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Abstract Integrated, process-based numerical models in hydrology are rapidly evolving, spurred by
novel theories in mathematical physics, advances in computational methods, insights from laboratory and
field experiments, and the need to better understand and predict the potential impacts of population, land
use, and climate change on our water resources. At the catchment scale, these simulation models are com-
monly based on conservation principles for surface and subsurface water flow and solute transport (e.g., the
Richards, shallow water, and advection-dispersion equations), and they require robust numerical techniques
for their resolution. Traditional (and still open) challenges in developing reliable and efficient models are
associated with heterogeneity and variability in parameters and state variables; nonlinearities and scale
effects in process dynamics; and complex or poorly known boundary conditions and initial system states. As
catchment modeling enters a highly interdisciplinary era, new challenges arise from the need to maintain
physical and numerical consistency in the description of multiple processes that interact over a range of
scales and across different compartments of an overall system. This paper first gives an historical overview
(past 50 years) of some of the key developments in physically based hydrological modeling, emphasizing
how the interplay between theory, experiments, and modeling has contributed to advancing the state of
the art. The second part of the paper examines some outstanding problems in integrated catchment model-
ing from the perspective of recent developments in mathematical and computational science.

1. Introduction

The advent of numerical modeling in hydrology coincides roughly with the birth of Water Resources
Research (WRR). The first years of the journal document a rapid transition from electric analog and physical
models to mathematical models. Early simulation studies in both subsurface [e.g., Freeze and Witherspoon,
1966] and surface [e.g., Woolhiser and Liggett, 1967] hydrology were to have a great influence on research
directions in hydrology over the next half-century. To commemorate the 50th anniversary of WRR and to
signal its contributions to process-based modeling in hydrology, we look back at developments in experi-
mental, theoretical, and computational hydrology that have shaped the current state of the art in physically
based catchment hydrological models (section 2), and we provide an outlook on current challenges and
trends in the ongoing effort to cast these models into a rigorous and robust mathematical, physical, and
numerical framework (section 3).

The roughly chronological survey allows us to trace significant advances and to mark the emergence of spe-
cialized subfields such as stochastic hydrology, parameter estimation, topographic analysis, and data assimi-
lation. Our focus is mainly on flow processes, reflecting the traditional, central problem of rainfall-runoff
partitioning in catchment hydrology, although relevant developments in solute transport will also be
included. Numerical modeling of solute mass transfer and transport phenomena has been guided more by
problems of soil and groundwater contamination and remediation, but in recent decades solute transport
has played an increasingly prominent role in catchment hydrology, as it is essential for interpreting isotope
tracer studies, for addressing travel time issues, and for incorporating geochemical and ecological phenom-
ena in interdisciplinary models. An additional focus of the paper is on integrated surface/subsurface hydro-
logical models (ISSHMs), as this is an area of much recent research and provides a platform for discussing
developments in physically based interdisciplinary modeling, which extend beyond water flow and solute
transport at the catchment scale toward multiphysics or Earth system models at much larger scales. In sec-
tion 2, we review mainly WRR papers, but important contributions from other sources are also covered,
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especially for specialized topics and integrated, multiprocess modeling. Section 3 considers the literature
from a broad range of sources and disciplines.

The models of interest are based on mass and momentum conservation principles formulated as partial dif-
ferential equations (PDEs) and resolved by numerical techniques. We devote particular attention to correct
representation of physical processes and their interactions, and to robust and efficient numerical techniques
for space and time discretization, linearization, and coupling. Our prototype PDEs are the Richards equation
(RE) for variably saturated subsurface flow, the advection-dispersion equation (ADE) for solute transport,
and the Saint-Venant or shallow water equations (SWE) for overland and channel routing. The term ‘‘catch-
ment scale’’ is used loosely to comprise field plots, hillslopes, and watersheds.

2. Progress Over Five Decades

This first part of the paper provides a bibliographic survey of process-based numerical modeling in hydrol-
ogy over the past half-century and tracks the issues and milestones that have stimulated its progress. In the
first two sections we look at very early models and at early examples of the importance of the dialogue
between observation and simulation. Numerical techniques and challenges are examined in section 2.3,
and developments in four important subfields are considered in section 2.4. The evolution toward inte-
grated (e.g., surface/subsurface hydrology) and interdisciplinary (e.g., ecohydrology) models is reviewed in
sections 2.5 and 2.7, respectively, while case studies that illustrate integrated or coupled phenomena are
discussed in section 2.6.

2.1. Early Models
While the modeling studies in surface and subsurface hydrology published in the first five years of WRR
[Guitjens and Luthin, 1965; Grace and Eagleson, 1966; Ragan, 1966; Freeze and Witherspoon, 1966, 1967, 1968;
Woolhiser and Liggett, 1967; Foster et al., 1968; Huggins and Monke, 1968; Onstad and Brakensiek, 1968; Pinder
and Bredehoeft, 1968; Freeze, 1969; Hanks et al., 1969; Hornberger et al., 1969; Pinder and Jones, 1969] not sur-
prisingly reflect the constraints of this nascent field (e.g., simplified equations or geometrically simple
domains or rudimentary discretization techniques), they also introduce procedures and raise issues that
have become some of the trademarks of hydrological modeling: concern with heterogeneity, nonlinearity,
and hysteresis; verification of models against analytical solutions or laboratory experiments; calibration of
models against some observed response of the system; invocation of strict conservation principles; numeri-
cal discretization guided by physical features of the system being modeled; application of dimensional anal-
ysis to elucidate similarity relationships; and exploitation of the flexibility of numerical models to test
hypotheses and investigate parameter sensitivities. Amidst these early studies, those of Freeze [1969], Hanks
et al. [1969], and Freeze and Banner [1970] are also prescient on integrated saturated/unsaturated zone
modeling, emphasizing physical and mathematical continuity of processes and addressing specified flux
(rainfall/evaporation) and specified head (ponded water) boundary conditions that can switch type during
the course of a simulation, with an air dry analog to saturation for the switching threshold during evapora-
tion. Although these analyses were conducted with a relatively simple one-dimensional (1-D) model under
homogeneous and isotropic soil conditions, the vision for a more ambitious, larger scale integrated frame-
work is quite evident in these papers, and is conceptualized in Freeze and Harlan [1969].

Additional major contributions to RE-based modeling at the catchment scale were made in the early 1970s.
Freeze [1971] presented a 3-D finite difference model with a general storage term incorporating confined
and unconfined aquifer and unsaturated zone flow in a unified manner. This model was then coupled to a
1-D SWE channel flow model to demonstrate the complexity of the hydrograph separation question, the
important role of subsurface flow on the runoff response of a catchment, and the influence and interplay of
factors such as antecedent soil moisture conditions, rainfall, hydrogeological properties, and hillslope mor-
phology on this response [Freeze, 1972a,1972b]. In a subsequent study, Stephenson and Freeze [1974] incor-
porated snowmelt processes into the runoff generation picture. The connection between the governing
equations for surface (river) flow, subsurface (groundwater) flow, and solute transport was made by Guymon
[1970] and Guymon et al. [1970], who drew attention in particular to the common diffusion-convection
nature of the respective mass conservation equations for these domains. Early attempts at coupled hydro-
logical models include those of Bresler [1973] and Bredehoeft and Pinder [1973] for flow and transport proc-
esses, Pinder and Sauer [1971] and Konikow and Bredehoeft [1974] for stream and aquifer dynamics, and
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Smith and Woolhiser [1971] for overland flow and soil infiltration. This latter paper also discusses at length
the important role of the land surface saturation or ponding status in regulating rainfall-runoff partitioning
and the need for a dynamic boundary condition to properly handle this exchange. By contrast, interaction
with atmospheric processes in early unconfined aquifer models was treated via infiltration and evaporation
boundary conditions imposed on the free surface [Neuman and Witherspoon, 1970a].

Numerically, finite element techniques make their first WRR appearance in the papers of Guymon et al.
[1970] and Neuman and Witherspoon [1970a,1970b, 1971] and quickly gain popularity for their greater flexi-
bility in treating complex geometries and properties compared to finite difference schemes [Pinder and
Frind, 1972]. Simple, computationally light, or parsimonious models have always played an important role in
hydrology, and with this the use of more complex physically based models in intercomparison studies to
assess the assumptions and limitations of the former class of models [Hornberger et al., 1970; Mein and Lar-
son, 1973]. There are also early examples of coupling or conjunctive use of simplified and more rigorous
models, representing different compartments of a domain or system, for instance the coupling presented in
Pikul et al. [1974] between a 1-D RE model for vertical flow in soils and a 1-D Boussinesq model for lateral
aquifer flow. This approach has been very popular in subsequent multiprocess and interdisciplinary models
that integrate, either loosely (e.g., one-way passing of information) or tightly (with coupled equations and
feedbacks), various submodels into a larger, comprehensive model. Finally, dedicated software tools and
platforms to facilitate code building, modularization, and integration, widely used in the development of
current generation open source and community models [e.g., Wu et al., 2014; Clark et al., 2015], find a pro-
genitor of sorts in Williams and Hann [1972].

2.2. Lessons From Laboratory and Field Experiments
Progress in hydrological modeling has proceeded concomitantly with experimental research, the latter pro-
viding evidence for and insight into processes, mechanisms, and theories, as well as the data needed to set
up and run diagnostic and predictive simulations. The strengths, successes, limitations, and failings of mod-
els vis-�a-vis experiments have been and continue to be vigorously debated in the hydrological community,
in defense of experimental hydrology early on [Hewlett et al., 1969], but soon enough calling into question
modeling tenets as well [Loague and Freeze, 1985; Beven, 1989; Grayson et al., 1992; Smith et al., 1994]. No
one would disagree that scientific progress requires a constant dialogue between measurement, analysis,
and simulation [Seibert and McDonnell, 2002; Kirchner, 2006], or that one of the key strengths of physically
based hydrological models is their ability ‘‘to assist in the analysis of data, to test hypotheses in conjunction
with field studies, to improve our understanding of processes and their interactions, and to identify areas of
poor understanding in our process descriptions’’ [Grayson et al., 1992]. This is the exploratory role of a math-
ematical model [Larsen et al., 2014], as important as its operational role as a forecast, prediction, and man-
agement tool.

Several of the early modeling studies mentioned in the previous section also included laboratory or field
testing, with good agreement reported between measurements and model predictions [Foster et al., 1968;
Hanks et al., 1969; Freeze and Banner, 1970; Smith and Woolhiser, 1971]. Additional studies along this vein
include those of Giesel et al. [1973] for vertical flow in a homogeneous sand column including hysteresis
effects, Mein and Larson [1973] for infiltration dynamics before and after surface ponding, Vauclin et al.
[1979] for flow across the water table using a 2-D saturated/unsaturated zone model rather than the more
limited free surface approach, Pickens and Gillham [1980] for 1-D unsaturated flow and solute transport
under hysteretic conditions, and Nieber and Walter [1981] for the 2-D RE applied to a sloping soil. The semi-
nal field studies of Horton [1933], Betson and Marius [1969], and Dunne and Black [1970] identified the main
mechanisms of runoff generation (infiltration excess and saturation excess) and the concept of variable
source areas that are very responsive to storm events. These mechanisms and responses can be routinely
handled by integrated physically based models, whereas simpler or more conceptual models will often be
limited to a single mechanism or will require distinct representations for different mechanisms.

As field and laboratory experiments became more elaborate, seeking to capture a wider range of natural
settings and with improved measurement and monitoring capabilities, model formulations and modeling
practices also adapted. The most important facet to emerge from these experimental studies is the ubiquity
and high degree of spatial and temporal heterogeneity that occurs under natural field conditions. This has
spurred the development of more sophisticated parameter identification procedures, stochastic
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approaches, and data assimilation techniques that are surveyed in the following sections. Other advances,
such as novel theories and models that deal specifically with the problems of preferential flow (through soil
macropores and geological fractures, for instance), unstable flow (fingering), averaging and scaling porous
media properties, and complex reactive transport phenomena, are briefly reviewed here. Mathematical and
computational aspects of these theories and models will be discussed in more detail in section 3.

