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Résumeé

Les méthodes de calibration standard font ’hypothese que les données d’entrée sont
exactes. Lorsque cette condition n’est pas satisfaite, les parameétres estimés lors de la
calibration du modele risquent d’étre biaisés. Or, en hydrologie et dans la plupart des
sciences environnementales, il est difficile d’obtenir des valeurs expérimentales qui ne
soient pas affectées par des erreurs de toutes sortes. Bien qu’il soit difficile d’estimer
I'impact de telles erreurs sur les prédictions des modeles, les hydrologues s’entendent
pour dire que le développement de méthodes de calibration tenant compte des
diverses sources d’incertitudes constitue une étape essentielle au développement des
modeles hydrologiques. Cette thése présente une telle méthode, basée sur I’analyse
Bayésienne. Cette méthode greffe au modele hydrologique divers modeles d’erreurs
(entrée, sortie, structural), ce qui permet lors de la calibration d’interpréter les
données afin d’estimer de maniére cohérente la probabilité d’un jeu de parametres.
Bien que conceptuellement simple, cette méthode nécessite la résolution d’intégrales
de trés grandes dimensions, ce qui freine son application aux modéles hydrologiques
journaliers utilisés couramment. Afin d’en étudier les propriétés, elle est donc
appliquée & deux modeles hydrologiques mensuels simples : “abc” et GR2M. Le
premier étant linéaire, il est possible, sous certaines conditions, de dériver une
solution analytique permettant le calcul de la distribution a posteriori (posterior)
de maniere directe. Les résultats issus de ces simulations indiquent que la méthode

permet effectivement de tenir compte des incertitudes sur les données d’entrée lors
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de la calibration. Pour les modeles non linéaires tels que GR2M, l'intégration doit se
faire de maniére numérique. La solution choisie utilise un algorithme de type chaines
- de Markov Monte Carlo (MCMC), permettant de générer un ensemble de parametres
dont la distribution converge vers le posterior lorsque le nombre d’itérations Monte
Carlo augmente. Bien que cette solution soit fonctionnelle, son application aux

modeles journaliers (ou horaires) requiera des ressources numériques importantes.

L’analyse des résultats obtenus avec “abc” et GR2M suggerent que des modeles
d’erreurs vagues (peu informatifs) ne permettent pas d’améliorer significativement
Pefficacité des modeles et la qualité des prédictions. Par contre, en spécifiant des
modeles d’erreurs qui décrivent fidelement la probabilité d’occurrence des erreurs,
on s’assure que l'incertitude sur les prédictions reflete I'incertitude sous-jacentes aux
données et au modele. Il apparait donc que l'intérét d’utiliser une telle méthode de
calibration est étroitement liée a la capacité du modélisateur de formuler des modeles
d’erreurs réalistes et informatifs, ce qui, en hydrologie est loin d’étre trivial. Il n’en
reste pas moins que la calibration bayésienne de ces modeles simples permet de
tirer des conclusions générales et d’identifier certains enjeux importants. En effet,
I’application au modele “abc” souligne I'importance de la sélection du prior sur les
vraies données d’entrée. L’application au modele GR2M, quant a elle, aborde 'effet
de l'incertitude des conditions initiales, 'interprétion des résultats de calibration
dans le contexte de multiples sources d’incertitude, 'effet du choix des modeles
erreurs et la validation des hypothéses sous-jacentes a ces modeles d’erreurs. De
plus, V'application montre que 'intégration explicite des erreurs structurales permet
d’inférer séparement les différentes erreurs, et par exempie, de discerner les erreurs

structurales des erreurs de mesures.



Abstract

Standard calibration methods assume that the input data is known exactly. In
hydrology, as well as in most environmental sciences, it is extremely difficult to
gather experimental data uncorrupted by all kinds of errors. When this exactness
condition is not met, hydrologists face the possibility that the parameters estimated
during calibration are biased by the input errors. Although it is difficult to generalize
the effect of such biases on the predictions of calibrated models, the concensus in the
hydrological community is that a crucial step in the improvement of hydrological
models is the development of calibration methods taking into account multiple
sources of uncertainties. This thesis proposes such a method, based on Bayesian
analysis. This method grafts various error models (input, output, structural) to the
hydrological model, which interpret the data for the model and allow the estimation
of coherent probabilities for parameter sets. Although conceptually simple, the use
of the method relies on the resolution of high-dimensional integrals, hindering its
application to the daily hydrological models commonly used. In order to study
the method’s properties and better understand the effect of errors on calibration,
we apply it to two simple monthly models: “abc” and GR2M. The first one being
linear, it is possible, under certain conditions, to derive an analytical solution and
compute directly the posterior probability. Results obtained from these simulations
suggest that Bayesian calibration reduces slightly the bias on the parameters. For

nonlinear models such as GR2M, the integration cannot be done analytically. The
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solution adopted was to perform Markov chain sampling using the Metropolis algo-
rithm (MCMC) to approximate the posterior distribution. Although this solution is
functional, its application to daily (or hourly) models requires significant numerical

resources due, again, to the high dimensionality of the problem.

Results obtained for the two models suggest that vague errors models (unifor-
mative) do not improve significantly the efficiency of the calibrated models. On the
other hand, specifying realistic error models ensures that the prediction uncertainty
is coherent with data and model uncertainty. Hence, the interest for using such a
calibration method is closely dependent on the modeller’s ability to define realistic
and informative error models, which is not a trivial task in hydrology. Nevertheless,
the calibration of simple models by a Bayesian uncertainty assessment method allows
certain general conclusions to be drawn and the identification of a number of inter-
esting issues. Indeed, the “abc” application underlines the importance of the prior
selection for the true input on parameter inference. The GR2M application discusses
the effect of initial state uncertainty, the interpretation of calibration results in the
context of multiple sources of error, the effect of error models on the parameters
and the validation of their underlying assumptions. Also, the GR2M study shows
that by explicitly integrating structural errors, the different types of errors can be

inferred, and structural errors can be explictly separated from data errors.



Avant propos / Foreword

Cette theése présente les travaux de recherche menés au cours de mes études doc-
torales. Les résultats principaux se trouvent sous la forme d’articles insérés en
deuxiéme partie. La premiére partie consiste en une synthése permettant de donner
au lecteur une vue d’ensemble des travaux effectués, ainsi qu’une occasion de tirer des
conclusions générales sur leur portée. Pour les lecteurs ne maitrisant pas l’anglais,
un résumé en francais de la synthese est inclu au premier chapitre de la premiere

partie (page 1).

This document covers the work done during my PhD studies. Its format is
that of a thesis by article, in which a relatively breve discussion about the context,
methodology, general results and conclusion (part I) precedes published or submitted
articles (part II). The reader will also find in the first chapter a French synthesis of
this document. Although this thesis may be read from first page to last, I would
suggest reading the articles just before chapter 4, as some of the topics rely heavily

on the theory and results presented in the papers.
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Contribution to science

The thesis discusses issues related to the calibration of hydrological model in pres-
ence of multiple sources of uncertainties. More precisely, the work explores the
subtleties that affect calibration and influence the calibration results and their
interpretation. The methods used in this thesis, Bayesian analysis and various
integration methods, are commonplace, and the originality of the thesis lies in their
application to specific issues such as: the influence of the prior for the true input
variable, the influence of the initial state uncertainty, the selection of priors for
model comparison, the effect of error model assumptions on posterior parameter
distributions and the validation of models calibrated in presence of input errors.
The thesis also shows how structural errors can be identified and separated from
input and output errors based on assumptions about their respective distribution.
Although the conclusions are based on simulations run with monthly models, the
general ideas and constatations are likely to hold for higher resolution models, once

appropriate error models are defined for those cases.
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CHAPTER 1

Résumé

1.1 Introduction

Un modéle hydrologique est un algorithme permettant de prédire I’écoulement de
l'eau d’un bassin versant vers un exutoire & partir de mesures expérimentales.
Ces mesures peuvent étre, par exemple, de type météorologiques (précipitation,
température, ensoleillement ), géographiques (topographie), pédologique (perméabilité,
niveau de la nappe) ou humaines (présence de puits, gestion de barrage). Il existe
une énorme variété de modeles, certains possédant seulement quelques parametres et
une structure simple, et d’autres plus complexes, décrivant 1’écoulement souterrain,
les interactions de surface, 'utilisation du sol, etc, et ce a des résolutions spatiales
et temporelles élevées. Pour pratiquement tous ces modeles, une étape préalable
3 leur utilisation s'impose : la calibration. Calibrer un modele consiste a estimer
les parameétres permettant a celui-ci de satisfaire opﬁmalement a une ou plusieurs
conditions. Généralement, les parametres sont choisis de maniére & maximiser une
fonction décrivant la concordance entre les prédictions du modele et des mesures
expérimentales. Or, pour étre utilisé, le modele doit étre conditionné par des données
d’entrée (par exemple la précipitation et I’évapotranspiration), qui sont mesurées sur

le terrain et souvent entachées d’incertitudes de toutes sortes.



Une question préoccupant énormément les hydrologues est de savoir quelle sera
Iinfluence de ces erreurs sur la calibration du modele. 1l se trouve que plusieurs
études ont montrées que les erreurs sur les données d’entrée des modeles corrompent
la calibration, et donc peuvent fausser les prédictions subséquentes de ces modeles.
La réaction des hydrologues a été de chercher des méthodes de calibration permet-
tant de tenir compte de ces erreurs sur les données, ainsi que des erreurs commises
par le modeéle lui-méme. Cette prise en compte du modele d’erreur structural permet
de définir une approche qui intégre ’ensemble des sources possibles d’incertitude
associés a la mise en place d’un modele hydrologique. Ce travail de doctorat s’inscrit
dans cette mouvance et étudie une méthode de calibration permettant de tenir

compte de multiples sources d’incertitude.

La méthode proposéé s’appuie sur un article publié récemment par Kavetski et al.
(2003) qui propose de considérer les erreurs sur les données d’entrée et de sortie par
le biais de modeles d’erreurs. Ces modeles d’erreurs, qui permettent d’interpréter
les données en spécifiant les caractéristiques des erreurs (biais, corrélation, hétéro-
scédascité) sont en quelque sorte greffés au modele hydrologique via I’analyse bayé-
sienne. Dans cette these, nous généralisons cette idée par l'ajout d’un modele
d’erreur structural permettant de traiter les erreurs imputables au modele lui-méme.
La these présente deux applications de la méthode & deux modeles hydrologiques
simples. Bien que les modeéles hydrologiques soient d’un intérét pratique limité, ils
permettent d’étudier certaines questions d’ordre théorique : 'influence des modeles
d’erreurs, leur sélection, la validation des modeles dans un contexte d’erreur sur les
entrées, 'impact des distributions a priori (priors) et la mesure de I'efficacité de la

calibration.

Dans les pages qui suivent, nous discuterons d’abord plus en détail de la problé-

matique et des méthodes de calibration ayant été publiées au cours des dernieres
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années. Suit une description de la méthode proposée, puis les résultats principaux
issues des expériences menées avec les modeles “abc” et GR2M. Finalement, des con-
clusions générales sur les défis soulevés par la calibration de modeles plus complexes

sont émises, en paralléle avec des pistes de solutions a envisager.

1.2 Revue de littérature

Selon Gupta et al. (2003), 'amélioration de la calibration des modeles hydrologiques
passe par la résolution de deux problémes majeurs : arriver a tenir compte des
incertitudes sur les données et le modele, et élargir le spectre des indicateurs de
performance des modeles. Cet intérét des hydrologues pour les incertitudes vient
de la combinaison de deux facteurs : 1. les données d’entrée des modeles hy-
drologiques (précipitation, évapotranspiration) sont parfois entachées d’incertitudes
importantes, 2. ces erreurs sur les données biaisent les parameétres estimés par les

méthodes de calibration traditionnelles.

1.2.1 Les moindres carrés

La méthode la mieux connue et probablement la plus utilisée pour calibrer un modele
est la méthode imaginée par Gauss il y a plus de deux cent ans, les moindres
carrés (SLS). Cette méthode consiste & estimer les parametres 6 minimisant la
différence élevée au carrée entre les prédictions d'un modele f(z, 8) et des données

expérimentales ¥ :

§ = argmin {Z [T — M(Z;, 9)]2} .

0 i
Cette méthode fonctionne admirablement bien lorsqu’une condition essentielle est

respectée, soit que les données d’entrée du modele, &, sont exactes. Le succes obtenu



par cette méthode est dii en grande partie au fait qu’elle se base sur la représentation
du modele d’erreur par une distribution normale. En effet, la minimisation des
différences carrées est équivalente & la maximisation de la probabilité d’occurrence

des données lorsque la probabilité est définie par une loi normale centrée :
0 = argmax {N'(§ | f(2,0),9)},

ol ¢ dénote la déviation standard des erreurs. Or, 'une des propriétés de la loi
normale est qu’elle est la distribution maximisant ’entropie lorsque seule la moyenne
et la variance d’une variable stochastique sont connues. Autrement dit, c’est la
distribution la plus générale qui soit pour décrire une erreur aléatoire typique. En
conséquence, en I’absence d’information sur la distribution des résidus, il est tout a
fait correct d’utiliser la méthode des moindres carrés, et ce, méme si, a posteriori,

il se trouve que la distribution des résidus ne suit pas une loi normale.

Malgré les remarquables propriétés de cette méthode, certaines difficultés survi-
ennent lorsque le nombre de parametres & estimer augmente. En effet, & mesure
que ’on ajoute des parametres, la dimension de ’espace a explorer pour trouver le
minimum augmente, ainsi que les risques de tomber sur un minimum local, plutot
que le minimum global. Afin de pallier ces difficultés, des méthodes telles que SCE-
UA (Duan et al., 1992) ou les algorithmes génétiques sont utilisées (voir Duan (2003)

pour une revue des méthodes d’optimisation globales.)

En hydrologie, I'utilisation de la méthode des moindres carrés pose également
un autre type de difficulté. En effet, les sorties d’'un modele hydrologique incluent
généralement des régimes au comportement fort différents : les crues et les étiages.
En appliquant directement la méthode des moindres carrés, il arrive souvent que les

parametres choisis reproduisent mal les périodes d’étiage pour la simple raison que
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les sorties sont faibles et donc les erreurs commises par une mauvaise paramétrisation
sont également comparativement faibles. Une solution peut étre alors d’utiliser une
loi normale hétéroscédatique (Sorooshian and Dracup, 1980) ou bien de minimiser

d’autres fonctions qu’une différence élevée au carré (Gupta et al., 1998).

La calibration de modeles hydrologiques constitue donc un probleme complexe :
le comportement & reproduire possede une grande variabilité, le nombre de para-
meétres est souvent élevé, et finalement, les données servant a calibrer le modéle sont

incertaines, ce qui invalide ’hypothése de base de la méthode des moindres carrés.

1.2.2 Les sources d’incertitudes

Les données de base servant & forcer et a calibrer les modeles hydrologiques sont,
de fagon générale, les précipitations, I’évapotranspiration et les débits. D’autres
variables peuvent étre considérées selon le modele, telles que le niveau de la nappe
phréatique, le pompage (lorsqu’il est connu), I'utilisation du sol, les cycles végétatifs,
etc. Dans les climats humides, la variable qui domine est la précipitation. Les
précipitations sont traditionnellement mesurées par une station météorologique,
typiquement un entonnoir collectant I’eau de pluie. Ces stations sont parfois au-
tomatisées, parfois opérées par du personnel. Dans tous les cas, les mesures tendent
& sous-estimer la précipitation réelle en raison de nombreux facteurs, le principal
étant le vent. En effet, & mesure que la vitesse du vent augmente, il se crée une zone
de haute pression autour de l'appareil, qui dévie les gouttes de pluie de ’entonnoir.
Les pertes peuvent aller jusqu’a 30% de la précipitation totale, et jusqu’a 100% pour
la neige (Yang et al., 1999). Une autre source d’erreur provient de I’évaporation
des gouttelettes d’eau qui adhérent & 'entonnoir. Enfin, les stations automatisées

fonctionnant sous le principe de I'auge a bascule doivent étre calibrées (ajustement



de la fréquence de loscillation & lintensité de la pluie), et cette calibration peut
constituer une source significative d’incertitude. A ces différentes sources d’erreurs
vient s’ajouter des considérations plus pragmatiques : le déplacement de la station,
le changement du type de station, le remplacement du personnel, la modification
de Penvironnement (la végétation qui grandit, la construction de batiments), le
dysfonctionnement de ’appareil, la négligence de 'opérateur, les pertes de données,

etc.

Enfin, méme si la mesure de la précipitation était parfaite, un probleme de
taille subsiste, nommément la représentativité de la mesure. En effet, une station
ne mesure la précipitation que sur une surface équivalente a celle d’une assiette.
De 'autre coté, le modele hydrologique nécessite une mesure de la précipitation a
P’échelle du bassin versant ou dans les modeles distribuées, a 1’échelle des points de
grilles, espacés dans le meilleur des cas de quelques kilometres. ‘Or, les précipitations
peuvent exhiber une variabilité spatiale importante. La mesure expérimentale (en
un point précis) et la variable du modeéle (moyenne spatiale) sont donc fondamentale-
ment différentes. Pour estimer la précipitation globale, on doit ainsi extrapoler les
valeurs ponctuelles & I'aide de méthodes de krigeage. La validité de 'extrapolation
dépendra de la superficie sur laquelle elle est appliquée, du nombre de stations
incorporées et du type d’averse. Les orages courts et intenses sont généralement
tres localisés alors que les averses qui s’étalent sur plusieurs heures couvrent des
territoires plus vastes. Si une averse passe directement au-dessus de la station et
possede une superficie inférieure a celle du territoire d’extrapolation, la précipitation
sera surévaluée. A I'inverse, si I’averse évite la station, la précipitation sera sous-
estimée. Ce probléme de représentativité de la mesure est discuté dans Habib et al.

(2001).

La situation n’est pas tellement plus reluisante pour I’évapotranspiration et les
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débits. L’évapotranspiration dépend principalement de la température, du rayon-
nement solaire et du type de végétation. Le grand nombre de modele d’évapo-
transpiration en circulation témoigne de la difficulté d’estimer celle-ci adéquatement
(Oudin et al., 2005b). Les débits, quant a eux, sont mesurés} par des relations
hauteur-débit (stage-discharge), ou plus récemment par des sonars Doppler. Les
incertitudes sur les décharges proviennent donc directement de I'incertitude sur la
relation entre le niveau d’eau et le débit, affectée, entre autre, par la morphologie
changeante du lit des rivieres et les courtes périodes de mesures disponibles pour en

effectuer la calibration.

Ces sources d'incertitudes qui affectent les données de calibration des modeles
hydrologiques se mélent aux incertitudes issues du modele lui-méme. Ces incerti-
tudes structurales peuvent étre divisées en deux grandes catégories: D'incertitude
associée aux processus stochastiques, et celle provenant du fait que le modele est
une représentation simplifiée des processus naturels. Bien que cette division soit
légeérement artificielle (un processus stochastique n’est au fond qu’un processus
déterministe extrémement sensible aux conditions environnantes), elle en demeure
pertinente puisqu’elle sous-entend qu'’il est possible d’améliorer la réprésentation des
processus hydrologiques de maniére a ce que l'erreur structurale ne soit finalement

di qu’aux processus stochastiques.

1.2.3 Les impacts des incertitudes

Les incertitudes associées aux données sont par nature aléatoire. On pourrait donc
espérer que ces erreurs, en moyenne, s’annulent et que le comportement du modele
n’est pas affecté outre mesure par ces erreurs. Ce n’est toutefois pas la cas. En effet,

il semble y avoir concensus parmi la communauté hydrologique pour dire que les



erreurs aléatoires sur les précipitations peuvent affecter les modeles hydrologiques
et nuire & la qualité des prédictions (Oudin et al., 2005a; Kavetski et al., 2003;
Andréassian et al., 2001; Troutman, 1982) ; c’est-a~dire que la performance des
modeles, mesurée notamment par le critere de Nash-Sutcliffe, diminue & mesure que
I’amplitude des erreurs augmente. Il est & noter que 'influence des erreurs d’entrée
varie considérablement selon le modele, le climat et plus généralement, par le type

de bassin considéré.

1.2.4 Méthodes de calibration

L’intérét pour des méthodes de calibration tenant compte des incertitudes ne date
pas d’hier et il existe bon nombre de méthode de calibration cherchant & réduire
l'effet des erreurs sur la calibration. Les prochaines pages présentent brievement
quelques unes des méthodes proposées récemment permettant de tenir compte des

multiples sources d’incertitude pouvant affecter la modélisation hydrologique.

BATEA

BATEA, Bayesian Total Error Analysis (Kavetski et al., 2003) est une méthode
bayésienne fondée sur les moindres carrés totaux (Total Least Squares). L'idée de
base est de ne plus assumer que les entrées sont exactes, mais plutét d’inférer leur
valeurs, au méme titre que les parametres du modele. Ainsi, en faisant la distinction

entre les vraies entrées x et les entrées mesurées &, nous pouvons écrire :

p(0,x | Z,9) =p(¥ | 0,2)p(& | x)p(6,x), (1L.1)
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o les termes de droites représentent respectivement le modeéle d’erreur de sortie (la
vraisemblance), le modele d’erreur d’entrée et les prior des parametres et des vraies
valeurs d’entrée. Dans ’article cité, les auteurs appliquent cette méthode au modele
“abe” (sur une base horaire) et & TopModel. En utilisant des données synthétiques
auxquelles ils imposent un bruit aléatoire, ils parviennent & montrer que la méthode
de calibration standard (SLS) ne converge pas vers les vraies valeurs de parametres.
Par contre, en utilisant BATEA, ils parviennent & estimer adéquatement la distri-

bution des parametres.

Afin de bien comprendre les problématiques reliées a la calibration, il faut réaliser
que le fait que SLS ne parvienne pas a estimer les vrais paramétres du modeéle n’est
pas problématique en soi. En effet, les parametres des modeles sont tres souvent
de nature conceptuels ; ils n’ont pas d’équivalent physique mesurable. Le fait que
I’on estime ou non leur vraie valeur n’a pas réellement d’importance, tant que les
prédictions réalisées par les parameétres demeurent réalistes. Nous reviendrons sur

cet aspect de la validation plus loin.

Fait & noter, le modele d’erreur d’entrée utilisé par les auteurs de BATEA
découpe la série de précipitations en averses : ils supposent que, pour une averse
donnée, toutes les précipitations sont affectées par la méme erreur (un facteur
multiplicatif). Autrement dit, si une averse dure 15 heures, ils supposent qu’en
multipliant les 15 mesures de précipitations par un seul facteur, on obtiendra les 15

vraies valeurs de précipitation.

Le schéma d’incertitude utilisé dans cette thése ajoute a celui de Kavetski et al.
(2003) deux sources d’incertitude: l'incertitude structurale et celle dfie a I'ignorance
des conditions initiales. De plus, les hypotheses sur les erreurs d’entrée sont relaxées,

permettant de considérer n’importe quel type d’autocorrélation entre erreurs.
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SODA

Dans un article de Vrugt et al. (2005), la méthode de calibration SODA est proposée,
basée sur les ensembles de filtres de Kalman. L’idée mailtresse est que I’évolution d’un
modele déterministe dépend étroitement des conditions initiales qui sont souvent
difficiles & estimer. Autrement dit, pour décrire de maniere réaliste les prédictions
d’un modele, il faut considérer un ensemble de conditions initiales (des états), et
faire évoluer chacun de ces états afin d’obtenir un portrait complet de la situation.
Evidemment, pour des modeles complexes comme les modeles atmosphériques ou
océaniques, il est hors de question de faire tourner le modele les milliers de fois

nécessaires pour obtenir ce type de portrait.

Au lieu de décrire I’évolution individuelle des états, les équations de Kalman
permettent de calculer 1’évolution moyenne du modele, ainsi que la matrice de
covariance décrivant 1’étalement des états autour de la moyenne. L’avantage de cette
méthode est qu’elle permet de tenir compte en une seule itération de l'incertitude
sur les conditions initiales. Le désavantage majeur est que ce faisant, elle linéarise le
comportement du modele. Pour des modeles hautement nonlinéaires tels les modeles
hydrologiques, cela peut conduire a des résultats erronés. La solﬁtion a ce probleme
est de considérer un ensemble de solutions moyennes (EnKF, Ensemble Kalman
Filters, (Evensen, 1994)). De plus, en joignant une boucle Monte Carlo, il devient
possible d’intégrer lés incertitudes structurales et les incertitudes sur les données
d’entrée a I’analyse, plutot que de se limiter & I'incertitude sur les conditions initiales.
Toutefois, la méthode EnKF fait ’hypothese que les parametres sont fixées, et donc
ne permet pas directement d’en estimer la valeur a partir d’une série de données

expérimentales.

La méthode SODA vient combler cette lacune et proposant de combiner EnKF
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avec une boucle d’estimation des parametres. L’idée est donc d’utiliser EnKF
pour calculer une série temporelle de sorties pour un ensemble de parametres,
calculer la probabilité a posteriori de la série générée par chaque parametre, et se
servir de cette probabilité pour explorer ’espace des parametres. Cette exploration
utilise la méthode SCEM-UA (Vrugt et al., 2003) afin de minimiser le nombre de
calculs et converger rapidement vers la distribution a posterior: des parametres.
L’avantage principal de cette combinaison EnKF+optimisation est qu’il devient
possible d’estimer récursivement les parametres. Autrement dit, si une nouvelle
donnée devient disponible, il est possible d’utiliser cette méthode pour mettre a
jour la distribution de parametres, sans avoir a traiter a nouveau la série enticre.
- Les auteurs appliquent SODA au modele hydrologique HYMOD et rapportent des

résultats jugés satisfaisants (basés sur des données synthétiques).

Filtre de particules

Les filtres de particules (Doucet et al., 2000) permettent de calculer la distribu-
tion des parameétres d'un modeéle de maniére relativement simple (du moins en
théorie.) L’avantage principal de cette méthode est qu’elle se préte naturellement
3 l'estimation récursive des parametres. L’idée maitresse est de générer des partic-
ules, chacune représentant une réalisation aléatoire des parameétres du modele, et
d’assigner & chacune d’elles un poids proportionnel a la probabilité des parametres
qu’elle représente. Lorsqu’un nouveau jeu de donnée est disponible, il est aisé d’en
calculer la vraisemblance et mettre & jour le poids de chaque particule. Les particules
associées 3 des parametres probables finissent par obtenir un poids élevé, alors que
le poids des particules improbables tend vers zéro. L’espérance d’une fonction peut

étre calculée en pesant la contribution de chaque particule par son poids.
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Si la méthode est simple en théorie, son application comporte quelques difficultés
techniques. La principale vient du fait qu’aprés quelques itérations, la plupart
des particules obtiennent des poids proches de zéro. Conséquemment, le nombre
de particules qui contribuent de maniere significative a l’espérance d’une fonction
diminue rapidement, ce qui dégrade la qualité des résultats. Il est possible de
pallier ce probleme en ré-échantillonnant des particules a chaque itération, mais
cela entraine un appauvrissement de la diversité des particules, ce qui exige d’autres

mesures correctives.

Moradkhani et al. (2005) applique le filtre de particules afin de calibrer le modele
hydrologique HYMOD. Bien que les auteurs rapportent des résultats satisfaisants,
il est & noter que, dans leurs simulations, les incertitudes sur les données d’entrée et
les erreurs structurales ne sont pas considérées. Néanmoins, le filtre de particule se
préte admirablement bien a ’estimation récursive des parametres et cela constitue

probablement son principal atout.

1.3 Discussion

Le point de départ de toute méthode de calibration est le schéma d’incertitude
qui décrit la relation entre les données, les erreurs et le modele. Dans les lignes qui
suivent, nous définissons un tel schéma englobant les erreurs sur les données d’entrée,
les données de sortie et sur le modeéle lui-méme. Par la suite, le schéma eét converti,
grace a I'analyse bayésienne, en une équation décrivant la distribution a posteriori
des parametres. Cette équation est résolue analytiquement pour le modele “abc”,
puis par simulations Monte Carlo pour le modeéle GR2M. Ces deux méthodes de

résolution font I'objet des articles constituant la seconde partie de cette these. Les
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résultats issus de ces simulations sont analysés et discutés dans les sections 1.3.2 et

1.3.3.

1.3.1 Schéma conceptuel

Avant d’attaquer la question de la calibration en présence d’incertitudes, un schéma
décrivant la relation entre les différentes sources d’incertitudes, les données et le
modele doit d’abord étre proposé. Ce schéma est décrit dans Huard and Mailhot
(2006) et reproduit a la figure 4.1. L’hypothese de base est qu’il existe des variables,
les vraies données d’entrée et les vraies données de sortie, liées entre elles par un
vrai processus physique. Les mesures de laboratoireé ou de terrain, quant a elles,
sont une approximation des vraies valeurs, et le modele, une simplification du vrai
“ processus. Pour arriver & calibrer le modele, on doit inférer les vraies valeurs a
partir des données, et comparer les sorties simulées aux sorties mesurées. L’inférence
des vraies valeurs se base sur des modeles d’erreurs, décrivant la distribution de
probabilité pour chaque source d’erreur. On retrouve donc un modele d’erreurs
d’entrée, de sortie et un modele d’erreurs structurales, qui doivent étre défini a

PTIOTL.

A partir du schéma conceptuel, il est relativement aisé de passer aux équations
en utilisant le théoréme de Bayes (une dérivation complete est donnée dans I’annexe

A de Huard and Mailhot (2006)) :

b(6 | &, §, bo) = / / b(0,2,y | 3,4, o) dz dy
()

- / / P | ) Pin@ | @) (v | 2.6, o) n(z) dwy - —=L 20, (12

OU Pouts Pin, Pstr sont respectivement les modeles d’erreurs de sortie, d’entrée et
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structurales. La distribution a posteriori p(8 | &, 9, ¢o) décrit la probabilité des
parametres d’'un modele, connaissant les données d’entrée et de sorties mesurées,
ainsi que les conditions initiales ¢po. La formule (1.2) contient une intégration
multiple sur x et sur y, les variables de nuisance décrivant les vraies valeurs d’entrée
et de sortie. C’est en traitant les vraies valeurs d’entrée comme des variables de
nuisance et en intégrant sur celles-ci qu’il est possible de tenir compte de l'effet des
erreurs d’entrée lors de la calibration et de la validation. Toutefois, cette intégrale
est typiquement insoluble analytiquement, sauf dans quelques cas ol le modele est
linéaire et les modeles d’erreurs ont une forme gaussienne. La premiere application
de la méthode considére un tel cas, ou il est possible d’intégrer sur les variables de
nuisance de maniere relativement directe. La deuxiéme application, traite un cas
plus général de modele nonlinéaire, ot I'intégrale doit se faire de maniére numérique

en utilisant les méthodes de chaines de Markov Monte Carlo (MCMC).

1.3.2 Solution analytique : application au modele “abc”

L’équation 1.2 possede une solution analytique si certaines conditions précises sont
satisfaites : le modele est une fonction linéaire des données d’entrée, -les modeles
d’erreurs sont de types gaussiens, tout comme la distribution a priori des données
d’entrée. La dérivation de la solution pour la distribution a posterior: est donnée
dans ce cas par I'équation (18) de Huard and Mailhot (2006). Ceci dit, la grande
majorité des modeles hydrologiques sont fortement nonlinéaires. La solution ana-
lytique a donc un intérét pratique limitée, et nous I’étudions ici afin de de vérifier
et d’étudier un certain nombre de questions théoriques. Le modele choisi est “abc”
(Fiering, 1967), un modele mensuel & trois paramétres, fréquemment utilisé parce

que tres simple et pédagogique.
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En utilisant des données synthétiques, il nous est possible de comparer le résultat
de la calibration avec les vraies valeurs de parametres ayant servi a générer les
données. Les résultats suggerent que le fait d’intégrer I'incertitude sur les données
d’entrée permet d’améliorer légerement 1’estimation des parametres. Cette améliora-
tion est cependant beaucoup moins spectaculaire que celle obtenue par Kavetski et al.
(2003). Deux facteurs contribuent a expliquer cette différence. Le premier est que
nos séries de données ne dépassent pas 100 mois'. Pour estimer trois paramétres
en présence d’incertitudes importantes, cela reste assez peu. Deuxiemement, notre
modele d’erreurs d’entrée est beaucoup plus permissif, allouant a chaque mesure de
précipitation une erreur propre, alors que Kavetski attribue une seule erreur par

averse.

Afin de mieux comprendre l'effet des modeles d’erreur, nous avons effectué la
calibration d’une ligne droite en présence d’incertitudes sur les données d’entrée.
Cela nous a permis de constater un fait important : en intégrant l'incertitude sur
les données d’entrée, la distribution du parametre (ici la pente de la droite) converge
vers la vraie valeur pour un nombre suffisant de données, si et seulement si le prior
pour les vraies entrées 7(x) est adéquat. L’influence de ce prior varie évidemment
selon le modéle d’erreur d’entrée qui est spécifié. Si le modele d’erreur suppose que
les données d’entrée sont précises alors que ce n’est pas le cas, le prior joue un
role insignifiant et on observera un biais sur la pente similaire & celui obtenu avec
SLS. Si par contre le modele d’erreur est trés vague, le prior sur les vraies données
d’entrée prend une influence considérable et peut jouer un réle prépondérant sur la
forme de la distribution de parametres. Plus spécifiquement, 1'effet sera de moyenner

I’hydrographe : écréter les crues et augmenter le niveau des étiages.

1Le temps de calcul est grosso modo proportionnel & n?, ol n est la longueur de la série. Pour
des séries de plus de 100 mois, les calculs deviennent prohibitivement longs.
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La conclusion de ces analyses est donc que le choix des modeles d’erreurs et du
prior sur les vraies valeurs est extrémement important afin de garantir la fiabilité
de la calibration. Pécher par excés de prudence en spécifiant des modéles d’erreurs
exagérément vague peut conduire a des résultats pires que ceux obtenus par une
calibration standard. Il importe donc de bien savoir définir ces modeles d’erreurs,
ce qui est loin d’étre simple lorsqu’il s’agit de vraies données et non de séries

synthétiques.

1.3.3 Solution générale : Application a GR2M

Etant donné que la grande majorité des modeles hydrologiques sont fortement
nonlinéaires, il importe de savoir résoudre I’équation (1.2) de maniére générale. La
solution la plus simple est dans ce cas 'utilisation de ’algorithme Metropolis Monte
Carlo. Cela nous permet d’utiliser n’importe quel modele hydrologique et nous laisse
une totale liberté en ce qui a trait au choix des modeles d’erreurs et des priors. Pour
ce qui est du modele, nous avons opté pour GR2M (Mouelhi et al., 2006), un modele

parcimonieux comptant seulement deux parametres et deux variables d’états.

Pour cette application (Huard and Mailhot, 2007), I'objectif est d’effectuer une
véritable calibration utilisant de vraies données plutdt que des données synthétiques.
Etant donné que GR2M ne comporte pas de module de neige, nous avons porté notre
choix sur des bassins chauds et humides des Etats-Unis. Les données font partie
de la base de données MOPEX (Model Parameter Experiment) (Schaake et al.,
2006b), une collection de séries hydrologiques destinées expressément & 1’étude de
méthodes de calibration. Le défi principal consiste & choisir des modeles d’erreurs
réalistes et le plus informatifs possible. Malheureusement, la littérature a ce sujet est

relativement mince, c’est-a-dire que de nombreuses études s’attardent a la qualité
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des estimés de précipitations, mais traduire cette information en un modele d’erreur
n’est pas trivial. De plus, il n’est pas dit qu'un modele d’erreur validé en un site
soit applicable en un autre. Enfin, les données du MOPEX sont le résultat d’une
ré-analyse poussée, ol les précipitations ponctuelles sont extrapolées sur les points
d’une grille puis intégrées sur la superficie couverte par le bassin versant de chaque
station. Il est donc difficile de définir un modele qui décrive les erreurs de mesures
aprés un tel traitement. Ironiquement, les efforts déployés par MOPEX pour fournir

des données de qualité compliquent 1’élaboration des modéles d’erreurs.

En calibrant GR2M par analyse Bayésienne, certaines constats ont pu étre
dégagés. Tout d’abord, il importe de faire la différence entre les simulations d’un
modele et les observations. Une observation se sortie est une vraie valeur de sortie
corrompue par une erreur de mesure (ou de représentativité), alors qu'une simulation
est une vraie valeur de sortie corrompue par une erreur structurale. En ce sens, il
est périeux de comparer ces deux quantités, puisque qu’elles sont fondamentalement
différentes. Afin de comparer rigoureusement des simulations de modeles & une série
d’observation (afin par exemple de mesurer 'efficacité d’un modele en mode valida-
tion), il importe de transformer les simulations du modele en vraie valeur de sortie
puis en observation synthétique. Autrement dit, en ajoutant une erreur structurale

et une erreur de sortie aléatoires tirées de leur modele d’erreur correspondant.

Aussi, il apparait que la méconnaissance des conditions initiales ne joue pas un
role majeur dans la calibration typique de GR2M. En effet, quelles que soit les valeurs
choisies par le modelisateur, les variables internes du modeéle convergent relativement
rapidement par rapport & la durée d’une série hydrologique typique. Autrement dit,
pour une série de plus de trois ans, 'influence de notre méconnaissance des conditions

initiales est marginale.
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En examinant les distributions a posteriori des parametres calibrés selon différents
choix de modeles d’erreur, il apparait que les hypotheses concernant les erreurs sur
les données influencent significativement la distribution des parametres du modele.
Autrement dit, la distribution de parametres ne peut étre interprétée indépendemment

des modeles d’erreurs utilisés pour la calibration.

