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Abstract
The observation that galectin-7 (gal-7) is specifically expressed in mammary myoepithelial

(basal) cells prompted us to investigate whether this protein is expressed in the basal cells

of other tissues. Given that breast and prostate cancer have remarkable underlying biologi-

cal similarities and given the important roles of basal cells in prostate cancer, we examined

the expression patterns and role of gal-7 in human prostate cancer. Using tissue microarray,

we found that although gal-7 is readily expressed in basal cells in normal prostate tissue, it

is downregulated in prostate cancer (PCa) cells. De novo expression of gal-7 in prostate

cancer cells increases their sensitivity to apoptosis in response to etoposide and cisplatin.

The assessment of a carbohydrate-recognition domain (CRD)-defective mutant form of gal-

7 (R7S) showed that the ability of this protein to modulate apoptosis was independent of its

CRD activity. This activity was also independent of its ability to translocate to the mitochon-

drial and nuclear compartments. However, CRD activity was necessary to inhibit the inva-

sive behaviors of prostate cancer cells. In vivo, gal-7 overexpression in PCa cells led to a

modest yet significant reduction in tumor size, while its CRD-defective mutant form signifi-

cantly increased tumor growth compared to controls. Taken together, these results suggest

that although de novo expression of gal-7 may be an interesting means of increasing the

tumorigenic phenotypes of PCa cells, alterations in the CRD activity of this protein drive a

phenotypic switch in its role in PCa cells. This CRD-independent activity represents a

paradigm shift in our understanding of the functions of galectin. The R74S model will be

useful to distinguish CRD-dependent and CRD-independent functions of gal-7 in cancer

progression.

Introduction
Galectin-7 (gal-7) is a p53-induced gene that is mainly expressed in stratified epithelial cells
[1, 2]. Its expression can also be induced by other transcription factors, including mutant
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forms of p53 and CCAAT/enhancer-binding protein beta (C/EBPβ) [3, 4]. Its expression is
also regulated by epigenetic mechanisms, including DNAmethylation [5, 6]. Its role in UVB-
induced keratinocyte apoptosis [7] and in re-epithelialization of corneal wounds [8] support
the idea that gal-7 is important for maintaining homeostasis in epithelial cells. Unsuprisingly, a
number of studies have shown that dysregulation of gal-7 expression has a strong effect on the
progression of multiple types of cancers of epithelial origin. In mammary tissues, for example,
gal-7 is specifically expressed in myoepithelial (basal) cells, and its overexpression in breast
cancer tissues correlates with resistance to apoptosis and the spread of metastasis to the bone
and lung [9]. Overexpression of gal-7 is also associated with poor survival in patients with epi-
thelial ovarian cancer [6, 10] and with malignancy in patients with squamous cell carcinoma of
the tongue [11]. These associations between abnormally high levels of gal-7 and poor prognosis
are also present in esophageal and hypopharyngeal squamous cell carcinomas [12, 13]. How-
ever, as a number of studies have shown, gal-7, similar to other galectins, plays a dual role in
cancer and can have a protective role in certain cases, most notably by increasing the sensitivity
of cancer cells to pro-apoptotic stimuli and by reducing cell growth and angiogenesis. These
activities have been relatively well documented in gastric, urothelial, and colon cancers, as well
as in cervical squamous carcinoma [6, 14, 15]. In fact, the observations that genetically engi-
neered cervical, gastric and colon cancer cells overexpressing gal-7 fail to induce gastric tumors
in xenografted mice suggest that epigenetic drugs or gal-7-specific gene therapy could be used
to suppress the development of specific types of cancer [6, 14, 15]. Given the increasing popu-
larity of epigenetic treatments for cancer, it is thus imperative to determine whether gal-7 has a
pro- or anti-tumor function in any given type of cancer, most notably those of epithelial origin.

The various roles of gal-7 in cancers of epithelial origin are currently unclear and may be
associated with a variety of factors. One must first consider the importance of the subcellular
compartmentalization of gal-7, which has been found in the cytosolic, mitochondrial, and
nuclear compartments [15–17]. Gal-3, for example, is able to induce resistance to apoptosis,
and this activity depends on its translocation from the cytosol to the mitochondria [18].
Whether such intracellular compartimentalization is also important for gal-7 to regulate apo-
ptosis is unknown. Alternatively, the dual role of gal-7 may depend on its binding partners
because it is well known to bind glycosylated proteins via its carbohydrate-recognition domain
(CRD). There are increasing indications, however, that galectins also interact with non-glyco-
sylated proteins in a CRD-independent manner [19]. This observation has been well docu-
mented for intracellular galectins. The most important feature of intracellular galectins may be
their ability to directly bind Bcl-2 family members via a CRD-independent interaction. This
activity has been shown for many galectins, including gal-7 [16]. The galectin/Bcl-2 interaction
shifts the balance of activity between pro- and anti-apoptotic members of the Bcl-2 family to
regulate apoptosis [16, 20, 21]. Other CRD-independent functions of galectins include RNA
processing in the nucleus [22] and the regulation of cell cycle progression [23]. All of these
CRD-independent functions rely on protein-protein interactions. In fact, certain galectins,
such as gal-10, harbor markedly low affinities for galactosides and are believed to act mainly
through other factors [24]. These CRD-independent functions represent a paradigm shift in
our understanding of galectin function and in the development of galectin-specific inhibitors.