There is abundant evidence, through both experimental and simulation studies, for the influence of spatio-
temporal variability in parameters (including inputs and boundary conditions) on hydrological responses
over a range of scales [Morin and Benyamini, 1977; Wilson et al., 1979; Binley et al., 1989a; Julien and Moglen,
1990; Woolhiser et al., 1996; Scanlon et al., 1999; Western et al., 1999; Zehe and Bl€oschl, 2004; Fiori and Russo,
2007; Didszun and Uhlenbrook, 2008]. Techniques for averaging or interpolating model parameters such as
hydraulic conductivity locally (e.g., between grid cells or elements in a numerical discretization) are pre-
sented by Appel [1976], Haverkamp and Vauclin [1979], Warrick [1991], and Zaidel and Russo [1992]. At the
hillslope and catchment scales, the notion of equivalent parameter values has been investigated [El-Kadi
and Brutsaert, 1985; Binley et al., 1989b; Wildenschild and Jensen, 1999; Brooks et al., 2004], and upscaling,
similarity, filtering, and other approaches have been introduced to extrapolate information from local meas-
urements or estimates and to render consistent the measurement and modeling scales [Warrick et al., 1977;
Peck et al., 1977; Beckie, 1996; Renard and de Marsily, 1997; Efendiev et al., 2000; Cushman et al., 2002; Neu-
weiler and Cirpka, 2005].

The presence and roles of preferential flow and fingering in porous media flow and transport dynamics
have drawn much attention, owing to the significant measurement and modeling challenges raised by
these phenomena [Duguid and Lee, 1977; Mosley, 1979; Beven and Germann, 1982; Glass et al., 1989; McDon-
nell, 1990; Mulholland et al., 1990; Pearce, 1990; Scanlon et al., 1997; Wilcox et al., 1997; Ritsema et al., 1998;
Zhou et al., 2002; Beven and Germann, 2013]. Two-domain models (and related mobile-immobile, dual-
porosity, dual-permeability, and bicontinuum conceptualizations) are by now commonly used to deal with
fractured media in groundwater hydrology and with macropore flow in catchment hydrology [Germann
and Beven, 1985; Sudicky, 1989; Gerke and van Genuchten, 1993; Zurm€uhl and Durner, 1996; Jørgensen et al.,
1998; Laine-Kaulio et al., 2014]. The two-domain paradigm has also proven useful in solute transport model-
ing when reaction kinetics and other nonideal or nonequilibrium mass transfer phenomena needs to be
accounted for [Cameron and Klute, 1977; Nkedi-Kizza et al., 1983; Gillham et al., 1984; Brusseau, 1994; Gallo
et al., 1996; Harvey and Gorelick, 2000]. Various theories and models to explain and predict the occurrence
of unstable flow in unsaturated media have been posited over the years, with the most recent ones favoring
saturation or pressure overshoot as a prerequisite mechanism for fingering [Diment et al., 1982; Eliassi and
Glass, 2001; Cueto-Felgueroso and Juanes, 2009; DiCarlo, 2013].

The many well-established experimental hillslope and catchment sites throughout the world are founts of
valuable data for a wide range of modeling studies. In many cases these sites continue to be monitored
and are able to exploit the latest advances in sensor technology (ground-based instruments and networks
as well as airborne and satellite platforms) to measure parameters, state variables, and fluxes at improved
resolutions and accuracies. Well-documented laboratory and field sites include the Las Cruces trench site
[Hills et al., 1991; Wierenga et al., 1991; Oliveira et al., 2006], the Tarrawarra experimental catchment [Western
et al., 1999], the macrodispersion experiment (MADE) site [Harvey and Gorelick, 2000; Fiori et al., 2013], and
the Panola Mountain research watershed [Freer et al., 2002; Tromp-van Meerveld and McDonnell, 2006]. Sev-
eral other experimental studies are described in detail in various journal special issues focused on specific
topics (e.g., understanding process dynamics at aquifer-surface water interfaces [Krause et al., 2014]). There
are also a number of recent natural and laboratory experiments that have a highly interdisciplinary focus
and are assembling extensive data sets on water, energy, and nutrient fluxes across soil/land surface/plant/
atmosphere interfaces. Examples include the network of critical zone observatories established in the U.S.
[Anderson et al., 2008], the TERENO network of experimental catchments in Germany [Zacharias et al., 2011],
the Landscape Evolution Observatory (LEO) at the Biosphere 2 facility near Tucson in Arizona [Niu et al.,
2014c], and the Chicken Creek artificial catchment near Cottbus in Germany [Hofer et al., 2012].

2.3. Computational Advances
The numerical techniques used in process-based hydrological modeling typically originate in the mathe-
matics and computation literature and are adapted and further developed for groundwater and surface
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water applications, often in symbiosis with other engineering and geoscience fields that deal with porous
media, coupled and multiphase systems, scale issues, etc. (e.g., petroleum reservoir simulation, nuclear
waste disposal, CO2 sequestration) [Aziz and Settari, 1979; Chavent and Jaffr�e, 1986; Larsson, 1992; Pruess
et al., 2004; Neerdael and Finsterle, 2010; Nordbotten and Celia, 2011]. As mentioned in section 2.1, finite ele-
ment techniques quickly established a foothold in hydrological modeling, and this approach has continued
to evolve. Subsequent studies have explored particular aspects of finite element methods such as Galerkin-
based formulations, different element types and shapes, a variety of basis function classes, coordinate trans-
formations, the handling of sharp fronts, and specialized methods for steady state problems [Gray and
Pinder, 1976; Pickens and Lennox, 1976; Frind and Verge, 1978; Hayhoe, 1978; Narasimhan et al., 1978; Frind
and Matanga, 1985]. Other spatial discretization approaches have been proposed that can offer appealing
accuracy, efficiency, or ease of implementation advantages under certain conditions (e.g., steady state anal-
yses, large-scale applications). These include integrated finite difference, finite difference with nonorthogo-
nal grids, finite volume, mixed finite element, analytic element, and cellular automata methods [Narasimhan
and Witherspoon, 1976; Strack, 1976; Putti et al., 1990; Beckie et al., 1993; Eymard et al., 1999; Manzini and Fer-
raris, 2004; Mendicino et al., 2006; Kees et al., 2008; Putti and Sartoretto, 2009; An et al., 2010; Mazzia et al.,
2011]. Traditional finite difference techniques, simple to implement but not so amenable to the geometric
complexities of two- and three-dimensional spaces, are instead the most common discretization along the
time axis. Other temporal discretization approaches that have been proposed over the years include finite
elements, the Laplace transform technique, and spectral methods [Gray and Pinder, 1974; Cheng and Ou,
1989; Dunbar and Woodbury, 1989; Sudicky, 1989; Gambolati, 1993].

Numerical modeling of Richards’ equation faces additional challenges connected to the strong nonlinearity
of this equation that arises from the pressure dependence in the soil moisture and hydraulic conductivity
parameters. Accuracy and mass conservation can be improved by using alternative formulations of RE or by
applying appropriate primary variable transformations [Celia et al., 1990; Kirkland et al., 1992; Rathfelder and
Abriola, 1994; Pan and Wierenga, 1995; Diersch and Perrochet, 1999; Williams et al., 2000]. Solving RE requires
that the equation be linearized, and Newton-based iterative schemes, including less accurate approxima-
tions such as the Picard method, are commonly used for this purpose [Brutsaert, 1971; Huyakorn et al., 1984;
Paniconi and Putti, 1994; Gustafsson and S€oderlind, 1997; Casulli and Zanolli, 2010; Lott et al., 2012], although
noniterative approaches have also been proposed [Paniconi et al., 1991; Kavetski et al., 2002; Ross, 2003; Cre-
voisier et al., 2009]. The convergence behavior of an iterative scheme at each time step of the RE solution
can be advantageously used to adapt the step size during the simulation, while noniterative schemes can
rely on local truncation error estimates to dynamically control the step size [D’Haese et al., 2007]. However,
more sophisticated time stepping approaches and other specialized techniques are needed to ensure over-
all robustness and efficiency of RE solvers, in particular for difficult problems such as dry soil infiltration and
highly heterogeneous media [Hills et al., 1989; Ross, 1990a; Harter and Yeh, 1993; Forsyth et al., 1995; Pan
et al., 1996; Miller et al., 1998; Jones and Woodward, 2001].

Solving the advection-dispersion equation is also very challenging. Two problems in particular have drawn
attention over the years: accurate calculation of groundwater velocities (computed by the flow solver, but
needed by the ADE solver) and dealing with advection versus dispersion dominated solute transport proc-
esses. The former problem can be dealt with by using higher order and mixed hybrid finite element techni-
ques, control volume approximations, and velocity reconstruction methods [Yeh, 1981; Chiang et al., 1989;
Cordes and Kinzelbach, 1992; Durlofsky, 1994; Mos�e et al., 1994; Putti and Cordes, 1998; Cordes and Putti, 2001;
Kees et al., 2008], while methods such as upstream weighting (or upwinding), Eulerian-Lagrangian discretiza-
tion, high order Godunov-type finite volumes as naturally extended by discontinuous Galerkin approaches,
and time-splitting have been proposed for accurately resolving the very different numerical behaviors of
the advective and dispersive components of ADE [Sun and Yeh, 1983; Cheng et al., 1984; Thomson et al.,
1984; Healy and Russell, 1993; Perrochet and B�erod, 1993; Zhang et al., 1993; Bellin et al., 1994; Mazzia et al.,
2000; Saaltink et al., 2004; Rivière, 2008]. Adding chemical reactions and other mass transfer phenomena to
a solute transport model introduces additional numerical difficulties arising from time scale differences
between mass transfer and transport dynamics and the complexity of exchanges between multiple species
and phases [Rubin, 1983; Valocchi and Malmstead, 1992; Miller et al., 2013].

For both flow and transport models, numerical discretization in space and time (and linearization if
required) reduces the original governing PDEs into a sparse algebraic system of equations. Highly robust
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and efficient preconditioned Krylov-based methods have evolved to be the most widely used schemes for
solving such systems, although other techniques such as strongly implicit, alternating direction implicit, and
multigrid procedures have also been proposed [Trescott and Larson, 1977; Gambolati et al., 1986; McKeon
and Chu, 1987; Hill, 1990; Larabi and De Smedt, 1994]. Boundary and initial conditions can greatly influence
both the numerical performance of a model and the hydrological responses obtained. The general types of
boundary conditions and how to implement them are described in detail in many of the previously cited
papers that present complete numerical flow or transport models. A good exposition for a 3-D variably satu-
rated finite element flow model is provided, for example, by Huyakorn et al. [1986]. A handful of other stud-
ies have examined specific aspects related to boundary and initial conditions, such as the treatment of
boundary conditions for flux- versus volume-averaged concentration formulations in ADE models [Parker
and van Genuchten, 1984], the effects of spin-up initialization for a large-scale integrated hydrologic model
[Ajami et al., 2014], and the impact on hillslope infiltration when a surface boundary condition becomes no-
flow at the end of a rainfall event [Jackson, 1992]. Land surface boundary conditions are particularly critical
for integrated surface/subsurface hydrological models and will be further discussed in section 2.5.

In addition to improving existing numerical techniques to make water flow and solute transport models
more accurate and robust (iterative solvers, hybrid schemes, velocity reconstruction methods, etc), novel
approaches are emerging that promise significant gains in computational efficiency and in the ability to
account for data and model uncertainty. Computational efficiency is critical as ISSHMs are increasingly
applied at larger scales, at finer grid resolutions, or in an ensemble context (i.e., hundreds or thousands of
simulations that systematically sample a parameter space—e.g., saturated hydraulic conductivity—or a
range of scenarios—e.g., climate change). The idea behind adaptive gridding [O’Neill, 1981; Gottardi and
Venutelli, 1992; Trangenstein, 2002; Esfandiar et al., 2015] is simple and very appealing in practice—the com-
putational mesh is locally refined where numerical error is likely to be highest (for instance at an infiltration
front)—but for complex 2-D or 3-D simulations these local areas can shift very rapidly in space and time.
Model reduction techniques [Morel-Seytoux and Daly, 1975; Vermeulen et al., 2005; Siade et al., 2010; Pasetto
et al., 2011, 2013b; Leube et al., 2012; Li et al., 2012] seek to project the discretized equations of a numerical
model into a subspace of much lower dimensionality (reduced order), but here as well further research is
needed to render the techniques applicable to complex simulations that involve highly nonlinear dynamics.

