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Abstract

In this thesis, we tackle the problem of maximum likelihood (ML) estimation of the signal-to-
noise ratio (SNR) parameter over time-varying single-input multiple-output (SIMO) chan-
nels, for both data-aided (DA) and non-data-aided (NDA) scenarios. Unlike classical tech-
niques where the channel is assumed to be slowly time-varying and therefore considered as
constant over the entire observation period, we address the more challenging problem of
instantaneous SNR estimation over fast time-varying channels. The channel variations are
locally tracked using a polynomial-in-time expansion. First, we derive in closed-form ex-
pressions the DA ML estimator along with its bias. The latter is subsequently subtracted in
order to obtain a new unbiased estimator whose variance and the corresponding Cramér-Rao
lower bound (CRLB) are also derived in closed-form. Due to the extreme nonlinearity of the
log-likelihood function in the NDA case, we resort to the expectation-maximization (EM)
technique to iteratively obtain the exact NDA ML SNR estimates within very few iterations.
The new estimators are able to accurately estimate the instantaneous per-antenna SNRs
over a wide practical SNR range. In particular, the new NDA ML estimator exhibits a sub-
tantial performance advantage against the WGL technique [4], the only suitable benchmark

available in the literature so far on SNR estimation over time-varying channels, not only in
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its original single-input single-output (SISO) version but also against its SIMO extension

that is derived and detailed later in this thesis.
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Chapter 1

Résumé

Dans ce mémoire, nous proposons un estimateur de maximum de vraisemblance (ML) du
rapport signal sur bruit (SNR) pour les canaux variant dans le temps dans les systémes
a entrée unique et a sorties multiples (SIMO), non seulement dans le cas assisté par sig-
naux pilotes (DA), mais aussi dans le scénario autodidacte de données inconnues (NDA).
Contrairement aux techniques classiques ou le canal est supposé étre lentement variable
dans le temps et donc considérée comme constant sur toute la période d’observation, nous
abordons le probléme d’estimation du SNR instantané pour les canaux fortement variables
dans le temps. Les variations du canal sont localement suivies en utilisant une expansion
polynomiale en temps. Tout d’abord, nous dérivons d’une maniére analytiquement exacte
I'estimateur ML du SNR, dans les deux cas DA et NDA aussi bien que la borne inférieure
de Cramér-Rao correspondante (CRLB). Ensuite, en raison de la non-linéarité extréme de la

fonction log-vraisemblance dans le cas NDA, nous avons recours a la technique “expectation-

maximization” (EM) pour obtenir I'estimé ML exact du SNR, itérativement aprés un nombre
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trés réduit d’itérations. Les nouveaux estimateurs sont en mesure d’estimer avec précision
notable les SNR instantanés par antenne sur une large plage du SNR. En particulier, le
nouvel estimateur ML NDA présente un avantage subtantiel en performance comparé au
seul travail publié sur le sujet d’estimation du SNR sur canaux variables dans le temps, non
seulement dans sa version originale & entrée et a sortie unique (SISO), mais aussi comparé a

son extension SIMO qui est dérivée et détaillée plus loin dans ce mémoire.

1.1 Estimateur & maximum de vraisemblance

L’estimateur & maximum de vraisemblance (MLE) est un estimateur dit a efficacité asympto-
tique. Il est défini comme la valeur du paramétre qui maximise la fonction de vraisemblance.
En général, lorsqu’il est non-biaisé, le MLE atteint asymptotiquement la borne de Cramér-
Rao (CRLB) et son erreur posséde une distribution Gaussienne. Dans notre cas, on cherche
a estimer le rapport signal-a-bruit, en utilisant 'approche maximum de vraissemblance, pour
les systémes a entrée unique et a sorties multiples (SIMO), variables dans le temps.

La formulation du probléme d’estimation varie suivant que nous considérons un signal a
temps continu ou un signal a temps discret. La premiére approche semble étre la plus ap-
propriée a cause de la nature physique du signal, mais les récepteurs numériques opérent sur
des séquences échantillonnées.

Nous considérons d’abord une formulation a temps continue pour étendre, dans le chapitre
qui suit, 'approche au temps discret. Nous notons par 6 I'ensemble des paramétres inconnus

qui inclut les coefficients du canal ainsi que la variance du bruit. Nous adoptons la notation



x(t, @) pour le signal recu en absence de bruit qui met en évidence la dépendance en 6. Le

eme

modéle en bande de base a I't°™¢ antenne de réception est:

yi(t) = xi(t, ) + wi(t), (1.1)

ou w;(t) est le bruit additif complexe. On considére que y;(t) est une réalisation d’un proces-
sus aléatoire y,(t) pour une valeur donnée de @ = 6. En effet, une réalisation de y,(t) a un
certain degré de ressemblance avec y;(t) dépendamment de la ressemblance entre x;(¢, 5) et
x;(t,0), en d’autres termes, la distance entre 0 et 0. L’estimateur 4 maximum de vraisem-
blance est basé sur le calcul de 8 de sorte que la ressemblance entre y; () et la réalisation v, (¢)
soit maximale. En termes de probabilité, nous appelons p(yl(t)\é) la densité de probabilité

de y,(t) conditionnée par 6. Supposons que pour deux réalisations de 5, notées par 51 et é\g,

nous avons:

~

p(yi(t) = yi(£)161) < p(yi(t) = ui(1)]62), (1.2)

alors 52 est dit plus vraisemblable que 51.
Comme nous 'avons mentionné, le but est de maximiser p(v,(t) = y:(¢)|8) par rapport a 6.

La position du maximum est appelée estimé a maximum de vraisemblance et est donnée par:

Orii = arg max{p(y(t) = vi(1)]0)}. (1.3)

Cependant, la solution de cette maximisation présente une forte complexité de calcul, ce qui
nous meéne a exploiter une technique itérative, notamment 1’ “Expectation-Maximization”

technique.
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1.2 Technique expectation-maximization

[’algorithme expectation-maximization (EM) est utilisé dans plusieurs domaine, notamment,
la génétique, I’économie, et les études sociologiques ainsi que dans les domaines du traitement
du signal, comme la construction des images tomographiques par approche de maximum de
vraissemblance, et formation de modéles de Markov cachés en reconnaissance de la parole.
[’avantage de cette technique est de résoudre le probléme de manque d’informations sur les
données émises, d’une maniére itérative, en se basant sur des données introduites au préal-
ables (initialisation), sans passer par des dérivations et des maximisations complexes.

Cette technique repose sur quatre étapes:

- Produire I'entrée initiale du I'algorithme, généralement en utilisant des séquences d’entrainement
ou les symboles émis sont parfaitement connus.

- La deuxiéme étape est 'expectation, ot on calcule la moyenne statistique de la fonction de
vraissemblance, par rapport a tous les symboles émis, en utilisant le résultat de I'itération
qui préceéde.

- La troisiéme étape est la maximisation, dans laquelle on maximise le résultat de la deux-
iéme étape, par rapport a toutes les composantes du vecteur d’inconnus 6.

- La derniére étape est I’évaluation de la fonction de vraissemblance, et comparer sa progres-

sion par rapport a la précision souhaitée.
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1.3 Limites de performance de 'estimateur: la Borne de

Cramér-Rao

Considérons n’importe quelle méthode d’estimation de 7 et notons par 7 I'estimé correspon-
dant. Vu que 7 dépend de l'observation y, différentes observations engendrent différents
estimés. Dans ce cas T est une variable aléatoire dont la moyenne peut coincider avec les
vraies valeurs de 7. Dans ce cas, I'estimateur est dit non biaisé¢. Cette propriété est un car-
actére d’évaluation des performances d’estimation puisque, en moyenne, l'estimateur fournit
la vraie valeur du paramétre. Cependant, I'erreur d’estimation 7 — 7 est aussi une mesure
importante, d’oil la nécessitée de minimiser cette erreur, ou encore sa variance. Alors quand
est-ce qu’on peut dire que I'erreur d’estimation est acceptable?

Dans ce contexte, la borne de Cramér-Rao est une limite théorique qui fournit une borne

inferieure pour la variance de tout estimateur non-biaisé:

var{T — 7} > CRLB(1), (1.4)
avec
CRLB = !
(r) = _E {32 ln(A(r|7’))}
o
1
(1.5)

Y
AIn(A(r|7))
o () )

Cette borne nous permet de garantir que notre estimateur (non-biasié) est bien 'estimateur

non-biasé a vriance minimale (MVUE).
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1.4 Estimateur ML du SNR

On considére un systéme de transmission numérique SIMO, variable dans le temps. Sup-
posons un récepteur optimal avec une synchronization parfaite, en temps et en fréquence.

La sortie du filtre adapté a la réception peut étre exprimé comme suit:
Yi(tn) = hi(ty)a(t,) + w;i(t,), n=1,2,--- N, (1.6)

avec a(ty,), hi(t,) et w;(t,) représentent respectivement le symbol émis, le coefficient du canal,

yeme

et le bruit appliqué, pour la ¢ eme

antenne de réception et a I'n®"¢ instant discret t,,.
En utilisant le théoréme de Taylor, et aprés avoir appliqué les approximations et les arrenge-

ments nécéssaires, on peut dégager une expansion polynomiale en fonction du temps, des

coefficients du canal, comme suit:

L—1
hilt,) =Y eVt i = 1,2,-- N, (1.7)
=0

(O]

ol ¢;’ représente le [“"¢ coefficient de I'approximation polynomiale du coefficient du canal

reme

hi(t,), pour la i° antenne parmis les N, antennes de réception.

Notre estimateur peut étre appliqué dans le cas assisté par signaux pilotes (DA) ainsi que

dans le scénario autodidacte de données inconnues (NDA).

1.4.1 Estimateur DA

Dans ce scénario, notre modéle peut étre formulé comme suit:

YE,%A = AkT,Ci,k + Wik = @kci,k + Wik, (1.8)

1X



oit ®, = AT est une matrice de taille (Npy x L), avec L est I'ordre d’approximation
polynomiale, Npa est la taille de la k™ fenétre d’approximation locale, pour le scénario
DA, Ay est la matrice contenant les symbols émis et T’ est une matrice de Vandermonde
contenant les instants discrets %,,.