The observation that gal-7 is specifically expressed in epithelial cells, particularly in mam-
mary myoepithelial (basal) cells (but not in luminal cells), prompted us to investigate whether
it is expressed in the basal cells of other tissues. Given that breast and prostate cancer have
remarkable underlying biological similarities [25] and given the important role of basal cells in
prostate cancer [26], we studied the expression pattern and role of gal-7 in human prostate
cancer.
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Materials and Methods

Cell lines and animals
PC3 [27] and DU-145 [28] cell lines were a generous gift from Dr. Benoit Ochietti (McGill
University, Montréal, QC), and the LNCaP cells [29] were kindly provided by Dr. Thomas San-
dersons (INRS-Institut Armand-Frappier, Laval, QC. The HACAT cell line [30] was provided
by Dr. Thierry Magnaldo (Génétique et Physiopathologie des Cancers Épidermiques, Faculté
de Médecine, Nice, France). All cell lines used in this study were originally obtained from the
American Type Culture Collection (ATCC, Manassas, VA, USA). The DU-145 and HACAT
cell lines were maintained in Dulbecco’s modified Eagle’s medium. The PC3 and LNCaP cell
lines were maintained in an F-12k nutrient mixture and RPMI 1640 medium, respectively.
Culture media were supplemented with 10% (v/v] fetal bovine serum, 2 mmol/L L-glutamine,
10 mmol/L HEPES buffer, and 1 mmol/L sodium pyruvate. All cell culture products were pur-
chased from Life Technologies (Burlington, ON, Canada). NOD/SCID mice were obtained
from The Jackson Laboratory. Animals were housed under sterile conditions with ad libitum
access to food and water. All animal studies were approved by the Institutional Animal Care
and Use Committee of the Centre de Recherche du Centre Hospitalier de l’Université de
Montréal

Immunohistochemistry
Tissue microarrays were used to assay 32 tissue samples of prostate adenocarcinoma, 20 hyper-
plasia, 5 saccular ectasia and 3 cancer-adjacent normal prostate tissues (US Biomax, Rockville,
MD, USA and LifeSpan BioSciences, Seattle, WA, USA). Immunostaining reactions for gal-7
were performed using a Discovery XT automated immunostainer (Ventana Medical Systems).
Deparaffinized sections were incubated in cell conditioning solution, pH 8.0 (Ventana Medical
Systems), for antigen retrieval and then stained for 60 min with an anti-human gal-7 polyclonal
antibody (R&D Systems, Minneapolis, MN, USA) diluted 1:150. The slides were counter-
stained with hematoxylin. The sections were scanned at a high resolution using a Nanozoomer
Digital Pathology scanner (Hamamatsu, Bridgewater, NJ).

Immunofluorescence
Cells were fixed in 3% (w/v) paraformaldehyde for 15 min, permeabilized in 0.1% (v\v) PBS/
Triton X-100 for 5 min and blocked overnight at 4°C in 1% (w/v). PBS/BSA (PBA). A goat
anti-human gal-7 (diluted 1:750) primary antibody and rabbit anti-goat Alexa Fluor 488
(diluted 1:500) secondary antibody were used (Life Technologies). Filamentous actin was
stained with Alexa Fluor 594-conjugated phalloidin (1:500 dilution; Life Technologies). All
antisera were diluted in 1% (w/v) PBA, and all washing steps were performed with PBS. Nuclei
were stained with ProLong Gold Antifade Reagent with 4',6-diamidino-2-phenylindole (DAPI)
(Life Technologies). Cells were visualized under a Carl Zeiss LSM780 confocal microscope, and
digitized images were generated using Carl Zeiss ZEN software (Zeiss, Jena, Germany).

RNA isolation and RT-PCR
Total cellular RNA was isolated from cells using TRIzol reagent (Life Technologies) according
to the manufacturer’s instructions. First-strand cDNA was prepared from 2 μg of cellular RNA
in a total reaction volume of 20 μL using Omniscript reverse transcriptase (QIAGEN, Missis-
sauga, ON, Canada). After reverse transcription, human gal-7 (gene ID 3963, sense primer: 5’-
TCC CAA TGC CAG CAG GTT CCA TGT-3’ and antisense primer: 5’-GAA GCC GTC GTC
TGA CGC GAT GAT-3’) and GAPDH (gene ID 2597, sense primer: 5’-CGG AGT CAA CGG
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ATT TGG TCG TAT-3’ and antisense primer: 5’-CAG AAG TGG TGG TAC CTC TTC CGA-
3’) cDNAs were amplified under the following conditions: 94°C for 3 min, followed by 35
cycles at 94°C for 40 sec, 60°C for 40 seconds, and 72°C for 40 seconds and then a final exten-
sion step at 72°C for 10 min. PCR was performed in a thermal cycler (MJ Research, Watertown,
MA). The amplified products were analyzed on 1% (w/v) agarose gels by electrophoresis fol-
lowed by gel staining with SYBR Safe (Life Technologies).

