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Highlights 

 A novel ensemble-based machine learning framework is proposed to estimate seasonal 

low-flow at ungauged sites. 

 The concept of information mixture is utilized in the ensemble training and ensemble 

integration stages. 

 Regressive sub-model integration techniques are used in the combining stage to create 

robust ensemble forecasts. 

 The model provided improved performance, compared to other models, when applied to a 

case study in Canada. 
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Abstract 

Low-flow estimation at ungagged sites is a challenging task. Ensemble-based machine 

learning regression has recently been utilized in modeling hydrologic phenomena and showed 

improved performance compared to classical regional regression approaches. Ensemble modeling 

mainly revolves around developing a proper training framework of the individual learners and 

combiners. An ensemble framework is proposed in this study to drive the generalization ability of 

the sub-ensemble models and the ensemble combiners. Information mixtures between the 

subsamples are introduced and, unlike common ensemble frameworks, are explicitly devoted to 

the ensemble members as well as ensemble combiners. The homogeneity paradigm is developed 

via a two-stage resampling approach, which creates sub-samples with controlled information 

mixture levels for the training of the individual learners. Artificial neural networks are used as 

sub-ensemble members in combination with a number of ensemble integration techniques. The 

proposed model is applied to estimate summer and winter low-flow quantiles for catchments in 

the province of Québec, Canada. The results provide significant improvement when compared to 

the other models presented in the literature. The results of the homogeneity levels from the 

optimum ensemble models demonstrate the importance of utilizing the diversity concept in 

ensemble learning applications.  

 

Keywords: Ensemble Learning; Information Theory; Diversity-in-Learning; Low-Flow 

Estimation. 
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1. Introduction 

Reliable low-flow estimates are important for a large number of engineering applications 

such as water quantity and quality management, and environmental impact assessment. Low-flow 

quantile estimates can be obtained using a number of approaches, such as flow duration curves or 

best-fit probabilistic distribution. Both approaches require the availability of low-flow 

information at the site of interest. When streamflow data is not available (ungauged sites), 

regional techniques are used to estimate the low-flow statistics. Low-flow estimation techniques 

at ungauged sites include regional prediction curves, spatial interpolation and regional mapping, 

synthetic streamflow time series for low-flow estimation, and regional regression modeling 

(Smakhtin, 2001b). Low-flow estimation is well-established in the literature and detailed 

information can be found in (Gustard and Demuth, 2009, Ouarda et al., 2008a, Smakhtin, 2001a). 

Among the various methods for low-flow estimation at ungauged sites, regional regression 

techniques are commonly used in practice for low-flow estimation at ungauged sites (Vogel and 

Kroll, 1990, Vogel and Kroll, 1992, Dingman and Lawlor, 1995, Ouarda and Shu, 2009). A 

classical regression technique (Thomas and Benson, 1970) for such task has the following 

generalized form:  

 𝑄𝑑,𝑇 =  𝛼 ∏𝑥𝑖
𝛽𝑖

𝑙

𝑖=1

 , (1) 

where 𝑄𝑑,𝑇 is the T-year low-flow quantile corresponding to a duration of d-days at the site of 

interest; 𝑥𝑖 is the 𝑖𝑡ℎ variable (site characteristic) used for low-flow quantile estimation; 𝛽𝑖 is the 

𝑖𝑡ℎ  model parameter which needs to be estimated; 𝑙 is the total number of site characteristics 

used in the model and 𝛼 is the multiplicative error term. 
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Logarithmic transformation linearizes the model governed by Equation (1). A multiple linear 

regression (MLR) is then used to estimate it. A disadvantage of this model is that logarithmic 

transformation may result in a bias in the estimation of its parameters (Kouider, 2003, Ouarda et 

al., 2008b, Shu and Ouarda, 2008, McCuen et al., 1990). In case of low-flow estimation, such 

bias may result in significantly improper model performance (Ouarda and Shu, 2009).  

Ensemble modeling for regression applications can tackle the different challenges 

manifesting in low-flow estimation at ungauged sites. In fact, this study is aimed at building on 

Ouarda and Shu (2009). An ensemble framework is presented in the present paper, where the 

architecture of its three phases (resampling, training and combining) targets implicitly and 

empirically optimized generalization ability. Diversity-controlled approach is embedded in a 

proposed multi-stage resampling approach. The ensemble members and the ensemble combiner 

are sub-sequentially optimized for enhanced ensemble estimation performance. In this article, 

specifics of the proposed approach are presented. The results of the proposed model are 

compared with the results from the previous models on the same case study. The proposed 

ensemble framework for the problem of low-flow estimation at ungagged sites is intended to 

show how the physical nature of the problem of interest inspires the design of the ensemble 

architecture for improved generalization ability. The main contributions of the present work are 

listed as follows: 

- The research work presents a generalized ensemble model which has been inspired from 

the concept of diversity-in-learning and the problem of interest. 

- The ensemble framework requires relatively reduced computing resource to be trained 

and validated in a reasonable timeframe. 
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- The ensemble framework is capable of parallelized training routine for efficient allocation 

of computing resource. 

- The model is theoretically scalable in its own size, the available features as well as the 

available observations. The ensemble framework is also of parallel learning nature, 

allowing for efficient computational routine. 

The structure of the paper is as follows; in Section 2, ensemble learning with artificial neural 

network sub-models is discussed. In Section 3, the proposed ensemble approach is provided. In 

Section 4, a detailed description of the case study is presented. Section 5 describes the 

experimental setup, model-specific configurations, for the present work. In Section 6, the study 

results are discussed. Lastly, Section 7 summarizes the study conclusions and provides 

recommendations for future research work. 

2. Background 

2.1. Brief overview of ensemble learning 

Ensemble regression modeling is an evolving field in machine learning, which allows remedy 

to the nature (feature space) and availability (sample size) challenges of the data. In regard to the 

present application, low-flow estimation at ungauged sites utilizes a relatively limited number of 

covariates, disqualifying the use of deep learning models. Moreover, shallow machine learning 

models inherently suffer from instability challenges (training leads to different local minima of 

the parameter choices), which are exacerbated in the case of limited training data. Ensemble 

Learning provides a solution to these two major issues.  
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An ensemble model generally comprises a set of regression models (known as sub-

ensembles, individual learners, ensemble members or predictors). Ensemble learning defines the 

technique upon which the information from the dataset is distributed to the sub-ensembles, for 

training, as well as the combination plan of the sub-ensembles estimates toward an observation 

(Dong et al., 2020). Many research efforts in the literature have provided empirical and 

theoretical evidence toward ensemble models’ superiority in performance and generalization 

ability (Chen et al., 2012, Dietterich, 2000, Green and Ohlsson, 2007, Hansen and Salamon, 

1990, Maclin and Opitz, 1999, Mendes-Moreira et al., 2012, Vrugt and Robinson, 2007, Zhang 

and Ma, 2012).  

Ensemble modeling can be divided into three main stages; resampling, generation and 

training, and integration. In the resampling phase, the dataset, or sample, undergoes a pre-defined 

process which ultimately creates the sub-samples, utilized for training the individual members. 