Data assimilation is a powerful methodology that allows model simulations and observation data to be inte-
grated in a dynamically consistent manner, producing better estimates or predictions of a state variable of
interest (e.g., stream discharge or groundwater levels) than either of these sources of information (models
and data) used on their own [Kitanidis and Bras, 1980; McLaughlin, 1995, 2002]. Early applications of data
assimilation in hydrology focused on integrating remote sensing data into large-scale land surface models,
on demonstrating the potential for soil moisture profile retrieval with a 1-D Richards equation, and on
assessing simple assimilation schemes in ISSHMs [Houser et al., 1998; Hoeben and Troch, 2000; Paniconi et al.,
2003a]. The ensemble Kalman filter (EnKF) [Evensen, 2003] and the particle filter [Smith and Gelfand, 1992]
are the most commonly used data assimilation techniques in hydrological modeling [Reichle et al., 2002;
Chen and Zhang, 2006; Weerts and El Serafy, 2006; Camporese et al., 2009; Ng et al., 2009; Pauwels and De
Lannoy, 2009; Hendricks Franssen et al., 2011; Pasetto et al., 2012; Ridler et al., 2014]. The ensemble framework
used in these assimilation methods to compute the statistical quantities of interest allows EnKF and particle
filters to be applied not only for updating model states but also for uncertainty estimation, model perform-
ance diagnostics, parameter estimation, and sensor failure analysis [Van Geer et al., 1991; Moradkhani et al.,
2005; Goegebeur and Pauwels, 2007; Liu and Gupta, 2007; Hendricks Franssen and Kinzelbach, 2008; Sun et al.,
2009; Trudel et al., 2014; Pasetto et al., 2015]. Advanced computational methods for hydrological modeling,
including reduced order modeling and data assimilation, will be further discussed in section 3.

2.4. Other Developments
Table 1 highlights important advances made in the development of physically based models [e.g., Narasim-
han and Witherspoon, 1976; Celia et al., 1990; Gerke and van Genuchten, 1993], but also in areas that are
highly relevant to hydrological modeling but that have evolved into major fields of their own: characterizing
the highly nonlinear constitutive relations in unsaturated media [e.g., Mualem, 1976; Clapp and Hornberger,
1978]; parameter estimation and model calibration methods [e.g., Yeh, 1986; Gupta et al., 1998]; catchment
and flow path delineation from topographic data [e.g., Band, 1986; Tarboton, 1997]; and stochastic
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hydrology [e.g., Gelhar and Axness, 1983; Gelhar et al., 1992]. Some of the milestone developments in these
subfields will be reviewed in this section.

The solution of the Richards equation for flow in variably saturated porous media requires stipulation of the
relationship between soil moisture and pressure head and between relative hydraulic conductivity and
pressure head. The derivation of suitable soil hydraulic characteristics has thus received much attention,
ranging from seminal early studies based on fitting mathematical functions to experimental data, to later
more foundational studies that seek links to soil texture, pore structure, and other soil properties, to very
recent approaches that incorporate adsorptive water retention and film conductivity under dry soil condi-
tions [Brooks and Corey, 1964; Verma and Brutsaert, 1970; Mualem, 1976; Clapp and Hornberger, 1978; van
Genuchten and Nielsen, 1985; Carsel and Parrish, 1988; Russo, 1988; Tyler and Wheatcraft, 1990; Kosugi, 1994;
Perrier et al., 1996; Peters, 2013]. Simplified forms of the hydraulic functions, for instance exponential rela-
tionships, can be useful for obtaining analytical solutions to RE [Broadbridge and White, 1988; Pullan, 1990;
Srivastava and Yeh, 1991; Basha, 1994]. The most commonly used soil characteristic equations have also
been extended to bimodal or multimodal pore size distributions for use in dual-permeability models of joint
matrix and preferential flow [Mohanty et al., 1997; K€ohne et al., 2002]. Finally, a number of studies have also
parameterized capillary hysteresis in the hydraulic functions and have reported favorable comparisons
against laboratory data [Mualem, 1974; Hoa et al., 1977; Kool and Parker, 1987]. Despite its importance, hys-
teresis is not represented in many ISSHMs, in part because of insufficient experimental data and in part
because it acts at a scale too small to be considered in most ISSHM applications.

Model calibration and parameter estimation are crucial to any hydrological modeling endeavor, owing to
the difficulties in measuring adequately and accurately system properties and state variables that can be

Table 1. Ranking by Citation of the WRR Papers Referenced in This Surveya

Authors Year Title
Number of

Times Citedb

Mualem 1976 A new model for predicting the hydraulic conductivity of unsaturated porous media 1824
Beven and Germann 1982 Macropores and water flow in soils 950
Gelhar and Axness 1983 Three-dimensional stochastic analysis of macrodispersion in aquifers 936
Clapp and Hornberger 1978 Empirical equations for some soil hydraulic properties 871
Sudicky 1986 A natural gradient experiment on solute transport in a sand aquifer: Spatial variability of hydraulic conductivity

and its role in the dispersion process
638

Tarboton 1997 A new method for the determination of flow directions and upslope areas in grid digital elevation models 636
Gelhar et al. 1992 A critical review of data on field-scale dispersion in aquifers 624
Yeh 1986 Review of parameter identification procedures in groundwater hydrology: The inverse problem 551
Carsel and Parrish 1988 Developing joint probability distributions of soil water retention characteristics 544
Freeze 1975 A stochastic-conceptual analysis of one-dimensional groundwater flow in nonuniform homogeneous media 530
Celia et al. 1990 A general mass-conservative numerical solution for the unsaturated flow equation 494
Gupta et al. 1998 Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information 494
Howard 1994 A detachment-limited model of drainage basin evolution 449
Dunne and Black 1970 Partial area contributions to storm runoff in a small New England watershed 445
Carrera and Neuman 1986 Estimation of aquifer parameters under transient and steady state conditions: 1. Maximum likelihood method

incorporating prior information
418

Gerke and van Genuchten 1993 A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media 362
Bencala and Walters 1983 Simulation of solute transport in a mountain pool-and-riffle stream: A transient storage model 347
Mackay et al. 1986 A natural gradient experiment on solute transport in a sand aquifer: 1. Approach and overview of plume movement 344
O’Loughlin 1986 Prediction of surface saturation zones in natural catchments by topographic analysis 327
Band 1986 Topographic partition of watersheds with digital elevation models 311
Mein and Larson 1973 Modeling infiltration during a steady rain 309
Zhang and Montgomery 1994 Digital elevation model grid size, landscape representation, and hydrologic simulations 309
Harvey and Bencala 1993 The effect of streambed topography on surface-subsurface water exchange in mountain catchments 305
. . .

Woolhiser and Liggett 1967 Unsteady, one-dimensional flow over a plane—The rising hydrograph 232
. . .

Narasimhan and Witherspoon 1976 An integrated finite difference method for analyzing fluid flow in porous media 221
. . .

Freeze and Witherspoon 1967 Theoretical analysis of regional groundwater flow: 2. Effect of water-table configuration and subsurface permeability
variation

209

Freeze 1971 Three-dimensional, transient, saturated-unsaturated flow in a groundwater basin 205
Pinder and Jones 1969 Determination of the ground-water component of peak discharge from the chemistry of total runoff 203

aThe bold entries pertain to the subfields discussed in section 2.4. The breaks in the sequence (‘‘. . .’’ in the first column) extend the list to the 200 citations level with papers dealing
specifically with physically based modeling.

bValues as of 3 May 2015 from the WRR website link for each paper.
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highly variable in space and time and in the uncertainties inherent in any model representation of physical
processes. There has been continuous and steady progress in model calibration techniques (and more gen-
erally inverse methods) over the past five decades, with the most advanced techniques often developed
and tested first for simple (e.g., lumped empirical) models, to be subsequently adapted to more complex
distributed and physically based models [e.g., Neuman, 1973; Cooley, 1977; Gupta and Sorooshian, 1983; Kita-
nidis and Vomvoris, 1983; Kuczera, 1983; Sorooshian and Gupta, 1983; Sorooshian et al., 1983; Carrera and
Neuman, 1986; Yeh, 1986; McLaughlin and Townley, 1996; Gupta et al., 1998; Senarath et al., 2000]. For sub-
surface applications the target parameter is most often the saturated hydraulic conductivity, although there
are also examples of parameter estimation for the unsaturated soil hydraulic characteristics [Kool and Parker,
1988; Russo, 1988; Mishra and Parker, 1989]. For PDE-based numerical models the main challenges to robust
calibration and estimation regard computational cost, nonunique solutions (ill-posedness), and multiple
possible objectives and variables [e.g., Anderman and Hill, 1999; Keating et al., 2010]. Discharge at a catch-
ment outlet is by far the most widely used response variable for calibrating and validating hydrological
models. With an increasing availability of observation data for multiple variables and the increasing number
and complexity of processes represented in integrated physically based models, it becomes imperative to
conduct sensitivity analyses and to assess model performance against multiresponse data [e.g., Clark et al.,
2011b; Brunner et al., 2012; Rakovec et al., 2014]. Response variables should include both integrated meas-
ures (e.g., outlet flow rate and solute concentration, total system water storage and solute mass, and total
groundwater recharge) and distributed responses (e.g., soil moisture, mass concentration, and exchange
fluxes at different points along a sensor network).

Drainage networks can be extracted from topographic or terrain data as represented by a digital elevation
model (DEM), with the aid of geographic information systems and other spatial analysis tools. These catch-
ment partitioning algorithms also provide a representation of surface flow paths and a computation of
upslope drainage areas. The most widely used procedures are based on uniformly gridded terrain data [Band,
1986; Fairfield and Leymarie, 1991; Dawes and Short, 1994; Tarboton, 1997; Orlandini et al., 2003; Orlandini and
Moretti, 2009; Pelletier, 2013; Orlandini et al., 2014], but other DEM representations such as contour data (vec-
tor-based approaches) or triangular irregular networks (TINs) have also been used [Goodrich et al., 1991; Moore
and Grayson, 1991; Moretti and Orlandini, 2008]. Overland flow models based on irregular surface grids (vector
or TIN) can offer computational advantages (greater efficiency) over uniform grid models. DEM-based criteria
for delineating hillslope/valley transitions and overland flow/channel flow regimes have also been developed
[Montgomery and Dietrich, 1989; Montgomery and Foufoula-Georgiou, 1993; Howard, 1994; Orlandini et al.,
2011], as well as algorithms that extend the basic procedures to lake-dominated landscapes [Mackay and
Band, 1998], tidal channel networks [Fagherazzi et al., 1999], and valley bottoms and riparian areas [Gallant
and Dowling, 2003]. The ready availability of DEM-processed data has facilitated the discretization and param-
eterization of physically based surface and subsurface models at the catchment scale [Paniconi and Wood,
1993; Julien et al., 1995], and it has spurred the development of distributed-parameter models based on topo-
graphic indices, wetness parameters, and other indicators or predictors of a catchment’s saturation response
to rainfall events [O’Loughlin, 1986; Barling et al., 1994]. These distributed models, to some degree inspired by
or extensions of the widely used TOPMODEL [Beven and Kirkby, 1979], fill a niche in being more sophisticated
than lumped parameter models but more parsimonious and computationally efficient than numerical PDE-
based models. Notwithstanding the great conveniece of DEM-derived catchment discretizations, there are
also important problems related to the representation of topography in hydrological modeling. Subgrid topo-
graphic variability effects and changes in attributes (watershed size, width functions, slope-area relationships,
curvature, stream channel features) when discretizing a catchment at different DEM resolutions result in signif-
icant differences in simulated responses (outlet discharge, water table depths, saturation patterns, etc) [Wolock
and Price, 1994; Zhang and Montgomery, 1994; Walker and Willgoose, 1999; Choi et al., 2007; Sulis et al., 2011b].
Additional challenges are discussed in section 3.2.

Early stochastic approaches in hydrology, whereby key model parameters such as saturated hydraulic con-
ductivity and porosity are represented by probability distributions and sampled through a Monte Carlo pro-
cedure, were introduced to examine the impacts of spatial variability on hydrological response and to deal
with the difficulties of capturing this response using equivalent (uniform) parameterizations [e.g., Freeze,
1975; Smith and Hebbert, 1979]. Subsequent developments include analyses based on stochastic differential
equations solved by perturbation and other methods, representation of model inputs (e.g., rainfall) as
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random variables, and generation of random fields for model parameters [Bakr et al., 1978; Freeze, 1980;
Mantoglou and Wilson, 1982; Tompson et al., 1989]. Various theories, models, and field and laboratory experi-
ments have been described that address specific issues of flow and transport behavior in heterogeneous
systems, in the mass transport case focused predominantly on the problem of scale dependence in the dis-
persivity coefficients and more generally on non-Fickian dispersion phenomena [Schwartz, 1977; Pickens
and Grisak, 1981a,1981b; Dagan, 1982; Gelhar and Axness, 1983; Sudicky, 1986; Neuman, 1990; Gelhar et al.,
1992; Engesgaard et al., 1996]. More recently fractional PDEs have been proposed to address anomalous dis-
persion in solute transport for surface and subsurface applications [Benson et al., 2000; Cushman and Ginn,
2000; Zhang et al., 2005; Deng et al., 2006].

