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Abstract 13 

Hydrological events are often described through various characteristics which are generally 14 

correlated. To be realistic, these characteristics are required to be considered jointly. In multivariate 15 

hydrological frequency analysis, the focus has been made on modelling multivariate samples using 16 

copulas. However, prior to this step data should be visualized and analyzed in a descriptive manner. 17 

This preliminary step is essential for all of the remaining analysis. It allows to obtain information 18 

concerning the location, scale, skewness and kurtosis of the sample as well as outlier detection. 19 

These features are useful to exclude some unusual data, to make different comparisons and to guide 20 

the selection of the appropriate model. In the present paper we introduce methods measuring these 21 

features, and which are mainly based on the notion of depth function. The application of these 22 

techniques is illustrated on two real-world streamflow data sets from Canada. In the Ashuapmushuan 23 

case study, there are no outliers and the bivariate data are likely to be elliptically symmetric and 24 

heavy–tailed. The Magpie case study contains a number of outliers, which are identified to be real 25 

observed data. These observations cannot be removed and should be accommodated by considering 26 

robust methods for further analysis. The presented depth-based techniques can be adapted to a 27 

variety of hydrological variables.  28 

 29 

  30 

 31 

32 
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1. Introduction 33 

Extreme hydrological events, such as floods, storms and droughts may have serious economic and 34 

social consequences. Frequency analysis (FA) procedures are commonly used for the analysis and 35 

prediction of such extreme events. Relating the magnitude of extreme events to their frequency of 36 

occurrence, through the use of probability distributions, is the principal aim of FA [Chow et al., 37 

1988]. 38 

Generally, several correlated characteristics are required to correctly describe hydrological events. 39 

For instance, floods are described by their volume, peak and duration (e.g., Yue et al. [1999]; 40 

Ouarda et al. [2000]; Shiau [2003]; Zhang and Singh [2006] and Chebana and Ouarda [2010]). All 41 

aspects of univariate FA have already been studied extensively, see e.g. Cunnane [1987] and Rao 42 

and Hamed  [2000]. On the other hand, multivariate FA has recently attracted increasing attention 43 

and the importance of jointly considering all variables characterizing an event was clearly pointed 44 

out. Justifications for adopting the multivariate framework to treat extreme events were discussed in 45 

several studies (see Chebana and Ouarda [2010] for a summary). For instance, single-variable 46 

hydrological FA can only provide limited assessment of extreme events whereas the joint study of 47 

the probabilistic characteristics leads to a better understanding of the phenomenon.  48 

In the multivariate hydrological FA literature, the following issues have been addressed: (1) showing 49 

the importance and the usefulness of the multivariate framework, (2) selecting the appropriate 50 

copula and the marginal distributions and estimating their parameters, (3) defining and studying 51 

bivariate return periods, and (4) introducing multivariate quantiles. However, with any statistical 52 

analysis, the first stage of the study should be a close inspection of the data. If the data are found 53 

appropriate, further analysis of the issues listed above can be undertaken. Hence, exploratory 54 
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analysis of the data is often the initial stage of any modelling effort that uses that data. It allows to 55 

understand the nature of the phenomena that generate the data. It is also useful for model selection 56 

and sample comparison. This step of the study is often completely neglected in the multivariate 57 

hydrological FA literature. The reason could be the unavailability of the required appropriate tools to 58 

carry out this step in a clear and practical manner. Nevertheless, this step is commonly carried out in 59 

practice in any univariate hydrological FA study as pointed out by Helsel, et al. [2002]. The 60 

development of equivalent tools for the multivariate framework should help promote the use of 61 

multivariate FA in hydrological practice.  62 

Exploratory descriptive analysis consists in quantifying and summarizing the properties of the 63 

samples and the distributions. Exploratory analysis is useful to guide the selection of the distribution 64 

shape and summary statistics are required to characterize the sample or to judge whether the sample 65 

is similar enough to some known distribution [Warner, 2008]. For instance, the location, scale, 66 

skewness and kurtosis indicate respectively the centrality, dispersion, symmetry and peakedness of 67 

the sample. Location and scale are summary statistics of the data whereas the shape of the data can 68 

be captured by skewness and kurtosis [Bickel and Lehmann, 1975a; b; 1976; 1979]. On the other 69 

hand, outliers, as gross errors and inconsistencies or unusual observations, can have negative 70 

impacts on the selection of the appropriate distribution as well as on the estimation of the associated 71 

parameters. In order to base the inference on the right data set, detection and treatment of outliers are 72 

also important ([Barnett and Lewis, 1998] and [Barnett, 2004]). These concepts are well defined and 73 

their computation is straightforward for univariate samples and distributions. 74 

In classical multivariate analysis, several techniques were directly inspired by univariate techniques 75 

and developed by analogy (multivariate normal distribution-based, component-wise and moment-76 

based).  Techniques that analyse data in a component-wise manner perform badly when variables are 77 



 5

mutually dependent. Moment-based methods depend on the existence of moments. For a detailed 78 

review of classical multivariate analysis techniques, the reader is referred to Anderson [1984] or 79 

Schervish [1987].  80 

Recently developed techniques avoid the above drawbacks by using the multivariate inward-outward 81 

ranking of depth functions [Zuo and Serfling, 2000b]. Indeed, depth-based techniques are not 82 

componentwise, and they are moment-free and affine invariant if the depth function is. These 83 

advantages are useful to include distributions such as Cauchy, and also, the obtained results remain 84 

the same after standardization. The depth-based ranking enables also numerous outlier detection 85 

techniques, which are fundamental in FA. It is important to indicate that, unlike the univariate 86 

setting, a multitude of definitions can be proposed for each sample characteristic (such as median 87 

and symmetry) in the multivariate context. A key reference in the study of multivariate descriptive 88 

statistics is Liu et al. [1999] where most of the above mentioned characteristic are treated. However, 89 

each sample feature was subsequently studied separately by a number of authors. For instance, the 90 

location was studied by Massé and Plante [2003], Zuo [2003] and Wilcox and Keselman [2004]; 91 

scale was treated by Li and Liu [2004], symmetry was the focus of Rousseeuw and Struyf [2004] 92 

and Serfling [2006] and kurtosis was addressed by Wang and Serfling [2005]. These studies focused 93 

mainly on inferential and asymptotical results. On the other hand, multivariate outlier detection, not 94 

discussed in  Liu, et al. [1999], was studied recently by Dang and Serfling [2010].  95 

The above features are of particular interest in hydrology since univariate data sets are generally 96 

asymmetric [Helsel et al., 2002] and the interest is on the tail of the distribution which is related to 97 

kurtosis. In flood FA, Hosking and Wallis [1997] indicated that summary statistics, especially 98 

skewness and kurtosis, are often used to judge the closeness of a sample to a target distribution. 99 

Regarding outliers, in FA, we are concerned about two particular types of errors: the data may be 100 
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incorrect and/or the circumstances around the measurement may have changed over time  [Hosking 101 

and Wallis, 1997; Rao and Hamed, 2000].  102 

The aim of the present study is to provide and to adapt recent statistical methods to the preliminary 103 

analysis and exploration of multivariate hydrological data. The presented methods are mainly based 104 

on the statistical notion of depth functions. Depth functions represent convenient tools for the 105 

ranking of data in a multivariate context. Chebana and Ouarda [2008] presented a first application of 106 

depth functions in the field of hydrology. Note that the multivariate L-moment approach represents 107 

also an alternative that could be of interest for the development of multivariate descriptive statistics. 108 

This approach is not treated in the present study and could be studied and compared to depth-based 109 

approaches in future work. The reader is referred to Serfling and Xiao [2007] for the general 110 

multivariate L-moment theory and to Chebana and Ouarda [2007] and Chebana et al. [2009] for 111 

applications in hydrology. 112 

The rest of the paper is organized as follows. In section 2, we present the general methodology for 113 

exploratory descriptive analysis including graphical tools, measurements of location, dispersion, 114 

symmetry, peakedness and outlyingness identification. We apply these concepts to real-world flood 115 

data in section 3. Conclusions are presented in section 4. In the appendix, we present a brief 116 

summary of the required background elements related to depth-functions. 117 

2. Methodology 118 

In this section, we present the general framework of the exploratory and descriptive multivariate 119 

statistical tools. Let 1 2, ,..., d

nX X X R∈  be a d-dimensional ( 1d ≥ ) sample with size .n d≥  Using a 120 

given depth function D(.), we sort the sample in decreasing order of depth values to obtain 121 