Several resampling plans exist in the literature such as the different bootstrap resampling 

techniques (Efron, 1982, Bühlmann, 2003). In the ensemble model generation and training 

second phase, the sub-ensembles are created and arranged to learn the functional relationship 

between the explanatory and response variables, using the available information from the sub-

samples. The sub-ensembles can be any regression model which seen best for the system of 

interest. A homogenous ensemble composes of similar sub-ensemble models (the same model 

structure and unknown parameters to be solved). In this case, the variation in the information by 

the different sub-samples will prompt diverse solutions in the sub-ensemble’s parameters. In the 

case of nonhomogeneous ensembles, the sub-ensembles can be a collection of different 

regression models. An ensemble of the same individual members can still be nonhomogeneous if 

they comprise different sub-ensemble topologies, such as ANNs with different configuration. A 
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popular example of nonhomogeneous ensembles is Random Forest (RF). This model utilizes a 

multitude of classification and regression trees (CARTs), generated via random subspace 

resampling, where each CART is expected to train over a number of the available feature space 

(Ho, 1995, Ho, 1998).  

The diversification in the resamples (sub-samples) and the sub-ensembles will produce even 

more diverse relationship in the nonhomogeneous ensemble models (Zhang and Ma, 2012). In 

this case, the ensemble models, in their mathematical nature, improves the overall generalization 

ability of the ensemble model (Ueda and Nakano, 1996, Vrugt and Robinson, 2007). In the 

ensemble integration phase, a combiner is used to fuse the different estimates from the individual 

learners, toward one observation, into the ensemble estimate. The choice of the combiners can 

rely on the nature of the resampling techniques and the sub-ensembles chosen for the ensemble 

model. Generally, a combiner can be as simple as taking the mean of the individual learners’ 

estimates. A combiner can also be as complicated as a final-regression model on the sub-

ensembles’ estimates. Such combiner is usually tuned in the training stage of the ensemble, using 

the complete training set, the pre-defined training subsamples, or different training plans.  

Examples of popular ensemble models are Bagging (Breiman, 1996a), Stacking (Breiman, 

1996b, Wolpert, 1992) and Boosting (Bühlmann and Hothorn, 2007, Drucker, 1997, Duffy and 

Helmbold, 2002, Freund and Schapire, 1996, Friedman et al., 2000, Friedman, 2001, Sharkey, 

1999). Bagging (also known as Bootstrap Aggregating) utilizes bootstrap resampling to generate 

the sub-samples which are used to train the sub-ensembles, while the combiner in this model are 

simply the arithmetic mean of the sub-ensemble estimates. It is worth noting that diversity 

generating mechanism in RFs is also an extension of Bagging (Breiman, 2001). In stacking, the 

creation of the sub-samples can be provided using a resampling plan. Once the sub-ensembles are 
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trained using their individual sub-samples, a linear combiner of the sub-ensemble estimates is 

trained. Non-negative weights are computed for combining the sub-ensemble estimates into an 

ensemble estimate. These two ensemble models have the advantage of relatively fast training, as 

the re-samples and the sub-ensemble are created in parallel.  

On the other hand, the combiner used in Boosting requires an in-series creation of the sub-

samples as well as the ensemble members; this ensemble plan starts by training one sub-ensemble 

using all the available information in the training set. The estimation error associated with each 

training instance is computed and compared. The second sub-sample is a sampling with 

replacement from the original sample set. Further, the instances with high estimation error will 

have a greater probability of being selected in the second sub-sample in order to focus the 

training of the second predictor on such instances. This process of sub-sample creation and 

predictor training is carried out until a stopping criterion is satisfied. The trained predictors will 

then be provided with combination weights (proportional to their accuracy) that combine the sub-

estimates into an ensemble estimate. This ensemble model can be slow and highly sensitive to 

outliers.  

Other techniques are used in the final stage of ensemble learning; one notable approach is 

Bayesian Model Averaging (BMA). This approach is suggested by Learner (1978) and recently 

proliferated in the applied field (Duan et al., 2007, Dong et al., 2013, Qu et al., 2017, Huo et al., 

2019). Contrary to the name, BMA is actually a selection method. BMA does not combine sub-

ensemble inferences, but rather selects the sub-ensemble to which the target observation 

supposedly belongs. As such, each sub-ensemble is considered as a Data-Generating Model 

(DGM), and for BMA to prevail, one of the DGMs should be the true model. Under the givens of 

the present work, it is not reasonable that one of the trained models will be the true DGM to any 
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of the low-flow quantiles. Hence, a combination of the available inference (which is the 

motivation behind ensemble learning) is expected to produce better generalization ability. 

Moreover, the explicit diversity mechanism in the proposed model is partly driven by the sub-

ensemble combination rather than selection; using BMA in this framework beats the point 

(Clarke, 2003). 

2.2. Ensemble learning in hydrology 

Several studies applied ensemble learning in hydrology. For example, Francke et al. (2008) 

compared different methods with respect to performance in measuring the suspended sediment 

concentration and construction of sedigraph. This study showed that regression-based random 

forests and quantile random forests ensembles provided robust performance, in contrast to the 

inferior performance of classical linear regression approach in such problem. The study also 

outlined the capability of the applied ensembles in providing uncertainty assessment as well as 

interpretation of predictor effects. Erdal and Karakurt (2013) aimed at assessing the application 

of classification and regression trees (CARTs) in the bagging and boosting ensemble frameworks 

for streamflow forecasting. Results from a support vector regression (SVR) model were used as 

benchmark. The study showed that both bagging-based and boosting-based CARTs can 

significantly enhance the prediction accuracy when compared to a single CART model as well as 

the benchmark SVR model results. Further, Shu and Ouarda (2007) used bagging ensemble 

model for flood frequency analysis at ungauged sites. The study used the canonical correlation 

analysis (CCA) to draw canonical projections of the sub-ensembles’ meteorological and 

physiographic input variables. The results indicated that the proposed CCA-based bagged 

ensemble has the best performance when compared to other single models. In addition, this study 

showed that CCA pre-processing improved the ensemble performance when compared with the 
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same model but using original variables space. Many studies compared the performance of 

different ensemble methods or different combination techniques when applied to hydrological 

problems (Shu and Ouarda, 2007, Ouarda and Shu, 2009, Shu and Burn, 2004, Diks and Vrugt, 

2010, Vrugt and Robinson, 2007, Ajami et al., 2006). A recent review and comprehensive 

application of common Ensemble frameworks is presented in (Alobaidi et al., 2019). 

2.3. Artificial neural networks in an ensemble framework 

Artificial neural networks (ANNs) are evolving machine learning tools that can articulate the 

relationship between the models inputs and outputs without predefined assumptions, neither on 

the model parameters nor on the system variables (Bishop, 2006). ANNs have received much 

attention in the field of hydrology (Govindaraju and Rao, 2010). Regression-based ANNs proved 

to be flexible models and effective as sub-ensembles in many studies (Shu and Burn, 2004, Green 

and Ohlsson, 2007, Siou et al., 2011, Islam et al., 2003, Zaier et al., 2010, Agrafiotis et al., 2002, 

Hashem, 1993, Hashem et al., 1994). Furthermore, many studies attempted to describe the 

generalization ability of ANN-based ensemble models. The mathematical interpretation of the 

statistical performance of ensembles with ANN individuals was frequently investigated (Geman 

et al., 1992, Krogh and Vedelsby, 1995, Hashem, 1997, Zhou and Chen, 2002, Granitto et al., 

2005, Green and Ohlsson, 2007, Alam et al., 2019). The idea behind using ANNs in an ensemble 

framework is to promote diversity, which can ultimately improve the generalization ability of the 

ensemble model beyond any of its individual members (Liu, 1999, Brown, 2004, Alam et al., 

2019).  

