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Abstract: 26 

Classical methods of regional frequency analysis (RFA) of hydrological variables face 27 

two drawbacks: 1) the restriction to a particular region which can lead to a loss of some 28 

information and 2) the definition of a region that generates a border effect. To reduce the 29 

impact of these drawbacks on regional modeling performance, an iterative method was 30 

proposed recently, based on the statistical notion of the depth function and a weight 31 

function φ. This depth-based RFA (DBRFA) approach was shown to be superior to 32 

traditional approaches in terms of flexibility, generality and performance. The main 33 

difficulty of the DBRFA approach is the optimal choice of the weight function φ (e.g., φ 34 

minimizing estimation errors). In order to avoid subjective choice and naïve selection 35 

procedures of φ, the aim of the present paper is to propose an algorithm-based procedure 36 

to optimize the DBRFA and automate the choice of φ according to objective 37 

performance criteria. This procedure is applied to estimate flood quantiles in three 38 

different regions in North America. One of the findings from the application is that the 39 

optimal weight function depends on the considered region and can also quantify the 40 

region homogeneity. By comparing the DBRFA to the canonical correlation analysis 41 

(CCA) method, results show that the DBRFA approach leads to better performances both 42 

in terms of relative bias and mean square error.  43 

 44 

 45 

Keywords: regional frequency analysis; statistical depth function; floods estimation; 46 

optimization; canonical correlation analysis; hydrology. 47 
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1. Introduction 48 

Due to the large territorial extents and the high costs associated to installation and 49 

maintenance of monitoring stations, it is not possible to monitor hydrologic variables at 50 

all sites of interest. Consequently, hydrologists have often to provide estimates of design 51 

events quantiles QT, corresponding to a large return period T at ungauged sites. In this 52 

situation, regionalization approaches are commonly used to transfer information from 53 

gauged sites to the target site (ungauged or partially gauged) [e.g., Burn, 1990b; 54 

Dalrymple, 1960; Ouarda et al., 2000]. A number of estimation techniques in regional 55 

frequency analysis (RFA) have been proposed and applied in several countries [De 56 

Michele and Rosso, 2002; Haddad and Rahman, 2012; Madsen and Rosbjerg, 1997; 57 

Nguyen and Pandey, 1996; Ouarda et al., 2001]. 58 

In general, RFA consists of two main steps: (1) grouping stations with similar 59 

hydrological behavior (delineation of hydrological homogeneous regions) [e.g., Burn, 60 

1990a] and (2) regional estimation within each homogenous region at the site of interest 61 

[e.g., GREHYS, 1996a; Ouarda et al., 2001; Ouarda et al., 2000]. The two main 62 

disadvantages of this type of regionalization methods are: i) a loss of information due to 63 

the exclusion of a number of sites in the step of delineation of hydrological homogeneous 64 

region, and ii) a border effect problem generated by the definition of a region. 65 

To reduce or eliminate the negative impact of these disadvantages on the estimation 66 

quality, a number of regional methods have been proposed that combine the two stages 67 

(delineation and estimation) and use all stations [e.g., Ouarda et al., 2008; Shu and 68 

Ouarda, 2007; Shu and Ouarda, 2008]. One of these regional methods was developed 69 

recently by Chebana and Ouarda [2008]. This RFA method is based on statistical depth 70 
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functions (denoted by DBRFA for depth-based RFA). The DBRFA approach focuses 71 

directly on quantile estimation using the weighted least squares (WLS) method to 72 

estimate parameters and avoids the delineation step. It employs the multiple regression 73 

(MR) model that describes the relation between hydrological and physio-meteorological 74 

variables of sites [Girard et al., 2004].  75 

After Chebana and Ouarda [2008], statistical depth functions are used in a number of 76 

hydrological and environmental studies. For instance, Chebana and Ouarda [2011a] used 77 

these functions in an exploratory study of a multivariate sample including location, scale, 78 

skewness and kurtosis as well as outlier detection. In another study, Chebana and Ouarda 79 

[2011b] combined depth functions with the orientation of observations to identify the 80 

extremes in a multivariate sample. Bardossy and Singh [2008] used the statistical notion 81 

of depth to detect unusual events in order to calibrate hydrological models. Recently, 82 

some studies present further developments of the approach that calibrate hydrological 83 

models by a depth function [e.g., Krauße and Cullmann, 2012; Krauße et al., 2012]. 84 

The DBRFA method consists generally of ordering sites by using the statistical notion of 85 

depth functions [Zuo and Serfling, 2000]. This order is based on the similarity between 86 

each gauged site and the target one. Accordingly, a weight is attributed to each gauged 87 

site using a weight function denoted φ. This function, with a suitable shape, eliminates 88 

the border effect and includes all the available sites proportionally to their hydrological 89 

similarity to the target site. Note that classical RFA approaches correspond to a special 90 

weight function with value 1 inside the region and 0 outside. The definition of a region in 91 

the classical RFA approaches becomes rather a question of choice of weight function φ 92 

according to a given criterion (e.g., relative root mean square error RRMSE). 93 
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By construction, the estimation performance in the MR model using the DBRFA 94 

approach depends on the choice of the weight functions φ. Chebana and Ouarda [2008] 95 

applied several families of functions φ, where the corresponding coefficients were 96 

chosen arbitrary and after several trials. In addition, even though the obtained results are 97 

improvement of the traditional approaches, they are not necessarily the best ones.  98 