[1] [2] [ ], ,..., nX X X  and we define the “de-class” of [ ]iX  as the set of observations with equal depth 122 



 7

values, for 1,...,i n= . A brief description of depth functions is given in the appendix. Note that, even 123 

though, conceptually, any depth function can be used in the following visualisation and analysis 124 

efforts, some combinations are not treated here because of the lack of their practical relevance and 125 

since their properties are not well known. For instance, bagplots are generally based on Tukey depth 126 

and are not studied using the Mahalanobis depth. 127 

2.1 Visualization  128 

Data should be visualized before any analysis can be conducted. In the 2 or 3 dimensional cases, the 129 

simplest visualisation tool is the scatter plot. More useful, the bagplot is a generalization of the 130 

univariate box-plot to the bivariate setting [Rousseeuw et al., 1999] and is similar to the sunburst-131 

plot presented by Liu et al. [1999]. The bagplot is based on Tukey depth function whereas the 132 

sunburst-plot uses either Tukey or Liu depths (given in expressions A1 and A2 respectively). The 133 

bagplot is composed by a dark central bag which encircles the 50% deepest points. The Tukey 134 

median, defined below in section 2.2, is indicated at the center and a light region delimited by the 135 

points included in the central dark bag inflated by a factor 3 is also drawn and called the fence. 136 

Points outside this region are considered as statistical outliers. We then link non-outlying points that 137 

are outside the dark bag with the Tukey median. These lines have the same role as the whiskers in 138 

univariate box plots [Rousseeuw et al., 1999]. The bagplot generally gives indications concerning 139 

the distribution of the sample, such as location, dispersion and shape. Note that the sunburst plot 140 

presented by Liu et al. [1999] does not contain a fence region and hence the sunburst plot is not 141 

considered as a tool to detect outliers. The points outside the fence are considered as extremes rather 142 

than outliers. In the present study, we consider a more appropriate approach, given in Section 2.6, to 143 

detect outliers.  144 
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Another way to visualise data can be obtained using the contours of the depth function. Contours can 145 

reveal the shape and structure of multivariate data. Such plots enable direct comparisons of 146 

geometry between bivariate data sets. The Tukey depth function is the most used and studied for 147 

contour plots. 148 

2.2 Location parameters 149 

A location parameter indicates where most of the data are located. This notion is useful in hydrology 150 

since it appears in almost all commonly employed probability distributions. In addition, the location 151 

parameter is an important constituent in the index-flood model ([Hosking and Wallis, 1993] and 152 

[Chebana and Ouarda, 2009]).The concept of location is closely related to the center-outward 153 

ranking of depth functions. A point maximizing a depth function can be considered as a location 154 

parameter, because of the property of “maximality at the center” of depth functions given in the 155 

Appendix [Zuo and Serfling, 2000b]. In the following, we present several location parameters some 156 

of which are well-known, such as the sample mean and the component-wise median.  157 

Sample mean: The simplest and common location parameter is the arithmetic mean: 158 

1

1 n

n i

i

X
n

µ
=

= ∑       (1) 159 

nµ is d-dimensional. It corresponds simply to the component-wise arithmetic means. 160 

α-depth-trimmed-mean : For a coefficient 0 1α≤ ≤ , the α-depth-trimmed-mean ([Liu et al., 1999] 161 

and [Massé, 2009]) is a generalization of the sample mean (1). Given a depth function, the α-depth-162 

trimmed-mean can be considered as the sample mean computed from the ( )100 1 %α−  deepest 163 

points. Formally, we first define the -dR valued function nξ on [ ]0,1  as:  164 

[ ] [1]

1
( )    if    and  (0)n i n

i i
t X t X

n n
ξ ξ

−
= < ≤ =    (2) 165 



 9

and ( )n tξ  as the average over the de-class values in which ( )n tξ  is contained. We then define the 166 

DLn-statistic as:   167 

    ( ) ( )
1

0
 n nDL t t dtξ ω= ∫     (3) 168 

where ( )tω  is a non negative weight function such that ( )
1

0
 1.t dtω =∫ The α-depth-trimmed-mean is 169 

defined according to a particular function ( )tαω  given by: 170 

( ) [ ] ( ) ( ]1 (1 )    if 0,1   and 0 if 1 ,1t t t tα αω α α ω α= − ∈ − = ∈ −   (4) 171 

If α = 0, the α-depth-trimmed-mean is the classical mean given in (1). For α = 1, i.e. all observations 172 

are trimmed, then DLn is defined as the deepest point of the sample. For 0 1α< < , if nα is an 173 

integer, then nDL is simply 
( )

( )1

[ ]
1

1

1

n

n i

i

DL X
n

α

α

−

=

=
− ∑ .     174 

The use of the %α trimmed-mean as a robust estimator in the univariate framework in hydrology 175 

was discussed by Ouarda and Ashkar [1998]. 176 

Component-wise median: As a direct extension of the univariate median and similarly to the 177 

multivariate arithmetic mean, the component-wise median nCM is defined as: 178 

( ) ( )( )1,1 2,1 ,1 1, 2, ,, ,..., ;...; , ,...,n n d d n dCM med X X X med X X X
′=   (5) 179 

where med is the usual univariate median. Note that nCM is not affine equivariant. 180 

Depth medians: The following three location parameters are based on depth functions. The labels of 181 

these medians are directly taken from their respective depth functions, Tukey, Oja and Liu, given in 182 

the appendix. Any other depth function could also be used to define a location median but the above 183 

are the most studied in the literature.  184 
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We consider the set dE R⊆  of points that maximize the considered depth function. The depth 185 

median is the centeroïd of the polygon composed by the set of points maximizing the selected depth 186 

function [Massé and Plante, 2003]. Generally, E is a convex and compact set [Leon and Massé, 187 

1993]. Tukey and Oja medians have suitable properties whereas those of Liu median are not studied. 188 

The set E corresponding to Tukey median is convex since the half-space depth function is quasi-189 

concave [Rousseeuw and Ruts, 1999]. Tukey median is then defined as the center of mass of E 190 

[Massé and Plante, 2003]. For the Oja median, if n is even, then the set E is a single element 191 

according to Oja and Niinimaa [1985]. 192 

Spatial median: The spatial median is defined as [Massé and Plante, 2003]: 193 

1

1
arg min

d

n

i
x R i

SpMed x X
n ∈ =

= −∑     (6) 194 

where .  is the Euclidean norm and arg min ( )
t A

tϕ
∈

is the minimiser of the function (.)ϕ over a set A.  195 

In the bivariate case, a numerical study by Massé and Plante [2003] compared all the above 196 

mentioned location estimators. The spatial median (6) stands as the best location parameter in terms 197 

of robustness and accuracy, followed by Oja and Tukey medians. In a second group, we find the Liu 198 

and the component-wise medians in terms of robustness. Trimmed means (for α = 0.05, 0.10 with 199 

Tukey and Liu depths) are in a third group, followed finally by the sample mean. Overall, medians 200 

were shown to be more robust location parameters than means. Note that except for the Liu and Oja 201 

medians, all the above location parameters are computable in higher dimensions, though sometimes 202 

under approximations. 203 

2.3 Scale parameters 204 

Scale parameters are useful to measure the dispersion of a distribution or a sample. The scale and 205 

location parameters appear in almost all probability distributions employed in hydrology since these 206 
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distributions should contain at least two parameters. We present two types of multivariate scale 207 

parameters: matrix-valued and scalar-valued. 208 

α-trimmed sample dispersion matrix: Given a center-outward ranking of data derived from a given 209 

depth function, we first define a general weighted scale matrix [Liu et al., 1999]. The corresponding 210 

definition is similar to that of nDL (given in (3)), except that we replace ( )n tξ  by the function ( )nS t  211 

defined on the space ( )d RΜ  of d d×  real-valued matrices by: 212 

( ) ( )[ ] [ ]

1
( ) if , and (0) =  n i n i n n d d

i i
t X X t

n n
ν ν ×

−′= − − < ≤S S 0   (7) 213 

where vn is the sample’s deepest point and d d×0 is the d d× matrix with null elements. The weighted 214 

scale matrix is defined by:  215 

( ) ( )
1

0
 nnDS t t dtω= ∫ S      (8) 216 

where 
n
S indicates the average of 

n
S over all de-classes to which [ ]iX  belongs and ω is the weight 217 

function as defined for the α-trimmed mean. The α-trimmed sample dispersion matrix is a particular 218 

case of nDS , with ω  defined as in (4). Given 0 1α≤ < , if nα is an integer, the α-trimmed-dispersion 219 

matrix is given by: 220 

( )

