1/s/km²)

Statistique	Période de retour (années)						
	1000	100	50	20	10	2	
Max	1 9405	1 7500	7222,22	3061,53	2615,38	1506,15	
Min	71,42	66,82	65,09	62,21	59,57	35,74	
Ecart type	3970,6	3479,4	1615,14	871,5	663,42	318,41	
Médiane	1129,5	714,28	576,47	468,33	381,69	159,24	
Moyenne	2474,3	1827,1	1256,54	857,14	654,29	262,08	

CHAPITRE 7

CONCLUSIONS ET RECOMMANDATIONS

7.1 Conclusion

7.1.1 Synthèse générale

La pénurie d'eau potable en Haïti est un problème épineux. D'aucuns estiment que ce n'est pas l'eau qui manque car les ressources sont abondantes. Cependant, la quantité disponible et exploitable reste nébuleuse. Notre travail de recherche qui considère l'exploitation de l'eau de surface comme une solution alternative devant pallier à ce problème de pénurie d'eau s'est donné pour objectif d'évaluer promptement cette ressource. L'estimation des précipitations totales et toute l'eau de surface disponible sur tout le territoire a été le principal objectif de cette recherche. Haïti, pourtant, ne dispose pas d'une banque de données assez enrichies pour permettre l'estimation plus précise de la ressource mentionnée. Les multiples crises politiques ont de graves conséquences sur la gestion des informations. Au prime abord, avec les informations récoltées, nous avons constitué des banques de données puis développé une méthodologie susceptible de les exploiter pour rencontrer les objectifs fixés. Il s'agissait d'estimer les précipitations totales et les pertes par évapotranspiration par une méthode de krigeage ordinaire et aussi l'eau de surface disponible par une méthode régressive et une méthode de krigeage canonique (krigeage dans l'espace physiographique). La méthodologie développée a permis d'estimer les précipitations totales pour tout le territoire avec une moyenne annuelle de 1452 mm, puis l'évapotranspiration potentielle d'une moyenne de 1391 mm et une disponibilité de surface pour tout le territoire continental avec une moyenne de 924 mm par la méthode régressive et 1056 mm par la méthode de krigeage canonique. Les résultats obtenus sont tributaires de la qualité des données utilisées. Par cette méthodologie et les résultats obtenus, l'état de la ressource en eau de surface à Haïti pour l'ensemble du territoire n'est plus un élément inconnu. Les précipitations totales tant à l'échelle spatiale qu'à l'échelle acceptable. temporelle précision sont connues avec une L'évapotranspiration potentielle est connue également à la grandeur du territoire. Cependant, le paramètre qui intéresse le bilan hydrologique, entre autre l'évapotranspiration réelle, n'a pas pu être estimée faute des données sur les caractéristiques de l'occupation du sol. Le plus important parmi les paramètres estimés dans cette étude reste et demeure la quantité disponible exploitable pour rencontrer les objectifs afin de répondre aux besoins grandissants de la population haïtienne. A partir de ces résultats, nous pouvons identifier le potentiel en eau de chacune des zones du pays, les endroits de fort potentiel et les zones de pénurie. Voilà, le point culminant de cette étude. Ce que nous constatons en observant les cartes de ruissellement que ce soit celle établie à partir de la méthode régressive ou la méthode du krigeage canonique, les zones de fort potentiel sont dispersées. Par contre les zones à faible potentiel sont sectorielles et constituent de vastes zones.

7.1.2 Contribution scientifique et discussion sur les méthodes utilisées

Estimation des précipitations et de l'évapotranspiration.

Il serait difficile voire même impossible d'installer des postes climatiques en chaque point du territoire. Quoiqu'il en soit, il faut estimer en tous les points du territoire si on veut connaître l'état de la ressource en eau de surface. Le krigeage ordinaire est l'approche qui a été utilisée pour estimer les précipitations totales et les pertes par évapotranspiration potentielle. Quoique le modèle accuse une erreur quadratique moyenne relative d'environ 31,3% et un biais moyen relatif de -7,2% sur les précipitations totales annuelles, la méthode du krigeage apporte une contribution importante dans cette étude car la précipitation, surtout en milieu tropical, est un phénomène souvent localisé, un paramètre très dépendant des conditions du milieu (orographie, altitude, vents locaux, etc). Donc, il est souvent difficile à interpoler. L'examen des erreurs montre que l'application de la méthode du krigeage ordinaire n'est pas parfaite mais acceptable lorsqu'on tient compte de la nature du paramètre estimé. Cependant, pour l'interpolation de l'évapotranspiration potentielle estimée par les méthodes de Penman-Monteith et de Thornthwaite, il semblerait que le krigeage ne soit pas la méthode d'interpolation idéale. La méthode de Penman-Monteith est une méthode qui nécessite une panoplie d'informations, connaissant le contexte haïtien, il nous parait invraisemblable qu'on soit en mesure d'estimer tous ces paramètres. Il se pourrait que certains d'entre eux aient été régionalisés. L'hypothèse n'a pas été documentée mais il nous parait être la solution la plus plausible. La méthode de Thornthwaite, elle, ne tient compte que de la température. Or, la température est un paramètre climatique qui varie en fonction de l'altitude (soit une perte de 0,65 degré pour chaque 100 mètres en hauteur). Souvent, les instruments de mesure sont installés dans les plaines et dans les vallées encaissées, du moins dans les endroits accessibles. Cela signifie que la variation de l'altitude n'entre pas souvent en jeu. Haïti est un pays à relief accidenté, par conséquent l'évapotranspiration ne pourrait être estimée adéquatement sur l'ensemble du territoire sans tenir compte de la variation de l'altitude.

Estimation de la lame d'eau ruisselée

La lame d'eau annuelle disponible a été estimée en considérant deux approches : une régression linéaire établie entre le débit moyen annuel et la superficie du bassin versant ; et un krigeage canonique (krigeage ordinaire dans l'espace physiographique).

La régression linéaire est une méthode simple qui a été établie en utilisant une relation entre le débit moyen annuel et la superficie du bassin versant drainé. L'estimation effectuée en utilisant cette méthode donne un coefficient de détermination de 0,99, une erreur quadratique moyenne relative de 8,2% et un biais relatif moyen de -20%. Mathématiquement, elle permet d'avoir des résultats très rapides mais qui ne sont pas toujours réalistes physiquement. Elle permet d'estimer la lame d'eau, quelque soit la superficie du bassin versant. Cependant, dans les petits bassins versants de moins de 10 km² nous constatons que les résultats ne correspondent pas toujours à la réalité, les valeurs obtenues sont trop élevées pour de telles superficies. C'est pourquoi, dans cette étude, tous les bassins de moins de 10 km² ont été écartés des résultats. De plus, l'une des limites de cette méthode est qu'elle estime des valeurs sans pouvoir estimer l'écart type sur ces valeurs estimées.

Le krigeage canonique est une méthode reposée sur des bases scientifiques justifiables qui permet de régionaliser une valeur locale. Pourtant, selon les résultats obtenus (erreur quadratique moyenne relative de 29,6% et biais relatif moyen de -13%), nous constatons que la méthode éprouve notamment des difficultés à pouvoir être utilisée sur des bases de données peu enrichies et de moins bonne qualité. Si on tient compte des résultats de l'article publié avec l'application de cette méthode sur les données des 151 stations de jaugeage dans l'Est de la province de Québec, on voit à première vue qu'elle utilise des bases de données consistantes. Il semble que ce soit une méthode très sensible aux banques de données limitées. Dans cette présente recherche nous l'utilisons sur une banque de données de 21 stations de jaugeage. Pour chaque valeur estimée la distance maximale entre les stations est de 4,08 Km pour un nombre maximum de 20 stations par estimation. Au-delà de cette distance aucune valeur ne pourrait être estimée. C'est pourquoi que cette méthode n'arrive pas à estimer la lame d'eau disponible pour une

surface totalisant 2 274 km² qui représente environ 8% de la superficie totale du pays. C'est une méthode de régionalisation très bien élaborée mais pas trop robuste du fait de ses limitations aux banques de données enrichies. L'estimation n'est possible que lorsque les sites sont assez nombreux.

7.2 Recommandations

Les recommandations de cette présente recherche s'appuient sur quatre grands axes : les banques de données, les résultats obtenus, les méthodes utilisées et les objectifs fixés au départ.

Recommandations par rapport aux banques de données

Les banques de données utilisées dans cette recherche ont été constituées à partir des informations recueillies de diverses sources. Cette démarche a permis de colliger les informations disponibles mais n'améliore pas la quantité ni la qualité. Ces trois banques de données constituées sont : précipitations, débits et données physiographiques. Les données étant faibles par rapport à la taille du pays (seulement 94 postes pluviométriques ont été recensées dont 86 sont fonctionnels à des périodes de durée variable, 71 stations hydrométriques ont été recensées dans l'annuaire hydrologique dont seulement 30 ont pu servir à l'analyse statistique et à la régionalisation). Des données de telle consistance n'ont pas sans conséquence sur les résultats obtenus. Pour cela, nous recommandons qu'un dispositif de jaugeage soit mis en place pour compléter les banques de données constituées:

- 1) Le réseau de mesure des paramètres climatiques doit être redistribué dans l'espace tout en tenant compte du relief et de l'altitude;
- 2) Le réseau de jaugeage des cours d'eau doit être recalibré en tenant compte de la délimitation et la taille des bassins versants et les sous bassins. Les données du réseau actuel sont trop peu nombreuses pour obtenir des résultats satisfaisants. Il faudrait mettre en place un nombre adéquat de stations de jaugeage et distribué de façon à couvrir dans l'espace une surface significative du territoire;
- Des mesures régulières doivent être effectuées dans ces stations afin de compléter les banques de données déjà constituées.

Recommandations par rapport aux résultats obtenus

Les résultats obtenus sont tributaires des données utilisées. C'est un travail académique qui pourrait être amélioré en utilisant des banques de données plus consistantes et de meilleures qualités. Toutefois, ce travail s'annonce prometteur et ses résultats pourraient servir de base dans l'éventualité à d'autres travaux futurs de recherche et à de divers projets de développement comme l'assainissement, l'hydroélectricité, l'irrigation, la construction de réservoirs, etc. Cependant, toute application de ces résultats lors d'une quelconque étude postérieure doit tenir compte des données qui ont été utilisées.

Recommandations par rapport aux méthodes utilisées

Les méthodes utilisées (krigeage ordinaire pour estimer les précipitation totales et les pertes par évapotranspiration, krigeage canonique, méthode régressive pour estimer l'eau de surface disponible) dans cette présente recherche sont des outils scientifiques ayant déjà servi dans certains cas à des travaux de recherche antérieurs donnant des résultats satisfaisants. Par contre, la satisfaction dépend des banques de données utilisées. Dans la perspective d'autres travaux du même genre, elles sont fortement recommandées et en fonction des résultats obtenus nous conseillons de:

- 1) utiliser le krigeage ordinaire pour estimer les précipitations totales tant à l'échelle spatiale qu'à l'échelle temporelle ;
- 2) améliorer l'estimation de l'évapotranspiration en tenant compte de l'altitude. Le *cokrigeage* sera dans ce cas la méthode d'interpolation la mieux appropriée;
- 3) utiliser le *krigeage canonique* pour estimer l'eau de surface disponible en ayant des banques de données enrichies car la robustesse de cette méthode est liée à la consistance et à la qualité des données. Dans cette recherche, la méthode régressive établie entre le débit moyen annuel et la superficie du bassin versant performe mieux que le krigeage canonique si on tient compte des critères de performances qui ont été utilisés. La méthode régressive se montre plus robuste que le krigeage par rapport à ces données, elle pourrait être utilisée dans des cas similaires mais lorsque les banques de données sont enrichies, si on tient compte de son application antérieure, le krigeage canonique pourrait être bien meilleure.

Recommandations par rapport aux objectifs de recherche

On dit dans les travaux qui précèdent cette recherche que la ressource en eau de surface à Haïti est abondante sans toutefois préciser la quantité tant à l'échelle spatiale qu'à l'échelle temporelle. Notre travail de recherche a visé comme objectif d'estimer cette ressource. Les résultats obtenus, loin d'être parfaitement satisfaisants, compte tenu de la limitation des banques de données utilisées, sont donc l'empreinte de nos objectifs fixés au départ. Les précipitations sont connues à l'échelle spatiale ainsi qu'à l'échelle temporelle, l'eau de surface disponible est connue à l'échelle spatiale sur toute l'étendue du territoire. Loin d'être exhaustif, ce travail ouvre la voie à d'autres travaux de recherche du genre de façon à établir un bilan hydrologique complet pour tous les bassins versants du territoire continental. Dans notre travail, nous avons développé une méthodologie pour estimer les précipitations totales. L'évapotranspiration potentielle a aussi été estimée par cette même méthode. Mais celle-ci pourrait être améliorée avec d'autres paramètres notamment en faisant un *cokrigeage* avec l'altitude. Compte tenu du temps imparti, ce travail n'a pas pu tout cerner. Afin de le compléter, nous recommandons fortement de :

- 1) exploiter les données de la télédétection pour construire une banque de données numérisées sur l'occupation du sol ;
- 2) utiliser un *cokrigeage* en tenant compte de l'altitude et des données numérisées sur l'occupation du sol pour estimer l'évapotranspiration réelle qui est un élément essentiel pour établir le bilan hydrologique;
- 3) exploiter au mieux ces travaux pour bien gérer la ressource en eau de surface disponible de façon à répondre aux besoins grandissants de la population haïtienne en eau potable ;
- 4) développer une méthodologie pour estimer l'infiltration. Cette démarche ouvrira la voie ultérieurement à une étude sur l'estimation des ressources en eau souterraine;
- 5) identifier à partir de ces travaux les zones d'intervention prioritaire de façon à limiter les impacts dévastateurs des inondations.

RÉFÉRENCES BIBLIOGRAPHIQUES

AISH (1993). Application of Geographic Information Systems in Hydrology and Water Resources Management. Proceedings of the HydroGIS 93 Conference, Vienne, avril 1993, AISH Publ., No 211.

Arnaud, M., Emery, X. (2000). Estimation et interpolation spatiale. Méthodes déterministes et méthodes géostatistiques. Hermes Sciences Publications 8, quai du Marché-Neuf 75004 Paris, 221 p.

Banque Mondiale, Banque Inter-Américaine de Développement, Nations Unies, Commission Européenne (2004). Cadre de coopération intérimaire 2004-2006. Rapport de synthèse, République d'Haïti.