The aim of the present paper is to propose a procedure to optimize the DBRFA approach 99 

over φ. This aim has theoretical as well as practical considerations. This procedure 100 

allows an optimal choice of the weight function φ and makes the DBRFA approach 101 

automatic and objective. It should be noted that Ouarda et al. [2001] determined the 102 

optimal homogenous neighborhood of a target site in the Canonical Correlation Analysis 103 

(CCA) based approach. In Ouarda et al [2001] the optimization corresponds to the 104 

selection of the neighborhood coefficient, denoted by α, according to the bias or the 105 

squared error. The optimal choice of weight functions has been the topic of numerous 106 

studies in the field of statistics [e.g., Chebana, 2004]. 107 

To optimize the choice of φ, suitable families of functions as well as algorithms are 108 

required. In the present context, four families of φ are considered: Gompertz (
G ) 109 

[Gompertz, 1825], logistic (
logistic ) [Verhulst, 1838], linear (

Linear ) and indicator (
I

 ). 110 

The three families 
log,  and  G istic Linear  

 
are regular, flexible, S-shaped and have other 111 

suitable properties. 112 

Several appropriate algorithms can be considered [Wright, 1996]. They are appropriate 113 

when the objective function   (criterion to be optimized) is not differentiable or the 114 

gradient is unavailable and must be calculated by a numerical method (e.g., finite 115 

differences). Among these algorithms, the most commonly used are: the simplex method 116 
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[Nelder and Mead, 1965], the pattern search method of Hooke and Jeeves [Hooke and 117 

Jeeves, 1961; Torczon, 2000] and the Rosenbrock methods [Rao, 1996; Rosenbrock, 118 

1960]. These methods are used successfully in several domains, and are particularly 119 

popular in chemistry, engineering and medicine. Specifically, in this paper the simplex 120 

and the pattern search algorithms are used because of their advantages. Indeed, they are 121 

very robust [e.g., Dolan et al., 2003; Hereford, 2001; Torczon, 2000], simple in terms of 122 

programming, valid for nonlinear optimization problems with real coefficients 123 

[McKinnon, 1999] and helpful in solving optimization problems with and without 124 

constraints [e.g., Lewis and Torczon, 1999; Lewis and Torczon, 2002]. 125 

In this study, the proposed optimization procedure is applied to the flood data from three 126 

different regions of the United States and Canada (Texas, Arkansas and southern 127 

Quebec). For each region, the obtained results are compared with those of the CCA 128 

approach. 129 

The present paper is organized as follows. Section 2 describes the used technical tools 130 

including depth functions, the WLS method and the definitions of the considered weight 131 

functions. Section 3 describes the proposed procedure. Then section 4 presents the 132 

application to the three case studies as well as the obtained results. The last section is 133 

devoted to the conclusions of this work. 134 

2. Background 135 

In this section, the background elements required to introduce and apply the optimization 136 

procedure of the DBRFA approach are briefly presented. This section contains a number 137 

of basic notions. 138 

 139 
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2.1. Mahalanobis depth function 140 

The absence of a natural order to classify multivariate data led to the introduction of the 141 

depth functions [Tukey, 1975]. They are used in many research fields, and were 142 

introduced in water science by Chebana and Ouarda [2008]. Several depth functions were 143 

introduced in the literature [Zuo and Serfling, 2000]. Depth functions have a number of 144 

features that fit well with the constraint of RFA [Chebana and Ouarda, 2008]. 145 

In this study, the Mahalanobis depth function is used to sort sites where the deeper the 146 

site is the more it is hydrologically similar to the target site. This function is used for its 147 

simplicity, value interpretability, and for the relationship with the CCA approach used in 148 

RFA. The Mahalanobis depth function is defined on the basis of the Mahalanobis 149 

distance given by      2 1,Ad x y x y A x y    between two points , dx y R ( 1)d   150 

where A is a positive definite matrix [Mahalanobis, 1936]. This distance is used by 151 

Ouarda et al. [2001] in the development of the CCA approach. The Mahalanobis depth of 152 

x with respect to µ is given by: 153 

 

 2

1
( ; )        in 

1 ,

d

A

MHD x F x R
d x 




 (1)   

for a cumulative distribution function F characterized by a location parameter  and a 154 

covariance matrix A. Note that the Mahalanobis depth function has values in the interval 155 

 0,1 . 156 

An empirical version of the Mahalanobis depth of x with respect   is defined by 157 

replacing F by a suitable empirical function ˆ
NF  for a sample of size N [Liu and Singh, 158 

1993]. In the context of the present paper, the notation in (1) is replaced by: 159 
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 
ˆ 2

ˆ

1
ˆ( ; )

ˆ1 ,A

A

MHD x
d x







 (2)   

where ̂  and Â  are respectively the location and covariance matrix estimated from the 160 

observed sample. 161 

2.2. Weight functions 162 

Below are the definitions of the four families of weight functions 
G ,

logistic ,
 Linear

 
and 163 

I
  considered in this paper along with special cases of functions φ for comparison 164 

purposes.  165 

2.2.1. Gompertz function 166 

The Gompertz function is usually employed as a distribution in survival analysis. This 167 

function was originaly formulated by Gompertz [1825] for modeling human mortality. A 168 

number of authors contributed to the studies of the characterization of this distribution 169 