Diversity is defined as the amount of disagreement between ensemble members (Kuncheva 

and Whitaker, 2003). Metrics of diversity concept can be usually defined via the bias-variance-
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covariance decomposition of the ensemble model (Kuncheva, 2003, Lázaro et al., 2020). 

Although the general concept of diversity is well defined, the research on providing clear 

mathematical description to diversity of an ensemble is still an open topic (Slavin Ross et al., 

2019). In general, in ensemble learning, the sub-models are usually trained on resamples of the 

training data. For example, boosting ensembles update their sampling distribution before 

generating the new subset for the corresponding member of the boosting ensemble. This allows 

for misclassified instances, from previously generated sub-ensembles, to be selected in upcoming 

sub-ensembles, and the ensemble members are expected to be diverse as a result. There is no 

explicit measure of diversity. This diversity-manifesting mechanism is in fact native to boosting 

models and the formulation of diversity mechanisms drastically change among ensembles. 

Moreover, once such a relation is formulated, optimizing the diversity-accuracy tradeoff of the 

ensemble can be carried out to maximize the ensemble generalization ability (Schmidt, 2004, 

Brown et al., 2005a, Brown et al., 2005b, Sun and Zhou, 2018).  

To this extent, ANN-based ensemble models seem to be ideal for a challenging regression 

problem in hydrological modeling such as regional frequency analysis at ungauged sites (Shu and 

Ouarda, 2007). In addition, ANN-based ensemble learning has been utilized in regional low-flow 

analysis. The work by Ouarda and Shu (2009) used ANN-based bootstrap aggregation ensemble, 

with stacking combiner, in order to provide improved summer and winter low-flow quantile 

estimates at ungauged sites. The ensemble approach provided improved generalization ability 

when compared to the single ANN model and the classical regression model. Although relatively 

improved, the scale challenge (significantly quantile values vary quite from one site to another) 

was still apparent in the ensemble model; low-flow quantiles for some of the ungauged basins 

were highly skewed from the general pattern and, therefore, poorly estimated.  
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3. Proposed Approach 

The ANN framework employed in this work is ensemble-based. It is utilized to estimate the 

functional relationship between the explanatory variables and the target variables, inputs and 

outputs, respectively. Figure 1 demonstrates the detailed modeling steps for the proposed 

ensemble. It is worth noting that the proposed ensemble framework is a generalization of earlier 

work which contributed to the field of interest and detailed work on earlier versions of the 

proposed model can be found in (Alobaidi et al., 2015). After identifying the system’s variables, 

and before starting the validation and the training process, pre-processing is applied on the 

identified inputs and outputs of the system. Pre-processing techniques range from linear 

transformation, such as linear scaling and normalization, to nonlinear techniques, such as 

logarithmic and Box-Cox transformations (Alobaidi et al., 2014). The choice of a proper pre-

processing plan incorporates the type of data used, the individual members’ requirements and the 

ensemble method itself. More about pre-processing can be found in (Ouarda et al., 2001, Ouarda 

et al., 2008b, Shu and Ouarda, 2008, Ouarda and Shu, 2009, Basu and Srinivas, 2014). After the 

pre-processed plan is determined, and the modified sample set is acquired, the proposed 

methodology follows systematic processes, described in the following subsections. 
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Figure 1: Modeling process of the proposed ensemble. 

 

 

3.1. The resampling algorithm 

A two-stage sampling process is applied in a controlled environment, where two homogeneity 

control (or mixture control) measures are introduced. One measure is to control the amount of 

information that is blocked from the members’ training and used for the training of the ensemble 

combiner. The other parameter is introduced to promote “measured” diversity between the 

subsamples (or resamples). The proposed resampling technique is responsible for producing the 

required subsets which will be trained for sub-models. It is important to note that resamples’ and 

sample’s size annotations are used in order to track the diversity evolution with respect to the 

resample size. Also, this will help differentiate between the unique information and the mixed 

information that the first-stage and second-stage represent, respectively. 

Initially, consider a sample set which corresponds to size N available for the training process, 

a size-controlled part of the training data will be chosen randomly (sampling without 

replacement) and blocked from the related training sample as follows: 

 𝑛𝑏𝑙𝑜𝑐𝑘𝑒𝑑  =  𝑁 × 𝑚𝑐, (2) 

where 𝑛𝑏𝑙𝑜𝑐𝑘𝑒𝑑 refers to the size of the relevant blocked observations and 𝑚𝑐 refers to the mixture 

ratio that is calculated to measure a number typically between 0% and 30% which refers to the 

percentage of blocked information. The percentage often depends on the limited access for 

training data, the size of the ensemble, as well as the type of the ensemble combiner. 
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The subsample size of the first-stage is computes as follows: 

 𝑛1  =  
(𝑁 − 𝑛𝑏𝑙𝑜𝑐𝑘𝑒𝑑)

𝑆
,           1 ≤ 𝑆 ≤ (𝑁 − 𝑛𝑏𝑙𝑜𝑐𝑘𝑒𝑑), (3) 

where 𝑛1 refers to the size of the subsample, and S refers to the size of the ensemble. Every 

subsample has different observations even though subsamples have the same size. In other words, 

an observation cannot be found in multiple subsamples. 

Successively, the subsample size of the second-stage is computed by observing the amount of 

exchanged information between subsamples obtained from the first stage, as shown in Equation 

(4). This is done after defining a specific parameter which is going to control the information 

mixture in each subsample. Further, the mixture-control parameter can be defined as a function or 

set of functions that can be given to each first-stage resample (or each individual member’s 

training set). By doing so, the nature of the relationship between each second-stage resample can 

be different and reshaped in a more flexible way, if required.  The second-stage subsample size is 

then computed as: 

 𝑛2𝑖
 =  𝑛1𝑖

+

[
 
 
 
 

∑(𝑓(𝑚𝑒)𝑖𝑗 × 𝑛1𝑗
)

𝑆

𝑗=1
𝑗≠𝑖 ]

 
 
 
 

 , 𝑖, 𝑗 = 1,2,3, . . , 𝑆, (4) 

where 𝑛2𝑖
 refers to the size of the i

th
 second-stage subsample, and 𝑓(𝑚𝑒)𝑖𝑗 refers to the mixture 

ratio or the relationship between the j
th

 first-stage subsample and the i
th

 second-stage subsample. 

𝑛1𝑗
 refers to the size of the j

th
 first-stage subsample, while 𝑛1𝑖

 refers to the size of the i
th

 first-

stage subsample. Note that the subscript is not removed to indicate that first-stage resamples have 

unique information.  
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 𝑓(𝑚𝑒)𝑖𝑗, which are the mixture ratios, can be designed to take different mathematical forms, 

such as a linear relation or a quadratic function. In all the relationships, this parameter is between 

0 and 1; where zero indicates that the resamples from the both stages are exactly similar. In other 

words, there is no mixture. Saturation, on the other hand, indicates that the resamples from the 

second-stage process are a duplicate of the observations available in the original sample. These 

two “extremes” (0 and 1) are avoided in the mixture parameters, because the zero value may 

downgrade the diversity for the use of first-stage resamples, and the saturation of the resamples is 

a result of the individual member models instead of the training resamples. Moreover, one can 

observe that the individual diversity parameters are between 0 and 1, and they may (or may not) 

sum to 1, depending on the ensemble size and the individual value of the parameter. Hence, 

Equation 4 is not a weighted sum. Two different relationships of the mixture parameters are 

defined in Table 1. Additionally, Figure 2 illustrates the effect of the chosen mixture relationship 

on the amount of information dedicated for each ensemble member, relative to the original 

sample after blocking the random subsample used for training the ensemble combiner. The final 

mixture measure can take many forms which are mapped from the mixture parameters. Equation 

7 shows how they can be computed for the present work. Also, the choice of a link function is 

arbitrary. This is analogues to the choice of a transfer function for the ANN model’s hidden 

neurons, or a training algorithm. An empirical evaluation usually presents the best link function 

for a given case study. 
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Figure 2: Graphical representation of different mixture relations. 
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Table 1: Different mathematical forms of the mixture parameters. 