(1 )

1

1

1

n

nn

i

i
DS

n n

α

α

−

=

 =  −  
∑ S     (9) 221 

For 1α = , we define DSn as the zeros matrix and for α = 0, it coincides with the usual covariance 222 

matrix.  223 

Note that the matrix form of scale enables an easy comparison of dispersion between dimensions 224 

and can reveal more information. However, a matrix is not effective for measuring the overall 225 
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dispersion of the distribution (e.g. [Liu et al., 1999]). We can overcome this problem by taking a 226 

norm of the scale matrix (9). Some known matrix norms can be found in Manly [2005]. 227 

Scalar form of scale: Scalar values can be seen as an information reduction regarding scales. Hence, 228 

it is more appropriate to plot these values as a curve with respect to a given coefficient. We 229 

introduce a graphical tool presented in Liu et al. [1999] that measures the dispersion of a 230 

multivariate sample. Given a depth function, the function ( )nSc p , 0 1p≤ ≤ , returns the volume of 231 

the central region ,n pC  composed of the np    deepest points, where a    is the smallest integer 232 

larger or equal to a. 233 

The plot of the function ( )nSc p  with respect to p is an evaluation of the expansion of ,n pC with 234 

respect to p. This kind of scale curves is a simple one-dimensional curve describing the scale. It 235 

allows also to quantify the evolution of a sample. The curve ( ).nSc is interpreted as follows: “if the 236 

scale curve of a distribution G is consistently above the scale curve of another distribution F, then G 237 

has a larger scale than F”.  238 

2.4 Skewness 239 

Skewness can be defined as a measure of departure from symmetry. Skewness evaluation is 240 

important in hydrology since generally univariate distributions are not symmetric and are one-side 241 

heavily-tailed [Helsel et al., 2002]. In the multivariate case, there are several types of symmetry, 242 

such as: spherical, elliptical, antipodal and angular. Depth-based tools are presented in this section to 243 

empirically evaluate each type of symmetry. In the following, we present the definition of each 244 

symmetry as well as how it can be evaluated. The definitions are taken from Liu et al. [1999] and 245 

Serfling [2006]. All the following types of symmetry have a common feature: the distribution of a 246 
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centered random vector X c−  is invariant under a given transformation and all of them reduce to the 247 

usual univariate symmetry.  248 

Spherical symmetry: “The distribution of the random variable X is said to be spherically symmetric 249 

about the point c if the distributions of ( - ) X c and ( - ) X cU are identical, for any orthonormal 250 

matrix U.” Recall that a matrix U is orthonormal if and only if UU’= U’U = I where U’ is the 251 

transpose of the matrix U and I is the identity matrix. This kind of symmetry represents a rotation of 252 

X about c. The probability density function of X, when it exists, is then of the form 253 

( ) ( )( )g x c x c′− −  for a nonnegative real-valued function g. Examples of this kind of distributions 254 

include the multivariate versions of the standard normal, the t and the logistic distributions. 255 

To evaluate the spherical symmetry, we consider, for a given depth function, the smallest enclosing 256 

d-sphere that contains the np    deepest points for [ ]0,1p∈ . We denote ( )Sph p  the proportion of 257 

sample points falling in this sphere. The function Sph(p) is increasing  and ( ) 1p Sph p≤ ≤ . The area 258 

n∆ between the curve y = Sph(x) and the diagonal line y = x is an indicator of spherical skewness. A 259 

perfectly spherical symmetric sample would imply that the curve (.)Sph  is close to the diagonal (i.e. 260 

( )Sph p p≈ ) and hence n∆ is close to zero. 261 

Elliptical symmetry: “The distribution of the random variable X is said to be elliptically symmetric 262 

about a certain point c if there exists a non singular matrix V such that VX is spherically symmetric 263 

about c.” The corresponding probability density function of X is of the form 264 

( )1/2 1( ) ( )g x c x c
− −′− −V V  which includes, for instance, the multivariate normal distribution with a 265 

covariance matrix .′Σ =V V  The corresponding contours of the probability density function are 266 

indeed of elliptical shape.  267 
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To empirically evaluate elliptical skewness, it is suggested in Liu et al. [1999] that we first 268 

standardize data using the scale matrix (see Section 2.3) of the np   deepest points for [ ]0,1 .p ∈ We 269 

then proceed on the basis of the transformed data as in spherical symmetry by evaluating Sph(p) on 270 

the transformed set. We finally plot the function Sph(p) on the transformed data set. The 271 

interpretation of the curves associated to the elliptical skewness is similar to that of the spherical 272 

skewness. 273 

Antipodal symmetry: “The distribution of the random variable X is said to be antipodally symmetric 274 

about the point c (if such a point exists) if the distributions of ( )X c− and ( )X c− − are identical.” 275 

This symmetry is also called reflective or diagonal and represents the most direct extension of the 276 

usual univariate symmetry. The probability density function f in this case is such that 277 

( ) ( ) f x c f c x− = − . 278 

Given a depth function and a location parameter µ , we consider the reflection of the p
th central 279 

region ,n pC about µ , for p in (0, 1). We denote ( )Ca p the proportion of the np    deepest points 280 

falling in the intersection of ,n pC and its reflection. By definition we have ( )0 Ca p np n≤ ≤    . 281 

An antipodal symmetric sample would suggest that ( ) .Ca p np n p= ≈   Thus, we can measure 282 

antipodal skewness by evaluating the area between the diagonal line y = x and the curve y = Ca(x), 283 

for [ ]0,1x∈ . A larger area corresponds to a larger deviation from antipodal symmetry. 284 

Angular symmetry: “The distribution of the random variable X  is said to be angularly symmetric 285 

about the point c if, conditional on X c≠ , the distributions of ( ) ( )X c X c− −  and 286 

( ) ( )X c X c− − −  are identical.” One of the features of this symmetry is that if c is a point of 287 

angular symmetry, then any hyper-plane passing through c divides the whole space Rd into two half-288 
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spaces with probability 0.5 (if the distribution is continuous). More characterizations of angular 289 

symmetry can be found in [Zuo and Serfling, 2000a]. 290 

To measure angular symmetry of a given sample, we first identify the deepest point nν  according to 291 

a given depth function. Then, we evaluate the Tukey depth of the deepest point nν with respect to the 292 

restricted data in the pth central region ,n pC for each [ ]0,1p∈ . The deviation of the obtained curve, 293 

denoted ( )h p , from the x axes measures the degree of the antipodal symmetry. The value of Tukey 294 

depth of the deepest point should be 0.5 under angular symmetry. The interpretation of the obtained 295 

values and curves follows from: “ […] the deviation of the half-space depth at the deepest point 296 

from the value 0.5 is a measure of the departure from angular symmetry of the empirical distribution 297 

determined by the sample points within each level set” [Liu et al., 1999]. 298 

Liu et al. [1999] suggested to consider only the part of the curve with p larger than 0.4 where the 299 

curve stabilizes. Note that for small values of p, the curve is based on a small fraction of the data 300 

which is not enough for the convergence of the Tukey depth function.  301 

The reader may have noted that these concepts of symmetry are linked together. They can be ranked 302 

from more to less restrictive:  303 

Spherical Elliptical Antipodal Angular

symmetry symmetry symmetry symmetry
⇒ ⇒ ⇒    (10) 304 

In all kinds of symmetry, a point c is required. This point is generally a location parameter. Zuo and 305 

Serfling [2000a] studied the performance of some location measures associated to multivariate 306 

symmetry. 307 

After having defined and evaluated skewness, it is important to conduct hypothesis testing for 308 

symmetry. This represents a current topic of research in the multivariate setting (see for instance 309 
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Manzotti et al.  [2002], Huffer and Park [2007], Sakhanenko [2008] and  Ngatchou-Wandji [2009]). 310 

The topic of hypothesis testing is beyond the scope of the present study. 311 

2.5 Kurtosis 312 

Peakedness and tailweight evaluations are important in hydrology as the focus is often on extreme 313 

events and the tail of the distribution. These concepts are related to kurtosis which is a measure of 314 

the overall spread relative to the spread in the tails. Measuring kurtosis is important in water 315 

sciences since extreme events occur in the tail of the distribution (univariate or multivariate) with 316 

non negligible probability. Kurtosis is generally defined as a ratio of two scale measures, i.e. scale of 317 

the whole data and scale of the central part [Bickel and Lehmann, 1979]. We present in this section a 318 

number of tools that quantify multivariate kurtosis. The reader is referred to Liu et al. [1999] and 319 