Aprés des dérivations directes, on peut dégager les résultats d’estimation des coefficients

d’approximations du canal ainsi que de la variance du bruit dans le cas DA comme suit:

~ —1

croa = (B/By) Bly(). (1.9)
~ 1 k ~ k ~
0% pA = mbﬁ(yi — By€.oal" [y — BiCroal, (1.10)

avec By est une matrice diagonale par blocs contenant les matrices ®;. Ainsi on obtient

I’expression du MLE du SNR:

-~

oo
hi,DAhi,DA

Pipa = =~ (1.11)
N(QO‘zDA)
avec fli,DA = [fll(»}]%A, EE?]%A, R ﬁ%/ANDA)]T, et E%A, ou N est la taille de la fenétre d’observation.

On montre que cet estimateur DA du SNR est biaisé. Un estimateur non-biaisé peut étre

obtenu comme suit:

AUB_N»,-N(l—E)—]_A €
PiDA = NN Pi.DA — B}

(1.12)

avec € = L/Nps. Aprés I'élimination du biais, 'MSE de notre estimateur non-biaisé¢ tend

vers la borne théorique suivante:

MSE{5, %5} — % <2 + §—> . (1.13)

On montre que cette borne est la borne de Cramér-Rao.



1.4.2 Estimateur NDA

Pour le scénario NDA| ot les symbols émis sont inconnus pour le récpeteur, on définit le

modéle suivant:

vie(n) = ag(n)Cit(n) + wi(n), (1.14)
avec yr(n) = [y1x(n),vax(n), -, yn,x(n)]", ar(n) est le symbole transmis correspondant,
Cr = [C1h,Coky + yCn k)T et Wi(n) = [wix(n), war(n),...,wn, x(n)]". Dans ce scénario on

a recours a la technique EM. La premiére étape est validée en appliquant I'estimateur DA

décrit dans la section précédente. La deuxiéme étape est décrite comme suit:

o - 1 Ny Nxpa
Q(9k|0k(q 1)) = —Nxpa M, In(270°) — 252 Z( +Zaq ) cipt(n )‘ ﬁz(anl)< Cik )>,

=1

(1.15)

avec MQ(Z; = E{|yix(n)|*} est le moment de second ordre des échantillons a la réception pour

la ¢“™ antenne de réception, et:

(q 1)
o) = E, {|amr ,yk<n>}
M
= > P an, (1.16)
m=1
(g—1)
019 7y1€(n)}

B9 D(cn) = Eam{%{y:km)a €7 ()eor)
- ZPsfn%ﬁ%{y:km)amtT(n)ci,k}. (1.17)

mynk T

_ ~ (g1
plol —p (am|yk(n); Hk(q )> est la probabilité a posteriori de a,, a I'itération (¢ — 1) qui

est calculée en utlisant la formule de Bayes comme suit:
P[am]P (}’k ‘anuek(q 1))
P (6

X1

(¢=1) _
Pw?,n,k -

(1.18)



Puisque les symbols transmis sont equiprobables, nous avons Pla,,| = 1/M, et par la suite:

plonr ")

Le résultat de I'étape de maximisation est présenté comme suit:

(q—=1)
m7 k . .
()]s 6 ) (1.19)

Ms

—1

Nnpa Nxpa
e =3 ttn)t"(n) SNVt | (1.20)
n=1 n=1

avec:

*

A = (P ) wato)

\_\,_/
a](cq—l) (n)

= @) yis(n). (1.21)

L’estimé de la variance du bruit est obtenu comme suit:

N, i ~1
(q) > i <M2(1)g + ?71(3{ )>

202, _ : (1.22)
NNDAN’I‘
avec:
NNDA % T
o= [t%) (E5M) (B47) tm) +al ) — 280 (&l ”)]
n=1
NNDA 9
= 2 [ItT et V[P + ol —apln ) (&l ”)]- (1.23)

Cet estimé local de la variance du bruit est moyenné ensuite sur les fenétres d’approximation
locales, pour obtenir un estimé plus fin qui correspond a la totalité de la fenétre d’observation

de taille N:

R N/NNDA

x11



Finalement, on obtient le MLE du SNR pour le scénario NDA comme suit:

N/N; N, ~(k 2
SO paNDA SENDA T ()

N <20AQNDA)

-~

Pi,NDA =

(1.25)
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Introduction

Over the recent years, there has been an increasing demand for the a prior: knowledge of
the propagation environment conditions, fuelled by an increasing thirst for taking advantage
of any optimization opportunity that would enhance the system capacity. In essence, almost
all the necessary information about these propagation conditions can be captured by esti-
mating various channel parameters. In particular, the SNR is considered as a key parameter
whose a priori knowledge can be exploited at both the receiver and the transmitter (through
feedback), in order to reach the desired enhanced/optimal performance using various adap-
tive schemes. For instance, the information about the SNR is required in all power control
strategies, adaptive coding and modulation schemes, turbo decoding as well as to provide the
channel quality information for handoff schemes [1-3|, just to name a few. Roughly speak-
ing, SNR estimators can be broadly divided into two major categories: i) data-aided (DA)
techniques in which the estimation process relies on a perfectly known (pilot) transmitted
sequence, and ii) non-data-aided (NDA) techniques where the estimation process is applied
blindly using the received samples only.

In principle, DA approaches often provide sufficiently accurate estimates for constant or

quasi-constant parameters, even using a reduced number of pilot symbols. However, in fast



changing wireless channels, they require larger pilot sequences in order to track the time
variations of the unknown parameter. Indeed, in the special case of estimating the instanta-
neous SNR from pilot symbols, that are usually placed far apart in time, the DA approaches
are usually unable to reflect the actual channel quality. This is because the receiver can-
not accurately capture the details of the channel variations between the pilot positions. In
principle, this problem can be dealt with by inserting more pilot symbols. Unfortunately,
this remedy results in an excessive overhead that causes a severe loss in system capacity. To
avoid doing so, NDA approaches are often considered as they are able to use both pilot and
non-pilot received samples to estimate the channel coefficients. Consequently, they provide
the receiver with more refined channel tracking capabilities without impinging on the whole
throughput of the system.

Historically, the problem of SNR estimation was first formulated and tackled in the context
of single-input single-output (SISO) systems under constant channels [4, 5. These two early
estimators, among which the well-known M2M4 technique, are moment-based ones. The
M2M4 estimator in particular is based on the second- and forth-order moments. During
the last decade, there has been a surge of interest in investigating this problem more in-
tensively [6-9] and most of the presented works focused also on the NDA moment-based
solutions. Indeed, a six-order moment-based estimator was proposed in [9]. Another eight-
order moment-based estimator was also reported in [10]. A more general class of higher-order
moment-based estimators was also introduced in [8]. Yet, in spite of enjoying a very easy im-
plementation in real-world platforms, these NDA moment-based techniques were primarily

designed for constant channels. They also require a very large number of received samples



to accurately estimate the SNR. This is in part due to the fact that they do not exploit the
whole information carried by the inphase (I) and quadrature (Q) components of the received
signal. Hence, I/Q-based maximum-likelihood (ML) approaches have also been recently in-
vestigated in [6] and [13|, but again in the special case of constant SISO channels.

More recently, SNR estimation has been addressed under different types of diversity. In par-
ticular, considering SIMO systems (i.e., spatial diversity), a moment-based SNR estimator
that exploits the fourth-order cross-moments (between the antenna elements) was proposed
in [11, 12]. As far as ML SNR estimation is concerned, spatial diversity has also been investi-
gated in |14, 15] under SIMO and MIMO systems, respectively. However, most of the works
that have been conducted on the topic of SNR estimation, including all the aforementioned
techniques, focused only on constant or slowly time-varying channels, thereby suffering from
severly degraded performance under fast time-varying channels. Yet, current and future gen-
eration systems such as LTE, LTE-Advanced and beyond are expected to support reliable
communications at velocities that can reach 500 Km/h [17|. In these situations, classical
assumptions where the channel is considered as constant during the observation window do
not hold, and hence there is a need to explicitly incorporate the channel time-variations
in the estimation process. To date and to the best of our knowledge, the only work that
has so far considered ML. SNR estimation under time-varying channels is [18], but again in
the special case of traditional SISO systems. As far as SIMO configurations are concerned,
time-varying channels were considered in [19] where a least-square (LS)-based approach was
developed, relying on detected data in a decision-directed (DD) scheme.

Motivated by all these facts, we tackle in this thesis the problem of ML instantaneous SNR



estimation over time-varying SIMO channels, both for the DA and NDA schemes. Our pro-
posed method is based on a piece-wise polynomial-in-time approximation for the channel
process with few unknown coefficients. In the DA scenario where the receiver has access
to a pilot sequence from which the SNR is to be obtained, the ML estimator is derived in
closed-form. Whereas, in the NDA case where the transmitted data is unknown or partially
available, the corresponding likelihood function is very complicated and its analytical max-
imization is mathematically intractable. Therefore, we resort to a more elaborate solution
using the EM concept, and we develop thereby an iterative technique that is able to con-
verge to the ezact NDA ML estimates within very few iterations (i.e., in the range of 10).
Simulation results show the distinct performance advantage offered by exploiting the spatial

diversity in terms of instantaneous SNR estimation.



Chapter 2

Signal parameter estimation

2.1 Estimation

The problem of parameter estimation is a common problem that is widely faced in many
areas such as Radar, image analysis, communications, and much more. The problem we
are faced with is estimating some parameters based on some observed samples due to the
use of digital communication systems or digital computers [20]. Mathematically speaking,
we observe N data points at the receiver side {y(1),y(2),---,y(N)} which sampled from
an unknown probability density function py (y; @) parameterized by an unknown parameter
vector @, which is the parameter vector of interest. Unfortunately, we do not really get to
see the distribution of the received sample Y. We only get that sample, Y, which we then
use to estimate our parameter 6. As a result of that, our estimator will not give us the exact

value of @, but an estimated version of it. Our estimator will depend highly through some



function of the received sample Y as:

6 = f{y(1),y(2),--- ,y(N)}. (2.1)

This estimator might be used to estimate the carrier frequency, channel phase, signal power,
noise power, SNR, etc. Since the received data are random, we can describe its behavior
according to its PDF function p(y(1),4(2), -+ ,y(N);8). The operator ’;’ is used to indicate

that the distribution of PDF is parameterized by the parameter 6.