Relationship Mathematical Representation 

Linear 
𝑓(𝑚𝑒)𝑖𝑗  =  𝑎𝑖𝑗 × 𝑚𝑒𝑖𝑗

+ 𝑏𝑖𝑗  (5) 

 

Power 𝑓(𝑚𝑒)𝑖𝑗  =  𝑎𝑖𝑗 × (𝑚𝑒𝑖𝑗
)

𝑐

+ 𝑏𝑖𝑗 (6) 

 

 

In this work, a linear mixture ratio, or homogeneity ratio, definition is used. As a 

consequence, the degree of information mixture for the second-stage resamples is computed as 

follows: 

 𝑓(𝑚𝑒)𝑗 = 𝑚𝑒𝑗
= 

𝑛𝑠ℎ𝑎𝑟𝑒𝑑𝑗

𝑛1𝑗

, 0 ≤ 𝑛𝑠ℎ𝑎𝑟𝑒𝑑𝑗
≤ 𝑛1𝑗

, (7) 

where 𝑛𝑠ℎ𝑎𝑟𝑒𝑑𝑗
 refers to the number of observations related to the j

th
 subsample, and 𝑛1𝑗

 refers to 

the size of the j
th

 first-stage subsample. Note that the constraints in equation (5) limit the j
th

 

homogeneity ratio, 𝑚𝑒𝑗
, by restricting its value to be between zero and one. This means that the 

amount of obtained information in the j
th

 first-stage subsample should not go above its size in 

order to prevent redundancy in shared information. This constraint, as a consequence, is what 

makes the proposed resampling technique very different from the conventional concept of 

bagging. 𝑚𝑒𝑗
, which is the mixture ratio, is set a priory and, by rearranging equation (5), the size 

of the exchanged information, 𝑛𝑠ℎ𝑎𝑟𝑒𝑑𝑗
, is now calculated. Furthermore, the relation described in 

equation (5), specifically, and equation (4), generally, can be further generalized to have different 
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information mixture ratios. Such approach allows for the mixture ratio relation, 𝑓(𝑚𝑒), to have 

conditional information sharing, such that: 

 𝑀 = 

[
 
 
 
 
 

0 𝑓(𝑚𝑒)1,2 𝑓(𝑚𝑒)1,3 … 𝑓(𝑚𝑒)1,𝑆

𝑓(𝑚𝑒)2,1 0 𝑓(𝑚𝑒)2,3 … 𝑓(𝑚𝑒)2,𝑆

𝑓(𝑚𝑒)3,1 𝑓(𝑚𝑒)3,2 0 … 𝑓(𝑚𝑒)3,𝑆

⋮ ⋮ ⋮ 𝑓(𝑚𝑒)𝑖,𝑗 ⋮

𝑓(𝑚𝑒)𝑆,1 𝑓(𝑚𝑒)𝑆,2 𝑓(𝑚𝑒)𝑆,3 … 0 ]
 
 
 
 
 

 , (8) 

where 𝑀 refers to the generalized-global mixture ratios’ matrix, 𝑓(𝑚𝑒)𝑖,𝑗 is the mixture ratio 

relation which controls the information exchanged by the i
th

 first-stage subsample, dedicated to 

the j
th

 first-stage subsample, making-up the j
th

 second-stage subsample. M is set to be symmetric. 

Hence, equation (5) defines the identical amount of mixture shared, either way, by two first-stage 

resamples. 

Furthermore, setting the mixture ratios to be equal results in having the amount of shared 

information to be the same for every first-stage subsample, 𝑛𝑠ℎ𝑎𝑟𝑒𝑑𝑗
, such that: 

 𝑛𝑠ℎ𝑎𝑟𝑒𝑑1
= 𝑛𝑠ℎ𝑎𝑟𝑒𝑑2

= ⋯ = 𝑛𝑠ℎ𝑎𝑟𝑒𝑑𝑆
= 𝑛𝑠ℎ𝑎𝑟𝑒𝑑 , (9) 

or: 

 𝑚𝑒1
= 𝑚𝑒2

= ⋯ = 𝑚𝑒𝑆
= 𝑚𝑒 . (10) 

The last constraint reduces equation (4) to the following expression: 

 𝑛2  =  
𝑁 × (1 − 𝑚𝑐)

𝑆
× ((𝑚𝑒 × 𝑆) − 𝑚𝑒 + 1)  (11) 

or: 
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 𝑛2  = 𝑁 × (
(1 − 𝑚𝑐) × 𝑚𝑒

𝑆
) × (

1 + (𝑚𝑒 × 𝑆)

𝑚𝑒
− 1) . (12) 

In a computational framework, the indices of one variable of the system input and output 

variables can be used, on which the resampling algorithm can be done. Then, the subsets, or 

resamples, are obtained by retrieving the observations relating to the indices as well as the 

corresponding observations of the other variables. After calculating the size of the corresponding 

ensemble model, S, a study of various homogeneity ratios is conducted in the ensemble validation 

process in order to arrive at the ideal estimation of unique information to be shared by the first-

stage subsamples.  

The reader should note that the proposed resampling approach calculates the amount of 

information mixture in the subsamples; however, we execute a random selection of the amount of 

shared information by determining the mixture ratio, m. It is expected to yield improved 

generalization results by providing the sub-ensemble models just-enough information about the 

connection between the explanatory and the specified target variables and then combining the 

inferences from the individual learners. 

3.2. Sub-ensemble model 

The MLP-based ANN ensemble model (ANN-E) is used. The ANN sub-models have only 

one input and output layer. Also, they only have one hidden layer. Moreover, the number of 

explanatory variables is determined based on the number of neurons in the input layer as they are 

set equal. Similarly, the number of response variables depends on the number of neurons in the 

output layer as they are set equal. Determining the number of hidden neurons is performed in the 

validation procedure. For each hidden neuron, the transfer function (or activation function) is 
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selected as the tan-sigmoid. Also, the output layer employs a linear transfer function for its 

neuron. This output layer configuration is common in regression based ANNs.  

The training algorithm used is the  Levenberg-Marquardt (LM) algorithm (Hagan and 

Menhaj, 1994) which outperforms the gradient descent approach (Hagan and Menhaj, 1994, Shu 

and Ouarda, 2007). μ is adopted as a scalar parameter while working with the LM algorithm. A 

relatively large scalar prompts the algorithm to stipulate the gradient descent method. On the 

other hand, a lower-magnitude scalar drives the algorithm to stipulate the Gauss-Newton method 

(Demuth et al., 2006). Such method is considered more accurate in obtaining a global optimum. 