Generation of stable transfectants expressing gal-7
To obtain stable DU-145 transfectants expressing gal-7wt or gal-7R74S, cDNAs encoding the
wild-type or mutated (R74S) human gal-7 gene were cloned into the Srα eukaryotic expression
vector (kindly provided by Dr. François Denis) as previously described [17] Control cells were
generated using an empty Srα vector. Transfections were performed with Lipofectamine 2000
according to the manufacturer’s instructions (Life Technologies). After 48 h of culturing, trans-
fected cells were allowed to grow in complete medium containing 2 μg/ml puromycin. Individ-
ual colonies were expanded, and gal-7 expression was monitored by western blot analysis. A
minimum of two clones of each type was used to confirm the results.

Western blot analysis
For whole cell extracts, cells were homogenized and resuspended in radio-immunoprecipita-
tion assay (RIPA) buffer (Thermo Fisher Scientific, Ottawa, ON, Canada) containing a cocktail
of protease inhibitors (Roche, Mississauga, ON, Canada). Mitochondria and nuclei were iso-
lated using a mitochondrial isolation kit (Thermos Scientific) and nuclear extraction kit
(Sigma-Aldrich, Oakville, ON, Canada), respectively, according to the manufacturers’ instruc-
tions. Equal amounts of whole-cell, cytoplasmic, mitochondrial or nuclear extracts were sepa-
rated by SDS-PAGE and transferred onto nitrocellulose membranes (Bio-Rad Laboratories,
Mississauga, ON, Canada). The membranes were first blocked with 5% (w/v) milk in PBS/0.5%
Tween 20 (v/v) for 60 min at room temperature and subsequently blotted overnight in a solu-
tion containing 3% PBA, 0.5% Tween 20 and the following antibodies: a goat anti-mouse gal-7
polyclonal antibody (diluted 1:1000; R&D Systems), a rabbit anti-poly(ADP-ribose) polymer-
ase (Parp)-1 (p25) polyclonal antibody (1:5000; Epitomics, Burlingame, CA, USA), a mouse
anti-β-actin (1:20000; Sigma-Aldrich), a rabbit anti-COX IV (1:1000; Cell Signaling Technol-
ogy, Beverly, MA, USA), a rabbit anti-tubulin (1:1000; Cell Signaling Technology) or a mouse
anti-lamin A/C (1:1000; Cell Signaling Technology) antibody. Secondary antibodies included
horseradish peroxidase-conjugated donkey anti-rabbit (GE Healthcare, Baie-d'Urfé, QC, Can-
ada), donkey anti-goat (R&D Systems) or sheep anti-mouse (GE Healthcare) IgG. Detection
was performed by the enhanced chemiluminescence method (GE Healthcare).

Electron microscopy
Cells were fixed in a 0.1% (v/v) glutaraldehyde and 4% (w/v) paraformaldehyde solution and
embedded in Spurr’s resin. Ultrathin sections were placed on nickel grids and incubated in
sodium metaperiodate. Samples were then blocked in 1% PBA for 5 min and incubated for
60 min with a goat anti-human gal-7 polyclonal antibody (1:150) followed by incubation with
a rabbit anti-goat 10-nm gold-conjugated secondary antibody (1:20, Electron Microscopy Sci-
ences, Hatfield, PA, USA). The samples were counterstained with uranyl acetate and lead cit-
rate before visualization under a Hitachi H-7100 transmission electron microscope.
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[3H]-thymidine incorporation
Proliferation of cells was determined by measuring the incorporation of [3H]-thymidine. Cells
were seeded in triplicate at a density of 2 x 103 cells/well into a 96-well plate and subsequently
incubated with or without 5 μM cisplatin for 96 h. After 80 h of incubation, 1 μCi of [3H]-thy-
midine was added to each well. At the end of the incubation period, the cells were harvested
with a semiautomatic cell harvester (Skatron Instruments, Lier, Norway) and transferred onto
a Printed Filtermat A (Wallak, Turky, Finland). Incorporated radioactivity was determined
using a RackBeta (LKB, Turky, Finland) scintillation counter.

Invasion assay
Serum-induced cell invasion was examined using a 24-well Matrigel invasion chamber (BD
Biosciences, Mississauga, ON, Canada) with an 8 μm-pore membrane. A total of 5 x 104 cells
were incubated within the upper chamber in serum-free medium. The lower chamber con-
tained medium supplemented with 10% fetal bovine serum. After 24 h of incubation, the upper
surface of the insert was wiped gently with a cotton swab to remove the non-migrating cells.
Cells that had migrated to the lower surface of the membrane were stained with toluidine blue
and counted separately by microscopy.