Wang and Serfling [2005] for more details. 320 

Lorenz curve of Mahalanobis distance: Given a non-singular scale matrix Sn, such as the one given 321 

in (8) or simply the covariance matrix, and a given depth function for which nν  is the deepest point, 322 

we introduce the real-valued functions: 323 

( ) 1

1

np

ii
n

ii

Z
L p

Z

  

=

=

= ∑
∑

 and ( )* 1

1

np

ii
n

ii

Z np
L p

Z n

  

=

=

  = ∑
∑

 for 0 1p< ≤  (11)  324 

where   325 

  [ ]( ) [ ]( )1 ,  for 1,2,...,i n n ni i
Z X X i nν ν−′

= − − =S   (12) 326 

We define *(0) (0) 0 L L= =  and we have *(1) (1) 1L L= = . Note that *L is simply an adjusted 327 

formulation of L and each of them represents a ratio of the central variability to the total variability. 328 

The functions given in (11) are then plotted and the area corresponding to the surface between the 329 

curves ( )y L x=  or ( )*y L x= and the diagonal line y = x is evaluated. Both areas can be 330 
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interpreted in the same way: a large area corresponds to a high degree of peakedness and tailweight, 331 

and inversely a small area corresponds to heavy shoulders. The curves L
* and L have the same 332 

interpretation, but the area computed from L* should be more pronounced than the one computed 333 

from L. Consequently, sample curves can be compared more effectively using L* than L. 334 

Shrinkage plots: They are based on the shrinkage of the boundary of the pth central region 335 

,n pC towards its center by a given fixed coefficient s, 0 1s< <  leading to region ,
s

n pC . We then plot 336 

the function ( )sa p  of the fraction of observations in ,
s

n pC for fixed s. Liu et al. [1999] indicated that 337 

one value of s is enough to conclude and they proposed s = 0.5. For a fixed s, heavier tails 338 

correspond to higher values of ( )sa p  especially for large p. 339 

Fan plots: A fan plot is a collection of curves used to evaluate kurtosis. It consists in an arbitrary 340 

number of curves, each of which is associated with a value [ ]0, 1p ∈ . For a given p, we consider the 341 

sub-sample Sam(p) formed by the np    deepest points (in the central region ,n pC ). For [ ]0,1t ∈ , we 342 

denote ( ),nC p t  the area of the t
th convex hull of Sam(p) composed by 100t % of the deepest 343 

observations. We define the function bp(t) for [ ]0,1t ∈  by: 344 

( )
( )
( )

( )
,

 if  ,1 0
,1

n

p n

n

volume C p t
b t C p

volume C p

  = ≠
  

 and ( ) 0pb t =  otherwise  (13) 345 

Intuitively, a fan plot may be regarded as a comparison of areas between central (corresponding to 346 

low values of p), shoulder (corresponding to middle values of p) and tail regions (corresponding to 347 

high values of p). A more spread out fan plot indicates that the corresponding distribution is heavy 348 

tailed since bp(t) becomes smaller. This way to measure kurtosis requires a large amount of data 349 

since the data size is reduced in two stages (with p and then with t). 350 
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Quantile-based measure: This measure is based on the function ( ).Ck proposed by Wang and 351 

Serfling [2005] and expressed as : 352 

( ) ( ) ( ) ( )
( ) ( )

1 1 1
2 2 2 2 2

1 1
2 2 2 2

2
   for    0 1

r r
C C C

C r r
C C

V V V
k r r

V V

− + + −
= < ≤

+ − −
 and ( )0 0Ck =     (14) 353 

where the function ( )CV r  is  the volume of a central set C(r). The set C(r) is defined as the inner 354 

set, with probability r, delimited by contours of a given depth function. Wang and Serfling [2005] 355 

used Tukey depth function and indicated that any affine invariant depth function can be used as well. 356 

Note that the set C(r) is general with a special case defined on the basis of spatial quantiles. The 357 

measure ( )Ck r represents the difference of the volumes of two regions A and B divided by the sum of 358 

their volumes where (1 2)  (1 2 2) and (1 2 + 2) (1 2)A C C r B C r C= − − = − . Note that the 359 

boundary associated to the region (1 2)C represents the “shoulders” of the distribution and it 360 

separates the “central part” from the corresponding “tail part”.  361 

Wang and Serfling [2005] provided indications for the interpretation of the curve ( ).Ck . They 362 

indicated that if the attention is confined to a class of distributions for which either F is unimodal, 363 

F  is uniform, or 1 F−  is unimodal, then, for any fixed r, a value of ( )Ck r near +1 suggests a 364 

peakedness, a value near -1 suggests a bowl-shaped distribution, and a value near 0 suggests 365 

uniformity. 366 

Increasing values of ( ).Ck  indicate that the probability mass is greater in the center than in the tails. 367 

It is important to mention that, unlike kurtosis measures discussed in the above sub-sections, the 368 

quantile-based measure requires some prior knowledge about the distribution of the sample to 369 

interpret the obtained curves. 370 

2.6 Outlier detection 371 
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Identifying outliers is an important statistical step to analyze data sets as indicated, for instance, by 372 

Barnett and Lewis [1978] in the univariate as well as in the multivariate settings. Outlier detection in 373 

hydrologic data is a common problem which has received considerable attention in the univariate 374 

framework. 375 

In the multivariate setting, outlyingness functions are defined and employed to detect outliers. 376 

Values of these functions usually range in the interval [0, 1]. They measure outlyingness of a certain 377 

point with respect to the entire sample. An outlyingness value near 1 indicates high outlyingness, 378 

and inversely a value near 0 indicates centrality. In order to determine whether an observation is an 379 

outlier or not, it is required to define a threshold, i.e. the minimum outlyingness value from which a 380 

datum is considered to be an outlier. In the following we present the most promising and recently 381 

developed outlying functions, based on depth functions and given in Dang and Serfling [2010].  382 

Outlyingness: A depth outlyingness is a transformation of a depth function for a given distribution F 383 

and dx R∈ . The followings are studied in Dang and Serfling [2010]:  384 

Half-space:  ( ), 1 2 ( , )HDO x F HD x F= −      (15) 385 

Mahalanobis: ( ) ( ) ( )( ) ( ) ( )( )2 2, , 1 ,MD A F A F
O x F d x F d x Fµ µ = +    (16) 386 

Projection: ( ) ( ) ( ), , 1 ,PDO x F PD x F PD x F= +      (17) 387 

where (., )HD F , ( ) ( )( )2 .,
A F

d Fµ  and (., )PD F  are given respectively in (A1), (A3) and (A6) and 388 

( )Fµ is a location measure and A(F) is a nonsingular matrix scale measure; 389 

Spatial: ( ) ( )( ),SO x F E Sign x X= −      (18) 390 

Spatial Mahalanobis: ( ) ( )1 2, ( )SMO x F E Sign x X− = − C   (19) 391 
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where .  is the Euclidean norm, X is F-distributed and Sign(.) is  the multidimensional sign function 392 

given by: 393 

( ) ( )  if 0 and   0 0Sign x x x x Sign= ≠ =   (20) 394 

and C  is any affine invariant symmetric positive definite d d× matrix. The matrix C  could be the 395 

classical covariance matrix or the matrix obtained as the minimum covariance determinant 396 

[Rousseeuw and Van Driessen, 1999]. 397 

Threshold: Selection of the appropriate threshold is an important step in outlier detection. It is 398 

related to false positive and true positive rates. The arbitrary false positive rate, denoted nα , is the 399 

proportion of non-outliers misidentified as outliers. This constant is closely related to the true 400 

positive rate nε , which represents the real theoretical proportion of outliers (called also 401 

contaminants). Ideally, nα has to be small compared to nε . Dang and Serfling [2010] fixed a ratio of 402 

false outliers n nδ α ε= and then used an additional coefficient n nβ ε= , to define a threshold as 403 

the (1- nα )-quantile of the outlyingness  values :  404 

( ) ( ) ( ) ( ) ( ) ( ), , ,

1 1 11 1 1O X F O X F O X Fn n nF F F nλ α δε βδ− − −= − = − = −   (21) 405 

The following example is illustrated in Dang and Serfling [2010]. By putting δ = 0.1, the ratio of 406 

false outliers is about 10% among the allowed ones. Assume that we allowed for 15nnε =  true 407 

outliers, the constant β  takes the value 15 100 1.5nn nβ ε= = =  for n = 100. Hence, 408 