It is important to circumvent the over-fitting problem in trained ANN-E models by regularization 

and specifying stopping criteria (Bishop, 2006, Tikhonov and Arsenin, 1979, Vapnik, 1998). In 

this work, an early stopping criterion is specified in the training process (Tetko and Villa, 1997, 

Hagiwara, 2002, Bühlmann and Hothorn, 2007). After that, we introduce the validation procedure 

which is demonstrated in the next section.  

Finding the optimum solution for the ensemble size, S, is often computationally expensive. 

The ensemble size, S, is primarily responsible for defining the size of the first-stage resamples. It 

is also used to find the size of the shared information, besides the mixture ratios, me and mc, in the 

second-stage resamples.  One way to reduce computational cost, when the utilized dataset is 

large, is through changing and assigning a reasonable value for the ensemble size, given the 

available training information. However, when utilizing a small or limited dataset, further due 

diligence is required by investigating the optimum ensemble size. This is done by validating and 

comparing different ensemble models. As a result, the ensemble size will produce sufficient 

training observations in order to perform the training of the ensemble members successfully. 
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Also, it will achieve generalization over the entire space of the target variable. In the proposed 

study, different values of the ensemble size, S, are investigated along with the mixture ratio. 

 

3.3. Techniques for ensemble integration 

The final stage in ensemble learning is the ensemble integration. Estimates from the individua 

members are integrated into one ensemble estimate. In this study, four ensemble integration 

techniques are utilized; the mean, median, OLS linear regression and linear robust fitting. It is 

recommended to use the mean statistic in order to examine the normality of the distribution of the 

estimates. Similarly, Bagging suggests the choice of the mean statistic as an ensemble integration 

technique (Breiman, 1996a). The ensemble estimate of the i
th

 observation, �̂�𝑒,𝑖, is obtained from 

the 𝑆 sub-ensemble estimates to the relevant observation, �̂�𝑗,𝑖, by calculating their mean value: 

 �̂�𝑒,𝑖 = 
1

𝑆
∑(�̂�𝑗,𝑖)

𝑆

𝑗=1

 . (13) 

The median statistic of the sub-ensemble estimates is defined as follows: 

 �̂�𝑒,𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛 (�̂�1,𝑖 , �̂�2,𝑖 , … , �̂�𝑘,𝑖 ) . (14) 

The median is a robust tool that is not influenced by outlier values. Therefore, the median 

statistic reduces the influence of poor estimation performance related to some ensemble 

members. Note that sub-models that yield an under/over estimation in some cases may yield good 

estimates in other cases. Such occurrence is treated by utilizing the median statistic to achieve 

nonlinear ensemble integration.  
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The integration technique in this work applies a linear regression function on the training’s 

sub-model estimates in order to generate a value for an ensemble estimate. Also, a linear 

regression function based on an ordinary least square (OLS) algorithm results in an efficient 

estimate of the regression parameters (Nelder and Wedderburn, 1972, Charnes et al., 1976, 

Stigler, 1986), where the expression is represented as: 

 �̂�𝑒,𝑖 = 𝐵𝑜 + ∑(𝐵𝑗 × �̂�𝑗,𝑖)

𝑘

𝑗=1

 , (15) 

where 𝐵𝑜 and 𝐵𝑗’s are the unknown linear regression coefficients that are computed by applying 

the OLS formulation on all the sub-models’ estimates in the training stage. The coefficients of the 

multiple linear regression (MLR) are calculated analytically (Draper et al., 1966, Neter et al., 

1996, Montgomery et al., 2012). 

The Gaussian-distributed estimates will perform well due to employing the linear regression. 

The OLS estimates remove outlier estimates to a certain extent, but are affected by them. The 

advantage of using an OLS-based linear regression is that it allows for evaluating the 

performance of linear combiners in ensemble modeling. The parameters of the linear combiners 

are fixed and inferred, while taking into account all the estimates calculated in all sub-models. 

Hence, for each observation, all the related sub-models’ estimates are combined into one 

ensemble estimate. Furthermore, a robust fit of the sub-models’ estimates is performed 

(Andrews, 1974, Meer et al., 1991, Dumouchel and O'Brien, 1991, Holland and Welsch, 1977, 

Fox, 2002). This method results in robust estimates of the MLR coefficients. The proposed 

algorithm utilizes an iterative method based on least squares algorithm that is supported by a bi-

square re-weighing function. It is known that the robust fitting technique requires a weighing 
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function. It also demands a tuning constant in order to arrive at a residual vector which is 

changed iteratively.  The distribution of errors may be non-normal which is an inevitable 

problem. Such issue could be avoided by using  robust regression or robust MLR techniques 

(Meer et al., 1991, Maronna et al., 2006, Huber et al., 1996). In this work, the robust regression 

method is used in the MATLAB environment. Such method generates the ensemble output, �̂�𝑒,𝑖, 

based on the 𝑘 sub-ensemble estimates, �̂�𝑗,𝑖, as per the formula below: 

 �̂�𝑒,𝑖 = 𝐵𝑟𝑜𝑏𝑢𝑠𝑡𝑜
+ ∑(𝐵𝑟𝑜𝑏𝑢𝑠𝑡𝑗

× �̂�𝑗,𝑖)

𝑘

𝑗=1

 , (16) 

where  𝐵𝑟𝑜𝑏𝑢𝑠𝑡𝑜
 refers to the robust regression bias while  𝐵𝑟𝑜𝑏𝑢𝑠𝑡𝑗

 refers to the robust regression 

coefficients. The coefficients are computed as the (𝑛 + 1)𝑡ℎ iteration which is the solution of a 

robust multi-linear regression. An iterative weighted least square function is computed as 

follows: 

 ∑ (𝑟𝑖𝑛+1)
2𝑁

𝑖=1 = ∑ 𝑤𝑖𝑛
[[𝑦𝑖 − (𝐵𝑟𝑜𝑏𝑢𝑠𝑡𝑜𝑛+1

+ ∑ (𝐵𝑟𝑜𝑏𝑢𝑠𝑡𝑗𝑛+1
× �̂�𝑗,𝑖)

𝑘
𝑗=1 )]]

2

𝑁
𝑖=𝑖 , (17) 

where 𝑟𝑖𝑛+1
 is the (𝑛 + 1)𝑡ℎ weighted error function combining the individual model estimates 

on the 𝑖𝑡ℎ  observation, 𝑤𝑖𝑛+1
 refers to the assigned weight, 𝑦𝑖 refers to the 𝑖𝑡ℎ  observation 

obtained  from training study, and �̂�𝑗,𝑖 refers to the corresponding estimate, generated from the 

𝑗𝑡ℎ individual model. Furthermore, the weights in the previous relation are updates as follows: 

 𝑤𝑖𝑛+1
= (|𝑟𝑖𝑛+1

| < 1) × (1 − (𝑟𝑖𝑛+1
)
2
)
2

. (18) 

Also, the weighted residuals are updated based on the following process: 

                  



25 
 

 𝑟𝑖𝑛+1
= [(

𝑟𝑖𝑛
𝑡𝑢𝑛𝑒 × 𝜎𝑛

) × √(1 − 𝑒𝑖)] , 𝜎𝑛 = 
𝑀𝐴𝐷𝑛

0.6745
 , (19) 

where 𝑟𝑖𝑛 refers to the model error on the corresponding 𝑖𝑡ℎ basin from the previous iteration, 

𝑒𝑖 is the leverage error value for the 𝑖𝑡ℎ observation using the OLS regression during the training 

stage. 𝑡𝑢𝑛𝑒 is a scalar which significantly drives the degree of outlier influence on estimate of the 

robust coefficients, 𝜎𝑛 is the estimated deviation of the residuals, obtained from previous 

iteration. Moreover, 𝑀𝐴𝐷𝑛  is the median absolute deviation of the residuals, obtained from 

previous iteration. 