2.2 Maximum Likelihood Estimation

The ML estimators are known to be the most accurate techniques, since unlike other exist-
ing estimators, they rely the estimation procedure on the whole information carried by the
inphase and quadrature (I/Q) components. In order to obtain the ML estimates, we must de-
rive the likelihood function, which is a function of the parameters of a statistical model given
the observation data, given by p(y(1),y(2),---,y(IN);0). The maximum likelihood solution
selects values for the model parameters that give a distribution which gives the observed data
the highest probability. Therefore, to obtain the ML estimates of the desired parameter, we
go through maximizing the likelihood function. Since it is a monotonic function, it will be
more convenient to maximize the Log likelihood function instead. But since in real scenarios
we do not have access to the transmitted data, we are often faced against a complicated Log
likelihood function whose maximization is mathematically intractable. Therefore, we must
resort to a more relevant technique, namely the Expectation-Maximization technique which

is described in the next section.



2.3 The EM algorithm

The EM algorithm was invented and implemented by several researchers untill Dempster
[21] collected their ideas together, assured convergence, and stated the term “EM algorithm”.
which has been used since then. One of the main application areas of the EM algorithm is
estimating parameters of mixture distribution which is the aim in this research. The EM
algorithm has broad areas of applications some of which is in genetics, econometric, clinical,
and sociological studies. It is also used in signal processing areas like Maximum Likelihood
tomographic image reconstruction, training of hidden Markov models in speech recognition.
The advent of the EM algorithm has come to solving the problem of latent (unobserved)
variables which MLE could not afford. If we introduce a joint distribution over both the
observed and hidden variables, then the corresponding distribution (the distribution of the
observed variables alone) is given by marginalization. This would help putting complex dis-
tributions over observed variables to be in a more tractable form of distribution formed by
both observed and latent variables. Therefore, the EM algorithm would be the method of
choice when direct maximum likelihood (ML) parameter estimation is not possible without
the knowledge of the latent variables. The goal of the EM algorithm is to find the Maximum
Likelihood (ML) solutions for models which have latent variables. The main objective in
this thesis, is to exploit this concept in order to derive the ML solution for the SNR.

The EM algorithm can be devided into 4 steps:

- First, we begin by providing the initial input §(0)7 then calculate the initial value of the

Log likelihood function.



- Then, the second step is the Expectation step or the E step, in which we calculate the ex-
pectation of the Log likelihood function with respect to all possible transmitted data using
the result of the estimated parameter vector obtained in the previous iteration.

- The third step is then the Maximization step or the M step where we maximize the output
of the E step, with respect to all elementary components of the parameter vector 6.

- Finally, in the final step, we evaluate the Log likelihood function, and compare its pro-
gression to the desired precision. If the precision has not been achieved, we go back to step
number 2 and iterate once again and we repeat the same procedure untill we achieve the

precision condition.

2.4 Cramér Rao Lower Bound (CRLB)

Generally, the estimators performances are evaluated in terms of variance. In fact, we need
to find the minimum variance estimator we can obtain. But unfortunately, this estimator
does not always exist, and if it does, sometimes it is not easy to find. One way of finding it
is using the Cramér Rao Lower Bound (CRLB). Finding a lower bound on the variance of an
unbiased estimator will be extremely important in practice. This will serve as a benchmark
in comparing the performance of an estimator. CRLB allows us to assure that an estimator
is the minimum variance unbiased estimator (MVUE), which will be the case when the

estimator attains the CRLB for all values of the unknown parameter.



Chapter 3

Derivation of the ML SNR Estimators

3.1 System Model

Consider a digital communication SIMO system transmitting over a frequency-flat time-
varying channel. Assuming an ideal receiver with perfect time and frequency synchroniza-
tion, and after matched filtering, the sampled baseband received signal over the i*" antenna

element can be expressed as:
Yi(tn) = hi(tp)a(t,) + wi(t,), n=1,2,--- N (3.1)

where {t, = nT,}_, is the n'" discrete-time instant, 7} is the sampling period, and N is
the size of the observation window. We denote by a(t,) the linearly-modulated (M-PSK,
M-PAM or M-QAM) transmitted symbol, by y;(¢,) the corresponding received sample, and
by hi(t,) the time-varying complez channel gain, over the i antenna branch. The noise

components, w;(t,), assumed to be temporally white and uncorrelated between antenna ele-

ments, are realizations of a zero-mean complex circular Gaussian process, with independent
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real and imaginary parts, each of variance o (i.e., with overall noise power 20%). We assume
that the same noise power is experienced over all the antenna branches (uniform noise). As
mentionned previously, most of the classical techniques are based on the assumption that
the channels are constant during the observation period, i.e., h;(t,) = h; forn =1,2,--- /N.
But since in most real-world situations this assumption does not hold, we can track the
channel evolution using a polynomial-in-time approximation model [22]. In fact, using Tay-
lor’s theorem, the time variations of the channel coefficients can be locally tracked through

a polynomial-in-time expansion of order (L — 1) as follows:

Zc“)tl RV(n), i=1,2,--- N, (3.2)

where cgl)

is the {"" coefficient of the channel polynomial approximation over the ¥ branch
among N, receiving antennae and {t, = nT,}._,. The term Rg)(n) refers to the remainder of
the Taylor’s series expansion. This remainder can be driven to zero under mild conditions,
such as i) a sufficiently high approximation order (L — 1), or ii) a sufficiently small ratio
]\_de/FS, where Fy = 1/T; is the sampling rate, F; is the maximum Doppler frequency shift,
and N is the size of the local approximation window. Choosing a high approximation order
(first condition) may result in numerical instabilities due to badly conditioned matrices
(depending on the value of the sampling rate). The second condition, however, can be
easily fulfilled by choosing small-size local-approximation windows by appropriately selecting

N. By doing so, the remainder R(Li)(n) can be neglected thereby yielding the following

approximation:
Zc(l)tl i = 1,2,---,N,. (3.3)
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Our goal in this thesis can be basically formulated as follows: given all the received samples
{ys(n)}\_,, for i = 1,2,--- , N,, and the statistical noise model, we will estimate (continu-

ously) the instantaneous SNR which can be expressed as:

_ B{Ri(t)Pla(t)?}  hi(tn) PE{a(t.)?}
i 202 B 202 ' (3.4)

But since we further assume that the transmit energy is normalized* to one, i.e., E{|a(t,)]*} =
1, and taking into account the polynomial expansion of h;(t,) in (3.3), the instantaneous

SNRs to be estimated reduce simply to:

N L—1 (1), 12
D1 | > o Cz( )tu
N(202) ’

p; = i=1,2--,N,. (3.5)

Note that we do not make any further assumption about the channel coefficients rather than
beeing unknown but determinitic. Of course, they might be random in practice but we are
not willing to assume any a priori knowledge about the channel statistical model. The moti-
vations behind this choice are twofold: i) the statistical models are after all theoretical ones
and may not reflect the true behaviour of real-world channels and ii) the fading conditions
(for instance the presence of a line-of-sight component or not) might change in real time as
users move from one location to another. In light of the above reasons, the new estimator is
hence well geared toward any type of fading, a quite precious degree of freedom in practice.
Besides, the main advantage of local tracking is its ability to capture the impredictible time
variations of the channel gains using very few coefficients. Thus, we split up the entire ob-

servation window (of size N) into multiple local approzimation windows of size N (where

!Note that normalization is assumed here only for the sake of simplicity. If the transmit energy, P, is
not unitary, then it can be easily incorporated as an unknown scaling factor into the channel coefficients by

estimating h;(t,) = Phi(t,) instead of h;(t,).
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N is an integer multiple of N). Then, after acquiring all the locally estimated polynomial
. ~)\N/N . . S .
coefficients {CNf i1 » where k is the index of each local approximation window, and after

averaging the local estimates? of the single-sided noise power, {o? N:/N, the estimated SNRs
ging g EJS k=1

are ultimately obtained as:

N/N N L—1~1),1 |2
- _ o Gty
pi = == Zgl |N§V”L bl oy, (3.6)
N (¥ 207)

3.2 Derivation of the DA ML SNR Estimator and the

CRLB

In this section, we begin by deriving in closed-form expression the DA ML estimator for the
SNR over each antenna element. Then, we will derive its bias revealing thereby that the
derived estimator is actually biased due to the neglected remainder of the Taylor’s series.
This will afterward allow us to obtain an unbiased version of the DA estimator by removing
this bias during the estimation process. Finally, we will derive the closed-form expressions for
the corresponding variance and CRLB. Recall that in the DA case the transmitted sequence,

from which the SNRs will be estimated, is assumed to be perfectly known to the receiver.

3.2.1 Formulation of the DA ML SNR Estimator

In most real-world applications, some known pilot symbols are usually inserted to perform
different synchronization tasks. The DA ML estimator can thus rely on these pilot sequences

to estimate the instantaneous SNR or at least to give a head start for an iterative algorithm,

2These are indeed multiple estimates of the same constant but unknown parameter o2.
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as will be derived in the next section, by providing a good initial guess about the unknown
parameters. Thus, in the current scenario, only the received samples corresponding to pilot
positions are used during the estimation process. Assume, therefore, that N’ such known
symbols are periodically transmitted every 7. = N, T where N, > 1 is an integer quantifying
the normalized (by T%) time period between any two consecutive pilot positions. Here, we
denote the size of the local approximation windows as Np, (later in this chapter, we shall
use N = Nxpa for the NDA case). To begin with, we consider each antenna element, 4, and
gather all the corresponding received (pilot) samples within each approximation window,
k, in a column vector YZ(BA = WP, y® @), - y™ (tQVDA)]T, where t!, = n T! for n =
1,2,---, Npa. Moreover, the channel coefficients at each pilot position, t! , are obtained from

(3.3) as follows:
L1
hi(ty) = etl i = 1,2, N, (3.7)
1=0

For mathematical convenience, we also define the following vectors:

_ / / / T
hip = [hir(th), hin(ta), - hin(ty,,)]
o ! / / T
wir = [wig(t)), wir(ts), - win(ty,, )]
cip = [ i (3.8)

where, over the 7"

antenna branch and the local approximation window k., h;j contains
the time-varying complexr channel gains, c;; is a vector of the corresponding polynomial

coefficients and w;, is the noise vector. Then, using (3.7), we can rewrite the channel

approximation model in a more compact form as follows:

hi,k = T/ci,ka L= 17 27 U 7N7‘ (39)

13



where:

L—1
1t et
L—1
I E t
T = (3.10)
/ yL—1
Lot 0 thow

Note that T is a Vandermonde matrix with linearly independent columns. Consequently, it
is a full-rank matrix meaning that the pseudo-inverse that will appear in the sequel is always
well defined.