Enfin, la méthode Bayésienne permet, par le truchement des vraies variables
d’entrée et de sortie, de séparer et d’identifier a posteriori les erreurs structurales
des erreurs de sortie et d’entrée. Cette possibilité mérite d’étre exploré plus en
profondeur puisqu’elle pourrait éventuellement permettre d’identifier et d’améliorer

les modeles hydrologiques.

1.3.4 Sélection de modéle

Dans un autre ordre d’idée, il serait possible d’améliorer la sélection Bayésienne de
modeles hydrologiques (Marshall et al., 2005) en y incorporant le concept de prior
parent développé dans le troisieme article (Huard et al., 2006). Elaboré dans le
contexte de la sélection de la meilleure copule, I'idée du prior parent est simplement
d’assigner aux parametres de chaque modele un prior ayant la méme signification
physique, quelle que soit la paramétrisation du modele. Dans le cas des copules, le
troisieme article propose de définir le prior parent sur la base du 7 de Kendall, une
mesure d’association tres utilisée dans la littérature sur les copules. Pour ce qui est
des modeles hydrologiques, une mesure englobante et générale a tous les modeles
semble plus difficile & définir. Quelques possibilités viennent toutefois a l'esprit: le
temps de récession, le temps de concentration, le temps de montée ainsi que d’autres

propriétés statistiques de ’hydrographe (Yue et al., 2002). En définissant un prior
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sur ces quantités et le transformant en prior pour les parametres de chacun des

modeles, la comparaison des modeles n’en serait que plus rigoureuse.

1.3.5 Pistes de recherche

Suite aux recherches effectuées, un certain nombre d’avenues sont apparues comme

des cibles de recherche intéressantes. En voici un bref résumé.

Sélection de modeéles d’erreurs informatifs

Le plus grand défi de la calibration est probablement la sélection de modeles d’erreurs
informatifs, c’est-a-dire de modeles d’erreurs ne se limitant pas a décrire les erreurs
sur les données, mais cherchant & améliorer 'inférence des vraies valeurs. A ce titre,
l'intégration de sources d’informations additionnelles (gravimétrie, images radar,
satellites) et méme d’information historique ou paléontologique nous semble une
avenue de recherche & considérer sérieusement. Par ailleurs, les corrélations entre
erreurs paraissent un sujet important, puisque toute forme de dépendance d’une
erreur sur une autre réduit le caractere aléatoire des erreurs et permet de mieux les

inférer.

Validation et mesure de ’efficacité des modéles

Les criteres de validation des hydrologues (RMSE ou Nash-Sutcliffe) comparent
les sorties mesurées aux sorties simulées en assumant les données d’entrée exactes.
Or, dans un contexte d’erreur sur les données d’entrée, ces criteres de performance
ne sont plus appropriés. En effet, en choisissant un modele d’erreur d’entrée tres

vague, il devient possible d’obtenir artificiellement des NSE proches de un. Afin de
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réellement mesurer la concordance entre les données et les simulations du modele,
il convient donc de comparer autant les différences sur les sorties du modele que les
différences entre les valeurs d’entrée mesurées et les valeurs d’entrée inférées lors de
la calibration. La validation des modeéles et des modeéles d’erreur passe donc par une
définition objective et générale de la performance qui dépendra a la fois du modele

hydrologique et des modeles d’erreur considérés.

Application aux modeles journaliers

L’application telle quelle de la méthode proposée aux modeles journaliers pose deux
défis. Le premier, d’ordre conceptuel, est de définir des modeles d’erreurs réalistes
sur les pluies et les débits. La situation semble plus compliquée qu’en mode mensuel
en raison de la structure plus complexe des erreurs, particulierement en ce qui a
trait & l'auto-corrélation des erreurs. La probabilité finie de précipitations nulles
mérite également d’étre prise en compte, par exemple par certaines distributions
mi-discretes mi-jointes (distribution de Tweedie (Dunn and Smyth, 2005)). Le
deuxieéme défi est d’ordre pratique et concerne ’échantillonnage simultané de milliers
de parametres. En effet, les séries journalieres sont beaucoup plus longues que les
séries mensuelles, et intégrer au-deld de 7000 parametres de nuisance pour calibrer
dix ans de données ne peut se faire & ’heure actuelle avec un ordinateur personnel
en un temps raisonnable. Cette contrainte limite I'utilisation d’une telle méthode
pour la pratique hydrologique courante, du moins & court terme. Toutefois, dans
un contexte de recherche, la parallélisation du code permettrait de traiter le cas
journalier et d’identifier des hypothéses simplificatrices permettant de réduire les

temps de calcul.
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Erreurs structurales

Le fait de ne pas agréger toutes les erreurs dans un seul terme permet de discerner les
différentes sources d’erreurs. En effet, au lieu de chercher a estimer les parameétres
du modele, il est possible d’estimer les erreurs commises, autant sur les données
d’entrée, de sortie que par le modeéle lui-méme. Une application intéressante de cette
séparation des erreurs est d’analyser la structure et les caractéristiques de la série
d’erreurs structurales. Cette analyse pourrait permettre d’identifier les conditions
pour lesquelles le modele performe mal. De plus, la série d’erreurs structurales pour-
rait servir & la mesure de la performance du modele, indépendamment de la qualité
des données. Evidemment, toutes ces applications sont fortement dépendantes de

la qualité des modeles d’erreurs.

1.4 Conclusion

Dans cette thése, un modele d’incertitude inspiré de celui de Kavetski et al. (2003)
est suggéré, intégrant les erreurs structurales en plus des erreurs sur les données
d’entrée et de sortie. Utilisant ’analyse bayésienne, ce schéma est traduit sous forme
d’une équation décrivant la forme de la distribution a posteriori des parametres.
Cette équation est résolu analytiquement pour le modele hydrologique mensuel
“abc”, et numériquement en utilisant I'algorithme Monte Carlo Metropolis pour le
modele GR2M. L’étude des résultats permet de tirer plusieurs conclusions d’intérét
général sur la calibration des modeéles hydrologiques en présence de multiples sources

d’incertitudes, avec un focus centré sur les incertitudes des données d’entrée.

Parmi ces conclusions, il importe de souligner I'importance du prior sur les vraies

données d’entrée. Les travaux effectués montrent en effet qu'un prior vague ne
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permet pas d’inférer correctement la distribution a posteriori des parametres. Plus
précisément, la distribution ne converge pas vers la vraie valeur a mesure que la
série de données s’allonge. Une autre conclusion importante concerne la sensibilité
des résultats aux modeles d’erreurs. Les résultats de cette thése montrent en effet
que la distribution des ‘paramétres est intimement liée aux hypotheses formulées
au sujet des erreurs de mesure. De plus, sous 'hypothese d’erreurs en entrée,
Vinterprétation des résultats de calibration ne peut plus se faire sur la base de
la comparaison entre les sorties simulées et les sorties observées. La mesure de
efficacité du modele doit tenir compte & la fois des résidus de sortie, mais aussi des
résidus en entrée : la différence entre données d’entrée mesurées et vraies variables
d’entrée inférées. Enfin, la spécification explicite des erreurs d’entrée, de sortie
et structurales permet leur identification a posteriori. Autrement dit, la méthode
permet d’extraire la distribution inférée des erreurs. Ceci permet, entre autres, de

distinguer les contributions des erreurs structurales des erreurs sur les données.

Une constatation générale est que la sélection des modeles d’erreur constitue
le plus grand défi au développement de nouvelles méthodes de calibration. C’est
I'information comprise dans le modele d’erreur qui permet d’interpréter les données
fournies a la méthode de calibration. Par conséquent, la validité des modeles
d’erreur est essentielle au succes de la calibration, quelle que soit la méthode choisie
(BATEA, SODA, filtre de particule). Parallelement, il ne faut pas s’attendre a ce que
des modeles d’erreur vagues permettent d’améliorer significativement l'efficacité des
modeles calibrés. Le nerf de la guerre en calibration est la somme des informations
disponibles. Un modele d’erreur doit par conséquent chercher & amalgamer le
plus de sources d’informations possible afin de raffiner son estimation de la vraie
valeur. L’intégration de sources d’informations additionnelles apparait donc comme

un autre des grands axes de recherches menant & une analyse plus rigoureuse de
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la performance des modeles pouvant mener & un diagnostic plus précis des erreurs

structurales et, conséquemment, & une amélioration des modeles.

Les modeles d’erreurs sont également au coeur de la question de la pertinence
d’utiliser une méthode de calibration tenant compte de multiples sources d’incerti-
tudes. L’utilité de ces méthodes dépend évidemment de plusieurs facteurs, notam-
ment la sensibilité du modele aux erreurs, 'importance d’établir des intervalles de
confiance réalistes sur les prédictions, la capacité a formuler des modeles d’erreurs
informatifs mais aussi le temps alloué a la calibration. En vertu de ces considérations,
il sevmble peu probable qu’a court terme la méthode de calibration décrites dans cette
theése rejoigne les hydrologues en dehors des institutions académiques. Dans un con-
texte de recherche toutefois, la possibilité d’extraire les différentes sources d’erreur
a posteriori et d’analyser les erreurs structurales pourrait permettre d’améliorer la

qualité des modeles hydrologiques.
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CHAPTER 2

Introduction

An hydrological model is an algorithm allowing one to predict from experimental
measurements the flow of water from a watershed to its outlet. These measure-
ments can be climatic (rainfall, temperature, radiation), geographic (topography),
pedologic (soil conductivity, aquifer levels) or socioeconomic (wells, soil usage, dam
management). This diversity of data leads to a diversity in hydrological models,
from simple ones with few parameters, to complex distributed models with tens
of parameters describing subsurface flow and surface interactions at high spatial
and temporal resolutions (Singh, 1995). Nevertheless, for the vast majority of
models, a preliminary step before the model can actually be applied to a given
catchment is calibration. Calibrating (or fitting) a model consists in finding the
set of model parameters maximizing the concordance of simulated outputs with
measured outputs. The calibration step is crucial because the estimated parameters
are then used to run the model to predict the future behavior of the catchment
under different scenarios. In this sense, a large part of the validity of a model is

closely dependent on its calibration.

2.1 Standard calibration procedure

The best known method to calibrate a model was developed by Carl Friedrich

Gauss about two hundred years ago: the standard least-squares method (SLS).
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The principle is deceptively simple: find the parameters that minimize the sum of

squared differences between simulated and measured outputs

~ ) _ . 5

§ = argmin {Z [5: — M(&:,0)] } :

where M stands for any model, 8 for the model’s parameters, & and g for the
measured inputs and outputs respectively. This methods works admirably well when
one condition is satisfied: the measured inputs can be considered exact. When
input data is corrupted by errors, however, there is no guarantee that the estimated
parameters are reliable. In fact, many studies point out that in such cases, the
parameters tend to be systematically biased by the input errors (section 3.2). This
is particularly problematic for environmental scientists, since experimental data is

seldom error-free.

2.2 Impact of input errors

It is difficult to describe globally the effect of input errors on the calibration of
models. There are however some guidelines. It is well known that fitting a straight
line with errors on the input variable leads to the underestimation of the slope ( York,
1966). This is explained thouroughly in Zellner (1971) and Huard and Mailhot
(2006, section 3). In hydrology, the general concensus is that input errors tend to
bias the parameters of hydrological models. That is, even if errors are distributed
normally around an idealized true value, the model parameters estimated through
SLS calibration are over- or under-estimated, and the parameter uncertainty does
not reflect accurately the underlying data uncertainties (Oudin et al., 2006; Kavetski
et al., 2003; Troutman, 1982). More precisely, the biases tend to average the model’s
behavior, i.e. underestimate the floods and overestimate the base flow (Huard and

Mailhot, 2006).
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2.3 Objectives

Although the sensitivity of hydrological models to input errors has been known for
over three decades, the interest for these issues has surged only relatively recently, as
evidenced by a number of papers proposing novel calibration methods (chapter 3).
Part of this interest is probably due to the recent availability of the computational
power these problems require, but also to the rising complexity of models and
concerns about uncertainties and their impact on the reliability of predictions. In
fact, Gupta et al. (2003) define in their conclusion Two Important Issues That Need

Addressing, the first one being:

“To be comprehensive, future strategies for model identification should
seek to account explicitly for all of the following sources of uncertainty:

a) input uncertainty
b) state uncertainty
¢) structural uncertainty
d) parameter uncertainty

e) output uncertainty (observation error)

which could (we think) be treated within a Bayesian framework...”

Such a strategy should hence manage to take into account multiple sources of errors
such that that prediction uncertainties faithfully represent the underlying data and
structural uncertainties. Despite the clear interest in uncertainty assessment meth-
ods, “a significant part of the community is still reluctant to embrace the estimation
of uncertainty in hydrological and hydraulic modeling” (Pappenberger and Beven,
2006). According to these authors, the one acceptable reason for which uncertainty
analysis is still not standard practice is the lack of guidance in this matter. The

objectives of this thesis are to provide some insight into uncertainty analysis through



30

1) the development of a Bayesian framework dealing with multiple sources of uncer-
tainty, and 2) it’s application to hydrological models to understand the issues that

appear when confronting multiple sources of uncertainty inhydrological modeling.

2.4 Methodology

The method is based on a conceptual framework linking errors, data and model (sec-
tion 4.1). This framework is based on the work of Kavetski et al. (2003), accounting
for output and input uncertainty, to which two other sources of uncertainty are
added: structural and initial conditions uncertainty. The error generating processes
are described by error models: probabilistic distributions describing the occurrences
of input, output and structural errors. These error models are grafted to the model,
and a formula for the model’s parameters posterior distribution can be derived using

Bayesian analysis (section 4.2).

This posterior can be solved analytically under certain conditions, namely the
linearity of the model and Gaussian error models. This special case is explored
in the first paper (Huard and Mailhot, 2006), where the method is applied to the
hydrological model “abc” (section 4.3). This example allows a better understanding
of the effect of input error on the calibration and the pitfalls associated with it. In
general, however, analytical solutions for the posterior parameter distribution do

not exist and one must revert to numerical solutions.

One such numerical solution for the Bayesian calibration of non-linear model
is Markov Chain Monte Carlo (MCMC) sampling. A limitation of this approach,
however, is that the time necessary to find a solution on a standard desktop computer

becomes prohibitive for typical daily hydrological time series. Therefore, in the
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second paper (Huard and Mailhot, 2007), calibration is performed for GR2M, a
monthly nonlinear hydrological model (section 4.4). Different issues related to model
calibration with multiple sources of uncertainties are discussed, namely the impact
of initial state uncertainty, the treatment of structural uncertainty and the effect
of error models on the parameter distribution. The paper also shows how, using a

Bayesian framework, model errors can be separated from data errors.

This separation of errors is believed to be strongly dependent on the choice of
error models. Whereas input and output error models can be defined based on
the measurement protocol and accuracy, structural error models appear much more
difficult to define rigorously. One way to improve the understanding of structural
errors might be by comparing different models among themselves and analyzing
their respective error series. This comparison must, however, be done with care.
Indeed, all models are not equally plausible, and hence results from each one of them
should be weighted by the model’s own probability. One elegant way to estimate
a model’s probability is using Bayesian model selection theory (Bretthorst, 1996).
One difficulty with Bayesian model selection is the selection of a prior distribution
for each model’s parameters. Since the parametrization of each model is different,
choosing uniform priors for the parameters of every model can have completely
different meaning in terms of hydrological behavior, and artificially bias the results
of model selection. To avoid such biases, the third paper proposes the concépt
of parent prior, allowing the definition of priors with a consistent meaning across
models. The concept is applied to copula selection and section 4.5 discusses how to

apply the same ideas in an hydrological modeling context.






CHAPTER 3

Literature review

This section reviews the main sources of uncertainties in hydrological modeling as
well as their impact on model efficiency. A number of calibration methods proposed

to deal with multiple source of uncertainties are then presented.

3.1 Sources of errors in hydrological modeling

The basic data needed to fit an hydrological models are rainfall, potential evapotran-
spiration (PE) and discharge. A slew of other variables can be considered, such as
aquifer level, water usage, vegetative cycles and various other land surface forcing.
In this thesis, the models used are fairly simple conceptual models with low data
requirements, limited to rainfall, PE and discharge. The next sections discuss the

sources of error affecting each one of these three variables.

3.1.1 Rainfall uncertainty

In humid regions, the dominant forcing variable is rainfall, traditionally measured by
automatic or manual rain gauges, whether tipping buckets or simple tanks or both.

Other means of measuring rainfall are by vertical radar sensing, using a 2-D video
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disdrometer or an optical rain gauge Krajewski et al. (1998). Each measuring method
has its own shortcomings and related uncertainties. In the following, a review of the
dominant sources of errors is presented for both point rainfall estimates and rainfall

spatial variability.

Point rainfall estimates are obtained using gauge devices, whether tipping bucket
gauges, optical gauges or tanks. According to Adam and Lettenmaier (2003), gauge
measurements of rainfall are systematically underestimated due to the following
effects: wind deformation above the orifice, wetting losses due to the adhesion of
droplets on the surface of the gauge, evaporation of water in the gauge, splashing
of raindrops outside the gauge, calibration of gauge and treatment of trace amounts
of precipitaiton. Among those factors, the most important is the wind-induced
undercatch, reaching between 2% and 10% for liquid water ( Yang et al., 2005; Adam
and Lettenmaier, 2003). Indeed, wind blowing across an obstacle tends to create a
zone of high pressure around the gauge, deflecting the droplets away from the funnel
(see figure 3.1.) This undercatch increases with wind speed and is also dependent
on the size of raindrops, smaller particles being more strongly deflected outside the
gauge (Krajewski et al., 1998). As wind speed increases with altitude, gauge set on
top of buildings are more likely to suffer from this type of undercatch compared to
ground stations. The situation is even worse in high latitudes regions, where the
large proportion of solid precipitation magnifies the undercatch. Indeed, in Arctic
regions, undercatch can reach 100% of total precipitation ( Yang et al., 2005, 1999;
Mekis and Hogg, 1999; Metcalfe et al., 1997).

Another important source of error is the calibration of tipping-buckets rainfall
gauges (TPR). In a static TBR calibration, the volume of water needed to tip
the bucket is assumed to be independent of the rainfall intensity. This type of

calibration, however, often results in the underestimation of rainfall. Indeed, some



Chapter 3. Literature review 35

Figure 3.1: Streamlines colored by velocity magnitude with static pres-
sure contours on the rain gauge (from Newman and Kucera
(2005)).

water is lost after each tip as the bucket repositions itself. For intense convective
storms, this may results in bias of 10 to 30% (Humphrey et al., 1997). Static
calibration is also problematic at small temporal scales (10-15 minutes) (Molini
et al., 2005), even for low rainfall intensity. Hence, it has been suggested to use
dynamical calibration, in which the volume of water tipping the bucket is assumed to
be dependent on the rainfall intensity (Humphrey et al., 1997). Dynamic calibration
is done by pumping water at a known rate to the TBR using a pump, and calibrating
the tipping rate to the water flow for different intensities. This procedures allows

the removal of mechanical errors systematically affecting TBR measurements.

Wetting losses result from raindrops or water films adhering to the gauge sur-
face instead of filling a tank. They account for around 3% of error (Adam and
Lettenmaier, 2003), with some variations depending on the evaporation rate and
the measurement frequency; if a tank is emptied twice a day, it has less time to

evaporate its content.

Other more pragmatic factors can influence data quality: debris obstructing
instruments, displacement of the gauge station, replacement of station by a new

model, change in manipulation protocol and personnel, changes in the station en-
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vironment (growing vegetation, new buildings) and apparatus malfunction (mouses

eating electric cables).

Now, even if all those sources of uncertainties were under control, there would
still be the problem of representativity (or commensurability). Extrapolating the
aerial rain distribution over a catchment from a handful of plate-size funnels can
lead to over or under estimation depending on the location of the storm with respect
to the stations (Habib et al., 2001; Bloschl, 2001; Willems, 2001; Morissey et al.,
1995). For example, when comparing the estimates from a single gauge to a dense
array of gauge (considered as the true value), Wood et al. (2000a) have shown
that there is a considerable intra-grid variability, even for 2x2 km grids. In other
words, at high temporal resolution, estimating rainfall from a single gauge leads,
in this case, to errors of 30%. This situation is critical for distributed hydrological
models, since they require a realiable description of the spatial variability of rainfall,
preferably at the same scale as that used by the model. Without this spatial rainfall
pattern, runoff estimation may be compromised, particularly for small catchments
(Chaubey et al., 1999; Chaubey et al., 1999; Lopes, 1996). Michaud and Sorooshian
(1994) have shown that under sampling the rainfall variability can cause errors of
up to 58% for peak flow. In the province of Quebec, where many catchments are
sparsely instrumented, the lack of this spatial information may be the major source
of uncertainty in aerial rainfall estimates. However, this lack of representativity may
be more critical for models operating at short time scales, where the timing of rainfall
is important, than for monthly models, where one can expect representativity errors

to average out, at least partially.

For high resolution distributed models, the spatial but also the temporal variabil-
ity play a significant role (Singh, 1997). For instance, the direction of a storm with

respect to the river flow influences the peak discharge; a storm moving along the flow
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will result in higher peak flows than a storm moving counter to the flow. Similarly,
different patterns for rainfall excess (constant, increasing, decreasing) directly affect

the concentration time (Singh, 1997).

Although it is possible to install a dense network of rain gauges, installation and
maintenance costs tend to be high and remote sensing methods are gaining popular-
ity. Among those, radar rainfall measurements strive to improve the measurement of
rainfall’s spatial variablility. Zawadski (1973) studied the space-time correlation of
storms and showed that although the studied storm is isotropic under 10km, at larger
distances rainfall decorrelates nearly exponentially. In a study comparing a dense
raingauge network to radar rainfall estimates on a 2 by 2km grid (Brue catchment,
Somerset, England), ( Wood et al., 2000a,b) show that for a given grid cell, a single
raingauge provide better estimate than the radar (over 15 minutes intervals). At the
catchment scale, however, the radar performs better than a single raingauge. Radar

“data are however notoriously difficult to convert into rainfall estimates, and errors
of 100% are not uncommon for light rain, while heavy rain show errors of around

30% (Habib and Krajewski, 2002).

Kriging methods are used extensively in geophysics and related fields to inter-
polate the value of some field at a given point from a set of point measurements
(Kyriakidis and Journel, 1999). Generally, a kriging method will require the modeler
to specify a number of measurements at point locations, some hypotheses about the
mean and variance of the field under study and the covariance function (how the
field changes with distance). Hence, kriging can be used to interpolate rain rates
for instance, given gauge readings distributed over a watershed (Sun et al., 2003).
Kriging can even account for point measurement errors in the interpolation of the

field (Daley, 1991). Kriging can also be used to combine radar data to raingauge
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data (Azimi-Zonooz et al., 1989), improving the spatial interpolation, especially in

sparsely instrumented areas.

Willems (2001) proposes to describe the point rainfall errors due to the apparatus
resolution, calibration errors and wind effects by a multiplicative normal error
In(R/R) ~ N(0,0), where R stands for the true rain and R the measured rain.

The variance o2 is given by
2 9 Amm) 2
o = () + (%~ | (3.1)

meaning a 3% relative error on total rainfall is assumed, along with a fixed error of 1
mm due to the apparatus resolution. Willems (2001) presents further variances for
aerial rainfall based on the number and location of point rainfall estimates. A similar
error model, also using a variance with fixed and proportional components, is used
by Weerts and El Serafy (2006). Petersen-Quverleir (2005) also uses a multiplicative
normal error (bias and variance) to describe rainfall errors in the study of extreme

rainfall.

The rainfall data used in the second paper is taken from the MOPEX database!.
The source of this data is discussed in the second paper (section II) and more
extensively in the MOPEX documentation (Schaake et al., 2006a). The data,

however, does not contain estimates of data accuracy.

3.1.2 Evapotranspiration uncertainty

Although a large part of the work presented in this thesis is concerned with errors

on rainfall, the other input variable, potential evapotranspiration (PE) is not error-

lnws.noaa.gov/oh/mopex/
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free. Since PE values are not directly measured but rather computed from models,
PE errors depend on the model used and the variables it depends on. Some models
estimate evapotranspiration from just the Julian day, radiation, or the minimum and
maximum temperatures, where others include factors such as soil moisture, land use,
vegetation type and growth season (Xu and Singh, 2002). In Oudin et al. (2005a,b),
27 different PE models are tested to assess the influence of PE estimates on model
calibration. The conclusion of their study is that detailed EP description does not
improve the efficiency for the models tested. In other words, most hydrological
models are not sensitive enough to be affected by slight interannual changes in PE
series. Error models for EP should hence focus not on individual PE values, but

rather on the mean and intraannual variability of PE series.

3.1.3 Discharge uncertainty

Continuous discharge measurements are obtained using a stage measurement (the
water level) and a rating curve. A rating curve is a function specific to a gauging
station relating stage measurements to discharges. It is first defined by taking
multiple measurements of stage and discharges under different conditions. The
discharge is then plotted on a graph versus the stage and a functional relationship
linking both variables is estimated, so that discharge can later be estimated directly
from the stage. The reason why this is done is that while the stage can be measured
automatically by an height gauge, estimating discharge is much more difficult.

Indeed, discharge is measured by integrating the water velocity v over the river

Q:fvdS.

cross-section S (figure 3.2):
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Figure 3.2: River cross section (from Fenton and Keller (2001)).

Measuring the velocity across the river at different depths can be a painstaking
process, particularly during flood events when the weather is generally bad. Un-
derstandably, the rating curve uncertainty on rare and extreme events is generally
greater than for small and frequent events. While Ultrasonic Doppler flow monitor-
ing can be used to measure discharge more efficiently, there are a number of factors
that introduce errors in the readings: lack of debris (no reflection), low water levels,

multiple reflections, bias due to large reflectors, etc. (Blake and Packman, 2007).

Errors on the rating curves are caused by a number of factors (Fenton and
Keller, 2001): flow unsteadiness, morphological changes in the river bed (sediment
transport) or channel, changes in river bed roughness (vegetation, bed forms) and
backwater effects from downstream obstacles. Flow unsteadiness in particular is
the source of hysteresis in stage-discharge relationship. Indeed, from a theoretical

point of view, discharge not only depends on stage but also on the river slope: water
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Figure 3.3: Rating curve of the Chunky River used by the USGS. The
dots indicate individual stage-discharge measurements.

velocity is greater if the slope is high than if it low. Hence, before the peak of a
flood, flow increases (raising limb), the slope is higher than in the steady state and
the real discharge is higher than in the steady state. During flow recession, (falling
limb), the slope is lower than in the steady state and the rating curve overestimates
the discharge. In other words, during a flood event, the actual discharge would
be given approximately by the loop shown in figure 3.4. Despite those sources of
uncertainties, Fenton and Keller (2001) have suggested that in most cases, a rating

curve neglecting the effect of the river slope provides reliable discharge estimates.

Formally, sampling uncertainty (finite number of stage/discharge measurements)
and individual stage and discharge measurement uncertainties can be described
individually to compute the overall discharge uncertainty (Dymond and Christian,
1982). This requires, however, considerable amount of information about the mea-
surement apparatus and protocol and imposes constraints on the rating curve parametriza-

tion. Calibration of the rating curve also poses some difficulty, since hypotheses
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Figure 3.4: Difference in discharge caused by variations in river slope
during a flood event, compared to the steady flow state
approximated by the rating curve (from Fenton and Keller
(2001)).

have to be made regarding the heteroscedasticity of discharge errors. Petersen-
Overleir (2004) has shown that non-linear least squares implieé a restricted type of
heteroscedasticity that can lead to dubious values for estimated discharges. Bayesian
methods have been used to calibrate the parameters of the rating curve (Moyeed and
Clarke, 2005), providing uncertainty estimates for discharges consistent with data

and parameter uncertainty.

3.1.4 Structural uncertainty

The most elusive source of errors is probably structural. Hydrological processes
are extremely complex, mostly because they operate on multiple scales and because
minor local disturbances can modify the global flow pattern (imagine a thin layer

of clay drastically modifying the hydraulic conductivity of an entire soil column.)
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Modeling those processes is a substantial challenge because gathering data is ex-
tremely labour intensive, and it is impossible to model all the processes at all
scales. The errors arising from these compromises can be significant, no matter
the calibration. Identifying the source of the dominant structural errors is probably

one of the thoughest challenges hydrology has yet to face.

Even though structural errors largely depend on the actual model being used,
there are still some hypotheses that should hold in general. The first one is that
structural errors are probably heteroscedastic, that is, it seems reasonable to hold
that the magnitude of errors depends on the magnitude of the event modeled. The
second one is that structural errors are also most probably autocorrelated. Indeed,
if for some reason the flow is underestimated at time ¢, it seems more probable
that the flow at time ¢ + 1 will also be underestimated rather than overestimated.
This hypothesis is based on the fact that hydrological models have a “memory” ;
the current state of the model depends on its last. Indeed, conceptual hydrological
models contain internal variables, generally water store levels, that vary relatively
slowly and buffer the effect of rainfall over time. If these conceptual internal stores
are not “correct”, the computed flow will contain slowly varying errors. In other

words, model errors will be autocorrelated.

A popular technique to take structural errors into account in modeling is by
running multiple models simultaneously and comparing their output. This idea is
applied in ensemble forecasts and Bayesian model averaging (Duan et al., 2007,
Tebaldi et al., 2005; Hoeting et al., 1999). However, there is a potential pitfall here
in using the term structural uncertainty to mean different things. Structural errors
can be related to the intrinsic stochasticity of the process, deficiencies in the model
or faulty boundary conditions. Running simulations with different initial conditions

may represent faithfully errors related to boundary conditions (if chosen correctly)
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and the model stochasticity, but it cannot account for model deficiencies (Sivillo
et al., 1997). Using genuinely independent model may give an idea of the errors
related to modeling assumptions, but there is no guaranty that the set of models

provides a complete or even realistic description of model errors.

3.2 Impact of errors on calibration

Although in hydrology input, output and structural errors are all present, tradi-
tionally, calibration methods have been designed to deal only with output errors.
The hypothesis underlying this practice is that other sources of errors can be safely
lumped into output errors. There is, however, growing evidence indicating that
such an hypothesis does not hold for input errors. That is, that assuming that input
data is exact when it is not does indeed influences the quality of calibration and
subsequent predictions. More precisely, the estimated parameters are biased. In
fact, for the case of a much simpler model, a straight line, this conclusion? has been
known for a long time, at least since before the beginning of the last century (see
York (1966) for references). Although methods exist to take input uncertainties into

account(Zellner, 1971), they still go largely ignored.

The situation in hydrology is more complex. There are a number of studies
about the sensitivity of hydrological models to input errors (rainfall and/or PE)
(Oudin et al., 2006, 2004; Andréassian et al., 2004; Kavetski et al., 2003; Borga,
2002; Andréassian et al., 2001; Hpybye and Rosbjerg, 1999; Nandakumar and Mein,
1997; Paturel et al., 1995; Michaud and Sorooshian, 1994; Xu and Vandewiele, 1994;

Storm et al., 1988; Troutman, 1982). Although most of them indicate that models

2In the presence of input errors, the least-squares estimate of the slope of a straight line is
systematically underestimated.
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are sensitive to input errors, other show that the low-pass behavior provides a
certain robustness to hydrological models(OQudin et al., 2006, 2004). Oudin et al.
(2006) attribute part of these conflicting results to the manner in which sensitivity is
defined: in some cases, a reference series is computed for one set of parameters, then
compared to output series generated with the same parameters but with corrupted
inputs, in other cases, the model is re-calibrated with the corrupted data, allowing

the model parameters to compensate for input errors.

The effect of errors on the parameters, whether they are input or output errors, is
to increase the uncertainty on the parameters. This is also referred to as a decrease
in parameter identifiability. From a calibration point of view, a large parameter
uncertainty means that different parameter sets yield simulations equally compatible
with observations. This concept has been given the name of equifinality by Beven
and Binley (1992). When the parameter uncertainty is translated into prediction
uncertainty, the confidence intervals over prédictions may become so large as to

make them uninformative (Uhlenbrook et al., 1999; Nandakumar and Mein, 1997).

3.3 Calibration methods

In the next pages, a subset of known calibration methods are presented, along with

references to application in hydrological sciences.

3.3.1 Standard optimization

The traditional way to calibrate hydrological models, and models in general, is

to select an objective function describing the concordance between measurements
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and observations and estimate the model parameters maximizing this concordance
(Beven, 2006). Under this approach lies the hypothesis that all sources of uncer-
tainties can be lumped into output errors, whose magnitude parameters seek to
minimize. Understandably, the value of the calibrated parameters will depend on
the choice of the objective function, that is the shape of the output error model.
The literature contains various suggestions for the objective function (Freer et al.,
1996; Gupta et al., 1998). One of the pervasive, however, is probably the normal
distribution. The modeler has then only to specify the mean (usually zero) and
variance of the distribution and estimate the parameters maximizing the residuals
probability, which is equivalent to minimizing the sum of the squared residuals 3.
Although this may seem like a crude way to describe errors, there are a number of

theoretical justifications for this assumption®.

In hydrology, there is little evidence suggesting that residuals are normally
distributed. Experience rather shows residuals are heteroscedastic(Freer et al., 1996;
Sorooshian and Dracup, 1980), that is, the magnitude of errors is not constant: large
flows have larger error than small flows. Instead of modifying the objective function
to take into this heteroscedasticity into account, modelers often apply a transfor-
mation to the flows before computing the objective function on the transformed
flows (Xu and Vandewiele, 1994). Logarithmic or power’ transformations (often a
square root) are examples of such transformations. Depending on the model’s time

resolution, residuals may also be found to be correlated. Objective functions based

3The Nash-Sutcliffe criteria, which is just the coefficient of determination F2, is a variation on
the same theme where the sum of squares is weighted by the variance of the observed flow series.

4Indeed, the central limit theorem states that the distribution of a sum of random variates, no
matter their respective distribution, tends to a normal distribution. Thus, by lumping additive
errors from different sources into a single error term, the resultant error can be assumed to be
approximately normal. Another nice property of the normal distribution is that it maximizes
entropy given a fixed mean and variance (Jaynes and Bretthorst, 2003). Entropy being a measure
of the information content of a function, the normal distribution can be interpreted as the least
informative distribution given a mean and variance. ’
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on an hypothesis of autoregressive process can then be used to take this correlation

into account (Beven and Freer, 2001; Sorooshian and Dracup, 1980).

A second hypothesis made by traditional calibration methods is that the model
behavior can be accurately described by a single parameter set. This latter hypoth-
esis is disputed among others by Beven (2006) on the basis that hydrological models
are often over-parametrized with respect to the information content of observational
data, leading to multiple instances of parameters giving similar simulations results
(equifinality). This view is compatible with the Bayesian philosophy where the
quantity of interest is not an optimum parameter but a distribution describing the
probability of model parameters. In the following, five methods are presented that
share this view, namely that a realistic model calibration should not be based on a

single simulation run with a single parameter set.

3.3.2 GLUE

The Generalised Likelihood Uncertainty Estimation (GLUE) procedure (Beven and
Binley, 1992) is a calibration method built on the equifinality principle: the idea that
many different parameter sets yield equally sensible model outputs. Drawing from
sensitivity analysis (Hornberger and Spear, 1981), it divides parameters between
behavioral parameter sets and non behavioral parameters based on a objective
function describing the data likelihood. Simply put, the GLUE methodology consists

of three steps (Beven and Freer, 2001):

1. Select prior distributions for each model parameter, possibly including bound-
ary conditions. Although any type of distribution could be selected, most
applications use a uniform distribution on the range of physically realistic

parameters (Beven and Freer, 2001; Mantovan and Todini, 2006).
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2. Select a sampling method to draw the random parameters, typically Monte

Carlo sampling (Beven and Freer, 2001).

3. Select a likelihood measure and an acceptance/rejection criteria. The likeli-
hood measure can be simply the squared error, the coeflicient of determination
R (the Nash-Sutcliffe efficiency) or any other measure of agreement between
-simulations and observations. The acceptance criteria divides parameter into
behavioral and non-behavioral sets. Parameter sets with a likelihood greater
than the criteria are deemed behavioral while the others are discarded as non-

_behavioral.

A GLUE simulation will hence sample parameters, compute their likelihood and
class them as behavioral or not. The set of behavioral parameters can then be used
to make predictions about future behavior. The GLUE methodology is widely used
in hydrology ° but is also the target of a number of criticisms regarding non-formal
likelihood measures, incoherent posterior predictive probabilities and inconsistencies

between batch and recursive estimation (Mantovan and Todini, 2006).

In Beven (2006), the author suggests that input errors can be taken into ac-
count in a formal GLUE framework by increasing the variance of the likelihood
measure, thus giving more weight to parameters predicting discharges farther from
the measured discharge. While this widens the prediction bounds, it is equivalent
to saying that input errors can somehow be lumped into output errors. Although
this hypothesis is certainly justified for linear models, it is questionable for the typ-
ically non-linear hydrological models. There is no doubt, however, that the GLUE
framework can accomodate input errors explicitly by treating them as stochastic

parameters.

5See www.es.lancs.ac.uk/hfdg/freeware/hfdg freeware gluepapers.htm for a list of
GLUE applications.
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Figure 3.5: Conceptual uncertainty framework (from Kavetski et al.
(2003)).