In this study, the tuning constant is fixed at 4.685. As a result, the coefficient estimates are 

95% as statistically efficient as the ordinary least-squares estimates (Maronna et al., 2006). This 

parameter value is considered under the assumption that the response variable resembles a normal 

distribution, and that it has no outliers. Consequently, an increase in the tuning constant will 

magnify the influence of large residuals. Note that the value 0.6745  makes the estimate 

unbiased. The idea to include a robust fitting tool is inspired by the fact that certain sub-models in 

the ensemble generate outlier estimates continuously. Therefore, a result based on a median 

combiner only may lead to an incorrect choice of the ensemble estimate which is also based on 

the ensemble size, as well as the number of exaggerating models in the ensemble. Thus, the 

robust fitting technique provides an ensemble estimate in the form of a robust linear combination 

of the sub-ensemble estimates. Therefore, robust regression presents an advantage over stacking 

by introducing a parameter primarily responsible for bias correction, besides the weighted sum of 

the ensemble member outputs. It is anticipated that such integration technique can be successfully 

applied to many data cases. Note that the amount of information available for training will 
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directly influence the generalization ability the combiner. However, this issue is addressed before 

deciding which robust fitting technique to use.  

4. Case Study 

The proposed ensemble model is based on information gathered from the hydrometric station 

network which covers the southern part of the province of Québec, Canada. Winter and summer 

quantiles are examined separately due to the inconsistency in the low-flow generating 

phenomena. Since the dataset represent various sites in the province of Quebec, each site 

experience low-flow regimes due to notably different variations in the hydrologic process causing 

the low-flow. This process is naturally assumed unknown and the empirical model attempts to 

estimate its end-product of interest, i.e. the low flow. If the mechanism is the same, then the 

model will be able to exactly capture the low-flow quantiles in all the sites. The low-flow 

quantiles, with return periods of T of 2, 5 and 10 years and duration d of 7 and 30 days, are 

estimated in this work. These quantiles are of interest for fish habitat protection and water quality 

control (Ouarda and Shu, 2009). Moreover, in Canada, these quantiles are the most common 

indices for water supply system analysis during droughts as well as the studies of stream-based 

waste assimilation capacity (Ouarda et al., 2008a). 

In this work, seven physiographical and meteorological variables are selected to study the 

seasonal low-flow quantiles. The variables are as follows, basin area (A), percent of basin 

covered by forest (PFOR), percent of basin being lake (PLAKE), annual mean degree days less 

than 0°c (DJBZ), annual mean days with temperature above 27°c (NJH27), summer mean liquid 

precipitation (PLME), and curve number (CN), which is a soil characteristic. Table 2 provides a 

summary of the descriptive statistics of all the study variables. NJH27 is associated to a particular 
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regional hydrology and climatology benchmark for Québec (27°c), representing the medium 

temperature for the month of July based on maximum temperatures. Further details on the 

resources are available in (Ouarda et al., 2005). 

 

 

 

Table 2: Descriptive statistics of explanatory variables. 

Variable Symbol Mean Max Min 
Standard  

Deviation 

Basin area (Km
2
) A 5,655.52 96,600 0.70 11,685.70 

Basin’s area fraction occupied by lakes (%) PLAKE 6.33 32.00 0.00 6.57 

Basin’s area fraction occupied by forest (%) PFOR 85.78 100.00 6.50 15.97 

Annual mean degree  

days < 0
o
C (degree day) 

DJBZ 1,635.15 2,963.10 920.60 529.29 

Summer mean liquid precipitation (mm) PLME 464.51 664.00 306.00 77.40 

Average number of days with temperature > 27
o
C NJH27 12.28 36.60 0.80 7.57 

Curve Number CN 45.08 78.20 21.00 - 

 

Initially, catchments corresponding to a network of 190 hydrometric stations are considered. 

To ensure the quality of the database, the stations should adhere the criteria below (Ouarda et al., 

2005): 

1- More than 10 years of flow record should be available. 
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2- The flow record of the station should be stationary (Kendall, 1975). 

3- The flow record should be independent (Wald and Wolfowitz, 1943). 

4- The assessed catchment should represent a natural flow incidence. 

The above criteria resulted in a network of 129 sites, represented by their corresponding at-

site stations, for the summer low-flow quantiles, and 135 and 133 sites for the winter low-flow 

quantiles with durations of 30-days and 7-days, respectively. This work considers catchments 

located between 45N and 55N longitude, and between 55W and 80W Latitude. In addition, the 

total area of each site ranges from 572 km
2
 and up to 96,600 km

2
. The seasonal low-flow 

quantiles are selected for return periods of 2, 5 and 10 years. Table 3 presents the correlations 

between the quantiles and the physiographic and meteorological variables. Further details about 

the summer and winter quantiles, the statistical approach to their at-site frequency analysis as 

well as the map of the sites are available in (Ouarda et al., 2005, Herrera-Guzman, 2008, Ouarda 

and Shu, 2009).  

Table 3: Correlation between explanatory and response variables. 

Variable 
Summer Season   Winter Season 

Q5,30 Q2,7 Q10,7 
 Q5,30 Q2,7 Q10,7 

A 0.941 0.944 0.927  0.981 0.983 0.975 

PLAKE 0.531 0.541 0.530  0.588 0.585 0.583 

PFOR -0.029 -0.031 -0.031  -0.074 -0.066 -0.067 

DJBZ 0.575 0.572 0.566  0.558 0.585 0.583 

NJH27 -0.344 -0.341 -0.343  -0.308 -0.301 -0.298 

PLME -0.432 -0.429 -0.426  -0.429 -0.428 -0.425 

CN -0.203 -0.214 -0.212  -0.173 -0.183 -0.181 

 

5. Experimental Setup 
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A two-stage resampling-based ANN ensemble model is proposed to generalize the underlying 

relationship between physiographical and metrological variables, and hydrologic variables. 

Information homogeneity, or information mixture, and combiner-information parameters are 

disclosed in this work. The former is used to examine and smooth out information diversity 

discovered among ensemble members. The latter is used to evaluate performance and assess the 

sensitivity of linear combiners toward available information.  

Initially, a pre-processing of inputs and outputs is carried out. The variables are first 

normalized; a linear scaling of each utilized variable is utilized so that the instances are bound 

between -1 and 1 to (Bishop, 2006). To optimize the ensemble configuration, different ensemble 

sizes, mixture ratios, dedicated data to combiners’ training and ANN structures are investigated 

using a Jackknife validation approach (Ouarda and Shu, 2009). The two-stage resampling is 

applied on various ensemble size cases, after filtering the data for combiner training (see 

approach in Section 2.1). Different ANN configurations (as sub-ensembles) are investigated; in 

each jackknife validation study, an ensemble model’s performance is assessed for each me, 

mcombiner and combiner choice for the homogeneous ensemble where all the ensemble members 

are of the same structure.  