2.5. Integrated Surface/Subsurface Hydrological Models
In an early paper on numerical modeling in variably saturated porous media, Cooley [1971] commented on
the need for a ‘‘unified approach to the study of subsurface water flow above and below the water table,
because from a fluid dynamic point of view the water table is an artificial boundary.’’ The research commun-
ities for groundwater aquifers and for soil zone processes were at the time quite separate, and each had its
own modeling approaches. Today, three-dimensional, distributed-parameter numerical models for solving
combined formulations of the Richards and groundwater flow equations (as well as the equations for solute
transport) are commonplace, and it is the land surface that may be regarded as an analogous boundary (or
interface), in this case between the specializations and models of subsurface hydrology, surface hydrology,
and atmospheric science/hydrometeorology. An update of the above quote that reflects this shift could be
that of Levine and Salvucci [1999]: ‘‘By treating conditions at the boundaries between groundwater, the
vadose zone, and the atmospheric boundary layer as fixed quantities, potentially important feedbacks are
ignored. [. . .] The interaction of surface, vadose zone, and groundwater fluxes should therefore be consid-
ered in models of watershed-scale hydrologic processes.’’ These modeling shifts respond to needs for
greater process understanding, but are also contingent on numerical and computational advances that
make it possible to resolve ever more complex systems. In addition, current research in integrated surface/
subsurface modeling is also driven by water resource management imperatives [Winter et al., 1998]. The
management context can add further levels of coupling to a physically based hydrological model, such as
optimization and decision analysis techniques [Gorelick, 1983; Cheng et al., 2009; Kollat et al., 2011], but
these will not be dealt with in this survey.

Quantitative analysis of the interactions between surface and subsurface waters has a long history in the
hydrological literature [e.g., Theis, 1941]. Early modeling studies, in addition to those cited in section 2.1,
include: Winter [1978, 1983], who used 3-D subsurface modeling and appropriate boundary conditions to
investigate aquifer and vadose zone interactions with a lake; Govindaraju and Kavvas [1991], who coupled
overland, channel, and 2-D surface models to assess variable source area dynamics at the hillslope scale;
Nield et al. [1994], who performed very detailed simulations of the interactions between groundwater and
surface water bodies in a vertical section; Pohll et al. [1996], who estimated potential infiltration and deep
groundwater recharge fluxes from ponded nuclear subsidence craters; Singh and Bhallamudi [1998], who
examined numerical aspects of an integrated model of 1-D overland flow and 2-D subsurface flow; and
Reggiani et al. [2000], who introduced the representative elementary watershed concept for deriving
catchment-scale conservation equations for integrated hydrologic flows based on the averaging approach
of Hassanizadeh and Gray [1979]. The current generation of ISSHMs generally features a comprehensive
treatment of subsurface (3-D saturated and unsaturated media) and surface (1-D or 2-D overland and chan-
nel) flow with two-way coupling between the two domains.

While the groundwater flow and Richards equations are quite standard for the subsurface, the approaches
for surface flow are more varied and often consist of some approximation (e.g., kinematic or diffusion wave)
of the shallow water equations [Li et al., 1975; Morris and Woolhiser, 1980; Viera, 1983; Ponce, 1986; Govindar-
aju et al., 1988; Ponce, 1990; Westerink and Gray, 1991; Gottardi and Venutelli, 1993; Richardson and Julien,
1994; Orlandini and Rosso, 1996; Bajracharya and Barry, 1997; Heng et al., 2009], with either a rill flow (1-D) or
sheet flow (2-D) paradigm adopted for overland flow [Zhang and Cundy, 1989; Abrahams and Parsons, 1990;
Hairsine and Rose, 1992a,1992b; Abrahams et al., 1994; Myers, 2002; Howes et al., 2006]. Both rill and sheet
flow approaches need to be more carefully studied in conjunction with ISSHMs, as the spatial averaging to
distribute a ponding head over a DEM cell can have important accuracy implications, for instance in nonlin-
ear phenomena such as infiltration-runoff partitioning. Over a longer term, local processes of erosion and
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sedimentation will determine rill formation and shape, and models based on channel initiation mechanisms
[Perron et al., 2008; Smith, 2010] can be coupled to ISSHMs to capture these processes. Scaling relationships
between channel characteristics and discharge are commonly used to parameterize the hydraulic geometry
relations in SWE models [Leopold and Maddock, 1953; Orlandini and Rosso, 1998; Singh et al., 2003; Dodov
and Foufoula-Georgiou, 2004].

Current ISSHMs include InHM [VanderKwaak and Loague, 2001; Smerdon et al., 2007; Mirus et al., 2011],
CATHY [Bixio et al., 2002; Camporese et al., 2010], tRIBS [Ivanov et al., 2004], MODHMS [Panday and Huyakorn,
2004; Phi et al., 2013], HydroGeoSphere [Jones et al., 2006, 2008; Brunner and Simmons, 2012], ParFlow [Kollet
and Maxwell, 2006], GEOtop [Rigon et al., 2006; Endrizzi et al., 2014], PIHM [Qu and Duffy, 2007; Kumar et al.,
2009], IRENE [Spanoudaki et al., 2009], Cast3M [Weill et al., 2009], PAWS [Shen and Phanikumar, 2010], Open-
GeoSys [Delfs et al., 2012; Kolditz et al., 2012], GSFLOW [Huntington and Niswonger, 2012], and MIKE SHE [Han-
sen et al., 2013]. Some of these models also extend the surface/subsurface coupling to solute transport
(HydroGeoSphere, Cast3M, and CATHY) [Jones et al., 2006; Weill et al., 2009, 2011; M€ugler et al., 2011], erosion
and sediment transport (tRIBS) [Kim et al., 2013], and thermomechanical processes (OpenGeoSys) [Kolditz
et al., 2012]. The key differences between these various models, aside from the equations and dimensionality
used to represent overland and channel flow as mentioned above, will lie in the coupling approaches that
are used (e.g., simultaneous versus iterative versus sequential solution of the surface and subsurface equa-
tions; first-order exchange term versus boundary condition switching to resolve the fluxes across the sur-
face/subsurface interface). Since each of these models has its own raison d’être and development history,
there will of course be many other differences between them, including how the terrain is represented
(gridded or TIN, continuous or staggered landscape), the numerical schemes for spatiotemporal discretiza-
tion and linearization, the diversity and complexity of boundary conditions, and so on. Several classification
schemes for integrated surface/subsurface hydrological models have been proposed, and various studies
have assessed the different approaches that are used for coupling and resolution of these numerical models
[Morita and Yen, 2002; Gunduz and Aral, 2005; Kampf and Burges, 2007; Dawson, 2008; Furman, 2008; Ebel
et al., 2009; Park et al., 2009; Dagès et al., 2012; Fiorentini et al., 2015]. When ISSHMs are extended to solute
transport, careful attention to coupling strategies and numerical solution techniques is also needed for the
flow and transport system in the case where solute concentrations can alter the flow field, as for instance via
fluid density variations in saline environments, of which seawater intrusion in coastal aquifers is a classic
example [Voss and Souza, 1987; Herbert et al., 1988; Oldenburg and Pruess, 1995; Putti and Paniconi, 1995; Sim-
mons et al., 2001; Diersch and Kolditz, 2002; Mazzia and Putti, 2005; Povich et al., 2013].

Capturing the full complexity of surface/subsurface interactions is critical in ISSHMs, since the exchanges
across the land surface (rainfall and evaporation) [Camporese et al., 2010; Abati and Callari, 2014; Liggett
et al., 2014], with a river or stream network (including seepage faces) [Cooley, 1983; Rulon et al., 1985], and
at the bottom or interior of the domain (including tile drains) [Fipps and Skaggs, 1989; MacQuarrie and Sud-
icky, 1996; Rozemeijer et al., 2010; Hansen et al., 2013] can be fundamental determinants of the internal flow
and transport dynamics of the system and can cause significant numerical difficulties. The role and handling
of the evaporation boundary condition in ISSHMs has not received much attention compared to the treat-
ment of infiltration processes, in part perhaps because of the preeminence of the rainfall-runoff partitioning
problem in hydrological modeling. There is a very strong feedback between evaporation and near-surface
soil moisture [e.g., Schmugge et al., 1980; Bernard et al., 1981], and, analogous to what occurs at the instance
of ponding during a rainfall event, there is a transition from atmosphere-controlled (stage-one) to soil-
limited (stage-two) evaporation as the soil dries. This can be handled via the land surface boundary condi-
tion in an ISSHM [e.g., Camporese et al., 2014b], but the precise nature of the transition process (gradual ver-
sus threshold, for instance) [Brutsaert and Chen, 1995; Salvucci, 1997] and the importance of factors such as
subgrid-scale surface roughness [Albertson and Parlange, 1999] will affect how evaporation is parameterized
in these models, and requires further study.

Model intercomparison is an important means for assessing the performance and establishing the numeri-
cal and physical limitations of competing models. While early studies often focused on comparing very dif-
ferent modeling approaches (e.g., lumped or conceptual versus distributed or physically based) [Sloan and
Moore, 1984; Troch et al., 1993; Michaud and Sorooshian, 1994; Refsgaard and Knudsen, 1996], more recent
efforts have focused on models belonging to a common class and on the establishment of benchmark
problems [Scanlon et al., 2002b; Paniconi et al., 2003b; Woods et al., 2003; Sulis et al., 2010; Maxwell et al.,
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2014]. Benchmarking is essential for establishing a standard set of test cases and for bringing together the
modeling community to directly and openly assess competing formulations, parameterizations, and algo-
rithms [Smith et al., 2004; Sebben et al., 2013]. An early example of a benchmark problem in subsurface
hydrology is the Borden sand aquifer in southern Ontario [Sykes et al., 1982; Mackay et al., 1986], which has
been used extensively in solute transport investigations and is one of the test cases selected for the Phase 2
ISSHM intercomparison study [Kollet et al., 2015]. This intercomparison effort for physically based, inte-
grated, catchment-scale hydrological models follows similar initiatives in subsurface reactive transport, radi-
onuclide migration, carbon sequestration, land data assimilation, and land surface modeling [Larsson, 1992;
Henderson-Sellers et al., 1995; Boone et al., 2004; Pruess et al., 2004; Xia et al., 2012; Steefel et al., 2015].

2.6. Case Studies With Physically Based Models
Where formal benchmark test cases and model intercomparison exercises are useful for assessing model
capabilities and limitations, any modeling case study based on scenario (synthetic) simulations or on field and
laboratory experiments can fulfill a model’s exploratory, hypothesis testing role. We illustrate this role via four
examples connected to perennially important modeling issues: boundary conditions (hypotheses concerning
the impact of processes at and across the soil/bedrock interface); grid resolution (exploring climate change
impacts in large-scale applications), unsaturated zone complexities (exploring solute transport mechanisms
and controls), and hydrograph separation (hypotheses concerning flow pathways and travel times).

A soil layer on sloping bedrock is a common conceptualization in hydrological modeling at the hillslope
and subcatchment scales. At these small scales morphology, vegetation, and climate can all be quite accu-
rately represented, whereas pedology and geology are much more difficult to characterize. Thus further
approximations are often introduced regarding the prevailing directions of flow, the degree of imperme-
ability of the soil-bedrock interface, the presence of layers and other inhomogeneities in the soil and aqui-
fer, the influence of the unsaturated zone, and so on. This allows for simplified, even analytical, models to
be derived, based for instance on the widely used kinematic wave and Boussinesq equations for ground-
water flow in unconfined aquifers [Guitjens and Luthin, 1965; Beven, 1981; Smith and Hebbert, 1983; Zecharias
and Brutsaert, 1988a,b; Troch et al., 2003; Chapman, 2005; Troch et al., 2013]. In physically based integrated
modeling there is greater flexibility in how the bottom boundary of a hillslope or catchment is represented,
as well as any interface to an underlying bedrock aquifer or other type of layered heterogeneity, and there
are tailored numerical schemes for leaky-aquifer systems and groundwater recharge calculation [e.g., Sahu-
quillo, 1983; Cheng and Ou, 1989; Sanford, 2002; Scanlon et al., 2002a] that can be used without simplifying
the model physics. Certainly at larger scales the impermeable bedrock paradigm needs to be relaxed as
deeper groundwater flows can contribute significantly to streamflow [e.g., Frisbee et al., 2011]. Moreover
field and modeling experiments over a range of scales suggest strongly that the way bottom boundaries,
bedrock interfaces, and other layers are treated (impermeable versus leaky or fractured, smooth versus non-
uniform with microtopographic relief features, etc) will have a large impact on hydrological response (pres-
sure head distributions, lateral flow connectivity, capillary barrier effects, groundwater recharge and
discharge, timing and magnitude of outflow hydrograph peaks, etc) [Ross, 1990b; Montgomery et al., 1997,
2002; Buttle and McDonald, 2002; Freer et al., 2002; Uchida et al., 2002, 2003; Katsuyama et al., 2005; Tromp-
van Meerveld and McDonnell, 2006; Ebel et al., 2008; Broda et al., 2011].