3.3.3 BATEA

The Bayesian framework proposed in the thesis is similar to BATEA, Bayesian Total
Error Analysis (Kavetski et al., 2003), whose name stems from Total Least Squares,
a fitting method similar to SLS, but where both the output and input errors are
considered (see the conceptual framework in figure 3.5). In BATEA, instead of
assuming as in SLS that the input data is exact, the authors propose to estimate

the true input values x along with the model’s parameters 8, using the expression :

p(6,z | &, J) < p(¥ | 0,2)p(Z | ) p(6, ). (3:2)

Before any computation can take place, the distributions on the right hand side
must be specified: the likelihood (or the response error model) p(g | 6, x), the input
error model p(Z | «) describing the relation between true input  and measured
input &, and the prior p(@, ) for the model’s parameters and the true input values

(which could also safely be written as p(8) p(x).) For one of their applications,
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the authors use a homoscedastic normal distribution for their response error model,
and an input error model based on storm events. That is, they suppose that the
hourly rainfalls during a storm are all equally corrupted. In other words, the storm
depth is under or over estimated, but the intra storm variability is not affected by
errors. Using these errors models, they generate synthetic data, add a random noise
generated by the errors models, compute the posterior distribution using Markov
Chain Monte Carlo sampling and compare the parameter distributions calibrated
from the sample to the parameters true value. They show that when the error
models correspond to the error generating distributions, the method finds the correct
parameters, but when the input error models are vague or completely wrong, the

estimated parameters are as bad as those found by SLS.

The initial goal of this thesis was to improve on the work of Kavetski et al. (2003)
by integrating over the latent variables & instead of estimating them. It turns out,
however, that both approaches, although theoretically different, are equivalent in
practice. Indeed, by sampling over the joint posterior (3.2) and then computing
histograms from the sampled parameters, the authors implicitly marginalize « from
the posterior distribution, i.e. compute p(6|&,4) = [ p(8,z|E, ) dx. In any case,
the intent of this work is to understand some of the issues related to multiple sources
of uncertainties that have not been discussed by Kavetski et al. (2003): the effect
of the true input prior, accounting for structural errors,‘ dealing with initial state
uncertainty, assessing the efficiency of models in the input uncertainty context and

the relation between input and output error models.
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3.3.4 Kalman filters

The Kalman filter (KF), named after Rudolf E. Kalman who proposed it at the
beginning of the sixties (Kalman, 1960), recursively estimates the state of a dy-
namic system from noisy initial conditions and measurements. It is used in a wide
variety of applications, from radar tracking to satellite navigation systems. The first
implementation of the Kalman filter was in fact to estimate spacecraft trajectories

for the Apollo program.

The Kalman filter is basically an equation to update the state of the system as
new information (measurements) become available. In the case of a radar tracker,
the state of the system would simply be the position and speed of an airplane. For
an hydrological model, it could be the level of reservoirs. One constraint however of
the original KF is that the state evolution of the system can be written as a linear
equation. That is, if we label the state variables at time ¢ by the vector ¢;, then the

evolution of the system and its output should be written as

¢t+1 = M¢t + B:i?t —+ Et, g~ N(O, Eftr) (33)

Y = H¢’t +€, €~ N(07 U;Wt)v (34)

where M represents the state evolution, & the forcing variable with B describing its
effect on the new state, ¢ the random structural error of covariance X" | H the

measurement matrix and e is an output measurement error of standard variation

o,

What makes the KF especially useful is that it keeps track of the state uncer-
tainty. Instead of assuming the initial state is known, it supposes that there is

a distribution of initial states. Then, instead of updating each and every one of
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those states individually, it assumes the states are normally distributed and only
updates the mean and covariance describing the states distribution. It is a clever
way to update the description of the states instead of the states themselves. More
precisely, the KF first performs a forecast, predicting from ¢;_; an approximate
value for ¢; and then compares the simulated output H¢; with the observation to

correct (update) the state. The algorithm is described more precisely in table 3.1.

1. Forecasting 2. Updating
1.1) Forecast the mean system state: 2.1) Compute the Kalman gain:
F_ = -1
¢t = M¢t—1 + Bwt_l K, = PtfHT [HP{HT + Eout]

2.2) Forecast the covariance:
p{ =MP,_ MT + 3%, measurement g;:
¢r = ¢f + Ku(Ge — Ho?)
3.3) Correct the covariance matrix:

P, = (I = KH)K]

2.2) Correct the mean state estimate using

Table 3.1: Kalman filtering algorithm (from Welch and Bishop (2006)).
Variables are defined in the text.

For complex large scale models (atmospheric, oceanic or distributed hydrologic
models), the KF is very valuable as each simulation can take weeks to complete.
On the other hand, the KF equations shown above assume that the model M and
measurement operator H are matrices, meaning that the model and measurement
operators are linear functions of the state variables, a rare occurrence in environ-

mental sciences. To extend KF methods to nonlinear models written as

¢t+1 = T](¢t7 ih 9) + €ty g~ N(07 U:tr) (35)

ye=h(d) +e&, €~ N(0,0), (3.6)
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the Extended Kalman Filter (EKF) computes the Kalman gain matrix and the
covariance matrix using linear approximations for M and H. That is, estimates for
M, and H, are found by computing the Jacobian matrix of  and h at their current
value. The setback is that after being forecasted by a nonlinear model, the model
state distribution loses its normality; it cannot be fully identified only from its mean
and covariance. For highly nonlinear models, this neglect of higher order moments

may lead to forecast errors (Evensen, 1994).

The Ensemble Kalman Filter (EnKF) solution suggested by Evensen (1994) (see
Evensen (2003) for a complete introduction to the theory and practical implementa-
tion details) is to use an ensemble of states to represent the state distribution. That
is, a number of initial conditions are defined and each one of them is forecasted
individually. To update the states, the covariance matrix is computed from the
ensemble statistics and used to update each state. This avoids computing the
jacobian of the model at each time step and is numerically cheaper. Using this
ensemble approach avoids making the assumption made by the EKF that the state
distribution is normal (although P/ is still computed from a normal covariance
approximation, see table 3.1), seems to simplify the overall implementation and
allows EnKF to be used with nonlinear models without numerical instabilities. This
is critical in hydrology since models are often highly nonlinear due to threshold
structures, i.e. the behavior changes radically if one variable reaches some limiting

value (reservoir gets full, rain rate exceeds infiltration rate, etc.)

The idea that EnKF can also be used to estimate parameters, instead of assuming
them known, has been used recently by Ewvensen (2007), Vrugt et al. (2005) and
Young (2002). Evensen (2007) derives a dynamic equation describing the evolution
of the model parameters probability and solves it using EnKF. In the simultaneous

optimization and data assimilation (SODA) approach, Vrugt et al. (2005) combine
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an EnKF loop with a parameter estimation loop. For a given parameter set, the
authors generate an output time series using EnKF, then compute the posterior
probability of the series and use this probability to explore the parameter space in
the search of a global optimum. This search algorithm is driven by the SCEM-UA

method ( Vrugt et al., 2003) to rapidly converge toward the posterior distribution.

3.3.5 Sequential Monte Carlo

Sequential Monte Carlo methods (also called particle filters, bootstrap filter, con-
densation algorithm, interacting particle approximation and survival of the fittest)
are methods designed to solve the Bayesian recursive estimation problem (Doucet
et al., 2000). That is, those methods approximate a posterior density 7; as it evolves
each time new data become available. To do so, the posterior is approximated by
a finite sample of particles, whose empirical distribution approaches the theoretical
distribution as the number of particles approach infinity. Because particle filters are
recursive method, they lend themselves to the real time calibration of models and

are use extensively in target tracking problems®.

In the particle terminology, particles 8,02 ... 0V target a distribution = if and

only if

Z w'g(8) — Bar(g), (3.7)

where w' are the particles weight and g is any measurable function such that its
expectation value E,(g) exists. In a recursive estimation problem, the posterior m,
the target, evolves as new information is added. A particle filter algorithm is hence

required to produce a particle system (particles and their weight) that consistently

6See the Sequential Monte Carlo Methods homepage at www-sigproc.eng.cam.ac.uk/smc/ for
a list of applications in different fields.
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reproduces the target as it evolves. A general algorithm to generate such a particle
system can be divided in three steps, mutation, correction and selection (Chopin,

2004):

1. Mutation: Draw particles for ¢ = 1,..., N from a distribution k; serving as

a first approximation of the target m;:

0; ~ kt(et | ét—l)

The samples drawn from distribution k; are provisionary in the sense that they

do not target ;.

2. Correction: Assign a weight to each particle

w} o m(6,)/7(8)),

where 7(0) = [ m—1(6:_1)k:(6 | 6;—1) df;—1. Once this step is accomplished,

the particle system targets distribution ;.

3. Selection: Resample the particle system so that the re-sampled particles have

uniform weights:

(6, w;) — (65, 1).

To give readers a more hands-on example, the following presents a simple appli-
cation of particle filtering using an implementation called the sequential importance
sampling algorithm (SIS) (see Arulampalam et al. (2002) for a tutorial), where
there are only mutation and correction steps. First, let’s express the evolution

of a system’s state by :

by = 1(ps—1, &4, 0) + wr, (3.8)
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where ¢; is the model’s state at time ¢, § are model’s parameters, &; the forcing
variable at time ¢ and w a stochastic term describing a structural error. The output

y; from the model is described by a second equation:

Ye = h(¢¢,0) + s, (3.9)

where v is the observational error. For the first iteration (t = 0), N, particles

(#%,05), 1 =1,...,N, are sampled from a prior distribution and assigned uniform

weights (w) = 1/N,). Then, the particles are propagated forward in time using the
(

model 7(-) and the current input variables (the mutation step)

¢t = n(Pi_1, &1, 0i_1) + Wit

The particle’s weight w are then updated by evaluating the likelihood of the output

measurement 4 :

wp o< wi_y - p(Gelh(¢}, 62)),

where p is a function returning the likelihood of the observation.

The particle system steps forward and propagate the particles to the next time
step, targeting each posterior distribution as it evolves. Using the particle system, it

is straightforward to compute any expectation value of a function g using equation

(3.7).

Although the basic idea is straightforward, there are some difficulties with its
application. One such difficulty is that particles tend to degenerate: after a few
time steps, most particles end up with very low weights, contributing weakly to
the computation of expectation values, hence lowering the descriptive value of the

system. One solution to this problem is to add a re-sampling step once in a while,
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(eg. the SIR algorithm, (Gordon et al., 1993)); particles with very low weights are
discarded, and replaced by copies of particles with high weights. But then, this
introduces another problem called sampled impoverishment, where a lot of particles
become identical. The solution then is to perturb the copied particle’s by adding a

random noise using MCMC methods (Doucet et al., 2000).

Particle filters methods have been applied to dynamic systems (Liu and Chen,
1998) and more precisely to calibrate an hydrological model by Moradkhani et al.
(2005) in real and synthetic experiment. The authors show that in a synthetic exper-
iment, the parameters converge toward their true value. For real experiments, the
authors report good conformity between simulated and observed results, although
some of the high floods lie outside the prediction uncertainty bounds. Particle
filters have been compared to EnKF in an hydrological application in Weerts and
El Serafy (2006). For a low number of ensembles/particles, the EnKF yields superior
results in term of RMSE (in a synthetic experiment), while for intermediate number
of ensembles/particles, particle filters perform better. However, the authors remark
that EnKF is more robust to the choice of error models, and hence, more appropriate
for real experiments. Particle filters have also been used recently for dynamic crop

modelling (Naud et al., 2007).

3.3.6 (Gaussian processes

A Gaussian process is defined as a stochastic process generating samples such that
any linear combination of those sample is normally distributed. For example, Brown-
ian motion is a Wiener process, a particular instance of a Gaussian process, since the
position of a particle subject to Brownian motion is normally distributed. Kennedy

and O’Hagan (2001) use Gaussian processes to infer a function, the true process,
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from data, a computer code (the model) and various assumptions about structural
and data errors. That is, they assume there exists a true process {(-), from which
the data is a particular realization. The computer model n(x, 8) is a simplification
of the true process, neglecting the inherent stochasticity of the process as well as
unobserved conditions (hidden variables). The relationship between observations y;,

the true process and the computer model is then assumed to be
Y = C(w@) +e = pT](iB,;, 9) + 5(:13,,) + e;, (310)

where @; is the input vector at time #;, e; is the measurement error, p a unknown
parameter and 6(-) a function describing structural errors, labeled by Kennedy and
O’Hagan (2001) as the inadequacy function and assumed to be independent from

the code output n(x, 0).

Under the assumption that 7(-) is a Gaussian process, it can be written as

() ~ N(m(), c(,));

where m(-) is the mean function and c(-,-) the covariance function. The mean
function m is then represented by a linear combination of different functions with

unknown coefficients. For instance, if polynomials are used as a basis for m:

p

m(-)=>_ Biz'=h()"B,

i=1

where 3 are unknown coefficients. The covariance function is defined as a correlation
function describing the smoothness of the function: c(-,-) = o*r(x — &’). A choice

for r could be the euclidean distance for example.

If the inadequacy function ¢ is also assumed to be a Gaussian process, and
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if the residuals are assumed normally distributed, then it is possible to calibrate
the model, that is to find the posterior distribution p(8,3,¢ | d) where ¢ are
hyperparameters describing prior assumptions and d the calibration data set using
linear algebra. In the applications presented in Kennedy and O’Hagan (2001),
the hyperparameters are estimated to a point value, and predictions are made by
numerically integrating over the model parameters 8. The strong point of Gaussian
processés is the ability it gives the modeler to infer the value of a function, the
model, instead of being constrained to a deterministic set of equations. In terms of
capturing the structural uncertainty, this is a remarkable improvement. One setback
however is that the procedure described in Kennedy and O’Hagan (2001) is limited
to problems with low dimensionality, although the authors imply that it would be
possible to tackle higher dimensional problems using MCMC integration. Another
issue is the implied normality assumptions for the model residuals, which may not

be realistic in hydrology unless variables are appropriately transformed.

3.3.7 Comments

For all the methods presented above, assumptions about the nature of errors are
made to simplify computations to a level where the methods can be applied to
complex hydrological models. For instance, the particle filters does not account
explicitly for input errors, i.e. , it assumes that input uncertainties can be described
by parameter uncertainties. Kalman filters on the other hand can be designed to
handle input uncertainties, but the state updating equation is based on the state
covariance, imposing normal-like correlations among variables. Gaussian processes
are an elegant proposition to describe different sources of uncertainty, but according

to the authors, is not adapted for problems with many dimensions, limiting its use-
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fulness in hydrological modeling. In BATEA, errors are assumed perfectly correlated

among a given storm to reduce the number of latent variables.

In the following, a general Bayesian framework is proposed, theoretically impos-
ing no constraints on the choice of efrors models. In an actual calibration, however,
this freedom in the selection of error models has a cost in terms of computation
time, constraining the models for which the method can be applied in a reasonable

amount of time.



CHAPTER 4

Discussion

This chapter presents an overview of the ideas and results presented in the papers
included in Part II. For each paper, a synthesis of the objectives and methodology
is provided, followed by comments on the results and their meaning. In the last

section, some ideas about further work and applications are proposed.

The basis of this work is a conceptual framework describing how multiple errors
relate to idealized true input and output variables, as well as to the true process.
The framework is entirely general in the sense that it could be applied to any model.
It is also not unique since the very definitions of structural, input and output errors

are, to some extent, a matter of subjective choice.

Using Bayesian analysis, this uncertainty framework can be translated into a
probabilistic form, allowing the derivation of an equation for the posterior parameter
distribution. Under rather stringent assumption, this equation can be solved analyt-
ically. This special case is the topic of Huard et al. (2006) and discussed in section
4.3. The assumptions required for the existence of an analytical solution are the
linearity of the model and the normality of the error models and the prior for the true
input. These cases occur rarely, if ever, in practice, and the application to the linear

model “abc” (Fiering, 1967) is a didactic exercise rather than an actual calibration
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technique. However, the analyticity of the solution allows a deeper understanding

of issues related to input errors, difficult to achieve with more complex models.

To dispense with the linearity and normality assumptions, the second paper uses
Markov Chain Monte Carlo (MCMC) sampling to solve the parameter posterior
equation (section 4.4). While this allows any model or error model to be chosen, it
becomes numerically intensive as the data series become longer. For this reason, the
method is applied to a monthly model, GR2M (Mouelhi et al., 2006), rather than
a daily model. Simulations are run with simple and more complex error models
to highlight their impact on the parameter posterior distribution. Other issues are
discussed, namely the initial state uncertainty and the identification of structural

CITors.

In these two first papers, even though structural errors are considered (implicitly
or explicitly), the model is assumed known. In real applications, however, the first
modeling step is often the selection of an appropriate model. Model selection is
generally a subjective decision based on the experience of the modeler or simply trial
and error. Recently, Bayesian model selection theory has been used to identify the
most appropriate model or the weights for an ensemble of models (Marshall et al.,
2005). Such comparison of models, however, depends on the choice of priors for
model parameters. To define priors having a consistent meaning across models, the
third paper (Huard et al., 2006) proposes the idea of parent prior, and applies it to
copula selection. Copulas are multivariate distributions that enjoy a wide popularity
in finance due to their flexibility in describing a wide range of dependence structure
between variables, irrespective of their marginal distribution (Genest and Favre,
2007). Section 4.5 discusses how a parent prior idea might be used in hydrological

model selection.
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4.1 Conceptual framework

An inferential process basically strives to estimate what is unknown from what is
known. In an hydrological calibration problem, the known elements are typically
experimentally observed data series of rainfall, flow and other climatic variables re-
quested and returned by the model. The unknowns are the parameters describing the
model’s behavior. Calibration hence arﬁounts to the computation of the probability
of those parameters knowing the input/output data and the model: p(@ | , g, M).
The main problem with such a formulation is that models do not link directly input
data to output data. Indeed, models assume they are forced with exact true inputs
(x), not experimental data ridden by input errors. Moreover, models are not exact,
but merely approximations of the natural processes that occur in the real world.
Hence, output of models are different from idealized true output variables, and this
difference is defined here as the structural error. Finally, this idealized true output
variable (y) is not what is observed in the field since output errors corrupt the
measurement () of this true output variable. Overall, there is a gap between what
is actually known (Z, §), what the model expects (x), what it returns (%) and what

the “real” output variable is (y).

To bridge this gap, relationships are needed between measured and true values,
and between modeled and true processes. These relationships are called error
models, and describe, probabilistically, the probability of occurrence of input, output
and structural errors. Once those error models are defined, the next step is to merge

them into a unified equation describing the posterior parameter probability.
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Figure 4.1: Uncertainty framework proposed and used in the thesis. The
input error model p;, describes the probability of measuring
Z knowing the true value of . Similarly, the output error
model pyys describes the probability of measuring § knowing
the true value y. The last element, ps, is the structural
error model, and describes the probability of a true value
given the model M, the true forcing «, the parameters 8 and
initial conditions ¢g. The distribution 7 (8, ¢g) describes the
a priori knowledge about parameters and initial conditions.

4.2 An equation for the posterior distribution

The probabilistic statement p(@ | &, §, M) is not directly solvable. To bring it under
a computable form, a number of steps have to be performed and assumptions made.
The complete derivation is described in detail in section 2.2 of Huard and Mailhot

(2007). Here, only the main assumptions are highlighted:

o Measurements are estimates of idealized true input and output variables.

Table 4.1: Error models linking known data and model to idealized true
values and processes.

Input error model pin(& [ @)
Output error model pou:(F | y)
Structural error model pg,(y | x, 8, o, M)
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e The model is an approximation of some true process.

e Input and output errors are conditionally independent from each other given
the true input and output, as well as conditionally independent from model

parameters, initial conditions and the model.

Using those assumptions, the posterior parameter distribution can be written as

5012,9)x [[[ 5@ 12) boul@ ] 9) Py | 5) () (6, 60) d dy d

(4.1)
where mention of the model M is omitted since it is always assumed known.
There is also an implicit assumption, namely that all error models and priors are
conditioned on I, the information on the watersheds characteristics (location, size
and climatology). This assumption makes the separation of the prior w(zx, 8, ¢o)
into two distinct priors m,(x) (0, ¢o) a reasonable simplification. Indeed, while
there are certainly correlations between rainfall and model parameters and model
states, they are generally unknown a priori. In other words, it would be extremely
difficult to describe an informative dependence structure between model parameters
and rainfall before looking at the data. An intermediate view is to assign prior for
the model parameters and state on the general climatology or previous studies on

neighbouring bassins, information denoted here by 1.

4.3 Linear case: “abc” model

The solution to equation (4.1) involves integrals over da dy d¢. For a data series of
length n, this implies an integration over more than 2n dimensions. Even for short

time series, using standard integration algorithms (quadrature methods) is out of
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the question, as their computation time grows almost exponentially with dimen-
sion. These algorithms are fit for 1D to 3D integrals, but useless for integrals over
more than six dimensions, except in very specific cases (Genz, 1992). Fortunately,
equation (4.1) has an analytical solution when certain conditions are met: linearity
of the model and normality of the error models and of the true input prior. The
first application of the method is hence concerned with the linear model “abc”, and
uses this analytical solution to compute the posterior distribution and evaluate the
advantages of the method compared to traditional calibration methods, as well the

implications of assuming the presence of input errors.

4.3.1 Objectives and methodology

The objective of the study is to see whether or not the bias caused by input errors in
the estimated parameters fitted using SLS can be eliminated by taking input errors

into account.

To do so, synthetic data is generated: a series of true rainfall is defined as the
true rainfall and random measurement errors are added to create a synthetic rainfall
measurement series. Output measurements are created similarly by choosing a set
of model parameters as the true parameters, running the model with the true inputs
so as to define a series of true outputs. These true outputs are then corrupted with
normally distributed errors to generate a synthetic output measurement series. The
model is calibrated against the synthetic data and the estimated parameters are

compared with the true parameters as well as with the parameters estimated by

SLS.

The model used is “abc”, a pedagogical model designed to teach students the

basic principle of hydrologic modeling (Fiering, 1967). It has three parameters
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(a,b,c), describing the infiltration rate, evapotranspiration and the exchange be-
tween storage and discharge. The model is forced with aerial rainfall,v and returns
an aerial discharge. There is one state variable, the amount of water in storage. By
stating that the model is linear, it is meant that it can be written under the form
y = Az +b (see Huard and Mailhot (2006, par. 50)). Under this form, and assuming
the prior for the true input 7(x) and the error models are expressed by Gaussian
functions (o< €*Z7'%), the solution to 4.1 is given by Equation (18) in Huard and

Mailhot (2006).

4.3.2 Discussion

The results seem to indicate that using the method slightly improves the accuracy
of the calibrated parameters. That is, the estimated parameters are closer to the
true parameters than those estimated with SLS. As for predictions, they seem again
to be slightly better than those obtained using SLS, but this conclusion is based
only on visual cues. Due to numerical limitations, the simulations could not show
that the parameter distribution converges toward the true parameters as the length
of the calibration time series increases. However, the fact that this convergence
actually takes place for a simpler model (a straight line fit) lends confidence in the
hypothesis that the Bayesian method can actually overcome the bias in the “abc”
parameters. Overall, the paper concludes that by using the proposed method, the
calibrated parameter distribution is allowed to incorporate input uncertainties in
a meaningful way, and provides confidence intervals that realistically depict the

different uncertainties.

In retrospect, this conclusion appears a bit simplistic. First of all, saying that the

parameter uncertainty incorporates the input uncertainty may be too vague. What
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is really meant is that the parameter distribution considers the possibility of a true
input being different from the input measurement. It does not mean, however,
that running the model with parameters sampled from the posterior distribution
reproduces the effect of input errors. In other words, although the parameter
posterior distribution is representative of the uncertainties contained in the input
and output data, parameter uncertainty cannot magically “account” for the other

sources of uncertainties.

Secondly, the usefulness of the whole procedure strongly depends on the accuracy
of the error models and of the prior for the true inputs. In this first application, since
the errors are synthetic, defining the error models poses no problem, but in real life,
it remains a complicated issue. Another important realization stemming from this
research is that when each datum in the series is considered uncertain, the prior for
the true input becomes critical for the correct evaluation of the parameters. That
is, it appears that the parameter posterior distribution does not converge towards

the true parameter value unless the prior for the true input is correctly defined.

Finally, a technical issue is the numerical cost to evaluate the posterior. For large
time series (n > 100), the time needed to multiply and invert n X n matrices becomes
prohibitive. One solution to reduce the numerical effort would be to make use of the
properties of matrix A. In theory, the model output depends on all previous rainfall,
but for practical purpose, only the last 20 or so values are relevant. This means that
A can be approximated by a band matrix, with only the first 20 lower diagonals being
non-zero. This simplification would allow the use of numerical routines specifically
designed to deal with band matrices, and possibly allow the treatment of larger

matrices, hence longer time series.
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4.4 Non linear case: GR2M model

Most hydrological models are nonlinear with respect to their input variables. This
means that the analytical solution used for “abc” cannot be applied in general, and a
solution to equation (4.1) must be found elsewhere. In physics, a popular solution to
solve large integrals is Metropolis Markov Chain Monte Carlo (MCMC) sampling.
The MCMC theory is discussed in Bayesian textbooks (Gelman et al., 1995) as
well as more specific references (Neal, 1993). The basic idea is to draw stochastic
parameters, and accept or reject them based on their posterior probability. If the
sampled chain is long enough, the values drawn form a sample of the posterior
distribution. The second paper uses the Metropolis algorithm to generate a Markov

chain of samples empirically defining the parameter posterior distribution (4.1).

4.4.1 Objectives

The initial objective of the paper was to use the flexibility of MCMC sampling
to assess the influence of different choices of error models on the posterior model
parameters and the performance of the calibrated model. A number of difficulties,
however, have hampered success and led to a complete rewrite of the paper. The
main difficulty is that measuring model performance is not trivial. The standard cri-
teria for hydrological model performance, the Nash-Sutcliffe efficiency, only measures
differences between output observations and simulations. When taking input errors
into account, input data is not considered exact anymore, therefore, using NSE as
a performance criteria is misleading. Moreover, NSE is influenced by the variability
found in the time series. In this sense, comparing stations among themselves is

rather meaningless. Even comparing calibration and validation is risky since a
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lower variability in the validation series can result in higher NSE in validation than
calibration (Schaefli and Gupta, 2007). Overall, although the first version of the
paper was an honnest attempt at understanding the effect of error models, its goal

was too ambitious with respect to the tools that are available to achieve it.

The objective of the second version is rather to understand the calibration and
validation issues that inevitably appear when multiple sources of uncertainty are
included in the analysis. In other words, to present some of the issues that affected
the realization of the first version. For instance, the fact that input errors are
considered completely changes the way calibration and validation results are to
be interpreted, and hence, how model performance is evaluated. The paper also
highlights some of the possibilities offered by the approach, namely the a posteriori
separation of the different sources of errors. On the whole, the exercise is to be
interpreted as a way to reveal the issues that need to be addressed before attempting
to apply the method in real scenarios, as well as underline the novel possibilities it

opens.

4.4.2 Methodology

The solution to the parameter posterior equation is found using the Metropolis algo-
rithm, where samples are generated through a random walk process. The Metropolis
algorithm was chosen mostly for its ease of implementation, but other sampling
algorithms may be employed in the future. As an example, assume parameter 8 is
to be sampled from a distribution p(#). Starting from some value 6;, a candidate ¢’
for the next step is drawn from a proposal distribution ¢ (¢’ | 6;). An acceptance

ratiQ defined as :
6" | 9)p(6)
a9',0) = £ 1OPO)
-0 = @ owe)
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defines the probability of this candidate forming the next state: the candidate ¢’ is
accepted as the the new state 6,,; with probability min(a(¢’, ), 1). Algorithmically,

this is translated as:

1. A new candidate is drawn ¢’ ~ ¢, (0 | 6;),
2. A random uniform variate is drawn u ~ U(0, 1),

3. If a(#,6;) > u then 6,1 = &', otherwise 0,1 = 6;.

Repeating this algorithm for a large number of times ensures that the chain empir-

ically reproduces the distribution p(9).

The main obstacle to the MCMC solution is that the number of samples necessary
to reach convergence, that is until the sample empirically reproduces the properties
of its distribution, increases with the number of dimensions to cover. There are
a number of criteria assessing the convergence of the sample, but none is entirely
satisfactory by itsefl. Hence, visual inspection is used to determine at which point
addind samples has no visible effect on the final distribution. Using daily models
and assuming independent input, output and model errors, the calibration of five
years of data would imply sampling over more than 3600 dimensions. Although this
is certainly possible, it is a big step to take. A more cautious approach is to first
tackle simpler monthly models with comparatively shorter time series (calibration

over 20 years of data implies sampling over only 480 dimensions).

The model chosen for this application is hence GR2M (Mouelhi et al., 2006;
Kabouya, 1990; Edijatno and Michel, 1989), a parsimonious monthly hydrological
model. Although GR2M has only two free parameters and two internal state

variables, it has been shown to be sensitive to input errors (Paturel et al., 1995).
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The meaning of the model parameters is described in section 3.1 of the second paper,
and a diagram of the model is shown in figure 4.2. The data used for calibration is
taken from the Model Parameter Experiment (MOPEX) database (Schaake et al.,
2006b) and consists of aerial daily rainfall, potential evapotranspiration and dis-
charge. The data is then aggregated to monthly values, a simple task since there
are many stations with long stretches of data without missing values. Calibration is
performed under different error model assumptions to understand the effect of these

assumptions on the calibration results.
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Figure 4.2: Diagram of GR2M (from Mouelhi et al. (2006)).

4.4.3 Discussion

Although this second paper deals with a simple monthly model, most of the issues
it raises are independent from the modeling time step. One of the most important
conclusions of the paper is the realization of the large effect error model assump-
tions have on model parameters. Assuming that input errors are large and output

errors small and vice-versa leads to completely different parameter distributions
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(see section 4.5 of Huard and Mailhot (2007)). This begs the question “What is the
meaning of model parameters ?” For Mantovan and Todini (2006) and Beven (2006),
parameters are dummy quantities, random values with a flimsy physical signification,
on which all uncertainties are projected. This view, labeled by these authors as
the “classical Bayesian view”!, appears unproductive and slightly misleading. For
Jaynes and Bretthorst (2003), the whole idea of Bayesian analysis revolves around
the inference of unknown values. Whether these values are random or not is beside
the point. Second, assuming parameters are dummy variables is detrimental because
it dilutes the physical content of parameters. Ideally, model parameter, even for
conceptual models, should have a physical interpretation, making it possible to define
prior assumptions about them from the available hydrological, climatological and
geographical knowledge. Treating parameters as dummy variables leaves little choice
for modelers but to assign very vague priors to these parameters. Finally, stating
that uncertainties are projected into the parameter distribution is an incomplete
statement. The dispersion of the parameter distribution reflects the uncertainty
on the inferred model parameter due to data and model errors. It does not in
some magical way lump all sources of uncertainties. More explicitly, if the poste-
rior parameter distribution is used to simulate output series, the dispersion of the
outputs only represents the parameter uncertainty, and not the input and output
uncertainties. These sources of uncertainties, as well as the model uncertainty, must
be accounted for explicitly. If this is not done properly, confidence intervals run the

risk of being too optimistic.

An interesting possibility offered by the uncertainty framework and briefly ex-

plored in Huard and Mailhot (2007) is the explicit separation and identification of

LThe notion that Bayesian theory considers parameters like random values is rather the frequen-
tist interpretation of Bayesian theory rather than the “classical” Bayesian paradigm as understood
by Jeffreys (Jeffreys, 1983) or Jaynes {Jaynes and Bretthorst, 2003).
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input, output and structural errors. Of course, what is obtained is a posterior dis-
tribution of these errors, and not definite values. Moreover, it is expected that these
error distributions are closely dependent on the error models chosen to calibrate the
model. Indeed, contrary to parameters that are inferred from the entire data series,
input, output and structural error series are each as long as the data series: the ratio
data/parameters is very low. Moreover, structural errors are linked to the data only
through the input and output error models. In this sense, before analyzing the
structural error distribution to find model inadequacies, the first steps would be to
assess the validity of the error model assumptions and the sensitivity of the posterior
structural error distribution to these assumptions. If the posterior structural error
distribution radically changes for different but equally plausible structural error
models, then there is not much to learn from the analysis of the inferred structural
errors. If on the contrary structural errors features are relatively robust, analysis of
the structural error time series could yield precious information about the contexts

in which the model fails.

One thing that deserves to be mentioned is that for models expressed by a state

equation and an observation equation:

Ger1 = (s, &4, 0) + &4 (4.2)

Ye = h(¢s) + &, (4.3)

a state error € could also be considered via a state error model. It is clear, however,
that without some way to define an informative state error model, or some way to
measure, at least indirectly, the state of the system, there is probably not much to
gain by adding this additional source of error: it would simply be a fudge factor.

This brings back the question about the meaning of model parameters. If the state
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variables are “dummy” variables without physical meaning, it is difficult to assign
an informative prior for the state and impossible to compare the model state with
some physical property of the watershed, which could help calibrating and validating
the model. On the other hand, if the state variables can be linked, even tenuously,
with some observable, then it becomes possible to incorporate the measurements of
this observable to the calibration process and improve the inference of the model’s

parameters via its state.

4.5 Model selection and the parent prior

In the proposed Bayesian framework, structural errors are considered by defining
a structural error model, describing probabilistically the occurrence of structural
errors. Another solution to describe structural uncertainties is to run simulations
with different models. The underlying idea is that by assessing the output by
a variety of models, the uncertainty over the modeling process is captured more
effectively than by a unique model (Duan et al., 2007). The question then arises:
are all models equivalent, or are some models more probable than others and which
ones ? Bayesian model selection can answer that question, but not without a number
of assumptions. These assumptions concern both the prior probability for each
.model, but also the prior probability for the models’ parameters. In the third
paper, Bayesian model selection (Bretthorst, 1996) is used along with the proposed
concept of the parent prior, allowing the definition of priors for model parameters
that are consistent across models, i.e. have the same meaning. The paper applies
those ideas to the selection of copulas. Explanations as to how a similar method

could be applied in hydrology are then given.
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4.5.1 Objectives

The objective of the third paper (Huard et al., 2006) is to show how models can
be selected based on formal hypotheses. These hypotheses concern 1) the prior
probability of the different models, and 2) the probability of a property shared by
all models. The proposed method is applied to select the “best” copula among a set

to show the effectiveness of the method as well as its limitations.

4.5.2 Methodology

Although there is a rather large body of literature on the subject of prior selection
for parameter estimation (Kass and Wasserman, 1996), the issue is relatively new
in the context of model selection. Indeed, in such applications, each model has
different parameters with different meanings. In order to compare the models
rigorously, the priors for the parameters should ideally mean the same thing across
models. If this is not the case, some models run the risk of being selected or rejected
arbitrarily for parametrization reasons. To solve this problem, Huard et al. (2006)
propose the concept of parent prior. A parent prior is a prior distribution for a
property (significant in the context of the application) that is shared by all models.
By variable substitution, this parent prior can be translated into priors for the

parameters of each model.

The idea of the parent prior is elaborated and applied in the context of copula
selection (see section 4.5). Copulas are multivariate joint distributions over the
unit hypercube [0,1]" such that the marginal distributions are uniform over [0, 1]
(Nelsen, 1999). Since the cumulative distribution function of any distribution is

a uniform distribution over the unit interval, copulas can be used to model the
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dependence between variables, irrespective of their marginal distribution. Hence in
two dimensions, if H(z,y) is a joint distribution with marginals F(z) and G(y),

then there exists a copula C' such that
H(z,y) = C(F(z),G(y))-

This type of construction yields much more flexibility than classical multivariate
distributions where the marginal are all from the same family: multivariate normal,

bivariate Gumbel, etc.

In the copula literature, the dependence between variables is often expressed
by Kendall’s 7, a non-parametric measure of association (see section 1 in Huard
et al. (2006)). For the most popular copulas, this measure has a simple analytical
expression in terms of the copula parameter. The widespread use of Kendall’s 7 and
its simple interpretation makes it a logical choice for the property on which to base
the parent prior. For the copula application, a uniform prior over Kendall’s 7 was

used as a parent prior.

The third paper shows how this approach yields sensible results for copula
selection. Using synthetic data generated from one copula, the selection method
is applied to see how often the right copula is selected. The performance of the
method depends closely on the length of the series, but also on the relative differ-
ences between copulas. If the copulas tested are all very much alike (eg. when the
dependence is low), then the method finds the right copula less often than when the

copulas are more contrasted.
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4.5.3 Discussion

Traditionally, hydrological models are chosen either by expert knowledge or by
comparing quantitative criterion of model accuracy among a set of plausible models
(Marshall et al., 2005). This method has the tendency, however, to bias model
selection toward complex models since they typically are able to reach a better
agreement with observations, at least during calibration. Some criteria like the
Bayesian Information Criterion (BIC) (Schwarz, 1978) attempt to compensate this
bias by penalizing a model according to its number of parameters, but have other

weaknesses (Weakliem, 1999).

In Marshall et al. (2005), the authors propose to base the selection of an hydro-
logical model on Bayesian model selection. One of the attractive features of Bayesian
model selection is that for similar performances, it naturally discriminates simple
against complex models. To understand how this Ockam’s razor works, assume one
wishes to compare two models: model M; has no free parameter, and model M,
has one parameter a taking a value among [1,2, 3]. It is assumed that the prior for
a is uniform, that is: 7,(i) = 1/3 for i = 1,2, 3. The likelihood of the first model is

given simply by
(M)

(4.4)

where D stands for data. The likelihood of the second model is obtained by
considering the parameter as a latent variable, that is, by summing the likelihood
over all the values taken by the parameter:

71’(./\/[2)
p(D)

p(Mz | D) =Y p(D | Ma,a = i)ma(s)

i=1

_ 17(My) 2
= 3 0(D) > (D | My). (4.6)

=1

(4.3)
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Clearly, for the second model to reach a higher probability than the first, it has to
“beat” the prior factor of 1/3. That it, if the model has a non-zero likelihood only
for a = 3, then p(D | Ma,a = 3) has to be three times greater than p(D | M),
otherwise the first model will be selected as the most probable. Hence it is not only
the number of parameters that influence the probability of the model in a model
selection problem, but also their prior distributions. Tightly constrained parameters
do not discriminate complex models as much as parameters with vague priors. In
this sense, the choice of the priors for the parameters is an important part of the
model selection process. Of course, since the influence of priors decreases as data
sets increases in length, the concern for suitable priors is mostly relevant for small
data sets, or more generally, where the information content of data is relatively low,

which is arguably the case where large data uncertainties are present.