The proposed validation approach aims to examine the relative performances of the regional 

low-flow estimation models (Charron and Ouarda, 2015). The quantile values are temporarily 

excluded from the database. The remaining sites are trained using the ensemble members and the 

ensemble combiners. Then, regional estimates can be collected for the ungauged site using the 

calibrated ensemble model. At-site estimates are later examined against ensemble quantile 

estimates for ungauged sites. The utilized predefined evaluation criteria are explained later in this 

section. This validation approach to the ANN ensemble members and to the ensemble model 
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itself arises from the fact that the proposed ensemble model’s framework prompts specific 

conditions on the ANN members. Because the proposed ensemble framework uses explicit 

diversity parameters, validating the optimal ANN in an individual manner (as it is the case in 

conventional machine learning practice) does not make sense. This will prompt using all the 

training data. However, validating the ensemble model as a whole (which is slightly more 

complex but still computationally efficient given the parallel architecture and the simplified 

diversity evolution) should be considered. In other words, validating the overall performance of 

the ensemble model will be better than validating one specific ANN (using cross-validation 

approach). An ensemble validation approach helps examining the real performance of the ANN 

members, each, under the ensemble parameters’ influence. Jackknife validation has a built-in 

sensitivity analysis that assesses the relationship between the model’s performance and available 

information for training (Efron, 1981, Ouarda and Shu, 2009). Performance criteria include root 

mean square error (RMSE), relative root mean square error (rRMSE), bias (Bias), and relative 

bias (rBias). They measure the generalization ability for various ensemble sizes. Similarly, 

various homogeneity ratios are considered. Normalizing the error magnitude is an important step 

to accurately find rBias and rRMSE. The four measures are computed as per the equations below: 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
 ∑(𝑄𝑑,𝑇𝑖

−  �̂�𝑑,𝑇𝑖
)
2

𝑛

𝑖=1

  , (20) 

 𝑟𝑅𝑀𝑆𝐸 = 100 × √
1

𝑛
 ∑(

𝑄𝑑,𝑇𝑖
−  �̂�𝑑,𝑇𝑖

𝑄𝑑,𝑇𝑖

)

2𝑛

𝑖=1

  , (21) 
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 𝐵𝑖𝑎𝑠 =
1

𝑛
× ∑(𝑄𝑑,𝑇𝑖

−  �̂�𝑑,𝑇𝑖
)

𝑛

𝑖=1

  , (22) 

 𝑟𝐵𝑖𝑎𝑠 =
100

𝑛
× ∑(

𝑄𝑑,𝑇𝑖
−  �̂�𝑑,𝑇𝑖

𝑄𝑑,𝑇𝑖

)

𝑛

𝑖=1

  , (23) 

where 𝑄𝑑,𝑇𝑖
 is at-site d-day, T-year drought quantile value of site 𝑖, �̂�𝑑,𝑇𝑖

 is the corresponding 

estimate from the final ensemble learner, and n is the sample size of the validation set of 

observations (or sites). 

The performance of the proposed model is examined based on six low-flow quantiles, the 

summer season corresponds for three quantiles while the winter season corresponds for the other 

three quintiles being 𝑄7,2, 𝑄7,5 and 𝑄30,5. The results of the work by (Ouarda and Shu, 2009) are 

used as a benchmark for evaluating the proposed method. Jackknife trials are simulated for each 

low-flow quantile. These simulations evaluate various combinations of homogeneity parameters, 

ANN members’ structure, ensemble sizes, and ensemble combiners, to determine the optimum 

ensemble model. The validation results are discussed in the next section. Also, the performance 

of the optimal ensemble models is assessed against the benchmark study. It is important to note 

that the Jackknife validation is the testing segment of the study. In Jackknife validation, one 

instance from the available dataset is blocked, and the remaining instances are used for training. 

The omitted instance is then used for testing. This is repeated until all instances in the available 

dataset are tested, and the testing performance is reported. The training performance is not 

reported in the manuscript as it is not an indication of the generalization ability, and the sub-

models are already regularized via early stopping and internal six fold cross-validation during 

their training phase.  
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6. Results and Discussion 

Optimum ensemble configuration is selected for each low-flow quantile in the winter and 

summer seasons. Jackknife validation results aim at assessing the models’ generalization ability 

over the available observations. The proposed models’ performance is compared to that of the 

benchmark model.  

Figures 3 and 4 preview the jackknife validation performance, with respect to mixture level in 

sub-sample, of selected ensemble models for the low-flow quantiles in the winter and summer 

seasons, respectively. For each season-based quantile, the selected ensemble models incorporate 

ANN members with the same complexity. The variables in the figures are the combiner choice 

and the homogeneity levels. The four ensemble models show a similar trend in performance 

sensitivity with respect to different homogeneity levels. However, in all six quantiles, the 

ensemble models with mean and median combiners are relatively more stable along different 

homogeneity levels.  

The OLS and robust fitting tools adopt a relatively more sensitive performance at low 

homogeneity levels. This behavior can be attributed to the nature of the sub-ensemble estimation 

behavior, which will be more variable at such mixture levels. Furthermore, the original sample, in 

this case study, has a small number of observations to be used in the ensemble training phase. At 

high homogeneity levels, the sensitivity in jackknife performance of ensembles with OLS and 

robust fitting tools is similar to that of ensembles with mean and median combiners. This 

behavior is due to the fact that more training information is shared between the sub-ensembles 

and, hence, the estimation behavior tends to be comparable for all the members. The number of 

hidden neurons in the ANN members represents the complexity of the link between the inputs 
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and outputs in the proposed system. The mixture levels can be regarded as a more precise 

measure of model generalization ability, other than the Jackknife validation error. To this extent, 

the model’s generalization ability is now further analyzed through its diversity behavior (amount 

of information required by the ensemble members to produce the optimum behavior). In Table 4, 

the optimum configuration for the ensemble models to estimate the low-flow quantiles in the 

winter and summer seasons is presented. For the summer season, it is shown that the optimum 

ANN structures for Q2,7 and Q10,7 ensemble models require nine hidden neurons, while Q5,30 

ensemble model requires eleven hidden neurons.  
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Figure 3: Jackknife results for selected ensembles to the winter study with respect to 

homogeneity levels. 

 

For the winter season, ANNs require twelve hidden neurons for ensemble models estimating 

Q2,7 and Q10,7, and eleven hidden neurons for Q5,30 ensemble model. It is also shown that, for both 

seasons, the Q5,30 ensemble models incorporated ANN members with similar complexity (number 

of hidden neurons) and mc value, but they adopted different me values and different ensemble 

combiner choices. The ANN members for the ensembles explaining Q2,7 and Q10,7 quantiles are 

shown to have the same complexity in the same season, with the summer models being more 

complex. It should be noted that in the benchmark study, the optimal ANN configuration for 

summer and winter quantiles are different than in the present study. This is expected due to the 

employed ensemble validation approach, as discussed earlier. 
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Figure 4: Jackknife results for selected ensembles to the summer study with respect to 

homogeneity levels. 

The similar complexity in Q2,7 and Q10,7 ensembles validates the adequacy of the optimum 

models. The low-flow duration in a given season is of the same number of days for both Q2,7 and 

Q10,7. Consequentially, the regression models for these quantiles are expected to have the same 

complexity. Furthermore, all optimum ensemble models incorporated me values less than 1, 

meaning that the ANN models did not require all available information for learning to produce 

best models, and that diverse-based ensemble models produced better generalization ability. This 
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finding confirms the benefit of the proposed ensemble framework as a diversity promoting 

system. In addition, validation of the ensemble studied models with different homogeneity levels 

emphasize on the importance of the diversity control among the ensemble members.  