( ) ( ) ( ) ( ), ,

1 11 0.15/ 0.985O X F O X Fn F n Fλ − −= − =  for n = 100 corresponds to the 0.985-quantile of the 409 

outlyingness values. 410 
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These thresholds are given explicitly for the multivariate normal distribution. Since, these thresholds 411 

are not available in general, those of the normal distribution can be employed as approximations. For 412 

a multivariate sample from a multivariate normal distribution Φ , the theoretical threshold nλ  is 413 

given explicitly for the Malahanobis, half-space and projection outlyingness functions of Dang and 414 

Serfling [2010]. Supposing that [ ]0,1nβδ ∈  and that the variable X is standard normally 415 

distributed, then the threshold given in (21) is given more explicitly as:  416 

( )
( )
( )( )
( )

( ) ( )1

,
                for the Mahalanobis outlyingness

1 ,

2 , 1         for the halfspace outlyingness

,
   for the projection outlyingness

3 4 ,

n

n

n

n n

n

n

n

T d

T d

T d

T d

T d

α
λ

α

λ α

α
λ

α−

=
+

= Φ −

=
Φ +

  (22) 417 

where ( ) ( )
12( , ) 1   dT d α χ α

−
= − with ( ) 12

dχ
−

is the inverse cumulative distribution function of the 418 

chi-square distribution with d degrees of freedom. 419 

For the spatial and spatial Mahalanobis, normal thresholds are not available. Note that it is also 420 

convenient to define thresholds for each outlyingness function on the basis of the empirical quantile 421 

of the outlyingness values. 422 

3. Applications 423 

In the following, the notions and methods introduced in Section 2 are applied to two real-world 424 

hydrological data sets. The first one is given in details whereas in the second one, we focus on 425 

outlier detection. All the methods presented in Section 2 are implemented in the Matlab environment 426 

[MathWorks, 2008] for the bivariate setting. Few methods, such as those based on the Mahalanobis 427 

distance, can be applied to higher dimensions. 428 

 429 
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3.1 Ashuapmushuan case study 430 

The data set used in this case study is taken from Yue et al. [1999] and concerns floods in the 431 

Ashuapmushuan basin located in the province of Québec, Canada. The flood annual observations of 432 

flood peaks (Q), durations (D) and volumes (V) were extracted from a daily streamflow data set 433 

from 1963 to 1995. The gauging station, with identification number 061901, is near the outlet of the 434 

basin, at latitude 48.69°N and longitude 72.49°W. In this region floods are caused by high spring-435 

snowmelt. 436 

To allow comparisons, we considered the study of all three combination series (Q, V), (D, V) and  437 

(Q, D) by all presented methods. In all parts of the analysis, except for outlier detection, we 438 

considered four depth functions: Tukey, Oja, Mahalanobis and Liu which are given respectively in 439 

(A1), (A2), (A4) and (A5). Note that results were produced for the three bivariate series using the 440 

four depth functions. However, the four depth functions lead to practically identical results for each 441 

series. Therefore, in the following we only present results based on the Tukey depth function. A 442 

sample’s depth values are essential for the analysis since almost all tools presented above are depth-443 

based. The corresponding depth values for the series (Q, V) are given in Table 1 as a selected 444 

example. 445 

Displaying data 446 

Bagplots and contour plots, based on Tukey depth, are presented in Figures 1a,b respectively. The 447 

Tukey depth function is the most used for bagplots and contour plots. We observe the orientation of 448 

the bags which indicates the positive correlation between Q and V. We also observe that more data 449 

are concentrated in the center and that the extreme observations, with high V and relatively small Q, 450 

are located outside the fence of the (Q, V) plot. All three series are unimodal, both (Q, V) and (D, V) 451 

are positive dependent whereas (Q, D) shows no clear dependence. This is in agreement with the 452 
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multivariate flood FA literature (e.g. [Yue et al., 1999] and [Zhang and Singh, 2006]). The series   453 

(Q, V) seems more concentrated and tight than the other two. The contours of (Q, D) are more 454 

circular and more distant compared to those of the (Q, V) and (D, V) series. Note that the points 455 

outside the fence of (Q, V) and (D, V) in Figure 1b (left and middle) correspond to the floods of 1994 456 

and 1974 respectively. They have the smallest depth values. As indicated previously, they cannot be 457 

considered as outliers at this stage of the analysis but can be seen as extremes.  458 

Location parameters 459 

All location parameters presented in Section 2.2 are obtained in the bivariate setting. Location 460 

parameters are indicated in Figure 2, both within the scatter plot and separately in a zoomed plot. 461 

The corresponding values are given in Table 2. Generally, all location parameters are located in the 462 

center of the sample. We observe that locations based on the mean are slightly influenced by the 463 

extreme values of the sample, for instance, in the series (Q, D). This result is in agreement with the 464 

study by Massé and Plante [2003] where the authors recommend, on the basis of accuracy and 465 

robustness, the use of spatial median followed by Oja and Tukey medians. 466 

Scale parameters 467 

The α-trimmed dispersion matrix, given in (8), is easily computed for any multivariate setting. 468 

Corresponding values associated to each series are presented in Table 3 for α = 0.00, 0.05 and 0.10. 469 

For a given series, all matrices are in the same order of magnitude with a slight decrease with respect 470 

to α. Values in the matrices corresponding to (Q, V) are larger than those of (D, V) and the smallest 471 

are those of (Q, D). All values in the dispersion matrices are positive except for those representing 472 

the covariance between Q and D. This was already indicated when displaying data and is again in 473 

agreement with the hydrological literature (e.g. [Yue et al., 1999] and [Zhang and Singh, 2006]). 474 
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In addition, Figure 3 presents, for each series, the function ( )nSc p  with respect to p of the volume 475 

of the pth central region ,n pC . We observe that (Q, V) is more dispersed than both (D, V) and (Q, D) 476 

since ( )nSc p  corresponding to (Q, V) is larger for any fixed p. This can be partially explained by 477 

comparing the magnitudes of volumes (≈104), flood peaks (≈103) and durations (≈101). Moreover, 478 

the variances of the marginal variables differ greatly: the variance of V (σ2 = 1.55e+008) is larger 479 

than the variance of Q (σ2 = 1.29e+005) and the variance of D (σ2 = 211.30). The variability induced 480 

by D is included in both Q and V because they are evaluated on D. This is in concordance with 481 

matrix dispersion given in Table 3. These findings, both with matrices and scalars, confirm what was 482 

previously revealed from bagplots and contour plots in Figure 1. 483 

Skewness measures 484 

The measures of the four kinds of symmetry, presented in Section 2.4, are applied on each one of the 485 

three series. Figure 4 illustrates the curves of the four skewness measures. We notice that the 486 

( ,  )D V sample is the closest to spherical symmetry with a small volume 0.09n∆ = (Figure 4a).  487 

Results from Figure 4b suggest that the (Q, V), (D, V) and (Q, D) distributions are likely to be 488 

elliptically symmetric, since ( )nSph p  is very close to the diagonal with a very small .n∆ This can be 489 

confirmed with the bagplots and contour plots of Figures 1a and 1b respectively. Regarding 490 

antipodal skewness, Figure 4c shows that all the considered series seem to be symmetric since the 491 

obtained curves are similar to those in Figure 14 in Liu et al. [1999] and are already elliptically 492 

symmetric. Among the three series, (Q, D) is the closest to angular symmetry since the function 493 

( )h p converges to 0.5 for p larger than 0.4 (Figure 4d). Hence, the three series seem to be 494 

elliptically symmetric. Note that the procedure treats the whole distribution including copula and 495 

margins. The univariate skewness coefficient values are 0.978, 0.522 and 0.286 respectively for D, V 496 
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and Q. Since these values are significantly non null, the corresponding marginal distributions are 497 

positively skewed. In contexts similar to the present one, the so-called meta-elliptical distributions 498 

could be a reasonable model to consider. In the statistical literature, meta-elliptical copulas are 499 

studied by Abdous et al. [2005] and applied in hydrology by Wang et al. [2010]. Meta-elliptical 500 

distributions allow margin variables to follow different distributions. It is advisable to check the 501 

significance of this symmetry by using statistical tests given in the references provided in Section 502 

2.4. These findings are useful to guide the selection of the appropriate distribution for further 503 

analysis.  504 

Kurtosis parameters 505 

For all three series (Q, V), (D, V) and (Q, D), the curves to evaluate kurtosis are presented in Figure 506 