Scratch wound healing assay
Confluent monolayers were obtained by seeding 1 x 105 cells onto a 24-well plate the day before
the experiment. A scratch was made with a pipet tip in the cell monolayer, followed by washing
with PBS to remove cell debris. Immediately after and 24 h after the PBS wash step, the micro-
scopic fields were photographed, and the scratch width was measured using Image J software.
For live cell imaging, one day prior to the experiment, 4 x 105 cells were seeded onto a 6-well
glass-bottom culture plate (MatTek Corporation, Ashland, MA, USA). After the scratch was
made, the plate was moved to a PM S1 incubator, and the migration was visualized under a
Carl Zeiss LSM780 confocal microscope (Carl Zeiss, Toronto, ON, Canada). Images were cap-
tured every 10 min for 2 h. For each cell type, the movements of 30 separate cells were mea-
sured. Cell movement was analyzed using the following Image J plugins: manual tracking and
chemotaxis tool.

Cell proliferation assay
As a control for cell proliferation during the invasion assay and scratch wound healing test, a
total of 2.5 x 104 cells were seeded onto a 12-well plate (Fisher Scientific). At the indicated
times, the cells were washed with PBS, trypsinized, stained with trypan blue and counted using
a hemocytometer.

Production of recombinant proteins
Gal-7 cDNA was cloned into pET-22b(+) using the NdeI and HindIII restriction enzymes. The
protein was produced in E. coli BL21 (DE3) at 37°C. Isopropyl β-D-1-thiogalactopyranoside
(IPTG) (1 mM) was added to the bacterial culture at an OD600nm of 0.6–0.7, and the bacteria
were further incubated for 4 h. Bacterial pellets were resuspended in lysis buffer (0.7 mg/mL
lysozyme, 10 mM Tris, pH 8, 100 mMNaCl, 1 mM EDTA, 1 mMDTT and protease inhibitor
cocktail), incubated for 1 h at 37°C and centrifuged for 30 min at 15,000 rpm (4°C). The
supernatant was then filtered and applied to a lactose-agarose column, and the protein was
eluted in 1-mL fractions with a 150-mM lactose solution. Purified fractions were analyzed by
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SDS-PAGE. Gal-7 was dialyzed against 20 mM potassium phosphate at pH 7.2 for all subse-
quent experiments.

Glycan array
Amammalian glycan array (V5.2) was performed by the Consortium for Functional Glycomics
(CFG). Briefly, recombinant gal-7wt and gal-7R74S proteins were conjugated to FITC and tested
against version 5.2 of the printed array. This array consisted of 609 glycans in replicates of 6.
The lists of the glycans and their linkers used in the different versions of the array can be found
at http://www.functionalglycomics.org/static/consortium/resources/resourcecoreh.shtml.
FITC-conjugated gal-7 was incubated with the sugars, and relative fluorescence units (RFUs)
were measured. To eliminate some of the false hits that contained a single very high or low
point, the highest and lowest points from each set of six replicates were removed. Conse-
quently, the averages include 4 values rather than 6.

Binding assay
Briefly, a fluorescein isothiocyanate (FITC)/DMSO solution was added to recombinant gal-7 in
a 0.1-M NaHCO3 (pH 9.2) solution and then incubated for 2 h at room temperature on a roller.
FITC-conjugated gal-7 was then purified using a PD-10 sepharose column (GE Healthcare)
and eluted with PBS containing 0.01% (v/v] sodium azide. To measure FITC-gal-7 binding to
the cell surface, 2.5 x 105 cells were incubated for 30 min with the indicated concentrations of
gal-7 and then washed twice with PBS and resuspended in 500 μl PBS. For competition assays,
0.1 M β-lactose was added to cells, which were then incubated with FITC-conjugated gal-7.
Samples were analyzed by FACSCalibur (BD Biosciences) and Flowing Software.

In vivo experiments
Amix of 3 independent clones (2 x 106 cells) for each transfectant was injected subcutaneously
into 6-week-old NOD/SCID mice. Tumor measurements were obtained twice a week. On day
61, the mice were sacrificed, and the primary tumors were harvested and snap-frozen in liquid
nitrogen.

Statistical analysis
Statistical significance of the experiments was evaluated using unpaired Student's t-tests. The
results were considered statistically significant at P� 0.05.

Results

Gal-7 expression in human prostate tissues and cancer cell lines
Gal-7 expression in human prostate tissues has not previously been reported. Using immuno-
histochemistry (IHC), we first investigated the expression pattern of gal-7 in normal prostate
tissues. Our results revealed strong nuclear and cytoplasmic expression in the basal cell layers
of normal prostate glands, with no staining observed in the luminal epithelial cells (Fig 1A).
We then investigated the presence of gal-7 in various types of prostate malignancies (including
32 prostate adenocarcinomas) using commercial tissue microarrays and found negligible gal-7
protein expression in the tumor tissues (Fig 1B and 1C). The low expression in PCa tissues was
consistent with expression patterns found during our investigations of gal-7 expression at the
mRNA and protein levels in the most common prostate cancer cell line models. Immunoblot-
ting experiments demonstrated that none of these cell lines expressed readily detectable levels
of gal-7; however, mRNA was expressed at a low but detectable level in PC3 cells (Fig 1). Taken
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Fig 1. Gal-7 expression in prostate tissues and cancer cell lines. Immunohistochemical (IHC) staining of gal-7 in 3-μm thick sections of formalin-fixed
paraffin-embedded (A) healthy prostate tissues and (B) tissues associated with pathological disorders of the prostate. (C) Semi-quantitative RT-PCR and (D)
western blot analysis of gal-7 expression in DU-145, PC3 and LNCaP human prostate cancer cell lines. The HaCaT keratinocyte cell line was used as a
positive control. GAPDH and β-tubulin were used as loading controls. LC: luminal cells, BC: basal cells, and ECM: extracellular matrix.