In Marshall et al. (2005), a Bayesian model selection is performed on a series of
models derived from the Australian Water Balance Model (Boughton, 2004) with
two, three, four and ten water surface stores (the standard model has three). In
this case, the choice of prior is relatively simple because there is effectively only one
model. In a general case where different models are used, choosing consistent priors

across model is not so straightforward and this is where the parent prior comes into

play.

Finding a meaningful property common to all hydrological models of a set is
not as straightforward as for copulas. For one, there is no unique hydrologically
significant property representative of the model behavior. Secondly, such properties
are generally not a simple function of the model parameters, but rather features
of the hydrograph: time to peak, recession time, peak discharge or more global
statistical properties ( Yue et al., 2002). Nevertheless, a parent prior could be defined

using those hydrograph features, using the following algorithm:



80

1. Select an hydrograph property ¥, for example, ¢ = time to peak, function of

the simulated flow g, i.e. ¥ = H(¥y).

2. Define a prior distribution for this property m3(%) based on expert knowledge,
eg. m(¥) = N(u = 10hours, o = lhour).

3. Select a long input series @.

4. For model parameters 8° chosen on a grid covering densely the parameters’
domain, compute the hydrograph 4° = M (8%, ) and the value of the property
9 = 9(g").

5. Assign to the parameters 8° a weight w' equal to the probability given by prior

for the corresponding property w' = mys(1¥).
6. Normalize the weights by integrating over the parameter grid.

7. Approximate 7(8) by splines or polynomials fitted to the normalized weights.

Applying this algorithm to each model yields a spline or polynomial represen-
tation of the parent prior in the model parameter space. Using theses priors for
model selection ensures that model selection is independent from the arbitrariness
of model parametrization. Similarly, those same priors could be used in Bayesian
model averaging (Hoeting et al., 1999) applications to make sure that the models

weights are not biased by inconsistent priors.

4.6 Challenges for the future

This section discusses some of the issues that will need to be solved in order to really
take advantage of calibration methods that take multiple sources of uncertainty into

account, as well as some ideas to extend the work done during this thesis.
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4.6.1 Defining informative error models

The results obtained from the method, and basically any calibration method, are
as good as the underlying hypotheses. Consequently, there is no real advantage
to the use of a Bayesian analysis combining all kinds of error sources if no care is
given to the definition of the error models and priors. There are two faces to the
problem of defining error models: 1. Defining realistic error models, describing as
well as possible the errors affecting measurements, and 2. Upgrading error models
by incorporating other sources of information. In other words, a realistic error model

is good, but a precise inference of the true value is better yet.

To design a realistic rainfall error model, one would have to look at the number
of stations, their locations, the gauge type used and the environmental conditions in
which each gauge operates ( Willems, 2001). The rigorous translation from point es-
timates to aerial estimate should be considered attentively, particularly with respect
to extreme events. This could be achieved using the special statistical distributions
discussed in Kundu and Siddani (2007). Moreover, gauge networks change over time
so an accurate input error model would be split in different parts, each one dealing

with observations taken during a given period.

Similarly, an accurate discharge error model would vary with new stage-discharge
measurements and following updates to the rating curve. An elegant way to define
the discharge error would be to use Bayesian analysis to calibrate a “rating curve
model” based on streamflow principles (Schmidt, 2002), instead of empirically se-
lecting the error model as is done in (Huard and Mailhot, 2007). These theoretical
models are derived from assumptions about the general shape of the river banks
and simplified flow equations. The calibration could be made in a recursive fashion,

updating the parameter distribution as new stage-discharge measurements become
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available. To illustrate this idea, here are the steps leading to such a discharge error

model:

1. Define a stage error model p,(h | h), the probability of committing an error

when measuring the stage.

2. Define a discharge error model py(¢ | ¢) describing individual measurement

errors on discharge.

3. Define a structural error model p(q | h,0,R) describing errors due to the
simplifying assumptions underlying the rating curve model (unaccounted vari-
ables, the intrinsic stochasticity of the process). R stands for the rating curve

model and O for its parameters.

4. Using individual stage-discharge measurements (Q, H ), estimate the parame-

ters posterior distribution

p(© ]G, H,R) x / / pi(O | Qp(Q | H,O, R)pe(H | H)r(FH)r(©)dhdq.
(4.7)

5. Given a stage measurement h, compute the probability of the true discharge

q

bl | 7@, H,R) / / p(q | h,6,R)p(O | @, H,R)p(R | Ky (k) dhde.
(4.8)

The next step is to include this information about the true discharge into the
calibration of the hydrological model. Introducing the true stage h, the true rainfall

x, the true flow g and the parameters © as latent variables, the hydrological model
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parameter posterior distribution can be written as

p(68 | &, 5,0, A, M,R) o / / / p(@ | 2)p(h | R)p(q | &0, M, h,0,R)x

p(8,¢,0,h | Q, H,M,R)dxdhdqd®. (4.9)

Since the rating curve model and the hydrological model provide two independent

assessments of the flow, the following hypothesis holds:
p(g|z,6,M,h,6,R)=p(q|z,6,M)p(q|h,6,R), (4.10)

meaning that the true flow can be predicted by both the stage measurement (through
the rating curve model R) and the rainfall (through the hydrological model M).

Using equation (4.10), equation (4.9) becomes

p(6 | &k M, R) / / / p(@ | 2)p(h | R)p(q | z,8, M)p(g | h, 6, R)x

(@) (x)p(® | Q, H,R)n(h)dx dhdqde. (4.11)

which can be solved by plugging equation (4.7) (the rating curve parameter distri-

bution).

A more ambitious objective than realistically describing errors is to reduce them
by incorporating additional independent information to the priors and error models.
An example of such information is the measure of the local gravity field by the
GRACE satellite as a proxy for the underground water level (Wahr et al., 2004).
Although the estimates obtained through remote observations may be crude, they
nevertheless carry precious information that could help constrain or validate model

behavior. For precipitation estimation, satellite images (visible and infrared) as well
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as radar signatures could be part of an input error model that would allow more
precise estimation of the true rainfall. Generally speaking, instead of simply using
p(x | &) where & stands for gauge station measurements, a much more informative

error model incorporating multiple sources of information could be defined:

p(x | stationy, stationp, radar signature, satellite image, Climatic Regional Model).

This approach has the advantage of modularity: the hydrological expects true

inputs, and the input error model provides them by any available means.

4.6.2 Application to daily and hourly models

There are two main difficulties with the application of the proposed method to
models working at daily or hourly time steps. The first one is the number of data
involved in the computation. Indeed, for only one year of data, there are 365 true
input latent variables and 365 true output latent variables to consider for a daily
model. Adding the initial state variables, over 700 parameters must be sampled
simultaneously. Sampling in such high dimensional spaces is feasible with MCMC
techniques, but the computational burden becomes heavier than what most desktop
computers can handle nowadays in a reasonable amount of time (less than a day).
This difficulty is rather numerical than fundamental and could be solved, at least

partially, by sampling multiple MCMC chains on parallel processors.

A more interesting issue is that at high time resolution, errors are expected to
be partially correlated. In Kavetski et al. (2003), the proposed solution is to divide
the time series into storms and assume that the rainfall errors within each storm

are identical. A less drastic solution would be to assume errors are modeled by
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an autoregressive process with a strong correlation coefficient or by a fractionally
differenced process (Smith and Harris, 1987), better at capturing long range depen-
dencies. In any case, assessing correlations in error series might be a partial solution
to the dimensionality problem. Indeed, the assumptions that errors are dependent
actually reduces the effective number of latent variables. Using a MCMC block
sampling algorithm, these correlations can be exploited by the sampler to improve
its convergence rate and reduce the number of steps necessary to reach stationarity

(Haario et al., 2001).

4.6.3 Structural error analysis

As shown in the second paper, a Bayesian framework allows the a posteriori sepa-
ration of structural errors from data errors. The inference of the structural errors
series is however likely to be strongly dependent on the choice of input, output
and structural error models. Since the analysis of error series has the potential to
diagnose model failures and help in the evaluation of the performance of models,

improvement of error series inference seems like a fruitful endeavor.

One solution to improve the inference of error series could be to calibrate multiple
models simultaneously. The main idea is that the true input and output variables
are, in principle, independent from the model used. In other words, in a perfect world
with accurate error models and sufficiently long series, different models would infer
similar true input and output series. The oniy thing that would be different from
model to model is the structural error series. What this means is that simultaneously
calibrating different models sharing the same true input and true output variables
should improve the inference of common variables, as well as of the individual

structural error series.
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Formally, say there are N models M; along with their parameters 8; for ¢ =

1,..., N, then the inference of the error series can be carried out as follows:

P(le . ‘>0N7 Mlv cee ,MN7337'!/ | j)ﬂ) X pl'n(i | m)pout(g | y)ﬂ'(m)x

Hp(y | w,Bi,Mi)w(B,-)w(Mi), (412)

i=1

where p(y | z, 8;, M,) is the structural error model of model ¢ and 7(M;) its prior
probability. 7(8;) stands for the prior for model’s ¢ parameters, whose shape could
be defined using the parent prior concept. Equation (4.12) has been derived using
the same assumptions described in section 4.4.2. Another assumption that has
been made is that knowing the structural errors are of one model does not yield
cogent information about the structural errors of another model. Although for an
experienced modeler this assumption may not be true, translating this knowledge
into a statistical distribution might prove difficult. Marginalizing out the various
parameters 6; and the models M, the probability for the true variables p(x,y | Z,9)
can be used to yield the distribution of the input error series & —  and output error
series ¥ —y. The distribution of the structural error series can be obtained for each
model by computing y — M;(8;, ). Besides strengthening the inference of data
errors, this approach would allow the comparison of structural error series from
different models, which might help identifying model components responsible of its

success or failure.

In the same spirit, the properties of the structural error series could be used to
assess the performance (efficiency, reliability) of each model. Such a measure would
have the advantage of being independent (in principle) from data errors. In other
words, the ability of the model to reproduce physical processes could be examined,

to some extent, irrespective of the data quality.
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In some situations, a global assessment of the predictive power of a model is
requested. In those cases, not only the model efficiency must be evaluated, but also
the accuracy of the error models and priors used for calibration and predictions;
in other words, the generalized model combining the model and the error models
must all be evaluated jointly. This could probably be achieved by computing the

probability of a validation output series:

P(@+ \ fi+,53,?3)-

A high probability would mean that the generalized model can predict with accuracy
the output series given the input series under its error model assumptions. A low
probability would indicate either model failure or inaccurate error models (too vague

or wrongly defined).






CHAPTER 5

Conclusion

This thesis explores issues related to the calibration of hydrological models in pres-
ence of multiple sources of ﬁncertainty. The problem of calibration is an inferential
one and can be treated formally from a Bayesian standpoint. The uncertainty
framework used to calibrate model is an extended version of the framework proposed
by Kavetski et al. (2003). Apart from output and input uncertainty, this extended
framework accounts for structural and initial state uncertainty. Each source of un-
certainty is described in probabilistic terms by formal statistical distributions. The
model’s parameter distribution as well as predictive distributions can be computed

using different techniques.

Under certain assumptions regarding the model and error models, the parameter
posterior distribution can be computed analytically. This case is studied in a paper
calibrating the hydrological model “abc”, focusing on the effect of input uncertainty

on calibration results.

The second paper uses MCMC techniques to solve the parameter distribution,
removing constraints on the choice of model and error models. The time needed to
compute the posterior distribution is however dependent on the length of calibration
time series, limiting “desktop” simulations to monthly models. In this second paper,

calibration of the GR2M model is performed under different assumptions regarding
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error models to understand better the effect of these assumption on the calibra-
tion results. Structural errors are considered explicitly, allowing the a posterior:

examination of inferred error time series.

The third paper introduces the concept of parent prior, used to define consistent
priors among different models. The paper applies the idea to select the “best”
copula, while the thesis discusses how it could be translated to hydrology. The use
of the parent prior can improve the rigor of model selection applications and of

Bayesian model averaging.

Although the applications of the Bayesian framework are limited in this thesis to
monthly models, most of the general conclusions drawn from the simulations should
apply to more complex models with higher time resolution. In fact, since daily
models are expected to be more sensitive to input errors than monthly models, the

importance of the issues highlighted in the thesis may be magnified.

The fundamental question, however, is whether or not the benefits provided
by taking into account multiple sources of uncertainty into account are worth the
necessary efforts. The answer to this question of course depends on the stakeholders
requirements. In a case where uncertainty assessment is crucial (high project costs,
potential lives at risk), a rigorous assessment of predictive uncertainty is primor-
dial. The answer also depends on the available resources. On a standard desktop
computer, the calibration of a daily model over ten years of data might take two
weeks to complete. Since Monte Carlo simulations generally scale well on parallel
architectures, this time could be substantially decreased using a modest cluster.
Finally, the most important point to consider is whether or not the uncertainties
can be described accurately. Without cogent information about the sources of

errors, uncertainty assessment is futile; this thesis shows clearly that the predictive
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uncertainty estimated by a Bayesian calibration method can only be as good as the

assumptions regarding data and structural uncertainty.

Uncertainty assessment forces modelers to describe as faithfully as possible the
errors corrupting their data. This focus on the data and its meaning is rich in insight
into the processes affecting hydrological measurements and, from a scientific point
of view, a sound practice. Hopefully, uncertainty assessment will become a routine
step of hydrological modeling, improving understanding of watershed processes and

the quality of hydrological forecasts.






APPENDIX A

Bayesian analysis

For many scientists, bayesian analysis is a side discipline of statistics, one subset of
the toolbox developped in the last hundred years to solve probabilistic problems.
This view is even shared by some people using bayesian analysis daily in their
work. A confronting view is that bayesian analysis is THE theory of probability ;
a complete algebra to manipulate probabilistic expressions (Jaynes and Bretthorst,

2003). It is the latter view that is used in this thesis.

The first and foremost difference with the usual frequentist notion of probability
is the definition of a probability. The standard textbook definition of probability
is as a frequency of occurrence. In other words, if an experiment is repeated a
large number of times, the probability of an event is the number of times this event
occurs over the total number of times the experiment is carried out. This definition
is restrictive because many experiments cannot be repeated a large number of times.
If we ask about the probability that a bridge will collapse under a given strain, we

certainly do not intend to build many identical bridges to find out.

For Bayesians, a probability is a degree of personal belief in an hypothesis. It is
by definition anthropocentric, liable to change from person to person. This inherent

subjectivity is not unscientific in the sense that it forces one to clearly state the
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hypotheses behind the reasoning, instead of hiding behind hypothesis tests and

cookbook recipes.

A.1 Bayes’ theorem

The manipulation of probabilistic statements can be done using three laws (table
A.1). The notation used for logical operators is given in table A.2. Using the
product rule, the famous theorem formulated by Reverend Thomas Bayes’ can be

easily derived by the symetry of the product rule:
P(A,B[I)=p(A|B,I)p(B|I)=p(B|AIp(A]I), (A1)

where A, B and I are statements (eg. it will rain tomorrow, rain was observed today,

etc). Bayes’ theorem is obtained simply by reorganizing the terms of equation (A.1):

p(B|ADpA|D

PATED =" B )

Bayes’ theorem is often used to estimate the parameters of a model. Imagine
for instance one wishes to estimate the parameters 6 of a statistical distribution f
from a dataset D given some information about the context I. The problem can be

stated as: )
likelihood prior

posterior e e,
— D|09) p@|I
Al nIaD

p(D | 1)

where p(D | I) = [ f(D | 6) p(6 | I) df is the normalization constant.
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Table A.1l: Laws of probability theory
Sumrule p(A+A|I)=1
Extended sum rule p(A+B|I)=p(A|I)+p(B|I)—-p(AB|I)
Product rule p(AB|I)=p(A|BI)p(B|I)

Table A.2: Logical operators
p(AAND B|I) & p(4,B|I)
p(AORB|I) & p(A+B|I)
p(NOTA|I) & p(4]J)

A.2 Continuous variables

Although the formal rules of probability are only defined for a finite number of
propositions, it is possible to consider continuous variables as well. However, certain
problems may occur when going from the discrete to the continuous case. Indeed,
for a continuous variable z, p(z) = 0 is not a probability but rather probability
density, a probabilities are rather obtained by p(x)dz. In the following, the usual
convention is followed and the differentials are not explictly written. Exception made
of cases where improper priors are used, that is, priors whose integral diverges, this

simplification causes no problem.

A.3 Latent variables

Latent, or nuisance, variables are parameters with which we are not directly con-
cerned, but are useful to define probabilistic statements. Imagine for instance that
one is interested in the annual cost of owning a car. Let’s write this as a probabilistic
statement, p(C | I), the probability of the cost C' knowing the prior information I.

For the sake of simplicity, it is assumed that the cost depends only on the brand of
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the car (B) and the distance travelled (I). Since the cost depends on those variables

but their value is not of interest, B and [ are called latent variables.

To compute the cost probability, the 30 more popular brands of car found on
the road are considered (B € {By, Bs, ..., Bs}) and it is assumed that the distance

travelled lies somewhere between 0 and 60000km. Formally,

30
> p(Bi) =
i=1
60000
/ p()dl =1,
0

where p(B;) is the prior probability for the brand, and p(l) the prior probability for
the distance travelled. Introducing the variables B and ! into p(C | I) is simply a
matter of inserting statements of probability equal to one and then using the product

rule :

60000

p(C| 1) = Z/ p(C, By 1| I)dl = Z/ o(C | Bi, 1, T) p(B:) p(l) dL.
(A.2)

So although equation (A.2) depends on the car brand and the distance trav-
elled, the final probability p(C | I) is completely independent from these nuisance

parameters.
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Numerical implementation

Simulations for the “abc” paper were done using Matlab™, a computing envi-
ronment designed to deal effectively with linear algebraic problems. Although the
interface is intuitive and the computing engine reasonably fast, larger projects tend
to scale badly due to the requirement that each function is defined in a single file.
Moreover, optimizations are hard to achieve since it is painfull to add C or Fortran

extension to Matlab code.

For those reasons, the code written for the GR2M paper is mostly written in
Python. Python is an interpreted language (no need for compilation and linking)
with a intuitive syntax making it easy to learn. However, it is not as fast as C
or Fortran, a serious issue since the simulations for GR2M take days to complete.
Fortunately, bottleneck components can be written in Fortran and used natively
within Python. Many libraries are available for scientific purposes (Oliphant, 2007),
database interaction and graphics (Hunter, 2007) making it an efficient tool for

scientific scripting (Langtangen, 2005).

The code for the calibration of GR2M makes extensive use of PyMC 2.0 (Fon-
nesbeck et al., 2007), an open source package written in Python providing MCMC
algorithms to which the author of the thesis has contributed. This second version

of PyMC introduces a model definition syntax that makes it easy and intuitive to
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define a Bayesian problem. Once the Bayesian model is defined in terms of custom
parameter and data objects, launching the MCMC sampler is a matter of one line
of code. The simulation output, the parameter samples, can be stored in different
kind of databases such as SQL or HDF5 format. Put together, the features of PyMC
makes it relatively easy to run millions of MCMC jumps on complex models and
store the results effortlessly. With further efforts to optimize and parallelize the
code, it seems likely that PyMC could help solve the open problems outlined in this

thesis.
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A bayesian perspective on input

uncertainty in model calibration:
Application to hydrological model “abc”

Le modele “abc” est un modele hydrologique mensuel & seulement trois parametres
généralement utilisés & des fins pédagogiques. En ce qui concerne ce travail, son
avantage principal réside dans le fait que les sorties du modele, les décharges, peuvent
g’écrire comme une foncton linéaire des entrées (les précipitations). Cette propriété
nous permet de procéder analytiquement & l'intégration des variables de nuisance et
simplifie les calculs requis pour évaluer la distribution a posteriori des parametres
dans le cas ol les données d’entrée sont incertaines. Cet article présente ainsi la
dérivation de la solution & cette intégration et son application au modele “abc”.
Des simulations sont effectuées afin de montrer I'influence des erreurs sur les données
d’entrée sur la distribution de parameétres. Ces simulations semblent indiquer que
P'utilisation de la méthode permet d’obtenir des distributions de parametres qui
réfletent de manieére cohérente les incertitudes attitrées aux données d’entrée.






113

WATER RESOURCES RESEARCH, VOL. 42, W07416, doi:10.1029/2005WR004661, 2006

A Bayesian perspective on input uncertainty in model
calibration: Application to hydrological model “abc”

David Huard' and Alain Mailhot'
Received 12 October 2005; revised 20 March 2006; accepted 29 March 2006; published 22 July 2006.

[1] The impact of input errors in the calibration of watershed models is a recurrent theme
in the water science literature. It is now acknowledged that hydrological models are
sensitive to errors in the measures of precipitation and that those errors bias the model
parameters estimated via the standard least squares (SLS) approach. This paper presents a
Bayesian uncertainty framework allowing one to account for input, output, and structural
(model) uncertainties in the calibration of a model. Using this framework, we study

the impact of input uncertainty on the parameters of the hydrological model “abc.”
Mostly of academic interest, the “abc™ model has a response linear to its input, allowing
the closed form integration of nuisance variables under proper assumptions. Using those
analytical solutions to compute the posterior density of the model parameters, some
interesting observations can be made about their sensitivity to input errors. We provide an
explanation for the bias identified in the SLS approach and show that in the input error
context the prior on the input “true” value has a significant influence on the parameters’
posterior density. Overall, the parameters obtained from the Bayesian method are more

accurate, and the uncertainty over them is more realistic than with SLS. This method,
however, is specific to linear models, while most hydrological models display strong
nonlinearities. Further research is thus needed to demonstrate the applicability of the
uncertainty framework to commonly used hydrological models.

Citation: Huard, D., and A. Mailhot (2006), A Bayesian perspective on input uncertainty in model calibration: Application to
hydrological model ‘‘abc,” Water Resour. Res., 42, W07416, doi:10.1029/2005WR004661.

1. Introduction

[2] Gupta et al. [2003] identify two important issues that
need to be addressed in order to improve the calibration of
hydrological models: accounting for all sources of uncer-
tainty (input, state, structural, parameter and output uncer-
tainties), and basing model calibration on multiple
noncommensurable measures of model performance. This
article tackles the first issue using Bayesian analysis. We
propose a theoretical framework in which all sources of
uncertainty are accounted for. Using this framework ensures
that the calibration of the model and its predictions remain
coherent despite the underlying uncertainties. This article
does not, however, present a general algorithm to use this
framework. Indeed, the resolution method we use is tailor-
made for the chosen application and would be inadequate
for the vast majority of hydrological models. It allows,
however, a deeper look into the obstacles that any such
algorithm will have to face.

[3] Section 2 introduces the backbone of the method, the
Bayesian uncertainty framework. We discuss the different
sources of uncertainties occurring in hydrological models
and describe how they fit into this framework. The standard
Bayesian approach to calibration is then presented, and we
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show how it can be modified to take various sources of
uncertainties into account. Familiarity of the reader with
Bayesian analysis is assumed. Note that although input,
output, model and state uncertainties can be treated in the
proposed framework, the paper focuses on input uncertainty.

[4] Section 3 applies the method to the seminal problem
of fitting a straight line to a data set. This topic has been
discussed extensively and provides a computationally sim-
ple benchmark for our method. Importantly, it allows a
simple and intuitive interpretation of the issues related to
input uncertainties.

[5] Section 4 details the application of the uncertainty
framework to “abc,” a pedagogical hydrological model.
Chosen for its analytical properties, “abc” is linear with
respect to- its input, while exhibiting a behavior similar to
that of more complex hydrological models. Section 5
proceeds with the calibration of the “abc” model in
different settings using numerical simulations. The analysis
of these results relies in part on those from the straight line
model. Section 6 summarizes the most interesting observa-
tions about the treatment of input errors. Finally, section 7
discusses the simplifications made in the paper and the
issues that will have to be tackled in the future.

2. Calibration, Uncertainties, and Bayesian
Analysis

[6] In order to use any model, whether it describes
physical, biological or hydrological processes, its parame-
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ters must be specified. Indeed, models almost always rely
on some set of parameters, allowing the user to tune the model
to a particular setting. Ultimately, the objective is to find the
“best” set of parameters. What best means is quite subjective
and relative to the situation, and we use it here meaning the set
of parameters leading to the most accurate predictions possi-
ble given the data at hand. Uncertainties in the estimation of
parameters arise from data errors and modeling errors. Note
the distinction between an error, a difference between true
values and measurements, and the uncertainty, the incomplete
state of knowledge about the true values.

2.1. Challenge of Calibration

[7]1 The estimation of a model’s parameters, the calibra-
tion, goes from deceptively simple to highly complex
depending on the problem at hand and the user’s require-
ments. A typical calibration involves two broad steps:
defining a function measuring the agreement of model
output with the data, and finding the parameters that
maximize this function. In most applications, the agreement
is described by ¢, with § = 3"(; — 7/)’, the sum of the
squared differences between model output and measure-
ments. Since in the common usage we are only interested in
the best fitting parameters, the extreme value of the func-
tion, there is no harm in taking the logarithm and minimiz-
ing § instead of maximizing the exponential. This approach
is called the standard least squares (SLS) approach, and has
been applied with success over the years. There are other
measures of agreement, a review of some used in hydrology
is given by Gupta et al. [1998]. The second step, finding the
maximum of the function, is relatively easy in one dimen-
sion, but can become a daunting task for high-dimensional
cases due to the presence of local maxima. Novel algo-
rithms exploit stochastic methods to explore the parameter
space while avoiding staying trapped into local maxima.
While there is no guarantee that the global maximum is
found, Vrugt et al. [2003] report reliable results using an
efficient Markov chain Monte Carlo sampler.

[¢] In general, the SLS approach provides sound esti-
mates as long as the input data is precisely known. How-
ever, if significant input errors are present and if the model
is sensitive to those errors, the parameter estimates are
biased and the confidence intervals are much too optimistic
[Kavetski et al., 2002]. In the last thirty years or so, a
number of studies have highlighted the sensitivity of hy-
drological models to input errors [Troutman, 1982;
Andreassian et al., 2001; Oudin et al., 2005], as well as
their sensitivity to model errors [Engeland et al., 2005] (see
Mein and Brown [1978] for a dated but interesting review).
Yet, despite these warnings, few calibration methods directly
address the issue of input uncertainty. Known exceptions
are the generalized likelihood uncertainty estimation
(GLUE) methodology [Beven and Binley, 1992], Bayesian
total error analysis (BATEA) [Kavetski et al., 2002), particle
filters [Moradkhani et al., 2005], simultaneous optimization
and data assimilation (SODA) [Vrugt et al., 2005], and
Gaussian processes [Kennedy and O’Hagan, 2001]. While
these methods provide seducing solutions to the treatment
of input uncertainty (and model uncertainty for some), their
concern for numerical efficiency and practicality overshad-
ows important theoretical issues. Our aim in this paper is to
temporarily lay aside practical considerations and address
the fundamental issues related to uncertainties. To do this,
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the first step is to define an uncertainty framework linking
the different sources of uncertainties to the data and model.
[s] The most promising avenue to include all types of
uncertainties in the calibration process is certainly Bayesian
analysis. Bayesian analysis consists in the manipulation of
probability statements about hypotheses via two logical
rules, the sum rule and the product rule [Jaynes and
Bretthorst, 2003). It is worthwhile mentioning that in this
context, a probability has the usual common sense meaning
of a degree of confidence. This contrasts with the usual
statistical probability, defined as a frequency of occurrence.
The thriving literature feeding the feud between Bayesians
and “frequentists™ [Efron, 1986; Clark, 2005] will no doubt
be of interest to fans of passionate debates. On a more
serious note, reference textbooks usually cited are those of
Bernardo and Smith [1994] and Gelman et al. [1995].

2.2. Uncertainty Framework

[10] The first step to design a method able to account for
uncertainties is to lay down an uncertainty framework. This
framework describes how errors occur and propagate
through the physical model. It is based on an idealization
of the sampling and modeling processes. Hence it should be
viewed as an approximation of how “real” errors influence
data and modeling.

[11] Although not identical, the framework we propose is
very similar to the one implicitly used by Frugt et al. [2005]
in the SODA method, based on ensemble Kalman filters.
Their focus, however, was not the theoretical issues related
to input etrors but rather the implementation of a practical
algorithm to consider different sources of errors.

2.2.1. Error Models

[12] The framework we propose (see Figure 1) assumes
the existence of true variables and a true process. It further
assumes that, with the knowledge of the true inputs and the
true process, it is theoretically possible to determine exactly
the true outputs. However, as P.-S. Laplace noted, such
determinism is only theoretical. In practice, we only have
access to a finite number of imperfect measurements, data,
and a more or less naive understanding of nature’s behavior:
the model. Indeed, models typically work at scales very
different from the natural scales, simulate only aggregated
input and output variables, account for a handful of effects,
neglect all exterior influences too difficult to measure or
simulate and are limited by our understanding of the
physical laws and our computing power. Models are nev-
ertheless useful to validate new physical laws, understand
phenomena, predict events and give decision makers real-
istic scenarios to compare projects or costs. The idea behind
our strategy is to give those models a boost by coupling
them to comprehensive error models.

[13] We will consider three different types of errors that
affect the modeling process: input, output and structural
errors. It is worthwhile to define the nature and origin of
these errors since they are at the core of the method. Input
errors are defined as the difference between the input data
and the true inputs. They originate from the inherent
imprecision of measurements, as well as from their imper-
fect representativeness. For example, a lumped hydrological
model may take as true input the total amount of precipi-
tation over the watershed during the last month. A pluvi-
ometer, however, only averages rainfall over a few square
centimeters, and rainfall over the whole catchment must be
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Figure 1. Idealized uncertainty framework.

extrapolated. Thus even with an infinitely precise pluviom-
eter, there would still be a difference between the pluvi-
ometer readings and the theoretical input. This difference is
what we call the input error.

[14] Output errors are defined analogously as the differ-
ence between true outputs and output measurements. Again,
both the imprecision of measurements and the representa-
tiveness of the measures are sources of errors. In hydrolog-
ical modeling, the output variable is typically the
streamflow at the basin outlet. Extrapolated from the water
height and a rating curve, streamflow measurements tend to
lose accuracy as the flow increases.

[15] Structural errors are defined here as the difference
between the true outputs and the model output using true
inputs and true parameters. Structural errors can arise from
incorrect modeling hypotheses or unmodeled processes
[Sorooshian and Dracup, 1980]. They are stochastic by
nature, due to the intrinsic variability of natural processes,
but may nonetheless display distinct biases. For example,
some hydrological models underestimate peak flow or
overestimate base flow. Hence, in those cases, the distribu-
tion of structural errors is a function of the input variable.

[16] The errors affecting the data and model will be
described by an error model, containing three elements:
the input error model, the output error model and the
structural error model. These three error models relate,
probabilistically, the data taken to the true values. Denoting
the input, output and structural errors by &, € and (
respectively, the error models describe f5(5), f2(e) and f;(C),
the error probability density functions (pdf).

[17] The two most obvious ways to relate errors and data
are additively and multiplicatively. To allow the use of
Gaussian distributions, we will work with additive errors:

Input X=x+98
Structural y=M(x,0) +¢ (1)
Output Yy=y+s,

where x, y, 0 stand for the vectors of true inputs, true outputs
and true parameters respectively. Here and in the following,
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measurements are differentiated from true values by a tilde.
Note that the structural error is defined by the difference
between the true output and the model simulation using the
true input x and true parameters 6.
2.2.2. Generalized Output Error Model

[18] Inspection of equation (1) suggests that the output
error model can be made to include the structural error
model

§=M(x,8)+e+C

Thus it is possible to replace the output error model and the
structural error model by a “generalized” output error
model, combining both errors. For the time being, however,
we keep the two models apart since they are qualitatively
and quantitatively different. Indeed, output errors are
generally assumed to be unbiased, with homoskedastic or
heteroskedastic variance. On the other hand, structural error
are known to exhibit biases, due to incorrect or incomplete
modeling of the underlying processes. Moreover, the
magnitude and direction of this bias may be a function of
the input variable.
2.2.3. Note on Parameter Uncertainty

[19] Our framework assumes the existence of input,
output and structural uncertainties, but we have yet made
no mention of the parameter uncertainty. The reason for this
is that from our point of view, parameter errors are included
in structural errors. Having a method that takes care of
model errors, parameter errors lose their interest. We will,
however, use the expression parameter uncertainty to
describe our incomplete state of knowledge about the true
parameters. Thus once the calibration is completed, there
remains a parameter uncertainty owed to structural errors
and limited supply of inexact data. By following the rules of
probability, the resulting parameter uncertainty should in-
corporate the uncertainties about the model, inputs and
outputs. Predictions can then be carried out by using not
only the most probable parameter set, but the entire distri-
bution. It is precisely the use of the whole parameter
distribution that allows us to compute realistic confidence
intervals about the predictions, incorporating the different
sources of uncertainties.

2.3. Parameter Inference

2.3.1. Probability Inversion

[20] As stated earlier, the input, output and structural
models define the probability of observing an error §, €
and (. Yet, since the errors cannot be observed, it is more
convenient to write the error models in terms of measured
and true values:

Tnput p(8) & p(Elx)
Structural Q) & p(ylx, 6, M) @
Output p(e) © pFly)-

The notation of probabilistic statements in this paper
follows the general usage, in which p stands for the
probability density. It should be remembered, however, that
using the laws of probability on such expressions is a
shortcut and that it can, in some cases, lead to paradoxes
[Jaynes and Bretthorst, 2003].
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[21] The next step is to combine the error models into a
unified equation describing p(8|%, §, M). To do so, we
introduce x and y as nuisance variables and inverse the
probability using Bayes’ theorem:

P55, M) = [[ pOx315 5. dxay

- [[p5xy0.m

p(x,y, M) dxdy -

P(iiﬂM)
- // P& §%, Y)p(¥Ix, 8, M)p(x, 8.M)
1
BT X
= [[ pat0-pGiptois. M0p00) axay
()

Equation (3) encloses the three error models, as well as a
prior on the parameters p(6), and a prior on the true input
variable p(x). We stress that this prior appears from the
inversion of p(x|X) to p(X|x), the input error model defined
above. As we will soon see, failure to distinguish both
expressions leads to serious shortcomings in the estimation
of parameters. Note that we used the simplifying assump-
tion p(X, ¥Ix, y) = p(¥]y)p(X|x), that is, we supposed that the
errors § and € were conditionally independent. While this is
not mandatory, it simplifies the computations. Finally, the
denominator p(X, ¥) is simply a normalization constant,
provided the integral in the numerator converges.

[22] Since this approach is derived from that of Kavetski
et al. [2002], it is worthwhile to highlight the main
difference between the two. In the work of Kavetski et al.
[2002], the structural errors are not defined. Also, the
nuisance variables x are not integrated but rather estimated,
on the same footing as the model parameters. This approach
makes sense since in their application, the number of
nuisance variables is considerably lower than the sample
size. In the case where there is one nuisance variable for
each measurement, however, their approach would suffer
from overparametrization.

2.3.2. Standard Shortcuts

[23] In Bayesian analysis as in standard least squares
schemes, we implicitly assume that the input variables are
exact, that is p(X|x) = 8(X — x). Integrating equation (3) over
x under this assumption, we obtain:

POI%, §, M) = / pFIy)p(yl%, 0, M) dy - 1%%
_ P(ﬂi! 6, M)P(e)
pER)

the usual result of Bayes’ theorem. Further assuming that
the likelihood p(¥|X, 0, M) is Gaussian and that the prior
p(9) is uniform, we obtain the SLS solution.

[24] 1t is worthwhile to stress that in this derivation of the
usual Bayesian or SLS solution, there is no assumption
about the form of the structural error model. Indeed, the
likelihood p(¥iX, 6, M) is rather a generalized likelihood,
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combining the output error model and the structural error
model via the convolution of both distributions:

P8, M) = / PFY)p (1%, 8, M) dy. @

Hence once an output error model and a structural error
model are specified, the minimization of equation (4) with
respect to 6 leads to an optimal solution, taking structural
and output uncertainties into account. While apparently
simple, this treatment of structural uncertainties hides a
formidable challenge, namely, the adequate characterization
of the structural error model.

[251 Our prime interest in this paper, however, lies not
with structural errors but with the input errors and their
impact on the parameters. Our focus on this subject stems
from two realizations. The first one is that falsely assuming
exact input causes parameter estimates to be biased. This
bias is observed for hydrological models [Kavetski et al.,
2002] as well as for basic linear regressions [York, 1966],
and can have a significant impact on the reliability of
hydrological predictions. The second one is that despite a
growing number of publications on this subject, the pro-
cesses by which input errors affect model parameters are
still obscure. Therefore this article focuses on basic issues
related to input errors using simple, academic models and
error models. These simplifications allow us to concentrate
on the essential problems, instead of diverting our attention
to technical and numerical issues.