Let A}, be the (NDA XNDA) diagonal matrix that contains all the known transmitted symbols

during the k™" approximation window:

a(t) 0 0
0 anty) - 0

A= . (3.11)
0 0 o alty )

Using (3.8) and (3.11), we can rewrite the corresponding received samples (over each antenna

element 7) in a Npa-dimensional column vector as follows:
k
yz(,]%A = ApT'cip + Wig = ®rcig + Wig (3.12)

where ®;, = A, T’ is a (Npa x L) matrix. We further stack all these per-antenna local observa-

T T T
tion vetors, {yE%A 1, one below another into a single vector y]()kg = [yY%A ygf]))A e yﬁ\’fT)’DA 7.
In this way, all the (space-time) received samples corresponding to the k* approximation

window can be written in a more succint vector/matrix form as follows:

vy = Biey + wy (3.13)
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— [T T T T — wl wTl T T v
where ¢ = [c], ¢ -+ ey x]" and wip = [wy, Wy - wy |7 are LN,- and NpyN,-

dimensional column vectors, respectively, vectorized in the same way and By is a (NDANT X
LN,) block-diagonal matrix given by Bj = blkdiag{®, ®y, ..., ®x}. From (3.13), the prob-
(k)

ability density function (pdf) of the locally observed vectors, yp,, conditioned on By and

2T (a vector that contains all the unknown parameters over

parameterized by 6, = [cl, 0

the k' approximation window) is given by:

1

(k). —
P(ypa; 0x[Bi) = (2ro?) s,

1
exp {—27‘2[}’1(3]2 - Bka]H[Yg?; - Bkzck]} : (3.14)

The natural logarithm of (3.14) yields the so-called DA log-likelihood function, Lpa(0x) =

In (p(ygf,l, Ok‘Bk)), as follows:

Lpa(6y) = —NpaN, In(27) — NpaN, In(0?) — —[y) — Brep I [yS) — Bier].  (3.15)

1
202
By differentiating (3.15) with respect to the vector ¢, and setting it to zero, we obtain the
ML estimate of the local polynomial coefficients over all the receiving antenna branches as

follows:

N -1
Croa = (B By) nyl(jk,i (3.16)

where TV and A}, are known matrices, hence the matrix B;. Note also that BkHBk is a block-
diagonal matrix and hence its inverse can be easily obtained by computing the inverses of
its small-size diagonal blocks separately. To estimate the noise variance, we first find the
partial derivative of (3.15), with respect to 0. Then after setting it to zero and substituting

ci by Crpa obtained in (3.16), the ML estimate for the noise variance is derived as follows:

N 1 R R
0%ppa = m[ygi — Bka,DA]H[yg?; — BjCipal- (3.17)
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Actually, combining (3.16) and (3.17), it can be further shown that:

~ 1 H
o2ppa = m{}’g})\ (I_Pk>ygﬂ

1 k) H k
= m [ygz)\ Pzi)’]()g] (3-18)

in which P, = By (B/,QILIBk)_1 B and P;i- = I — Py, are, respectively, the projection matrices
onto the column space of By (i.e., signal subspace) and its orthogonal complement (noise
subspace). In order to obtain the estimated SNRs over the entire observation window, for
each antenna element i, we extract the corresponding locally estimated polynomial coef-

. ~(k . . . . .
ficients, {CE I))A}k, from which we obtain the channel coefficients over each approximation

window, {E%A = T’EE%A}k. The latters are then stacked, for each antenna branch, in a
single vector h;py = [H§}gA,ﬁ§?gA, . ,ﬁ%/ANDA)]T. On the other hand, the local estimates

for the noise variance are averaged over all the approximation windows:

N, N/Npa

~ DA ~

O'QDA: N Z UQk,DA (3-19)
k=1

to finally obtain the DA ML SNR estimator as follows:

~ -~

H
hz‘,DAhLDA

N(20%p4) o

Pi DA =

3.2.2 Derivation of the exact bias and variance for the DA ML
estimator

To improve the accuracy of the DA ML estimator, we calculate and remove its bias in order
to obtain an unbiased version. After doing so, we will derive the exact expression for the
variance of the obtained unbiased estimator. In fact, recall from (3.6) that the ML DA SNR
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estimates are given by:

N/Npa Npa |L—1 2
1) 41
P BIILCHA
Pipa = ——"— =0 (3.21)
N N/Npa
N DA

202, pa
N D 2%
k=1

from which it can be shown that the estimator is a scaled noncentral F distributed random

variable [23]:

2N - L1)
N I PiDA = Fvl,v2 ()‘)7 (322)

Npa

where F,, ,,(\) is the noncentral F' distribution with noncentrality parameter A = 2N p; and

with degrees of freedom v; = —N%L and vy = 2N, (N — NJZ—AL) Hence, the mean and the

variance of the new DA ML estimator follow immediately from the following two expressions:

~ vavr + )
B{F}= 2O w2 (3.23)
2 () I Ly

Indeed, using (3.22) through (3.24) and denoting € = L/Np,, it can be shown that:

€ N, N €
E AZ —E{ —F\ = r i+ — 9
{Piva} {2(1—6) } NN1—¢ -1 <p +2> (3.25)
and
2 N, 1 N, 1
(NeN?2pF+pi (2N, (1 =€) +e— <)+ —s5)e— (5 — 7 ) €
—~ N 2 2N 2 4
Var{pipa}= (3.26)

(wNa-a- 1)2<NTN(1 -9-2)

Now, using (3.25), we can derive the exact bias for the DA estimator as follows:

£0 (3.27)

.~ N,.N N, Ne¢
Bias{p,pa} = pi( =1 — 1) +

N.N(1—e¢ 2N,N(1—¢€)—1
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which is not identically zero, meaning that the estimator is actually biased. As stated pre-
viously, this bias stems from dropping the Taylor’s remainder in the channel approximation
model. Yet, an unbiased version of this DA estimator (i.e., E{p;, )X} = p;) can be straight-

forwardly obtained from (3.25) as follows:

o NN —e)—1_ ¢

: = i — . 2
pl,DA NTN p ;DA 2 (3 8)

Therefore, by combining (3.26) and (3.28), it follows that:

1 2 N, 1 N, 1
Var{3,08 ) = SR NN NS P P AL DY L D1
wlp B =y A e -are- 1)+ (3o o) - (1) ¢

It can be verified that asymptotically®, i.e., when N > 1 and Npa > L (or equivalently

€ < 1), the mean square error (or the variance) of the unbiased estimator MSE {p, )} } =

E{(. 2% — pi)2} tends to the following interesting theoretical bound:

MSE(R) - 5 (2+ 2 (3.29)

which is nothing but the so-called CRLB that will be derived in the next subsection. There-
fore, our unbiased DA ML estimator is asymptotically efficient and attains the theoretical

optimal performance as will be validated by computer simulations in Chapter 4.

3Tt should be mentioned here that the second asymptotical condition, Nps > L, must be indeed taken
into account. This is because the estimates of the channel coefficients, over each approximation window, are
obtained from the Npa samples received over that window only. Their accuracy does not depend, therefore,
on how many samples are received outside that approximation window (the rest of the observation window).
Yet, the size of the whole observation window, N, will ultimately affect the performance of the SNR, estimator

through the noise variance estimate (that is indeed obtained from all the received samples).
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3.2.3 Derivation of the DA CRLB

To assess the performance of the new unbiased DA ML estimator, we need to compare its
variance to a theoretical lower bound. Thus, we will also derive the corresponding CRLB.

To do so, we define the following parameter vector:
0'=a", B, 0%" (3.30)

where @ = R{h} and B8 = 3{h} denote the real and imaginary parts of the vector h =
i, h}, .- hi ]" that contains the true channel coefficients over all the receiving antenna
elements and the entire observation window. The CRLB for the DA SNR estimation over

the 7" antenna is given by:

CRLB (20 g gy (22 3.31
LBpa(pi) = 20’ pa(6) 00’ (3.31)
where p; = hiTh;/N(20?%) and Ip,(€’) denotes the Fisher information matrix (FIM) whose

entries are defined as:

, 8 In (P(ypa; 0'))
[IDA(O )} 1,1 = _EYDA{ ae;aegT } (332)
where
N,
o 1 1 (yipa — Ah;)(y;pa — Ahy)
Pyons®) = ] g 0 { - 2o (3.3

in which A is a diagonal matrix containing the N transmitted pilot symbols. The anlytical
expression above for the FIM is derived in the Appendix. Moreover, by noting that that
pi = hiTh;/N(20?) and h; = a; + j[3;, it is easy to verify that:

aiTai + ,3,TB¢

h= "N (3.34)
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from which we have:

opi Ipi  Bi Ipi —hflhi
do; No?'  08; No?' 002  2No*

(3.35)

and Op; /0oy = 0p;/0B; = 01y for i # [. Using (3.35) and the results enclosed in the
Appendix, a simple closed-form expression for the DA CRLB over the i antenna branch is

obtained as follows:
CRLBpa(p;) = % <2 + —) . (3.36)

Now, it becomes clear that the right-hand side of (3.29) is nothing but the CRLB of the
underlying estimation problem. Moreover, even though this bound was primarily derived
for the DA scenario, it also holds in the NDA case, for moderate to high SNR values. This
is hardly surprising since in this SNR region the NDA algorithm (developed in the next
section) is able to perfectly estimate the unknown transmitted symbols reaching thereby the

DA performance.

3.3 Formulation of the new NDA ML SNR estimator

3.3.1 New NDA ML SNR Estimator

In this section, we derive the new NDA ML SNR estimator where a partial a priori knowledge
of the transmitted symbols is assumed at the receiver. To begin with, we mention that the
problem formulation adopted in the DA case is problematic in the NDA scenario. In fact, as
will be seen shortly, the EM algorithm averages the likelihood function, at each iteration, over
all the possible values of the complete data (which are the unknown transmitted symbols).
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Consequently, by adopting the same previous formulation, the EM algorithm would average
over all the possible realizations of the matrix B that contains these complete data. This re-
sults in a combinatorial problem with prohibitive (i.e., exponentially increasing) complexity.
In the DA scenario, this was feasible since the matrix B (or the transmitted sequence) is a
priori known to the receiver and no averaging was required. Thus, we reformulate our sys-
tem differently so that the EM algorithm averages over the elementary symbols transmitted
at separate time instants. In this way, the complexity of the algorithm becomes only linear
with the modulation order.