doi:10.1371/journal.pone.0131307.g001
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together, these results showed that although gal-7 is readily expressed in basal cells within nor-
mal prostate tissue, it is completely absent in prostate cancer cells.

Production and characterization of wild-type and CRD-defective gal-7
protein
To investigate the functions of gal-7 in prostate cancer cells and to determine the importance
of its CRD, we generated a series of stable transfectants expressing wild-type gal-7 and a
mutated form (R74S) of the protein (Fig 2A). This mutation is known to inhibit the ability of
gal-7 to bind lactose and to reduce its translocation from the cytosol to the mitochondria and/
or the nucleus [17]. Our previous analysis using solution NMR spectroscopy showed that the
R74S mutation induced only limited and local changes in gal-7 folding. To further determine
the extent to which the CRD of gal-7 is disrupted by the R74S mutation, we compared its bind-
ing properties to those of wild-type gal-7 using a CFG glycan array (version 5.2) [31]. The
entire list of glycans tested and the results of the binding assays can be found online (http://
functionalglycomics.org/). Our results confirmed that the R74S mutation suppressed CRD
activity independent of the glycan motifs assessed (Fig 2B, S1 Table). This suppression of CRD
activity was confirmed by flow cytometric analysis of the binding of FITC-labeled recombinant
gal-7wt and gal-7R74S at the surfaces of DU-145 prostate cancer cells (Fig 2C and 2D). Taken
together, these results demonstrate that R74S abolishes the CRD activity of human gal-7.

Characterization of intracellular localization of wild-type gal-7 and gal-
7R74S

To investigate the role of gal-7 and its CRD in prostate cancer, DU-145 transfectants express-
ing either gal-7wt or gal-7R74S were generated. Control transfectants (generated using empty
expression vectors) did not express detectable levels of gal-7 (Fig 3A and 3B). Immunoblotting
of mitochondrial and nuclear enriched fractions showed detectable expression of gal-7wt in the
cytosol, mitochondria and nuclei of DU-145 cells (Fig 3C and 3D). In contrast, there was no
detectable expression of gal-7 in the mitochondria of transfectants expressing gal-7R74S. Both
proteins were found in the extracellular media of the cells (Fig 3E). Electron microscopy analy-
sis of the DU-145 cells confirmed the expression of gal-7wt in the cytosol, nucleus, and mito-
chondrial outer membrane, while the expression of gal-7R74S was restricted to the cytosol (S1
Fig). Interestingly, electron microscopic analysis revealed the presence of gal-7wt- and gal-
7R74S-rich protrusions at the cytoplasmic membrane (S1 Fig) consistent with previous reports,
suggesting that gal-7 associates with the actin cytoskeleton to regulate cell motility [10, 32, 33].

Gal-7 promotes apoptosis in prostate cancer cells
Several studies have reported that ectopic expression of gal-7 renders cervical, gastric and
colon cancer cells more sensitive to apoptosis induced by pro-apoptotic drugs [15]. To deter-
mine whether this finding is also true in prostate cancer cells, DU-145 transfectants were
treated with increasing doses of pro-apoptotic drugs and analyzed for cleavage of Parp-1,
which is a commonly used marker of apoptosis [34]. Our results showed that ectopic expres-
sion of gal-7 increased the cleavage of Parp-1 induced by etoposide compared to the control
cells (Fig 4A). Similar results were obtained when the fragmentation of nuclei in apoptotic cells
was visualized with DAPI staining (Fig 4B). The ability of gal-7 to increase the sensitivity of
DU-145 cells to apoptosis was also observed using cisplatin as a pro-apoptotic drug (Fig 4C).
Interestingly, gal-7R74S was as effective as gal-7wt in increasing the sensitivity of DU-145 to
both pro-apoptotic drugs. In both cases, the intracellular localization of gal-7 remained
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Fig 2. WT and R74S-mutated gal-7 CRD activity. (A) 3D view of the gal-7wt and gal-7R74S CRDs in the presence of lactose. (B) A glycan array was used to
verify the binding of gal-7wt and gal-7R74S to a large variety of sugars. The graph depicts the binding of gal-7wt and gal-7R74S to the sugars. Only RFUs larger
than 10,000 are presented. The sugar names are listed in S1 Table. The error bars represent SDs (n = 6). Flow cytometry analysis showing binding of gal-7wt

and gal-7R74S to the surfaces of DU-145 cells (C) in the absence or (D) presence of 0.1 M β-lactose. Binding assays were conducted using the indicated
concentrations of FITC-labeled recombinant gal-7. MFI: mean fluorescence intensity. The results represent three independent experiments.