Blaise, J.-F. A. (1987). Elaboration de données de débits moyens pour les cours d'eau pérennes à partir de formules empiriques. Mémoire de sortie. Faculté d'Agronomie et de Médecine Vétérinaire, Damien, Haïti, 52 pages.

Bobée, B., V., Fortin, L., Perrault et H., Perron (1999). *Hyfran 1.0* (logiciel hydrologique: Chaire en hydrologie statistique, CRNSG Hydro-Québec), INRS-ETE, Université du Québec, Québec.

Bobée, B. and Fahim A. (1991). The gamma family and deriver distributions applied en hydrology. Water resources publications. P.O. Box 2841 Littelton, Colorado 80161-2841 U.S.A., 203: 8-9

Cadier, E. (1993). Hydrologie des petits bassins du Nordeste brésilien semi-aride. Transposition à des bassins non étudiés. Collections études et thèses. Éditions ORSTOM, 414 p: 339-357.

Chaperon, P., L'Hote, Y., Vuillaume, G. (1985). Les ressources en eau de surface de la Guadeloupe. Tome 1- texte. Editions de l'ORSTOM. Collections monographies hydrologiques N° 7, Paris. 449 : 93-98 ; 257-296.

Chokmani, K. et Ouarda, T.B.M.J. (2004). Physiographical space-based kriging for regional flood frequency estimation at ungauged sites. Institut National de la Recherche Scientifique – Eau, Terre et Environnement, Université du Québec, Québec, Canada.

Cosandey, C., Robinson, M. (2000). Hydrologie Continentale. Édition Armand Colin, Paris.

Déclaration d'Haïti (2001). Conférence mondiale des Nations Unies sur l'environnement, Johannesburg, Afrique du Sud, 2001.

Dubreuil, **P**. (1974). Initiation à l'analyse hydrologique. Editeurs : Masson et Cie, 120 Boulevard Saint-Germain, Paris 6^e. Dépôt légal : 3^e trimestre 1974.

Ehrlich, M. (1985). Haiti-Country Environmental Profile-A Field Study. Contract No.521-0122-C-00-4090-00, Washington, DC: U.S. Agency for International development.

Emmanuel, **E., Lindskog**, **P**. (2000). Regards sur la situation des ressources en eau de la République d'Haïti, 25 p.

Falkenmark, M., Widstrand, C. (1992). Population and water resources: a delicate balance. Population bulletin, population reference bureau, 1992; 47p.

FAO (2002). Les ressources mondiales en eau et agriculture, http://www.fao.org/documents. Rome, Italie.

FAO (2000). World-wide agroclimatic database. SDRN-Working Paper N0.5. FAO Agrometeorology Group, Rome.

FAO (1993). Situation de l'alimentation et l'agriculture. Collection FAO : Agriculture N° 26, Rome, Italie, 193 p.

Gadelle, F. (1995). Le monde manquera-t-il bientôt d'eau ? Nº 1, vol. 6, France, mars, 1995.

GRET/FAMV (1991). Manuel d'agronomie tropicale appliquée à l'agriculture haïtienne. Éditions Tardy Quercy (S.A.) 46001 Cahors, France, 490 pages : 27-39.

Guiscafre, J., Klein, J.-C., Moniod, F. (1976). Les ressources en eau de surface de la Martinique. Editions de l'ORSTOM. Collections monographies hydrologiques, Paris, 211 p., annexes et cartes.

IHSI (1996). Haiti en chiffres. Institut haitien de statistiques et d'informatique. Statistiques de 1996.

Kitanidis, P. K. (1992). Geostatistics. Department of civil Engineering Stanford, California. Hand Book of hydrology. David R. Maidment Editor in chiy. MC Graw-Hill, Inc, manuals, etc, New York, San Francisco, Washington DC.

Kunzel, **W.** (1999). <u>www.gdin.org/haitiDEMapr04.html</u>. Modèle Numérique de Terrain d'Haiti et République Dominicaine.

Lachance, M. (2000). Statistiques de base. Notes de cours EAU103. Institut National de la Recherche Scientifique, INRS-Eau, Québec, CANADA, 140 p : 20.

Le Barbé, L., Alé G., Millet B., Texier, H., Borel, Y., Gualde, R. (1993). Les ressources en eaux superficielles de la République du Bénin. Editions ORSTOM. Collections monographies hydrologiques N° 11, Paris, 540 : 133-146 ; 339-443 ; 479-499.

LGL (1989). Schéma directeur d'assainissement pour la région métropolitaine de Port-au-Prince. MTPTC, Banque mondiale, AID, Haïti, Livre O, p 1-23.

LGL (1977). Agence Canadienne de Développement international (ACDI). Projet d'inventaire des ressources hydrauliques. Annuaire hydrologique, République d'Haïti, 620 pages.

Magny, E. (1991). Haïti: Ressources naturelles et environnement. Une nouvelle approche. Editions de l'imprimerie Henri Deschamps, Port-au-Prince, Haïti, 252 pages.

Margat, **J.** (1997). L'eau dans le monde : ressources et problèmes. Symposium sur la gestion de l'eau au Québec, Montréal, 10-12 décembre, 10 pages, annexes et cartes.

Markley, B., knowles, R. B., Buckalew, J. O., Waite, L. (1999). Évaluation des ressources en eau de la république d'Haiti. Corps d'Ingénieurs. District de Mobile et Centre d'Ingénieurs Topographiques (http://www.sam.usace.army.mil/en/wra/haiti), Etats-Unis, 43 pages.

MDE (1998). Programme de formulation de la politique de l'au. Commission interministérielle sur l'environnement, Secrétariat du plan d'action pour l'environnement (PAE), Haiti, 29 p.

MDE (2001). Première communication nationale sur les changements climatiques. Coopération technique GEF/UNEP No GF/2200-97-16/97-49. Port-au-Prince, 90 p.

Miquel, **J**. (2001). Hydrologie statistique. Introduction à l'étude des processus hydrométéorologiques. Application à la prédétermination des débits de crues, http://www.enpc.fr, 70 p.

Morell, M. (1998). Le système méditerranéen du cycle hydrologique MEDHYCOS. Des données, des outils et des compétences partagés, http://www.medhycos.com, 6 p.

Musy, A. (2000). Hydrologie générale. Les précipitations et les régimes hydrologiques (http://www.dgr.epfl.ch).

Neuvy, G. (1991). L'Homme et l'eau dans le monde tropical. Éditions Masson, Paris, milan, Barcelone, Bonn, 228 p.

OPS/OMS (1996). Analyse du Secteur Eau potable et Assainissement. Comité National Interministériel, Haïti, p.88.

Ouarda, T.B.M.J., C. Girard, G.S. Cavadias, and B. Bernard (2001). Regional flood frequency estimation with canonical correlation analysis, *J. Hydrol.*, 254, 157-173.

Ouarda, T.B.M.J, Lang, M. Bobée, B., Bernier, J. et Bois, P. (1999). Synthèse de modèles régionaux d'estimation de crue utilisés en France et au Québec. Révue des Sciences de l'Eau, Rev. Sci. Eau 12/1 (1999) 155-182.

Roche, M. (1963). Hydrologie de surface. Gauthier-villars paris, 431: 45-49.

Saint Jean, W. (1997). Énergie, pollution et environnement. Rapport de synthèse du premier congrès national de l'association haïtienne du Génie Sanitaire et des sciences de l'Environnement (ADISH), Haïti.

Sasseville, **J.-L**. (1997). Les eaux de surface. Exportation des eaux de surface : incertitudes et potentialités. Symposium sur la gestion de l'eau au Québec, Montréal, 10-12 décembre, 49 p : 140-189.

Sironneau, J. (1996). L'eau, nouvel enjeu stratégique mondial. Economica, Paris, France. **SPE** (1993). L'eau, Aujourd'hui, planète bleue, planète grise. Publication de la Société Suisse pour la protection de l'environnement (SPE). Éditeur Georg, Berne, 6, rue saint ours Ch-1205 Genève. 39-40 : 136 p.

Thys, **A**. (1997). Eau et assainissement. Examen des dépenses publiques d'Haiti, Note no. 6, Banque Mondiale, Haïti.

Trac, N'G. Q. (1990). Proposition de schéma directeur de développement et gestion des ressources en eau. Fondement pour une nouvelle politique de l'eau. PNUD-Projet HAI/86/03.

UNESCO/OMM (1997). Évaluation des ressources en eau. Manuel pour un examen des capacités nationales.

UNESCO (2003). Évaluation des ressources mondiales en eau. http://www.notre-planete.info/actualites/actu-167.php), 6 p.

ANNEXES

Annexe A: Série de débits des cours d'eau

Rivière: Limbé à Pont Christophe			
Année	Qmoyj	Qmaxj	Qminj
1923	5,11	76	0,15
1924	6,86	104	0,53
1925	4,46	49,7	0,17
1926	7,08	122	0,77
1927	12,68	1500	0,26
1928	11,53	238	0,85
1929	3,37	59	0,46
1930	3,68	61	0,3
1976	4,04	9,77	0,85
1977	4,67	9,39	0,58
1978	6,72	24,01	0,28
1979	5,44	10,76	0,1
1988	4,58	18,24	0,41
1989	3,09	16,6	0,24
1990	2,28	11,48	0,24

Rivière: Limbé à Roche Haleine			
Année	Qmoyj	Qmaxj	Qminj
1922	3,86	70	0,5
1923	4,41	163	0,58
1924	3,24	25	0,48
1925	4,67	48,8	0,38
1926	4,76	233	0,3
1927	6,43	150	0,8
1928	2,76	40,2	0,84
1930	8,79	90,5	1,64
1931	3,75	40,8	0,88
1932	4,52	42,2	0,6
1933	5,86	120	1,41
1935	5,22	57	0,94
1936	4,45	29,8	0,81
1937	2,33	17,7	0,52
1938	2,32	34,2	0,49
1939	2,76	20	0,77

Rivière:Gallois à Grison Garde			
Année	Qmoyj	Qmaxj	Qminj
1922			
1923	0,28	1,5	0,02
1924	0,45	4,05	0,11
1925	0,37	3,5	0,03
1926	56	4,75	0,1
1927	0,43	10,9	0,08
1928	0,36	2,35	0,08

Rivière:Gallois à Grison Garde (suite)			
Année	Qmoyj	Qmaxj	Qminj
1929	0,32	2,7	0,09
1930	0,47	4,55	0,12
1931	0,85	7,6	0,18

Rivière:Gallois à Passe orangers			
Année	Qmoyj	Qmaxj	Qminj
1929	0,18	2,34	0,03
1930	0,24	1,34	0,05
1931	0,35	2	0,06

Source: Eau Froide					
Année	Année Qmoyj Qmaxj Qminj				
1929	0,07	0,28	0,02		
1930	0,04	0,18	0,01		
1931	0,05	0,19	0,02		

Source: Eglise				
Année	Qmoyj	Qmaxj	Qminj	
1928	0,09	57	0,02	
1929	0,05	0,2	0,02	
1930	0,07	0,23	0,02	
1931	0,1	0,32	0,06	

Rivière:	Rivière: Grande Rivière du Nord à Pont Parois			
Année	Qmoyj	Qmaxj	Qminj	
1924	5,45	112	0,31	
1925	5,79	118	0,26	
1926	9,41	206	0,4	
1927	6,3	260	0,33	
1928	11,69	332	0,93	
1929	4,46	35,5	0,42	
1930	3,4	166	0,15	
1931	19,59	130	0,16	
1932	15,73	250	1	
1933	8,05	57	1,3	
1934	9,57	91	1	
1935	6,85	136	0,8	
1936	11,13	168	1,25	
1937	8,09	162	0,61	
1938	2,39	16,6	0,52	
1939	3,37	38,6	0,02	
1940	5,38	111	1,32	
1976	8,1	33,5	0,19	

Rivière: Grande Rivière du Nord à Pont Parois (suite)				
Année	Qmoyj	Qmaxj	Qminj	
1977	9,14	115	0,5	
1978	10,53	140	1,35	
1979	9,48	123	0,6	

Riviè	Rivière: Trou du Nord à Chabert			
Année	Qmoyj	Qmaxj	Qminj	
1926				
1927	0,25	12,4	0	
1928	1,58	34,5	0	
1929	0,5	3,9	0	
1976	0,81	4,16	0,1	
1977	0,9	3,22	0,2	
1978	0,92	1,59	0	

Rivière: Massacre à Ouanaminthe			
Année	Qmoyj	Qmaxj	Qminj
1923	3,23	70	0,17
1924	8,28	320	0,05
1925	4,61	48,5	1,04
1926	4,31	66,1	1,22
1927	4,18	97	0,46
1928	6,35	136	1,22
1929	3,1	32,2	0,39
1930	1,99	31	0,61
1931	11,86	79	0,95
1932	7,66	115,5	1,75
1933	6,79	47,4	2,78
1934	6,29	78,5	2,42
1935	3,79	47,2	1,24
1936	5,91	57	0,81
1937	4,13	41	0,57
1938	2,47	23,9	0,31
1939	4,31	64,5	0,34
1940	7,07	76,5	1,4

Rivière : Ennery à Passe Joly				
Année	Qmoyj	Qmaxj	Qminj	
1924				
1925	0,87	4,05	0,17	
1926	0,99	4,68	0,18	
1927	0,66	3,15	0,08	
1928	0,58	5,6	0,17	
1929	48	1,74	0,12	

Rivière	Rivière :Ennery à Passe Joly (suite)			
Année	Qmoyj	Qmaxj	Qminj	
1930	0,52	9,4	0,07	
1931	1,48	16,4	0,12	
1965	0,54	2,16	0	
1966	0,6	4,32	0	

Rivière: Trois Rivières à Gros-Morne			
Année	Qmoyj	Qmaxj	Qminj
1923	6,6	123	0,75
1924	8,28	150	0,5
1925	6,43	350	0,64
1926	6,38	101	1,3
1927	6,12	585	0,1
1928	6,69	162	0,46
1929	3,39	72	0,98
1930	4,76	81	0,72
1931	11,92	266	1,48
1932	5,95	45,6	0,25
1933	7,66	172	1,59
1934	9,62	216	1,96
1935	4,73	77,5	0,72
1936	4,05	36	0,6
1937	5,71	164	1,07
1938	4,46	100,5	0,44
1939	5,12	290	0,86
1940	4,16	18,2	0,62
1962	5,44	23,83	1,37
1963	13,59	198	4
1964	11,38	96,11	6,51
1965	11,39	118,1	5,9
1966	7,18	104,35	1,61
1976	6,42	80	1,2
1977	7,1	74	0,68
1978	8,13	42,46	0,8
1979	7,03	34,7	0,5