To that end, we define? the vector t(n) = [1,t,,t2, -+ ,t2=Y7 which is the n'* row (trans-

posed to a column vector) of the Vandermond matrix T defined as:

1 4 t bt
1ty --- t2L—1
T — (3.37)
L—1
1 ity Naoa

and rewrite the channel model as follows:

L—1
hin(ta) = Y cihth
[=0

= ¢/ yt(n). (3.38)

4We mention that, for ease of notation, we will from now on use t(n) instead of t(nT,). For the same

reasons, we will keep dropping T in all similar quantities.
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At each time instant n (whithin the &k approximation window of size® N = NNDA), we take
all the received samples at the output of the antennae array, {y;x(n)}Y7, (usually called

snapshot in array signal processing terminology) and we stack them into a single vector,

yi(n) = [y1x(n), y2x(n), - ,yn, x(n)]”, which can be expressed as:

yi(n) = ag(n)Crt(n) + wi(n) (3.39)
in which ay(n) is the corresponding unknown transmitted symbol, Cy = [c1 4, Cok,*** ,Cn, k]T
and wi(n) = [wy(n), war(n),...,wn, x(n)]*. The vectors c; were defined previously in

(3.8). From (3.39), the pdf of the received vector, yx(n), conditioned on the transmitted

symbol ag(n), can be expressed as the product of its element-wise pdfs as follows:

Ny

1 1
=1

Yir(n) — amczkt(n)|2} (3.40)

in which a,, is the hypothetically transmitted symbol that is randomly drawn from the M-
ary constellation alphabet C = {ay,as,--- ,ap}. Now, averaging (3.40) over this alphabet
and assuming the transmitted symbols to be equally likely, i.e., Pla,] = 1/M for m =

1,2,--- , M, the pdf of the received vector is obtained as:

1 LN 1
plox0:00) = 37 3" T sz {512

=111=1

Yir(n) — amcgkt(n)f} . (3.41)

By inspecting (3.41), it becomes clear that a joint maximization of the likelihood function,

2

with respect to o2 and {c;x}Yr, is analytically intractable. Yet, this multidimensional

optimization problem can be efficiently tackled using the EM concept. Indeed, given the

5Note also that we may use a different size for the local approximation windows in the NDA scenario,

i.e., Npa may be different from Nypa.
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so-called “incomplete data set” in EM terminology (the available observation samples in our
case), the log-likelihood function conditioned on the complete data (transmitted symbol),

L(Oclar(n) = a) = In (p(ye(n); B4 ]ai(n) = a,,)) is given by:

1
LBilar(n) = an) = ~Non(2mo®) =55 [yia(n) = anelyb(n)[’
i=1
1
2
= —N,In(2r0?)— %57 ; <|yzk( )2+l am |? cz:kt(n)‘

—2%R {y;‘k(n)amc;fkt(n) }> . (3.42)

The new EM-based algorithm runs in two main steps. During the “expectation step” (E-
step), the expected value of the above likelihood function with respect to all the possible
transmitted symbols {a,, }*?_, is computed. Then, during the “maximization step” (M-step),
the output of the E-step is maximized with respect to all the unknown parameters. The
E-step is established as follows: starting from an initial guess®, BAk(O), about the unknown

parameter vector, the objective function is updated iteratively according to:

Nnpa

Q(88"™) = 3 £ {1(6atr) = )

6\ Y, yk(n)} (3.43)

~ (g—1
where F,_ {.} is the expectation over all possible transmitted symbols a,,, and Bk(q ) is the
estimated parameter vector at the (¢ — 1) iteration. After some algebric manipulations, it

can be shown that:

Nxpa
~ (q—1) i
Q <9k|0k ‘ ) = —NwaN, In(2m0%) — o= Z(Mé,l +Z % Vet (n)] = 2681 Y (e ))

(3.44)

6The initialization issues are very critical to the convergence of the new iterative NDA algorithm. They

will be discussed in more details at the end of this subsection.
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where ]\42(1/,)c = F{|yix(n)|*} is the second-order moment of the received samples over the '

receiving antenna element and:

oty = Eun{anf

~ (1)
6," ,yk(n)} (3.45)
M

= > P Van, (3.46)
m=1
(¢—1) }
aYk

80 Den) = Eo, (R0t (0}
= > PR () ant” (n)cis} (3.47)

M
m=1

myn,k T

~ (-1
In (3.45) and (3.47), plel — p (am]yk(n);ek(q )> is the a posteriori probability of a,, at
iteration (¢ — 1) that can be computed using the Bayes formula as follows:

(g—1)
(-1) Pla,,|P <}’k ‘amyok >

mmnk — P( o(n): Ok(q 1))

Since the transmitted symbols are equally likely, we have P[a,,] = 1/M, and thus:

(3.48)

P (um:8) = L5 P (a6 .49

m=1
In the special case of constant-envelope constellations (such as MPSK), we have |a,,|> = 1 for
all a,, € C and, therefore, a,(cq_l)(n) reduces simply to one for all n and does not need to be

computed. Now, the M-step can be fulfilled by determining the parameters that maximize

the output of the E-step, obtained in (3.44):

~(q)

(¢-1)
0, = arg I%%X <9k’9k ot ) ) (3.50)

At this stage, in order to avoid the cumbersome differentiation of the underlying objective

function with respect to the complex vectors, {c;} ", we split them into c;j, = R{c;p} +
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JS{cik}. We then instead maximize @ (0k|é\k(q_1)> with respect to R{c;,} and I{c; .}
yielding thereby, at the convergence of the iterative algorithm, their respective ML estimates
R{c;r} and I{c;;}. Then, by the invariance principle of the maximum likelihood estimator,
we easily obtain the NDA ML estimate of ¢;;, as ; , = R{¢; x } +73{C; x }. Therefore, starting

from (3.44) and after some algebraic manipulations, it can be shown that :

(0k|9k(q U) = —NxpalV, In(2m0?) —

Nnpa M
+Z (tT Cixt(n)—2> P Eﬁj,’?%@))].

=1 m=1

(3.51)

where C;; and EZ(T,Z) are, respectively, a matrix and a column vector that are explicitly

constructed from the real and imaginary parts of c; ; as follows:

Cip = Rf{cin)Ricid” + et S{ein)” + <§R{cl DS1e T - e k}m{czk}T)
(3.52)

Cir = Wyir(m)antR{cir}t +S{yip(n)an}3{cir}. (3.53)

After differentiating (3.51) with respect to R{c;x} and I{c;x}, and setting the resulting
equations to zero, we obtain the NDA estimates of the real and imaginary parts of c;j, at

the ¢ iteration, as follows:

—1

NNDA NNDA M .

R = Y ttn)t"(n) > P OR{y; () an Y t(n)] | (3.54)
n=1 n=1 m=1

and

_ -1/ _
NNDA Nnpa M "

${el)= t(n)t" (n) ST P VS {yi () amt(n)] (3.55)
n=1 n=1 m=1



Then, using the identity quk) = %{qu,g} + ]%{El(qk?} and after some simplifications we derive

the expression of qu,g as follows:

NNDA NxDA
e = 3 tmtT(n) > Vt(n) (3.56)
n=1 n=1

where:

M
N = (Zpﬁﬁn,lk)am) Yik(n) (3.57)
m=1

—_——

a V)

= @ () yik(n) (3.58)
in which a,(f_l)(n) is the previous soft estimate for the unknown transmitted symbol, ax(n),
involved in (3.39). In fact, at each time instant n, all the constellation points are scanned
and their a posteriori probabilities, P, , », are updated from one iteration to another. At
convergence of the algorithm, the probabilities of the wrong symbols are nulled and the
weighted sum involved in (3.57) returns the actual transmitted symbol. More specifically,
assume that the symbol a,,, is transimtted at time instant n during the approximation
window k, i.e., ax(n) = a,,. At the convergence (we drop therefore the iteration index
q) and especially for moderate-to-high SNR values, the a posteriori probabilities satsify

Ppni =~ 0 for m # mg and Py, i ~ 1. Hence, from (3.57), it follows that:

M

m=1
meaning that the algorithm succeeds in correctly “decoding” all the transmitted symbols.

2

Lastly, by differentiating (3.51) with respect to ¢*, setting the resulting equation to zero,

and replacing in it c;j; by quk , we obtain a new estimate for the noise power at the ¢
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iteteration as follows:

N, i -1
~@) Zi:l <M2(1)c + 771(36 )>

202, = = , 3.60
NNDANT ( )
where:
1 pauN n\* N 1 1 1
i = 3 [ (e (€Y e ol -2 (2]
n=1
Nnpa
_ |:|tT e[+ alsy — 2800 (s 1))} (3.61)

n=1

After a few iterations (i.e., in the range of 10), the EM algorithm converges over each
approximation window £ to the exact NDA ML estimates Egﬁ\)IDA and o7 \,,- The latter

is then averaged over all the local approximation windows to obtain a more refined estimate

as follows:
Nxoa N/Nxpa
~ D ~
T°NDA = N ;_1: T7 NpA- (3.62)

Finally, given (3.56) and (3.62), and taking into account all the approximation windows of
size Nxpa within the same observation window of size N, the NDA ML SNR estimator is

obtained as:
N, ~(k 2
Zk/ NDA ZNNDA |tT 51\)IDA
N <202NDA)

Now, recall that the EM algorithm is iterative in nature and, therefore, its performance is

DiNDA = (3.63)

~ (0
closely tied to the initial guess Ok( ) within each approximation window. We will see in
the next Chapter that when it is not appropriately initialized, its performance is indeed
severely affected, especially at high SNR levels. This is actually a serious problem inherent

to any iterative algorithm whose objective function is not convex. That is, it may settle on

27



a local maximum if it happens that the algorithm is accidentally initialized around it. Yet,

an appropriate initial guess about the polynomial coefficients, EE,O,Q, and the noise variance,

<;2(0), can be locally acquired using very few pilot symbols by applying the DA ML estimator
developed in the previous section.