doi:10.1371/journal.pone.0131307.g002
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Fig 3. Intracellular localization of wild-type and R74S-mutated gal-7 proteins in DU-145 cells. (A)
Western blot analysis showing the expression of gal-7 in various stable DU-145 clones transfected with
expression vectors encoding wild-type and mutated gal-7. Controls included cells transfected with empty Srα
vectors. β-actin was used as a loading control. (B) Confocal imaging showing the intracellular distribution of
gal-7 in DU-145 transfectants. (C-D) Western blot analysis showing gal-7 expression in cytosolic, nuclear and
mitochondrial fractions prepared from DU-145 cells. β-tubulin, COX IV and lamin A/C were used as cytosolic,
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unchanged during the induction of apoptosis (S2 Fig). Using a (3H]-thymidine incorporation
assay, we also measured proliferation of the transfectants in the absence or presence of cis-
platin. We found that both gal-7wt- and gal-7R74S-expressing DU-145 cells proliferated at the
same rates compared to control cells under normal conditions but proliferated more slowly in
presence of cisplatin (Fig 4D), which is consistent with the ability of gal-7 to promote drug-
induced apoptosis. Taken together, these results show that gal-7 sensitizes DU-145 cells to pro-
apoptotic agents independent of its CRD activity and its intracellular compartmentalization.

mitochondrial and nuclear markers, respectively. (E) Western blot analysis showing the secretion of gal-7 in
the extracellular media of DU-145 cells expressing gal-7wt or gal-7R74S. β-tubulin expression was monitored
to exclude the possibility of cell lysis. Intracellular protein extracts from control DU-145 cell and HaCaT cell
supernatants were used as positive controls for β-tubulin expression and gal-7 secretion, respectively. All
results represent three independent experiments, including a minimum of two independent DU-145 clones.

doi:10.1371/journal.pone.0131307.g003

Fig 4. Gal-7 increases the sensitivity of DU-145 cells to apoptosis. (A) Cells were incubated for 16 h with the indicated concentrations of etoposide and
tested for apoptosis by measuring Parp-1 cleavage by western blot. (B) Apoptosis was confirmed by counting the number of cells with a fragmented nucleus
visualized by DAPI staining. (C) Analysis of Parp-1 cleavage in DU-145 cells treated for 16 h with the indicated concentration of cisplatin. (D) Cell proliferation
of DU-145 cells treated with or without 5 μM cisplatin measured by (3H]-thymidine incorporation. All results represent three independent experiments,
including a minimum of two independent DU-145 clones. *P� 0.05, **P� 0.01, and ***P� 0.001.

doi:10.1371/journal.pone.0131307.g004
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Gal-7 but not R74S reduces invasive behaviors of DU-145 cells
We next investigated whether gal-7 can modulate the invasive behaviors of DU-145 cells using
a standard in vitroMatrigel invasion assay. We found that ectopic expression of gal-7wt signifi-
cantly reduced the invasive behaviors of DU-145 cells compared to control cells lacking gal-7
(Fig 5A). A similar difference was not observed for DU-145 cells expressing gal-7R74S. Because
cell invasive behaviors might be affected by cell motility, we used live cell imaging to measure
cell movements during a scratch wound healing assay (Fig 5B). Our results showed that DU-
145 cells expressing gal-7wt significantly reduced cell velocity compared to control cells lacking
gal-7 or cells expressing gal-7R74S (Fig 5C). These gal-7wt-expressing cells also had lower accu-
mulated and Euclidean distances of migration (Fig 5D and 5E). The directionality of the DU-
145 cells was not affected by expression of the gal-7wt or gal-7R74S proteins (Fig 5F). The use of
a standard scratch wound healing assay further confirmed that gal-7wt reduced the cell motility
of the DU-145 cells. Again, a similar effect was not observed for the gal-7R74S mutant (S3 Fig).
No differences in cell proliferation were observed between the cells expressing gal-7wt or gal-
7R74S and the control cells (S4 Fig). The addition of recombinant gal-7wt and gal-7R74S to DU-
145 cells had no effect, suggesting that extracellular gal-7 is not involved in reducing invasive
behaviors (S5 Fig). Taken together, these results indicate that intracellular gal-7 reduces the
invasive behaviors of prostate cancer cells by impairing cell motility in a CRD-dependent
manner.

Gal-7 CRD disruption increases tumor growth in vivo
We next investigated whether gal-7wt and gal-7R74S impact tumor growth using adult male
NOD/SCID mice. Mice were injected subcutaneously with DU-145 transfectants, and tumor
size was measured twice a week for 61 days, at which time the tumors were harvested to con-
firm the expression of gal-7 in the gal-7wt- and gal-7R74S-expressing cells (S6 Fig). Our results
showed that the overexpression of gal-7wt led to a modest yet significant (p� 0.05) reduction
in tumor size (Fig 6). Interestingly, the expression of gal-7R74S caused a significant (p� 0.001)
increase in tumor growth compared to both the control and gal-7wt-expressing cells.