Rivière: Trois rivières à Plaisance			
Année	Qmoyj	Qmaxj	Qminj
1925			
1926	0,79	6,15	0,14
1927	0,61	13,6	0,02
1928	1,5	40	0,1
1929	1,01	22,5	0,07
1930	0,38	8,4	0,01

Rivière: Trois rivières à Plaisance (suite)			
Année	Qmoyj	Qmaxj	Qminj
1965	1,72	16,07	0,14
1966	0,98	17,63	0,08

Rivière	Rivière: montrouis à Pont toussaint			
Année	Qmoyj	Qmaxj	Qminj	
1924	3,52	53	0,09	
1925	3,56	37	0,06	
1926	1,25	9	0,18	
1927	1,04	7,8	0,19	
1928	1,34	12,2	0,13	
1929	1,65	25,5	0,15	
1930	0,84	4,2	0,15	

Rivière: Artibonite à Pont Sondé			
Année	Qmoyj	Qmaxj	Qminj
1922			
1923	70,49	327	12,2
1924	102,82	496	13,7
1925	127,28	516	19
1926	100,61	453	18,2
1927	100,29	423	19
1928	94,58	420	18
1929	71,7	330	19,4
1930	71,79	380	16
1931	143,45	480	11,4
1933	134,16	420	0,5
1934	143,6	410	21,4
1935	105,35	375	14,4
1936	120,02	475	16,9
1937	108,54	450	19
1938	77,6	410	13,9
1939	99,6	382	12,5
1940	138,32	550	22
1941	123,46	355	22
1942	142,17	530	23,4
1943	139,56	530	34,5
1976	84,98	258,25	23,18
1977	74,25	247,23	18,25

Rivière: Artibonite à Mirebalais			
Année	Qmoyj	Qmaxj	Qminj
1923	60,67	512	12,7
1924	83,74	456	12,7
1925	107,36	848	15
1926	88,78	591	19,1
1927	95,44	560	12,5
1928	92,44	755	15,5
1929	69,35	550	14,3
1930	62,07	422	8,4
1931	152,84	1150	15,3
1932	110,04	545	15,8
1933	97,8	820	15,8
1934	99,3	625	18,4
1936	85,5	585	13,8
1937	85,9	545	13,3
1938	60,84	430	12,3
1939	71,85	286	10,3
1940	83,13	620	16,3

R	Rivière: Bois à Verrettes			
Année	Qmoyj	Qmaxj	Qminj	
1924				
1925	5,07	20,3	1,01	
1926	2,58	13,2	0,1	
1927	2,23	9,9	0,24	
1928	1,37	11	0,75	
1929	1,49	3,65	0,63	
1930	2,05	18,8	0,93	
1931	4,11	19	0,6	
1936	1,84	18,4	0,97	
1937	1,85	6	0,85	
1938	1,41	3,8	0,72	
1939	2,24	13,4	0,72	
1940	1,6	2,55	1,05	

Rivière: La Thème à Passe fine			
Année	Qmoyj	Qmaxj	Qminj
1924	4,99	44	1,32
1925	4,16	33,5	0,67
1926	4,07	55,5	1,02
1927	5,71	74	0,8
1928	5,59	88	1,21
1929	4,18	100	0,44

Rivière: La Thème à Passe fine (suite)				
Année	Qmoyj	Qmaxj	Qminj	
1930	3,57	85	0,69	
1931	6,52	82	0,62	

Rivière	Rivière : Fer-à-cheval à Pont Pétion			
Année	Qmoyj	Qmaxj	Qminj	
1923	6,79	22,8	2,12	
1924	19,22	110	1,5	
1925	19,01	150	1,6	
1926	13,22	152	2,37	
1927	15,67	345	2	
1928	7,26	42,8	1,72	
1929	7,28	144	1,6	
1930	4,56	162	0,73	
1931	2,48	4,6	1,7	
1976	8,68	120	1,32	
1977	7,93	20,31	1,3	
1978	11,14	26,09	0,4	
1979	6,77	15,17	0,49	
1980	9,84	18,03	0,29	

Rivière:Onde verte à Onde verte			
Année	Qmoyj	Qmaxj	Qminj
1927	3,38	6,7	2,42
1928	4,03	11,4	2,24
1929	3,87	16,5	2,06
1930	3,15	4,35	2,42

Riviè	Rivière: Guayamounc à Hinche			
Année	Qmoyj	Qmaxj	Qminj	
1926	26,09	203	4,2	
1927	25,74	166	0,9	
1928	24,07	165	1,11	
1929	19,96	210	2,52	
1930	15,44	146	2,28	
1931	49,07	665	2,76	
1976	21,23	44,21	0,11	
1977	20,54	46,62	0,51	
1978	22,55	43,02	0,55	
1979	24,27	84	1,78	
1980	24,51	53,75	0,2	

Rivière: Bouyaha à St-Raphael			
Année	Qmoyj	Qmaxj	Qminj
1923	3,5	94	0,35
1924	4,27	86	0,32
1925	1,61	21,2	0,55
1926	3,99	108	0,61
1927	2,64	120	0,35
1928	4,05	75	0,66
1929	2,01	12,25	0,6
1930	1,85	12,6	0,14
1931	8,52	80	0,79
1932	4,84	46	0,29
1933	2,26	22,6	0,26
1934	3,75	34,6	0,08
1935	3,74	107	0,26
1936	5,02	71,5	0,48
1937	4,47	123	0,2
1938	1,09	19	0,14
1939	1,97	54	0,15
1940	5,91	129	0,52
1941	2.81	52	0,17

	Source Saut d'Eau			
Année	Qmoyj	Qmaxj	Qminj	
1926	0,36	0,44	0,26	
1927	0,33	0,4	0,27	
1928	0,34	0,39	0,31	
1929	0,34	0,41	0,31	

Source : Merlingue			
Année	Qmoyj	Qmaxj	Qminj
1933	0,11	0,2	0,06
1934	0,1	0,14	0,06
1935	0,09	0,19	0,07
1936	0,12	0,19	0,08
1937	0,08	0,13	0,05
1938	0,07	0,13	0,04

Rivière: Estère à Pont Benoit			
Année	Qmoyj	Qmaxj	Qminj
1922	2,09	16,6	0,17
1923	2,79	23,1	0
1924	2,74	31,2	0
1925	4,04	29,9	0,06
1926	2,88	24,1	0,01
1927	0,78	5,1	0
1928	4,43	24	0
1929	3,51	30,5	0
1930	3,31	29	0
1931	10,3	51	0

Rivière: Saint_Marc à Corbay I			
Année	Qmoyj	Qmaxj	Qminj
1926	0,46	1,8	0,26
1927	0,39	0,64	0,26
1928	0,31	0,44	0,2
1929	0,37	0,89	0,19
1930	0,41	0,73	0,25

Rivière: Corbay à Corbay II			
Année	Qmoyj	Qmaxj	Qminj
1926	0,26	0,47	0,18
1927	0,21	0,26	0,16
1928	0,18	0,25	0,11
1929	0,21	0,42	0,15
1930	0,19	0,24	0,12

	Source: Lafortune			
Année	Qmoyj	Qmaxj	Qminj	
1928	0,2	0,58	0,12	
1929	0,26	0,66	0,12	
1930	0,24	0,34	0,14	
1931	0,25	0,46	0,1	

Source: Gilbert			
Année	Qmoyj	Qmaxj	Qminj
1928	0,1	0,2	0,06
1929	0,13	0,15	0,12
1930	0,1	0,15	0,09

Rivière: Rouyonne à Deslandes			
Année	Qmoyj	Qmaxj	Qminj
1921	1,36	3,28	0,27
1922	0,26	2,3	0,02
1923	0,22	3,4	0,04

	Source: Des Pères			
Année	Qmoyj	Qmaxj	Qminj	
1922	0,22	0,3	0,16	
1923	0,15	0,28	0,11	
1924	0,19	0,31	0,12	
1925	0,21	0,3	0,11	
1926	0,22	0,36	0,11	
1927	0,22	0,27	0,16	
1928	0,15	0,17	0,14	
1929	0,22	0,22	0,22	

Rivière: Momance à Buissonnière			
Année	Qmoyj	Qmaxj	Qminj
1921	11,66	50	1,42
1922	5,42	48,1	1,17
1923	3,67	125	1,05
1924	5,6	72,4	0,12
1925	6,36	49,3	1,3
1926	5,22	34	0,97
1927	6,79	38	0,97
1928	8,42	125	1,18
1929	4,64	18,8	1,23
1930	3	18,8	1,18
1931	7,63	21,8	1
1932	5,7	16,5	1,35
1933	6,19	26,8	1,19
1934	6,88	25,6	1,78
1935	5,46	190	1,5
1936	5,45	42	1,13
1937	5,08	13	1,66
1938	4,52	20,3	1,06
1939	7,03	41,8	1,33
1940	4,54	17,8	0,66

Source: Madame Verguier			
Année	Qmoyj	Qmaxj	Qminj
1922	0,19	0,5	0,12
1923	0,16	0,64	0,08
1924	0,2	0,51	0,1
1925	0,2	0,48	0,11
1926	0,16	0,35	0,09
1927	0,16	0,35	0,05
1931	0,17	0,49	0,06
1933	0,13	0,17	0,1
1934	0,11	0,13	0,1
1935	0,11	0,54	0,06
1936	0,13	0,2	0,1
1937	0,12	0,24	0,04
1938	0,14	0,17	0,12

Rivière: Grise en Amont du Barrage			
Année	Qmoyj	Qmaxj	Qminj
1919	3,87	6,14	2
1920	2,43	9,45	1,08
1921	4,13	17,9	1,21
1922	3,03	12,9	1
1923	3,47	140	0,19
1924	4,9	168	0,31
1925	3,65	19,6	0,87
1926	3,43	14,8	0,91
1927	5,21	20,3	1,08
1928	5,63	150	1,27
1929	3,21	13,2	1,31
1930	2,63	29,4	1
1931	5,69	36	1,02
1932	4,87	14	0,82
1933	4,08	16	1,19
1934	3,7	9,4	1,73
1935	3,12	6,8	1,31
1936	4,57	16,4	1,17
1937	5,27	27,8	1,19
1938	2,78	9,9	1,35
1939	9,21	9,9	0,96
1940	3,11	10,1	1,04
1976	3,72	9,12	0,45
1977	3,59	7,55	0,47
1978	4,28	7,61	0,12
1979	3,86	8,7	0,31
1980	5,34	19,88	0,4
1981	3,92	12,82	0,5

Rivière: Blanche à La Gorge			
Année	Qmoyj	Qmaxj	Qminj
1923	1,3	10	0,69
1924	1,71	5,69	0,78
1925	1,57	3,58	1,11
1926	1,38	3,34	0,98
1927	2,13	10,6	0,83
1928	2,01	9,2	0,75
1929	2,23	7,72	1,3
1930	1,52	2,64	1
1931	2,45	11	0,82
1932	2,92	6,4	1,43
1933	2,64	5,12	1,3
1934	2,67	8,75	1,42
1935	1,84	4,6	1,25
1936	1,9	3	0,9
1937	2,07	3,8	1,32
1938	2,29	206	0,96
1939	1,45	3,32	0,9
1940	1,72	4,08	1,19
1976	1,34	4,36	0,63
1977	1,21	3,64	0,12
1978	1,28	6,2	0,31
1979	1,26	4,38	0,21

Source Despuzeau			
Année	Qmoyj	Qmaxj	Qminj
1922	0,38	0,89	0,26
1923	0,37	1,1	0,21
1926	0,56	0,8	0,43
1927	0,39	0,56	0,09
1928	0,62	2,2	0,3
1929	0,72	0,84	0,6
1930	0,69	0,9	0,48
1931	0,6	1,02	0,34
1932	0,82	1,26	0,57
1933	0,9	1,44	0,63
1934	0,82	1,38	0,6
1935	0,7	0,9	0,54
1936	0,66	0,9	0,4
1937	0,83	0,96	0,72
1938	0,77	1,02	0,69

Source Palmiste Clair			
Année	Qmoyj	Qmaxj	Qminj
1922	0,08	0,2	0,01
1923	0,07	0,5	0,04
1927	0,05	0,11	0,03
1928	0,07	0,14	0,06
1929	0,1	0,14	0,08
1930	0,1	0,18	0,05
1931	0,1	0,17	0
1932	0,12	0,25	0,08
1933	0,15	0,28	0,1
1934	0,13	0,2	0,1
1935	0,12	0,17	0,08
1936	0,11	0,16	0,08
1937	0,11	0,17	0,04
1938	0,09	0,14	0,06

Rivière: Torcelle à Massaye			
Année	Qmoyj	Qmaxj	Qminj
1923	0,53	2,9	0,16
1924	1,45	23,2	0,08
1925	1,73	15,1	0,25
1926	1,09	15,1	0,17
1927	1,24	19	0,18
1928	0,92	18	0,08
1929	0,89	10,1	0,03
1930	0,8	8,5	0,03
1931	1,84	10,5	0,24
1932	1,42	6,1	0,22
1933	1,1	5,65	0,38
1934	1,05	4,45	0,19
1935	1,02	3,8	0,26
1936	1,13	9,55	0,22
1937	1,03	3,4	0,29
1938	1,27	5,25	0,24
1939	1,32	4,45	0,37
1940	1,35	6,05	0,24
1941	0,81	4,65	0,02
1976	1,12	1,93	0,43
1977	0,82	1,47	0,01
1978	0,82	1,79	0,08

Rivière: courjolle à Bassin Proby			
Année	Qmoyj	Qmaxj	Qminj
1923	0,7	4	0,3
1924	1,39	7,72	0,26
1925	1,72	13	0,42
1926	1,06	9,95	0,29
1927	0,94	7,6	0,32
1928	1,1	10,3	0,12
1929	1,23	18,6	0,27
1930	0,52	2,38	0,35
1931	3,03	20,6	0,3
1932	0,99	2,2	0,36
1933	1,16	5,2	0,27
1934	1,23	4,55	0,42
1935	1,15	5,2	0,1
1936	1,17	4,55	0,32
1937	1,62	5,95	0,38
1938	1,25	7	0,25
1939	1,27	4,25	0,54
1976	1,14	2,82	0,26
1977	1,00	2,6	0,22
1978	1,23	2,38	0,04
1979	0,67	2,47	0,09