3. First Application: The Straight Line Model

[26] Despite its apparent simplicity, the straight line
model “when both variables are subject to error” hides
complex difficulties and has been the focus of a large
number of publications from various research areas: statis-
tics [Lindley and El-Sayyad, 1968; Kendall and Stuart,
1983; Fuller, 1987; Cheng and Ness, 1994], econometrics
[Zellner, 1971; Erickson, 1989], physics [York, 1966; Reed,
1989; Gull, 1989], and image reconstruction [Werman and
Keren, 2001]. In the following, we will review the standard
least squares approach (also called ordinary least squares)
and its inherent bias in presence of input errors. We will
then apply the Bayesian uncertainty framework to better
understand the origin of this bias on the slope. Finally, we
will study the impact that priors have on the results.

3.1. Standard Least Squares

[27]1 The standard least squares (SLS) solution to an
optimization problem dates back from Gauss, who invented
the method to identify the orbit of Ceres. SLS works under
the assumption that the independent variable is known
exactly. The optimal parameters are then simply the ones
that make the sum of the squared errors as small as possible.
Stated otherwise, the SLS parameters are those maximizing
the probability of “drawing” the errors from a Gaussian
distribution with zero mean. The wide success enjoyed by
SLS has since been linked to the exceptional mathematical
properties of the Gaussian distribution: the product of two
Gaussian distributions is an unnormalized Gaussian distri-
bution, the convolution of two Gaussians is another Gauss-
ian, it is the only distribution whose maximum likelihood
estimate is also the arithmetic mean, it is the maximum
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entropy distribution for fixed mean and variance and the
limiting distribution of additive errors from any distribution.
In contrast with its huge success, SLS fails when errors
affect both dependent and independent variables [York,
1966].

[28] Let’s assume that our model is a straight line passing
through the origin y = 6. Different measurements are taken,
denoted by %;, ;. To simplify the example, we will suppose
that there is no output error, that is, ; = y;. Now, if we
assume, correctly, that the output data is exact, and that
errors are only on the input data, the SLS method provides
the following estimate for 6:

)

YEp

This solution is correct, in the sense that it converges toward
the true value as the sample size increases. However, if we
falsely assume that the errors are on the output variable and
the inputs are exact, we find instead

8=

& Y EF DX
MR ey ¢

Of course, if 6> = 0, there is no uncertainty and both
solutions are equal. However, as the error variance o
increases, the slope gets underestimated. Moreover, this bias
does not decrease as the number of samples increases.

[29] In most real life situations, input and output data
contain errors, and the slope will systematically be under or
overestimated depending on which variable we choose to be
the independent one. Some authors have chosen to compute
both slopes, and then take the average. Far more ingenuous
algorithms have since been devised [York, 1966], based on
the individual weighting of each data. Our objective,
however, is not to review the various solutions to the
straight line model but to understand the origin of the bias.

3.2. Density Mapping Effect

[30] For the sake of simplicity and pedagogy, we will
consider a simple situation.

[31] 1. The model M is a straight line with intercept at
zero, i.e., y = fx, with 0 = 3.

[32] 2. There are no output nor structural error, p(J|x, 6,
M) = 8@ — bx).

[33] 3. The input error is Gaussian p(%|x) = N (¥|x, 0 = 1).

[34] 4. The prior on 0 is uniform on the interval [6, = 0,
Qb = 5]

[35] 5. The prior on the true value p(x) is uniform on the
interval [x, = 0, x, = 10].

[36] Let’s imagine we have a single input measurement at
x = 2. Knowing that the true value of x lies around the
measurement, with a Gaussian probability

p(x[%} o p(Elx)p(x)
< N(x|x, 0)

X € [XayXp),

we want to compute the probability that 7 is the true valie
knowing the slope 6. After a short analysis, we obtain

POROM) o gNG/0E0) T Brubul.  (6)
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Figure 2. Probability density p(y|%, 6, o) with¥=2,0=2,
2.5,and 3, and 0 = 1.

Figure 2 plots equation (6) for ¥ = 2 and three values of 6: 2,
2.5 and 3. For small slopes, the y distribution is sharper than
for bigger slopes. If we interpret function (6) as a mapping
of the x elements onto the 7 space, the values of j are
mapped more closely together with smaller slopes. Hence
the pdf for = 6 is higher with § = 2.5 than with 8 = 3, even
though our intuitive guess, and the SLS estimate, would
rather be 6/x = 3.

[37] Suppose we now want to estimate the slope using
measurements (X = 2, = 6). Bayesian analysis tells us that

p(I%,3, M) o p(7]%,8, M)p(6), ™

but since p(6) = U(8,, 0;), the probability for 6 given J is
simply proportional to the probability of 3 given 8. Thus,
judging from Figure 2, § = 2.5 should be more probable than
0 = 3. Indeed, if we plot equation (7), we find that the most
probable slope is around 2.5 (Figure 3).

[38] Figure 3 shows quite clearly how the uncertainty
about x is asymmetrically mapped onto an uncertainty about
6. Of course, this asymmetry disappears as the uncertainty
over x decreases. We will call the mapping of the input
uncertainty onto the parameter uncertainty, the “density
mapping” effect.

3.3. Straight Line Fitting

[39] A key question is whether or not this density
mapping effect vanishes as the sample size increases.
Unfortunately, it is difficult to find a simple answer based
on analytical calculations. Hence we resort to numerical
simulations to gain an insight into the problem. In this
demonstration we use the first four assumptions of section
3.2. The only difference with the previous example is the
number of samples and the prior on the true values, that will
be modified to understand its impact on the parameter
posterior pdf.

3.3.1. Synthetic Data

[40] We first generate a synthetic sample consisting of
500 couples (%;, 7;), shown in Figure 4. The true inputs x; are
randomly generated from a Gamma distribution, x ~ G(3, 1).
The input measurements are synthesized by adding a
Gaussian error to the true inputs: X; ~ N(x;, o = 1). The
output measurements are simply equal to the true outputs
which are computed via the model and the true inputs: j; =
y; = Ox; with = 3.
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[ p(612,75,0) -

Figure 3. Probability densities p(8|%, 7, o) and p(x|x) for
X=2,y=26, and o = 1. The hyperbola shows the relation
between the slope and the true input for a given output j.

3.3.2. Error Models and Prior Hypotheses

[41] The parameter density is computed by recursively
applying equation (3). That is, measurements are analyzed
sequentially and update the posterior probability distribu-
tion p(8;|%1.. s #1...:» M). The input and generalized output
error models are chosen correctly, that is, they correspond
exactly to how the errors were applied to the true values:

p(Elx) = N(#x, o)
for the input error model and
P, 8) = 67 — )
for the generalized output error model. The only remaining

hypothesis concerns the prior for the true input values p(x).
To understand its impact on the calibration of 6, we look at

30

251

20} B P

-2 0 2 4 6 8 10

Figure 4. = Synthetic data used to study the calibration of a
straight line. The inputs X are computed using draws from a
Gamma distribution to which a Gaussian noise is added.
The outputs are given by 7; = 3x;.
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three distinct cases, (1) Gamma, p(x) = G(x|3, 1);
(2) Gaussian, p(x) = N (3, v/3); and (3) uniform, p(x) =
U/(0, 10), and compute the posterior pdf for the slope 0 for
each of these cases. We also compute the slope and the 90%
confidence intervals using SLS.

3.3.3. Results

[42] The results are shown in Figure 5. Slope estimates
from the Gamma and Gaussian priors are very near to the
true value, 0 = 3, whereas those of SLS and the uniform prior
are significantly underestimated. The similarity between
SLS results and the uniform prior is not a coincidence.
Indeed, the parameter maximizing the posterior density
using a uniform prior over the real domain is identical to
the “major axis,” a close cousin of SLS. That is, the slope
for which the perpendicular distance from the points to the
line is a minimum. Note that at this sample size, 500, the
results do not vary much for different simulations.

[43] The most surprising observation about these results
is that contrary to the Bayesian motto “the effect of the prior
weakens with increasing sample size,” the prior plays here a
significant role even with a sample of 500 observations.
Indeed, there is a significant difference between the poste-
rior pdf using a uniform prior and a Gamma or Gaussian
prior. Also note that the choice of the distribution param-
eters is also significant. A Gamma distribution with crude
parameters may lead to worst results than a Gaussian with
sensible ones.

3.3.4. Analysis

[44] The drastic effect of the prior can be explained as
follows. For each input measurement, there is an unknown
true input, whose value is inferred from the data using the
error model and the prior on the true inputs. If the error
model assumes a very small error, the effect of the prior is
weak, whereas when the error model has a large variance,
the prior plays an important role in the inference of the true
input. Thus the effect of the prior does not weaken since
with each new sample, another prior is added to infer the
input true value. Moreover, if the prior is incorrect, each
inference about the true value is flawed and the estimation
of the parameters will not “converge” to the parameter’s
true value, even with an infinitely large sample.

12

p(81Z,9,0
[« [s:]

2.6 34

Figure 5. Probability density p(0|%, ¥, ¢) computed over a
sample of 500 points using equation (3) with three different
priors on the true values: Gamma (solid line), Gaussian
(dash-dotted line), and uniform (dashed line). The cross
indicates the SLS result as well as the 90% confidence
interval. The true value of 6 is 3.
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[4s] The importance of the prior on the results changes
our perception of priors and how to choose them. There
exists a wide variety of priors to choose from, an exhaustive
review is given by Kass and Wasserman [1996]. In the light
of the preceding results, we would recommend to avoid
ignorance priors and rather look for additional evidence that
would describe adequately the distribution of the true
inputs. If a similar data set is available (other than the one
under study), one solution is to fit a distribution to the data
and use it as the prior. In the case where no such data sets
exist, but where some descriptors such as the mean or
variance are known (or can ge guessed), maximum entropy
methods can be used to find the distribution with the highest
entropy given those descriptors [Jaynes, 1983].

3.4. Highlights

[46] Before we go to the next section and begin our study
of the hydrological model “abe,” it is worthwhile to recall
the highlights of this section: (1) The mapping of input
uncertainties over the parameter space, the mapping density
effect, is responsible for the “bias” observed in the param-
eter posterior density. (2) The influence of the mapping
density effect decreases as data accumulate, but only as long
as the prior on the true inputs allows reliable inference. That
is, the estimated slope will only converge toward the true
slope if the prior reflects the true input distribution.

4. Application to Hydrological Model “abc”

[47] We will now apply the Bayesian uncertainty frame-
work to a simple hydrological model, the “abc” model. The
“abc” model has been devised by Harold A. Thomas and
introduced as a pedagogical tool by Fiering [1967]. Since
then, it has been used as a benchmark for various compu-
tational methods [Vogel and Sankarasubramanian, 2003].
Its main advantages are that (1) it is linear with respect to
the inputs, (2) it has only three parameters and one bound-
ary condition, and (3) despite its simplicity, its calibration
displays pathologies similar to more complex hydrological
models.

[48] In the following, we first describe the “abc” model
and how it can be written in a convenient form using linear
algebra. Then, we describe the data set and justify the use of
synthetic discharges in our numerical simulations. The next
and last paragraphs discuss the error models chosen along
with the prior distribution for the parameters and true
values.

4.1. Description

[49] The “abc” model comprises two equations, one for
the discharge Q, and the other for water storage S,, where ¢
denotes time steps (annual or monthly). The model has three
parameters (a, b, ¢) (hence the name) and a state parameter,
Sy, the storage. The model is driven by the rainfall 7,

O =(1—a—br:+cS:
(8
Ser1 = {1 —¢)S; +ar

Each parameter has a pseudophysical signification: & stands
for the proportion of rainfall entering the storage, b is the
proportion of rainfall lost to evapotranspiration and c is the
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percentage of water seeping from the storage to the basin
outlet. All parameters take values in the interval [0, 1], and
the conservation of water imposes an additional constraint
on a and b, namely a + b < 1.

4.2. Matrix Formulation

[s0] The main advantage of “abc” is that it can also be
written elegantly in matrix form. To do so, we use induction
to write the storage at the nth time step in terms of the initial
storage and the rainfall history:

n—1
Sp=(1—cy 'S +ad (-0, n>1 (9)
k=1

By defining the following vectors

X = [rl,rz,...,r,,]t
y= [Ql)QZa“‘aQn]t
t= [c,c(l —c)e(l—c),...,e(d —c)"_l]

t
*

and plugging equation (9) into (8), the model output y can
be expressed in a convenient matrix formulation:

y = Ax + Sit,

where matrix A is defined as

(1~-a~b) 0 0 0
ac (1-a-b) 0 0
A= ac(l —c) ac

(1—a—b) 0

ac(1 - "% ac(l - ac(l - (1~ ;z - b)

4.3. Error Models Selection

[s1] The selection of error models is restricted by a
formidable requirement: closed form integrability. Indeed,
equation (3) contains an integral over 2n variables. Standard
numerical integration algorithms are not efficient with more
than ten dimensions, and Markov chain Monte Carlo
integration would take a huge amount of computing power
to integrate over a mere 50 dimensions. Fortunately, Gauss-
ian multivariate functions are readily integrable for any
number of dimensions and are generally considered a valid
depiction of a random error probability from an inferential
point of view [Jaynes and Bretthorst, 2003]. For the
particular context of “abc,” we will thus limit our error
models to multivariate Gaussian distributions in order to
retain closed form integrability:

p(E[x) = N(x[x, %) (10)

(11)

(12)

pFly) = N(Fly, Z.)
p(ylx, 8, M) = N (yl4x + $it, ),

where x and y are positively defined. Note that there are no
constraints on the covariance matrices X, 2. and .. That
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is, correlated and heteroskedastic errors can be assumed by
assigning nonzero off diagonal terms and variances
dependent on the input data. See Sorooshian and Dracup
[1980] for examples of such matrices.

[s2] At this point, we are ready to integrate equation (3)
over y, effectively convoluting the structural and output
error model into a generalized output error model:

/ PFYIP(yIx, 8, M) dy = p(§x, 6, M)
R

Substituting functions (11) and (12) in (13) and integrating
over the real domain, we find

(13)

P(y|x7evM) =N(5’|AX+S1t, 25)7 (14)
where X, = X + X¢. Note that since discharge is a purely
positive quantity, the integral in equation (13) should only
span the positive orthant. The integration over the real
domain is an approximation, acceptable only if the means of
Ax + S,t are three or four standard deviations away from 0.
The same comment applies to the integration over x. Before
we can proceed with the integration over the input variable,
the prior p(x) must first be defined.

4.4. Prior on the True Rainfall

[53] We choose to define the prior on the true rainfall as a
historical prior, that is, p(x) will reflect the distribution of
monthly rainfall in the region. Details about how this is
done are given in section 5.2. For now, it suffices to say that
the prior is described by a sum of three Gaussian distribu-
tions with different means and variances. It is therefore
possible to describe distributions very different in shape
from a unique Gaussian, while respecting the requirement
that all error models are to be Gaussian.

3
p(x) = ZﬁN(X|Rj7 2Rj)a
j=1

where 3" fi=1, R, =R;[1, 1, ..., 1T and Sg, = oxl, I
standing for the # x » identity matrix.

(15)

4.5. Integration of the Input Nuisance Variables
[s4] The integral

PR, 0, M) = / P8 MpERpE) & (16)

R

can now be solved using the identity:
K= / HN(xip.l,Ei)dx
R i=1

@i U e = o
=—————expo | WETE- ) piS ) o (17
TLenint T2 2 a7

where
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[s55] Putting equations (10), (14) and (15) into (16), we
find using the identity (17):

3
PFI%,0,.M) = fK;, (18)
j=1

using covariance and means

5 =ATA+ 57 + 5y
=5 [A‘E;‘(jz —Sit) +Z5lE+ E,;J?Rj] .

The calculations are detailed explicitly in Appendix A.

4.6. Prior on the Parameters

[56] The prior on the parameters a, b and ¢ remains to be
defined. The prior density should reflect our degree of
confidence in the value of the parameters. Since the param-
eters take values between 0 and 1, we will use the Beta
distribution for the sake of generality

B{x|r,s) = X1~ x) ! 0<x<1,

B(r,s)

where (#, s) > 0. The prior on ¢ will thus be p(c) =
B(x|r., s.). The prior on a and b is a little bit more involved
due to the constraint ¢ + b < 1. Indeed, this constraint
suggests a bivariate distribution. To define p(a, b), we
impose a dummy prior B(g|*.s, S.5) on the direct runoff g =
1 — a — b, and using variable substitution, we compute the
corresponding prior on (a, b):

B(l —a— b|rap,sap)
p (a?b ) - (a + b)

The prior for the parameters is then completely specified by
p(8) = pla.b)p(c).

[571 Now that all the ingredients are assembled, we are
ready for numerical computations. The following section
presents various results that highlight the impact of input
errors on the parameters and the workings of the Bayesian
uncertainty framework.

5. Results From “abc”

[53] The results from “abc” share traits similar to those of
the straight line: influence of the density mapping and
sensitivity to the prior p(x). Other properties are also
observed, such as model filtering and parameter averaging.
Each one of these observations will be discussed in the
following paragraphs. As we will see, the “abc” model is
more complex than the straight line, due to the fact that it
has more parameters and a memory of past events, via water
storage. Hence past uncertainties propagate to blur the
actual state of the system, regardless of the initial state
uncertainty.

[s9]1 The effective display of results is a troublesome
issue; there seems to be no perfect way to visualize a 3-D
parameter space at a glance. The solution adopted was to cut
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Figure 6. Inputs (X) and outputs (¥) used in this study. The

inputs are rainfall readings from a meteorological station on

the Famine River. The outputs (discharges) were generated

using the “abc” model with parameters a = 0.6, b = 0.15,
and ¢ = 0.2.

orthogonal slices in the parameter mesh at the posterior
density’s maximum (dmax, Dmax> Cmax)- Figures will thus
contain three plots, one for each slice. The color bar uses
white to indicate a null probability and black for the
maximum probability reached by the pdf.

5.1. Density Mapping Effect

[60] To demonstrate the effect of the density mapping on
the parameters, we isolate this effect from other influences.
We eliminate the effect of random noise by using exact data,
specifying an input error model with a large variance, an
output error model with a very small variance, a uniform
prior on the true values and vague priors on the model
parameters.

5.1.1. Data

[61] The true inputs x consist of monthly rainfall meas-
urements from a station on the Famine River in the Beauce
region, located south of Québec city. The true outputs y are
the discharges simulated using the “true” rainfall and the
“abc” model with parameters ¢ = 0.6, b= 0.15 and ¢ = 0.2
(the same parameters used by Kavetski et al. [2002]). The
use of synthetic discharges allows us to check the consis-
tency of the method and analyze the results more easily, that
is, compare estimates to the “true parameters.”

[62] In the following simulation, the sample (X, §) con-
sists of 30 months of rainfall and stream flow. The data
contain no errors (0, = g, = 0), thus (X, ¥) = (x, y) and the
data fit perfectly the “abc” model with parameters 6 = (0.6,
0.15, 0.2). Figure 6 shows a plot of the rainfall and stream
flow used in this simulation.

5.1.2. Error Models and Prior Hypotheses

[63] Following are the modeling hypotheses, designed to
bring out the density mapping effect and reduce other poten-
tial influences on the parameters posterior distribution:
(1) homoskedastic input error model with a large standard
error £ =25/ mm” (almost 30% of the mean precipitation),
(2) homoskedastic outgut error model with a negligible
variance (2. = 1/ mm®), (3) uniform prior over the true
rainfall (p(x) o 1), and (4) vague prior for 6, that is, the prior
described in section 4.5 with parameters 7,, =5, = 1 and . =
s.=1.

5.1.3. Results and Analysis

[6¢4] Computation of the parameters posterior density

reveals a displacement of the cloud from the true parameters
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indicated by a cross (see Figure 7). This displacement
amplifies as the assumed input uncertainty increases. Since
all other influences have been curbed, we relate the pdf
displacement from the true values to the density mapping
effect. In “abc”, its consequence is to displace the pdf
density toward higher values of evapotranspiration » and
infiltration a. In other words, the calibrated model has a
lower percentage of direct runoff (1 — @ — b) than the
“real” model.

[6s] The underestimation of the direct runoff can be
explained using an analogy with the straight line model.
We have seen in Figure 2 how smaller slopes map the
outputs more densely than larger ones, with the consequence
that the slope probability distribution has its maximum
below the intuitive slope 3/%. In the “abc” model, the direct
runoff is akin to the slope: it specifies the instantaneous
response of the model to the input. Models with high direct
runoff display a great variability of discharges, and the
output distribution is stretched over a wider range. Models
with a low direct runoff, where storage plays the dominant
part, exhibit more steady discharges, and the output distri-
bution is more concentrated. Therefore, with a given dis-
charge and an input uncertainty, we expect the most probable
model to display a lower direct runoff than the “true’” model.

[¢6] Now, one must realize that the density mapping
effect is not an artifact of the Bayesian uncertainty frame-
work but a very common phenomenon. When the input
error is not accounted for, as in SLS for example, the effect
is still present, biasing the results in an apparently uncon-
trollable way. The Bayesian framework merely provides the
means to identify the effect, and as data accumulate, to
reduce its effect on the parameters’ pdf. The fact that the
method accounts for the input uncertainties makes sure that
the pdf is consistent with the data and reflects the input
uncertainties” impact on calibration.

5.2. Prior p(x) Impact

[67] As shown in section 3, the prior on the input true
values plays a significant role in the estimation of the

022f ' ]
© 02 1
018} , .
ab plane be plane
02} 1t .
RRELS
01+ 4t :
1 1 1 1 ' 1
0.5 0.55 0.6 0.65 0.180.2 0.22
a c

Figure 7. Density mapping effect on the parameters’
posterior distribution. The slices are taken at the parameters
most likely value [a, b, ¢] = [0.61, 0.16, 0.2]. True
parameter values are indicated by crosses.
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Figure 8. Histogram of St-Ephrem monthly rainfall based
on data collected from 1929 to 2003. Superimposed (dashed
lines) are the three Gaussian distributions whose sum (solid
line) fits the histogram best and constitutes the historical
prior p(x) over the true rainfall.

parameters. In the last example, we used a uniform prior
over the true rainfall to isolate the density mapping effect.
We now use the same data and assumptions, except for a
more realistic prior on the true inputs, an historical prior.

[s¢] To build this historical prior, we select a meteoro-
logical station (St-Ephrem) located near the watershed
under study and plot an histogram of the monthly rainfall
from 1929 to 2003. The best fitting distributions are
Gamma, Weibull, and lognormal. However, if we choose
to use any one of these distributions, the integral over x in
equation (3) has no closed form solution. The trick is to fit
the rainfall distribution by a sum of three Gaussian distri-
butions (equation (15)), whose parameters are given in
Figure 8.

[62] Although crude, this prior is adequate for our didac-
tic purposes. In a real case study, however, it would be best
to take seasonality into account. That is, specify a distinct
prior for each month of the year. In the case where there is
only one station on the watershed, the prior could also try to
include the effect of spatially averaging the point rainfall
input. The more relevant information that can be added to
the prior, the better the calibration.

[70] The probability distribution of the parameters esti-
mated using the historical prior is shown in Figure 9.
Comparison with Figure 7 allows us to measure the differ-
ence made by the prior. The main change is in the storage
parameter @, displaced to the left and achieving better
agreement with the true parameters.

5.3. Model Filtering and Rainfall Smoothing

[11] An interesting observation from “abc¢” is that the
model exhibits a form of filtering. By channeling rainfall in
a storage compartment, the model is able to filter some of
the noise imposed to the input data. That is, due to the time
spent in storage, input errors are absorbed and averaged.
This filtering makes the model relatively robust to non-
biased input errors. Indeed, the noise imposed to the
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precipitation must be considerable before its effect becomes
apparent. Following this line of thought, a watershed with a
very fast response (small size, flash floods) should be more
sensitive to input errors than a large watershed with a long
response time.

[72] Our last observation concerns the averaging of
parameters due to the historical prior. When a historical
prior is chosen for the true values of precipitation, and the
input error model has a large variance, the prior plays an
important role in determining the distribution of probable
true rainfall. Indeed, as the variance of the input error model
increases, the distribution of the true rainfall approaches the
prior distribution. In other words, the intrinsic variability of
rainfall embodied by measurements is discarded in favor of
the historical knowledge about its distribution. By this
process, the data are “smoothed” toward the prior’s mode,
reflecting more and more the average rainfall, and thus the
average behavior of the model. Since the parameters a
and ¢ have, on average, no influence (they affect only the
timing of discharges), they become increasingly difficult to
estimate.

5.4. Comparison With SLS

[73] As can be seen, there are some pitfalls to avoid when
using the Bayesian uncertainty framework, and the question
is whether or not the quality of the calibration is worth the
extra effort. To answer that question, we compare results
obtained by our method assuming input and output uncer-
tainties, with those obtained assuming only output uncer-
tainties (this is effectively SLS grafted with priors on
parameters).

54.1. Data

[74] The data is a series of 100 monthly rainfall measure-
ments from the Famine River and the synthetic discharge
computed using the “abc” model. In this case, a Gaussian
noise is added both on the input and output data. The noise
is homoskedastic and devoid of autocorrelation, with stan-
dard variations of o, =25 mm and o,, = 15 mm for the input
and output variables respectively.

0.22
ac plane
© 0.2
0.18F , .
ab plane
02
= 015}
01 +
1 L 1
0.5 0.55 0.6 0.65 0.180.2 0.22
a c

Figure 9. Impact of the prior for the true inputs. The slices
are taken at the parameters most likely value [a, b, c] =
[0.59, 0.16, 0.2]. The only difference with Figure 7 is the
prior p(x), now a historical prior instead of a uniform prior.
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Figure 10. Parameters’ posterior density, computed using
only an output error model, thereby simulating a modified
SLS algorithm. The slices are taken at the parameters most
likely value [a, b, ] = [0.68, 0.07, 0.16].

5.4.2. Error Models and Prior Hypotheses

[7s] The Bayesian method uses Gaussian error models
with the correct covariance matrices (S = 257 mm’ and
=, = 15%7 mm?). Although the “SLS” method treats only
the output error model, it is possible to include, partially, the
effect of input errors on the parameters by defining an
effective variance [Orear, 1982; Lybanon, 1984]. This
effective variance is the sum of the output variance with
the input variance multiplied by the model response: ok =
0%(1 — b)*+ o.. Here 1 — b is the average response of the
model, so that using b = 0.15, we obtain L g = 26° mm®.

[76] The prior on the true inputs is the historical prior
defined in section 5.2. The prior on the parameters (defined
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Figure 11. Parameters’ posterior density, computed using
an input and an output error model. The slices are taken at
the parameters most likely value [a, b, ¢] = [0.59, 0.12,
0.18].

10 20
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Figure 12. Comparison of predictions from two cases:
(top) assuming only output errors and (bottom) assuming
both input and output errors. The dashed line indicates the
true synthetic discharge, and the solid line (SLS) indicates
the discharge computed from the likeliest parameters.

in section 4.5) is identical for the Bayesian and SLS
calibrations.
5.4.3. Results and Analysis

[77] The results are displayed in Figures 10 and 11. For
this particular realization, the results obtained by the Bayes-
ian method seem more accurate than those of SLS. Other
simulations (not shown for lack of space) offer different
pictures of the situation, but overall, the Bayesian density
almost always presents superior results. What really matters,
however, is not the parameters themselves but their predic-
tion capability.

[78] To make predictions, we use as input 20 monthly
rainfall values following the series used to calibrate the
model. We uniformly sample the posterior density around
3000 times and simulate the discharge. Each discharge
series is weighted by the probability of the parameter set,
and a histogram of the discharge is computed. The results
are linearly interpolated and displayed in Figure 12, where
they can be compared to the true synthetic discharge
(dashed line). The Bayesian predictions are closer to the
synthetic discharge than those of SLS.

[79] The reader must be aware that these results constitute
only one realization of a random Gaussian noise. The
authors have conducted similar simulations where results
are not so clear cut. In fact, when the noise is smaller, or
when the data set is around n = 30, the predictions of SLS
and of the Bayesian method are often very similar. Overall,
it seems that Bayesian results are almost always better than
those of SLS, the difference, however, may be negligible.

[s0] Hence the decision of using the Bayesian method to
account for input uncertainty depends upon two factors: (1)
the impact of estimated input errors on model outputs and
(2) the requirements of the end user. Since the difference
between SLS and Bayesian estimates is directly related to
the sensitivity of the model to input errors, the first step to
assess the pertinence of a full Bayesian analysis is
to evaluate the magnitude of input errors and their impact
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on model predictions. If the impact is not significant with
respect to output errors, then there is no need to include
input uncertainties in the calibration process. If the impact is
significant, the decision to use a Bayesian method relies on
the needs of the end user. If the user only needs crude
parameter estimates, there is no need to get fancy and a
simple SLS will do. However, if the issue is sensitive and
the reliable assessment of uncertainties plays a crucial role
in the decision making process, using a method that con-
siders input uncertainties would be preferable.

5.5. Comparison With Kaverski et al. [2002]

[81] Our study of the impact of input uncertainty was
motivated in part by the article of Kavetski et al. [2002], on
which we want to comment. The article presents a Bayesian
method, BATEA, Bayesian Total Error Analysis, to account
for input uncertainties. BATEA is applied to “abc”™, and the
performances of BATEA and SLS are compared. The
conclusion is that in the presence of input errors, SLS
provides precisely wrong parameter estimates while
BATEA gives probably right estimates. Indeed, the poste-
rior pdf computed using BATEA are dead centered on the
parameter’s true values, a performance we could not repli-
cate. We think this can be explained by the differences
between the error models. In their case, the “abe” model is
used with hourly time steps, where errors are likely to be
highly correlated. Hence, instead of corrupting individual
measurements, Kavetski et al. [2002] divide the rainfall
history into storms, and multiply all the precipitations in a
given storm by the same random factor. For example, for a
time series of 1000 hourly precipitation, there may be five
storm multipliers. These storm multipliers are then treated
as parameters and estimated, rather than integrated, via a
Bayesian analysis using MCMC algorithms.

[82] The method of Kavetski et al. [2002] is effective with
large data sets and a relatively low number of nuisance
variables. The method presented in this article deals with
small data sets where each measurement has its own
nuisance variable (the true value). In a sense, the two
methods apply to different situations and cannot be easily
compared in terms of performance or accuracy.

6. Summary

[83] The article describes a Bayesian framework to ac-
count for input, output and structural uncertainties in the
calibration of models. The method is applied to two models:
a simple straight line passing through the origin and the
hydrological model “abc.” In both cases, the main object of
study is the impact of input uncertainties on the estimation
of the model parameters. The analysis of those models has
led us to some interesting observations concerning the
calibration of models in the presence of input uncertainty.

[84] 1. The prior on the true inputs plays a major role.
Contrary to the usual belief that the influence of the prior
vanishes as data accumulate, the prior on the true inputs has
a significative influence on the parameters estimation even
for large samples. This is due to the fact that every datum
added to the set comes with an additional prior, contributing
to the shape of the posterior distribution. ‘

[8s] 2. Error models need to be carefully specified. The
error models should be as realistic as possible, since under-
estimating the input error can bias the results, while over-
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estimating the input error leads to the smoothing of inputs,
averaging of the model behavior and difficulties in param-
eter estimation.

[ss] 3. Biases are meaningful. The uncertainty on the
parameter combines the output uncertainty and the input
uncertainty via the model structure. Hence a bias on the
parameter posterior density does not necessarily mean that
the calibration is flawed, but rather that the “true” param-
eters are not those for which the measured outputs are the
most probable. This displacement of the parameter posterior
from the true values is related- to how the model maps
uncertain inputs onto outputs. In classical statistics, such
displacements ‘of the parameter’s density maximum are
called biases and regarded with suspicion. In the Bayesian
framework, the origin of this bias is understandable, and we
see no motivation to make corrections in order to obtain an
“unbiased” estimator.

[s7] 4. The entire posterior is significant. The fact that
biases are commonplace in input error context underlines
the importance of using the whole posterior distribution to
make predictions, and not only the maximum of the
distribution. By sampling the parameter’s posterior to make
predictions, we insure that the prediction uncertainty is
faithful to the parameter uncertainty, and reflects the data
and structural uncertainty.

7. Conclusion

[s3] The uncertainty framework presented in the paper is
general and theoretically, can be applied to any problem.
The application to the “abc” model, however, made use of
the fact that the model is linear in its input and that equation
(3) could be integrated analytically. In general, hydrological
models are nonlinear in their inputs, and such direct
integration is impossible. The resolution method used here
is thus inadequate for virtually all commonly used hydro-
logical models. The usefulness of the uncertainty frame-
work in applied hydrology is hence questionable until an
algorithm is developed to apply it to nonlinear models. This
is the subject of the authors’ current research.

[s9] The article bypasses the entire question of the hyper-
parameters. Indeed, in all simulations, we posed as known
the error model parameters (noise variance, mean and
correlation). In real cases, those hyperparameters must be
estimated, or integrated as nuisance variable. The treatment
of hyperparameters, computationally difficult, would have
overshadowed the focus of the paper, treatment of input
uncertainty. It is clear, however, that realistic applications of
the method will have to tackle this issue.

[s0] Another simplification concerns the state uncertain-
ties. In the case of “abc”, the model state is embodied by
S, the initial storage. In our simulations, we took the initial
storage as known, in order to simplify an already lengthy
equation. A brief inspection, however, will convince the
reader that it is relatively easy to integrate equation (18)
with respect to S;. Thus, for a uniform prior on the initial
storage, an analytical formula for the parameters posterior
density can be derived. The effect of our ignorance of the
initial storage is then included into the uncertainty on the
parameters.

[s1] If the uncertainty framework can be successfully
applied to nonlinear. models, two issues will have to be
addressed to make full use of its potential. The first one is
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the specification of a rigorous structural error model. This is
already a recognized open problem in hydrology. The
second issue is the description of a detailed prior on the
true values, taking scaling effects, seasonality and correla-
tion into account. While these effects have been studied
separately, their integration into a unique prior remains to be
done.

[92] We hope by this article to promote the realistic
assessment of uncertainties and their integration into model
calibration methods. It is important to acknowledge the
complexity of the calibration process and its importance
for reliable predictions. The credibility of science is not
built upon its vast knowledge, but upon its honesty in front
of ignorance and uncertainty.

Appendix A: Calculations

[s3] Here we detail the derivation of the posterior pdf for
the parameters 8 of the ‘‘abc” model. Starting with
equation (16) and plugging the input and output error
models along with the historical prior, we find

1% 0 M) = / NGIA + S1t, SN (&, o)
R

(A1)

. []z;: N (XIRj»ERJ)] dx

In order to apply the identity (17), we need to express the
Gaussians as functions of x:

NFIA + Sit, T,) = N(x|A—1(y - Slt),A‘lEEA‘I')
N(Zx, 5) = N (x[%, Ts)

Substituting those last expressions into equation (Al) and
writing it as the sum of a product of Gaussian, we can apply
the identity for each element of the sum

3
POROM) = 3 [ Mlxlus,B2)
=

- N (xlpg, 22)N(X|p‘3j7 Esf) dx,

where
p=AF-580 T =A'SAY
by =X =5
by =R Ty = Ly
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Calibration of hydrological model GR2M
using Bayesian uncertainty analysis

La calibration des modéles hydrologiques en présence de multiples sources d’incertitude
représente un des défis majeurs des sciences hydrologiques. Dans cet article, la
calibration est considérée comme un probléme d’inférence et est abordée a l'aide
de l'analyse Bayésienne. Les sources d’incertitude affectant la modélisation hy-
drologique, incertitudes sur les données d’entrée et de sortie des modeles, incertitudes
au sujet du modele lui-méme ainsi que les incertitudes liées & la méconnaissance des
conditions initiales, sont décrites de maniére probabiliste. La définition formelle
de ces modeles d’erreur permet de dériver une équation décrivant la probabilité a
posteriori des parameétres du modele. Ce schéma d’incertitude est appliquée a la cali-
bration du modele GR2M, un modele hydrologique mensuel. GR2M étant un modéle
non linéaire, il n’existe pas de solution analytique permettant de calculer directement
la probabilité des parameétres du modeéle et 'algorithme Metropolis est utilisé pour
générer une chaine de Markov reproduisant empiriquement la distribution de ces
paramétres. L’article s’intéresse & l'influence qu’ont les modeles d’erreurs sur le
processus de calibration et de validation. Plus particulierement, les themes étudiés
sont le traitement des conditions initiales, I'influence des modeles d’erreurs sur la
distribution de parameétres, I’interprétation des simulations en présence d’incertitude
sur les données d’entrée et le traitement des erreurs structurales. Il est montré
comment les erreurs structurales peuvent étre, a posteriori, discernées des erreurs
sur les données.
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X-2 HUARD AND MAILHOT: BAYESIAN UNCERTAINTY ANALYSIS

Abstract.  An outstanding issue of hydrological modeling is the adequate
treatment of uncertainties in model calibration and prediction. The current
paradigm is that the major sources of uncertainties, namely input, output
and model uncertainty should be accounted for directly, instead of assum-

ing they can be safely lumped into the output uncertainties. In this paper,
Bayesian analysis is used to calibrate the conceptual hydrologic monthly model
GR2M taking into account input, output, structural and initial state uncer-
tainty through error models and priors. Calibration is performed under dif-
ferent error assumptions to study the influence of the initial state uncertainty,
the consequences of large input errors, the impact of error assumptions on
calibrated parameter posterior distributions and the definition of error mod-
els. It is shown how such an analysis can be used to separate, a posteriori,
the different sources of errors, and in particular, to identify structural errors

from data errors.
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1. Introduction

Uncertainty analysis currently enjoys a considerable amount of attention in hydrology
[Beven, 2006a]. The recent literature hosts spirited debates about the value of uncertainty
analysis methods [Todini and Mantovan, 2007; Beven et al., 2007; Mantovan and Todini,
2006], discussions about the necessity of validating such methods [Hall et al., 2007] and also
about the very definition of the word uncertainty [Montanari, 2007). With this renewal
of interest in uncertainty analysis, it is legitimate to raise the question of how uncertainty
estimates may undermine the confidence of stakeholders in science when, for example,
bounds are large. Not presenting the uncertainty estimates is certainly not worthy of a
scientific approach and, as pointed out by Beven [2006b], may be, as well, a sure way of
undermining the hydrological sciences. Once one recognizes the necessity of uncertainty
analysis, one is forced to admit that its application requires more rigor and consistency
[Hall et al., 2007]. The efforts needed for uncertainty assessment are certainly important
from an operational point of view, when one has to present results to stakeholder, but is
also crucial when one wants to assess overall model performance.

