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S U M M A R Y
Bayesian sequential simulation (BSS) is a geostastistical technique, which uses a secondary
variable to guide the stochastic simulation of a primary variable. As such, BSS has proven
significant promise for the integration of disparate hydrogeophysical data sets characterized
by vastly differing spatial coverage and resolution of the primary and secondary variables. An
inherent limitation of BSS is its tendency to underestimate the variance of the simulated fields
due to the smooth nature of the secondary variable. Indeed, in its classical form, the method is
unable to account for this smoothness because it assumes independence of the secondary vari-
able with regard to neighbouring values of the primary variable. To overcome this limitation,
we have modified the Bayesian updating with a log-linear pooling approach, which allows us
to account for the inherent interdependence between the primary and the secondary variables
by adding exponential weights to the corresponding probabilities. The proposed method is
tested on a pertinent synthetic hydrogeophysical data set consisting of surface-based elec-
trical resistivity tomography (ERT) data and local borehole measurements of the hydraulic
conductivity. Our results show that, compared to classical BSS, the proposed log-linear pool-
ing method using equal constant weights for the primary and secondary variables enhances
the reproduction of the spatial statistics of the stochastic realizations, while maintaining a
faithful correspondence with the geophysical data. Significant additional improvements can
be achieved by optimizing the choice of these constant weights. We also explore a dynamic
adaptation of the weights during the course of the simulation process, which provides valuable
insights into the optimal parametrization of the proposed log-linear pooling approach. The
results corroborate the strategy of selectively emphasizing the probabilities of the secondary
and primary variables at the very beginning and for the remainder of the simulation process,
respectively.
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1 I N T RO D U C T I O N

Adequate knowledge of the hydraulic conductivity distribution within an aquifer is essential for the development of effective groundwater
management and remediation strategies. Indeed, the hydraulic conductivity is a critical parameter for hydrological modelling as its spatial
distribution determines the flow and transport characteristics of the studied subsurface regions. Corresponding measurements are performed
at different scales: core analyses and slug tests provide information with regard to the small-scale heterogeneity, while well tests estimate
averages over larger volumes. The corresponding gaps in terms of resolution and coverage can be bridged by specifically targeted geophysical
measurements (e.g. Rubin & Hubbard 2005). The associated field of research is now generally referred to as hydrogeophysics. Arguably, one
of the most effective ways to address this problem is through the quantitative integration of geophysical and hydraulic data (e.g. Hyndman &
Gorelick 1996; Dafflon et al. 2009).

Geostatistics offers a toolbox of methods to stochastically populate a grid while respecting a given spatial model as well as incorporating
available observed data. Over the years, many geostatistical simulation methods have been developed, such as sequential Gaussian simulation
(SGS; e.g. Journel 1989; Deutsch & Journel 1992), turning bands (e.g. Journel 1974), truncated pluri-Gaussian simulations (Mariethoz et al.
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2009a), simulated annealing (e.g. Deutsch & Wen 2000) and multipoint geostatistics (e.g. Guardiano & Srivastava 1993). While such methods
are suitable for the simulation of heterogeneous hydraulic conductivity fields, the addition of geophysical data makes them potentially more
powerful but also methodologically more complex. Geophysical data, which are generally treated as secondary variables in geostatistical
simulations, tend to be available over the entire domain, albeit at a much coarser resolution than the primary variable of interest. Such
situations are traditionally addressed through cosimulation (e.g. Gómez-Hernández & Journel 1993; Verly 1993) or collocated cosimulation
assuming a so-called type 2 Markov model (MM2; e.g. Xu et al. 1992; Chilès & Delfiner 1999). Yet, these methods rely on the inherent
assumption of a linear relationship between primary and secondary variables, which is often deemed to be unrealistic (e.g. Gómez-Hernández
& Wen 1998; Zinn & Harvey 2003).