[e.g., Chen, 1997; Wu and Lee, 1999]. In the field of water resources, the Gompertz 170 

function was adopted by Ouarda et al. [1995] to estimate the flood damage in the 171 

residential sector. The function 
G  is increasing, flexible and continuous [Zimmerman 172 

and Núñez-Antón, 2001]. The Gompertz distribution has different formulations one of 173 

which is given by: 174 

  ( ) exp     , , 0 ;   bx

G x c ae a b c x R      (3)   

where c is its upper limit, a and b are two coefficients which respectively allow to 175 

translate and change the spread of the curve. Figure 1 shows the effects of these 176 

coefficients on the form of 
G . Note that this function starts at zero (starting phase), then 177 

increases exponentially (growth phase) and finally stabilizes by approaching the upper 178 
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limit c (stationary phase) with 0 ( )G x c  . The inflection point of this function is 179 

ln
,

a c

b e

 
 
 

.  180 

2.2.2. Logistic function 181 

Verhulst [1838] proposed this function to study population growth. It is given by: 182 

 
 logistic        , , 0;

1 bx

c
x a b c x R

ae



  


 (4)   

where the coefficients c, a and b play the same role as in 
G . 183 

This function has similar properties to those of 
G  (increasing, flexible, continuous and 184 

with three phases). However, 
logistic  is symmetric around its inflection point 

ln
,
2

a c

b

 
 
 

 185 

which is not the case for 
G . 186 

2.2.3. Linear function 187 

It is a simple function, linear over three pieces corresponding to the three previous 188 

phases. Explicitly it is given by: 189 

 
1

1
1 2 2 1

2 1

2

0 if  

-
( ) if , 0

-

1 if 

Linear

x d

x d
x d x d d d

d d

x d



 



    

 

 (5)   

This function is considered as a weight function in the study of Chebana and Ouarda 190 

[2008]. 191 

2.2.4. Indicator function 192 

This function is given by: 193 
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 1      if  
( )

0     if  
I

x A
x

x A



 


 (6)   

where A is a subset in R (set of real numbers), such as an interval. The subset A represents 194 

the neighborhood or the region in the classical RFA approaches. The weight is equal to 1 195 

if the site is included in the region, otherwise, it is 0.  196 

In the case where the set A is the interval 
, ,1pC

    
with , 2

,

1

1
p

p

C





and 

2

, p is the  197 

 1   quantile associated to the chi-squared distribution with p degrees of freedom, the 198 

DBRFA reduces to the traditional CCA approach [e.g., Bates et al., 1998]. The 199 

corresponding weight function is denoted by 
CCA .  200 

If  0,1A 
 
i.e. 0  , then the DBRFA represents the uniform approach which includes 201 

all available sites with similar importance. The corresponding weight function is denoted 202 

by 
U . 203 

2.3.  Weighted Least Squares Estimation 204 

In the RFA framework, the MR model is generally used to describe the relationship 205 

between the hydrological variables and the physiographical and climatic variables of the 206 

sites of a given region. This model has the advantage to be simple, fast, and not requiring 207 

the same distribution for hydrological data at each site within the region [Ouarda et al., 208 

2001]. 209 

Let QT be the quantile corresponding to the return period T. It is often assumed that the 210 

relationship between QT , as the hydrological variable, and the physio-meteorological 211 

variables and basin characteristics 
1 2, ,.... rA A A

 
takes the form of a power function [Girard 212 

et al., 2004]: 213 
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 1 2

0 1 2 ... r

rQT A A A e
    (7)   

where e is the model error. 214 

Let s be the number of quantiles QT corresponding to s return periods and N be the total 215 

number of sites in the region. A matrix of hydrological variables  1 2
, , ...,

s
Y QT QT QT  216 

of dimension N s  is then constructed. With a log-transformation in (7) we obtain the 217 

multivariate log-linear model in the following form:  218 

  log logY X     (8)   

where 
1 2log (1,log ,log ,...,log )rX A A A  is the  1N r   matrix formed by (r) physio-219 

meteorological variables series, β is the ( 1)r s   matrix of parameters and 220 

 1,..., s    is the N s  matrix that represents the model error (residual) with null 221 

mean vectors and variance-covariance matrix  : 222 

 

 

   

   

1 1

1

,

( ) 0,..,0    and   ( )

,

s

s s

Var Cov

E Var

Cov Var

  

 

  

 
 

     
 
 
 

 (9)   

The parameter matrix   can be estimated, using the WLS estimation, by: 223 

 
   

 
-1

ˆ arg min

     = (log ) ' log (log ) ' log

w logY logX logY logX

X X X Y


     

 

 (10)   

where 
1diag( ,..., )Nw w

 
is the diagonal matrix with diagonal elements 

iw  where 
iw
 
is 224 

the weight for the site i. The matrix  is estimated by: 225 

 
   ˆ ˆlog log log log

ˆ =
1

w w

w

Y X Y X

N r

 


 


 
 

(11)   
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Note that the log-transformation induces generally a bias in the estimation of QT [Girard 226 

et al., 2004]. 227 

3. Methodology 228 

This section describes a general procedure for optimizing the DBRFA approach and 229 

treats special cases where this procedure is applied using the weight functions defined in 230 

section 2.2. 231 

3.1.  General procedure 232 

In order to find the optimal weight function 
Optimal

  in the DBRFA approach, the 233 

procedure is composed of three main steps. They are summarized as follows: 234 

i. For a given class of weight functions   and a set of gauged sites (region), use a 235 

jackknife procedure to assess the regional flood quantile estimators (Eq. 8) for the 236 

sites of the region using the DBRFA approach. These estimators depend on the 237 

weight function φ through its coefficients; 238 

ii. For a pre-selected criterion, calculate its value to quantify the performance of the 239 

estimates obtained from step i; 240 

iii. Using an optimization algorithm, optimize the criterion (objective function) 241 