Therefore, we will henceforth use two different designations for the new EM-based estima-
tor according to the initialization procedure. We shall refer to it as “ completely NDA” if it
is initialized arbitrarily and as “hybrid NDA” when it is appropriately initialized using the
DA estimator. It should also be noted that, depending on the simulation scenario, we use
two different designations for the DA estimator. On one hand, we refer to it as “ pilot-only
DA” when applied using the pilot symbols only (which are N/N,, out of the N transmitted
symbols with N, > 1). On the other hand, we refer to it as “completely DA” when applied
in a rather hypothetical scenario in which all the N transmitted symbols are assumed to
be perfectly known (i.e., N, = 1). The latter is of course with limited practical use’ and
considered here only as an ideal benchmark, along with the DA CRLB, against which the
performance of all the other practical estimators are compared.

In order to initialize the EM algorithm with the DA estimates, we proceed as follows. Us-
ing the pilot symbols only, we begin by estimating the channel coefficients using the DA

estimator over local approximation windows of size Nps. Over each antenna element, these

pilot-based DA estimates are then stacked together to form a single vector that contains

TActually, in some radio interface technologies such as CDMA, a pilot channel is considered with a
completely known data sequence. In OFDM, some carriers might bear completely known data sequences as

well.
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all the pilot-based estimates of the channel coefficients, h; py (over the entire observation
window). The latter is then divided into several adjacent and disjoint blocks, /}I%A, each of
size Nxpa (possibly different from Npa). Then, according to (3.38), the initial guess about
the polynomial coefficients, within the & local NDA approximation window, is obtained
from the k' block using 650,3 = (TTT)_1 T E%A. The initial guess about the noise variance
is simply 29— o2pa obtained in (3.19).

If carefully handled®, the hybrid NDA EM-based estimator always converges to the global
maximum of the likelihood function for moderate-to-high SNR values and, as mentioned
previously, it is able to correctly detect all the unknown symbols. Therefore, in this SNR
region, it is equivalent in performance to the biased “ completely DA” estimator.Therefore,

the same bias-correction procedure highlighted earlier in (3.28) can be exploited here as well

by using € = L/Nxpa.

3.3.2 The previously presented work (WL) and its SIMO extension

The only work that considered time-varying ML, SNR estimation is the one of [18]. Therefore,
we present the results obtained therein in its original SISO configuration as well as its SIMO

extension so that we can compare it to our estimator performance. Consider the i antenna

8This requires careful choices of the approximation window size, of both the hybrid NDA estimator and
the DA estimator used to initialize it with respect to the normalized Doppler frequency FpTs. These optimal

Doppler-dependent choices were found and reported in table 4.1 at the end of the next Chapter.
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element seperately, as presented in 18], the estimated SNR is given by:

. yI'Pyi

L= i Y 3.64

where P = fAT(TTT)_lTTKH and P1 = I — P are projection matrices onto the signal-
plus-noise and noise-only subspaces respectively. A is a diagonal matrix whose entries are

given by:
A]Y, = E{a(n)[y:(n); 6}. (3.65)

The elements of A? were derived in closed form in [18] for BPSK constellation only:

[A]¥ = tanh (2%{%@% <”>}> : (3.66)

nn >
where tanh(.) refers to the hyperbolic tangent function, and Ez(n) is the estimated complex
channel gain over the considered i antenna element given by Ez(n) = t,,¢; where t,, is the
n™ row of the matrix T. We also derive in this thesis the closed-form expression for the
entries of this matrix for QPSK constellations as well. In fact, assuming a(n) € {£/(1/2)+

J/(1/2)} (i.e., QPSK transmissions), and after extensive mathematical calculations enclosed

in Appendix B, we show that it follows:

A = st LSz} st { Lopemion ] 6o
As will be seen in the next chapter, this estimator will be outperformed by our newly
developped SIMO ML SNR estimator, which fully exploits the spatial diversity, even when
compared to its enhanced SIMO version, where we take advantage of the antenna gain to

obtain a more refined noise variance estimate, by averaging the individual estimates over all

the receiving antenna branches.
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Chapter 4

Simulation Results

In this chapter, we assess the performance of our new DA and NDA ML instantaneous
SNR estimators. All the presented results are obtained by running extensive Monte-Carlo
simulations over 5000 realizations. The estimators’ performance is evaluated in terms of the

normalized (by the average SNR) mean square error (NMSE), which is defined as:

NMSE(7}) = M (4.1)

where v = E{|a(n)|?}/(20?) is the average SNR per symbol. But since the constellation
energy is assumed to be normalized to one, ie., E{|a(n)]?} = 1, v is simply given by
v = 1/(20?). For the sake of complying with a practical and timely scenario, all the simu-
lations are conducted in the specific context of the LTE (long-term evolution) uplink for its
stringent pilot design specifications. Indeed, according to the LTE uplink signalling standard,
two OFDM pilot symbols are inserted at the 4" and 11*" positions' in the time-frequency

grid of each subframe (consisting of 14 OFDM symbols). We consider an observation window

'In this way a pilot symbol is transmitted every seven OFDM symbols corresponding to N, = 7.
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that covers 8 consecutive subframes, i.e., N = 112 received samples over each subcarrier.
The “instantaneous” SNR estimation results are presented for the first subcarrier only, but

they actually hold the same irrespectively of the subcarrier index [24].

4.1 Overflow problem correction

Our estimation process will be conducted for different ranges of fpT,. This induces a problem
of overflow, especially for high values of fpTs, in which when averaging all the elementary
pdfs over the constellation alphabet C, as in (3.41), we will be adding different values of the
quantities under the exp operator, that exceed independently Matlab precision limit. To
deal with this problem, one can insert a correction term, but in our case this can not do
the trick, since each term must be corrected seperately. To do so, we resort to the following
procedure. Recall that for each possible symbol a,, from the constellation alphabet, the pdf

across all the N, receiving antenna elements can be rewritten as follows:

plyr(n); clan(n) = ) = % exp {Z g lvis(n) - amci’kt<n>|2} S ()

2no?)Nr ;
=1
Then, we stack all the elementary pdfs, defined above, for all possbile transmitted sym-

bols a,,, into one single vector p’(yx(n); 0x) = [p(yr(n); Oxlar(n) = a1), p(yr(n); Orlar(n) =

as), -+, p(yr(n); Oxlar(n) = apr)]. This vector can be rewritten as follows:
(el 00) = e exp{ra) (1.3
p Yk yUk) — <27‘[‘0’2)NT p n,k: .
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2
S

2
Yik(n) — alc;{kt(n)} 72?21 _#

where 1, , = ZfV:q —ﬁ Yik(n) — GZCZkt(n)

N 2 :
it — ez |[Yik(n) — anchit(n)|7|. Now, concentrating on 1,4, we construct a vector that

contains the positions of the dominant elements of r, ;. This can be fulfilled by a simple

operaation:
d = max(r, ) —rnr < pl (4.4)

where pl refers to the approximation level. In our case we take pl = 15. This will provide
a sufficiently accurate output since it is easy to verify that exp{(z + 15)} > exp (z). After
extracting the dominant positions, our correction procedure may be limited to the corre-
sponding values, which are now in the same range, and hence can be corrected using the

same inserted term as follows:

rl, = Tnp."d + (v, — round(max(r,,;)))."d (4.5)

*

where .* refers to term by term multiplication, and d refers to the complementary vector of
d. The output of (4.5) is presented as the sum of two vectors, the first one (the left hand
side vector) denotes the elements of r, ; whose values exceed the approximation leves pl, and
hence can be neglected. The second vector represents the elements that will be corrected

using the correction term round (max(r, )). The impact of this correction procedure can be

noticed clearly form the following figure:
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Figure 4.1: True vs. estimated channel envelope with overflow (a) and corrected-overflow

(b), for fpTy =3,5.1072, N =112, Npp = 28, Nxpa = 14 and (L = 4).

4.2 Simulation results

We begin by showing the advantage of developping the NDA estimator, and applying it along
with the DA estimator when it is applied on pilot symbols. In Fig. 4.2, we plot the NMSE
for the “pilot-only DA” and the “completely DA” estimators as well as the “hybrid NDA” and
“completely NDA” EM-based estimators (see the last section of the previous chapter for a

clear definition of these different designations).
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Figure 4.2: NMSE for the “pilot-only DA”, “completely DA”, “hybrid NDA” and “completely
NDA” estimators vs. the average SNR 7, with N, = 2, N = 112 Npa = 112, Nypa = N/2 =

56, fpT, =7.1073 and L = 4.

Just as mentioned earlier, it is seen that as intuitively expected the DA ML es-
timator is not able to accurately estimate the SNR by relying solely on the pilot symbols
(“pilot-only DA”). This is due to the fast time variations of the channel. Therefore, the
received samples at non-pilot positions must be used, as well, during the estimation process.
Indeed, it is seen that even the “completely NDA” EM-based estimator is able to provide

substantial performance gains at low-to-medium SNR values against the “pilot-only DA”
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method. Yet, its performance deteriorates severely at high SNR levels due to its initializa-
tion issues. This is what makes, in turn, the “pilot-only DA” estimator extremely useful;
even though its overall performance is not satisfactory. Indeed, its estimates are accurate
enough as initial estimates for the EM-based algorithm to make it converge to the global
maximum. The effect of both arbitrary and appropriate initializations on the EM-based
estimates for the unknown channel coefficients is shown in Fig. 4.3. Clearly, when initialized
with the “pilot-only DA” estimates, the iterative algorithm is able to accurately track the

channel variations as seen from Fig. 4.3 (b).

true channel

= estimated channel

0 20 40 60 80 100 120
Time (n)

true channel

= estimated channel

0 20 40 60 80 100 120
Time (n)

Figure 4.3: True vs. estimated channel magnitude for the EM-based algorithm when initial-
ized (a) arbitrarily with ones, and (b) appropriately with the “ pilot-only DA” estimates, for

fpTs =3.51072, N = 112, Npa = 28, Nxpa = 14, and L = 4.
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Consequently?, by using é\k(o) = [/C\Z(TQT UAZDA]T where /c\l(ok) = (TTT)f1 T E%A as its starting
point (or initial guess), it is observed from Fig. 4.2 that the “hybrid NDA” EM-based algo-
rithm is able to accurately estimate the SNR over the entire SNR range. More interestingly,
over a wide range of practical SNR (starting from SNR = 6 dB), it exhibits an estimation
performance that is equivalent to the one that could be achieved if all the symbols were per-
fectly known (corresponding to the “completely DA” case). It is also seen that there is still a
gap between the achieved performance and the CRLB due to the presence of an estimation
bias. It will shortly be seen that this gap can also be bridged by applying the bias-correction

procedure highlighted in the previous chapter.