ISSHM applications in the literature are mainly aimed at the field, hillslope, and small catchment scales,
although there are an increasing number of studies over larger regions (O(103) km2 and higher), even up to
the continental scale [Lemieux et al., 2008]. Climate change impact assessment is a typical case of large-
scale ISSHM application (e.g., HydroGeoSphere [Goderniaux et al., 2009]; MIKE SHE [van Roosmalen et al.,
2009]; ParFlow [Ferguson and Maxwell, 2010]; CATHY [Sulis et al., 2011a, 2012]; GSFLOW [Huntington and Nis-
wonger, 2012]; PAWS [Niu et al., 2014d]). The hydrological model can either be coupled to an atmospheric
model [Maxwell et al., 2011], or be driven by forcing data (precipitation, temperature, etc) derived from
regional climate models (RCMs) or general circulation models (GCMs), generally based on Intergovernmen-
tal Panel on Climate Change emissions scenarios. Additional input and observation data (evapotranspira-
tion, watershed storage changes, etc) can be obtained from satellites. Since RCMs and GCMs operate at
much coarser resolutions than ISSHMs, dynamical or statistical downscaling procedures are generally used
to adapt the atmospheric data to the hydrological model grid. Numerical challenges associated with hydro-
logical simulations over very large domains, in addition to obvious computational efficiency issues, include
subgrid variability (for topography as mentioned previously, but also for other processes and controls) and
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mesh skewness and aspect ratio (distortion and imbalance between vertical and horizontal discretizations).
Computational efficiency can be addressed by code parallelization, recognized even in early hydrological
modeling studies [e.g., Meyer et al., 1989] and recently assessed for coupled surface/subsurface models [Kol-
let et al., 2010; Hwang et al., 2014; De Maet et al., 2015]. For a catchment size of O(103) km2 at O(1002101) m
DEM resolution and O(102221021) m vertical discretization, the numerical grid will have O(10921010) cells
or degrees of freedom and could only be simulated on massively parallel architectures with highly efficient
scaling.

Many very detailed field and modeling case studies of solute transport in unsaturated media have been
conducted over the years. This wealth of information bears re-examination as ISSHMs increasingly consider
not only flow but also mass transport and transfer phenomena, and since exchanges of water and solutes
across the land surface interface will often occur under unsaturated conditions. The numerous issues and
challenges addressed in these case studies involve dispersion, hysteresis, anisotropy, air entrapment, fractio-
nation, dry soil phenomena, advanced theories of mixing, and treatment of boundary conditions and sur-
face/subsurface coupling terms. Butters et al. [1989] and Russo et al. [1989a, 1989b] examined hysteresis
effects and the mobile-immobile conceptualization for a bromide tracer experiment conducted in a loamy
sand field. McCord et al. [1991] investigated the hypothesis of a variable, state-dependent anisotropy in
hydraulic conductivity for layered, hysteretic soils. Wilson and Gelhar [1981] conducted a perturbation
model analysis of solute dispersion and showed that spatial variations in moisture content affect solute
plume spreading even without dispersive mixing, and that the rates of solute displacement are typically
much smaller than the rates of moisture displacement. De Smedt and Wierenga [1984] found that larger dis-
persion coefficients are needed for unsaturated compared to equivalent (comparable pore water velocities)
saturated flow experiments, and that a mobile-immobile model provided a better description of solute
breakthrough curves than the standard, single-domain ADE model. For the tritium and bromide tracer
experiments at the Las Cruces trench site in a semiarid area of southern New Mexico, standard models gave
good prediction of wetting front movement during infiltration but poor prediction of point soil water con-
tent and tracer transport [Hills et al., 1991; Wierenga et al., 1991]. In their synthesis of more than 300 solute
transport experiments from the literature, Haggerty et al. [2004] concluded that the estimated mass transfer
timescale is better correlated to residence time than to pore water velocity and that mobile-immobile mod-
els yield reasonable predictions. Russo et al. [1998] conducted 3-D experiments and numerical simulations
of reactive and passive tracers with consideration also of the roles of atmospheric boundary conditions and
water uptake by plant roots. They found that velocity fluctuations enhance lateral solute mixing and slow
down longitudinal spreading. Finally, Havis et al. [1992] explored solute mixing processes across the sur-
face/subsurface interface under infiltration-runoff partitioning.

Simulation models that allow particle tracking or that provide probabilistic frameworks for computing travel
time distributions and flow pathways make it theoretically possible to partition streamflow hydrograph con-
tributions into overland runoff, shallow subsurface flow, and deep groundwater discharge (base flow),
although in practice the distinctions may still be difficult to make, because of continual mixing between sur-
face and subsurface waters (e.g., reinfiltration of overland flow) and the dynamic interaction between seep-
age faces, variable source areas, and the catchment outlet. Nonetheless the problems of travel time
estimation, flow path characterization, and hydrograph separation are important ones and are connected
to the equally complex problem of discerning preevent (old) and event (new) water contributions to storm
runoff and streamflow response. These issues were raised in several early simulation and field studies
[Pinder and Jones, 1969; Freeze, 1972a,1972b; Hewlett, 1974; Pilgrim, 1976; Abdul and Gillham, 1984; Pearce
et al., 1986; McDonnell, 1990], and have been addressed more recently with coupled flow/transport and sto-
chastic models that exploit new theoretical developments, together with experimental studies and other
analyses [Crane and Blunt, 1999; McGuire et al., 2005; Jones et al., 2006; Botter et al., 2008; Fiori et al., 2009;
Botter et al., 2010; Park et al., 2011; Rinaldo et al., 2011; Benettin et al., 2013; Partington et al., 2013].

2.7. Interdisciplinary Models
In this section we go beyond integrated surface/subsurface and flow/transport hydrological models toward
models that represent also the interactions between soil, biota, open water, cryosphere, and atmosphere and
that can simulate diverse stores and fluxes (water, energy, carbon, CO2 and other gases, nutrients and other
solutes) across a variety of interfaces [Newman et al., 2006; Paola et al., 2006]. Research in water resources is
by its very nature an interdisciplinary endeavor [Freeze, 1990], but recent trends extend beyond water
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resources, connecting hydrology to ecology, meteorology, geochemistry, soil physics, and other disciplines.
The case for interdisciplinary research to expand the reach of hydrological science was made early on by Post
et al. [1998], calling in particular for ecohydrological studies on paired catchments. An important function of
interdisciplinary models is the characterization of the spatiotemporal distributions, pathways, and residence
times of water and other constituents over a range of scales [Lin et al., 2006]. In implementing ecohydrological
and Earth system models, challenges arise in maintaining consistency of representation and parameterization
amongst submodels, considering also that many of these submodels are not strictly based on mass and
momentum conservation principles. There is a tendency to a plug-in approach that allows for rapid inclusion
of many disparate process modules. As more processes are integrated, there is inevitable dilution of the over-
all model’s PDE conservation equation basis, with a tendency to think directly in a discretized mode leading
to latent pitfalls in terms of, for example, scale representation and overall consistency in formulation.

It will be important to conduct sensitivity and uncertainty analyses for these interdisciplinary models, as
they introduce new parameters and feedback channels that will impact individual state variables and over-
all model responses. Equally important will be model testing and validation via benchmarking as described
earlier. Finally, prominence should be given also to mathematically sound model development and analysis.
An example of an ecohydrological feedback hypothesis that has been much studied is that groundwater
depth and the dynamics of the vegetation layer condition interactions between soil water and atmospheric
water content and strongly influence local weather patterns [Maxwell et al., 2007; Juang et al., 2007; Maxwell
and Kollet, 2008; Siqueira et al., 2009; de Arellano et al., 2012; Gentine et al., 2013]. In a numerical modeling
study incorporating detailed vegetation dynamics, it has been shown that the buffering effects of plant
behavior, via for example hydraulic redistribution, are fundamental to correctly capture the full soil-plant-
atmosphere feedback cycle and that the vegetation layer impacts cloud formation and rainfall predisposi-
tion [Manoli et al., 2014; Bonetti et al., 2015]. Accurate modeling of vegetation dynamics is fundamental to
capturing these effects that can influence both hydrological and climatic simulations; incorrect averaging or
parameterization may not produce the appropriate behavior.

The modeling of soil-plant interactions has been a longstanding topic in hydrological research, with early
models of root water uptake presented by Feddes et al. [1974], Federer [1979], and Molz [1981] and success-
fully tested against field data. The role of vegetation in hydrology involves also evapotranspiration, which
can be a dominant component in a catchment’s water balance. Important dynamics between vegetation,
soil, water, and atmosphere therefore occur at both the single plant scale and the field (or catchment) scale.
At the catchment scale the spatial distribution of vegetation will to some degree be driven by patterns of
water availability [Thompson et al., 2011], which are in turn determined by climate and the morphological,
geological, and hydraulic properties of the catchment and soils. The most common formulation for root
water uptake, still used in current models, is a sink term that incorporates a root density distribution term
into Richards’ equation. A three-dimensional variant of the root water uptake scheme was introduced and
tested in simulations of transient soil water flow around an almond tree by Vrugt et al. [2001]. A review of
common root water uptake schemes is provided by Jarvis [2011]. A simpler approach, albeit applicable only
to shallow-rooted vegetation, involves a single threshold parameter that controls the boundary condition
switching in an RE-based model between atmosphere-controlled and soil/plant-limited evapotranspiration
[Camporese et al., 2014b].

More advanced schemes for vegetation-soil-atmosphere interaction include the approach implemented in
CATHY by Manoli et al. [2014] that accounts for whole plant transpiration and leaf-level photosynthesis in
addition to root water uptake, the soil-plant root model of Mendel et al. [2002] that includes effects of
hydraulic lift (i.e., the transport of water from moist into drier soil layers through plant root systems), and
the scheme introduced by Kroener et al. [2014] that includes a nonequilibrium relation between water con-
tent and water potential in the rhizosphere for handling water flow in both the soil and mucilage. In a com-
putational study, Schr€oder et al. [2009] use grid refinement around the roots to accurately resolve soil-root
water interactions. In a different approach to the scaling issue in soil-plant interactions, Siqueira et al. [2008]
propose an RE-based model that couples radial water movement toward rootlets (millimeter scale, diurnal
cycle) to a vertical flow component (meter scale, interstorm timescale). Ivanov et al. [2008] couple a model
of plant physiology to tRIBS and examine water-energy-vegetation linkages at time scales from hourly to
interannual for a semiarid environment. At a larger spatial scale, Marani et al. [2006] couple an RE model
and a plant water uptake scheme to investigate ecological, hydrological, and morphological interactions in
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a wetland environment. Several studies have examined the impact of vegetation on overland and channel
flows, including Hammer and Kadlec [1986] who use a 1-D model of groundwater-stream interaction, Katul
et al. [2011] who incorporate a flow resistance factor for submerged vegetation into the Saint-Venant equa-
tion for flood routing, and Kim et al. [2012] who use tRIBS to assess the roles of terrain slope, bed roughness,
and other factors on the interactions between submerged vegetation and overland flow.

Important examples of surface-subsurface hydrological and ecological interactions occur at the local scale
between river and aquifer and between channel and hillslope and include phenomena in hyporheic zones
and lowland catchments [Cardenas, 2015]. Surface-subsurface interactions in these environments have
implications for riparian ecology (including the health of aquatic habitats) and river restoration efforts. The
processes involve not just water flow but also solute transport (including nutrients) and heat transfer. Early
studies with physically based models at the river reach scale were aimed at representing pool-and-riffle
sequences typical of mountain streams and headwater catchments and at examining the role of streambed
topography [Bencala and Walters, 1983; Harvey and Bencala, 1993; Springer et al., 1999; Saenger et al., 2005;
Loheide and Gorelick, 2007; Cardenas and Gooseff, 2008]. The stream components of these coupled models
are innovative in that they necessarily differ conceptually from open channel models. Additional studies in
riparian and lowland environments have examined: links in runoff dynamics from landscape elements to
the channel network and the relative contributions of hillslope and riparian zones to streamflow response
[McGlynn and McDonnell, 2003; Jencso et al., 2009]; hydrological connectivity across the hillslope/riparian/
channel continuum, threshold runoff responses, groundwater ridging, and hysteretic behavior in catchment
storage-discharge relationships [Bates et al., 2000; McGuire and McDonnell, 2010; Mahmood and Vivoni, 2011;
Weill et al., 2013; Camporese et al., 2014a; Pierini et al., 2014]; impacts of land clearance (removal of deep-
rooted vegetation) in the hyporheic zone on the state of connection between an aquifer and a river [Banks
et al., 2011]; and flood formation, propagation, and inundation dynamics with a coupled 2-D SWE and satu-
rated groundwater model [Viero et al., 2014].