calculated in step ii. The parameters of the optimization problem are the 242 

coefficients of the weight function. The outputs of this step are 
Optimal

 and the 243 

value of the selected criterion. 244 

3.2 Description of the procedure  245 

In the first step of the procedure, we use a jackknife resampling procedure to assess the 246 

regional flood quantile estimators for the sites of the region. This jackknife procedure 247 

consists in considering each site l ( 1, ...,l N ) in the region as an ungauged one by 248 
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removing it temporarily from the region (i.e. we assume that the hydrological variable 249 

l
Y of site l is unknown and the physio-meteorological variable 

l
X  is known since it can 250 

be easily estimated from existing physiographic maps and climatic data). Then we 251 

calculate the regional estimator  ˆlY


of site l by the iterative WLS regression, using the 252 

1N   remaining sites, which is related to the given weight function φ. The parameters of 253 

the starting estimator (initial point) of DBRFA, denoted by 1,
ˆ

l and 1,
ˆ

l ,
 
are calculated by 254 

assuming that lX X   , lY Y    and 1NI    in (10) and (11), where lX    255 

represents the matrix of physio-meteorological variables excluding site l, lY    is the 256 

matrix of hydrological variables excluding site l and 1NI   is the identity matrix of 257 

dimension    1 1N N   . The starting estimator  1,
ˆ

lY
  

is obtained by replacing β with 258 

1,
ˆ

l
 
in (8). Then for each depth iteration k, 2,3,.., iterk k , we calculate the Mahalanobis 259 

depth (2) of the gauged site i, 1,..., 1i N  , with respect to the ungauged site l denoted 260 

by 
       

1,
1,ˆ, ,

ˆlog ; log
k l

i k lk i l
D MHD Y Y

  


 . The number of iterations kiter is fixed to 261 

ensure the convergence of the depth function (generally kiter = 25 is appropriate). The 262 

weight matrix at iteration k is defined by applying the function φ to the depth calculated 263 

at this iteration. The parameters of the MR model at the k
th

 iteration are estimated by: 264 

 

           
-1

, , ,
ˆ log log log logl l l l

k l k l k lX X X Y
 

          
   
 

 (12)   

 

 
       

 

, ,

,

ˆ ˆlog log log log
ˆ =

1 1

l l l l

k l k l

k l

Y X Y X

N r

 



        


 


  

 
(13)   
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where  ,k l 
  is a N-1 diagonal matrix with elements: 265 

 
     , 1, , 1,

,.......,
k l k N l

D D
 

 


   
      

 (14)   

Note that all these parameters depend on φ. Then, the regional quantile estimator for the 266 

site l in this iteration is: 267 

     , ,
ˆˆ exp logk l l k lY X

 
 

  
 (15)   

In the second step of the procedure, we use the regional estimators at the last iteration 268 

since their associated estimation errors are the minimum possible by construction. 269 

Consequently, in order to simplify the notations in the rest of this paper, we denote 270 

           1 ,1 , ,
ˆ ˆ ˆ ˆ ˆ ˆ,..., ,..,

iter iter iterk l k l N k NY Y Y Y Y Y
     
   . 271 

After calculating  ˆ ,  1,..,lY l N



 
in step i, we consider and evaluate one or several 272 

performance criteria in step ii. The considered criteria are employed as objective 273 

functions in the optimization step iii.  274 

The relative bias (RB) and the relative root mean square error (RRMSE) are widely used 275 

in hydrology, particularly in RFA, as criteria to evaluate model performances. These two 276 

criteria are defined using an element-by-element division by: 277 

  
1

ˆ
1

100
N l l

l l

Y Y
RB

N Y






 
  
 
 
 

  (16)   

 
 

2

1

ˆ
1

100
1

N l l

l l

Y Y
RRMSE

N Y







 
  
   
 

  (17)   
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where Yl is the local quantile estimation for the l
th

 site,  ˆlY


 is the regional estimation by 278 

DBRFA approach according to φ and excluding site l, and N is the number of sites in the 279 

region. The RB
measures the tendency of quantile estimates to be uniformly too high or 280 

too low across the whole region and the RRMSE
measures the overall deviation of 281 

estimated quantiles from true quantiles [Hosking and Wallis, 1997]. Note that other 282 

criteria can also be considered such as the Nash criterion (NASH) and the coefficient of 283 

determination (R
2
). In the hydrological framework, the previously defined criteria are 284 

used as key performance indicators (KPI) to compare different RFA approaches [e.g., 285 

Gaál et al., 2008].  286 

Finally in step iii, we apply an optimization algorithm on the selected and evaluated 287 

criterion in step ii. The algorithms to be considered are indicated in the introduction 288 

section. The formulation of the criteria to be optimized, generally complex and non-289 

explicit, suggests the use of zero-order algorithms. The application of these algorithms 290 

allows to find the optimal function 
Optimal

  with respect to selected criteria. An overview 291 

diagram summarizing the optimization procedure of the DBRFA approach is illustrated 292 

in Figure 2. 293 

The procedure described above aims to calculate 
Optimal

  according to the desired 294 

criterion. In order to estimate the quantile 
u

Y  of an ungauged site u using the optimal 295 

DBRFA approach, the user simply repeats step i of the procedure without excluding any 296 

site and while fixing the weight function, i.e. step i with 
Optimal

  . 297 

Based on the optimization procedure of the DBRFA approach described previously, the 298 

parameters of the optimization problem are the coefficients of the weight function. 299 
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Consequently, reducing the number of coefficients in φ can make the algorithm more 300 

efficient and less expensive in terms of memory and computing time. If the weight 301 

function is one of the two functions Gompertz (3) or logistic (4), the coefficient c 302 

represents the upper limit of these functions. As in the DBRFA approach, the upper limit 303 

of φ is 1, namely the gauged site is completely similar to the target site, hence the value 304 