Bayesian sequential simulation (BSS; Doyen & Boer 1996) provides an attractive alternative to collocated cosimulation as it does
not require a linear or otherwise specific parametric relationship between the primary and the secondary variables. The method is based
on SGS, with the addition that the conditional distribution estimated by kriging is updated by the joint distribution of the primary and
secondary variables in a Bayesian framework using the value of the collocated secondary variable. While standard cosimulation methods
require both variables to be linearly related and to exhibit a homoscedastic behaviour (correlation of both variables is constant over the
range of values considered), BSS can handle virtually any relationship between the primary and the secondary variables and does not require
explicit knowledge of the corresponding cross-variogram. An inherent limitation of BSS is that it can only account for a single collocated
secondary variable, thus, as collocated cosimulation, assumes MM2. The method was initially applied to the simulation of lithoclasses based
on seismic impedance measurements (Doyen & Boer 1996). Later, Dubreuil-Boisclair et al. (2011) used BSS to estimate the local hydraulic
conductivity distribution based on cross-hole ground-penetrating radar tomograms and borehole-based hydraulic conductivity measurements
from slug tests and flowmeter measurements. Ruggeri et al. (2013, 2014) then adapted the method to allow for the simulation of larger-scale
heterogeneous hydraulic conductivity fields guided by information from spatially extensive, but poorly resolved tomographic images of
surface-based geoelectric measurements. To our knowledge, this is the first approach of this kind that allowed for hydrogeophysical data
integration to be extended from the predominantly local to the subregional scale.

While BSS is recognized as a powerful and flexible geostatistical tool (e.g. Ezzedine et al. 1999; Chen et al. 2001; Doligez et al. 2015),
it also presents significant and, as of yet, unresolved challenges. In particular, the simultaneous reproduction of (1) the variance and the
fine-scale structure and (2) the relationship between the primary and the secondary variables has proven to be elusive. In the context of the
hydrogeophysical applications mentioned above, the difficulties are exacerbated by the smooth distribution of the secondary variable due to
the regularization typically used by geophysical inversion procedures. To overcome this problem, Ruggeri et al. (2013, 2014) added several
algorithmically complex and computationally expensive steps to BSS in order to ensure an adequate reproduction of the underlying statistics.
The first step was to downscale the smooth electrical conductivity structure inferred through surface-based electrical resistivity tomography
(ERT) to the desired resolution. A second step consisted of gradual deformation (Hu et al. 2001) to make sure that the downscaled electrical
conductivity structure matched the original coarse-scale measurements while simultaneously retaining the correct fine-scale characteristics.
In a third step, classical BSS was used to simulate the hydraulic conductivity distribution based on the downscaled electrical conductivity
field and the original hydraulic conductivity data.

The primary reason for the inability of BSS to directly combine the information of the primary variable with that of the secondary
variable lies in the inherent assumption of conditional independence between the neighbours of the simulated cell and the collocated secondary
variable (Doyen et al. 1996). The objective of this study is to address and overcome this limitation by accounting for this interdependence, thus
enabling BSS-based hydrogeophysical data integration in one single step. To this end, the Bayesian aggregation of the primary and secondary
information is generalized in the context of a probability aggregation framework (e.g. Genest & Zidek 1986) known as log-linear pooling,
which relaxes the assumption of conditional independence by adding exponential weights to the probabilities conditional to the primary and
secondary information (e.g. Allard et al. 2012). Similar approaches have already been used for various applications in geosciences, such as
the interpolation of satellite images (e.g. Mariethoz et al. 2009b), the reconstruction of 3-D volumes based on 2-D sections (e.g. Comunian
et al. 2012) and the inclusion of auxiliary information in multipoint geostatistical simulations (e.g. Hoffimann et al. 2017).

2 M E T H O D O L O G I C A L B A C KG RO U N D

2.1 Classical BSS

The input data for BSS typically consist of highly resolved, yet spatially sparse, measurements of the primary variable X , also referred to as
hard data, and spatially exhaustive, yet poorly resolved, estimates of the secondary variable Z . No a priori relationship between the primary
and the secondary variables is assumed and, therefore, any suitable joint distribution p(X, Z ) can be used. In previous works, this joint
distribution was inferred from the hard data and corresponding collocated values of the secondary variable (Dubreuil-Boisclair et al. 2011;
Ruggeri et al. 2013; Ruggeri et al. 2014).