The requirement for rigor and consistency can be achieved through Bayesian analysis.
Within a Bayesian uncertainty assessment framework, a “generalized” model is put for-
ward that grafts error models accounting for the various sources of uncertainties to the
hydrological model itself. As the hydrological model encompasses our best understanding
of hydrological processes occurring on a given watershed, error models should integrate
and substantiate our knowledge of uncertainties affecting input and output data as well

as those affecting the modeling process (structural uncertainties). The outcome of the
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calibration procedure, namely the posterior distribution of model parameters and, con-
sequently, the predictive uncertainty [Todini and Mantovan, 2007] is conditioned by the
error models and priors. Hence, the overall “performance”or “reliability” of uncertainty
assessment (which determine acceptability of model results [Beven, 2006b]) hinges upon
our ability to define as precisely as possible adequate error models.

In a previous paper [Huard and Mailhot, 2006], a Bayesian framework inspired by the
work of Kavetski et al. [2003] was used to calibrate “abc”, a simple linear hydrological
model [Fiering, 1967]. The linearity of the model and normality constraints on the error
models allowed the derivation of an analytical solution to the parameter posterior distri-
bution, allowing a better understanding of issues related to input errors. Linearity and
normality constraints, however, made the resolution method unfit for common usage.

In this paper, the framework is extended by taking explicitly into account structural
and initial state uncertainties. The parameter posterior distribution is evaluated using
Markov Chain Monte Carlo (MCMC) sampling [Kavetski et al., 2006a, b; Kuczera and
Parent, 1998], thus removing linearity and normality constraints. A procedure is presented
where error models and priors describing input, output, initial conditions and structural
uncertainties are grafted to the hydrological model which is then calibrated. This approach
enables the examination of issues related to: 1) the influence of initial state uncertainty
(Under what conditions is it critical 7), 2) overconditioning due to input error assumptions
(What does calibration mean in this context ?), 3) lumping of structural and output errors
(When can it be done? What are the advantages ?), 4) definition of error models (What
are their impact on the posterior parameter distribution ?) and 5) separation of model

errors from data errors (How is it done ? How can it be used ?). The first four issues
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are examined through simple examples using deliberately crude error model assumptions
and the fifth one by a case study where more care is given to the specification of realistic
error models.

Although this Bayesian uncertainty assessment framework is general and could be the-
oretically applied to any model, the numerical cost of evaluating the parameter posterior
distribution is significant and grows with the length of the data series used for calibra-
tion. Hence, given the available computational resources, its application to daily or hourly
models appears unwieldy. The method employed in the paper should hence be considered
as a formal exercise, rather than an operational solution to the calibration of hydrological
models (for such methods, see Moradkhani et al. [2005]; Virugt et al. [2005]; Kavetski et al.
[2003]; Kennedy and O’Hagan [2001] and Beven and Binley [1992]). In this spirit, the
model chosen to illustrate the issues presented above is the parsimonious monthly model
GR2M [Mouelhi et al., 2006]. GR2M’s nonlinear components make it sensitive to input
errors [Paturel et al., 1995], and hence relevant in an uncertainty analysis context. With
only two free parameters, the posterior parameter distribution can be easily visualized
and interpreted.

The model and data used for simulations are described in more detail in section 3,
after the basic theoretical background and hypotheses underlying the proposed Bayesian
uncertainty framework are explained in section 2. Section 4 discusses basic calibration and
validation issues related to multiple sources of errors using simple error models. Section
5 presents a more realistic case study with carefully defined error models, along with a

brief analysis of the results, including the a posteriori separation of the different types of
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error. A brief discussion about the extension to daily model is included followed by the
conclusion (section 6).

This paper relies heavily on the theory and methods of Bayesian analysis. The authors
suggest the textbooks of Gelman et al. [1995] for an application focused point of view
and Jaynes and Bretthorst [2003] for more theoretical discussions on the foundations of

probability theory.

2. Bayesian uncertainty framework
This section introduces the proposed Bayesian uncertainty framework and derives equa-
tions to perform the calibration and validation of models in presence of multiple sources

of uncertainties.

2.1. Basic concept

In a Bayesian calibration, the objective is to find the posterior distribution for the
parameters @ knowing the input data series £ and output data series ¥ as well as the
model M:

p(6 | &, 5, M). (1)

Solving equation (1) may be very simple or extremely complex, depending on the mod-
eler’s assumptions about the sources of uncertainty that affect the calibration process. In
hydrological modeling, many different sources of uncertainties must be tackled simulta-
neously. Indeed, according to Beven [2006b] “... we have unknown errors in input and
boundary conditions that get processed non-linearly through a model that has structural
errors and which is then compared with observations that have unknown measurement

and commensurability error characteristics.” Although accounting for all these sources
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of errors realistically is a conceptual and technical challenge, not doing so can have un-
desirable consequences on modeling performance and the reliability of predictions [Oudin
et al., 2006; Andréassian et al., 2004; Kavetski et al., 2003; Andréassian et al., 2001;
Nandakumar and Mein, 1997; Paturel et al., 1995; Michaud and Sorooshian, 1994; Xu
and Vandewiele, 1994; Troutman, 1982]. In the following, a Bayesian approach is used to
account for four different sources of uncertainty: the ignorance of the initial conditions,
input data error, output data error and structural (model) error.

To describe the effect of those four types of uncertainties on calibration and validation,
conceptual true variables describing the initial condition ¢, the true input series « and the
true output series y are introduced in eq. (1) as latent variables (idealized true variables
(,y) are what would be observed in the absence of data errors). Latent variables (or
parameters) are variables useful to state a problem but whose effect is integrated out of

the posterior of interest [Jaynes and Bretthorst, 2003]. Equation (1) then becomes

p(e l i)gaM) = /// p<0amay) ¢0 i iagaM) dx dy d¢0a (2)

where it is assumed that the integrals span the admissible domain of each variable.
Using these conceptual true values, hypotheses concerning the nature of errors can be
translated probabilistically and equation (2) brought under a form where it can be solved
computationally. Schematically, the inference process is displayed in figure 1: input and
output data are linked to their respective true values by the input and output error models,
and those true input and output variables are linked together by a structural error model,

itself dependent on the model parameters and initial conditions.

2.2. Hypotheses, priors and error models
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The first step is to use Bayes’ theorem on eq. (2) so that data is conditioned on the

true variables:

p(012.5.M) = [[[ 5(6.516,2,3, 60, M)p(0,.3, 60 | M) dedy der —=—.
3)

Since the normalization constant p(&, §) introduced by Bayes’ theorem is of little rel-
evance to the calibration process, it will be neglected in the following, with the equality
relation replaced by proportionality sign.

For the next step, two hypotheses are made: 1. data errors cannot be inferred from
the initial conditions, the model parameters or the model, and 2. input and output er-
rors are conditionally independent given the true input and true output [Kavetski et al.,
2003]. The first hypothesis is significant, in that it defines data error models as entities
independent from the model simulations. Note however that data errors are only mean-
ingful with respect to the true variables, themselves dependent on the model’s spatial and
temporal scales. Input and output error models are hence defined only on the basis of the

experimental protocol, apparatus leading to data acquisition and the relation between the

observed variable and the true variable. Formally,

where p(& | x) is a statistical distribution defining the probability of measuring an input
series & knowing the true input series . Similarly, p(§ | y) is a statistical distribution
defining the probability of measuring ¢ knowing the true outpuf series y. In the following,
these particular distributions will be referred to as the input error model and the output
error model, and denoted specifically by p,, and p,,, as reminder of their meaning. The

exact shape of these error models is up to the modeler and should capture the main sources
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of data uncertainty. Defining realistic error models is a difficult task since data errors
typically combine both measurement errors and commensurability errors (the difference
between the variable the model expects and what is actually measured in the field) in
ways that are site specific.

Using assumption (4), equation (3) becomes:

501 8,5,M) [ 0(@ 1200l 1 9) by | 6, b0, M) p(6. 3, b0 | M) ddy A,

(5)

where p(y | 8, x, ¢o, M) is a statistical distribution describing the probability of a true

output series y knowing the simulated output series ¥ = M(8,x, ¢g). In other words,

this distribution describes the difference between model simulation and true output: the

model error. It will hence be referred to as the structural error model, and denoted by
Py | ¥) =p(y | 0, x, o, M) to shorten the notation.

The last step consists in splitting the prior p(8,z, ¢o | M) into two independent priors
7o (T | M) 76,4,(8, o | M), where 7 is used, here and in the following, to denote priors
(the subscript is dropped when there is no ambiguity about which prior is meant). While
this separation is not mandatory, defining a joint multivariate prior distribution for the
true input series, model parameters and state variables seems to be of a marginal interest
given the length of the data series generally used in hydrology [Mantovan and Todini,

2006]. Equation (5) can then be written as

5018,5)  [[[ (@ 12)00u(@ | 1) Purly | 5) (&) (0, d0) dw iy dgr,  (6)

where references to M were removed since the model is always assumed known.
Note that although 7(8, ¢»¢) and w(x) are both priors, there is a notable difference

between the two. Whereas 8, ¢p¢ are inferred from the whole data set, the inference on a
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given true value z; is based mostly on «; as well as §;»; through inferred parameters. If
the errors are assumed large (vague input and output error models), then there is very
little information in the data about z; and the prior plays a major role in the inferential
process [Gull, 1989]. The prior for the true input must hence be chosen with care, and
modelers should avoid using abusively vague priors [Kavetski et al., 2006a; Huard and
Mailhot, 2006].

It is worthwhile to underline the conceptual differences between the different types
of outputs that are defined in this Bayesian framework: simulations () are the model
outputs computed from inferred true inputs and parameters, output measurements (§)
are experimentally measured outputs, and true outputs (y) are the idealized true values
that would be measured if no measurement or commensurability errors were present.
Another useful output that will be discussed later is the simulated output measurement
(f’), the output measurement predicted by the output error model given the inferred
true output. In practice, different applications will require the use of different types of
output. In water resource management contexts, decision makers will rather be interested
in the inferred true outputs than the simulated outputs. In a model validation context
however, field measurements should be compared to simulated output measurements to
avoid mixing structural errors with measurement errors. Note that in many modeling
studies, simulations are implicitly interpreted as the true values and compared directly
with observations to assess model performance, with the ensuing risk of misinterpreting ‘

results.
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2.3. Resolution method

In general, equation (6) has no analytical solution. One exception is when the model
is linear with respect to the input variables and the error models as well as the true
input prior m(x) have a Gaussian shape. This particular case was studied in Huard
and Mailhot [2006] using the “abc” model. However, typical hydrological models are
nonlinear, eq. (6) cannot be integrated analytically and a different resolution method
is needed. Unfortunately, numerical integration methods such as quadratures become
inefficient for more than three or four dimensions, due to the curse of dimensionality:
the computational cost increases exponentially with the dimension of the problem [Novak
and Ritter, 1997]. Quadrature methods are thus inappropriate for this kind of application
where the integral spans hundreds of dimensions (one for each true input and true output).
In other words, the posterior probability cannot be evaluated directly. This is a frequent
problem in Bayesian analysis, and a common solution is to sample parameters from the
posterior distribution (6) using Monte Carlo Markov Chain (MCMC) algorithms [Huang
and Liang, 2006; Kavetski et al., 2006b; Bates and Campbell, 2001; Kuczera and Parent,
1998; Gelman et al., 1995; Neal, 1993]. In this case the Metropolis algorithm is used,
by which the parameter space is explored by making random steps. These steps are
selected such that the distribution of the sampled parameters approaches the posterior
distribution after a sufficient number of random steps (see Chib and Greenberg [1995] for
an introduction to MCMC theory and more particularly Metropolis sampling). Hence, to
solve equation (6), one samples (8, x,y, ¢o)’ N times from p(8,x,y, do | £, F), and for N
large enough (convergence can be assessed by different criteria [Gelman et al., 1995]), the

empirical distribution of the samples reproduces the probability distribution (superscripts
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¢ indicate sampled values). The integration over the latent variables is then performed
by marginalizing over x,y and ¢y, that is, by considering the sampled €° independently

from the latent variables.

2.4. Prediction and validation

Hall et al. [2007] suggest that “without validation, calibration is worthless and so is
uncertainty estimation.[...] Validation is also needed |[...] because the data do not contain
full information about how the catchment will respond in the future. The same argument
applies to uncertainty estimation.” In other words, validation checks not only how the
calibrated model performs outside the calibration period, but also if the error model
assumptions hold.

In a split-sample calibration/validation, a data series is split in a calibration series (&, §)
and a validation series (&,,%,). Calibration is performed under a set of assumptions
defining the error models and priors, under which the posterior distribution p(@ | &, %)
for the parameters is. computed. In validation, parameters can be seen as a source of
uncertainty and thus treated as latent variables. Validation uses the entire posterior
parameter distribution along with input & to infer the probable distribution of output
measurements f’+, which can compared with the real observations ¢, to validate the

model and the calibration assumptions:

p(F |84.8,9) = [[[ p(F0,0.0.,0, 12,,8,9) do. dy. dpae

~ [[[ 2ol 190 pi w11 81)pn(B | 22 m(2)0(60,6 1 8,5 iy dpco.
U
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The simulated output measurements ffj can then be compared with the observed out-
puts 4, to assess the global efficiency of the model, that is, the combined accuracy of the

model, error models and priors.

3. Model and data
3.1. GR2M

Simulations in this paper use the parsimonious hydrological lumped monthly model
GR2M [Mouelhi et al., 2006], an improved version of the model developed by Edijatno
and Michel {1989] and Kabouya [1990]. Despite having only two free parameters, the
model has been shown to perform well when compared to similar monthly models; on
a benchmark test consisting of 410 basins throughout the world, GR2M shows the best
performance among nine models, some of them counting five free parameters [Mouelh:
et al., 2006].

The two free parameters of GR2M are 61, the soil moisture storage maximum capacity,
and 65, the water exchange term with neighboring catchments. The internal state variables
consist of a soil moisture accounting store (S) and a quadratic reservoir (R). The model is
forced by monthly rainfall (r) and potential evapotranspiration (e) and returns a monthly

flow 4. Readers should note that 6y, the soil moisture store capacity, controls the model’s

response to rain event, and to a certain extent, the variability of the simulated flow. As -

6, increases, the simulated flow depends less on the current rainfall and more on the
store level, itself dependent on past rainfall. For small #;, more rainfall is directed as
excess rainfall and instantaneously routed as output flow. In other words, 6; controls

the model’s low-pass filter behavior (its “memory” of past events). In the following, the
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GR2M model is denoted by ¥ = M(8,x, ¢), with model parameters @ = {61,6;}, input
series © = {r, e} and internal state variables ¢ = {R, S}.

Sensitivity analyzes have determined that GR2M is sensitive to white noise errors on
rainfall, but comparatively robust to random errors on potential evapotranspiration (PE)
[Paturel et al., 1995]. That is, the Nash-Sutcliffe efficiency (NSE) decreases rapidly as
the magnitude of random errors over rainfall increases, but much more slowly in the case
of random errors over PE. Although the study of Paturel et al. [1995] dates back to a
previous version of GR2M, a similar analysis was carried out and the same conclusions

hold for the current version.

3.2. MOPEX data sets

The data used in this study is taken from the MOdel Parameter Estimation eXperi-
ment (MOPEX) [Schaake et al., 2006]. The database contains daily streamflow, rainfall,
potential evapotranspiration, minimum and maximum temperatures. The rainfall data
is produced by Maurer et al. [2002] and is the result of gridding point rainfall estimates
from the United States, Canada and Mexico. The rainfall point estimates are daily totals
taken from the National Oceanic and Atmospheric Administration (NOAA) Cooperative
Observer (Co-op) stations. They are gridded using the synergraphic mapping system
(SYMAP) [Shepard, 1984] as implemented by Widmann and Bretherton [2000]. Thé
gridded data is then scaled to correct for complex topography in sparsly instrumented
areas using long-term monthly averages from the Parameter-Elevation Regressions on In-
dependent Slopes Model (PRISM) [Daly et al., 1994, 1997]). The data is not corrected,
however, for systematic gauge errors [Maurer et al., 2002], which can significantly decrease

the measured amount of rainfall.
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Generally speaking, the major sources of systematic errors in rainfall measurements
are wind-induced undercatch, wetting losses and evaporation losses. The undercatch due
to wind has been estimated to vary from 2% to 20% for liquid precipitations to over
100% for solid precipitation, wetting losses from 3% up to 10% and evaporation losses
are generally below 2% [Metcalfe et al., 1997; Yang et al., 1999]. These estimates are
highly dependent on the type of gauge, the local climatology, altitude, topography and
the apparatus calibration.

Another source of error is the “representativeness” of the data (commensurability).
Lumped conceptual hydrological model assume the input variable is related to the areal
rainfall over the entire catchment, whereas point rainfall estimates are often used [Habib
et al., 2001]. In the MOPEX database, the aerial adjustment is achieved by the spatial
interpolation and catchment integration. However, it is difficult to discuss even roughly
the relation between the MOPEX estimated rainfall and the “true” aerial rainfall, due
to the complex manipulations separating the raw point data from the reanalysis results.
Unless uncertainty estimates are provided, this is a setback to the use of reanalysis data
for applications where uncertainty assessment is crucial.

As for evapotranspiration, the MOPEX values are derived from the NOAA Evaporation
Atlas [Farnsworth et al., 1982]. More specifically, they are computed by fitting a Fourier
series with only an annual cycle to evaporation pan monthly averages. These averages
were obtained by gridding the Evaporation Atlas maps with a resolution of 1/6 deg. The
parameters of the series were then computed on this grid and averaged over each basin to

estimate the basin average annual evapotranspiration cycle.
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Since interannual random white noise PE errors do not seem to perturb hydrological
models [Andréassian et al., 2004; Paturel et al., 1995], our concern is mostly with system-
atic or cyclic intraannual errors. One such cyclic source of error could be soil moisture
availability. Indeed, PE strongly depends on the amount of moisture in the top soil layer,
a dependence that is not taken into account by the MOPEX estimates. If the soil moisture
has a strong cyclic component (high in spring, low in September for instance), the result-
ing PE may show an intraannual variability not captured by pan evaporation estimates,
with potentially detrimental influence on model simulation.

Finally, MOPEX streamflow series are provided by the United States Geological Survey
(USGS). Daily streamflows are taken at gauges unaffected by upstream regulation and
where long time series are available. Stage measurements are converted into streamflow
estimates through rating curves. Stage measurement errors are of the order of 3mm
while single discharge measurément errors typically range around 5-10%, depending on
the protocol (number of vertical velocity profiles, depth of measurements) and apparatus
(velocimeter, Doppler profiler) [Hirsch and Costa, 2004]. Moreover, rating curves are not
static and may vary due to changes in bed roughness, accumulation of debris following a
flood, vegetation growth, presence of ice, stream bed scour and fill processes, bank erosion,
etc [Fenton and Keller, 2001]. Some of these factors are accounted for by frequent updates
to rating curves.

The simulations presented in section 4 are run for all eight stations presented in table 1
(although only results frorﬂ the Chunky River watershed are shown). The basins chosen
cover relatively dry to humid conditions found in the continental U.S.A. In the paper, units

are systematically millimeters (mm) for rainfall (aerial) and monthly discharge (aerial).
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4. Step by step Bayesian model calibration

Realistic calibration of a hydrological model in presence of data and model uncertain-
ties using Bayesian analysis poses numerous conceptual and technical issues [Kavetski
et al., 2006b]. Among those, defining sensible error models and priors, integrating latent
variables, validating the calibrated model and leveraging realism versus complexity are
the most challenging. In a realistic calibration, many different issues are mingled and
it is difficult to grasp how they interact and consequently, how to interpret the results.
The objective of the current section is to isolate calibration issues in specific stand-alone
examples, helpful in understanding the effects of calibration assumptions.

The first issue discussed is the initial state uncertainty and its relevance in different
calibration contexts. Then the first case is presented, an application of Bayesian analysis
where only output errors are considered, highlighting the conceptual difference between
simulations and measurements. The second case shows a calibration where errors are
assumed to be only on input data, and discusses how the input error assumption impacts
the very definition of model performance. The third case introduces structural errors and

. discusses their lumping with output errors. From these three cases follows a brief analysis
of the effect of error models assumptions on the posterior parameters distribution.

It should be noted that although the figures only show the case of the Chunky river
watershed, identical simulations were run for all eight basins presented in table 1 with

comparable results.

4.1. Initial state uncertainty
In GR2M, the internal state of the system is defined by the level of two reservoirs. Since

they are conceptual reservoirs, their level cannot be measured experimentally and there
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is, @ priori, no way to define exactly their initial values. A convenient solution to this
problem is to warm-up the model, i.e. to set the internal state to arbitrary values and let
the model run for a fixed period [Shelton, 1985]. The rationale behind this strategy is that
the effect of the initial state ¢ on the simulated flow decreases rapidly. Indeed, at time
t the internal state ¢; depends on ¢;_; and on z;, the current input. By induction this is
equivalent to saying it depends on ¢, =1, T2, ..., ;. Hence, if  is large enough, the effect
of ¢o becomes negligible compared’with the effect of the input series . The question
then is, how long should this warm-up period be to minimize the effect of the initial
state uncertainty without sacrificing too much data ? For some catchments, rainfall data
was logged long before flow measurements began, so the period where only rainfall data
is available can be used as a warm-up period without concern about data expenditure.
However, when this is not the case and only short rainfall and flow series are available, it
may be worthwhile to minimize the warm-up period.

An estimate of a sensible warm-up period can be found by artificially perturbing the
internal state and measuring how fast it converges back to its unperturbed state (figure 2).
The rate of convergence depends closely on ), the soil moisture store capacity; for large
store capacity, the dependence of the model to its past state (its “memory”) is stronger
and internal state perturbations have a prolonged effect (~ 12 months). For small store
capacities, the model has a short memory and perturbations vanish after as few as three
months. Based on simulations on a number of catchments from the MOPEX database and
different parameter sets, it was found that perturbations vanish with an average half-life
of around 1.5 months. Warming-up the model during one year [Paturel et al., 1995] hence

leaves ample time to the internal state to reach its “steady” state. In the simulations
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shown in cases 1,2 and 3, a warm-up period of two years was used since data availability
was not an issue.

Using Bayesian analysis, the warm-up period can be avoided entirely. The solution
is to define a prior for the initial state 7(¢po) and consider ¢ a latent variable, as in
equation (6). The effect of ¢¢ on simulations can then be integrated out and parameters
calibrated without sacrificing the first months to warm-up the model. Simulations (not
presented here for brevity) suggest that the advantages of such an approach over the
warm-up strategy depend on the relative information content [ Wagener et al., 2003] of the
warm-up period. This information content (loosely defined as the diversity of hydrological
conditions) is itself dependent on the length of the time series, the presence of extreme
events and the prior for the initial conditions. For example, if a long calibration series
is available, the relative information content of the first months is low compared to the
rest of the series and using those first months in the calibration has only a weak effect
on the parameter distribution. However, if those first months contain a very large flood,
the like of which is not observed during the rest of the calibration series, then including
them in the calibration series may have a significant effect on the posterior parameter
distribution. Finally, if a vague prior for the initial state is defined, then the uncertainty
over flow simulations for the first few months is dominated by the initial state uncertainty
rather than the parameter uncertainty, and only a weak inference can be conducted on the
model’s parameters. Therefore, integrating the initial state uncertainty is advantageous

only if a reasonably informative prior about the initial state can be defined.
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4.2. Case 1: Assuming output errors only

In this first case, equation (6) is applied under the assumption that inputs are exact, or
more pragmatically, that the effect of input errors can be safely lumped into output errors.
This case is similar to a classical calibration, except that while a standard calibration
aims at finding a unique set of parameters optimizing an objective function, a Bayesian
analysis provides a parameter posterior probability distribution. Another difference is that
objective functions can take any shape [Gupta et al., 1998], whereas output error models
are limited to formal statistical distributions (positive, piecewise continuous functions

whose integral equals one). In this example, the calibration assumptions are given formally

by:
Pin(& | ) = 8(Z — ) (8a)
pst'r(y | g) = 6(y - g) (Sb)
pout(g | y) = L(g | n= logyaaout) (80)
(8, ¢o) = U(61/0,1000) - U(65/0,2) - 6(dbo — o) (84)

where § stands for the Dirac delta, L for the lognormal probability density function
(pdf, see eq. (A3)) and U for the uniform pdf. The hypothesis motivating the choice
of a lognormal distribution to model output errors is that streamflow errors are roughly
proportional to the value they affect: errors are multiplicative rather than additive [Yapo
et al., 1996] (see appendix A3 for details). This is a reasonable assumption if one consid-
ers that stage errors are transformed into discharge errors by a concave stage-discharge
relationship (later explained in section 5.3). Note that the prior for the true input 7 (x)

is not defined here since it is just a constant {(assumption (8a) implies that = &). The
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prior for the model parameters is given by a uniform prior over intervals covering a broad
range of watershed behavior. Initial conditions ¢ are fixed to $0 by warming-up the
model for a period of 24 months.

Plugging the error model assumptions (8a-d) into equation (6) and using the properties
of the Dirac delta function to solve the three integrals yields a posterior distribution with
a simple expression:

P(8 | &,9) < pPout(F | Y)(6), (9)
where §y = M(6, &, ao) and 7(0) = U(6,|0,1000) - U(6:]0,2). With all integrals solved,
equation (9) can be computed directly and there is no explicit need to use MCMC sam-
pling. Nevertheless for the sake of the demonstration, 100000 values of @ are drawn from
the posterior distribution (9), half of which is discarded to remove transient samples. The
shape parameter of the output error model is set to ooy = .2 (corresponding roughly to a
20% error on flow), and the calibration data (&, §) consists of 20 years of monthly rainfall,
PE and flow from the Chunky River watershed (see table 1).

Figure 3 shows the results on a five years period. The lower plot shows the series of
rainfall measurements from the MOPEX database. The middle plot shows the contoured
probability density of the simulated flow along with the flow measurements from the
MOPEX (full line). That is, the simulated flow %" is computed for each 8" sampled, and a
contour plot is drawn from the simulated flow histogram. Note that the variability of the
simulated flow does not capture at all the variability seen in the observed flow. At first
sight, it would appear that the parameter uncertainty is insufficient to account for the
flow uncertainty. Although specifying a vaguer output error model (setting o,u: to some

higher value) would increase the parameter uncertainty, it is not the real issue here and is
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not advisable either [Refsgaard et al., 2006]. Indeed, the difference in variability is mainly
due to the fact that the plot compares two conceptually different variables: the measured
flow ¢ and the true flow y (equal in this case to the simulated flow g). To be meaningful,
the plot must compare measured flow and simulated flow measurements. These simulated
flow measurements (Y) are computed by drawing random variates from the output error
model Y ~ p,..,(Y | %) with §° computed for each 6 sampled from the posterior (9).
The upper graph of figure 3 shows a contour plot of the probability density of simulated
flow measurements compared with flow measurements (full line). It can be seen that the
simulated measured flow captures better the variability of the observed flow series.

This conceptual difference between model simulation and measurements has more pro-
found implications than capturing the simulation variability. Indeed, depending on the
output error model chosen, it may lead to apparent paradoxes. For instance, if the out-
put error model assumes that flow measurements systematically underestimate the true
value, the flow simulated from the calibrated parameters will systematically overestimate
the flow measurements. Therefore, a measure of calibration efficiency from a direct com-
parison of flow measurements and flow simulations would be meaningless and misleading.
This conceptual difference between simulations and measurements has already been noted
in Kalman filtering theory [Burgers et al., 1998] and in the Bayesian recursive parameter

calibration context [ Thiemann et al., 2001].

4.3. Case 2: Assuming input errors only
The second case deals with the opposite situation, namely that outputs are assumed
exact and precipitations uncertain. Although this is a rather peculiar situation, it il-

lustrates some potential benefits and setbacks associated with taking input errors into
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account. Formally, the underlying hypotheses are given by:

Pin(@ | @) =L(F | p=logr,0i = .2)6(E —€) (10a)
m(x) = W(r | a,k,p,0) (10b)
Pout(F | ¥) = 6(F — y), (10c)

where W stands for the exponentiated Weibull pdf (see eq. (A5)). The parameters of
the exponentiated Weibull distribution (o, &, i, o) are estimated by fitting an historical
rainfall series of 20 years, prior to the calibration period, from the same catchment the
model is calibrated on. The exponentiated Weibull was chosen because it adequately
captures the total monthly rainfall distribution over many catchments compared to other
common semi-infinite distributions (see appendix A4). The structural error model and
the prior for the parameters and internal state are identical to the last case (equations
(8b) and (8d)).

To solve this case using MCMC sampling, the Dirac delta of the output error model is
approximated by a lognormal distribution with a small shape parameter, that is, eq. (8¢c)
with oo =~ 0. The integral over & must be performed in this case by Metropolis sampling

of the following posterior

p(0,% | &,§) < Doust(F | ) Pin(E | @) ()7 (8). (11)

The sampler now explores a space formed by the two model parameters 8 and the
20 - 12 = 240 true input values . However, as the shape parameter o,, approaches
zero, it becomes increasingly difficult to explore the x-space because the values with a
non-zero probability lie on an vanishingly small 240-dimensional volume, making random

jumps very unlikely to be accepted by the Metropolis algorithm. With o4, = .02, 3.0- 107
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samples had to be generated to obtain an approximately stable parameter distribution.
That is, a change in the burn-in period has no effect on the mean of the distribution, but
still has a small influence on its shape, even after ten million iterations. Ideally, after a
given number of iterations, the shape of the distribution should show no dependence to
the burn-in length.

The calibration results are presented in figure 4. The lower graph shows the probability
density function (pdf) of the inferred true rainfall, while the upper graph shows the pdf of
the simulated measured rain: true rain corrupted by random measurement errors drawn
from the input error model. The simulated flow is not shown since it is, by definition,
identical to the observed flow.

There are two observations that deserve to be highlighted. First, by assuming the
measured flow is exact, the true rain 2 is constrained to values that reproduce exactly the
measured output. In other words, equation (11) infers the value of the true rain, based on
the knowledge of the measured flow. Although this may seem artificial, some interesting
observations can be derived from such an analysis. Indeed, in a case not shown here, a
clear annual trend in the ratio true rain/measured rain was noted; during the summer
months, the true rain systematically underestimated the measured rain, suggesting that
there was too much water input. And indeed, increasing the summer PE in those cases
improved the overall model efficiency.

The second observation is related to the assessment of model’s efficiency, often measured
in hydrology by the Nash-Sutcliffe Efficiency criterion (NSE) (although Schaefli and Gupta
[2007] point out that NSE does not provide a reliable basis for comparing results of

different case studies). In this particular case, there is no difference between simulated
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and measured flow, and the NSE reaches, by design, its maximum value, 100%. Obviously,
any efficiency measure based on the concordance of measured and simulated output will
yield exceedingly good, yet meaningless results. In this particular case, the efficiency of
the model should rather be measured by the concordance between measured inputs and
simulated inputs (or rather simulated input measurements) since this really is the quantity

“predicted” by the model.

4.4. Case 3: Lumping output and structural errors

The last few years have seen an increasing number of strategies designed to account
for structural errors in calibration or prediction [Refsgaard et al., 2006], taking advantage
of Bayesian model averaging [Ajami et al., 2007], ensembles simulations [Vrugt et al.,
2005) or Gaussian processes [Kennedy and O’Hagan, 2001]. These methods capture the
uncertainty related to the model either by running a number of different models (model
averaging and ensemble simulations), or by describing the model error by a mixture of
functions (Gaussian processes). The proposed framework is not a replacement for those
methods, but rather a way to include formally a probabilistic description of structural
errors into the calibration and prediction process.

Indeed, the common practice in hydrological modelling is to define an objective function
which relates simulated values to observed ones, and assumes that uncertainties on input
data are negligible. This objective function, even if it is not clearly stated, lumps together
output and structural errors. This embedding of the structural error model into a “simple”
objective function leads ‘to inconsistent results (e.g. residuals do not comply with the
assumed output distribution). In this example, a structural error model is formally lumped

with an output error model, yielding a response error model to be incorporated to the
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calibration process. Input errors are considered as well and the parameters posterior
distribution is estimated.
Given output and structural error models, a response error model p,., lumping both

output and structural errors can be defined simply as

p@mms/M@memm@. 12

In some cases, this integral can be solved analytically, greatly reducing the numerical
cost of sampling over the true output variables. Indeed, replacing the integration over y

in the right hand side of equation (6) by equality (12) yields

(018,9) [ 2@ | 2)bresd | 9) (@) d - 7(0), (13

which can be solved by sampling only the parameters @ and true input values = from

P60, | Z,§) X pir(& | ) Dres(§ | ¥) 7(@)7(0) (14)

and marginalizing over x.
As an example, this third case assumes that both p,,, and p,,,. are expressed in terms

of the lognormal distributions:

Pout(¥ | ¥) = L(F | Iny, 7our) (15a)

pstr(y | g) = L(y ‘ Iny, Ustr)' (15b>

The lognormal distribution is chosen both for its simplicity and because it is het-
eroscedastic, a typical feature for hydrologic model residuals [Xu, 2001; Yapo et al., 1996].

Inserting (15a,15b) into (12) and performing the integration yields

pres(g | g) = L(g I ln @\7 vV J.gtr + Ugut)v (16)
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a lognormal distribution lumping both output and structural errors. Again, the integra-
tion of the output and structural error models is by no means mandatory, and is done
here out of optimization considerations. Given ample computing resources, the analytical
integrability of the output and structural error models is not an issue.

Using the response error model (16) with o,,; = .05 and o4, = .1, the input error model
(10a) with oy, = .1 and priors (10b, 8d), 1.0 - 10° samples (8, ) are drawn from equation
(14) using MCMC sampling and the first half is discarded. The lower graph of figure
5 shows the simulated rain measurement probability density and the upper graph the
simulated flow measurement probability density. Although this example has no pretense
to realism, the overall calibration results appear satisfying, both for the inferred rain
and flow. One thing deserving improvement though is the uncertainty over high flows,
apparently overestimated by the response error model.

This example shows that from a conceptual point of view, taking structural uncertainty
into account is relatively simple: define a structural error model and integrate, analytically
or numerically, over the true output series y. However, as Bayesians know too well,
specifying a prior or an error model is not difficult, but specifying a good one is. The
situation is further complicated since the proposed definition of structural errors (y — ¥)
combines two types of structural errors: model inadequacies and the inherent stochasticity
of the process (due to explaining variables not taken into account). Theoretically, with
a long “error free” data set, it would possible to identify both types of structural errors,
rectify the model to remove the inadequacies and describe probabilistically the remaining
randomness of the process. Without such a perfect data set however, the expertise of

hydrologists seems the best way to define sensible structural error models.

DRAFT November 5, 2007, 4:10pm DRAFT

155



X-28 HUARD AND MAILHOT: BAYESIAN UNCERTAINTY ANALYSIS

To validate the model and error models, the procedure detailed in section 2.4 is applied
and the results shown in figure 6. Although the error models are rather crude, the resulting
uncertainty for the flow (contour plot) appears consistent with the flow observations (full

line).

4.5. Impact of error models on posterior parameter distribution

Values of calibrated parameters and their associated uncertainties are conditioned by
the choice of the errors models. To illustrate this, the parameters calibrated from the
three cases discussed above (With identical calibration data sets) are shown in figure 7.
The sensitivity of parameters on error model assumptions can be explained by noting that
parameters are estimated through the inferred true input and output values, which depend
directly on the error models. In other words, the parameter distribution is inseparable
from the choice of error models, and calibration results can only be understood by looking
at the entire set of assumptions.

A feature of figure 7 deserving to be highlighted is that lumping all sources of errors on
the output (Case 1) yields a larger value for 6, (the moisture store capacity) than when
input errors are accounted for (Case 2 and 3). By increasing this parameter, the model
reduces the potential for excess rainfall and, at the same time, the flow variability. In
other words, calibration selects parameters that enhance the low-pass filter behavior of
the model and reduce its sensitivity to input error.

Finally, readers may wonder about the significant difference between the parameters
estimated with NSE and those obtained from case 1, since both methods assume that
only the outputs are corrupted. The authors explanation for this difference is that it is

largely due to the difference in heteroscedasticity assumed by the two methods. Gen-
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erally speaking, a heteroscedastic error model tolerates large errors on largé flows and
estimates parameters that simulate well the low flows. On the other side, a homoscedas-
tic error model considers all errors equal and estimates parameters that somehow capture
the average behavior. For GR2M, this average behavior is obtained by a higher exchange
coefficient 6, (less water is lost to neighboring catchments, increasing the base flow) and
a higher soil moisture capacity 61, reducing the model’s sensitivity to rainfall. In figure
7, the NSE parameters are estimated by maximizing the NSE criterion computed on the
flows square root [Xu and Vande’wiele, 1994], which is akin to a heteroscedasticity as-
sumption [Sorooshian and Dracup, 1980]. However, this square root heteroscedasticity is
weaker than the lognormal heteroscedasticity assumed by the output error model (Case
1), explaining why the NSE parameters are shifted to the upper right. If the parameters
are estimated again by an NSE criterion computed this time directly on the flows (ho-
moscedasticity assumption), one obtains an even greater shift with 6= (453,0.88). This
artificial favoritism of a low-pass filter behavior may have serious impacts if the model is
used in a predictive mode as it can lead to underestimation of peak flows, as well as the
associated uncertainties on these estimates.