1c   is fixed. In this case, the problem is reduced to find the couple  ˆˆ ,N Na b  that 305 

optimizes one of the pre-selected criteria, such as (16) and (17). 306 

Moreover, in the classes 
G 

 
or 

logistic  , the optimization problem is applied in 307 

semi-bounded domain (i.e. 0 and 0a b  ) and without other constraints (linear or 308 

nonlinear). In this case, the Nelder-Mead algorithm can also be applied as well as the 309 

Pattern search one [Luersen and Le Riche, 2004]. 310 

On the other hand, in the case where 
Lineair   (5), the inequality constraint 

2 1 0d d   311 

is imposed. Therefore, the Nelder-Mead algorithm can not be considered. 312 

Theoretically and generally, the two optimization algorithms used in this paper (i.e. the 313 

Nelder-Mead and the pattern search algorithms) converge to a local minimum (or 314 

maximum) according to the initial point. To overcome this problem and make the 315 

algorithm more efficient, two solutions are proposed in the literature: a) for each 316 

objective function, use several starting points and calculate the optimum for each of these 317 

points; the optimum of the function will be the best value of these local optima [Bortolot 318 

and Wynne, 2005]; or b) use a single starting point and each time the algorithm 319 

converges, the optimization algorithm restarts again using the local optimum as a new 320 

starting point. This procedure is repeated until no improvement in the optimal value of 321 

the objective function is obtained [Press et al., 2002]. 322 
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4. Data sets for case studies 323 

In this section we present the data sets on which the DBRFA approach will be applied the 324 

following section. These data come from three geographical regions located in the states 325 

of Arkansas and Texas (USA) and in the southern part of the province of Quebec 326 

(Canada). The first region is located between 45 ° N and 55 ° N in the southern part of 327 

Quebec, Canada. The data-set of this region is composed of 151 stations, each with 328 

station has a flood record of more than 15 years. The conditions of application of 329 

frequency analysis (i.e. homogeneity, stationary and independence) are tested on the 330 

historical data of these stations in several studies [Chokmani and Ouarda, 2004; Ouarda 331 

and Shu, 2009; Shu and Ouarda, 2008]. Three types of variables are considered: 332 

physiographical, meteorological and hydrological. The selected variables for the regional 333 

modeling are also used in Chokmani and Ouarda [2004]. The selected physiographical 334 

variable are: the basin area (AREA) in km
2
, the mean basin slope (MBS) in % and the 335 

fraction of the basin area covered with lakes (FAL) in %. The meteorological variables 336 

are the annual mean total precipitation (AMP) in mm and the annual mean degree days 337 

over 0°C (AMD) in degree-day. The selected hydrological variables are represented by 338 

at-site specific flood quantiles (QST) in m
3
/km

2
s, corresponding to return periods T = 10 339 

and 100 years. 340 

The two other considered regions correspond to a database of the United States 341 

Geological Survey (USGS). This database, called Hydro-Climatic Data Network 342 

(HCDN), consists of observations of daily discharges from 1659 sites across the United 343 

States and its Territories [Slack et al., 1993]. The sites included in this database contain at 344 
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least 20 years of observations. As part of the HCDN project, the United States are divided 345 

into 21 large hydrological regions.  346 

In this study, the data of the states of Arkansas and Texas (USA) are used for comparison 347 

purposes. The applicability conditions of frequency analysis as well as the variables to 348 

consider are justified in the study of Jennings et al., [1994]. The physiographical and 349 

climatological characteristics are the area of drainage basin (AREA) in km
2
, the slope of 350 

main channel (SC) in m/km, the annual mean precipitation (AMP) in cm, the mean 351 

elevation of drainage basin (MED) in m and the length of main channel (LC) in km. The 352 

selected hydrological variables in these two regions are the at-site flood quantiles (QT), in 353 

m
3
/s, corresponding to the return periods T = 10 and 50 years. 354 

The data-set of the states of Arkansas is composed of 204 sites. These data and the at-site 355 

frequency analysis are published in the study of Hodge and Tasker [1995]. Tasker et al. 356 

[1996] used these data to estimate the flood quantiles corresponding to the 50 year return 357 

period by the region of influence method [Burn, 1990b]. 358 

The Texas data base is composed of 90 sites but due to the lack of some explanatory 359 

variables at several sites, modeling was performed with only 69 stations. The data-set 360 

used in this region is the same used by Tasker and Slade [1994]. 361 

5. Results 362 

The results obtained from the CCA-based approach are first presented and then compared 363 

to those obtained by the optimized DBRFA approach. 364 

The variations of the two performance criteria RB and RRMSE, obtained by the CCA 365 

approach, as a function of the coefficient α (neighborhood coefficient) for the three 366 

regions are presented in Figure 3. The complete variation range of α is the interval [0, 1]. 367 
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However, in this application, the range is [0, 0.30] for Quebec and Arkansas regions and 368 

[0, 0.17] for the Texas region. These upper bounds of α are fixed to ensure that all 369 

neighborhoods of the sites contain sufficient stations to allow the estimation by the MR 370 

model. Note that it is appropriate to have at least three times more stations than the 371 

number of parameters in the MR model [Haché et al., 2002]. Figure 3 indicates that, for a 372 

given region, the same value of α optimizes the two criteria for the various return periods, 373 

even though this is not a general result [Ouarda et al., 2001]. The optimal α values are 374 