5. The functions L and L
* defined in (11) are presented in Figures 5a,b respectively. Clearly, as 507 

expected, L* is more distinctive than L.
 Hence, the series (Q, V) represents the most peaked sample, 508 

followed by (Q, D) and then by (D, V) according to L*.  509 

Shrinkage plots, in Figure 5c, are very similar and do not allow to compare the various series, apart 510 

that all the three series are heavy-tailed. However, fan plots indicate again that (Q, V) is the most 511 

peaked series (Figure 5d). As explained in Section 2.5, quantile-based curves, provided in Figure 5e, 512 

do not reveal indications concerning kurtosis for the studied series since they require some 513 

information regarding the generating distribution. 514 

Overall, we conclude that (Q, V) is the most peaked series and that the L*-based kurtosis measure 515 

seems to be the best option since it is simple, distribution-free and able to distinguish between 516 

kurtosis of distributions. Therefore, the appropriate distribution candidates should be heavy-tailed as 517 

expected.  518 

 519 
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Outlier detection 520 

We evaluated spatial and both depth-based Mahalanobis and Tukey outlyingness functions for the 521 

three series. The results are presented in Table 4. The corresponding thresholds are obtained by 522 

selecting the values discussed in Section 2.6: that is the ratio of false outliers δ = 0.1, the true 523 

number of outliers 5nnε =  corresponding to approximately 15% of the sample, and the constant β  524 

0.8704nn nβ ε= =  for n = 33. Hence, from expression (21), ( ) ( ),

1 0.985O X Fn Fλ −=  which 525 

corresponds to the 0.985-quantile of the outlyingness values.  526 

Table 4 illustrates the normal and empirical thresholds for each series and each outlyingness 527 

function as well as the corresponding detected outliers as years. The results show that there is no 528 

outlier for the three series on the basis of the empirical thresholds using the three kinds of 529 

outlyingness. However, the normal thresholds are not convenient in the present case. They lead to 530 

very small thresholds for Mahalanobis and very high thresholds for Tukey. The reason could be the 531 

short sample size of the series which does not allow for appropriate approximations. Furthermore, it 532 

is well documented that flood series are not normally distributed. Note that the (Q, V) and (D, V) of 533 

the years 1974 and 1994 are not detected as outliers even by relaxing the coefficients δ  and nnε . 534 

3.2 Magpie case study 535 

The data series related to the second case study consists in daily natural streamflow measurements 536 

from the Magpie station (reference number 073503). This station is located at the discharge of the 537 

Magpie Lake in the Côte-Nord region in the province of Québec, Canada. Data are available from 538 

1979 to 2004. In this case study we focus on outlier detection for the flood peak Q and the flood 539 

volume V series. The corresponding Tukey depth and the outlyingness values are reported in Table 540 

5.  541 
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To obtain the threshold that the outlyingness of an outlier exceeds, we considered δ = 0.15 as the 542 

ratio of false outliers and 5nnε =  as the number of true outliers. Therefore, from expression (21), 543 

the threshold corresponds to the empirical 97%-quantile of the outlyingness values. Numerically, the 544 

obtained thresholds are respectively 0.9231, 0.8676 and 0.9462 for OHD, OMD and OS. Consequently, 545 

the flood of 1981 is detected by all the measures as outlier, whereas 1987 is detected only by OHD 546 

and has the second highest outlying value by both OMD and OS. The measure OHD detects several 547 

other outliers, such as 1999 and 2002, with the same outlyingness value (equal to the threshold). 548 

However, if a quantile of order higher than 97% is considered, by modifying the parameters related 549 

to the threshold, then OHD will not detect any outliers. Note that according to Dang and Serfling 550 

[2010],  the OHD  measure is not recommended. 551 

To explain these outliers, hydrological characteristics were derived and the corresponding 552 

meteorological data were examined. These data were extracted from Environment Canada’s Web 553 

site (www.climat.meteo.gc.ca/climateData/canada\_f.html). The hydrograph of the year 1981 is 554 

characterized by very high V and Q whereas 1987 seems to correspond to a dry year since the flow 555 

was the lowest during the spring season and has the lowest V and Q values in the series. For 1981 556 

there was an important amount of snow in early winter (October to January) followed by thaw and 557 

rain during February-March. In comparison to the previous and following years, 1987 was 558 

characterised by a warm end of winter and a very cold and less rainy fall. Hence, snow melted 559 

earlier compared to other years. The flood of 1999 is characterised by a high V, although lower than 560 

the one corresponding to 1981. The year 1999 was characterised by an important quantity of snow 561 

on the ground with high temperatures in March. The observed hydrograph of 2002 contains two 562 

peaks: the first one is characterised by a high magnitude while the second one is smaller and occurs 563 

later in the summer. This year was particular with a very cold winter and a large amount of snow on 564 
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the ground until early May. In conclusion, the flows of the above detected years seem unusual but 565 

are actually observed and do not correspond to incorrect measurements or changes over time in the 566 

circumstances under which the data were collected. Hence, these observations should be kept and 567 

employed for further analysis. However, it is recommended to use robust statistical methods to avoid 568 

sensitivity of the obtained results to outliers. 569 

The Tukey median and the arithmetic mean are evaluated. We observe that the median corresponds 570 

to the year 1980 with Q = 847.72 and V = 2216.22. The bivariate mean vector is (Q = 859.15, V = 571 

2138.70). After removing any of the above outliers, the mean changes significantly whereas the 572 

median remains the same. For instance, the mean becomes (835.25, 2067.89) after removing the 573 

1981 outlier. This result illustrates the effect of the detected outliers on the mean which is not the 574 

case for the median. Since the detected outliers represent actual observations, it is not advised to 575 

remove them. In that case, the median is recommended as a location measure. For further analysis, 576 

robust methods and measures are recommended for this data set. 577 

4. Conclusions 578 

The techniques and methods presented in the present paper constitute the first step in a multivariate 579 

frequency analysis. In the present paper, several features of the sample are treated, such as location, 580 

scale, skewness, kurtosis and outlier detection. The methods discussed in the present paper are 581 

superior to the classical multivariate methods based on moments, the assumption of normality, and 582 

componentwise techniques. These recent methods, mainly based on the notion of depth function, are 583 

moment-free, not normally-based and affine invariant (if the depth function is). This preliminary 584 

step of the analysis is useful for the modeling of hydrological variables and for risk evaluation. It 585 

allows to screen the data, to guide the selection of the appropriate model and to make comparisons 586 

of multivariate samples. The methods discussed in the present paper were applied to flood data from 587 
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the Ashuapmushuan and Magpie data sets in the province of Québec, Canada. These methods can 588 

also be adapted and applied to other hydrometeorelogical variables such as storms, heat waves and 589 

draughts. 590 

The findings related to the first case study of the Ashuapmushuan basin show that there are no 591 

outliers and the data are likely to be elliptically symmetric and heavy–tailed. Therefore, the 592 

appropriate multivariate distribution should be in a class with similar features. The second case 593 

study of the Magpie station contains a number of outliers which are checked to be real observed 594 

data. Therefore, they cannot be removed from the sample and robust methods should be adopted for 595 

further analysis. 596 
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Appendix: brief presentation of depth functions 735 

The main aim of introducing depth functions was to define multivariate extensions of the rank and 736 

order notions. Tukey [1975] presented pioneering work in this direction by proposing the half-space 737 

depth function. Several types of depth functions were defined later then standardized and classified 738 

by Zuo and Serfling [2000b]. A depth function D(x; F), defined for a given cumulative distribution 739 

function F on  ( 1)dR d ≥  and x in dR , is any bounded and nonnegative function that meets the 740 

following properties: 741 

i. Affine invariance: the depth of a point dx R∈ should not depend on the underlying coordinate 742 

system or, in particular, on the scales of the underlying measurements. That is, 743 

( ; ) ( ; )AX b XD Ax b F D x F++ =  holds for any random vector X  in  dR , any d d× nonsingular 744 

matrix A and any d-vector b; 745 

ii. Maximality at center: for a distribution having a uniquely defined center, the depth function 746 

should attain its maximum value at this center; 747 

iii. Monotonicity relative to deepest point: as a point dx R∈ moves away from the deepest point 748 

along any fixed ray through the center, the depth at x should decrease monotonically; 749 

iv. Vanishing at infinity: the depth of a point x should be close to zero as the corresponding norm x  750 

approaches infinity. 751 

The following depth functions have received more attention in the literature [Zuo and Serfling, 752 