We end this section with a brief mention of other processes, beyond vegetation and root water uptake
described above, that have been integrated into hydrological models and ISSHMs, such as large-scale land
surface and energy balance dynamics, CO2 fluxes, and snow processes. As with hydrological modeling, the
nature of spatial variability over a range of scales plays an important role in controlling the responses from
ecohydrological and other interdisciplinary models. From an experimental standpoint, the complexity of
the problem can be perceived from a series of field studies conducted at the Reynolds Creek watershed in
Idaho, where Seyfried and Wilcox [1995] examine the influence of factors such as shrub cover, soil depth to
bedrock, snow drifting, soil freezing, wind, and elevation, each acting at a different characteristic scale, on
infiltration, runoff, streamflow, groundwater recharge, snowfall distribution, and other responses. Water
exchanges across the land surface are strongly dependent on temperature, in particular for evapotranspira-
tion, and thermal effects can influence subsurface water movement. The full complexity of exchange proc-
esses between the soil and the atmosphere is however still far from being understood, but, as discussed in
Bonetti et al. [2015], needs to be captured correctly in ISSHMs.

Early (pre-ISSHM) examples of coupled subsurface water-heat transport and subsurface-atmosphere model-
ing include Milly [1982, 1984] at the soil column scale (1-D RE-based model) and York et al. [2002] and Max-
well and Miller [2005] at scales commensurate with regional climate modeling. Coupling of ISSHMs with
land surface models that include energy balance and various ecohydrological processes (e.g., carbon
exchanges) are described for the ParFlow [Kollet and Maxwell, 2008; Rihani et al., 2010; Rahman et al., 2014],
PAWS [Shen et al., 2013], and CATHY [Niu et al., 2014a, 2014b] models. Simůnek and Suarez [1993, 1994] pres-
ent a detailed model for water movement, CO2 transport and production, heat flow, and equilibrium and
kinetic hydrogeochemical processes in soils that includes also root uptake of water and CO2. Camporese
et al. [2006] extend an ISSHM to include peatland deformation (swelling and shrinking of peat soils) by
introducing a constitutive relationship whereby porosity varies with moisture content. Clark et al. [2011a]
provide a detailed review of snow modeling approaches and the factors that influence the spatial variability
of snow water equivalent at the hillslope and catchment scales. Several studies have used integrated
numerical models to investigate ecohydrological phenomena in tidal environments, including solute
exchanges and the spatial patterns of salt marsh vegetation and sediments [Ursino et al., 2004; Wilson and
Gardner, 2006; Moffett et al., 2012]. In Ivanov et al. [2010] the tRIBS model with vegetation is applied at the
hillslope scale to explore the homogenizing effect of vegetation dynamics on soil moisture distribution.
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3. Current Challenges

In parallel to the development of hydrology as a science [Eagleson, 1991], the past 50 years has seen tre-
mendous scientific advances in the fields of physics-based modeling and applied mathematics. The advent
of modern functional analysis, introduced to the applied community by the work of Courant and Hilbert
[1962] in the U.S. and by Lions and Magenes [1960] in Europe, led to the development and subsequently
application of variational techniques to the solution of PDEs, thereby paving the way to modern numerical
analysis and computation. This has enabled a more thorough understanding of the intricacies of numerical
discretization methods as well as the development of sound mathematical models yielding a much
improved and robust description of the physical behavior of a system. In our view, an important challenge
in hydrological science is to incorporate these mathematical modeling advances within the context of the
complex and incompletely known structures that typify hydrological systems. This is congruent with the
research trends of recent years, as described in the previous section, that see an increased number of inter-
disciplinary modeling efforts engaged in the difficult attempt to cast the early empirism of hydrological sci-
ence into a more rigorous and robust framework.

In this section, we discuss the potential contributions that advanced mathematical and computational
methods can make to resolving some of the outstanding problems in physically based hydrological model-
ing. We first examine process representation in integrated models (section 3.1), followed by novel
approaches for surface PDEs, numerical discretization, and subgrid resolution (section 3.2), and finally simu-
lation techniques for improved model performance (section 3.3).

The section will focus on comprehensive integrated catchment models since these encompass most of the
open problems to be addressed.

3.1. Process Representation in Integrated Catchment Modeling
In the past decade a more comprehensive approach to physically based modeling of catchment dynamics
has emerged, as seen for instance in the number of ISSHMs introduced by an expanding community of
researchers pursuing the visionary ideas of Freeze and Harlan [1969] expressed almost half a century ago
(see section 2.5). Rapid growth in computing power as well as the development of more efficient and accu-
rate numerical techniques have been driving forces behind this effort. A fundamental requirement of these
recent approaches is the use of modern, fast, accurate, and scalable numerical methods to simulate the dif-
ferent processes acting at proper characteristic scales. The coupling of such diverse processes is still not
well understood, but the growing trends to use innovative mathematical and numerical techniques and to
intercompare and benchmark different codes [e.g., Sulis et al., 2010; Maxwell et al., 2014] have led to a better
understanding of underlying processes and of any given model’s range of applicability.
3.1.1. Surface-Subsurface Flow Modeling
The most common approach to coupling surface and subsurface flow dynamics is based on the numerical
solution of the system formed by the three-dimensional Richards equation for saturated-unsaturated flow
in groundwater and a simplified form of the two-dimensional depth-integrated shallow water equations for
modeling water flow at the terrain surface:

SsSw wð Þ @w
@t

1/
@Sw wð Þ
@t

5r � ½K skr wð Þr w1zð Þ�1qs x; tð Þ1qe x; tð Þ=m (1)

@h
@t

5r � vhð Þ1qe x; tð Þ1qr x; tð Þ (2)

where Ss is the specific storage coefficient [L21], Sw wð Þ is the saturation function [-], w is the pressure head
[L], / is the porosity [-], Ks is the saturated hydraulic conductivity tensor [LT21], kr wð Þ is the relative perme-
ability function [-], z is the vertical coordinate [L] (positive upward), qs is a general source/sink term [T21], qe

represents exchange fluxes between the surface and subsurface components [LT21], m is the thickness of
the surface-subsurface flux exchange zone, h is the surface water table depth [L], v is the water velocity vec-
tor [LT21], and qr(x,t) is a source/sink term [LT21]. Note that the SWE system is often represented only by
the mass continuity equation (or incompressibility condition) and that the full momentum equations are
generally approximated using Manning’s approach relating water velocity to terrain slope and water table
depth:
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where Sx and Sy [L] are the friction slopes, typically identified by the components of the terrain gradient,
and n [TL21/3] is Manning’s coefficient. The exchange fluxes are calculated so as to enforce continuity of the
subsurface and surface fluxes and to match surface water table with subsurface pressure head while
neglecting momentum conservation. More details of this approach will be discussed below when we exam-
ine model coupling.
3.1.2. Surface-Subsurface Transport Modeling
In contrast to flow modeling, there has been comparatively less research on surface/subsurface solute trans-
port. A simple and commonly employed methodology for physically based catchment-scale transport mod-
eling [Sudicky et al., 2008] consists in using the velocities calculated from the flow simulator to define an
advective field transporting the solute mass. Besides the classical limitation due to the difficulty of detailing
varying scale spatial heterogeneities, this approach neglects the complex interactions between the surface
and subsurface components. An attempt to describe such complex interactions was proposed by Weill et al.
[2011] using a time-splitting approach to capture the different time scales characterizing the coupled phe-
nomenon. This is however an open field of research, and a comprehensive theoretical framework embrac-
ing the physical mechanisms acting at the surface/groundwater interface is still beyond reach.

Denoting with c(x,t) the solute concentration [-] (assuming normalized concentration) on both the surface
and subsurface domains, the mass balance for the solute is given by the classical advection-dispersion
equation:

/
@Sw c
@t

5r � D vð Þrc2vc½ �1qcs x; tð Þ (3)

where v is the fluid velocity field as calculated by the flow model and qcs is the volumetric exchange flux
between the surface and subsurface components [T21]. The previous equation contains variables that need
to be adapted to the different domains. Thus, Sw and / indicate water saturation and soil porosity, respec-
tively, if transport occurs in the subsurface domain. They assume a unit value if transport is defined on the
surface domain. The velocity v is a 3-D vector that embodies a locally 2-D field defined (projected) on the
terrain surface when solving SWE. In the porous domain, v is the 3-D water phase Darcy velocity as eval-
uated by the RE solver. The dispersion coefficient D vð Þ represents mechanical dispersion due to tortuosity
within the porous medium or due to turbulence in the surface component. In this latter case it is often mod-
eled via eddy diffusion. Molecular diffusion is usually modeled by a spheric tensor that can be added
directly to the dispersion coefficient.

Equation (3) is well-posed if the velocity field is globally and locally conservative [Klausen and Russell, 2005],
i.e., the divergence theorem must hold for every subdomain. In practice, this last statement implies the intui-
tive conditions that at the boundary of any subset fully contained in the model domain the flux
q xð Þ5v xð Þ � n xð Þ, n xð Þ being the external unit vector normal to the subdomain boundary, must be continu-
ous at any point x. Velocity fields that satisfy this property are called conservative and have been the focus of
numerous studies [e.g., Chavent and Roberts, 1991; Cordes and Kinzelbach, 1992, 1996; Mos�e et al., 1994; Putti
and Cordes, 1998; Cordes and Putti, 2001]. It should be noted that the conservation property is not an accuracy
condition in the sense that numerical convergence is independent of this property. However, it is nowadays
recognized that this is a necessary condition for obtaining small mass balance errors in any transport model
using the velocity field as driving mechanism. In our context, it is thus of fundamental importance that the
flow solver enforce the conservation condition on the elements used in the numerical discretization, or in
other words that the numerical discretization scheme be locally conservative. This property is realized by
control-volume based methods such as finite volumes (including multipoint flux approximations [Aavatsmark
et al., 1998; Aavatsmark, 2002]) and mixed finite elements, but not by classical finite elements [Putti and Sartor-
etto, 2009]. To overcome this problem, a promising general method to postprocess the nonconservative finite
element velocity field has been proposed by Kees et al. [2008] on the basis of a-posteriori error estimators
developed by Larson and Niklasson [2004]. This method, based on a local variation of the computed velocities,
assumed to be constant in each element, that enforces flux conservation across element faces, has been
recently tested by Povich et al. [2013] in the context of coupled salt water flow and transport modeling and by
Beir~ao da Veiga et al. [2014b] in the context of mimetic finite differences.
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The conservation property must be imposed also at the interface between the surface and subsurface
domains by appropriate coupling conditions. Weill et al. [2011] assert that the total flux from the surface
domain must equilibrate Cauchy boundary conditions in the subsurface components. Ebel et al. [2007] and
Sudicky et al. [2008] do not impose any constraint on the flow field and just assume continuity of the discrete
fluxes as given by the flow solver. It is important to recognize that the phenomena governing solute exchange
between surface and subsurface components are still largely unknown at the scales of interest in catchment
simulation. Mechanisms such as solute dilution/concentration at the surface due to evapotranspiration and
root water uptake interact with the movement of contaminants during infiltration and routing processes, add-
ing complexity and uncertainty to the mathematical development of coupled models. While increasing effi-
ciency and flexibility in novel numerical approaches, combined with continual advances in computing
technology, allow the simulation of coupled phenomena at unprecedented scales, there is still a fundamental
gap in process understanding and modeling. There is thus a need for more detailed theoretical and experi-
mental studies to address the modeling of coupling phenomena acting at different scales, starting with
reevaluation and model-based reinterpretation of past experimental studies as noted in section 2.6.
3.1.3. Model Coupling
The coupling of different physical phenomena in hydrology and other domains has received much attention
in the past few years [Gaston et al., 2012]. A multiphysics system comprises multiple processes, governed by
different principles, that act simultaneously [Keyes et al., 2011]. A further classification distinguishes between
processes that take place within the same spatial domain and processes that communicate across an idealized
interface (or a narrow buffer zone). In the case of hydrological modeling of water flow in a catchment, two
important phenomena can be distinguished: surface routing and subsurface seepage. These are governed by
the same physical principles, namely conservation of mass, momentum, and energy, but different simplifica-
tions and averages are needed to come up with well-posed and solvable mathematical models. The multiphy-
sics aspect arises from the fact that surface flow is active on an essentially two-dimensional Euclidean surface
modeling the terrain, generally represented by a DEM, while subsurface seepage occurs in a three-
dimensional domain. The coupling between the two processes must then account for the exchanges of fluxes
of mass, momentum, and energy across the idealized interface constituted by the DEM. This is only a rough
description of the multiphysics couplings and feedbacks that occur in a hydrological basin. In fact, with refer-
ence only to the hydrological water cycle, accurate modeling cannot neglect, for example, the interactions
between soil and atmosphere as mediated by vegetation (see section 2.7). One of the fundamental conclu-
sions of Keyes et al. [2011] is that modeling the coupling between different phenomena requires the develop-
ment of sound mathematical and numerical tools. It is crucial that modeling and experimental advances be
described by well-posed mathematical equations and that the numerical approaches that are used for their
practical solution be consistent and convergent. Addressing these problems via interdisciplinary studies
involving physics, hydrology, and applied mathematics is an important future challenge.