0.25, 0.01 and 0.05 respectively for Quebec, Arkansas and Texas.  375 

The coefficients 
1  and 2  correspond respectively to the correlations of the first and the 376 

second couples of the canonical variables. Their values for Arkansas (
1 0.973  , 377 

2 0.470  ) and Texas (
1 0.923  , 

2 0.402  ) are larger than those of Quebec 378 

(
1 0.853  ,

 2 0.281  ). This corresponds to a large optimal value of α for the latter 379 

region. Indeed, the higher the canonical correlation, the smaller the size of the ellipse 380 

defining the homogeneous neighborhood [Ouarda et al., 2001]. The value of α should be 381 

small enough so that the neighborhood contains an appropriate number of stations to 382 

perform the estimation in the MR model, and large enough to ensure an adequate degree 383 

of homogeneity within the neighborhood. 384 

Figure 4 shows the projection sites of the three regions in the two canonical spaces (V1, 385 

W1) and (V2, W2) corresponding respectively to 
1  and 2 . This figure shows that for 386 

these three regions, the relationship between V1 and W1 is approximately linear, in 387 

contrast to V2 and W2. The presentation of a site in the space (V1, W1) is useful for an a 388 

priori information on the estimation error of this site. For example, in the Quebec region, 389 

the two sites 66 and 122 are poorly estimated. By fitting a linear model between V1 and 390 
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W1 for each region, it is seen that the linearity assumption is more respected in Arkansas 391 

and Texas than in Quebec (R
2

Arkansas = 0.94, R
2

Texas = 0.85 et R
2

Quebec = 0.73). 392 

The previous results show that the values of 1 , 2 , α  and R
2
 can be used as indicators of 393 

the quality of  the homogeneity in a given region. In this application, the lower values of 394 

1 , 2 and R
2
 as well as the higher value of α  for Quebec compared to the values of the 395 

other two regions indicate that the Quebec region is less homogeneous than the two 396 

others. This conclusion needs to be verified by other criteria or statistical tests. 397 

The DBRFA approach is applied by using the Mahalanobis depth function (2). The 398 

optimal weight functions, from each one of the three considered families, are obtained on 399 

the basis of the indicated optimization algorithms (i.e. 
G  

and 
logistic  using Nelder-Mead 400 

and Linear  using pattern search). They are presented in Figure 5. The corresponding 401 

results are summarized in Table 1. The optimization is made with respect to the RB and 402 

RRMSE criteria. Note that, for a given region, the regional flood quantile estimation is 403 

more accurate for small return periods. This result is valid for local as well as regional 404 

frequency analysis approaches [Hosking and Wallis, 1997]. In addition, Table 1 shows 405 

that the worst estimates are obtained using the uniform approach (weight function 
U ). 406 

This justifies the usefulness of considering the regional approaches. Note that for all 407 

regions, DBRFA with 
Optimal

  leads to more accurate estimates in terms of RB and 408 

RRMSE than those obtained using the CCA approach with optimal α. These results show 409 

also that the optimal coefficients of a given weight function depend on the chosen 410 

criterion (objective function). Finally, for the southern Quebec region, the results of 411 

Chebana and Ouarda (2008) are very close to those in the present paper (Table 1). The 412 
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reason for this closeness is that the above authors forced the DBRFA approach to provide 413 

good results by trying several different combinations of values of φ coefficients (i.e. 414 

iteration loop of coefficients). Consequently, their trials took a long time and did not 415 

ensure the optimality of the approach which is not the case for the present study.  416 

According to Figure 5, the form of optimal weight function depends on the considered 417 

region. For instance, the steep S-curve (with long upper extremity) of the two regions 418 

Arkansas and Texas depicts a large number of gauged sites similar to the target one; 419 

however, the high S-curve (with short upper extremity) of Quebec shows a small number 420 

of gauged sites similar to the target one. This result supports the previously mentioned 421 

conclusion about the homogeneity level for these regions.  422 

In order to visualize the influence of gauged sites on the regional estimation of a target 423 

site in the DBRFA and CCA approaches, assume that Texas site number 25 is a target 424 

site and has to be estimated using the remaining 68
 
gauged sites. Figure 6 illustrates the 425 

weights allocated to each gauged site in the canonical hydrological space (W1, W2) 426 

instead of the geographical space. The estimate is made with the optimal α for the CCA 427 

approach and the optimal 
G  

for the DBRFA approach. We observe that the influence of 428 

a gauged site on the estimation of the target site in the DBRFA approach is proportional 429 

to the hydrological similarity between these two sites. Hence, the weight function takes a 430 

bell shape in a 3D presentation (Figure 6b). However, with the CCA approach, the weight 431 

function (6) takes only two values, 1 within the neighborhood of the target-site or 0 432 

otherwise (Figure 6a). 433 

To study the impact of depth iterations on the performance of the DBFRA method, this 434 

approach is applied to the three regions but without iterations on the Mahalanobis depth 435 
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(i.e. kiter = 2 in step i in the DBRFA optimization procedure). The outputs of this 436 

application, with G   and  . RRMSE  , are shown in Table 2. These results 437 

indicate that the optimal weight function changes depending on the case (with or without 438 

iterations) but keeps the S shape (for space limitation, the associated figure is not 439 

presented). In addition, using the iterations, we observe an improvement in the 440 

performance of the DBRFA method. This improvement varies from one region to another 441 

where it is more significant in Quebec than in Texas and Arkansas (Table 2). This is 442 

another result indicating a difference between Quebec and the two other regions. Note 443 

that similar results are found for other families of weight functions and for different 444 

optimization criteria. In conclusion, the depth iterative step in the DBRFA before weight 445 

optimization is important.  446 

In order to examine the convergence speed in terms of the performance criteria, we 447 

present the variations of these criteria as a function of depth iteration for different weight 448 

functions (Figure 7). The employed coefficient values of the weight functions are those 449 

minimizing the RRMSE (Table 1). We observe a rapid convergence (5 iterations) to the 450 