Rivière: Matheux à Arcahaie			
Année	Qmoyj	Qmaxj	Qminj
1922	0,96	6,04	0,57
1923	0,83	4,8	0,44
1924	1,39	10,2	0,41
1925	1,8	12,2	0,64
1926	1,1	5,28	0,52
1927	0,81	3,06	0,39
1928	1,13	13,6	0,44
1929	0,97	4,55	0,4
1930	0,69	1,7	0,48
1931	3,1	17,8	1,12
1932	4,23	70	0,65
1933	1,7	6,4	0,61
1934	1,65	6,4	0,76
1935	1,48	4,22	0,52
1936	1,21	4,5	0,66
1976	1,48	2,69	0,23
1977	0,82	1,55	0,01
1978	0,86	1,89	0,09

	Source Anse-à-Galet			
Année	Qmoyj	Qmaxj	Qminj	
1928	0,02	0,03	0,01	
1929	0,02	0,02	0,01	
1930	0,32	0,52	0,04	
1931	0,02	0,02	0,02	

R	Rivière: Jacmel à Jacmel			
Année	Qmoyj	Qmaxj	Qminj	
1927	4,38	36	0,15	
1928	9,47	800	0,33	
1929	4,62	75	0,69	
1930	2,1	17,6	0,14	
1931	1,63	18,8	0,12	
1976	5,10	13,16	0,64	
1977	5,03	8,45	0,11	
1978	5,79	20,08	0,81	
1979	6,35	11,98	0,23	
1980	5,42	12,32	0,63	

Rivière:	Rivière: Cayes Jacmel à Cayes Jacmel				
Année	Année Qmoyj Qmaxj Qminj				
1929	0,29	0,96	0,05		
1930	0,35	2,08	0,03		

Riviè	Rivière: Des plantils à Marigot			
Année	Qmoyj	Qmaxj	Qminj	
1929	1,93	8,3	0,07	
1930	2,18	13,6	0,35	
1931	3,58	16,4	0,33	

Rivière:	Rivière: Des pedernales à Anse-à-pitres				
Année	Qmoyj	Qmaxj	Qminj		
1929	0,51	0,81	0,38		
1930	0,32	0,52	0,04		

Riv	Rivière: Torbeck à Torbeck				
Année	Qmoyj	Qmaxj	Qminj		
1923	3,5	3,95	2,05		
1924	4,42	114	0,57		
1925	2,45	5,26	1,16		
1926	1,25	3,8	0,39		
1927	0,9	5,4	0,35		
1928	2,34	63,2	0,61		
1929	3,07	27,5	1,05		
1930	2,55	5,25	1,3		

Rivière: Ravine du sud à Camp Perrin				
Année	Qmoyj	Qmaxj	Qminj	
1924	5,45	170	0,96	
1925	4,99	209	0,47	
1926	3,56	47,6	0,53	
1927	2,82	51,5	0,28	
1928	4,54	103	0,96	
1929	4,73	71,5	1,03	
1930	3,95	114,5	1,3	
1931	7,27	79	1,1	
1932	5,92	112,5	0,92	
1933	6,84	105	0,91	
1934	5,39	97,5	1,68	
1935	3,23	116	1	

Rivière: Cavaillon à Cavaillon			
Année	Qmoyj	Qmaxj	Qminj
1925	5,79	213	2,22
1926	4,21	19,2	1,44
1927	5,49	200	0,14
1928	10,58	630	1,28
1929	8,94	436	2,9
1930	5,97	89,5	1,73
1931	14,93	472	2,9
1932	10,76	394	1,43
1933	15,8	448	1,68
1934	10,98	289	2,9
1935	8,06	645	2,07
1936	2,23	102	1,09
1937	13,6	540	0,75
1938	6,12	77	1,42
1939	9,1	398	0,7
1940	9,82	358	1,12

Rivière:	Rivière: Cavaillon à Cavaillon (suite)				
Année	Qmoyj	Qmaxj	Qminj		
1941	5,56	71	1,2		
1976	9,34	41,1	0,43		
1977	5,97	20,55	1,81		
1978	7,15	27,09	1,76		
1979	6,14	13,61	1,21		
1980	6,34	17,24	0,28		

Rivière	Rivière: Cotes de Fer à Cotes de Fer				
Année	Qmoyj	Qmaxj	Qminj		
1929	0,33	4,6	0,03		
1930	0,08	29,2	0		

R	Rivière: Islet aux Cayes				
Année	Qmoyj	Qmaxj	Qminj		
1923	53,5	1,02	-		
1924	4,01	137	1,1		
1925	2,66	18	1,35		
1926	1,28	3,95	0,67		
1927	1,1	22,8	0,55		
1928	1,59	83	0,86		
1929	3,3	150	1,06		
1930	3,84	95	2,06		
1931	4,04	95,52	1,38		

Riviè	Rivière: Acul du sud à Dubreuil			
Année	Qmoyj	Qmaxj	Qminj	
1984	3,48	62,47	0,45	
1985	3,76	72,3	0,49	
1986	3,71	10,92	0,31	
1987	3,76	10,43	0,09	
1988	2,98	14,42	0,12	
1989	3,20	10,58	0,38	

Rivièr	Rivière: Miragôane à Pont Olivier			
Année	Qmoyj	Qmaxj	Qminj	
1926	0,37	0,68	0,06	
1927	0,14	1,05	0	
1928	0,95	2,48	0,1	
1929	1,63	1,9	1	
1930	0,6	1	0,08	

Rivière: Des Roseaux à Monferi				
Année	Qmoyj	Qmaxj	Qminj	
1929	2,86	17,4	0	
1930	4,96	75	0	

Rivière	Rivière: voldrogue à Passe Laraque			
Année	Qmoyj	Qmaxj	Qminj	
1928	4,45	13,2	1,2	
1929	9,1	59	1,22	
1930	6,1	45	0,59	

Rivière	Rivière: Grande Anse à Passe Ranja				
Année	Qmoyj	Qmaxj	Qminj		
1925	37,73	791	4,5		
1926	23,1	180	4		
1927	46,7	380	6,2		
1928	25,48	340	2,42		
1929	15,87	150	1,06		
1930	24,93	540	0,7		
1931	41,92	530	4,35		

Annexe B:

Données d'évapotranspiration : méthodes de Penman-monteith et Thornthwaite Régression entre la méthode de Penman-monteith et celle de Thornthwaite Pour l'estimation de l'évapotranspiration

Données d'évapotranspiration estimées par la méthode de Penman-Monteith

Station	J	F	M	Α	M	J	7	Α	S	0	Z	ם
Baumont	83	91	117	127	126	134	139	141	123	111	88	80
Cap-Haitien	102	120	154	172	182	177	206	187	159	138	116	107
Fonds-des- Nègres	87	95	119	128	128	132	134	138	123	109	88	80
Gde Riv, Nord- HA	95	101	130	137	153	149	154	154	132	120	96	87
Gonaives	100	113	143	160	154	152	164	167	159	130	109	93
Hinche	97	112	160	138	147	139	151	161	125	121	107	92
Jean-Rabel	90	102	135	147	160	160	178	169	139	125	97	88
Jérémie	107	108	135	146	149	151	151	153	137	125	101	91
Kenscoff	84	83	105	113	119	122	129	132	116	101	77	78
Les-Cayes	131	127	153	154	159	160	175	170	149	137	119	119
Limbé	97	100	124	136	142	145	153	150	134	123	93	83
Limonade	86	86	121	135	147	149	154	155	140	123	91	75
Marmelade	76	80	109	114	126	121	128	125	111	99	80	73
Mirebalais	100	110	137	145	144	143	143	146	130	119	100	93
Port-de-paix	94	97	113	121	134	148	155	156	164	151	118	103
Seguin	49	49	50	47	52	61	66	67	68	56	56	41
Saint-Raphaël	74	105	115	104	108	108	119	162	133	119	109	83
Trou du Nord	89	99	110	127	137	149	154	155	152	144	123	104
Vallières	89	103	112	120	122	124	127	128	115	118	104	92

Source : FAO (2000)

Données d'évapotranspiration estimées par la méthode de Thornthwaite

Station	J	F	М	Α	M	J	J	Α	S	0	N	D
Anse-à-Galet	97	101	112	124	139	154	156	161	154	146	124	104
Anse-à-Veau	95	100	110	124	136	152	156	158	154	146	124	104
Aquin	97	101	112	124	139	154	156	161	154	16	124	104
Arcahaie	95	100	110	124	136	152	156	158	154	146	124	104
Bainet	95	99	110	123	136	151	155	157	153	145	123	104
Banane	78	83	91	98	108	119	122	124	121	114	98	85
Belladère	78	83	91	98	108	119	122	124	121	114	98	85
Belle-anse	97	101	112	124	139	154	156	161	154	146	124	104
Billiguy	81	86	95	102	113	125	128	130	127	119	104	88
Bombardopolis	72	75	82	89	97	107	109	112	109	102	90	78
Borgne	80	80	87	101	116	130	138	120	136	128	106	87
Cabaret	106	116	125	136	144	159	172	165	150	142	127	104
Campérin	83	88	97	105	116	128	132	133	130	122	106	90
Cap-Haitien	81	86	90	103	119	133	138	141	143	128	103	91
Cavaillon	95	100	110	122	136	152	154	158	152	144	122	103
Cerca-la-source	77	81	89	96	106	116	119	120	118	111	96	83
Chantal	93	97	108	121	133	148	152	154	150	142	121	102
Chappelle-LA	90	94	104	114	127	141	143	146	141	134	114	96
Chauffard	52	55	60	62	67	74	75	77	75	70	63	57
Chevallerie-LA	122	132	154	167	158	141	152	143	134	132	119	115
Cornillon	70	72	83	90	96	105	112	111	111	98	87	78
Croix-des-Bouquets	92	96	107	119	131	146	150	152	148	141	119	101
Damiens	87	94	105	115	113	110	116	112	104	104	94	85

Données d'évapotranspiration estimées par la méthode de Thornthwaite (suite)