The procedure followed by BSS for each simulated cell is the following (Fig. 1):

(1) An unpopulated cell Xi is randomly selected on the grid of the primary variable.
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2186 R. Nussbaumer et al.

Figure 1. Schematic illustration of the classical BSS approach: (1) Selection of the unknown cell to simulate Xi , (2) kriging estimate of the measured and
previously simulated values of the primary variable P(Xi | X<i ), (3) estimation of the marginal distribution from the joint probability distribution of the
primary Xi and secondary Zi variable, (4) determination of the posterior distribution, (5) random sampling of the posterior distribution and (6) assignment of
the sampled value to the selected cell.

(2) Using kriging, the conditional distribution P(Xi | X<i ) is computed based on the neighbouring cells, denoted as X<i , which may
include hard data and previously simulated cells. If X is not Gaussian, a normal-score transform is applied to the neighbouring values prior
to kriging and then the conditional distribution P(Xi | X<i ) is back-transformed to the non-Gaussian space.

(3) The conditional distribution P(Xi | Zi ) is extracted from the joint distribution p(X, Z ) based on the known collocated secondary
variable Zi , which essentially assumes that P(Xi | Zi ) ∝ P(Zi | Xi ). The two distributions P(Xi | X<i ) and P(Zi | Xi ) are then combined
through Bayesian updating,

P (Xi |X<i , Zi ) ∝ P (Xi |X<i ) P (Zi | Xi ) . (1)

(4) A value for Xi is sampled from the resulting distribution.
(5) The grid is updated with the new value.

2.2 Conditional independence in Bayesian updating

In the following, the inherent assumption of conditional independence made in BSS is highlighted and its consequences are discussed. It can
be shown (Appendix A) that the exact decomposition of the conditional probability P(Xi |X<i , Zi ) is

P (Xi |X<i , Zi ) ∝ P (Xi |X<i ) P (Zi |Xi , X<i ) . (2)

However, the Bayesian updating used by BSS in eq. (1) assumes that the secondary variable Zi is independent of the previously simulated
points of the primary variable X<i , conditional to the simulated point Xi (Doyen et al. 1996), which can be written as

P (Zi |Xi , X<i ) = P (Zi |Xi ) . (3)

This assumption, referred to as conditional independence, implies that all the information related to Zi that is included in X<i is also
included in Xi . In other words, Xi screens the influence of X<i related to Zi . To assess the consequences of this assumption, we consider the
special case of a joint multi-Gaussian random field X and Z . Doyen et al. (1996) showed the equivalence of Bayesian updating with strictly
collocated cokriging, for which a type 1 Markov model (MM1) is assumed (Xu et al. 1992; Chilès & Delfiner 1999, p. 311; Journel 1999). As
noted in Doyen et al. (1996), the main advantage is to decouple the respective influences of the primary and secondary variables, thus avoiding
the need to determine a cross-covariance. While MM1 is appropriate for scenarios with extensive knowledge of the secondary variable, it is
only applicable if the measurements associated with the primary and secondary variables have the same support volume (Journel 1999). Thus,
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(a)

(b)

(c)

Figure 2. Illustration of the effects of assuming conditional independence in classical BSS for (a) a cell located at the bottom of the domain simulated at the
beginning of the simulation, (b) a cell located near the surface and also simulated at the beginning and (c) a cell simulated towards the end.

in a typical hydrogeophysical scenario, the assumption of MM1 is hardly justifiable because the spatial distribution of the secondary variable
tends to be significantly smoother than that of the primary variable. Moreover, the sequential nature of BSS makes it especially sensitive to
this assumption, as any bias introduced is amplified in the course of the simulation.

We focus on the assumption of conditional independence within MM1. However, BSS also implicitly ignores the values of the secondary
variable at non-collocated cells when using the left-hand side of eq. (1). In the Gaussian case, this simplification is equivalent to reducing
cokriging to strictly collocated cokriging. The validity of collocated (MM2) and strictly collocated cokriging is extensively discussed by
Rivoirard (2001; 2004) and Journel (1999). In the BSS framework, there is no equivalence to non-strictly collocated cokriging as the joint
probability distribution function (pdf) is only built using collocated primary and secondary variables.