Discussion
Our previous results showing that gal-7 is specifically expressed in mammary myoepithelial
(basal) cells but not in mammary luminal cells prompted us to investigate whether this mole-
cule is expressed in the basal cells of prostate tissues. Using an anti-gal-7-specific Ab, we found
that gal-7 immunostaining in human prostate tissues was consistently strong in the nuclei and
cytoplasm of prostate basal cells, with the luminal cells showing no detectable staining. This
pattern of expression is thus clearly distinct from those reported for gal-1 and gal-3. Indeed,
gal-3 is expressed in luminal cells but not in basal cells, while gal-1 is expressed in the endothe-
lial and stromal fibromuscular cells of the prostate [35]. This distinct expression pattern for
gal-7 is also observed in prostate cancer cell lines. Although we found no detectable expression
of gal-7 in the prostate cancer cell lines tested, gal-3 has been shown to be readily expressed in
both PC-3 and DU-145 cells [36]. Gal-3 expression is also reduced in PCa cells compared with
normal prostate cells but is still detectable by IHC in a significant number of samples [36, 37].
Our data, however, clearly showed that gal-3 and gal-7 had distinct properties in PCa cells.
For example, in contrast with gal-7, cytoplasmic gal-3 increased Matrigel invasion and cell
growth while decreasing apoptosis induction, and nuclear expression had a completely oppo-
site effect [38]. Thus, gal-3 and gal-7 possess completely opposite biological activities in PCa
cells. Although future experiments will be needed to confirm these results in other prostatic
cell lines (including benign cell lines) and other preclinical PCa models. It is important to note
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that we cannot not use the PC3 cells (another classical cell model of human prostate cancer)
because these cells express low but significant endogenous galectin-7 (as shown in Fig 1). We
cannot use the LNCaP cell model (another commonly used model) because this model in
androgen-dependent, in contrast to DU-145. Nevertheless, our findings may have important
implications in the development of CRD-specific inhibitors against gal-3 and emphasize the
need to develop inhibitors that are highly specific for a given galectin.

Our results showed that gal-7 reduced the invasive behaviors of prostate cancer cells by
inhibiting their motility. This phenotype is consistent with the localization of this molecule in
lamellipodia and filopodia. In normal cells, gal-7 is also found in motility structures, such as
podosomes and primary cilia [32, 33]. Interestingly, a mutation at position 74 completely abol-
ished this activity. In contrast, this mutation did not affect the ability of gal-7 to induce apopto-
sis, indicating that both functions are mediated by distinct gal-7 sites. One possibility is that
gal-7 regulates the stability and/or localization of proteins, such as β-catenin, and that the
mutation at position 74 abolishes this interaction. In the cytoplasm, β-catenin is either ubiqui-
tinated for proteasomal degradation or localized at cell-cell contact sites, stabilizing E-cadherin
and affecting motility [39]. This interaction between galectins and β-catenin has been reported
previously [40–42].

Fig 5. Invasive behavior of DU-145 expressing gal-7wt or gal-7R74S. (A) Matrigel invasion assay of DU-
145 stable transfectants. Cells were seeded into serum-free medium in the upper chamber, and serum was
added to the lower chamber. After 16 h, cells that migrated through the Matrigel and the 8 μm-pore
membrane were stained and counted. The results represent the number of cells per microscopic field. (B)
Plots of 30 cells/sample tracked by live cell imaging during the scratch wound healing test. DU-145 cells were
seeded onto a 6-well glass-bottom culture plate. A scratch was made, and images were captured every 10
min for 2 h. Quantifications of the (C) velocity, (D) accumulated distance, (E) Euclidean distance and (F)
directionality are shown. Error bars represent the SEM. All results represent three independent experiments,
including a minimum of two independent DU-145 clones. **P� 0.01 and ***P� 0.001.

doi:10.1371/journal.pone.0131307.g005

Fig 6. Gal-7wt and gal-7R74S effects on tumor growth. NOD/SCID mice (n = 6) were injected
subcutaneously with control DU-145 transfectants or with DU-145 transfectants expressing gal-7wt or gal-
7R74s. Tumor growth was monitored twice a week for 61 days. N = 6 mice per group.

doi:10.1371/journal.pone.0131307.g006
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We found that gal-7 overexpression sensitized DU-145 prostate cancer cells to apoptosis
induced by cisplatin or etoposide. The dual role of gal-7 in apoptosis has been well docu-
mented. Because gal-7 binds to bcl-2, our initial hypothesis was that mitochondrial gal-7
could be responsible for this dual role. However, this assumption is clearly not true because
cytoplasmic gal-7R74S displays similar pro-apoptotic functions as the wild-type protein. This
similarity has also been reported for the anti-apoptotic functions of gal-7 in breast cancer cells
[17]. It is indeed quite clear that although gal-7 is expressed in basal cells in normal prostatic
and mammary tissues, it plays a completely different role in prostate and breast cancer. The
mechanisms leading to the anti- and pro-tumorigenic functions of cytoplasmic gal-7 remain
unknown. One possible mechanism involves modulation of the JNK1 pathway, as suggested by
Kuwabara et al. [14], who showed that the induction of apoptosis by gal-7 in HeLa cells is cor-
related with activation of this signaling pathway. It is also possible that gal-7 regulates apopto-
sis by interacting with bcl-2. Other studies have indeed shown that gal-7 interacts directly with
Bcl-2 [16]. Cytoplasmic gal-7 could sequester bcl-2 in the cytoplasm, thereby inhibiting its
anti-apoptotic function. Alternatively, given the structural homology among members of the
bcl-2 family [43], it is possible that gal-7 binds to other bcl-2 structural homologs, thereby
altering the delicate balance between pro- and anti-apoptotic proteins. We are currently inves-
tigating these possibilities.