Desdunes	Station	J	F	M	Α	M	J	J	Α	S	0	N	D
Despuzeau		95	100	110	124	136	152	156	158	154	146	124	104
Dessalines		1		L						150	142	121	102
Duvalierville				L	1								
Ennery 78		1		L									
Fonds-des-Nègres 77 80 90 98 98 109 113 114 114 104 93 80		1				1							
Fonds parisien											1		
Fonds Verrettes					L							<u> </u>	
Forêts des Pins											<u> </u>		
Furcy		42		1	ı	56	60	65	65	60	58		4
Gaillard 85 88 97 107 119 131 134 136 133 125 108 92 Ganthier 108 121 136 149 156 167 177 174 165 156 136 110 Gde Riv, Nord-HA 84 100 94 126 131 139 149 147 138 113 185 Gonaives 111 113 123 161 161 188 199 122 121 218 191 142 Grand Bassin 91 96 106 118 130 145 148 141 111 120 Grande Rivière 94 98 108 108 120 133 148 150 144 141 120 101 131 131 131 132 106 91 Hinche 77 103 121 112 120 116 129 1	Furcy		51			62			1	70	64		
Ganthier 108 121 136 149 156 167 177 174 165 156 136 110 Gde Riv, Nord-HA 84 100 94 126 131 139 139 149 147 138 113 85 Gonaives 111 113 123 161 161 188 194 221 212 218 191 142 Grand Bassin 91 96 106 118 130 145 148 150 146 139 118 100 Grande Rivière 94 98 108 120 133 148 150 154 148 110 101 Grande Rivière 94 98 108 120 116 129 131 131 131 131 121 100 101 Grande Rivière 94 98 108 106 116 129 131 141 120 101 <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>125</td> <td></td> <td></td>						1					125		
Genaria						1							
Gonaives 111 113 123 161 161 188 194 221 212 218 191 142 Grand Bassin 91 96 106 118 130 145 148 150 146 139 118 100 Grande Rivière 94 98 108 120 133 148 150 154 148 141 120 101 Gros-Morne 84 87 96 106 116 129 131 134 131 123 106 91 Hinche 77 103 121 112 120 116 129 179 144 135 124 83 Jacm-Rable 77 103 121 122 108 117 124 136 165 149 124 144 135 142 146 162 156 66 171 69 72 68 64 57		L				1					I	L	
Grand Bassin 91 96 106 118 130 145 148 150 146 139 118 100 Grands-Bois 61 66 76 83 84 87 90 90 88 85 75 64 Grande Rivière 94 98 108 120 133 148 150 154 148 141 120 101 Gros-Morne 84 87 96 106 116 129 131 134 131 122 106 91 Hinche 77 103 121 112 120 116 129 179 144 135 124 83 Jacmel 109 111 113 119 121 140 150 164 162 150 144 118 Jacchimie 122 108 117 124 138 164 140 148 121 141 133				123				194	221	212		191	142
Grands-Bois 61 66 76 83 84 87 90 90 88 85 75 64 Grande Rivière 94 98 108 120 133 148 150 154 148 141 120 101 Gros-Morne 84 87 96 106 116 129 117 141 120 116 129 179 144 135 124 83 Jacmel 109 111 113 119 121 140 150 164 162 150 144 118 Jerémie 122 108 117 124 138 164 175 166 171 164 148 124 Kenscoff 55 51 55 60 65 69 71 69 72 68 64 57 Léogâne 83 100 110 124 133 141 133 122											1		
Grande Rivière 94 98 108 120 133 148 150 154 148 141 120 101 Gros-Morne 84 87 96 106 116 129 131 134 131 123 106 91 Hinche 77 103 121 112 116 129 179 144 135 124 83 Jacmel 109 111 113 119 121 140 150 164 162 150 144 118 Jean-Rabel 77 83 93 104 121 135 142 140 134 127 98 83 Jérémie 122 108 117 124 138 164 175 166 171 164 148 131 175 168 64 157 Léogâne 83 100 110 124 136 155 150 160													
Gros-Morne													
Hinche			l										
Jacmel 109 111 113 119 121 140 150 164 162 150 144 118 149 140 140 134 127 98 83 3 3 3 104 121 135 142 140 134 127 98 83 3 3 3 3 104 121 135 142 140 134 127 98 83 3 3 3 3 104 121 135 142 140 134 127 98 83 3 3 3 104 121 138 164 175 166 171 164 148 124 146 1	Hinche												
Jean-Rabel													
Hermin H													
Kenscoff 55 51 55 60 65 69 71 69 72 68 64 57 Léogâne 83 100 110 124 136 152 156 158 154 146 124 104 Lesson 117 126 146 156 148 131 141 133 122 121 112 111 Limonade 80 79 86 106 116 128 131 139 138 128 105 84 Maissade 81 86 95 102 113 125 128 130 127 119 104 88 Mairfanc 90 95 98 110 123 132 141 139 131 126 110 80 Marrence 65 68 74 79 86 95 97 99 96 90 79 70 <													
Léogâne 83 100 110 124 136 152 156 158 154 146 124 104 Lesson 117 126 146 156 148 131 141 133 122 121 112 111 Limbé 86 103 97 130 136 145 145 154 153 143 114 88 Limonade 80 79 86 106 116 128 131 139 138 128 105 84 Maissade 81 86 95 102 113 125 128 130 127 119 104 88 Marranc 90 95 98 110 123 132 141 139 131 126 110 90 Marranca 90 95 98 101 121 111 119 116 129 194 90 70		L		l		1							
Lesson 117 126 146 156 148 131 141 133 122 121 112 111 Limbé 86 103 97 130 136 145 145 154 153 143 114 88 Limonade 80 79 86 106 116 128 131 139 138 128 105 84 Maissade 81 86 95 102 113 125 128 130 127 119 104 88 Marfranc 90 95 98 110 123 132 141 139 131 126 110 90 Marranc 90 95 98 110 123 132 141 139 131 126 110 90 Marranc 90 95 98 110 121 111 119 116 129 127 101 122						1							
Limbé 86 103 97 130 136 145 145 154 153 143 114 88 Limonade 80 79 86 106 116 128 131 139 138 128 105 84 Maissade 81 86 95 102 113 125 128 130 127 119 104 88 Marfranc 90 95 98 110 123 132 141 139 131 126 110 90 Marmelade 65 68 74 79 86 95 97 99 96 90 79 70 Mirebalais 84 104 121 111 119 116 129 178 143 134 124 82 Môle Saint-Nicolas 98 96 110 130 154 166 131 133 184 124 82													
Limonade 80 79 86 106 116 128 131 139 138 128 105 84 Maissade 81 86 95 102 113 125 128 130 127 119 104 88 Marfranc 90 95 98 110 123 132 141 139 131 126 110 90 Marmelade 65 68 74 79 86 95 97 99 96 90 79 70 Mirebalais 84 104 121 111 119 116 129 178 143 134 124 82 Môle Saint-Nicolas 98 96 110 130 154 166 131 133 89 168 133 111 Mont-Organisé 68 72 78 84 91 101 103 105 102 96 84 74	Limbé					136					J	114	
Maissade 81 86 95 102 113 125 128 130 127 119 104 88 Marfranc 90 95 98 110 123 132 141 139 131 126 110 90 Marfranc 65 68 74 79 86 95 97 99 96 90 79 70 Mirebalais 84 104 121 111 119 116 129 178 143 134 124 82 Môle Saint-Nicolas 98 96 110 130 154 166 131 133 89 168 133 111 Mont-Organisé 68 72 78 84 91 101 103 105 102 96 84 74 Quanaminthe 94 98 108 120 133 148 150 154 148 141 120 <td< td=""><td></td><td></td><td></td><td></td><td>L</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>					L								
Marfranc 90 95 98 110 123 132 141 139 131 126 110 90 Marmelade 65 68 74 79 86 95 97 99 96 90 79 70 Mirebalais 84 104 121 111 119 116 129 178 143 134 124 82 Môle Saint-Nicolas 98 96 110 130 154 166 131 133 89 168 133 111 Mont-Organisé 68 72 78 84 91 101 103 105 102 96 84 74 Quanaminthe 94 98 108 120 133 148 150 154 148 141 120 101 Pétion-ville 85 89 97 106 115 124 133 133 125 113 100											Į.		
Marmelade 65 68 74 79 86 95 97 99 96 90 79 70 Mirebalais 84 104 121 111 119 116 129 178 143 134 124 82 Môle Saint-Nicolas 98 96 110 130 154 166 131 133 89 168 133 111 Mont-Organisé 68 72 78 84 91 101 103 105 102 96 84 74 Quanaminthe 94 98 108 120 133 148 150 154 148 141 120 101 Pétion-ville 85 89 97 106 115 124 133 133 125 113 100 88 Petite Rivière 99 107 121 131 129 124 132 126 116 115 104 <td>Marfranc</td> <td>90</td> <td>95</td> <td></td> <td>110</td> <td></td> <td></td> <td>141</td> <td>139</td> <td>131</td> <td>126</td> <td>110</td> <td>90</td>	Marfranc	90	95		110			141	139	131	126	110	90
Mirebalais 84 104 121 111 119 116 129 178 143 134 124 82 Môle Saint-Nicolas 98 96 110 130 154 166 131 133 89 168 133 111 Mont-Organisé 68 72 78 84 91 101 103 105 102 96 84 74 Ouanaminthe 94 98 108 120 133 148 150 154 148 141 120 101 Pétion-ville 85 89 97 106 115 124 133 133 125 113 100 88 Petite Rivière 99 107 121 131 129 124 132 126 116 115 104 96 Phaeton 97 101 112 124 139 154 156 161 154 146 <t< td=""><td></td><td>65</td><td></td><td></td><td></td><td><u> </u></td><td></td><td>97</td><td></td><td></td><td>90</td><td>79</td><td>70</td></t<>		65				<u> </u>		97			90	79	70
Môle Saint-Nicolas 98 96 110 130 154 166 131 133 89 168 133 111 Mont-Organisé 68 72 78 84 91 101 103 105 102 96 84 74 Ouanaminthe 94 98 108 120 133 148 150 154 148 141 120 101 Pétion-ville 85 89 97 106 115 124 133 133 125 113 100 88 Petite Rivière 99 107 121 131 129 124 132 126 116 115 104 96 Phaeton 97 101 112 124 139 154 156 161 154 146 124 104 Pilate 78 83 91 98 109 120 123 125 121 114 99 </td <td></td> <td></td> <td></td> <td>121</td> <td>111</td> <td>119</td> <td>116</td> <td>129</td> <td>178</td> <td>143</td> <td>134</td> <td>124</td> <td>82</td>				121	111	119	116	129	178	143	134	124	82
Mont-Organisé 68 72 78 84 91 101 103 105 102 96 84 74 Ouanaminthe 94 98 108 120 133 148 150 154 148 141 120 101 Pétion-ville 85 89 97 106 115 124 133 133 125 113 100 88 Petite Rivière 99 107 121 131 129 124 132 126 116 115 104 96 Phaeton 97 101 112 124 139 154 156 161 154 146 124 104 Phaeton 97 101 112 124 139 154 156 161 154 146 124 104 Pilate 78 83 91 98 109 120 123 125 121 114 99	Môle Saint-Nicolas	98											111
Ouanaminthe 94 98 108 120 133 148 150 154 148 141 120 101 Pétion-ville 85 89 97 106 115 124 133 133 125 113 100 88 Petite Rivière 99 107 121 131 129 124 132 126 116 115 104 96 Phaeton 97 101 112 124 139 154 156 161 154 146 124 104 Pilate 78 83 91 98 109 120 123 125 121 114 99 85 Plaisance 75 79 86 93 101 113 114 117 114 108 93 81 Pont-Sondé 95 100 110 122 136 152 154 158 152 144 122		68	72			91				102	96	84	74
Pétion-ville 85 89 97 106 115 124 133 133 125 113 100 88 Petite Rivière 99 107 121 131 129 124 132 126 116 115 104 96 Phaeton 97 101 112 124 139 154 156 161 154 146 124 104 Pilate 78 83 91 98 109 120 123 125 121 114 99 85 Plaisance 75 79 86 93 101 113 114 117 114 108 93 81 Pont-Sondé 95 100 110 122 136 152 154 158 152 144 122 103 Port-à-piment 97 101 112 124 139 154 156 161 154 146 124					120	133					141	120	101
Petite Rivière 99 107 121 131 129 124 132 126 116 115 104 96 Phaeton 97 101 112 124 139 154 156 161 154 146 124 104 Pilate 78 83 91 98 109 120 123 125 121 114 99 85 Plaisance 75 79 86 93 101 113 114 117 114 108 93 81 Pont-Sondé 95 100 110 122 136 152 154 158 152 144 122 103 Port-à-piment 97 101 112 124 139 154 156 161 154 146 124 104 P-au-P (aéroport) 111 116 129 141 148 168 180 175 161 145 13	Pétion-ville	85					124			125	113	100	88
Phaeton 97 101 112 124 139 154 156 161 154 146 124 104 Pilate 78 83 91 98 109 120 123 125 121 114 99 85 Plaisance 75 79 86 93 101 113 114 117 114 108 93 81 Pont-Sondé 95 100 110 122 136 152 154 158 152 144 122 103 Port-à-piment 97 101 112 124 139 154 156 161 154 146 124 104 P-au-P (aéroport) 111 116 129 141 148 168 180 175 161 145 133 118 Port-de-Paix 94 97 108 121 139 148 150 156 156 150 122<							124			116	115	104	96
Pilate 78 83 91 98 109 120 123 125 121 114 99 85 Plaisance 75 79 86 93 101 113 114 117 114 108 93 81 Pont-Sondé 95 100 110 122 136 152 154 158 152 144 122 103 Port-à-piment 97 101 112 124 139 154 156 161 154 146 124 104 P-au-P (aéroport) 111 116 129 141 148 168 180 175 161 145 133 118 Port-de-Paix 94 97 108 121 139 148 150 156 156 150 122 103 Saut Mathurine 166 86 96 105 118 131 134 136 132 124 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Plaisance 75 79 86 93 101 113 114 117 114 108 93 81 Pont-Sondé 95 100 110 122 136 152 154 158 152 144 122 103 Port-à-piment 97 101 112 124 139 156 161 154 146 124 104 P-au-P (aéroport) 111 116 129 141 148 168 180 175 161 145 133 118 Port-de-Paix 94 97 108 121 139 148 150 156 150 122 103 Saut Mathurine 166 86 96 105 118 131 134 136 132 124 107 90 Savanne Zombi 51 52 54 60 64 67 69 69 69 64 58 52	Pilate												
Pont-Sondé 95 100 110 122 136 152 154 158 152 144 122 103 Port-à-piment 97 101 112 124 139 154 156 161 154 146 124 104 P-au-P (aéroport) 111 116 129 141 148 168 180 175 161 145 133 118 Port-de-Paix 94 97 108 121 139 148 150 156 156 150 122 103 Saut Mathurine 166 86 96 105 118 131 134 136 132 124 107 90 Savanne Zombi 51 52 54 60 64 67 69 69 69 64 58 52 Seguin 40 45 45 48 51 59 62 64 61 56 52 <td></td> <td>L.</td> <td></td> <td></td>											L.		
Port-à-piment 97 101 112 124 139 154 156 161 154 146 124 104 P-au-P (aéroport) 111 116 129 141 148 168 180 175 161 145 133 118 Port-de-Paix 94 97 108 121 139 148 150 156 150 122 103 Saut Mathurine 166 86 96 105 118 131 134 136 132 124 107 90 Savanne Zombi 51 52 54 60 64 67 69 69 69 64 58 52 Seguin 40 45 45 48 51 59 62 64 61 56 52 43 Sercey 91 97 107 118 130 145 149 152 147 139 118 100													
P-au-P (aéroport) 111 116 129 141 148 168 180 175 161 145 133 118 Port-de-Paix 94 97 108 121 139 148 150 156 150 122 103 Saut Mathurine 166 86 96 105 118 131 134 136 132 124 107 90 Savanne Zombi 51 52 54 60 64 67 69 69 69 64 58 52 Seguin 40 45 45 48 51 59 62 64 61 56 52 43 Sercey 91 97 107 118 130 145 149 152 147 139 118 100 Saint-Marc 113 113 135 162 175 167 194 202 183 170 170 133 <													
Port-de-Paix 94 97 108 121 139 148 150 156 156 150 122 103 Saut Mathurine 166 86 96 105 118 131 134 136 132 124 107 90 Savanne Zombi 51 52 54 60 64 67 69 69 69 64 58 52 Seguin 40 45 45 48 51 59 62 64 61 56 52 43 Sercey 91 97 107 118 130 145 149 152 147 139 118 100 Saint-Marc 113 113 135 162 175 167 194 202 183 170 170 133													
Saut Mathurine 166 86 96 105 118 131 134 136 132 124 107 90 Savanne Zombi 51 52 54 60 64 67 69 69 69 64 58 52 Seguin 40 45 45 48 51 59 62 64 61 56 52 43 Sercey 91 97 107 118 130 145 149 152 147 139 118 100 Saint-Marc 113 113 135 162 175 167 194 202 183 170 170 133	<u>``</u>												
Savanne Zombi 51 52 54 60 64 67 69 69 69 64 58 52 Seguin 40 45 45 48 51 59 62 64 61 56 52 43 Sercey 91 97 107 118 130 145 149 152 147 139 118 100 Saint-Marc 113 113 135 162 175 167 194 202 183 170 170 133													
Seguin 40 45 45 48 51 59 62 64 61 56 52 43 Sercey 91 97 107 118 130 145 149 152 147 139 118 100 Saint-Marc 113 113 135 162 175 167 194 202 183 170 170 133													
Sercey 91 97 107 118 130 145 149 152 147 139 118 100 Saint-Marc 113 113 135 162 175 167 194 202 183 170 170 133													
Saint-Marc 113 113 135 162 175 167 194 202 183 170 170 133													
	<u> </u>												
- OCTIVIDATE	St-Michel	84	90	102	109	104	96	102	97	90	90	83	80

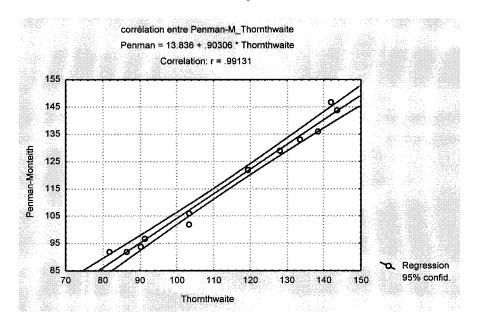
Données d'évapotranspiration estimées par la méthode de Thornthwaite (suite)