RRMSE values in Table 1 for Arkansas and Texas (Figure 7b and 7c), whereas, for 451 

Quebec (Figure 7a) it requires more than 20 iterations to converge to the results in Table 452 

1. These results could be again due to the level of homogeneity in the region. 453 

To compare the relative errors of flood quantile estimates obtained by different 454 

approaches for the three regions, Figure 8 illustrates these errors with respect to the 455 

logarithm of basin area. The weight functions used are those optimizing the RRMSE. It is 456 

generally observed that the DBRFA relative errors are lower than those obtained with the 457 
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CCA approach. We also observe large negative errors for some sites, such as number 64 458 

and 66 in the southern Quebec, 180 and 175 in Arkansas and 62 and 69 in Texas.  459 

In this paper, the optimal DBRFA approach is mainly compared with the basic 460 

formulation of one of the most popular RFA approaches, that is the CCA approach. 461 

However, different variants of the latter are developed and are available in the literature, 462 

such as the Ensemble Artificial Neural Networks-CCA approach (EANN-CCA) [Shu and 463 

Ouarda, 2007] and the Kriging-CCA approach [Chokmani and Ouarda, 2004]. In order to 464 

insure the optimality of the optimal DBRFA, it is of interest to expend the above 465 

comparison to those approaches. A comprehensive comparison requires presentation of 466 

these approaches as well a number of data sets for the considered regions. Some of the 467 

data sets are not available for the regions of Texas and Arkansas, e.g. at-site peak flows 468 

to estimate at-site quantiles as hydrological variables. However, all these approaches are 469 

already applied to the region of Quebec in different studies. Table 3 summarizes the 470 

obtained results for all those methods along with those of the DBRFA approach. The 471 

results indicate that the optimal DBRFA performs better than the available approaches 472 

both in terms of RB and RRMSE, except a very slight difference of 1% in the RRMSE of 473 

QS10 with EANN-CCA. This could be related to the numerical approximations in the 474 

computational algorithms. 475 

6. Conclusions  476 

In the present paper, a procedure is proposed to optimize the selection of a weight 477 

function in the DBRFA approach. This procedure automates the optimal choice of the 478 

weight function φ with respect to a given criterion. Therefore, aside from leading to 479 

optimal estimation results, it allows the DBRFA approach to be more practical and usable 480 
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without the user's subjective intervention. The user has only to select one or several 481 

objective performance criteria to obtain the model, the estimated performance and the 482 

weight functions for a specific region. One of the findings is that the optimal weight 483 

function can be seen as characterization of the associated region. 484 

General and flexible families of weight function are considered, as well as two 485 

optimization algorithms to find 
Optimal

 . The used algorithms can handle cases with or 486 

without constraints on the definition domain of the function φ.  487 

The obtained results, from three regions in North America, show the utility to consider 488 

the DBRFA method in terms of performance as well as the efficiency and flexibility of 489 

the proposed optimization procedure. 490 

The study of the three regions shows an association between the level of the homogeneity 491 

of the region, the form of the optimal weight function and the computation convergence 492 

speed. This result deserves to be developed in future work.  493 
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Table 1. Quantile estimation result with the various approaches 634 

635 Region 

  Southern Quebec  (Canada) Arkansas (United States) Texas ( United States) 

 

Objective 

function   

ζ 

 

Weight 

function 

φ 

Optimal 

coefficients 

QS10 QS100 

Optimal 

coefficients 

Q10 Q50 

Optimal 

coefficients 

Q10 Q50 

RB 

   

(%) 

RR 

MSE 

(%) 

RB 

  

(%) 

RR 

MSE 

(%) 

RB 

   

(%) 

RR 

MSE 

(%) 

RB 

   

(%) 

RR 

MSE 

(%) 

RB 

 

(%) 

RR 

MSE 

(%) 

RB 

 

(%) 

RR 

MSE 

(%) 

- U  - -8.60 55.00 -11.0 64.00 - -13.2 65.48 -15.1 73.34 - -9.70     46.50 -13.8 61.00 

RRMSE 

or  RB CCA  0.25   -7.54 44.62 -8.14 51.84 0.01   -7.80 48.16 -9.31 59.50 0.05   -1.20 42.30 -7.40 57.40 