) (a) ) (b) 5 ()
= hybrid DA-NDA = hybrid DA-NDA hybrid DA-NDA
—l— static ML —l— static ML —— static ML

-10 0 10 20 30 -10 0 10 20 30 -10 0 10 20 30
v [dB] v [dB] ~ [dB]

Figure 4.4: NMSE for the “static ML and the “hybrid NDA” EM-based estimator (L = 4)
vs. the average SNR 7, for different values of fpT (a) fpTs = 3,5.107* (b) fpTs = 3,5.1073

(¢) fpT, = 3,5.1072, with N =112 and N, = 2.

2See the last section of the previous chapter for more details about the pilot-assisted initialization process.
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Fig. 4.4 shows that the existing NDA ML SNR estimator [14] that was primarily de-
signed for constant or slowly time-varying SIMO channels fails completely to estimate the
instantaneous SNR for fast time-varying channels. For the sake of clarity, we refer to the
ML estimator of [14] as “static ML”. As illustrated in Fig. 4.4 (a), the “static ML” provides
reliable estimation results especially for low SNRs (v < 7 dB), and even performs better than
the hybrid NDA DA-NDA estimator, when applied for slowly time varying channels, where
fpT, =3,5.107% This can be explained intuitively, since it can be noticed from (3.28) that
our estimator presents a bias that can be significantly reduced by choosing a low approxima-
tion order (L = 1). Nevertheless, this choice results in a noticeable performance degradation
in high SNR. Likewise, this performance degradation can be noticed in Fig. 4.4 (b) for a
slightly wider range of SNR, in the case of faster time-varying channels ( fpTs = 3,5.1073),
and even more clear in Fig. 4.4 (c), where fpT, = 3,5.1072. This stems from the fact
that this estimator is erroneously approximating the fast time-varying channels (over each
antenna element) by a piecewise constant process, over each approximation window. More-
over, the “static ML" estimator performance degradation is due in part to the fact that it
is completely blind, (without using pilot symbols for initialization). The new estimator is,
however, able to track the channel variations more accurately and therefore its performance

improves steadily with the average SNR.
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Figure 4.5: NMSE for the “ WL”, the “completely DA”, the “completely NDA” and the hybrid
NDA EM-based estimator (L = 4) and the NCRLBpa vs. the average SNR ~, for SISO

time-varying channels with fpT, = 7.1073, N = Npy = 112, and Nyxpa = 56.

In Fig. 4.5 and 4.6, we compare our new estimator to the only reported work as far as
we know on the subject of SNR estimation over time-varying channels which was introduced
by A. Wiesel et al. in [18]. By referring to the initials of its authors’ names, we will
henceforth refer to this estimator by the shorthand designation “WGL”. This estimator was

originally derived for the basic single-input single-output (SISO) systems (Fig. 4.5). It can
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be thus directly applied, at the output of each antenna element, in order to estimate the
instantaneous SNR in SIMO configurations (Fig. 4.6). Yet, it can also be easily modified
to take advantage of the antenna gain offered by any SIMO system experiencing uniform
noise. In fact, over each antenna branch ¢, the WGL-SISO algorithm outputs two estimates;
one for the signal power, ]31-, and one for the noise power, ]/\/T)(i). The individual estimates
{J/\f\o(i)}f\;q can be reasonably averaged over the N, receiving antenna elements to provide a
more refined estimate, ]/VB, for the noise power. The SIMO-enhanced SNR estimate, over
each antenna element, is then computed as p; = ]3,/]/% We refer to this SIMO-enhanced

version as the “WGL-SIMO” estimator.

. (a)

= @ = WGL-SIMO

g =3 completely NDA

2 1y —@— hybrid (DA-NDA)
\ —©— completely DA

NCRLB

N, =2

Figure 4.6: NMSE for WGL-SIMO, the “completely DA”, the “completely NDA” and the
hybrid NDA estimators vs. the average SNR 7, for fpT, =7 1072, N = 112, = Np, = 112,

and NNDA = 56, L =4.

Fig. 4.6 depicts the performance of WGL-SIMO and the different versions of our estima-
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tor for different antenna-array sizes (N, = 2, 4, and 8). First, by inspecting the behaviour
of WGL-SIMO alone across the three subfigures, its is clearly seen that the performance
of this new SIMO-enhanced version improves remarkably with the number of receiving an-
tenna elements. For instance, at the typical value of the average SNR 7 = 10 dB, it is
seen from Figs. 4.6 (a) and (b) that the variance of this estimator is reduced by a factor
of 1/5 when the number of antennae is doubled from N, = 2 to N, = 4. Almost the same
improvements holds also by further doubling the array size from N, = 4 to N, = 8 although
with a slightly smaller factor of 1/4. These improvements are actually due to the antennae
gain. But as WGL-SIMO is not able to exploit the antenna diversity, it is outperformed by
both the “completely NDA” and the “hybrid NDA” EM-based estimators. In fact, in this
thesis we make a clear difference between the two concepts of antennae gain ans diversity.
The former is actually inherent to all SIMO systems experiencing uniform noise across the
antenna elements (whether under correlated or uncorrelated channels). In this case, aver-
aging the N, independent estimates of the same unknown parameter (in our case the noise
variance) produces a new estimate whose variance is always shrinked by a factor of 1/N,
improving thereby the final estimates of the per-antenna SNRs. Antenna diversity, however,
is another interesting feature of SIMO systems. Fully exploiting the antenna diversity con-
sists in optimally combining the multiple independently-fading copies of the received signal
in order to detect each of the transmitted symbols correctly. By solving the ML criterion,
our EM-based estimator takes indeed advantage of the available spatial diversity during the

process of accurately detecting® /estimating the unknown transmitted symbols [see (3.59)].

3 Actually, the EM-based algorithm provides soft estimates only and does not perform a hard detection
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The “hybrid NDA” EM-based algorithm outperforms, therefore, by far WGL-SIMO over the

entire SNR range.

- = = Hybrid DA-NDA |

completely DA

10 —&— NCRLB
100 N’!‘ == 1 (SISO) ...................... .;
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Figure 4.7: NMSE for the unbiased version of the completely DA and the hybrid estimators
vs. the average SNR, for different numbers of receiving antenna elements with: N = 112,

Npa = 112, Nxpa = 56, fpT,s =7 1073, and L = 4.

of the symbols. Hard detection is a separate task that may take each of these soft estimates, as input,
and returns its closest symbol in the constellation alphabet. Yet, for medium-to-high SNR levels, the soft
estimates returned by the “hybrid NDA” EM-based algorithm are very accurate and almost equal to the
corresponding hard decisions. This is indeed what makes it coincide with the “ completely DA” estimator in

this SNR region.
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On the other hand, it is seen from Fig. 4.6 that the gap between the CRLB and the
performance of the “completely DA” and “hybrid NDA” estimators increases with the number
of receiving antenna elements especially at high SNR values. This huge performance loss is
actually avoidable over a wide range of practical SNRs. Indeed, in order to achieve the CRLB,
the previouly developed bias-correction procedure is applied and the results are plotted in
Fig. 4.7. Now, over a wide SNR range, the unbiased versions of the estimators coincide
with the DA CRLB that quantifies the theoretical optimal performance. Most remarkably,
the “hybrid NDA” algorithm is able to do so while 86 % of the transmitted symbols are
completely unknown (corresponding to pilot insertion rate of 1/N, = 1/7 in the signalling
standard of the LTE uplink).

Further, this figure shows more clearly the advantage of exploiting antenna diversity, in terms
of instantaneous SNR estimation, as compared to the SISO configuration (N, = 1) plotted
also in the same figure. The advantage is more prominent at medium-to-high SNR levels.
For instant, at average SNR v = 30 dB, the NMSE for NNV, = 8 is reduced by a factor as low
as 0.0004 compared to its counterpart in SISO systems.

So far, all the simulations where conducted under a normalized Doppler frequency of f;7s =
7 x 1073 corresponding to a maximum Doppler shift fp = 100 Hz with the sampling rate
of LTE systems (75 = 70 us). Therefore, we plot in Fig. 4.8 the performance of the newly

derived ML estimator (the unbiased version) for other higher normalized Doppler frequencies.
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Figure 4.8: NMSE for the the “hybrid NDA” EM-based and the “completely DA” unbiased
estimators vs. the average SNR with N = 112 and N, = 2 for: (a) fpT, = 7.107%, Np, =
112, Nxpa = 56, (b) fpTs = 2.1072, Npp = 28, Nxpa = 28, (¢) fpT, = 7.1073, Np, = 28,

NNDA = 14 and (d) fD,ZjS = 7.10_3, NDA = 14, NNDA =T.

The “completely NDA” estimator will not be included in the remaining simulations since
is not able to estimate high SNRs. It was included in the previous figures for the sake
of comparison and especially to motivate the appropriate initialization procedure using the
“pilot-only” DA estimator. It is seen from this figure that the estimator succeeds in estimating
the SNR and always reaches the CRLB over a wide range of practical SNRs even at high

Doppler frequencies. In Fig. 4.8 (d), for instance, the normalized Doppler frequency is
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as high as fpT, = 5 1072 corresponding to a Doppler frequency shift of 700 Hz. We also
emphasize the fact that the sizes of the local approximation windows, Nypa and Npa, for
both the “hybrid NDA” estimator and the “pilot-only DA”, that is used to initialize it, should
be selected as function of the Doppler range. The appropriate choices are shown in Table
4.1. In practice, the Doppler frequency can be estimated from the samples received at the
pilot positions and then the approximation window sizes are selected accordingly. During
the design of these Doppler-dependent configurations, our primary goal was to obtain the
lowest possible polynomial orders Lpay and Lypa which define the sizes of the two matrices
that need to be inverted. Yet, it should be mentioned that these small-sizes matrices are
predefined ones and, in practice, they can be computed and inverted offline. The results can

then be stored, in a read-only memory, and directly used during the estimation process.