Station	J	F	М	Α	М	J	J	Α	S	0	2	D
St-Raphael	72	96	113	104	111	108	120	164	136	125	115	80
SaintLouis du Nord	97	101	112	124	139	154	156	161	154	146	124	104
Saint-Louis du Sud	96	101	112	123	138	154	156	160	154	146	123	104
St-Michel ATT,	75	79	86	93	101	113	114	117	114	108	93	81
Terre-Neuve	77	82	92	98	93	84	89	84	79	79	74	73
Thomazeau	92	96	107	119	131	146	150	152	148	141	119	101
Tiotte	60	63	68	72	79	87	87	89	87	82	73	65
Trou du Nord	94	99	109	123	135	150	154	156	152	145	123	103
Vallières	90	100	112	125	126	123	125	126	118	118	104	92
Verettes	92	96	107	119	131	146	150	152	148	141	119	101

Données de Température

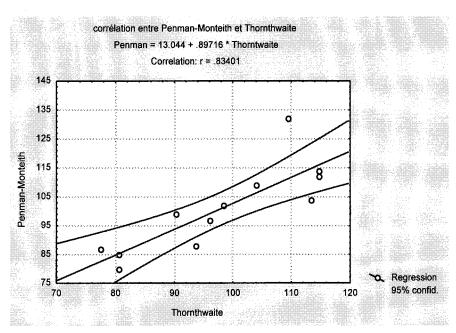
Station	J	F	М	Α	М	J	J	Α	S	0	N	D
Anse-à-Galet	24,3	24,6	25,3	26	26,8	27,6	27,7	27,9	27,6	27,2	26	24,8
Anse-à-Veau	24,2	24,5	25,2	26	26,7	27,5	27,7	27,8	27,6	27,2	26	24,8
Aquin	24,3	24,6	25,3	26	26,8	27,6	27,7	27,9	27,6	27,2	26	24,8
Arcahaie	24,2	24,5	25,2	26	26,7	27,5	27,7	27,8	27,6	27,2	26	24,8
Bainet	24,1	24,4	25,1	25,9	26,6	27,4	27,6	27,7	27,5	27,1	25,9	24,7
Banane	22,1	22,5	23,2	23,8	24,6	25,4	25,6	25,7	25,5	25	23,8	22,7
Belladère	22,1	22,5	23,2	23,8	24,6	25,4	25,6	25,7	25,5	25	23,8	22,7
Belle-anse	24,3	24,6	25,3	26	26,8	27,6	27,7	27,9	27,6	27,2	26	24,8
Billiguy	22,6	23	23,7	24,3	25,1	25,9	26,1	26,2	26	25,5	24,4	23,2
Bombardopolis	21,2	21,5	22,2	22,8	23,6	24,4	24,6	24,8	24,6	24	22,9	21,8
Borgne	22,5	22,5	23,1	24,2	25,3	26,2	26,7	25,6	26,6	26,1	24,6	23,1
Cabaret	25	25,6	26,1	26,7	27,1	27,8	28,4	28,1	27,4	27	26,2	24,9
Campérin	22,8	23,2	23,9	24,5	25,3	26,1	26,3	26,4	26,2	25,7	24,6	23,4
Cap-Haïtien	22,7	23,1	23,4	24,4	25,5	26,4	26,7	26,9	27	26,1	24,4	23,5
Cavaillon	24,2	24,5	25,2	25,9	26,7	27,5	27,6	27,8	27,5	27,1	25,9	24,7
Cayes	24,4	24,4	24,9	25,2	25,9	26,7	26,8	26,9	27	26,3	26,1	25,2
Cerca-la-source	21,9	22,3	23	23,6	24,4	25,2	25,4	25,5	25,3	24,8	23,6	22,5
Chantal	24	24,3	25	25,8	26,5	27,3	27,5	27,6	27,4	27	25,8	24,6
Chappelle-LA	23,6	23,9	24,6	25,3	26,1	26,9	27	27,2	26,9	26,5	25,3	24,1
Chauffard	15,9	16,4	17,1	17,5	18,2	19,2	19,4	19,6	19,4	18,6	17,6	16,7
Chevallerie-LA	26	26,5	27,6	28,2	27,8	27	27,5	27,1	26,6	26,5	25,8	25,6
Cornillon	20,9	21,1	22,2	22,9	23,4	24,2	24,8	24,7	24,7	23,6	22,6	21,7
Croix-des- Bouquets	23,9	24,2	24,9	25,7	26,4	27,2	27,4	27,5	27,3	26,9	25,7	24,5
Damiens	22,9	23,5	24,4	25,1	25	24,8	25,2	24,9	24,3	24,3	23,5	22,8
Desdunes	24,2	24,5	25,2	26	26,7	27,5	27,7	27,8	27,6	27,2	26	24,8
Despuzeau	24	24,3	25	25,8	26,5	27,3	27,5	27,6	27,4	27	25,8	24,6
Dessalines	24,2	24,5	25,2	25,9	26,7	27,5	27,6	27,8	27,5	27,1	25,9	24,7
Duvalierville	25,1	25,5	26,9	26,8	27,5	28,2	28,4	28,5	28	27,5	26,3	25,6
Ennery	22,2	22,6	23,3	23,9	24,7	25,5	25,7	25,9	25,6	25,1	24	22,8
Fonds-des-Nègres	21,8	22,1	23	23,5	23,7	24,6	24,9	25	25	24,2	23,3	22,1
Fonds parisien	23,8	23,7	25,8	26	26,8	27	27,5	27,9	27,6	25	24,3	24,7
Fonds Verrettes	19,4	19,8	20,5	21	21,8	22,7	22,8	23	22,8	22,2	21,1	20,1
Forêts des Pins	11,7	12,5	14	14,2	14,2	15	15,8	15,9	14,9	14,7	14	13,2

Données de Température (suite)

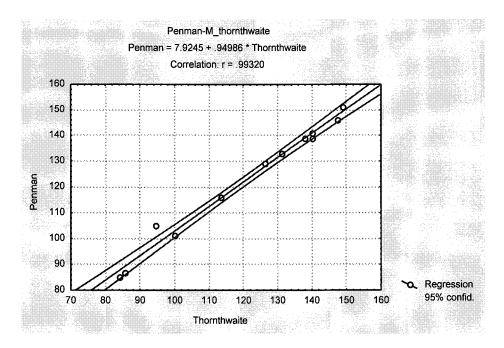

Station	J	F	М	Α	М	J	J	Α	S	0	N	D
Furcy	14,4	14,9	15,6	15,9	16,6	17,6	17,8	18	17,9	17	16	15,1
Gaillard	23	23,3	24	24,7	25,5	26,3	26,5	26,6	26,4	25,9	24,8	23,6
Ganthier	25,3	26	26,8	27,4	27,7	28,2	28,6	28,5	28,1	27,7	26,8	25,4
Gde Riv, Nord-HA	23,1	24,3	23,9	26	26,3	26,8	26,8	27,3	27,2	26,7	25,2	23,2
Gonaives	25,7	25,8	26,3	28	28	29	29,2	30,1	29,8	30	29,1	27,2
Grand Bassin	23,8	24,1	24,8	25,6	26,3	27,1	27,3	27,4	27,2	26,8	25,6	24,4
Grands-Bois	18,9	19,6	20,7	21,5	21,7	22	22,3	22,3	22,1	21,8	20,6	19,3
Grande Rivière	24	24,3	25	25,7	26,5	27,3	27,4	27,6	27,3	26,9	25,7	24,5
Gros-Morne	22,9	23,2	23,9	24,6	25,3	26,2	26,3	26,5	26,3	25,8	24,6	23,5
Hinche	22,5	24,5	25,7	25,1	25,6	25,4	26,2	28,8	27	26,5	25,9	23
Jacmel	25,2	25,3	25,4	25,8	25,9	26,9	27,4	28,1	28	27,4	27,1	25,7
Jean-Rabel	22,2	22,8	23,6	24,4	25,6	26,5	26,9	26,8	26,4	26	24	22,8
Jérémie	26	25,2	25,7	26,1	26,8	28	28,5	28,1	28,3	28	27,3	26,1
Kenscoff	15,9	15,2	16	16,7	17,5	18,2	18,4	18,2	18,6	18	17,4	16,2
La Tortue	26,5	27	28,1	28,7	28,3	27,3	27,8	27,3	26,8	26,8	26,2	26
Lascahobas	22,9	23,3	24	24,7	25,4	26,2	26,4	26,6	26,3	25,9	24,7	23,5
Léogâne	24,2	24,5	25,2	26	26,7	27,5	27,7	27,8	27,6	27,2	26	24,8
Lesson	25,6	26,1	27,2	27,7	27,3	26,4	26,9	26,5	25,9	25,8	25,3	25,2
Limbé	23,4	24,6	24,2	26,3	26,6	27,1	27,1	27,6	27,5	27	25,3	23,5
Limonade	22,5	22,4	23	24,6	25,3	26,1	26,3	26,8	26,7	26,1	24,5	22,9
Maissade	22,6	23	23,7	24,3	25,1	25,9	26,1	26,2	26	25,5	24,4	23,2
Marfranc	23,5	23,9	24,1	25	25,8	26,4	26,9	26,8	26,3	26	25	23,5
Marmelade	19,7	20,1	20,8	21,4	22,1	23	23,2	23,4	23,1	22,5	21,4	20,4
Mirebalais	23,1	24,6	25,7	25,1	25,6	25,4	26,2	28,8	27	26,5	25,9	23
Môle Saint-Nicolas	24,3	24,2	25,1	26,3	27,6	28,2	26,4	26,5	23,7	28,3	26,5	25,2
Mont-Organisé	20,4	20,8	21,5	22,1	22,8	23,7	23,9	24,1	23,8	23,3	22,1	21,1
Ouanaminthe	24	24,3	25	25,7	26,5	27,3	27,4	27,6	27,3	26,9	25,7	24,5
Pétion-ville	22,9	23,3	23,9	24,6	25,2	25,8	26,4	26,4	25,9	25,1	24,1	23,2
Petit-Gôave	25,6	26,2	27,1	28,2	28,3	28,6	28,8	29,2	29,2	28,2	27,4	26,1
Petite Rivière	24,2	24,8	25,7	26,3	26,2	25,9	26,4	26	25,4	25,3	24,6	24
Phaeton	24,3	24,6	25,3	26	26,8	27,6	27,7	27,9	27,6	27,2	26	24,8
Pilate	22,2	22,6	23,3	23,9	24,7	25,5	25,7	25,9	25,6	25,1	24	22,8
Plaisance	21,6	22	22,7	23,3	24	24,9	25	25,2	25	24,5	23,3	22,2
Pont-Sondé	24,2	24,5	25,2	25,9	26,7	27,5	27,6	27,8	27,5	27,1	25,9	24,7
Port-à-piment	24,3	24,6	25,3	26	26,8	27,6	27,7	27,9	27,6	27,2	26	24,8
P-au-P (aéroport)	25,4	25,7	26,4	27	27,3	28,2	28,7	28,5	27,9	27,2	26,6	25,8
Port-de-Paix	24,1	24,3	25	25,8	26,8	27,3	27,4	27,7	27,7	27,4	25,9	24,7
Saut Mathurine	28,2	23,3	24	24,7	25,5	26,3	26,5	26,6	26,4	25,9	24,8	23,6
Savanne Zombi	14,9	15	15,4	16,3	17	17,5	17,8	17,8	17,8	16,9	16	15
Seguin	10,2	11,2	11,2	11,7	12,3	13,8	14,4	14,8	14,2	13,3	12,6	10,7
Sercey	23,8	24,2	24,9	25,6	26,3	27,1	27,3	27,5	27,2	26,8	25,6	24,4
Sources Chaudes	23,7	24	24,7	25,4	26,1	27	27,1	27,3	27	26,6	25,4	24,2
Saint-Marc	25,7	25,7	26,8	28	28,5	28,2	29,2	29,5	28,8	28,3	28,3	26,7
St-Michel	22,4	23	24	24,6	24,2	23,5	24	23,6	23	23	22,3	22
St-Raphael	21,9	23,9	25,1	24,5	25	24,8	25,6	28,2	26,6	25,9	25,3	22,6
SaintLouis du Nord	24,3	24,6	25,3	26	26,8	27,6	27,7	27,9	27,6	27,2	26	24,8
Saint-Louis du Sud	24,3	24,6	25,3	26	26,8	27,6	27,7	27,9	27,6	27,2	26	24,8
St-Michel ATT,	21,6	22	22,7	23,3	24	24,9	25	25,2	25	24,5	23,3	22,2
Terre-Neuve	21,2	21,8	22,8	23,4	22,9	22	22,5	22	21,4	21,4	20,9	20,8

Données de Température (suite)

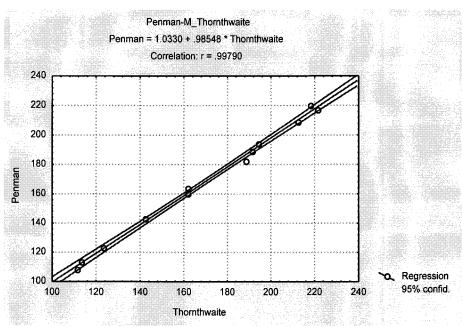
Station	J	F	М	Α	M	J	J	Α	S	0	N	D
Thomazeau	23,9	24,2	24,9	25,7	26,4	27,2	27,4	27,5	27,3	26,9	25,7	24,5
Tiotte	18,5	18,9	19,6	20,1	20,9	21,8	21,9	22,1	21,9	21,3	20,2	19,2
Trou du Nord	24,1	24,4	25,1	25,9	26,6	27,4	27,6	27,7	27,5	27,1	25,9	24,7
Vallières	23,5	24,2	25,1	25,9	26	25,8	25,9	26	25,5	25,5	24,5	23,6
Verettes	23,9	24,2	24,9	25,7	26,4	27,2	27,4	27,5	27,3	26,9	25,7	24,5


Source : FAO (2000)