Coupling between surface and subsurface water flow was initially studied by Beavers and Joseph [1967] and
later refined by Saffman [1971] within the context of small-scale porous media applications, such as grain fil-
ters in the chemical industry and fuel cells. The original model of Beavers and Joseph [1967] arises from an
experimental study in which water moves on top of a filtrating porous bed. In this situation the surface flow is
governed by Navier-Stokes equations, possibly simplified by neglecting the temporal and convective terms
(the so-called Stokes model), and filtration is governed by Darcy’s law. The fundamental observation, sup-
ported by experimental outcomes, is that while Stokes velocity and pressure effectively correspond to their
respective fluid quantities, the Darcy velocity and pressure, being defined in the porous domain, are spatial
averages over a representative volume. As a result, at the interface the tangential component of the surface
water velocity vt5 vx ; vy

� �
cannot be the same as the tangential component of Darcy’s velocity qt5 qx; qy

� �
.

Starting from this observation, Beavers and Joseph [1967] propose the following interface condition:
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where z is the vertical coordinate, aBJ is an empirical coefficient, and Tr(K) is the trace of the saturated
hydraulic conductivity tensor, i.e., the sum of its diagonal components. Saffman [1971] assumed the surface
flow tangential velocity to be proportional to the shear stress, thus leading to the possibility of neglecting
qt in the above equation. The same result was obtained also by Dagan [1979] and used to derive validity
and generalizations of Darcy’s law. In practice, the so-called Beavers-Joseph or Beavers-Joseph-Saffman
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(BJS) condition postulates the existence of a velocity jump at the interface, with magnitude controlled by
the coefficient aBJ . The BJS condition was later justified mathematically via homogenization theory by J€ager
and Mikelic [2000] and J€ager et al. [2001], who also derived a jump relationship between the pressures of
the surface and subsurface fluids. Discacciati et al. [2002] and Miglio et al. [2003] extended these considera-
tions to a 3-D domain suggesting the following set of interface conditions:

v � n5q � n

@vt

@z
1rxy vz5

aBJ
ffiffiffi
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ffiffiffiffiffiffiffiffiffiffiffi
Tr Kð Þ
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h5w

The first equation imposes flux balance. The second equation is a 3-D extension of the BJS condition impos-
ing momentum continuity. The last condition states that the surface water table depth must be equal to
the porous medium pressure head. Discacciati et al. [2002] and Miglio et al. [2003] also defined a domain
decomposition algorithm that iterates between distinct surface and subsurface domain solvers, and they
showed the well-posedness of both the mathematical and numerical schemes together with the conver-
gence of the domain decomposition approach. While generally assumed valid, the BJS condition postulates
knowledge of the full 3-D velocities in both the surface and subsurface domains at the interface. In the case
of a 2-D depth-averaged SWE the flux and momentum balance conditions above must be transformed into
a flux exchange mechanism, an approach that is usually implemented via the proper definition of source
terms. Extensions have been recently proposed by Dobbersch€utz [2015] who derived a generalized form of
the BJS condition taking into account a possibly nonplanar geometry of the interface. A comprehensive
review of this problem is presented in Ehrhardt [2012].

At the scale of interest for catchment flow dynamics, the fundamental notion that is most often employed
is that of continuity of water pressure and fluxes at the surface/groundwater interface, while the BJS
momentum balance condition is generally neglected. The specific implementations of these conditions are
manifold, and three main coupling strategies can be identified, with all other methods proposed in the liter-
ature being variations of these. The first mechanism [VanderKwaak and Loague, 2001; Panday and Huyakorn,
2004; Sudicky et al., 2008; Brunner and Simmons, 2012] is based on the concept of conductance or first-order
flux exchange, already mentioned by Freeze and Harlan [1969], by which the flux exchange term is consid-
ered proportional to the difference in pressure head at the interface between the surface and subsurface
domains. The constant of proportionality is a conductance, and postulates the existence of a surface layer
where water exchange between the surface and porous medium domains are localized. The nonlinear sys-
tem of equations obtained after time discretization couples the surface and subsurface components via the
linear flux exchange condition. Pressure and flux continuity at the interface is then enforced. A more com-
plex variant of this approach is presented by Weill et al. [2009], who rewrite the surface routing equations in
a format similar to RE. This equation is then activated on a surface layer, assumed of finite depth, and the
equations solved simultaneously. The resulting discretization can be thought of as imposing an infinite con-
ductance in an artifical layer. Note that the conductance parameter can be viewed as a Lagrange multiplier
enforcing the pressure continuity constraint at the surface/subsurface interface. These approaches are
attractive for their simplicity and allow a fully coupled numerical solution of the two systems. However, they
have the drawback that the size or even the existence of the exchange layer cannot be verified experimen-
tally and thus the value of the relevant parameters can only be calibrated indirectly. Bixio et al. [2002] and
Camporese et al. [2010] use an algorithm similar to the domain decomposition method proposed by Discac-
ciati et al. [2002], aided by a time-splitting mechanism making careful use of explicit (for surface routing)
and implicit (for subsurface flow) time discretizations. By this approach, the solution of the surface routing
problem yields boundary conditions for the RE solver. In turn, the solution to RE yields flux contributions to
the SWE. These water exchange contributions are evaluated so that mass conservation is enforced. Complex
nonlinear and time-varying boundary conditions are then defined to allow for the accurate simulation of
surface water and soil-limited infiltration and evaporation regimes. In the third coupling strategy [Kollet and
Maxwell, 2006], simplified shallow water equations provide the value of the flux for the Neumann boundary
conditions imposed on the RE solver at the surface/subsurface interface. The numerical solution is then
obtained by setting up a system of equations coupling the surface and subsurface modules via the
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boundary terms, enforcing at the same time the pressure continuity condition. This yields a fully coupled
system of nonlinear equations that is solved simultaneously by a Newton method. A variant of this
approach was analyzed numerically by Dawson [2006] in the framework of local discontinuous Galerkin
methods. The algorithm proposed solves the surface and subsurface components separately to allow for
different time stepping adaptation in view of the different time scales that characterize the different proc-
esses, analogous to the time discretization approach used in Camporese et al. [2010].

3.2. Novel Approaches for Surface PDEs, Numerical Discretization, and Subgrid Resolution
3.2.1. PDEs on Surfaces and Topography Approximation
Surface flow modeling is largely based on simplifications of the shallow water equations [Gottardi and Venu-
telli, 1993; Santillana and Dawson, 2009]. The SWE hypothesis asserts that the water wavelength is much
larger than the wave height. This allows a dimensionality reduction by evaluating appropriate averaged
velocities and water depth defined on the surface where the flow occurs, i.e., right at the surface/subsurface
interface defined by the DEM. While this approach is well-established for flat terrain, e.g., ocean modeling,
or for the surface of the Earth in atmospheric modeling, how to properly define the averaged quantities
when the bottom is a complex surface, such as a catchment topography, is an unresolved issue. It is typical
of any surface routing model to assume that the averaging operation is performed along a vertical path,
leading to the well-known condition of hydrostatic pressure distribution along this direction. However,
when defined on a curved topography, averaging cannot operate along the vertical and the above hydro-
static condition can be approximated along the direction normal to the bottom surface. Moreover, if the
topography displays important curvatures, the averaging must be performed along a path that is orthogo-
nal to the 3-D velocity vector at any point of the fluid domain, the so-called cross-flow integration path
[Bouchout and Westdickenberg, 2004]. This definition is implicit, since the velocity vector is an unknown of
the problem, and effectively prevents the achievement of an explicit dimensionality reduction. A few
attempts have been made to make this argument rigorous [Boutounet et al., 2008], but more studies are
needed to achieve a sound theory of shallow water flow over curved domains [Pavlov et al., 2011].

The last observation is connected to another important field of study, namely DEM analysis and definition.
Starting from elevation data that, given current laser-based and radar-based technologies, can be obtained
at unprecedented spatial resolutions, the key and yet not fully resolved question is how to define a mathe-
matical model for the terrain surface and related hydrological quantities. The work of Tarboton et al. [1988]
and successively the minimum energy reinterpretation of Rinaldo et al. [1992] suggest a fractal nature of
digital elevation models at the scales of interest. However, how to deal with such a geometrical structure in
surface routing simulators is not evident at all. Although network-based models, as developed, for example,
by Orlandini and Rosso [1998], naturally inherit any fractal geometry of the underlying drainage network,
they do not take into consideration the full geometrical structure of elevation data and consequent 3-D cur-
vature effects. We believe this to be an exciting and promising area of multidisciplinary study where
advanced mathematical techniques drawn from the field of differential geometry come into play. An exam-
ple of this is the recent work of Orlandini et al. [2014], where collaboration between hydrologists and mathe-
maticians has led to sound developments in the field of drainage network analysis of a 3-D surface. More
effort needs to be devoted to this area of research to increase the fidelity of the DEMs extracted from obser-
vations and to assess the approximation errors arising from the numerical discretization of the PDEs defined
on the terrain surface, following the steps delineated by Dziuk and Elliott [2013].
3.2.2. Numerical Discretization Methods
The past few decades have seen important developments in the evolution and analysis of discretization
methods for differential equations. While the field of numerical ordinary differential equations has matured,
culminating with the publication of a number of high quality numerical software libraries [e.g., Hindmarsh
et al., 2005], the field of numerical PDEs is still under active development. Recent studies of discretization
methods for PDEs have focused not only on the convergence behavior of the schemes but also on the
reproduction at the discrete level of properties known to be valid at the continuous level. For example, the
study of monotonicity properties of standard discretizations for elliptic equations that first appeared in
Brezzi et al. [1989], where monotonicity for mixed finite element methods was analyzed, followed by Forsyth
[1991], where discrete maximum principle conditions for standard linear Galerkin methods were introduced,
has evolved passing through the work of Putti and Cordes [1998], who studied conditions under which
physically coherent fluxes can be evaluated (the positive transmissibility condition). More recent analyses
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by Bertolazzi and Manzini [2005], Younes et al. [2006], and Mazzia [2008] have shed light on this problem
and on the fact that there is an intrinsic relationship between geometry of the computational grid and the
monotonicity properties of the discretization schemes.

A related issue with immediate implications for hydrological modeling is that of locally conservative numer-
ical discretizations [e.g., Klausen and Russell, 2005], a property that is of fundamental importance for obtain-
ing conservative discrete velocity fields [Putti and Sartoretto, 2009]. The fundamental concept that has led
to these analyses is that the convergence behavior of a scheme cannot be tested in real world applications
since grid refinement is impractical. Hence the numerical and physical soundness of a simulation must be
supported by indirect physical or analytical evidence that needs to be collected at a fixed (unrefined) grid
scale. The most recent developments in this area have led to the construction of the mimetic finite differ-
ence method and the closely related virtual element method [Brezzi et al., 2005, 2007; Beir~ao da Veiga et al.,
2014a]. As the names imply, these methods mimic the physical and mathematical properties of the govern-
ing equations by a hierarchical use of Stokes theorem and integration by parts to arrive at discretizations
that maintain these properties at the discrete level. The main advantage for hydrological applications is that
mimetic/virtual methods can be defined on very general (3-D) cell shapes. The power of this characteristic
has seen only limited application, but its potential for handling geometrically complex heterogeneities (for
example) should be explored, especially in combination with multiscale techniques.
3.2.3. Upscaling, Subgrid Resolution, and Multiscale Modeling
Subgrid resolution tries to incorporate into the simulation algorithm the small-scale physical features of a
phenomenon that cannot be resolved at grid sizes typical of catchment-scale simulations. Subgrid resolu-
tion and multiscale discretization methods are intimately related: either subgrid processes are summarized
by ad hoc simplified mathematical models whose solution can be obtained in practical terms by closed-
form functions, or the subgrid problem must be solved numerically. In both cases the information at the
small scale needs to be transferred to the computational domain (nodes or edges). While widely used in
atmospheric and ocean modeling through the well-established large eddy simulation approach [Meneveau
and Katz, 2000; Albertson et al., 2001] and in shallow water modeling to handle bottom geometrical irregu-
larities [Defina, 2000], subgrid resolution procedures are less rigorously developed in physically based dis-
tributed catchment models (they are used for instance in some compartment or bucket-based hydrological
models). Subgrid resolution is critical for model implementation at a workable DEM or grid cell size. This
can be efficiently obtained via multiscale simulation [Efendiev et al., 2000; Efendiev and Hou, 2009], using
either finite element or finite volume schemes [Chen et al., 2003; He and Ren, 2005] to mathematically and
numerically extrapolate the needed subgrid information on the course grid.