Table 4.1: local estimation configurations for different ranges of fpT;

fDTs NDA NNDA LDA LNDA
710%< | 112 | 56 | 4 4
2102< | 28 | 28 | 4 4
35102<| 28 | 14 | 4 4
5102< | 14 | 7T | 2 4
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Figure 4.9: NMSE for the unbiased “hybrid NDA” and completely DA estimators vs. the
average SNR, for different constellations types and orders with N = Npa = 112, Nypa = 56,

N, =2 and fpT, =7.1073, and L = 4.

Finally, we compare in Fig. 4.9 the NMSE of the “hybrid NDA” estimator to the completely
DA estimator for different constant- and non-constant-envelope constellations. Clearly, the
new estimator exhibits comparable performances, for the different modulation orders and
types, with a small advantage for the constant-envelope ones at medium SNR levels. Again,
with a small fraction of pilot symbols, the “hybrid NDA” estimator ultimately provides the
best achievable performance by reaching the completely DA estimator that assumes all the

transmitted symbols to be perfectly known.
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Conclusion

In this thesis, we formulated and derived the ML estimator for instantaneous SNR estimator
over time-varying SIMO channels, using a polynomial-in-time expansion. In the DA scenario,
the ML estimator was derived in a closed-form expression. Its bias, its variance as well as the
DA Cramér-Rao lower bound (CRLB) were also derived in closed-form. In the NDA case,
however, we proposed a solution that is based on the expectation-maximization concept.
This iterative NDA estimator is able to find the exact NDA ML SNR estimates within
very few iterations. This iterative estimator requires an appropriate initial guess which was
obtained by applying the DA estimator on periodically inserted pilot symbols. The new
estimator is also applicable to any fading channel. Using computer simulations, we showed
that our newly developed estimator is able to reach the optimal performance over a wide
SNR range. In particular, it outperforms by far the new SIMO-enhanced version of the only
published work on the subject. Finally, the new ML estimator is also applicable to any linear

modulation and exhibits almost the same results for different modulation orders and types.
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Appendix A
Derivation of FIM elements for complex

channels

By recalling that h; = a; + j3; where «; and 3; stands for the real and imaginary parts of

h;, respectively, we can derive the required partial derivatives of (3.33) as follows:

0?In(P(ypa; 0')) _ 9*In(P(ypa; 0')) 1

do;0or] 0B:08; N _EIL o
0? lné-;%’];? 6) _ %(204? — 2R{y/prA}) (4.7)
o2 lnéf%ﬁ? o)) _ 2%4(25{ —23{y/[,\A}) (4.8)
and
02 ln(J;(U};BA; 6') _ ]\;jj’" — i %(}Q’DA — Ah)"(yipa — Ah). (4.9)

i=1

Moreover, it is easy to verify that:

P In(P(ypa; 6')) _ d” In(P(ypa; 6')) _ 0 In(P(ypa; 0'))

= 4.1
B0l ;0 08087 0z, (4.10)
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for 1 <7< N,and 1 <[ < N, with i # [. In addition, the expected values of the previously

derived partial derivatives with respect to ypa are given by:

0%In (P -0’ 0%In (P -0’
B, n (P(ypa;0")) B, n (P(ypa;0")) _ —iIL (4.11)
da;0al 0B;08T o2
0?In(P(ypa; 0)) NN,
EYDA{ 80'22 } = - o4 (4.12)

and it can be easily shown that:

9?In (P(ypa; 0")
= EyDA{ («gO,QaIBZT ) } = 01 (4.13)

- { 0*In (P(ypa; 0")) }

do2dak

Now by using:

@] = -y L) -
we can finally derive the analytical expression for the FIM as follows:
51, 0, -+ 0 Opq
0r
Ioa@)] =1 : . . 0, 0p0 (4.15)
0, - 0, I, 04
Orep oo o 0y A

which turns out to be block-diagonal whose inverse is straightforward. Finally, by injecting
(4.15) and (3.35) in (3.31) and after some algebraic manipulations, a closed-form expression

of the CRLB of the DA instantaneous SNR estimates is obtained as given by (3.36).
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Appendix B
Derivation of the closed-form expression

for the estimated symbol matrix A in

the QPSK case

In this appendix, we will detail the derivation of (3.67). Assuming a(n) € {£+/(1/2) +

J/(1/2)} (i.e., QPSK transmissions), and given (3.65), it follows:

1 (Z5) (L + j) exp{ZEyi(n) — F5(21 £ j)ha(n)[’ })

(4.16)
() e ) — (1 £ ()]

E{a(n)lyi(n); 0} =

EI

which can be rewritten as:

1 (1 £ ) exp{ZR{(1 + j)yi(n)h;(n)}}
B O = s o CER (1 £ b))} i

Then, after some rearrangements, (4.17) reduces to:

ety ) 8 D SRR = Dy B )} + (1= ) sinhERL+ )i ()
YL EI= s cosh{%f%{(l—j)yi(n)ﬁj(n)}Jrcosh{gm{( )R ()} :

(4.18)
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And finally, we obtain the result given in (3.67):

A — % [tanh {gm{yi(n)ﬁ:(n)}} —jtanh{

ol



Bibliography

[1]

2]

3]

4]

[5]

[6]

N. C. Beaulieu, A. S. Toms, and D. R. Pauluzzi, “Comparison of four SNR estimators for

QPSK modulations,” IEEE Commun. Lett,, vol. 4, pp. 43-45, Feb. 2000.

K. Balachandran, S. R. Kadaba, and S. Nanda, “Channel quality estimation and rate adaption
for cellular mobile radio,” IEEE J. Sel. Areas Commun., vol. 17, no. 7, pp. 1244-1256, July

1999.

T. A. Summers and S. G. Wilson, “SNR mismatch and online estimation in turbo decoding,”

IEEE Trans. Commun., vol. 46, no. 4, pp. 421-423, Apr. 1998.

N. Nahi and R. Gagliardi, “On the estimation of signal-to-noise ratio and application to de-
tection and tracking systems,” University of Southern California, Los Angeles, EE Report 114,

July 1964.

T. Benedict and T. Soong, “The joint estimation of signal and noise from sum envelope,” IEEE

Trans. Inf. Theory, vol. 13, pp. 447-457, July 1967.

D. R. Pauluzzi and N. C. Beaulieu, “A comparison of SNR estimation techniques for the AWGN

channel,” IEEE Trans. Commun., vol. 48, pp. 1681-1691, Oct. 2000.

92



7]

18]

[9]

[10]

[11]

[12]

[13]

[14]

M. Turkboylari and G. L. Stuber, “An efficient algorithm for estimating the signal-to-
interference ratio in TDMA cellular systems,” IEEE Trans. Commun., vol. 46, no. 6, pp.

728-731, June 1998.

P. Gao and C. Tepedelenlioglu, “SNR estimation for non-constant modulus constellations,”

IEEE Trans. Signal Process., vol. 53, no. 3, pp. 865-870, March 2005.

R. Lopez-Valcarce and C. Mosquera, “Sixth-order statistics-based non-data-aided SNR estima-

tion,” IEEE Commun. Lett., vol. 11, no. 4, pp. 351-353, Apr. 2007.

M. Alvarez-Diaz, R. Lopéz Valcare, and C. Mosquera “SNR estimation for multilevel constella-
tions using higher-order moments,” IEEFE Trans. Signal Process., vol. 58, no. 3, pp. 1515-1526,

Mar. 2010.

A. Stéphenne, F. Bellili, and S. Affes, “Moment-based SNR estimation over linearly-modulated
wireless SIMO channels,” IEEE Trans. Wireless Commun., vol. 9, no. 2, pp. 714-722, Feb.

2010.

A. Stéphenne, F. Bellili, and S. Affes, “Moment-based SNR estimation for SIMO wireless
communication systems using arbitrary QAM,” in Proc. 41st Asilomar Conference on Signals,

Systems and computers, pp. 601-605, Nov. 2007.

A. Das (Nandan), “NDA SNR estimation: CRLB and EM based estimators”, in Proc. IEEE

TENCON’08, pp. 1-6, Nov. 2008, Hyderabad, India.

M. A. Boujelben, F. Bellili, S. Affes, and A. Stephenne, “SNR estimation over SIMO channels
from linearly modulated signals,” IEEE Trans. Signal Process., vol. 58, no. 12, pp. 6017-6028,

Dec. 2010.

93



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

A. Das and B. D. Rao, “SNR and noise variance estimation for MIMO systems,” IEEE Trans.

Signal Process., vol. 60, no. 8, pp. 3929-3941, Aug. 2012.

G. L. Stiiber, Principles of Mobile Communication, Boston, MA: Kluwer, 1996.

T. Gao and B. Sun, “A high-speed railway mobile communication system Based on LTE,” in

Proc. ICEIE 2010, vol. 1, pp. 414-417, Aug. 2010, Kyoto, Japan.

A. Wiesel, J. Goldberg, and H. Messer-Yaron, “SNR estimation in time-varying fading chan-

nels,” IEEE Trans. Commun., vol. 54, no. 5, May 2006.

F. Bellili, A. Stéphenne and S. Affes, “SNR estimation of QAM-modulated transmissions over

time-varying SIMO channels,” IEEE ISWCS 08, pp. 199-203, Oct. 2008, Reykjavik, Iceland.

S. M. Kay, Fundamentals of Statistical Signal Processing-Estimation Theory. Englewood Cliffs,

NJ: Prentice-Hall, 1993.

A P. Dempester, N.M. Laird, and D.B. Rubin, “Maximum likelihood from incomplete data via

the EM algorithm,” Journal of the Royal Statistical Society, Series B, no. 1, pp. 1-38, 1977.

C. Anton-Haro, J. A. R. Fonollosa, C. Fauli, and J. R. Fonollosa, “On the inclusion of channel’s
time dependence in a hidden Markov model for blind channel estimation,” IEEE Trans. Veh.

Technol., vol. 50, no. 3, pp. 867-873, May 2001.

S. M. Kay, Fundamentals of Statistical Signal Processing-Detection Theory. Englewood Cliffs,

NJ: Prentice-Hall, 1998.

3GPP TS 36.211: 3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels

and Modulation.

o4