Station: Cap-Haïtien


BM = 2.85; BMr = 0.028

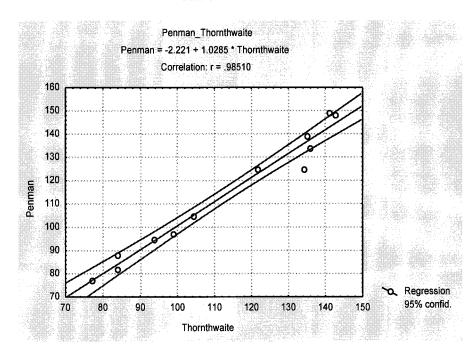
Station : Fonds-des-Nègres


BM = 2.99; BMr = 0.026

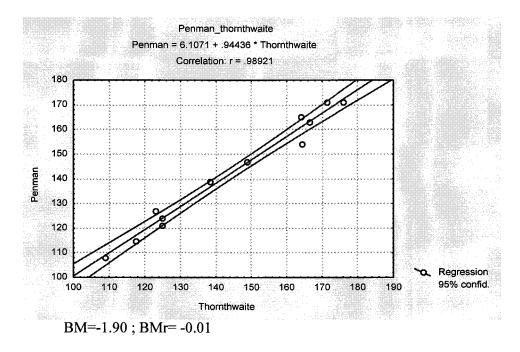
Station: Grande Rivière du Nord


BM = 1.86; BMr = 0.016

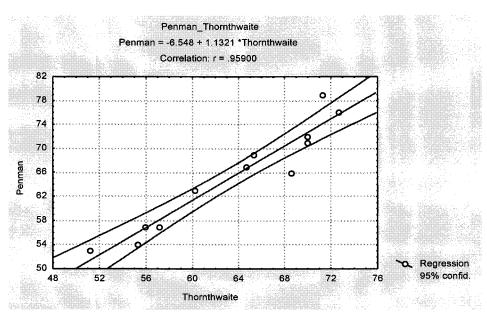
Station: Gonaïves


BM = -1.43; BMr = -.008

Station: Hinche

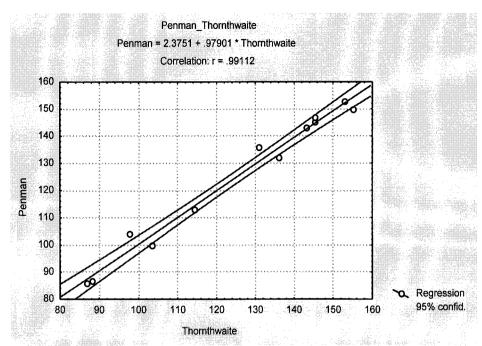

BM=1.21; BMr=0.009

Station: Jean-Rabel

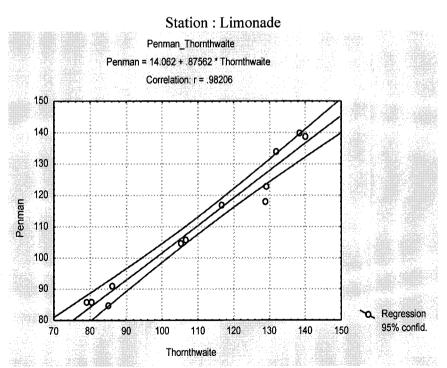


BM=0.98; BMr=0.006

Station: Jérémie

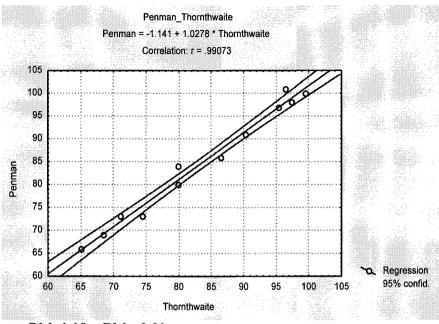


Station: Kenscoff

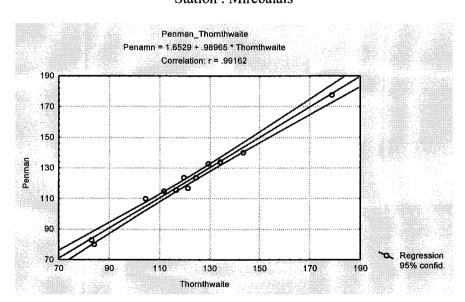


BM=1.84; BMr=0.025

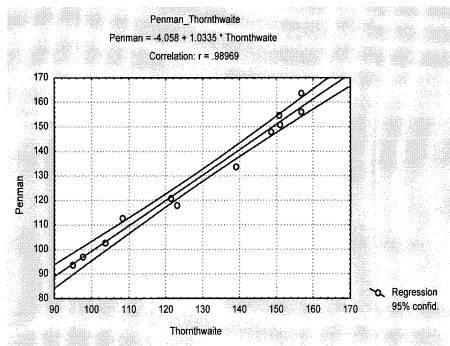
Station: Limbé



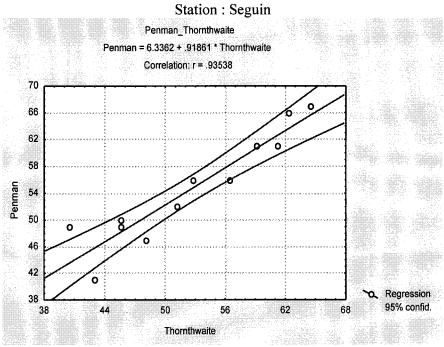
BM=-0.24; BMr=-0.002


BM=0.31; BMr=0.006

Station: Marmelade

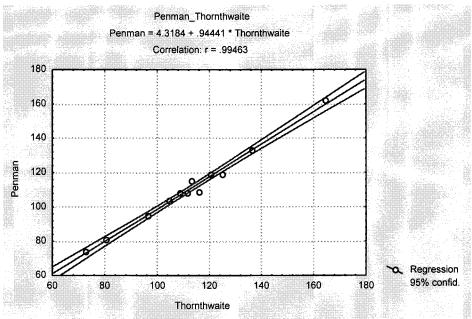

BM=1.18; BMr=0.01

Station: Mirebalais

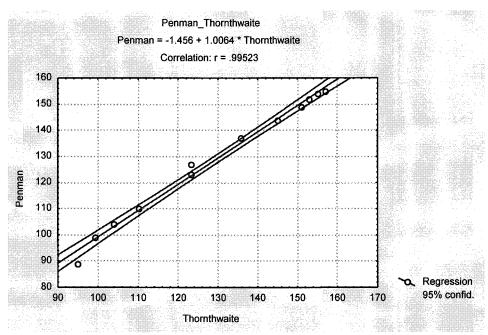


BM=0.40; BMr=0.002

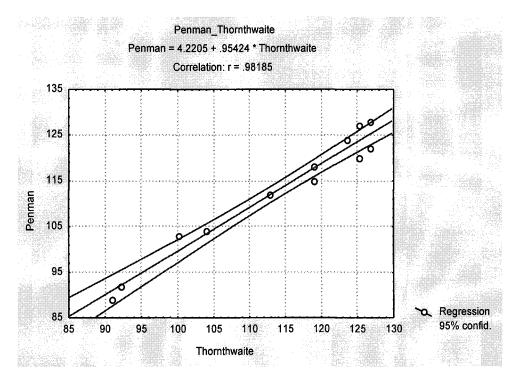
Station: Port-de-Paix



BM=0.26; BMr=0.0005

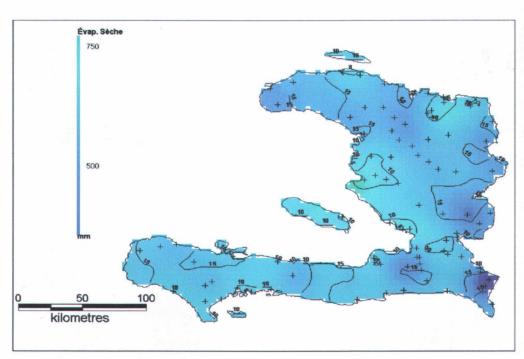

BM=2.06; BMr=0.03

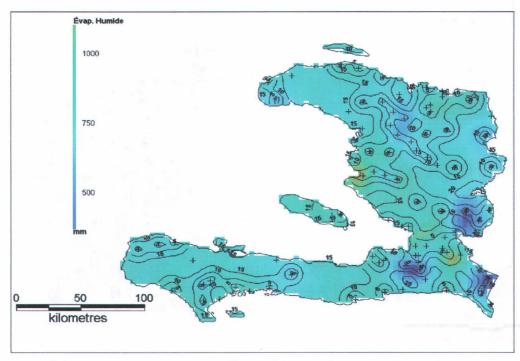
Station: St-Raphael


BM=-1.94; BMr=-0.01

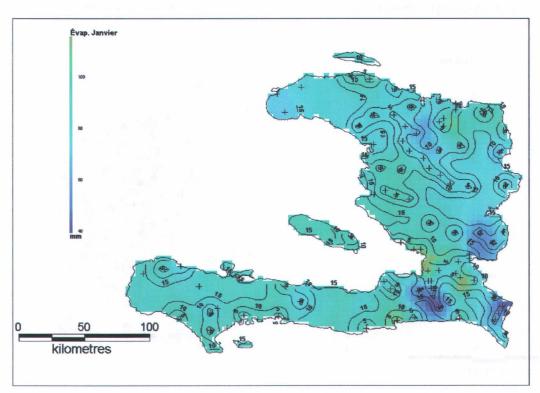
Station: Trou du Nord

BM=-0.63; BMr=-0.006

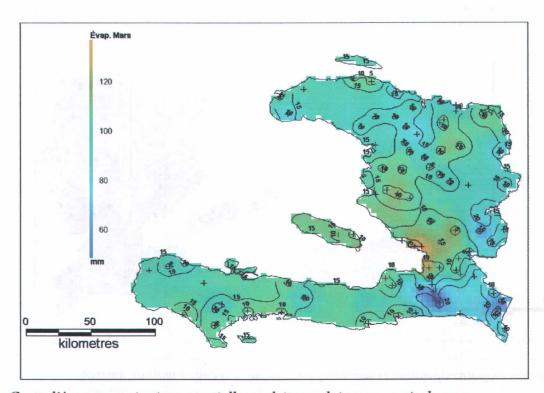

Station: Vallières

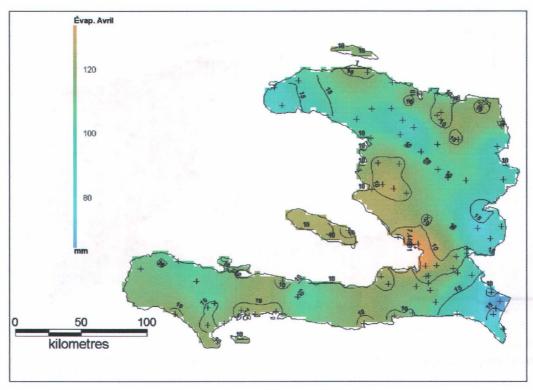

BM=-0.98 ; BMr=-0.008

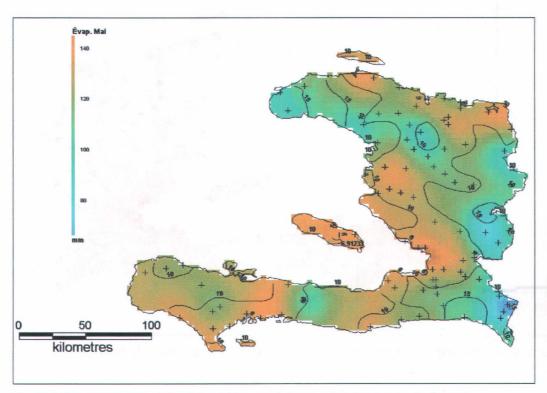
Annexe C:

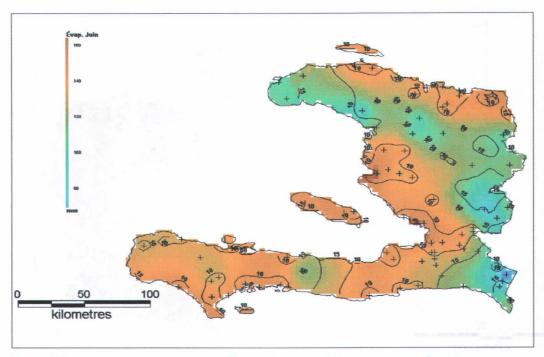

Cartographie de l'évapotranspiration saisonnière et mensuelle

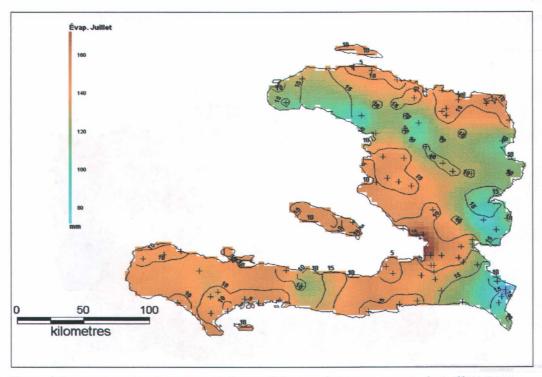

 $Carte\ d'\'evapotranspiration\ potentielle\ \ produite\ par\ krigeage: saison\ s\`eche$