The first scenario considered corresponds to a cell simulated at the beginning of the simulation path, which, therefore, is poorly informed
by its neighbours (Fig. 2a). Moreover, this specific cell is located at the bottom of the domain, where the secondary variable is not very
informative. Consequently, both P(Xi | Zi ) and P(Xi | X<i ) produce estimates that are close to the marginal distribution. However, classical
BSS treats them as being independent and generates a distribution with an inaccurate variance that is smaller than the marginal. The second
scenario also corresponds to a cell simulated at the beginning of the process (Fig. 2b). However, this cell is located near the top of the domain
where the secondary variable is informative and is located far from any hard data. In this case, kriging is poorly constrained, which results
in a distribution close to the marginal. In such a situation, classical BSS fails to neglect the kriging estimate. The cell corresponding to the
third scenario is among the last ones to be simulated (Fig. 2c). Correspondingly, kriging provides a very well constrained estimation since
the neighbours are close to the simulated cell. In contrast, the secondary variable provides an estimation similar to the marginal distribution
because the location of the cell near the bottom of the domain makes the secondary variable poorly informative. In this case, classical BSS
is not able to determine that the secondary information has already been included into the simulation of the neighbouring cells and, hence,
should not be included again.

The three examples highlight essential limitations of BSS in its classical form and illustrate the need for a method, which is capable of
weighing the relative importance of both sources of information. The latter can be achieved by resorting to approaches known as probability
aggregation (e.g. Allard et al. 2012), which we explore in the following.
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2.3 BSS with log-linear pooling

Probability aggregation provides a general framework to combine estimations of an event A, where each estimation is based on different data
{D1, . . . , Dn} with unknown dependences. A pooling operator F is defined to approximate the conditional distribution P(A | D1, . . . , Dn)
based on the individual conditional probabilities P(A | Di ) :

P (A, D1, . . . , Dn) ≈ F (P (A) , P (A | D1) , . . . , P (A | Dn)) . (4)

Allard et al. (2012) described several types of pooling operatorsF , from which the log-linear operator is one of the most generic and
most popular product-based ones:

P (A, D1, . . . , Dn) ∝ P(A)
1−∑

i
wi

n∏
i=1

P(A | Di )
wi . (5)

Allard et al. (2012) showed that the log-linear pooling decomposition is exact, that is, it accounts for all dependences, when the weights
wi are computed as

wi = ln P (Di |A, D<i )

ln P (Di |A)
. (6)

Yet, as the numerator of eq. (6) is usually unknown, the weights have to be approximated. If wi = 1, the numerator and denominator of eq.
(6) become equal, such that the data {D1, . . . , Dn} are assumed to be independent conditional to A. This kind of aggregator corresponds
to the so-called conjunction of probability (Tarantola 2005). If

∑
i

wi = 1, the prior distributionP(A) vanishes in eq. (5) and the pooling

preserves unanimity. Unanimity implies that the pooling aggregation results in the same probability, if all individual conditional probabilities
are equal.

In the context of BSS, log-linear pooling can be used to combine the information provided by the kriging P(Xi | X<i ) and by the joint
probability P(Xi | Zi ) such that the assumption of independence is relaxed through the use of the weights wX and wZ . Eq. (5) can therefore
be rewritten as

P (Xi | Zi , X<i ) ∝ P(Xi )
1−wX −wZ · P(Xi | Zi )

wZ · P(Xi | X<i )
wX . (7)

In this paper, P(Xi ) is referred to as the prior, while P(Xi | X<i ), considered the prior in classical BSS, is referred to as a conditional
probability because it is based on information from the neighbours. The prior can either be assumed to be unknown and chosen as a uniform
distribution, thus having no influence, or it can be assumed to correspond to the marginal distribution.

2.4 Weighting schemes and objective functions

The proposed formulation of BSS with log-linear pooling in eq. (7) allows us to mitigate the effects related to the dependences between the
information of the primary and secondary variables. This approach does, however, require an appropriate choice of the weights wX and wZ ,
for which there are, as of yet, no rules or guidelines. We therefore explore four canonical strategies for choosing and/or estimating suitable
weights, which we refer to as (1) BSS-0.5 and BSS-1, (2) Cst-BSS, (3) Step-BSS and (4) Multi-step-BSS.