One may suggest that shifts in parameters could possibly be traced back to distinct
model failures. For instance, the large difference in the soil moisture capacity could
be explained by the lack of an interception process in the model [Savenije, 2004] or
an incorrect direct runoff parameterization. Although the compensation mechanisms of
parameters for un- or mis-accounted sources of errors are interesting in their own right,

it is not clear at this point whether such shifts can provide more than cursory evidence
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to identify structural inadequacies. Moreover, for hydrological models counting dozens of

parameters, such an analysis would lose much of its intuitiveness.

5. Case study

The objective of this section is to demonstrate the use of the Bayesian uncertainty frame-
work under more realistic calibration assumptions. For each source of error, hypotheses
are formulated in probabilistic terms and error models constructed on the basis of these
hypotheses. Although the GR2M model may be too rudimentary for this application to
be really realistic, it shows what can be done in terms of error models, and serves as a test
case before tackling more complex daily models. In the following sections, errors models
and priors are defined and the simulation setup is presented. Results are then discussed,

along with the necessary modifications for an extension to daily models.

5.1. Rainfall error model
The rainfall error model is inspired by Weerts and El Serafy [2006] who describe hourly
rainfall errors by a normal distribution with a variance ¢%, that has both a proportional

component (15%) and fixed one (.2 mm):
o5 = .157 4+ 0.2mm,

where r stands for rainfall (mm). The fixed component is due to the finite resolution
of rain gauges (for example the volume of the tipping bﬁcket). For this application, the
fixed component is set at .254 mm (.01 in}, the default volume for tipping bucket gauges
[Habib et al., 2001]. It is assumed that this error affects hourly measurements, so that
once scaled to monthly values, the standard variation due to the finite resolution of the

gauge is estimated by +/30-24 - .254mm ~ 7mm. The proportional component roughly
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represents commensurability (aerial representativity) errors and measurements errors such
as evaporation and wetting losses as well as wind-induced undercatch. Once aggregated
to monthly values, the proportional component reduces to about 7% (see appendix B).
Since these measurement errors cause an underestimation of the true rainfall, the rainfall
input error model is assumed to be also biased by around 7% [Metcalfe et al., 1997); that
is, it is assumed that rainfall measurements are on average 93% of the true rainfall.

One should note that the smallest error standard deviation (7 mm) is of the order of
the smallest monthly precipitation. Hence, there is a normalization issue due to the fact
that for small rainfalls, the normal distribution assigns non zero probability to negative
rainfall. To deal with this problem, a truncated normal distribution N7 (see eq. (Al)) is
used instead of a standard normal distribution. Formally, the input error model is defined
as :

Pin(F | ) = Ng(7 | .937,.07r + Tmm, 0, 00). (17)

5.2. PE error model

The error model for PE is based primarily on the assumption that white noise error on
PE have only a weak influence on model performance [Paturel et al., 1995]. It is also based
on the authors observation that PE computations performed with the McGuinness-Bordne
model [McGuinness and Bordne, 1972] yields values similar within a multiplicative factor
to MOPEX PE series (results not shown here for the sake of brevity). In other words,
the relevant uncertainty seems to be related mostly to intrannual rather than interannual
variability. Therefore, it is assumed here that the true PE (e) is obtained by multiplying
the MOPEX PE series (€) by a unique multiplier (¢): e = €€, thus rescaling the PE series.

This hypothesis enormously simplifies computations as it replaces an integration over N
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true PE values by an integration over only one multiplier ¢. Since the multiplier along
with measured PE completely determine the conceptual true PE, there is no need for a

genuine PE error model. However, a prior for the multiplier still has to be defined:
7€) = L{e | 0, .5). (18)

The lognormal is chosen because it is the most general hypothesis in terms of entropy
(see appendix A3) that can be made for a positive variable of fixed mean and variance.
The hyperparameters are set such that the multiplicative factor has a median of 1 and a

standard variation of about .5.

5.3. Output error model

The output error model describes the probability of an error on the flow knowing the
conceptual true flow. Flows § are commonly obtained from stage measurements h and a
rating curve (stage-discharge) relationship § = f(h), defined from previous simultaneous
stage and discharge measurements. The analysis of discharge errors has received substan-
tial attention [Shiklomanov et al., 2006; Schmidt, 2002; Pelletier, 1988; Herschy, 1985;
Dymond and Christian, 1982] and multiple methods have been proposed to define the
nature and structure of discharge errors. In the following, a simplified approach is chosen
in order to reduce the complexity of the output error model.

Discharge errors originate from many different sources: stage measurement errors, sin-
gle discharge measurements, rating curve sampling errors (a limited amount of data is
available to fit the curve) and the effect of explaining variables other than stage (river
slope, bed roughness, presence of ice, vegetation growth, etc). Although it is possible to

describe different source of errors independently [Dymond and Christian, 1982], it requires
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a. considerable amount of information about single discharge measurements (number and
type of velocity vertical profiles, apparatus, etc) and may be too complex in the case of
aggregated monthly discharges. To reduce the complexity of the error model, it is assumed
that all sources of errors can be lumped into a single term: a stage measurement error
8r. Stage errors can then be converted into discharge errors, §, ~ f'é;, where f(h) is the
function relating stage h to discharge y. Visually, this error structure seems to capture
the variability of stage-discharge measurements (see figure 8).

The rating curve f is defined using stage-discharge data, courtesy of the USGS
(waterdata.usgs.gov/nwis). Following the suggestion of Fenton and Keller [2001], it
is fitted by a polynomial computed over the square root of the flow. In many instance,
a single curve does not capture reliably the behavior over the entire range, so piecewise
polynomials are used. In the particular case of the Chunky river shown in figure 8, two

piecewise polynomials of order 3 were used:

{Z?:O a'i\/]_ﬁ h < hg

y=f(h) = Z;lobn/ﬁ h>hy’ (19)

where h;, is the position of the kink separating both polynomials.
Formally, the output error model is based on the assumption that daily discharge errors

are normally distributed with a variance dependent on stage:
oy, = (10mm + .02h) f'(h). (20)

Although the numerical parameters of 10mm and 2% were chosen empirically to cap-
ture the variability observed in the data (see figure 8), they agree reasonably well with
physically realistic values. Indeed, the accuracy of a stage mesurement has been estimated

at 9mm [Schmidt and Garcia, 2003] (although it is more commonly estimated at 3 mm
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[Hirsch and Costa, 2004]). The accuracy of single discharges is known to vary between
5% and 10% [Hirsch and Costa, 2004], which correspond in the case of the Chunky river
to stage accuracies between 1.2% and 2.4%.

To link the daily discharge error model with GR2M monthly flows, the total monthly
discharge is converted into an average daily discharge. Assuming that daily errors can

be approximated by a first-order autoregressive process with a fixed variance o2 and

Y
correlation between successive measurement given by ¢, then the variance of the mean

over n samples is given by

_onl+e (. 26(1—¢")
-wn(-T=s) =

Setting n = 30 and ¢ = .8 in equation (21) yields a standard variation of ¢, = .50y,
for the monthly average daily streamflow error, with o,, given by equation (20). Note
that since the daily variance o,, is not constant but depends on the stage h, equation
(21) constitutes an approximation. However, the intramonthly variability of the stage is
sufficiently low for this approximation to hold (see appendix B). The value of ¢ = .8 is
chosen to reflect the belief that daily streamflow errors are moderately correlated over a
span of about one week.

Summing up, the output error model is defined by a normal distribution centered on
the true discharge with a variance depending on the stage associated to the mean daily

discharge and the derivative of the rating curve at that point:

oy = (5mm + .01h) f'(h). (22)
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5.4. Structural error model

Model residuals are often found to be heteroscedastic, auto-correlated and non-normal
[Yang et al., 2007; Xu, 2001]. Although it is custom to use Box Cox or similar transforma-
tions to stabilize the variance and reduce heteroscedasticity, using transformed variables
may have undesirable consequences on model calibration [Schaefli et al., 2007]. Hence,
we follow Beven and Freer [2001] suggestion that residuals could be described by multi-
plicative autoregressive process and define the structural error model by a multivariate
lognormal distribution, with covariance matrix X chosen to reproduce an autoregressive
process of order one [Sorooshian and Dracup, 1980]. The log-likelihood of such a distri-
bution is given by

Ly | p=19,p=.6,0 =.15mm)

with L defined by equation (A4) in appendix A3. The hyperparameters of the structural
error model correspond roughly to a relative error of 15% and a moderate auto-correlation
(for daily models, the auto-correlation is sometimes found to be around .9 [Hgybye and

Rosbjerg, 1999)).

5.5. Priors

The prior for the initial conditions is defined by fitting a bivariate normal distribution
(see equation A2) to a series of “historical” internal states. This series of internal state
is computed by running GR2M over 20 years of data prior to the calibration period
using different sets of parameters. These parameter sets are chosen randomly around
the classical estimate (minimizing NSE on the square root of discharges). The mean 4
and covariance matrix X4 of the internal variables series are then computed and used as

hyperparameters for the bivariate normal, thus defining the prior for the initial model
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state:
7(¢o) = N(o | pgp, Xp). k (23)

The prior for the parameter is chosen to be a uniform distribution and is defined by
7(8) = U(6,|0,1000) - U(65]0, 2). (24)

One reason for this choice is simplicity; with 20 years of calibration data, the prior
for the parameter is not expected to play a significant role. The other motivation for a
uniform distribution is to enable a fair comparison between the SLS and the Bayesian
results.

The prior for the true rainfall 7(r) is defined as in eq. (10b), that is by an exponentiated
Weibull distribution whose parameters are estimated by maximizing the likelihood of an
“historical” precipitations series spanning 20 years prior to the calibration period (see
section 4.3). The importance of this prior must not be underestimated, as it plays an
important role in the inference process [Huard and Mailhot, 2006]. One way to improve
the accuracy of this prior could be to define seasonal priors, i.e. different prior for each

season or month when strong climatic seasonalities are expected.

5.6. Simulation setup

The posterior distribution is now given by:

p<0|f,é,g)=///p(e,r,y,e,¢olf-,é,g)drdyded%

= [[[ 01 2@ | 9B | D@ n(0)m(rIr(e) dr dy e
(25)

derived under hypotheses similar to those presented in section 2.2. The integrand on

the right hand side of equation (25) is again sampled using Markov Chain Metropolis
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using 2.0 x 108 iterations and discarding the first half. Validation is performed using the

procedure described in section 2.4 with the same error models used in calibration.

5.7. Results and analysis

The results of the calibration and validation of the Chunky watershed are now pre-
sented. Figure 9 shows contour plots of the posterior pdf for simulated flow, true flow
and simulated flow measurements, along with the inferred true rain and simulated rain
measurements (the plots show the last five of the twenty years series used for calibration
to avoid cluttering the graph). Note that while the true flow and simulated flow mea-
surements are very similar, the distribution of the simulated rain measurements shows
more dispersion than the pdf for the true rain. Also, the agreement between true flow and
observed flow (full line) appears very good. Both observations are direct consequences
of the fact that the error models assume small flow errors and large rainfall errors. As
discussed in section 4.3, the true rainfall is strongly conditioned on the observed flow, and
model performance should not be judged on the agreement between output observations
and simulations.

A clearer picture of the different errors is presented in figure 10, showing the posterior
pdf for the rainfall errors (7 — ), structural errors (y — ¢) and output errors (§ —y). As
discussed earlier, the output errors are the smallest since the output error model assumes
relatively small measurement errors. Rainfall errors are almost always negative, reflecting
the assumption that rainfall measurements underestimate the true value. Structural er-
rors, on the other hand, are mostly positive, a feature that is not imposed by the structural
error model. One possible explanation could be the underestimation of overland flow by

the model, reducing the amount of instant runoff during particularly rainy periods.
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This separation of errors into distinct components, especially the identification of struc-
tural errors, is expected to have useful applications both as a diagnostic tool to identify
model deficiencies and as a measure of model performance. Indeed, model performance
in calibration could be estimated, irrespective of data error, by measuring the dispersion
and autocorrelation of the posterior structural error distribution. In terms of diagnosis,
analyzing dependencies between structural errors and environmental faétors might also
reveal variables that are relevant to the modeling process but unaccounted for by the
model. One should be careful, however, with conclusions drawn from inferred error se-
ries. Indeed, with inferred error series as long as data series, the influence of error model
assumptions (statistical distribution, hyperparameters) on inferred errors is bound to be
significant. Again, this calls for further research on the definition of accurate error models
as well as their validation.

Figure 11 shows the probability distribution for the model parameters, compared to the
parameters estimated by minimizing the NSE criteria computed on the flows square root
(a variation of the standard least-squares (SLS)). When superposed with the parameter
distributions of figure 7, the mode of the sampled parameters fall in between those of
cases 1 and 3, but the dispersion is larger.

Figure 12 shows the model simulations during the validation period compared with the
SLS estimate (dashed line). Although there is not much difference between the SLS pre-
diction and the modes of the Bayesian distributions, the uncertainty assessment appears
reasonable in the sense that observed flows fall within the high density regions of the pdf.

It shall be enlightening to pursue this type of investigation for daily or hourly models to
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see whether larger differences in prediction accuracy exist between standard optimization

and a Bayesian analysis.

5.8. Extension to daily models

There is a certain contradiction of purpose in applying an elaborate uncertainty assess-
ment method to a simple two parameter monthly model. On the one hand, this choice
makes the application of the method and interpretation of the results certainly simpler
than with complex daily models. On the other hand, the added value of uncertainty
assessment is lower because simple monthly models are expected to be less sensitive to
input errors than their daily or hourly counterpart. To apply the method to daily models,
however, a number of issues have to be addressed.

The prior for the true input, for instance, has to deal gracefully with null rainfall. One
possibility would be to use statistical distributions that have both continuous and discrete
components. The Tweedy distribution is one of those, designed to yield a finite probability
to null values and a probability density on the positive domain [Dunn and Smyth, 2005).
Another issue that will have to be dealt with is the proper description of autocorrelations
in the rainfall, flow and structural erlror series. Instead of being a liability, the dependence
between errors is an asset for a modeler because it reduces the effective number of degrees
of freedom in the calibration problem. Hence, from an inferential point of view, error
autocorrelation is a useful feature and should be considered more carefully. Whatsmore,
reducing the effective number of degrees of freedom might help overcoming the main
practical challenge, namely the increasing dimensionality of the problem. Indeed, as the
number of dimensions increases, so do the number of samples necessary for the posterior

distributions to reach convergence. The approach taken in this paper is adequate for
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monthly series, but it is not yet clear how well it will scale for daily series, two order of

magnitudes longer.

6. Conclusion

In calibrating hydrological models to empirical data, hydrologists face the challenge of
identifying model parameters that reasonably reproduce a watershed’s behavior. As this
behavior is quantified by a limited set of field observations corrupted by errors, hydrolo-
gists run the risk of fitting the model to the noise instead of the real process. Accounting
for this noise, however, requires assumptions about its nature, that is, a plausible de-
scription of input and output errors. Moreover, the model itself does not emulate all
the processes that actually occur in reality, introducing discrepancies between input and
output that alsc need to be described. In this paper, Bayesian analysis is used to merge
hypotheses about input, output and model errors into the calibration and validation of a
model. Using the parsimonious monthly hydrological model GR2M, simulations are run
to answer a number of questions about the assessment of multiple sources of uncertainties.

The first question concerned the effect of the initial state uncertainty on calibration
efficiency. Simulations show that for GR2M, the initial state uncertainty lasts only a
few months, after which the internal state reaches a “steady state”. Hence, for long time
series, accounting for initial state uncertainty has only marginal effects. Input uncertainty,
however, plays a far more important role. In fact, when input errors are considered
large and output errors small, model calibration proceeds in “reverse”, conditioning the
input on the output. This results in simulations reproducing almost perfectly the output
observations, rendering traditional efficiency measures (NSE) meaningless. Moreover,

calibrated parameters are completely different from those obtained under an “output error

DRAFT November 5, 2007, 4:10pm DRAFT



HUARD AND MAILHOT: BAYESIAN UNCERTAINTY ANALYSIS X-41

only” hypothesis. This emphasizes how important it is to analyze parameter distributions
only in the light of the error model assumptions.

In a calibration where multiple sources of uncertainties are accounted for, validation
plays the sensitive role of assessing the hydrological model efficiency as well as the accuracy
and validity of the error model assumptions. With so many factors influencing predictions,
it is difficult to identify possible causes of failure just from the comparison between output
observations and simulations. By looking directly at the inferred pdf for the input, output
and structural error series, however, model failures of error model inadequacies are easier
to detect and diagnosis easier to perform. Moreover, analyzing structural error series
might provide the means to evaluate model performance, without interference from data
quality issues.

The obvious interest in accounting explicitly for different sources of uncertainty affecting
hydrological modeling must be weighted against the interest of stakeholders in realistic
uncertainty assessment and the efforts required to specify accurate error models. Data
model errors should reflect as accurately as possible the errors introduced in the acquisition
of data. Ideally, those error models would evolve with changes in the gauge station
network (number, location and type of stations) and changes in rating curves following
new discharge measurements. Structural error models appear yet more difficult to define
rigorously, and progress might only be made through the prior/posterior Bayesian learning
process. Hopefully, the knowledge gained from the next experiments in model calibration
and the rapid increase in computing power will eventually make uncertainty assessment

a routine exercise and an integral part of hydrological modeling.

DRAFT November 5, 2007, 4:10pm DRAFT

169



170

X - 42 HUARD AND MAILHOT: BAYESIAN UNCERTAINTY ANALYSIS

References

Ajami, N. K., Q. Duan, and S. Sorooshian (2007), An integrated hydrologic Bayesian
multimodel combination framework: Confronting input, parameter, and model struc-
tural uncertainty in hydrologic prediction, Water Resources Research, 43, W01403,
d0i:10.1029/2005WR004745.

Andréassian, V., C. Perrin, C. Michel, I. Usart-Sanchez, and J. Lavabre (2001), Impact of
imperfect rainfall knowledge on the efficiency and the parameters of watershed models,
Journal of Hydrology, 250(1-4), 206223, doi:10.1016/S0022-1694(01)00437-1.

Andréassian, V., C. Perrin, and C. Michel (2004), Impact of imperfect potential evapo-
transpiration knowledge on the efficiency and parameters of watershed models, Journal
of Hydrology, 286, 19-35, doi:10.1016/j.jhydrol.2003.09.030.

Bates, B. C., and E. P. Campbell (2001), A Markov chain Monte-Carlo scheme for param-
eter estimation and inference in conceptual rainfall-runoff modeling, Water Resources
Research, 37(4), 937-947.

Beven, K. (2006a), A manifesto for the equifinality thesis, Journal of Hydrology, 320(1-2),
18-36, do1:10.1016/j.jhydrol.2005.07.007.

Beven, K. (2006b), On undermining the science?, Hydrological Processes, 20, 3141-3146,
doi:10.1002/hyp.6396.

Beven, K., and A. Binley (1992), The future of distributed models : Model calibration
and uncertainty prediction, Hydrological Processes, 6, 279-298.

Beven, K., and J. Freer (2001), Equifinality, data assimilation, and uncertainty estimation
in mechanistic modelling of complex environmental systems using the GLUE method-

ology, Journal of Hydrology, 249, 11-29, doi:10.1016/S0022-1694(01)00421-8.

DRAFT November 5, 2007, 4:10pm DRAFT



HUARD AND MAILHOT: BAYESIAN UNCERTAINTY ANALYSIS X-43

Beven, K., P. Smith, and J. Freer (2007), Comment on “Hydrological fore-
casting uncertainty assessment: Incoherence of the GLUE methodology” by
Pietro Mantovan and Ezio Todini, Journal of Hydrology, 338(3-4), 315-318, doi:
10.1016/j.jhydrol.2007.02.023.

Burgers, G., P. J. van Leeuwen, and G. Evensen (1998), Analysis scheme in the ensemble
Kalman filter, Monthly Weather Review, 126, 1719-1724.

Chib, S., and E. Greenberg (1995), Understanding the Metropolis-Hastings algorithm,
The American Statistician, 49(4), 327-335.

Daly, C., R. P. Neilson, and D. L. Phillips (1994), A statistical—topographic model
for mapping climatological precipitation over mountainous terrain, Journal of Applied
Meteorology, 33, 140-158.

Daly, C., G. H. Taylor, and W. P. Gibson (1997), The PRISM approach to mapping
precipitation and temperature, in 10th Conference on Applied Climatology, pp. 10-12,
American Meteorological Society, Reno, NV.

Dunn, P. K., and G. K. Smyth (2005), Series evaluation of Tweedie exponential dispersion
model densities, Statistics and Computing, 15, 267-280, doi:10.1007/s11222-005-4070-y.

Dymond, J. R., and R. Christian (1982), Accuracy of discharge determined from a rating
curve, Hydrological Sciences Journal, 4(12), 493-504.

Edijatno, and C. Michel (1989), Un modele pluie-débit journalier & trois parametres, La
Houille Blanche, 2, 113-122.

Farnsworth, R., E. S. Thompson, and E. Peck (1982), Evaporation atlas for the contiguous

48 United States, Technical Report NWS 33, NOAA, Washington, DC.

DRAFT November 5, 2007, 4:10pm DRAFT

171



172

X-44 HUARD AND MAILHOT: BAYESIAN UNCERTAINTY ANALYSIS

Fenton, J. D., and R. J. Keller (2001), The calculation of streamflow from measurements
of stage, Tech. rep., Cooperative research center for catchment hydrology.

Fiering, M. B. (1967), Streamflow Synthesis, Harvard Univ. Press, Cambridge, Mass.

Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin (1995), Bayesian Data Analysis,
Texts in Statistical Science, Chapman & Hall/CRC Press, London.

Goodman, J. (1987), A comment on the Maximum Entropy principle, Risk Analysis, 7(2),
269-272.

Gull, S. F. (1989), Bayesian Data Analysis : Straight-line fitting, in Mazimum Entropy
and Bayesian Methods, edited by J. Skilling, pp. 511-518, Kluwer Academic Publishers.

Gupta, H. V., S. Sorooshian, and P. Yapo (1998), Towards improved calibration of hy-
drologic models : Multiple and non-commensurable measures of information, Water
Resources Research, 84(4), 751-764.

Habib, E., W. F. Krajewski, and A. .Kruger (2001), Sampling errors of tipping-bucket rain
gauge measurements, Journal of Hydrologic Engineering, 6(2), 159-166.

Hall, J., E. O’Connell, and J. Ewen (2007), On not undermining the science: coherence,
validation and expertise. Discussion of Invited Commentary by Keith Beven. Hydro-
logical Processes 20, 3141-3146 (2006), Hydrological Processes, 21(7), 985 — 988, doi:
10.1002/hyp.6639.

Herschy, R. W. (1985), Streamflow measurement, Elsevier.

Hirsch, R. M., and J. E. Costa (2004), U.S. stream flow measurement and data dissemi-
nation improve, Eos, 85(21), 197,203.

Hgybye, J., and D. Rosbjerg (1999), Effect of input and parameter uncertainties in rainfall-

runoff simulations, Journal of Hydrologic Engineering, 4(3), 214-224.

DRAFT November 5, 2007, 4:10pm DRAFT



HUARD AND MAILHOT: BAYESIAN UNCERTAINTY ANALYSIS X-45

Huang, M., and X. Liang (2006), On the assessment of the impact of reducing
parameters and identification of parameter uncertainties for a hydrologic: model
with applications to ungauged basins, Journal of Hydrology, 320(1-2), 37-61, doi:
10.1016/j.jhydrol.2005.07.010.

Huard, D., and A. Mailhot (2006), A Bayesian perspectivé on input uncertainty in model
calibration: Application to hydrological model “abc¢”, Water Resources Research, 42,
W07416, doi:10.1029/2005WR004661.

Jaynes, E. T., and G. L. Bretthorst (2003), Probability theory : The logic of science,
Cambridge University Press.

Kabouya, M. (1990), Modélisation pluie-débit au pas de temps mensuel et annuel en
Algérie Septentrionale, Ph.D. thesis, Orsay-Paris Sud.

Kavetski, D., S. W. Franks, and G. Kuczera (2003), Confronting input uncertainty in
environmental modeling, in Calibration of Watershed Models, Water Science and Ap-
plications, vol. 6, edited by Q. Duan, H. V. Gupta, S. Sorooshian, A. N. Rousseau, and
R. Turcotte, pp. 49-68, AGU Water Science and Applications Series.

Kavetski, D., G. Kuczera, and S. W. Franks (2006a), Bayesian analysis of input uncer-
tainty in hydrological modeling: 1. Theory, Water Resources Researcﬁ, 42, W03407,
d0i:10.1029/2005WR004368.

Kavetski, D., G. Kuczera, and S. W. Franks (2006b), Bayesian analysis of input uncer-
tainty in hydrological modeling: 2. Application, Water Resources Research, 42, W03408,
doi:10.1029/2005WR004376.

Kennedy, M. C., and A. O’Hagan (2001), Bayesian calibration of computer models, Jour-

nal of the Royal Statistical Society Series B-Statistical Methodology, 63, 425-464.

DRAFT November 5, 2007, 4:10pm DRAFT

173



174

X - 46 HUARD AND MAILHOT: BAYESIAN UNCERTAINTY ANALYSIS

Kuczera, G., and E. Parent (1998), Monte Carlo assessment of parameter uncertainty in
conceptual catchment models: the Metropolis algorithm, Journal of Hydrology, 211(1-
4), 69-85, doi:10.1016/S0022-1694(98)00198-X.

Limpert, E., W. A. Stahel, and M. Abbt (2001), Log-normal distributions across the
sciences: Keys and clues, BioScience, 51(5), 341-352.

Mantovan, P., and E. Todini (2006), Hydrological forecasting uncertainty assessment:
Incoherence of the GLUE methodology, Journal of Hydrology, 330, 368-381, doi:
10.1016/j.jhydrol.2006.04.046.

Maurer, E. P., A. W. Wood, J. C. Adam, and D. P. Lettenmaier (2002), A long-term
hydrologically based dataset of land surface fluxes and states for the conterminous
United States, American Meteorological Society, 15(22), 3237-3251.

McGuinness, J., and E. Bordne (1972), A comparison of lysimeter-derived potential evap-
otranspiration with computed values, ‘ Technical Bulletin 1452, Department of Agricul-
ture.

Metcalfe, R., B. Routledge, and K. Devine (1997), Rainfall measurement in Canada:
Changing observational methods and archive adjustment procedures, Jom%wl of Cli-
mate, 10, 92—-101.

Michaud, J. D., and S. Sorooshian (1994), Effect of rainfall-sampling errors on simulations
of desert flash floods, Water Resources Research, 30(10), 2765-2776.

Montanari, A. (2007), What do we mean by ‘uncertainty’ ? The need for a consistent
wording about uncertainty assessment in hydrology, Hydrological Processes, 21, 841-845,

doi:10.1002/hyp.6623.

DRAFT November 5, 2007, 4:10pm DRAFT



HUARD AND MAILHOT: BAYESIAN UNCERTAINTY ANALYSIS X - 47

Moradkhani, H., K.-L. Hsu, H. Gupta, and S. Sorooshian (2005), Uncertainty assess-
ment of hydrologic model states and parameters: Sequential data assimilation using the
particle filter, Water Resources Research, 41(5), W05012, doi:10.1029/2004WR003604.

Mouelhi, S., C. Michel, C. Perrin, and V. Andréassian (2006), Stepwise development of
a two-parameter monthly water balance model, Journal of Hydrology, 518, 200-214,
d0i:10.1016/j.jhydrol.2005.06.014.

Mudholkar, G., and A. Hutson (1996), The exponentiated Weibull family: Some proper-
ties and a flood data application, Communications in Statistics: Theory and Methods,
25(12), 3059-3083.

Nandakumar, N., and R. G. Mein (1997), Uncertainty in rainfall-runoff model simulations
and the implications for predicting the hydrologic effects of land-use change, Journal of
Hydrology, 192, 211-232, doi:10.1016/50022-1694(96)03106-X.

Neal, R. M. (1993), Probabilistic inference using Markov Chain Monte Carlo methods,
Tech. rep., Department of Computer Science, University of Toronto.

Novak, E., and K. Ritter (1997), The curse of dimension and a universal method for
numerical integration, in Multivariate Approzimation and Splines, ISNM, edited by
G. Nirnberger, J. W. Schmidt, and G. Walz, pp. 177-188, Birkhauser.

Oudin, L., C. Perrin, T. Mathevet, V. Andréassian, and C. Michel (2006), Impact of
biased and randomly corrupted inputs on the efficiency and the parameters of watershed
models, Journal of Hydrology, 320, 62-83, doi:10.1016/j.jhydrol.2005.07.016.

Paturel, J., E. Servat, and A. Vassiliadis (1995), Sensitivity of conceptual rainfall-runoff
algorithms to errors in input data — case of the GR2M model, Journal of Hydrology,

168, 111-125, doi:10.1016/0022-1694(94)02654-T.

DRAFT November 5, 2007, 4:10pm DRAFT

175



176

X - 48 HUARD AND MAILHOT: BAYESIAN UNCERTAINTY ANALYSIS

Pelletier, P. M. (1988), Uncertainties in the single determination of river discharge: A
literature review, Canadian Journal of Civil Engineering, 15, 834-850.

Refsgaard, J. C., J. P. van der Sluijs, J. Brown, and P. van der Keur (2006), A framework
for dealing with uncertainty due to model structure error, Advances in Water Resources,
29(11), 1586-1597, doi:10.1016/j.advwatres.2005.11.013.

Savenije, H. H. G. (2004), The importance of interception and why we should delete the
term evapotranspiration from our vocabulary, Hydrological Processes, 18(8), 1507-1511,
d0i:10.1002/hyp.5563.

Schaake, J., Q. Duan, V. Andréassian, S. Franks, A. Hall, and G. Leavesley (2006), The
model parameter estimation experiment (MOPEX), Journal of Hydrology, 320(1-2),
1-2, d0i:10.1016/j.jhydrol.2005.07.054.

Schaefli, B., and H. V. Gupta (2007), Do Nash values have value?, Hydrological Processes,
21(15), 2075—2080, d0i:10.1002/hyp.6825.

Schaefli, B., D. B. Talamba, and A. Musy (2007), Quantifying hydrological modeling
errors through a mixture of normal distributions, Journal of Hydrology, 332(3-4), 303-
315, d0i:10.1016/j.jhydrol.2006.07.005.

Schmidt, A. R. (2002), Analysis of stage-discharge relations for open-channel flows and
their associated uncertainties, Ph.D. thesis, University of Illinois.

Schmidt, A. R., and M. H. Garcia (2003), Theoretical examination of historical shifts and
adjustments to stage-discharge rating curves, in World Water and Environmental Re-
sources Congress 2003 and Related Symposia 2008, edited by P. Bizier and P. DeBarry,

American Society of Civil Engineers.

DRAFT November 5, 2007, 4:10pm DRAFT



HUARD AND MAILHOT: BAYESIAN UNCERTAINTY ANALYSIS X-49

Sharma, T. C. (1996), A Markov-Weibull rain-sum model for designing rain water catch-
ment systems, Water Resources Management, 10(2), 147-162.

Shelton, M. L. (1985), Modeling hydroclimatic processes in large watersheds, Annals of
the Association of American Geographers, 75(2), 185-202.

Shepard, D. S. (1984), Spatial Statistics and Models, chap. Computer mapping: the
SYMAP interpolation algorithm, pp. 133-145, D. Reidel.

Shiklomanov, A. I., T. I. Yakovleva, R. B. Lammers, I. P. Karasev, C. J. Vorosmarty, and
E. Linder (2006), Cold region river discharge uncertainty-estimates from large Russian
rivers, Journal of Hydrology, 326 (1-4), 231-256, doi:10.1016/j.jhydrol.2005.10.037.

Sorooshian, S., and J. A. Dracup (1980), Stochastic parameter estimation procedures for
hydrologic rainfall-runoff models: Correlated and heteroscedastic error cases, Water
Resources Research, 16(2), 430-442.

Thiemann, M., M. Trosset, H. V. Gupta, and S. Sorooshian (2001), Bayesian recursive
parameter estimation for hydrologic models, Water Resources Research, 37(10), 2521
2535.

Todini, E., and P. Mantovan (2007), Comment on: ‘On undermining the science?’ by
Keith Beven, Hydrological Processes, 21, 16331638, doi:10.1002/hyp.6670.

Troutman, B. M. (1982), An analysis of input errors in precipitation-runoff models using
regression with errors in the indepepdent variables, Water Resources Research, 18(4),
947-964.

Vrugt, J. A., C. G. H. Diks, H. V. Gupta, W. Bouten, and J. M. Verstraten (2005),
Improved treatment of uncertainty in hydrologic modeling: Combining the strengths

of global optimization and data assimilation, Water Resources Research, 41, W01017,

DRAFT November 5, 2007, 4:10pm DRAFT

177



X -50 HUARD AND MAILHOT: BAYESIAN UNCERTAINTY ANALYSIS

doi:10.1029,/2004WR003059.

Wagener, T., N. McIntyre, M. J. Lees, H. S. Wheater, and H. V. Gupta (2003), Towards
reduced uncertainty in conceptual rainfall-runoff modelling: Dynamic identifiability
analysis, Hydrological Processes, 17, 455—476, d0i:10.1002/hyp.1135.

Weerts, A. H., and G. Y. H. El Serafy (2006), Particle filtering and ensemble Kalman
filtering for state updating with hydrological conceptual rainfall-runoff models, Water
Resources Research, 42, W09403, do0i:10.1029/2005WR004093.

Widmann, M., and C. Bretherton (2000), Validation of mesoscale precipitation in the
NCEP reanalysis using a new gridcell dataset for the northwestern United States, J.
Climate, 13, 1936-1950.

Wilks, D. S. (1989), Rainfall intensity, the Weibull distribution, and estimation of daily
surface runoff, Journal of Applied Meteorology, 28, 52-58.

Xu, C.-Y. (2001), Statistical analysis of parameters and residuals of a conceptual water
balance model — Methodology and case study, Water Resources Management, 15(2),
75-92.

Xu, C-Y., and G. Vandewiele (1994), Sensitivity of monthly rainfall-runoff models to
input errors and data length, Hydrological Sciences Journal, 39(2), 157-176.

Yang, D., S. Isida, B. E. Goodison, and T. Gunther (1999), Bias correction of daily
precipitation measurements for Greenland, Journal of Geophysical Research, 104(D6),
6171-6181.

Yang, J., P. Reichert, and K. C. Abbaspour (2007), Bayesian uncertainty analysis in
distributed hydrologic modeling: A case study in the Thur River basin (Switzerland),

Water Resources Research, 48, W10401, doi:10.1029/2006 WR005497.

DRAFT November 5, 2007, 4:10pm DRAFT



HUARD AND MAILHOT: BAYESIAN UNCERTAINTY ANALYSIS X-51

Yapo, P. O., H. V. Gupta, and S. Sorooshian (1996), Automatic calibration of conceptual
rainfall-runoff models: sensitivity to calibration data, Journal of Hydrology, 181(1-4),
23-48, doi:10.1016/0022-1694(95)02918-4.

Zhang, L., and V. P. Singh (2007), Bivariate rainfall frequency distribu-
tions using Archimedean copulas, Journal of Hydrology, 332(1-2), 93-109, doi:

10.1016//j.jhydrol.2006.06.033.

Acknowledgments. David Huard is grateful for the financial support of the Natural

Sciences and Engineering Research Council of Canada (NSERC).

Appendix A: Probabilistic distributions
A1l. Truncated normal distribution
Assuming variable z is distributed normally but bounded to the interval [a, b], then the

probability density function of z is given by

i)
3(5E) - 2(52)

28 s

Nr(z | u, 0, a,.b) = (A1)

where ¢ and @ stand for the probability density function and cumulative density func-

tion of the standard normal distribution.

A2. Multivariate normal distribution

The probability density function of the multivariate normal distribution is given by

N(z | 1, %) exp{—(z — )TE (@ - p)/2) (A2)

_ 1
- [2ry

where p is the vector mean and ¥ the covariance matrix.

A3. Lognormal distribution
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Assuming ¥ is normally distributed with mean g and variance 0 and = = exp(y), then

z has a lognormal distribution with a probability density function given by

1 _(n(=)— 2
L(z | p,0) = \/ﬁaxe Tl (A3)

A rationale for the use of the lognormal in science is given in Limpert et al. [2001], along
with some of its properties. For instance, the lognormal is the distribution maximizing
entropy on the semi-infinite interval given a fixed mean and variance [Goodman, 1987].
It is also the limiting distribution of the product of random variates, and hence, ideally
suited to model multiplicative errors.