Table 4: Optimum ensemble configuration for low-flow quantiles in the winter and summer 

seasons. 

Optimum Ensembles for Low-Flow Quantiles In The Winter Season 

Quantile Ensemble Size  Hidden Neurons me (%) mc (%) Combiner 

Q5,30 5 11 1 5 OLS Fit 

Q2,7 5 9 10 5 OLS Fit 

Q10,7 5 9 10 5 Robust Fit 

Optimum Ensembles for Low-Flow Quantiles In The Summer Season 

Quantile Ensemble Size  Hidden Neurons me (%) mc (%) Combiner 

Q5,30 5 11 85 5 Robust Fit 

Q2,7 5 12 25 5 OLS Fit 

Q10,7 10 12 5 10 OLS Fit 

 

All optimum ensemble models incorporated mc values above 0. The optimized performance 

of the selected regression-based combiners requires observations that are not used in the sub-

ensembles’ training. This is due to the over-fitting consequence of observations used in the 

training of the sub-ensembles. If all information is used in training, the linear combiners will not 

add to the accuracy of the ensemble estimate. However, when a portion of observations is kept 

away from the ensemble members, the estimates of such observations will not be over-fit and will 

guide the training of the combiners more properly. It is important to note the dynamic tradeoff 

between the distribution of the information and the performance of the ensemble models. If more 

observations are kept out of the resamples (higher mc values), the improvement in the combiner’s 
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generalization ability will be met by deterioration in sub-ensembles’ experience, and vice-versa. 

The optimized homogeneity levels are, as a consequence, dependent on the amount of available 

information and should be selected with consideration to the discussed tradeoff.  

Table 5 presents a comparison of the Jackknife validation results between the benchmark 

models and the proposed optimum models and configuration for estimating the low-flow 

quantiles in the winter and summer seasons. The proposed ensemble model has significantly 

improved over the benchmark results; for example, for the winter-season Q5,30 model, the RMSE 

dropped from 15.84 (m
3
/s) to 5.24 (m

3
/s), the Bias error dropped from 1.61 (m

3
/s) to 0.25 (m

3
/s), 

rRMSE dropped from 34.87% to 26.07%, and rBIAS dropped from -5.13% to -0.81%. The 

improvement in the absolute and relative error measures indicates that not only the higher values 

in the quantile space became better estimated, rather than the case of underestimation by the 

benchmark models, but also the estimates of lower values improved. Hence, the adverse scale 

problem in regional extreme event estimation is further treated by the proposed models. Because 

the ANN members will always have certain estimation accuracy around the real value, this can be 

attributed to the combiners chosen for the proposed ensemble model.  

A distinct example is shown in the winter Q2,7 and Q10,7 optimum ensembles, where the OLS 

linear combiner and robust fitting combiner are selected, respectively. The choice of robust fitting 

as a combiner in the optimum winter Q10,7 model is expected to be a result of the nature of the 

target variable itself, as it reside in a more extreme location at the tail of the distribution than the 

winter Q2,7 variable (Ouarda and Shu, 2009). The linear regression techniques used as combiners 

enjoy the bias correcting parameters that, in contrast to stacking approaches, directly target bias 

reduction. This is notably present in the results of the proposed models for all the low-flow 

quantiles, where bias error is significantly reduced. It is also shown that the optimum mc value is 
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above 0% for all models; this means that the optimum models required unique information for 

the training of the combiners’ parameters even though the ANN-combiner training data tradeoff 

occurred. Figures 4 and 6 show the improvement of the estimation accuracy of all the low-flow 

quantiles in the winter and the summer seasons, respectively. From the figures, the inferiority of 

scale challenge and the discrepancy in some of the at-site low-flow observations have been 

mitigated. 

Table 5: Comparison of Jackknife validation results between the benchmark and the proposed 

models for the estimation of winter and summer low-flow quantiles. 

Winter Season 

Quantile Reference RMSE (m
3
/s) rRMSE (%) Bias (m

3
/s) rBias (%) 

Q5,30 
Benchmark 15.84 34.87 1.61 -5.13 

Proposed Approach 5.24 26.07 0.25 -0.81 

Q2,7 
Benchmark 16.59 33.13 1.66 -4.55 

Proposed Approach 7.72 16.80 0.49 -2.23 

Q10,7 
Benchmark 13.91 42.92 1.10 -6.87 

Proposed Approach 5.29 22.91 0.06 -1.98 

Summer Season 

Quantile Reference RMSE (m
3
/s) rRMSE (%) Bias (m

3
/s) rBias (%) 

Q5,30 
Benchmark 27.95 31.02 0.94 -3.08 

Proposed Approach 7.99 25.77 0.37 -1.74 

Q2,7 
Benchmark 35.90 31.41 5.47 -1.65 

Proposed Approach 8.78 23.39 0.45 -1.59 

Q10,7 
Benchmark 27.33 39.17 2.69 -3.17 

Proposed Approach 7.41 33.49 0.18 -2.71 
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Figure 5: Scatter plot of Jackknife validation results of winter low-flow quantiles. 
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Figure 6: Scatter plot of Jackknife validation results of summer low-flow quantiles. 
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7. Conclusions 

An ensemble framework is proposed in this study to improve the generalization ability of the 

regression sub-ensemble models. The proposed two-stage resampling algorithm makes use of the 

homogeneity concept between subsamples. Further, the idea of isolating some of the training data 

from the sub-model training and using it in the combiner training has enhanced the performance 

of the corresponding optimum ensemble models. The over-fitting disadvantage of neural 

networks in ensemble modeling has been treated using the proposed resampling plan. The results 

clearly show substantial enhancement in the estimation accuracy. The magnitudes of the 

homogeneity levels corresponding to the optimum ensemble models have indeed promoted the 

diversity concept in the theory of ensemble learning theory; the optimum mixture levels are 

found to be low enough, although significant, for ensemble members to be trained using sub-

sample with diverse information about the system. It is shown that the sensitivity of the 

combiners’ performance is indirectly related to the mixture levels, through the level of diversity 

in the individual members. 

The generalization ability of any predictor in the field of regional frequency analysis relies on 

the relationship between the hydrologic stations considered in that study. Hence, understanding 

the homogeneity, or hydrologic similarity, between the stations is expected to significantly 

improve the regression models over them. In fact, assessing and modeling the level of 

homogeneity within a group of stations is an active topic of research  (Chebana and Ouarda, 

2007). Future work may consider modeling the level of hydrologic homogeneity in the data first 

and then investigate the data-mixing scheme as a function of the hydrologic homogeneity. Such 

approach opens the door to integrate the concept of diversity within the physical identity of the 

system of interest, providing solutions to limitations in the current ensemble models for the 
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challenging low-flow quantile estimation task. Hence, future work may also target the application 

of ensembles involving different mixture ratio relations, given a relatively large database, and 

develop a validation approach to such models. A nonlinear mixture relation of the information 

share between the ensemble members could further optimize the generalization ability of such 

ensembles. The possible combinations between the members can easily reach a relatively huge 

number. It is costly to investigate all possible combinations for means of model validation and 

selection. To alleviate the difficulty in such work, search-based optimization algorithms may be 

investigated to minimize the number of simulations mandatory for finding the optimum ensemble 

structure. 
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