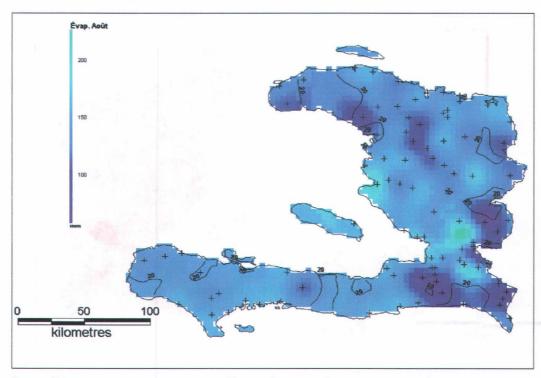

Carte d'évapotranspiration potentielle produite par krigeage : Saison humide

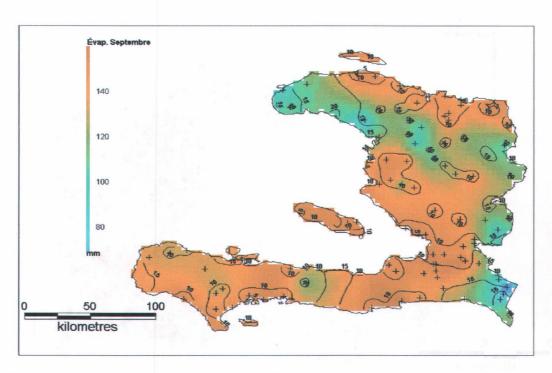

Carte d'évapotranspiration potentielle produite par krigeage : mois de janvier

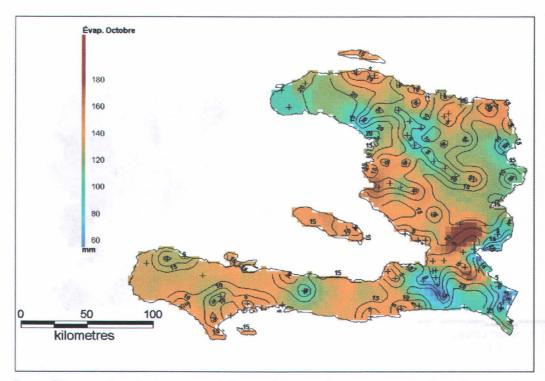

Carte d'évapotranspiration potentielle produite par krigeage : mois de février

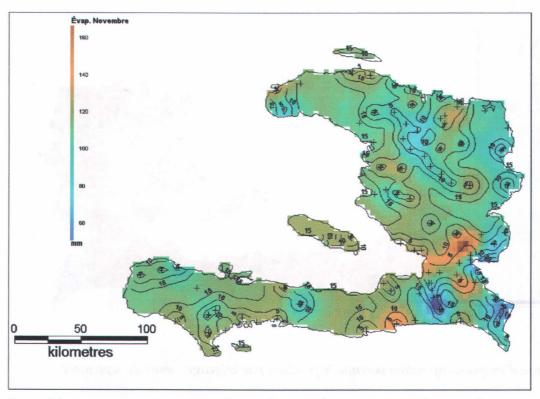

Carte d'évapotranspiration potentielle produite par krigeage : mois de mars

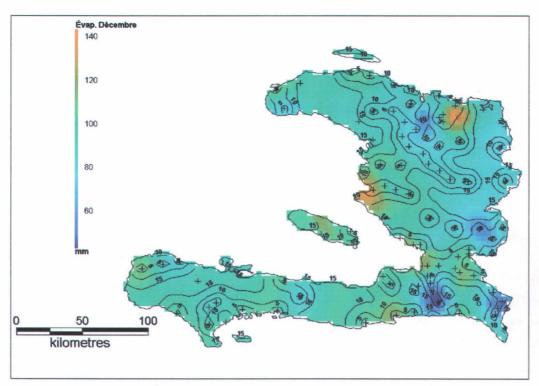

Carte d'évapotranspiration potentielle produite par krigeage : mois d'avril


Carte d'évapotranspiration potentielle produite par krigeage : mois de mai

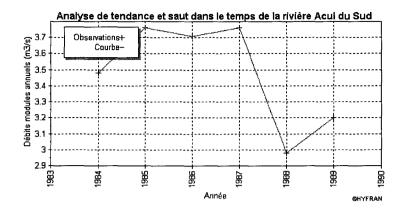

Carte d'évapotranspiration potentielle produite par krigeage : mois de juin

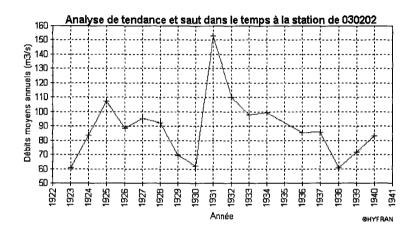

Carte d'évapotranspiration potentielle produite par krigeage : mois de juillet

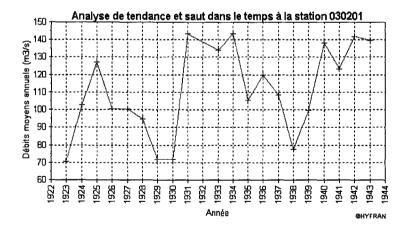

Carte d'évapotranspiration potentielle produite par krigeage : mois d'août

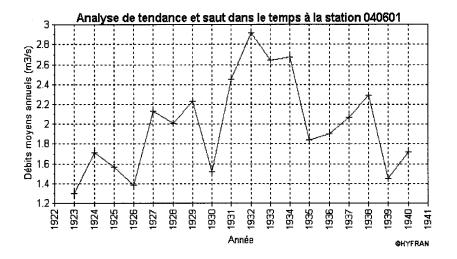

Carte d'évapotranspiration potentielle produite par krigeage : mois de septembre

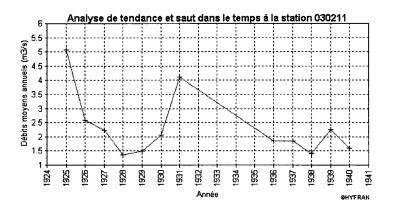
Carte d'évapotranspiration potentielle produite par krigeage : mois d'octobre

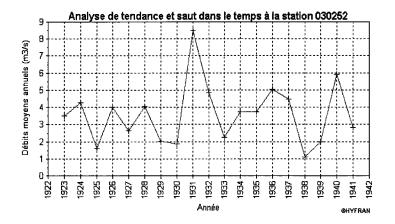

Carte d'évapotranspiration potentielle produite par krigeage : mois de novembre

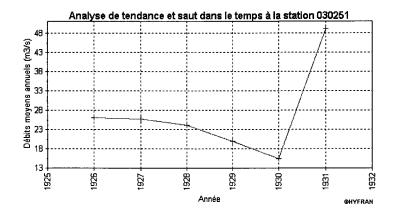


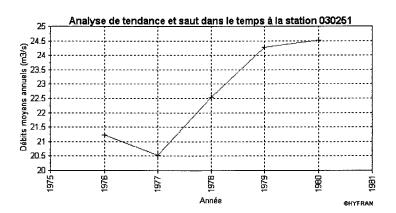

Carte d'évapotranspiration potentielle produite par krigeage : mois de décembre

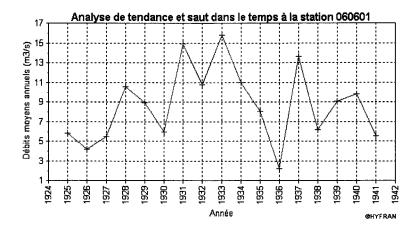

Annexe D:

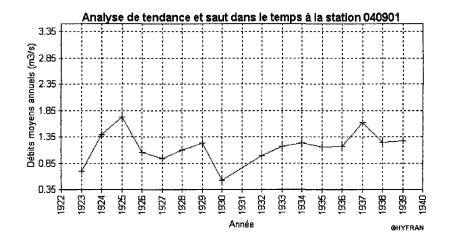

Analyse de tendance et saut dans le temps des modules annuels

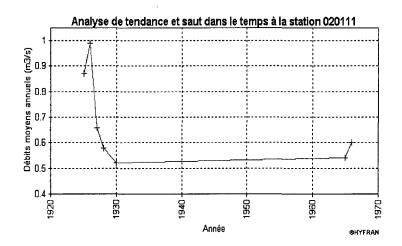


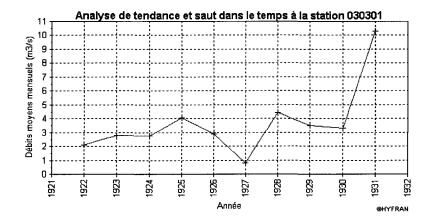


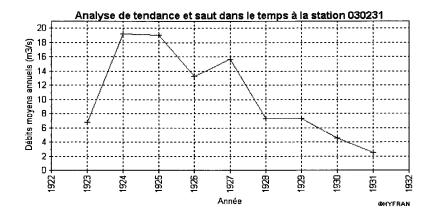


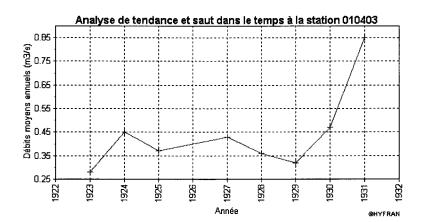


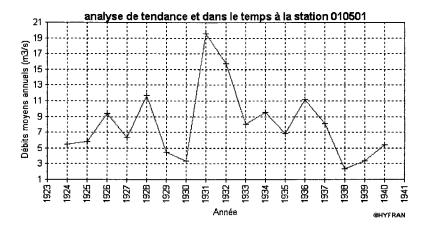


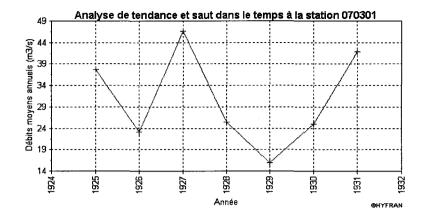




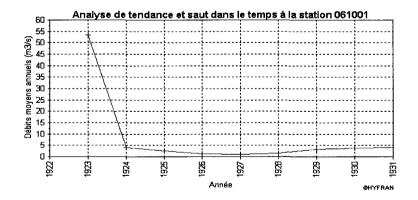


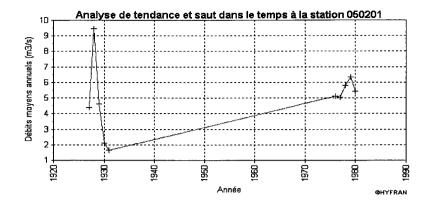


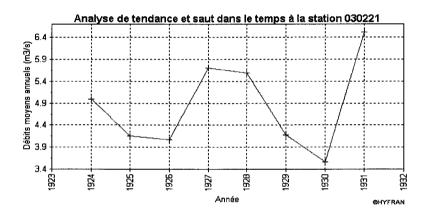


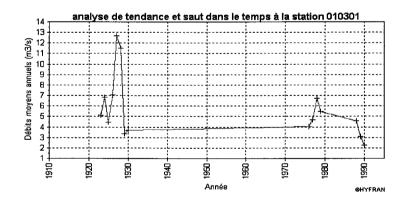


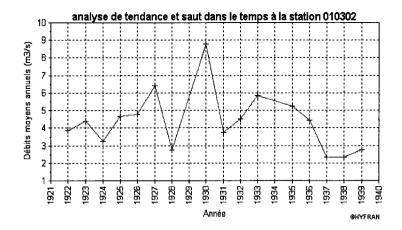


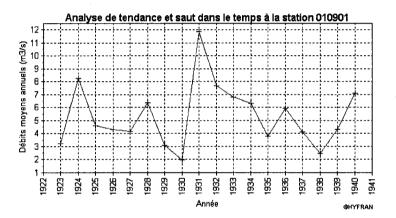


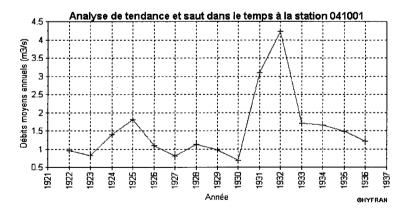


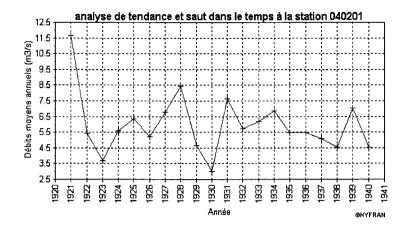


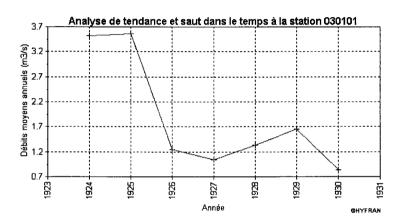


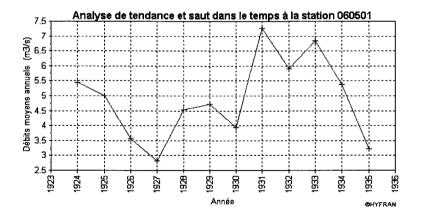


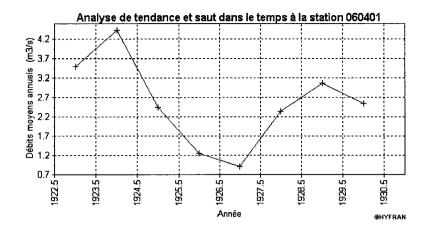


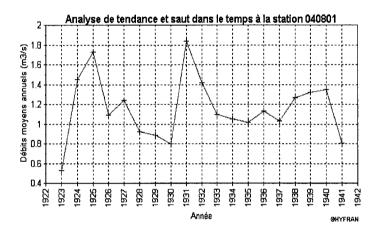


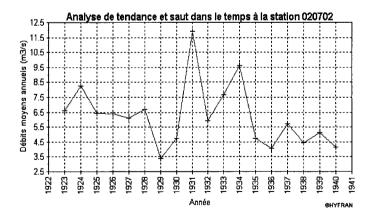


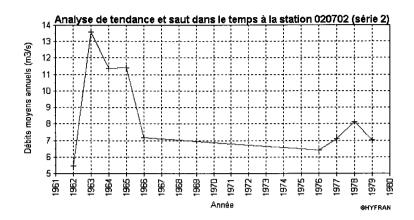


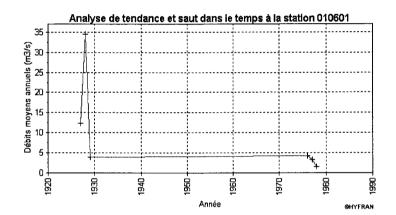


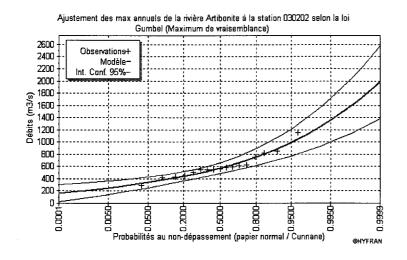


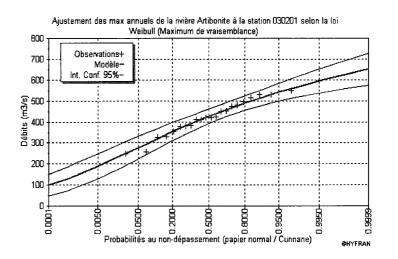


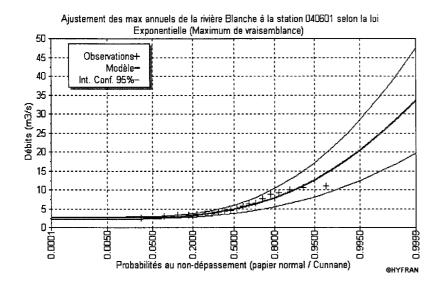


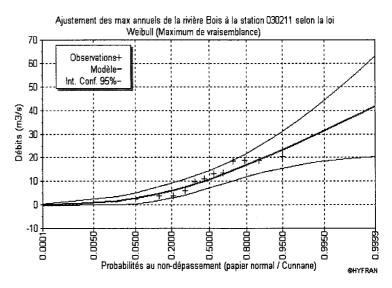


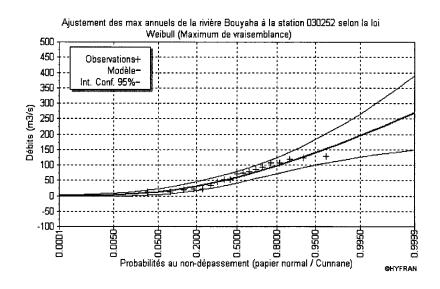









Annexe E:


Méthodes d'ajustement des débits maximums annuels