The simplest weighting approach comprises BSS-0.5 and BSS-1, for which the weights are chosen as wX = wZ = 0.5 and wX = wZ = 1,
respectively. In the Cst-BSS approach, the optimal values for wX and wZ are inferred through a calibration procedure. For Step-BSS, the
weights are no longer constant during the entire simulation process, but, at a given point, change abruptly from wX = 0 and wZ = 1 to
wX = 1 and wZ = 0. We seek to constrain the optimal timing of this switch, as quantified by the fraction of the grid that has been simulated
to this point. Finally, Multi-step BSS changes the values of the weights multiple times during the simulation process based on an exhaustive
Monte-Carlo-type search (Appendix B). In the following, we test the viability of these weighting schemes based on a synthetic case study
and discuss the corresponding results.

To compare and calibrate these weighting schemes, they are evaluated by their ability to reproduce (1) the relation between primary and
secondary variables and (2) the underlying geostatistical model. These criteria are assessed through two specific objective functions. The first
criterion is evaluated by the mismatch between the joint pdf of the realizations px (i) (X, Z ) and the joint reference pdf of the underlying model
p(X, Z ), which is achieved by computing the root-mean-square error of the discrete joint distributions

OFZ = 1

nunv

√√√√ nu∑
u=1

nv∑
v=1

(
1

n

m∑
i=1

px (i) (X = xu, Z = zv) − p (X = xu, Z = zv)

)2

. (8)

The second criterion is assessed by comparing the empirical variograms of the realizations γx (i) with the model variogram γX . The
corresponding objective function is quantified by the root-mean-square-type error at each discrete vertical and horizontal lag distance h j for
lags up to two times the variogram range:

OFX =
∥∥∥∥∥∥

1

K

√√√√ n j∑
j=1

k
(
h j

) (
1

ni

ni∑
i=1

(
γx (i)

(
h j

) − γX

(
h j

)))2
∥∥∥∥∥∥

1

, (9)
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Figure 3. Illustration of the procedure used to generate the synthetic hydrogeophysical database considered in this study. A heterogeneous porosity field is
generated and transformed into corresponding hydraulic and electrical conductivity fields. The large-scale electrical conductivity structure is inferred through
surface-based geoelectric measurements and their subsequent tomographic inversion. The fine-scale hydraulic conductivity structure is sampled along isolated
boreholes.

Figure 4. Top: reference distribution of hydraulic conductivity; bottom: low-resolution electrical conductivity structure inferred from ERT-type inversion of
surface-based geoelectric measurements. The red vertical lines denote boreholes, along which the hydraulic conductivity is assumed to be known.

where K =
n j∑
j=1

k(h j ) and k(h j ) = 1 − γX (h j ) weigh the misfit at each lag distance based on the corresponding value of the model variogram.

This criterion favours the reproduction of the model variogram at shorter lags and, hence, is particularly sensitive to the small-scale
heterogeneity. The two objective functions OFX and OFZ do not depend on the true field so that they can be readily computed in real-world
scenarios where the corresponding values are unknown. Because of ergodic fluctuations in the simulations, the objectives functions need to
be computed for multiple realizations.

3 S Y N T H E T I C H Y D RO G E O P H Y S I C A L C A S E S T U DY

To test the proposed method and the associated weighting schemes, we consider a synthetic hydrogeophysical case study, which is largely
identical to that used by Ruggeri et al. (2013) for their multistep approach using classical BSS. The primary variable corresponds to the
hydraulic conductivity and the secondary variable to the electrical conductivity field from an ERT-type deterministic inversion of surface-based
geoelectric data. The procedure used to generate this synthetic hydrogeophysical database is outlined below and illustrated in Figs 3 and 4.