RRMSE 

G  
a = 30.5 

b = 7 
-3.55 38.70 -2.20 44.50 

a = 97  

b = 25 
-6.00 41.50 -6.33 47.70 

a = 129.7  

b = 35.4 
-1.01 36.86 -6.00 50.79 

logistic  a = 2537.5      

b = 14.8 
-3.85 39.20 -2.80 44.90 

a = 11863      

b = 54.149 
-6.18 41.53 -6.52 47.65 

a = 3618       

b = 50.1 
-0.90 36.84 -5.00 49.50 

Linear  
C1= 0.30 

C2= 0.80 
-3.60 38.94 -2.25 44.65 

C1= 0.157 

C2= 0.162 
-5.90 40.90 -6.37 47.11 

C1= 0.116 

C2= 0.152 
-2.81 38.20 -6.37 49.51 

RB 

G  
a = 55  

b = 9 
-3.50 39.10 -2.30 44.90 

a = 23.950 

b = 13.661 
-5.80 41.52 -6.29 47.70 

a = 2134  

b = 43 
-0.80 37.90 -6.20 52.17 

logistic  
a = 2791   

b = 15 
-3.70 39.30 -2.70 45.00 

a = 19593.7 

b = 58.417 
-6.10 41.67 -6.49 47.70 

a = 3618.2    

 b = 50.3 
-0.80 37.70 -4.90 50.90 

Linear  
C1= 0.296 

C2= 0.768 
-3.20 38.90 -1.90 44.70 

C1= 0.093 

C2= 0.267 
-5.87 41.67 -6.35 47.74 

C1= 0.100 

C2= 0.112 
-0.90 39.20 -5.50 50.95 

Best results for each region are in bold character. 
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Table 2. Results of the DBRFA Approach With and Without Depth Iterations using  . RRMSE    and G   

 Region 

 Southern Quebec  (Canada) Arkansas (United States) Texas ( United States) 

 
Optimal 

coefficients 

QS10 QS100 

Optimal 

coefficients 

Q10 Q50 

Optimal 

coefficients 

Q10 Q50 

RB 

   

(%) 

RR 

MSE 

(%) 

RB 

   

(%) 

RR 

MSE 

(%) 

RB 

    

(%) 

RR 

MSE 

(%) 

RB 

   

(%) 

RR 

MSE 

(%) 

RB 

  

(%) 

RR 

MSE 

(%) 

RB 

  

(%) 

RR 

MSE 

(%) 

With 

iteration
 

a = 30.5 

b = 7 
-3.55 38.70 -2.20 44.50 

a = 97  

b = 25 
-6.00 41.50 -6.33 47.70 

a = 129.7  

b = 35.4 
-1.01 36.86 -6.00 50.79 

Without 

iteration
 a = 66.50      

b = 14.25 
-6.60 47.05 -7.52 55.07 

a = 721    

b = 81 
-7.24 42.87 -8.64 50.34 

a = 186.7   

b = 42.65 
-1.60 38.29 -6.29 51.00 
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Table 3. Quantile estimation result for Quebec with available approaches and their references 

 

  QS10 QS100 

Approach Reference RB 

(%) 

RRMSE 

(%) 

RB 

(%) 

RRMSE 

(%) 

Linear regression (LR) Table 1 above -9 55 -11 64 

Nonlinear regression (NLR)
 

Shu and Ouarda [2008] -9 61 -12 70 

  NLR with regionalisation approach  Shu and Ouarda [2008] -19 67 -24 79 

CCA 
 

Table 1 above -7 44 -8 52 

Kriging-CCA space Chokmani and Ouarda [2004] -20 66 -27 86 

Kriging-Principal Component Analysis space  
 

Chokmani and Ouarda [2004] -16 51 -23 70 

Adaptive Neuro-Fuzzy Inference Systems (ANFIS)
 

Shu and Ouarda [2008] -8 57 -14 64 

Artificial Neural Networks (ANN)
 

Shu and Ouarda [2008] -8 53 -10 60 

Single ANN-CCA (SANN-CCA)
 

Shu and Ouarda [2007] -5 38 -4 46 

Ensemble ANN (EANN)
 

Shu and Ouarda [2007] -7 44 -10 60 

Ensemble ANN-CCA (EANN-CCA) Shu and Ouarda [2007] -5 37 -6 45 

Optimal DBRFA
 

Table 1 above -3 38 -2 44 

Best results are in bold character      
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Figure 1. Illustration of Gompertz function: (a) c varies with fixed a and b, (b) a varies with 

fixed b and c and (c) b varies with fixed a and c. 
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Figure 2. An overview diagram summarizing the optimization procedure of the DBRFA 

approach.
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Figure 3. Optimal value of the neighborhood coefficient α for the CCA approach for: (a) 

Southern Quebec, (b) Arkansas and (c) Texas. The first column illustrates the RB and the 

second column illustrates the RRMSE. 
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Figure 4. Scatterplot of sites in the canonical spaces (V1, W1) and (V2, W2) for: (a) Southern 

Quebec, (b) Arkansas and (c) Texas. The first column illustrates the canonical (V1, W1) space 

and the second column illustrates the (V2, W2) space. 
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Figure 5. Optimal weight functions for: (a) Southern Quebec, (b) Arkansas and (c) Texas. 

The first column illustrates the weight functions optimal with respect to RRMSE and the 

second column illustrates the weight functions optimal with respect to RB. 
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Figure 6. Weight allocated to each gauged-site to estimate the target-site number 25 in the 

Texas region in the Canonical hydrological space (W1, W2) using: (a) CCA with optimal α 

and (b) the DBRFA approach with optimal
 G . 
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Figure 7. Variation of criteria (RB and RRMSE) as a function of the depth iteration number 

for the estimation of (a) QS100-Southern Quebec, (b) Q50-Arkansas and (c) Q50-Texas. 
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Figure 8. Relative quantile errors using: (a) CCA  and (b)
 G . The first column illustrates the 

error of QS100 in southern Quebec, the second column illustrates the errors of Q50 in 

Arkansas and the third column illustrates the errors of Q50 in Texas. 