2000b]: 753 

1. Tukey depth (called also the Half-space depth): Given a probability P on dR  and dx R∈ , 754 

the Half-space depth [Tukey, 1975], noted HD, is given by: 755 
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( ) { }; inf ( ) :  a closed halfspace that contains HD x P P H H x=   (A1) 756 

The empirical half-space depth function is defined by replacing the probability function P(H) by the 757 

proportion of sample observations falling into a half-space H. An illustration based on a simple 758 

example is given in Figure 6. The depth value of θ  is the minimum number of observations falling 759 

in the half-spaces (here 2) divided by the sample size 9. Note that θ  does not belong to the sample. 760 

2. Oja depth (called also the Simplicial volume depth): The Simplicial volume depth [Oja, 761 

1983], noted SVD, is given through the expression:  762 

  [ ]( )( ) 1

1( , ) 1 , ,...,   for     d

n dSVD x F E S x X X x R
−

 = + ∆ ∈    (A2) 763 

where [ ]( )1, ,...,n dS x x x∆  is the volume of the closed d-simplex [ ]1, ,...,n dS x x x formed by the points 764 

1, ..., d

dx x x R∈ . A d-simplex is defined as the convex hull of these points. This is a d-dimensional 765 

generalization of triangles. 766 

3. Mahalanobis depth: We introduce the Mahalanobis distance: 767 

( ) ( ) ( )2 1,Ad x y x y A x y−′= − −      (A3) 768 

where , dx y R∈ are column vectors and A is any semi-definite-positive matrix. Given a distribution 769 

F, a scatter measure A(F) and a location parameter µ(F), the Mahalanobis depth, noted MD, is: 770 

( ) ( ) ( )( )( ) 1
2, 1 ,
A F

MD x F d x Fµ
−

= +          (A4) 771 

4. Liu depth (called also the Simplicial depth) : The Simplicial depth [Liu, 1990], noted SD, of 772 

dx R∈  with respect to a distribution F is given by: 773 

( ) [ ]{ }1 1, ,...,F n dSD x F P x S X X += ∈          (A5) 774 
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where Sn is as defined above and ,   1,..., 1iX F i d= +∼ .  775 

5. Projection depth: For a given distribution F of a variable X, we define Fu’X as the univariate 776 

distribution of the variable u’X. Then, given a location and a scatter parameters µ(.) and σ(.), the 777 

projection depth PD(.) is defined as: 778 

( ) ( )( ) ( )1

1

, sup u X u X
u

PD x F u x F Fµ σ −
′ ′

=

′ ′= −   (A6) 779 

where .  is the Euclidian norm. The empirical version of PD is obtained by substituting the location 780 

and scale measures µ(.) and σ(.) with their estimations, and u XF ′  by the empirical distribution of the 781 

sample{ }1 2, ,..., nu X u X u X′ ′ ′ .  782 

The computation of depth functions is generally not straightforward and requires specific 783 

algorithms. For instance, Rousseeuw and Ruts [1996] and Aloupis et al. [2002] developed 784 

algorithms for the computation of the half-space and the simplicial depth functions. The 785 

Mahalanobis depth is among the simplest ones to evaluate. However, computational algorithms for 786 

the projection depth are not available yet. 787 

Depth functions are applied in several fields such as in econometric and social studies [Caplin and 788 

Nalebuff, 1991a; b; 1988]. Liu and Singh [1993] and Liu [1995] employed depth functions in 789 

industrial quality control. Recently, the depth-based approach proposed by Chebana and Ouarda 790 

[2008] improved the performance of Canonical Correlation Analysis in the context of regional flood 791 

frequency analysis. Depth functions were also investigated in nonparametric discriminant analysis 792 

by Ghosh and Chaudhuri [2005]. Mizera and Müller [2004] defined and studied the location-scale 793 

depth and gave some statistical applications. 794 

795 
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Table 1: Depth values and de-classes for the flood peak-volume data set (Ashuapmushuan) 822 

Year 
Q 

(m3/s) 
V  

(day m3/s) 
Oja Tukey Liu Mahalanobis 

   Depth de-class Depth de-class Depth de-class Depth de-class  

1969 1380 50895 2.84E-07 1 0.3939 1 0.3310 1 0.9824 1 
1973 1470 55766 2.75E-07 2 0.3636 2 0.3248 2 0.9211 2 
1975 1260 48790 2.62E-07 3 0.3030 4 0.2980 4 0.8236 4 
1984 1460 57769 2.58E-07 4 0.3333 3 0.3021 3 0.8023 5 
1995 1550 51853 2.56E-07 5 0.3030 4 0.2892 5 0.8319 3 
1993 1360 45263 2.50E-07 6 0.3030 4 0.2757 6 0.7436 6 
1985 1210 47627 2.46E-07 7 0.2424 5 0.2515 7 0.7341 7 
1976 1490 60767 2.31E-07 8 0.2121 6 0.2482 8 0.6420 9 
1966 1650 54139 2.27E-07 9 0.2121 6 0.2368 9 0.6860 8 
1972 1160 42497 2.22E-07 10 0.1818 7 0.2346 10 0.5794 10 
1991 1130 49226 2.04E-07 11 0.1212 8 0.1683 12 0.5625 11 
1978 1530 63663 2.03E-07 12 0.1818 7 0.1877 11 0.5121 12 
1977 1370 60824 1.95E-07 13 0.0909 9 0.1602 14 0.5043 13 
1981 1500 64631 1.88E-07 14 0.0909 9 0.1290 19 0.4478 14 
1989 1490 41943 1.85E-07 15 0.1212 8 0.1606 13 0.4216 15 
1965 1330 38682 1.81E-07 16 0.0909 9 0.1290 19 0.4161 16 
1968 1100 37213 1.80E-07 17 0.0909 9 0.1345 17 0.3991 17 
1983 1590 67223 1.72E-07 18 0.0909 9 0.1158 22 0.3900 19 
1988 993 36882 1.69E-07 19 0.0909 9 0.1246 20 0.3498 23 
1970 1780 66879 1.69E-07 20 0.0909 9 0.1437 15 0.3983 18 
1986 1690 46735 1.68E-07 21 0.0909 9 0.1290 19 0.3667 20 
1971 1420 38634 1.67E-07 22 0.0606 10 0.1107 23 0.3562 21 
1967 934 39744 1.63E-07 23 0.0606 10 0.1294 18 0.3417 24 
1992 1820 51752 1.59E-07 24 0.0909 9 0.1426 16 0.3411 25 
1964 1780 68828 1.59E-07 25 0.0606 10 0.1184 21 0.3525 22 
1980 949 33010 1.47E-07 26 0.0303 11 0.0909 25 0.2751 26 
1990 1570 38568 1.39E-07 27 0.0303 11 0.0909 25 0.2553 27 
1882 1920 50525 1.30E-07 28 0.0303 11 0.0909 25 0.2331 29 
1979 2040 59254 1.25E-07 29 0.0606 10 0.0964 24 0.2368 28 
1963 968 58538 1.12E-07 30 0.0606 10 0.0964 24 0.1953 30 
1987 610 35600 1.07E-07 31 0.0303 11 0.0909 25 0.1626 31 
1994 1170 74840 8.50E-08 32 0.0303 11 0.0909 25 0.1073 32 
1974 2400 84198 8.10E-08 33 0.0303 11 0.0909 25 0.1027 33 

 823 

 824 

 825 

 826 
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Table 2: Location parameters (Ashuapmushuan) 827 

 828 
  (Q, V) (D, V) (Q, D) 

Mean  1.43E+03 5.22E+04 84.3 5.22E+04 1.43E+03 84.3 

Trimmed mean  5% Tukey 1.43E+03 5.22E+04 84.2 5.22E+04 1.43E+03 84.0 

Oja 1.41E+03 5.08E+04 83.3 5.08E+04 1.41E+03 83.3 

Mahalanobis 1.41E+03 5.08E+04 83.3 5.08E+04 1.41E+03 83.3 

 Liu 1.43E+03 5.22E+04 84.2 5.22E+04 1.43E+03 84.0 

Trimmed mean  10% Tukey 1.43E+03 5.21E+04 84.1 5.21E+04 1.43E+03 83.6 

Oja 1.43E+03 5.09E+04 81.8 4.99E+04 1.43E+03 82.4 

 Mahalanobis 1.43E+03 5.09E+04 82.4 5.08E+04 1.43E+03 82.4 

 Liu 1.43E+03 5.21E+04 84.1 5.21E+04 1.43E+03 83.6 

Median Componentwise 1.46E+03 5.09E+04 80.0 5.09E+04 1.46E+03 80.0 

 Tukey 1.41E+03 5.13E+04 81.0 5.03E+04 1.40E+03 81.0 
 Oja 1.40E+03 5.15E+04 80.0 5.03E+04 1.43E+03 81.0 
 Mahalanobis 1.38E+03 5.09E+04 83.0 4.88E+04 1.49E+03 84.0 