On the other hand, a purely numerical approach is not sufficient to thoroughly define the coarse scale behav-
ior of nonlinear processes such as infiltration (or more generally unsaturated water flow) and coupling of sur-
face and subsurface components. In this case upscaling of both model parameters and model equations is
necessary [Cushman et al., 2002]. Tools developed for these purposes, based mainly on volume averaging
methods [Whitaker, 1999] or homogenization theory [Hornung, 1997], are difficult to extend to catchment sim-
ulation. In these cases simpler numerical approaches, for example, simultaneous calibration of model parame-
ters at different scales and linking the multiscale processes via empirical functional relationships [Samaniego
et al., 2010; Kumar et al., 2013], have been introduced to define upscaled parameterizations, with the upscaled
process described as an analog of the fine grid process. Future research in this area is needed to develop
more rigourous upscaling techniques with the aim of finding both regionalized model equations and model
parameters starting from the fine scale contributions. To do this one has to first find the homogenized models
at the appropriate scales of appearance of the single processes and then proceed in a hierarchical way to the
larger scales. To better illustrate this idea, consider the example of water infiltration at the soil surface. It is a
very local phenomenon and homogenized models are needed even at subhillslope scale. On the other hand,
at the larger scale, if one looks for example at streamflow formation, the important characteristics are surface-
subsurface water partitioning and the consequent resident times of the different components. Addressing the
concurrent simulation of all these processes may require the coupling of different models, i.e., a multiphysics
approach as described in section 3.1. Important developments of these methodologies will include the use of
model reduction to increase the efficiency of computations [Efendiev et al., 2012].

An important example where subgrid resolution methods can be useful is that of preferential flow, a phe-
nomenon that is ubiquitous in porous media environments and that acts at a scale that cannot be
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represented in reasonably sized grids. We distinguish two types of preferential flow mechanism. The first is
related to the hypothesis, supported by experimental evidence, of the existence of fast flow paths in the
subsurface [e.g., Hopp and McDonnell, 2009; James et al., 2010]. The possibilities for taking into account this
type of preferential flow are manifold. One obvious option is to model this pipe flow directly, but this is not
appealing because of the impossibility, with the current state of the art in geophysical techniques, of col-
lecting sufficient and reliable measurements to characterize the flow geometry and mechanisms. An alter-
native is the two-domain paradigm discussed in section 2.2, with some lumped subgrid modeling approach
to identify appropriate parameterizations. The second type of preferential flow mechanism, instability or fin-
gering, is related to infiltration processes from the surface. Accuracy in modeling this contribution is funda-
mental to prediction of rainfall-runoff partitioning. Subgrid models are being considered for this
mechanism as well, based for example on dynamic capillary curves [Nieber et al., 2005] or on equations
other than RE [Cueto-Fulgueroso and Juanes, 2008; DiCarlo, 2010, 2013], together with the important ques-
tion of identifying equivalent or upscaled infiltration fluxes from local infiltration models. This last question
is more related to averaging or homogenization techniques described earlier than to parameterization, but
nonetheless it is an important issue that should be addressed in the future to improve on the ability of
models to simulate preferential flow processes.

A question that is often asked is what are the most important processes that need to be represented in
physically based models, but this is an ill-posed question, as the issue of representation is not independent
of the scale at which the process is modeled [Bierkens et al., 2014]. Hence a relationship between process
modeling and discretization must exist. This very general issue is common to all hydrological problems. All
the above methods can and should be used to systematically investigate the relationship between mea-
surement scale (spatial and temporal) and model resolution, both in terms of geometry, i.e., grid size and
large scale heterogeneities, and physics, i.e., process description. From a purely numerical point of view,
classical upscaling methods are necessary to describe phenomena that cannot be represented at the
employed mesh size. Larger scale heterogeneities can be represented as long as sufficient data are avail-
able. Understanding the fine balance between process description, model resolution, and the amount of
observation data is an important topic that should be studied with the aid of ISSHMs. New-generation
physically based lumped models, possibly based on stochastic approaches [Benettin et al., 2013], may also
play a key role in homogenization frameworks that seek to balance process uncertainty and model detail,
and may provide an important theoretical foundation for subgrid resolution modeling. Data assimilation
methods, discussed further below, are able to quantify model mismatch against observations, and are thus
an ideal platform to guide the assessment not only of the quality of the available data but also of the repre-
sentativeness of the model processes (for instance with respect to missing or poorly described
components).

3.3. Simulation Techniques for Improved Model Performance
3.3.1. Scientific Computing and Parallelization
The field of scientific computing and parallelization is progressing rapidly in conjunction with emerging
large-scale computing innovations. The most critical kernel of any scientific solver is the efficient solution of
the large sparse systems of linear algebraic equations arising from the numerical discretization of PDEs. Pre-
conditioned Krylov-based methods are usually the solvers of choice for these systems [Bergamaschi and
Putti, 1999; Bergamaschi et al., 2006]. A recent review of Krylov methods with particular reference to water
resources applications is presented in Miller et al. [2013]. The crucial component for the efficient and robust
application of this class of methods is the definition of appropriate preconditioners that render the problem
tractable. Unfortunately, in most cases, efficient preconditioning is problem-dependent and general-
purpose software is suboptimal in many applications. In addition, preconditioning is often a purely sequen-
tial process and its parallelization is not trivial. Recent trends in problem-dependent preconditioning involve
the use of approximate inverses of the system matrix coupled with controlled fill-in and algebraic multilevel
approaches [Janna et al., 2015]. A review of these specialized methods is found in Ferronato [2012].

Efficient linear system solvers play a fundamental role also in the solution of nonlinear systems arising from
the numerical discretization of the relevant PDEs. Globalized inexact Newton-like methods are the standard
approaches used in this case. Inexactness comes into play by requiring that Krylov-based iteration be
stopped at increasingly small residuals. The rationale for this is the observation that the Newton direction at
the beginning of the nonlinear phase is far from being accurate, and the scheme converges as long as this
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residual is a descent direction for the functional form associated with the nonlinear system. Thus using a
constant tolerance for exiting the linear solution phase is useless and leads to oversolving. These methods
have now become standard use and a number of software packages provide efficient implementations.

Research in this field should concentrate on seeking to improve the convergence characteristics of Newton
methods without the use of costly globalization techniques. Recent methods for Richards’ equation have
been proposed by Casulli and Zanolli [2010] that exploit the typical behavior of the soil hydraulic functions
to define two nested iterations that guarantee quadratic convergence of a Newton-like method. Improve-
ments to Picard iteration schemes, which avoid using derivatives of the nonlinear functions (e.g., in the RE
hydraulic functions) that often are responsible for the ill-conditioning of the Jacobian matrix, should also be
pursued. Along this line, the recent work on Anderson acceleration [Walker and Ni, 2011; Lott et al., 2012]
seems promising. Finally, more research on preconditioners better suited to the nonlinear iteration case
[e.g., Bergamaschi et al., 2006, 2013] is also needed.
3.3.2. Reduced Order Modeling
Reduced order models (ROMs) are low-dimensional surrogate models used to replace the full system model
so as to reduce the computational cost of parametric simulations needed, for example, in inverse problem
or data assimilation applications. ROMs are based on an off-line procedure that develops the surrogate
model, followed by an on-line procedure where the ROM is repeatedly employed. Recent research in this
field has been spurred by advances in proper orthogonal decomposition and reduced basis finite element
methods [Kunisch and Volkwein, 2001; Vermeulen et al., 2004; Grepl and Patera, 2005; Bui-Thanh et al., 2008;
Quarteroni et al., 2011; Manzoni, 2014]. Both approaches are based on the Galerkin projection of the full sys-
tem model onto a space generated by a small set of significant full model solutions (snapshots). The main
idea is that the description of the solution as a linear combination of the basis functions of the space gener-
ated by the snapshots is highly accurate notwithstanding its low dimensionality. The main question is how
to determine the optimal and parameter-independent snapshot set. The applicability of these methods is
currently limited to problems where repeated simulations are needed, mainly optimization problems [e.g.,
Siade et al., 2012] and Monte Carlo simulation [e.g., Pasetto et al., 2011, 2013a], but their use is evolving also
toward the solution of linear and nonlinear systems [Jang, 2013]. Although the effectiveness of ROM for
highly nonlinear problems is still to be proved, we believe this to be a very exciting field of research with
great potential in inverse problems and any stochastic application where an ensemble of realizations needs
to be built.
3.3.3. Uncertainty Quantification and Data Assimilation
Flow and transport processes in catchment simulations are characterized by incomplete knowledge about
physical processes and model parameterization. Quantification of these uncertainties is a fundamental step
for a better understanding of simulation outputs and for more reliable forecasts. The classical calibration
phase seeks to determine the set of parameters that minimize some measure of the discrepancy between
observation and model results. This is well known to be a highly ill-posed problem mostly due to incom-
plete process understanding and to the limited accuracy and representativeness of field measurements.
Recent attempts to resolve these issues have looked to data assimilation techniques and stochastic filtering
theory. These methods have gained popularity since the introduction of Monte Carlo-based approaches
such as the ensemble Kalman filter [Evensen, 2003]. Ensemble data assimilation techniques are highly
appealing in the context of physically based hydrological simulation as they can address simultaneously
questions of both parameter identification and real-time uncertainty quantification. However, the proce-
dures are very computationally intensive owing to the construction of the ensemble of model realizations
needed to propagate in time the statistical properties of the joint probability density functions (pdf) of mod-
eled system states and observations.

The reliability and applicability of data assimilation methods can be improved by means of more accurate
approximation of the (random) functions belonging to the probability space of the posterior pdf. This state-
ment can be exemplified by looking at well-known differences between EnKF and particle filters [Pasetto
et al., 2012]. Kalman-based filters such as EnKF share the important limitation of using only the first and sec-
ond moments to approximate the posterior joint pdf, thus effectively employing a Gaussian hypothesis that
is not always warranted. On the other hand, filters that are not restricted by the Gaussian assumption, such
as particle filters, do not use explicit information on the covariance function of the joint pdf, thus requiring
large ensemble dimensions to effectively approximate the posterior probability space. Two research ques-
tions related to these issues that need to be addressed are: i. finding more accurate approximations of the
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functions in probability space; and ii. improving the computational efficiency in the construction of the
ensemble replicates. This field can greatly benefit from the application of the ROM approach described
above not only for the construction of the ensemble members but also in the development of efficient
time-updates of the covariance matrices needed in data assimilation processes [e.g., Pham et al., 1998; Kita-
nidis, 2015].

4. Conclusions

This paper has surveyed five decades of research on physically based numerical models in hydrology, exam-
ining the interplay between theoretical, computational, and experimental advances and providing an out-
look on current issues and future challenges in several areas of model development and validation. The
review has been centered on the main themes of consistent physical and mathematical representation of
processes and parameters, robust and efficient numerical algorithms, and integrated and interdisciplinary
models. We have examined how researchers have dealt with perennial issues of heterogeneity, nonlinearity,
and scale through the years, and have followed key developments and trends toward more complex mod-
els (higher dimensioned equations, coupled systems, comprehensive boundary conditions, multiple proc-
esses, larger scales, etc). A recent example that encapsulates this trend is hyper-resolution hydrological
modeling [Wood et al., 2011; Beven and Cloke, 2012; Bierkens et al., 2014; Mascaro et al., 2015], featuring
large-scale simulations predicated on fully distributed, physically based descriptions of groundwater, soil,
vegetation, and atmosphere dynamics, eventually to be used in combination with atmospheric circulation
modeling as substitutes for current highly parameterized land surface models at the continental scale. This
and other developments in integrated, high-resolution, multiphysics modeling will require research pro-
gress on several fronts connected to the main themes of the paper: improving numerical schemes for non-
linear equations, exchange fluxes, adaptive grids, and curved surfaces; adopting model performance-
enhancing techniques such as code parallelization, model reduction, and data assimilation; harmonizing
the roles of complex versus simpler (low-dimensional, reduced order, parsimonious) physically based mod-
els; establishing correct coupling procedures for surface/subsurface models; dealing with subgrid variability
and multiscale processes; and intensifying model intercomparison and benchmarking efforts based on mul-
tiresponse data sets from experimental hillslopes and watersheds.
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