If y is generated by an auto-regressive process of order one: y; = pyi—1 + € with
e~ N(0,0) fori=1,2,...,n and z; = exp (i + y;), then the log-likelihood of x is given
by

n 1, o™ u
L(z | p,p,0) = —iln(27r) - §ln T2 Zlnxi
i=1

- Tiﬂ {(1 =)z — m)* + Z [(nz; — p;) — p(InTi—y — .Ui—l)]2} . (Ag)

=2

A4. Exponentiated Weibull distribution
The exponentiated Weibull distribution, introduced by Mudholkar and Hutson [1996]

has the following pdf:

k -1 _
W(z | o,k p,0) = %—zk_le_z’c [1 — e‘zk]a , Z= Tk

(A5)

(o2

with z > 0 and &k > 0. It is a generalization of the Weibull distribution, with an
additional shape parameter o. The Weibull distribution is frequently used in hydrology

to model rainfall characteristics [Zhang and Singh, 2007; Sharma, 1996; Wilks, 1989].
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Appendix B: Aggregation of proportional daily errors
Given a daily series d; with ¢ = 1,...,n with proportional errors 4, = f4d;, one wishes
to determine the corresponding proportionality factor f,, for aggregated monthly values
m =Y d; such that

fam® =" fid}. (B1)
i=1
Isolating f, and taking the expectation on both sides of equation (B1) yields

Blf) = £uE szﬂ . (B2

This equation shows that the monthly proportionality factor increases with the intra-
monthly variability of the series, in other words, that errors on large daily events strongly
contribute to the error on the monthly totals. For example, using daily rainfall series from
the Chunky watershed, taking f; = .15 yields a monthly proportionality factor f, ~ .07.
With a daily rainfall equal to its mean value, i.e. no variability in the series, equation

(B2) reduces to fn, = f4/+/n and fn, = .03.
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Figure 1. Inference process based on the theoretical uncertainty framework. Experi-
mental input and output data are indicated by tilded variables &, ¥, and conceptual true
values by non tilded variables: true input series x; frue output series y; model parameters
0 and initial model state ¢pg. The input, output and structural error models are indicated
DY DPins Pour @0d D, Tespectively, m(0, ¢pg) denotes the prior for the model parameters and

the initial state, and w(x) stands for the prior for the true input series.
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Table 1. Properties of the eight watersheds used in the study. All stations span
between 53 and 54 years of uninterrupted data with no null rainfall at the monthly scale.
Rainfall, PE and flow data are areal values.
Code Basin name Area Mean Mean Mean
(km?) monthly monthly monthly
rainfall PE (mm) flow (mm)
(mm)
05471500 South Skunk River near Os- 4235 69.3 82.3 17.8
kaloosa, IA
05570000 Spoon River at Seville, IL 4237 75.3 84.3 20.9
01562000 Raystown Branch Juniata River 1958 78.8 65.4 35.2
at Saxton, PA
03011020 Allegheny River at Salamanca 4165 86.8 59.4 48.2
NY
03303000 Blue River Near White Cloud, IN 736 93.8 734 68.2
01321000 Sacandaga River near Hope NY 1272 102.9 57.6 64.7
02475500 Chunky River near Chunky, MS 956 117.2 87.9 38.5
03443000 French Broad River at Blantyre, 767 161.2 70.1 99.1
NC
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Figure 2. Once perturbed (thin lines), the internal state variable S describing the level
(mm) of the soil moisture store returns to its unperturbed state (thick line). The other
internal variable R (level of the routing store) displays a similar behavior. The figure

shows results obtained with a large store capacity (#; = 1000), i.e. a long memory.
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Figure 3. Case 1. Result of a calibration of the Chunky River watershed performed
assuming that only output errors are present. The lower graph shows rainfall observations.
The middle graph shows the pdf (contour plot) of the flow simulated using the parameters
sampled during calibration compared with flow observations (full line). The upper graph
shows the pdf of simulated flow measurements, including both parameter uncertainty and
an explicit output observation error. Although calibration is performed over 20 years of
data, only a subset of five years is shown here to avoid cluttering the figure. The scales

on the right indicate the value of the pdf.
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Figure 4. Case 2. Results of calibration of the Chunky River watershed under the
assumption that only input errors are present. The lower graph shows a five years subset of
the measured rainfall series (full line) used to calibrate the model, and a pdf (contour plot)
of the sampled true rain. The upper graph shows the pdf of simulated rain measurements,

including an explicit rain observation error. The scales on the right indicate the value of

the pdf.
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Figure 5. Case 3. Results from a calibration of the Chunky River watershed accounting
for input, output and structural errors. The lower plot shows the pdf of simulated rain
measurements (contour plot), compared with rainfall observations (full line), and the up-
per plot the pdf simulated flow measurement probability density (contour plot) compared
with the observed flow series (full line). The scales on the right indicates the value of the

pdf.
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Figure 6. Validation of the model calibrated in case 3. The lower graph shows the pdf
of the simulated measured rain X, (contour plot) along with the observed rainfall (full
line). The upper graph shows the pdf of the simulated measured flow fG, (contour plot)
compared with the observed flow series (full line) for the validation period. The scales on

the right indicate the value of the pdf.
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Figure 7. Parameter distributions sampled in the three cases presented. Parameter
6, describes the capacity (mm) of the soil accounting store and 6, the water exchange
coefficient. As 6, decreases, more water is lost to neighboring catchments. The NSE
parameter is computed by optimizing the NSE criteria computed over the square root

transformed flow.
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Figure 8. Daily outpu‘; (discharge) error model for the Chunky River watershed. Dots
indicate stage-discharge measurements taken by the USGS since 1938. The black line is a
piecewise polynomial fit of the stage-discharge relation. The light gray area indicates the
span of the first standard deviation (68% confidence) of the discharge error model and the
darker gray the second deviation (95% confidence) for daily measurements. The rectangle

in the lower-left corner shows the boundaries of the close-up view at the right.
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Figure 9.  Calibration results for the Chunky River watershed using realistic priors
and error model assumptions. Pdfs for each variable are shown as contour plots while
observations are indicated by full lines. In the upper graph, the dashed line shows the
flow simulated by parameters fitted using a least-square criteria (NSE) on the square root

of the flows. The scales on the right indicate the value of the pdf.
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Figure 10. Inferred posterior pdf for the three main sources of errors: input (rainfall)
errors (mm), structural or model errors (mm), and output (flow) errors (mm). The graphs
show the last five years of the calibration period. The scales on the right indicate the

value of the pdf.
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Figure 11. Parameters sampled during calibration under realistic error model assump-

tions. The cross indicates the optimal parameters found by maximizing the NSE criteria.
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Figure 12. Flows simulated during the validation period. The lower graph shows a
contour plot of the simulated rain measurements density, with actual measurements in-
dicated by a full line. The upper plot displays the pdf of simulated flow measurements
(contour plot), obtained by running the model over the parameters sampled during cali-
bration and adding structural and measurement noise. The dashed line shows the flows
estimated by the SLS method and the full line indicates flow observations. The scales on

the right indicate the value of the pdf.
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Bayesian copula selection

Les copules sont des distributions multivariées de lois marginales uniformes. Il
en existe de nombreuses familles décrivant diverses structures de dépendances en-
tre les marges. Toutefois, il n’existe pas de méthode satisfaisante permettant de
sélectionner parmi ces familles la mieux adaptée & un jeu de données. Cet article
présente donc une méthode Bayésienne qui, moyennant certaines hypotheses, permet
d’attribuer un poids & chaque famille correspondant & la probabilité que celles-ci
décrivent les données observées. La méthode se base sur I'idée du prior parent,
un prior sur une quantité commune 3 toutes les familles de copules. La définition
du prior parent permet d’attribuer un prior pour les parameétres des familles de
maniére & permettre la comparaison de celles-ci entre elles. Il est montré par le
biais d’expériences synthétiques que la performance de la méthode, c’est-a-dire sa
capacité & identifier la vraie copule, augmente avec la corrélation entre les données
et la longueur de I’échantillon disponible pour effectuer la sélection.
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Abstract

In recent years, the use of copulas has grown extremely fast and with it, the need for a simple and reliable method to choose the
right copula family. Existing methods pose numerous difficulties and none is entirely satisfactory. We propose a Bayesian method to
select the most probable copula family among a given set. The copula parameters are treated as nuisance variables, and hence do not
have to be estimated. Furthermore, by a parameterization of the copula density in terms of Kendall’s 7, the prior on the parameter
is replaced by a prior on 7, conceptually more meaningful. The prior on t, common to all families in the set of tested copulas,
serves as a basis for their comparison. Using simulated data sets, we study the reliability of the method and observe the following:
(1) the frequency of successful identification approaches 100% as the sample size increases, (2) for weakly correlated variables,
larger samples are necessary for reliable identification.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Copulas; Model selection; Bayes’ theorem; Goodness-of-fit test; Kendall’s tau; Pseudo-likelihood

0. Introduction

In order to extrapolate extreme quantiles from data sets, or to generate random variables, it is usually necessary to
select a distribution function matching the available data. The choice of the best distribution is not an exact science and
relies on guesswork and testing of multiple hypotheses. Since each hypothesis comes with its particular test, the whole
procedure is too complicated for end-users and generally left to experts, along with the interpretation of the results.
Furthermore, existing methods cannot compare distributions without specifying an optimal parameter set for each
one of them. The selection of the best distribution is thus intertwined with the estimation of parameters, a non-trivial
problem itself.

The situation is even worse in the case of two-dimensional distributions, for which even more parameters need to be
estimated. Fortunately, the elegant concept of copulas greatly simplifies matters. Copulas are multivariate distributions
modeling the dependence structure between variables, irrespective of their marginal distribution. They allow to choose
completely different margins, the dependence structure given by the copula, and merge the margins into a genuine
multivariate distribution. The choice of the best bivariate distribution can then be done in two steps: choose the optimal
margins, and then choose the optimal copula. In this paper, we introduce a simple Bayesian method to choose the “best”
copula, given some bivariate data expressed by quantiles.

* Corresponding author. Tel.: +1 418 6543789; fax: +1418 6542600.
E-mail addresses: david.huard@ete.inzs.ca (D. Huard), guillaume evin@ete.inrs.ca (G. Evin), anne-catherine_favre @ete.inrs.ca (A.-C. Favre).

0167-9473/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.csda.2005.08.010
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The structure of the paper is as follows Section 1 introduces the main ideas of copula theory. Section 2 reviews
existing approaches to select copulas and highlights salient features. Section 3 describes the proposed method and its
derivation from Bayes’ theorem. Results from numerical simulations are shown in Section 4, along with their analysis.
Finally, we draw conclusions on the overall performance of the method and propose ideas for future work.

1. Copula theory
The concept of copula has been introduced by Sklar (1959) in the following way

Copula Definition. A copula is a joint distribution function of standard uniform random variables. That is,
C(ul,...,up) =Pr{U1<u1,...,Up<up},

where U; ~ U0, 1) fori=1,..., p.

For a more formal definition of copulas, the reader is referred to Nelsen (1999). Using the probability integral
transformation, it is straightforward to see that a copula computed at Fy (x1), F2 (x2) , ..., Fp (xp) is identical to the
multivariate distribution function F evaluated at (x;, . .., xp), i.e.,

C(Fi(x1),Fa(x2),..., Fp(xp)) = F (x1, %2, ..., xp).

This last equality gives a first insight of the link between distribution functions and copulas, which is the content of
Sklar’s theorem.

Sklar’s Theorem. Let F be a p-dimensional distribution function with margins Fy, F, ..., Fp, then there exists a
p-copula C such that for all x in RP,

F(x1,%2,...,%p) =C(F1(x)), F2(x2) , ..., Fp (xp)),

where R denotes the extended real line [—00, 00]. If F1, ..., F, are all continuous, then C is unique. Otherwise, C is
uniquely determined on Ran (Fi) x Ran (F;) X --- X Ran (F p), where Ran stands for the range.

According to Sklar’s theorem, copulas separate marginal behavior, as represented by the F;’s, from the dependence
structure. This constitutes one great advantage of copulas. In the usual representation of joint probabilities via multivari-
ate distribution functions, the two cannot be separated. The general theory about copulas is summarized in Joe (1997),
Nelsen (1999) or more recently in Cherubini et al..(2004). Copulas have been widely used in financial mathematics
to determine the Value at Risk (see for example, Embrechts et al., 2002, 2003; Bouyé et al., 2000). Other fields of
applications involve lifetime data analysis (Bagdonavicius et al., 1999), actuarial science (Frees and Valdez, 1998), and
more recently, hydrology (De Michele and Salvadori, 2003; Favre et al., 2004).

Most copula applications are concerned with bivariate data. One reason for this is that relatively few copula families
have practical p-dimensional generalization. The popular Archimedean 2-copulas (Genest and MacKay, 1986) for
instance, have two known generalizations, both of them afflicted by serious shortcomings. Archimedean 2-copulas are
defined as

-1 . 2
_JoTl @) +owm) if Yo, o) <o),
Clur,u) = {0 otherwi;e

with @(u) a 4* function satisfying (1) =0, ¢/ (4) <0 (¢ is decreasing) and ¢”(u) > 0 (¢ is convex) for all 0<u < 1.
@(u) is called the generator of the copula. The first generalization, termed symmetric (Joe, 1997), uses the same
generator, thus the same dependence, for all variables

Clur,....up) =0 (@) +---+ ¢ (up)).

Since all variables are described by the same dependence, this generalization is too simplistic for most real life
applications. The second generalization, termed asymmetric (Whelan, 2004), uses (p — 1) generators. For p = 3, the
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Table 1
Definition and parameter domain of the copulas used in this paper
Copula C(u, vi) feQ
Clayton (wf+v0- 1)‘1/9 10, ool
uv
AMH _ —1,1
1—61 —u)(l—12) L :
0 S
Gumbel exp —[(—m w? + (~Inv) ] [1, ool
1 (e -1)(e®-1)
Frank —=h{l+ - —TFF—= -1, 11R\{0}
0 e f—1
1/6
Joe S - [(1 —wl+ (-0l - 1-wia —v)"] [1, ool
1/6)~1
A12 {1 + [ - 1)+ - 1] } (1, ool
8 o176 °
Al4 [1 + [(u-1/9 —1)"+ (v 1) ] ] 1, ool
FGM uv + Buv(l — u)(1 —v) [-1,1]
¢~ o7t 1 2050 — 52 — ¢
Gauss / / exp dsdw [-1,1]
o Jw m/1-6 2(1—0")

formula is given by

C @ uz,us) =97 (910 077 (92 @00) + 92 @) + 91 @3) W

Although (p — 1) different dependence structures are allowed instead of one, existence conditions must be satisfied
for the copula defined in (1) to be valid. These conditions impose restrictions over the parameters of the generators,
allowing only a limited range of correlations. All in all, the authors consider Archimedean p-copulas unpractical at
best. Confronted with a multivariate sample, the usual approach is to analyze the data pair by pair using 2-copulas.

It is important here to say a few words about Kendall’s tau as it plays a major role in the parametrization used in
this paper (Section 3.1), as well as in the prior’s choice (Section 3.2). Kendall’s tau is a non-parametric measure of
dependence between random variables commonly associated to copulas. It is defined as the probability of concordance
minus the probability of discordance of two independent vectors (Kruskal, 1958). In other words, if (X, Y1) and
(X5, Y») are independent and identically distributed random vectors, then

T1=Pr[(X; — X2) (1 — Y2) > 0] — Pr [(X; — X2) (11 — Y2) <0].

Kendall’s tau may also be expressed simply in term of the copula function, as the expected value of the function
C(U, V) of uniform (0, 1) random variables U and V, whose joint distribution function is C, i.e.

f=4/f Cu, v0) dC(w, v|6) — 1.
[0,11?

For Archimedean copulas, Kendall’s tau can be written as 7 =1 4+ 4 fol (p)/¢' @) dr.

The nine copula families used in this paper, chosen for their analytical properties, are defined in Table 1. Put together,
they model a wide variety of dependence structure and cover most applications found in the literature. The first seven
copulas (Clayton, Ali-Mikhail-Haq (AMH), Gumbel, Frank, Joe, A12, A14) belong to the Archimedean class. Note
that A12 and A 14 are coined from the order of appearance in Nelsen (1999). We also consider two non-Archimedean
copulas: the Farlie-Gumbel-Morgenstern (FGM), a copula with a quadratic section, and Gauss copula, an elliptical
copula. Note that the link between Gauss copula and the classical multivariate normal distribution is made explicit
when the copula is expressed using the normal cdf: C(u, v|6) = g (45—1 ), ! (v)). For more details about elliptical
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copulas, one of the few families with practical p-dimensional generalizations, the reader is referred to Frahm et al.
(2003).

2. Review of copula selection methods

The most commonly employed methods to select the best copula are based on a likelihood approach, which is used
to define indicators of performance, as for example, the Akaike Information Criteria (AIC). Chen and Fan (2005)
propose pseudo-likelihood ratio tests for selecting semi parametric multivariate copula models in which the marginal
distributions are unspecified. For Archimedean copulas, Genest and Rivest (1993) proposed to compare the one-
dimensional function

Kg(t) =Pr(C(u, v|0) <1),

with its non-parametric estimation X,,, given by

n

1
Kn(r>=,—lz11(e,~n<z),

j=1

where e, = (1/n)zz=1 1 (Xlk <Xy Xpi € ij). The best copula is then the one for which the function Ky is
closest to K. Durrleman et al. (2000) suggested to choose the copula minimizing the distance (L2-norm, Kolmogorov,
etc.) from K to the non-parametric estimation K,,. Using the same idea, they computed a distance based on the discrete
L2-norm. This distance is calculated between an empirical copula of Deheuvels (1979) and the tested copulas. For an
exhaustive presentation of these procedures, we refer to the working paper of Durrleman et al. (2000).

Inrecent years, various authors developed goodness-of-fit tests (GOF tests) for copulas. Genest et al. (2005) proposed
an user-friendly and powerful tool, a GOF test statistic with a non-truncated version of Kendall’s process

Kn(0) = v/ {Kn(®) — Ko, (8)} ,

where- §, denotes a robust estimation of 6. The expression for the statistic is straightforward and the test has nice
properties. For example, it sustains the prescribed error probability of the first kind under the null hypothesis, even with
small sample sizes. Nevertheless, an explicit expression is needed for Ky, which limits the set of copulas for which the
GOF test statistic can be computed.

An easy way to construct GOF tests for copulas is to consider p-dimensional ¥ tests. The methodology is presented
in Pollard (1979). Dobri¢ and Schmidt (2004) recently used this method in a financial application. The main criticism
about this approach concerns the arbitrary choice of the subsets that divide the p-dimensional space [0, 117 (Kendall
and Stuart, 1983). Also, the calculation of the empirical critical values proves to be troublesome.

Several authors employed the transformation of Rosenblatt (1952) to test whether the transformed random variables
set is composed of independent uniformly distributed variables, as is the case under the null hypothesis (Justel et
al., 1997). Using Rosenblatt’s transformation, Chen et al. (2003) compared the kernel density estimation of their
transformed random variables to the uniform density. As noted in Fermanian (2005), Rosenblatt’s transformation may
be a tedious preliminary task, especially for high dimensions. Therefore, Fermanian (2005) presents a GOF test based
directly on the kernel density estimation of the original multivariate data. This test, however, requires some heavy
numerical integration. Moreover, it was noted through simulations that with small sample sizes, it is difficult to sustain
the prescribed error probability of the first kind.

The comments in this section are based on a survey (Evin, 2004) that compared the results of the GOF tests presented
above. Numerous simulations led the authors to conclude that the test of Genest et al. (in press) is the only one to be
unbiased, and by far the most powerful. All these tests, however, rely on previous estimation of an optimal parameter
set. Strictly speaking, comparisons are made between copulas with given parameters, and not between copula families.
We suggest that model selection methods should be independent of the parameter choice.
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3. Selection of the right copula

We present in this section a Bayesian model selection method that attributes weights to copula families. It does not
rely on parameter estimation and to our knowledge, may be applied to all known copulas.

Let % denote the set of all copulas. From this set, we select a finite subset € C % of copulas to be included in the
proposed method. Each family of copulas in € ¢ is identified by C;, with ! =1, ..., Q. The proposed method consists
simply in defining Q hypotheses:

H;: The data come fromcopulaC;, I=1,...,Q

and then computing Pr (H;| D), the probability of each hypothesis given the data D. We will suppose that the data
set D is composed of » mutually independent pairs of quantiles (¥;, v;)}, i =1, ..., n. Note that the independence
assumption may not hold if quantiles are computed empirically using ranks. In that case, the method must be thought
of as approximative and used with caution. Applying Bayes’ theorem, we get for each family:

Pr (D|H;, I) Pr (H;|D)

Pr(H/|D,I) = Pr(DID) , )

where Pr (D|H;, I) is the likelihood, Pr (H;|I) is the prior on the copula family, Pr(D|I) the normalization constant
and I stands for any relevant additional knowledge. The “right” copula is then simply the copula with the highest
Pr (H;|D, I).

3.1. Likelihood

The likelihood Pr (D|H;, I) in Eq. (2) is the probability of “drawing” data D from the /th copula. However, for most
copulas, there exists no such explicit expression because the copula density depends on a parameter 8 (cf. Table A.2).
Note also that the parameterization is arbitrary, in the sense that we could choose any function = g(6) and replace
c(u, v|0) by

&, vl =c (u,v1g™' ).

There is, of course, no wrong choice for the parameter, and for reasons that will soon be clear, we will choose Kendall’s
tau 7 = g;(6) to be the common parameter for all copulas in € (cf. Table 2).
We introduce Kendall’s tau in Eq. (2) as a nuisance variable:

1
Pr(HllD,I)=/ Pr (H;, 7|D, I) dr
-1

B /1 Pr (D|H;, 7, I) Pr (Hylt, 1) Pr(c|) dt -

1 Pr(D|I)
where Pr (H;|z, I is the prior on the family hypothesis and Pr(t|I) is the prior density on Kendall’s tau. The likelihood

Pr (D[Hy, 7, I') now depends on 7 and, if all n data pairs are mutually independent, can be computed from the copula
density:

n
Pr(DH;, 7, 1) = [ | Prews, vilt, 1, D)

i=1
= l-n-[ c (ui, vilgl_l(r)) , (C))
i=1

where ¢; (ui, vilg, 1 (‘L‘)) is the density of the Ith copula (cf. Table A.2). If quantiles are computed using ranks, mutual
independence cannot be guaranteed and Eq. (4) rather describes a pseudo-likelihood. In that case, results obtained
should be considered as approximations, Fortunately, this approximation is thought to improve with increasing sample
size, as the dependence between ranks decreases.
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Table 2
Kendall’s tau and its domain of definition for the copulas used in this paper
Copula T=g(0) 1eQ
2

Clayton 1- 79 [0, 11\{0)
AMH 26 In(1—§)—201n(1 — 6) + 6+ In(1 - 6) [—0.181726, 1]

3 &
Gumbel 1-07! [0,11

4 1 [%
Frank 1-=1{1-= _ —1, 11\{0

v 0( B/Oe,_ldt) (-1, 11\{0)

Joe No closed form Discontinuities

2 1
Al2 1- — 3.1

30 [3 ]

2 1

Al4 -— 3.1

1426 (5 ]

20 2 2
FGM 9 [_ 9 5]
2 .

Gauss ., arcsin @ [-1,1]
3.2. Priors

To select priors, a host of methods exists (Kass and Wasserman, 1996), some said objective, others said subjective,
but the choice of the method itself remains subjective and open to debate. Our approach consists in stating desiderata
precise enough to define uniquely the prior on 7 as well as the prior on the family. The subjectivity of the prior’s choice
is then confined to these desiderata and put in evidence for criticism. Let us state these basic desiderata, the additional
information denoted earlier by I

(I1) Kendall’s tau belongs to the set A and each outcome of 7 € A is equally likely;
(Ip) for a given 1, all families satisfying 7 € & are equally probable,

where £; is 7°s domain for the /th copula (see Table 2). The purpose of A is to give the user the possibility to include
additional knowledge about the correlation between the variables. For example, if the correlation is known to be positive,
we may assume that A = [0, 1]. In the case where no information is available, A is simply put equal to [—1, 1].

Desideratum (/7) determines the prior on the family. Indeed, since all families are equally probable with respect to
a given 1 (for 7 € ),

Pr(Hjt, by x1(te Q). &)
Similarly, Desideratum (/1) specifies the prior on :

T€ A,

1
Pr(z|I}) = { W(A) ©

0 otherwise,

where /4(-) denotes the Lebesgue measure, here the width of the interval spanned by A.

These priors, chosen mainly for testing purposes, reflect complete ignorance of the correlation between the variables
as well as no preference over the copula family. However, in real cases, cogent information would probably be available
and should be included in the calculation via an informative prior. For example, if © is known to lie around a certain
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value, a beta distribution, extended to the range [—1, 1], could provide an effective way to describe the prior on t:

pr(ny = L+ P 1+r)“_1<1—r>ﬁ_1
e ‘I“(oor(/f)( 2 2 )

To estimate the parameters, the easiest way would probably be to vary «, f§ until the shape of the distribution agrees
with our intuitive perception of the probability. Information on the copula family may also be included, by modifying
the weight given to each family. For example, if we knew beforehand that the type of data to analyse exhibits correlated
extreme events, we could increase the weight given to copulas with strong tail dependence.

3.3. Normalization

Plugging Egs. (4), (5) and (6) into (3), we find

R T NP 1(t € A)
Pr(Hle,I)—rDll)/_lgcz (ui,v,|gl (T))‘ﬂ(regl)'m—)——dr
1 1 n B
~ Pr(DII) A(A) 24 1—[ < (ui, vilg; 1(T)) dr. o

i=1
In general, the normalization constant Pr(D|I) in Eq. (7) is computed using the sum rule (Jaynes and Bretthorst, 2003):

0
Pr(D|I) = Z Pr(DIH;, ) Pr (H|I). ¢))
=1

However, the sum rule is only true if the hypotheses H; are mutually exclusive and the set exhaustive. In our case,
arguments invalidate both claims. First, if the data come from a copula not in € g, the set of hypotheses is clearly
not exhaustive. Second, if the set contains two or more copulas that are very similar, the hypotheses should not be
considered completely exclusive. Solutions to insure exhaustiveness and take non-exclusivity into account are discussed
in Section 4.3, their application, however, is beyond the scope of this article. We will hence limit the computation to the
weights W;:

- T e (. vl
W= | LTt (s ') . ©

Note that in the figures shown below, the weights are normalized for convenience.

4. Simulations and analysis

To assess the performance of the method, we select eight one-parameter copulas to form the subset % g: Clayton,
AMH, Gumbel, Frank, A12, A14, FGM and Gauss. Those copulas are chosen because analytical formulas exist both for
the density (cf. Table A.2) and Kendall’s tau (cf. Table 2). These copulas are then used to generate data sets of different
sizes and correlations. We study the cases of small negative dependence t=—0.2 and small positive dependence 1=0.2,
using samples of sizes n =30, 300 and 600, and the cases of medium dependence 7= 0.5 and large dependence t=0.7,
using samples of sizes n = 30, 100 and 300. For each copula, for each n and for each 7, 1000 data sets are generated
over which Eq. (9) for/ = 1 to Q is computed.

4.1. Main results

Once the weights are computed from (9), we count the number of times the right copula is chosen by the method,
that is, the number of times it attains the highest weight among copulas from the set. The results are presented in
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Table 3
Number of successful identifications over 1000 trials
Copula

T -0.2 0.2 0.5 0.7

n 30 300 600 30 300 600 30 100 300 30 100 300
Clayton 466 865 951 774 917 993 917 998 1000
AMH 127 495 734
Gumbel 411 850 954 667 853 991 652 790 929
Frank ’ 567 627 696 409 484 618 577 845 980 738 965 1000
Al2 291 610 795 526 798 936
Al4 216 521 786 287 597 903
FGM 52 478 637 52 438 635
Gauss 549 750 832 330 576 760 380 682 934 474 750 958

Table 3. We note the following:

e As expected, the method becomes more accurate as the sample size grows.
e As 7 approaches zero, larger samples are required for a successful identification.
e Some copulas are easier to identify than others.

Regarding the first comment, results show that the method converges to the right copula. That is, we suspect that as n
increases, the probability of a successful identification approaches one.

The second comment may be explained by noting that certain copulas show a similar behavior when  approaches zero.
That is, copulas cluster into classes defined by an identical asymptotic density (Genest et al., 2005a). For example,
FGM, AMH and Frank copula are part of the same class, whose asymptotic density is given by c(u, v|t = 0) &
uv(l — u)(1 — v). This similarity between copulas is more clearly seen in Fig. 2, displaying weights computed by the
method, averaged over 1000 trials.

Concerning the third comment, the ease with which copulas are identified is related to the presence of similar copulas.
Copulas that look alike obtain similar weights and hence, are difficult to identify. Conversely, copulas with peculiar
densities stand out and are easily identifiable. The Clayton, for instance, was shown in Said (2004) to display a behavior
different from other copulas. This fact is also pointed out in Genest and Verret (2005), where the authors showed that
in the context of locally most powerful rank tests of independence, against alternatives expressed by copula models,
Clayton differs from other families. This explains why in all cases, Clayton is the copula most often successfully
identified.

To gain a better feeling of the reliability of the method, we compute the average weight obtained for each copula.
Figs. 1 and 2 illustrate those weights, along with the weight obtained for the independent copula c(«, v)=1, as a measure
of comparison. Fig. 2 shows clearly the connection between AMH, Frank and FGM. Fig. 1 suggests an unexpected
connection between Gumbel and A14. Comparison of the two figures also shows how identification becomes easier
when variables are strongly correlated. Note also that the independent copula obtains a relatively high weight for t=0.2
and n = 30. In that case, the independent copula is selected around 50% of the time, signifying that for such a small 7,
there is not sufficient data to distinguish from independence (see Table A.1).

4.2. Additional results and comments

In order to complete the analysis, further simulations are done to explore different questions. In particular, we inquire
the impact of empirically computed quantiles on the reliability of the method, discuss what happens when the data come
from an “unknown” copula, provide some directions about how to include copulas with multidimensional parameters
and suggest a way to normalize the weights.

4.2.1. Empirical quantiles
Asnoted earlier, if i, ¥ are not known exactly, the method is approximate. To evaluate the effect of this approximation,
we use pairs (#;, v;) generated from the copulas to compute (x;, y;) by x; = F| 1 (u;) and y; = F, 1 (v;), where Fi
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Fig. 1. Weights assigned to copulas, averaged over 1000 trials, for a Kendall’s 7 of 0.7 and samples sizes n = 30, 100 and 300. Bold font indicates
the copula family that generated the samples.

and F, are asymmetrical Gamma distributions. Empirical quantiles (ii;, 9;) are then estimated with #; = 1/(n —
D# { JFiixj<xi } The weights are computed using the empirical quantiles and compared to those obtained with
the theoretical quantiles. Table 4 compares the number of successful identification in both cases. As expected, the
uncertainty induced by the empirical quantiles reduces the number of successful identifications. The effect, however,
weakens for large samples.

4.2.2. Unknown copula hypothesis

To understand what happens when a sample comes from a copula not in the set % o, we run simulations using samples
generated by Joe copula, with T = 0.5 and n = 30, 100 and 300. In the vast majority of cases, Gumbel copula obtains
the highest weight. Although this result is hardly surprising since Joe and Gumbel have similar shapes, it highlights
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Average Weight

Fig. 2. Weights assigned to copulas, averaged over 1000 trials, for a Kendall’s t of 0.2 and samples sizes n = 30, 300 and 600. Bold font indicates
the copula family that generated the samples.

the fact that no warning signal is given when the data are coming from a copula not in %¢. To rectify the situation, a
solution would be to include an additional hypothesis:

Hg41: The data come from an “ unknown” copula.

The difficulty is, of course, to define the density of an “unknown” copula. A solution proposed by Bretthorst (1996)
in the context of radar target identification, is to describe the “unknown” hypothesis by an over-parameterized (0.-p.)
model. This o.-p. model must have enough parameters to capture virtually every conceivable behavior. Due to its high
flexibility, it should reach likelihoods equivalent to those of the right copula, but its priors on the extra parameters
would reduce its overall posterior probability. Hence, it would obtain weights lower than the right copula, but higher
than false copulas. The o.-p. model would then only be selected when the true model is not in €.
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Table 4
Comparison of the number of successful identifications over 1000 trials for theoretical and empirical quantiles, using 7= 0.5

Copula
Theoretical Empirical

n 30 300 600 30 300 600
Clayton 742 903 992 566 765 960
Gumbel 667 860 989 536 733 946
Frank 571 842 967 303 722 945
Al2 322 604 823 144 394 675
Al4 201 484 787 81 335 654
Gauss 404 685 917 230 471 840

4.2.3. Two parameters copula

In principle, the method can be applied to copulas with any number of parameters. In practice, however, difficulties
appear since it implies high-dimensional integration and the definition of multidimensional priors. To see how it could
be done, let us consider the case of a copula with two parameters § = (61, 62). To apply the method, we parameterize

the copula in terms of 7 and k, where x is a relevant quantity, uniquely determined by (7, k) = g { 8 }. One such quantity

could be the tail dependence, a measure of the probability of correlated extreme events (Juri and Wiithrich, 2003;
Schmidt, 2002). A bivariate prior 7(t, ) would then have to be specified, and the integration performed over 7 and x.
Note that the computation of g ! (7, x) might not be efficient. A better and equivalent solution consists in transforming
the prior on (z, ) into a prior on 6 using the usual formula for variable substitution:

Ty (é) =Tk (g (5)) [71,

where J is the determinant of the Jacobian of the transformation. This method has been used in the computation for

this paper. It has the advantage that J generally has a closed form, which is often not the case for g L.

4.3. Normalization of the weights

Asdiscussed in Section 3.3, the basic sum rule should not be applied since the set of hypotheses may not be exhaustive
Pr (H1 4+ HQ) # 1 (+ stands for the logical OR operator), and some of the hypotheses might not be mutually
exclusive Pr (Hi, H j) # 0, i # j. However, normalization is possible, although potentially tedious, if one introduces
the unknown copula hypothesis and applies the extended sum rule. Indeed, adding the unknown copula hypothesis
makes the set becomes exhaustive by definition, and the extended sum rule Pr(A + B) = Pr(A) + Pr(B) — Pr(A, B)
allows for non-exclusive hypotheses. If the set contains three hypotheses, for instance, we would reckon:

Pr(D) = Pr(D,H; + Hs + H3)
= Pr(D|H;) Pr (H;) + Pr (D|H) Pr (Hy) + Pr (D|H3) Pr (H3)
— Pr (D|H;, Hy) Pr (Hy, Hp) — Pr (D|Hy, H3) Pr (Hy, H3)
— Pr (D|H3, H3) Pr (H2, H3) + Pr (D|H;, H2, H3) Pr (Hy, H, H3) .

Thus, in principle, it is possible to compute genuine probabilities instead of weights.

5. Conclusion and future work

We presented a novel method to select the “right” copula given a data set. This method, built on a straightforward
application of Bayesian analysis, provides interesting advantages over the commonly used statistical tests: it has a
simple interpretation, it is independent of parameter choices, it is easy to implement numerically, and, as judged from
our simulations, provides reliable identification, even for small samples. Also, it has the conceptual advantage of being
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Table A.1
Number of times the right copula is identified compared with the number of times the independent copula is identified for T = 0.2 over 1000 trials

Copula
Right copula Independent
n 30 300 600 30 300 600
Clayton 311 865 951 451 0 0
AMH 19 495 734 553 0 0
Gumbel 266 849 954 495 1 0
Frank 197 483 618 547 1 0
FGM 0 437 635 585 2 0
Gauss 137 575 760 504 1 0
Table A.2
Density of the copulas used in this paper
3Cu, v|0)

Copula c(u,v|0) = —Suie
Clayton 1+ 010101 400+ v‘g)-z_llg

|:—1+02(—1+u+v—uv)—9(—2+u+v+uv)]
AMH >

-1+ 60(—=1+u)(—1+v)]

Gumbel _ 0 —2+1/8 -

[~ 10g()] ™+ =1 + 0+ [~ log)]® + [~ log()1?} /" ([~ log )1’ + [~ log(@)1?} > ** [~ log (1)1 1+

X . 170
exp {[— log)]® + [ log)1?} " uv

Frank OexplO(1 + u + v)1[~1 + exp(6)]

{exp(6) — explO(1 + u)] — exp[8(1 + v)] + explO(u + v)1)?
Joe —2+1/0

(1 — w140 [0 - [—1 +(1- u)"} [-1 . u)‘?]] [(1 —af - —a-wla - u)"} (1 — p)=1+0

—241/8

g ) Lo T ey
uv(—1+u)(—1+v)[1+[(_1+%)9+(_1+%)9] / }

—2+1/8

] [ )
AL2 (-1+1) [-1+0+(9+1)[(—1+1) +(—1+1)}
u u v

Al4 (14 (1 v (1) 4 (1 0 10)]

[—1 +6+ 20[(—1 +u10) 4 (=14 u—lxa)"]”"}
Buv (=1 + ul/®) (-1 + v1/9)
FGM 1+ 6(1 - 2u)(1 — 2v)

1 ¢ W + 47 ) 209" W™ W) — ¢ W)? — ¢~ W)?
2 > exp( 2 exp 2 (1 — p2)

{1 * [('1 +u0)’ 4 (-1 4 v—l/e)O:l1/9]‘2-9

X

Gauss

a genuine model selection method, in the sense that it does not depend on the choice of an optimal parameter. The
framework allows naturally for copulas with any number of parameters and for higher dimensional copulas. Furthermore,
it can be applied to any copula, as long as the copula density and Kendall’s tau can be computed numerically.



209

D. Huard et al. / Computational Statistics & Data Analysis 51 (2006) 809—822 821

Future work will concern the following topics: theoretical Bayesian framework to demonstrate the convergence of
the method, over-parameterized copula to model the “unknown copula” hypothesis, higher dimensional copulas and
the development of a similar method to select margins.
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Appendix A

The number of times the right copula is identified compared with the number of times the independent copula is
identified for 7 = 0.2 over 1000 trials is given in Table A.1.
The density of the copulas used in this paper is given in Table A.2.
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