1. A heterogeneous Gaussian porosity field φ is generated with the fast Fourier transform moving average (FFT-MA) method (Le Ravalec-
Dupin et al. 2000) on a 240 × 20 m domain consisting of 513 × 65 cells. This porosity distribution is characterized by a mean value of 0.27,
a standard deviation of 0.05 and a 2-D exponential variogram having horizontal and vertical ranges of 27 m and 2.7 m, respectively.
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2. From this porosity field, both the hydraulic and the electrical conductivity fields are generated based on petrophysical relationships.
3. The electrical conductivity field is computed using Archie’s law (Archie 1942) for full saturation σ (φ) = σwφm with an electrical

conductivity of the pore water σw of 43 mS m-1 and a cementation exponent m of 1.4.
4. The fine-scale hydraulic conductivity structure is obtained through an empirical power-law relationship of the form K (φ) = 10 a φ + b

(Heinz et al. 2003) with a = 6.66 and b = 4.97.
5. The synthetic hydraulic and electrical conductivity fields are then subjected to typical hydraulic and geophysical measurement approaches,

respectively.
6. The hydraulic conductivity is sampled along four equally spaced boreholes and constitutes the high-resolution hard data, which could be

obtained, for example, through flowmeter and/or slug test measurements (e.g. Dubreuil-Boisclair et al. 2011). The primary variable is taken
as the normal score transform of the logarithm of the hydraulic conductivity. The corresponding back-transformation is performed at the end
of the simulation.

7. The secondary variable is generated from the electrical conductivity field in two steps. First, a forward surface-based geoelectric survey is
simulated on the ‘true’ electrical field leading to a series of resistance. Then, the resulting resistance data are inverted using a least-squares-type
deterministic algorithm producing a heavily smoothed estimate of the electrical conductivity distribution, which constitutes the secondary
variable. Both steps are performed using the software R2 (Binley & Kemna 2005). For computational reasons, it is common to perform
the inversion on a coarse grid, which has essentially no effect on the final tomographic image, because of the smoothing associated with
the deterministic regularization of the inversion process. However, in order to adequately reflect the change of resolution with depth, which
is inherent to surface-based ERT images, the inversion grid has a logarithmic vertical spacing. Finally, to use this ERT image in BSS, a
nearest-neighbour downscaling to the grid size of the primary variable is performed.

8. The joint distribution of the primary and secondary variables is traditionally inferred using the collocated samples at the borehole
locations. However, to be representative of the area of interest, numerous samples are needed. In practice, it is therefore common to use data
from related and/or analogue sites. We mimic this approach by repeating the procedure to generate several unconditional simulations of both
the primary and the secondary variables (steps 1–3 above). All these fields are then used to build the joint distribution. The proposed approach
allows quantifying the performance of our approach without contamination from other sources of uncertainty, in particular, a biased joint pdf
resulting from a suboptimal number of samples.

The kriging part of BSS uses a neighbourhood search strategy consisting of a two-part search with a spiral search of 40 cells for the
previously simulated cells and a superblock search of 20 cells for the hard data (Deutsch & Journel 1992). A parallelized constant multigrid
simulation path is used to optimize the computational efficiency while simultaneously minimizing the simulation biases (Nussbaumer et al.
2018).

4 R E S U LT S

We applied the four different weighting schemes outlined above to the considered synthetic hydrogeophysical data example (Fig. 4). The key
results, which are summarized in terms of the associated values of the horizontal and vertical objective functions OFX and OFZ (Fig. 5), will
be discussed in the following. The true field has non-zero values for OFX because of ergodic fluctuations of the variogram (e.g. Emery 2004)
and because of the sampling bias of the joint pdf when using a single realization, respectively. Similarly, the small differences between SGS,
Cst-BSS for wX = 1, wZ = 0, and Step-BSS for T = 0 are also due to the ergodic fluctuation.

4.1 BSS-0.5 and BSS-1

We compare two basic aggregating schemes (BSS-0.5 and BSS-1) to classical BSS and related stochastic simulation techniques to explore the
potential advantages of using log-linear pooling (Table 1). Classical BSS can be obtained from eq. (7) by setting wZ = wX = 1 and assuming
a uniform, that is, an unknown prior. For wX = 1 and wZ = 0, only the kriging information is used such that the procedure becomes identical
to SGS. Conversely, using wX = 0 and wZ = 1, results in so-called white cosimulation, where only the information of the secondary variable
is used. Additionally, we consider two simple weighting schemes, referred to as BSS-0.5 and BSS-1, which honour the condition of log-linear
pooling. Neither of these schemes applies any preference to P(Xi | X<i ) or P(Xi | Zi ). The property of unanimity is preserved for BSS-0.5,
which uses wZ = wX = 0.5 so that the prior is not included as 1 − wX − wz = 0. Conversely, BSS-1 sets the weights to wZ = wX = 1 and
uses the marginal distribution of the primary variable as the prior with a weight of 1 − wX − wz = −1.