 Liu 1.38E+03 5.09E+04 80.0 5.09E+04 1.38E+03 80.0 
 Spacial 1.50E+03 5.09E+04 80.0 5.09E+04 1.46E+03 84.0 

829 
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Table 3: Dispersion matrices (Ashuapmushuan) 830 

 831 
  (Q, V) (D, V) (Q, D) 

Dispersion  1.29E+05 2.67E+06 2.11E+02 1.03E+05 1.29E+05 -9.56E+02 

(0%)  2.67E+06 1.55E+08 1.03E+05 1.55E+08 -9.56E+02 2.11E+02 

Trimmed 

dispersion   

5% 

Tukey 1.25E+05 2.75E+06 1.64E+02 7.39E+04 9.60E+04 -6.32E+02 

 2.75E+06 1.36E+08 7.39E+04 1.35E+08 -6.32E+02 2.09E+02 

Oja 1.00E+05 1.81E+06 1.68E+02 7.33E+04 1.13E+05 -5.60E+02 

 1.81E+06 1.13E+08 7.33E+04 1.20E+08 -5.60E+02 1.58E+02 

Mahalanobis 1.00E+05 1.81E+06 1.79E+02 9.03E+04 1.16E+05 -4.92E+02 

 1.81E+06 1.13E+08 9.03E+04 1.16E+08 -4.92E+02 1.59E+02 

Liu 1.18E+05 2.73E+06 2.29E+02 1.08E+05 9.47E+04 -5.97E+02 

 2.73E+06 1.52E+08 1.08E+05 1.36E+08 -5.97E+02 2.28E+02 

Trimmed 

dispersion   

10% 

Tukey 1.13E+05 2.47E+06 1.62E+02 7.78E+04 8.66E+04 -3.82E+02 

 2.47E+06 1.30E+08 7.78E+04 1.22E+08 -3.82E+02 1.98E+02 

Oja 8.37E+04 1.61E+06 1.28E+02 6.07E+04 8.62E+04 -1.15E+02 

 1.61E+06 1.04E+08 6.07E+04 1.08E+08 -1.15E+02 1.53E+02 

Mahalanobis 8.37E+04 1.61E+06 1.52E+02 8.29E+04 8.65E+04 -1.24E+02 

 1.61E+06 1.04E+08 8.29E+04 1.06E+08 -1.24E+02 1.54E+02 

Liu 1.04E+05 2.51E+06 2.23E+02 1.12E+05 8.46E+04 -3.04E+02 

 2.51E+06 1.34E+08 1.12E+05 1.09E+08 -3.04E+02 2.18E+02 
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Table 4: Outlier detection for the three considered bivariate series using Mahalanobis, Spatial 

and Tukey outlyingness with normal and empirical thresholds (Ashuapmushuan) 

   Mahalanobis Spatial Tukey 

(Q, V) Normal Threshold 0.7297 --- 0.9931 

  Outliers (years) 1989-1995 --- None 

 Empirical Threshold 0.8973 0.9695 0.9394 

  Outliers (years) None None None 

(D, V) Normal Threshold 0.7297 --- 0.9931 

  Outliers (years) 1982;1988;  
1990-1995 

--- None 

 Empirical Threshold 0.9181 0.9697 0.9394 

  Outliers (years) None None None 

(Q, D) Normal Threshold 0.7297 --- 0.9931 

  Outliers (years) 1986;1988;  
1990-1995 

--- None 

 Empirical Threshold 0.8921 0.9695 0.9394 

  Outliers (years) None None None 
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Table 5: Tukey depth and outlyingness values for the flood peak-volume series (Magpie) 

Year Q V 

Tukey 
Depth OMD OS OHD 

1979 886.67 2088.92 0.2692 0.0571 0.1361 0.4615 

1980 849.67 2357.02 0.3846 0.1971 0.1567 0.2308 

1981 1456.67 3909.14 0.0385 0.8851 0.9563 0.9231 

1982 1270.00 2443.15 0.0385 0.8032 0.6246 0.9231 

1983 974.67 3012.18 0.0769 0.6700 0.8500 0.8462 

1984 1056.67 2751.69 0.1154 0.4713 0.6857 0.7692 

1985 787.00 1574.21 0.1538 0.4623 0.4815 0.6923 

1986 610.33 1536.34 0.1154 0.5306 0.6026 0.7692 

1987 344.33 1069.86 0.0385 0.8225 0.9204 0.9231 

1988 843.33 2374.49 0.3077 0.2390 0.2455 0.3846 

1989 678.67 1534.53 0.1923 0.4534 0.5395 0.6154 

1990 506.33 1752.06 0.0769 0.7223 0.5603 0.8462 

1991 740.00 2260.57 0.1538 0.4461 0.3003 0.6923 

1992 710.80 1128.71 0.0385 0.7223 0.8923 0.9231 

1993 666.80 1407.32 0.1538 0.5400 0.6964 0.6923 

1994 932.90 2722.55 0.1538 0.4802 0.6113 0.6923 

1995 868.77 2192.44 0.3462 0.0068 0.0324 0.3077 

1996 886.90 2476.36 0.3077 0.2644 0.3562 0.3846 

1997 697.30 2665.87 0.0385 0.7817 0.6607 0.9231 

1998 825.00 1843.60 0.3077 0.1963 0.2717 0.3846 

1999 1306.67 2652.26 0.0385 0.8042 0.7450 0.9231 

2000 858.90 2492.65 0.2308 0.3526 0.4095 0.5385 

2001 732.50 1188.92 0.0769 0.7053 0.8076 0.8462 

2002 999.60 1485.36 0.0385 0.8045 0.6758 0.9231 

2003 1004.93 1883.80 0.1538 0.6236 0.4102 0.6923 

2004 842.57 2802.32 0.0769 0.6783 0.7252 0.8462 

Bold character indicates outlyingness of the detected outliers 
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Figure 1a : Bagplots using Tukey depth : (Q, V) left, (D, V) middle and (Q, D) right (Ashuapmushuan) 
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Figure 1b : Contour plots using Tukey depth : (Q, V) left, (D, V) middle and (Q, D) right (Ashuapmushuan) 
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Figure 2: Location parameters: (Q, V) left, (D, V) middle and (Q, D) right. Top figures present the location parameters within the data and in the bottom figures a zoom 
is made to show the different location parameters (Ashuapmushuan) 
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Figure 3 : Scalar scales using Tukey depth : (Q, V) left, (D, V) middle and (Q, D) right (Ashuapmushuan) 
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Figure 4a : Spherical skewness using Tukey depth : (Q, V) left, (D, V) middle and (Q, D) right (Ashuapmushuan) 
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Figure 4b : Elliptical skewness using Tukey depth: (Q, V) left, (D, V) middle and (Q, D) right (Ashuapmushuan) 
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Figure 4c : Antipodal skewness using Tukey depth : (Q, V) left, (D, V) middle and (Q, D) right (Ashuapmushuan) 
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Figure 4d : Angular skewness using Tukey depth : (Q, V) left, (D, V) middle and (Q, D) right (Ashuapmushuan) 
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Figure 5a : Kurtosis measure with L(p) using Tukey depth : (Q, V) left, (D, V) middle and (Q, D) right (Ashuapmushuan) 
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Figure 5b : Kurtosis measure with L*(p) using Tukey depth : (Q, V) left, (D, V) middle and (Q, D) right (Ashuapmushuan) 
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Figure 5c : Kurtosis measure with shrinkage using Tukey depth : (Q, V) left, (D, V) middle and (Q, D) right (Ashuapmushuan) 
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Figure 5d : Kurtosis measure with fan plots using Tukey depth : (Q, V) left, (D, V) middle and (Q, D) right (Ashuapmushuan) 
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Figure 5e : Kurtosis measure with quantile using Tukey depth : (Q, V) left, (D, V) middle and (Q, D) right (Ashuapmushuan) 
 



 50

 

Figure 6: Half-space depth evaluation for the point θ  in an arbitrary generated sample. The numbers in boxes 

represent the number of points in the associated half-space. The minimum value is 2 which gives the depth value of 

θ  which is equal to as 2 divided by the sample size. 