The dual role of galectins in modulating tumor progression has been previously noted but is
still unclear. Our data showing that gal-7R74S acts as a tumor suppressor in vitro and as a pro-
tumorigenic protein in vivo suggest that the roles of galectins in cancer likely involve a delicate
balance between pro- and anti-tumoral interactions occurring within and outside cancer cells,
i.e., in the tumor microenvironment. Because gal-7R74S sensitized DU-145 cells to apoptosis
without affecting their invasive behaviors or proliferation, leading to the augmentation of
tumor growth in vivo, it is clear that alterations in the CRD of gal-7 that shift the balance
towards CRD-independent binding partners not only have a profound effect on its intracellular
distribution in cancer cells but also drive a phenotypic switch in its role in cancer. In silico anal-
ysis using a publically available dataset, the cBioPortal for Cancer Genomics, shows that the
gene encoding human gal-7 is rarely (less than 1% in prostate adenocarcinoma) mutated in
PCa and is not mutated within the CRD-coding region. Similar results were obtained with the
COSMIC database (one missense mutation out of 528 cases). This indicates that loss of gal-7
expression in PCa cells is probably due to an epigenetic mechanism and/or to the depletion of
basal cells. Our data add, however, a new dimension to the role of galectin CRDs in cancer,
emphasizing the use of highly specific inhibitors to target members of the galectin family. The
identification of important CRD-independent functions represents a paradigm shift in our
understanding of galectin functions. Future investigations will be needed to identify in detail
the CRD-independent binding partners involved. The availability of our gal-7R74S model will
be useful in this regard.

Supporting Information
S1 Fig. Electron microscopic analysis of gal-7wt and gal-7R74S intracellular localization.
Electron microscopic analysis of gal-7 and R74S protein distributions in the cytosol, nuclei,
mitochondria and protrusions localized to the cytoplasmic membranes of DU-145 transfec-
tants. Bars represent 100 nm.
(TIFF)

S2 Fig. Intracellular localization of gal-7 during apoptosis.Western blot analysis showing
gal-7 expression in cytosolic, (B) mitochondrial and (C) nuclear fractions prepared from DU-
145 cells treated for 16 h with 10 μM etoposide. β-tubulin, COX IV and laminin C were used as
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cytosolic, mitochondrial and nuclear markers, respectively. All results represent three indepen-
dent experiments, including a minimum of two different DU-145 clones.
(TIFF)

S3 Fig. Scratch wound healing assay of DU-145 transfectants. DU-145 transfectants were
seeded into a 24-well plate. A scratch was made with a pipet tip, photos were taken at time 0
and at 24 h, and the width of the scratch was measured. The results represent the distances of
the migration of the cells, and the bars represent the SDs. The results represent three indepen-
dent experiments. ���P� 0.001.
(TIFF)

S4 Fig. Gal-7wt and gal-7R74S effects on cell proliferation. As a control for cell proliferation,
cells were seeded into a 24-well plate and counted at the indicated time using trypan blue stain-
ing. The results represent three independent experiments.
(TIFF)

S5 Fig. Extracellular gal-7 effect on cell motility. (A) Plots of 30 cells/sample tracked by live
cell imaging during a scratch wound healing assay. DU-145 cells were seeded onto a 6-well
glass-bottom culture plate and treated with the indicated concentration of gal-7wt. A scratch
was made, and images were captured every 10 min for 2 h. Quantifications of the (B) velocity,
(C) accumulated distance, (D) Euclidean distance and (E) directionality are shown. The error
bars represent the SEMs. All results represent three independent experiments, including a min-
imum of two independent DU-145 clones.
(TIFF)

S6 Fig. Gal-7 mRNA expression in DU-145 tumors. NOD/SCID mice (n = 6) were injected
subcutaneously with DU-145 transfectants expressing the empty vector or gal-7wt/gal-7R74s.
On day 61, the mice were sacrificed, and the primary tumors were harvested and snap-frozen
in liquid nitrogen. Tumor mRNA was extracted and gal-7 expression was measured by
RT-PCR. N = 6 mice per group.
(TIFF)

S1 Table. Glycan array. The names of the different sugars used in the glycan array are listed.
Only those sugars for which gal-7wt had an RFU of larger than 10,000 are presented.
(TIFF)
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