To illustrate the implications of using these four weightings schemes, we illustrate their respective aggregating equation P(Xi | Zi , X<i )
when applied to the same three examples of Section 2.2 (Figs 2 and 6). By definition, SGS and white cosimulation result in the same
distributions as the kriging estimate P(Xi | X<i ) and the joint distribution P(Xi | Zi ), respectively.

In the first scenario (Fig. 6a), the aggregation used in classical BSS leads to a reinforcement of the central value as both sources of
information are considered to be independent. The other aggregation methods mitigate this effect and result in estimates with larger variances.
For instance, because of its unanimity property, the estimation provided by BSS-0.5 is almost identical to both P(Xi | X<i ) and P(Xi | Zi ).

In the second scenario (Fig. 6b), P(Xi | X<i ) and P(Xi | Zi ) have the same variance, but a different expected value. If P(Xi | X<i )
and P(Xi | Zi ) provide independent information, classical BSS succeeds in finding the overlapping estimate. However, when there is
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Figure 5. Performance of the different weighting schemes considered in this study with regard to the reproduction of the variogram and the joint distribution
as quantified by the objective functions OFX and OFZ , respectively. Cst-BSS shows the optimal weights associated with the Pareto front. Step-BSS displays
all step positions tested, where T denotes the fraction of the grid that has been simulated when the weights are switched. Multi-step-BSS shows the global
optimum inferred when allowing flexible adaptations of the weights in the course of the simulation process. The two dotted lines illustrate the normalization
factors computed using eq. (10).

Table 1. Comparison of some key characteristics of basic aggregation schemes considered in
this study.

Aggregating equation for P(Xi | Zi , X<i ) wX wZ

Classical BSS P(Xi | Zi ) · P(Xi | X<i ) 1 1
SGS P(Xi | X<i ) 1 0
White cosimulation P(Xi | Zi ) 0 1
BSS-0.5

√
P(Xi | Zi ) · P(Xi | X<i ) 0.5 0.5

BSS-1 P(Xi |Zi )·P(Xi |X<i )
P(Xi ) 1 1

interdependence, it overestimates the agreement between P(Xi | X<i ) and P(Xi | Zi ), hence, supresses all values present in only one of the
distributions. As a consequence, the estimate has a small variance and tends to the marginal distribution P0(X ). BSS-1 corrects for this by
including the marginal distribution with a weight of −1 and produces an estimate with a larger variance.

The third scenario (Fig. 6c) depicts a situation where P(Xi | X<i ) and P(Xi | Zi ) provide fundamentally different estimate, both in
terms of the mean and the variance. BSS-0.5 and BSS-1 give estimates that are similar toP(Xi | X<i ) because they favour estimations with
smaller variance. On the other hand, classical BSS favours overlaps between estimations, which results in a distribution with low variance,
and thus explains why it tends to underrepresent extreme values in the realizations.

The differences between these approaches are illustrated with one realization of each weightings scheme (Fig. 7), and further assessed by
quantifying the reproduction of the joint pdf (Fig. 8) and the variogram (Fig. 9) using 480 realizations computed for each weighting scheme.
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(a)

(b)

(c)

Figure 6. Probability distributions for the weighting schemes given in Table 1 for three scenarios related to P(Xi | X<i ) and P(Xi | Zi ): (a) equal mean and
variance, (b) equal variance but different mean and (c) different mean and different variance.

The simulations generated with SGS have a similar fine-scale structure as the reference field and, hence, the corresponding empirical
variogram follows closely that of the reference (Fig. 9). Yet, as the values of the field distant from boreholes are unconstrained, the joint
distribution is not well reproduced (Fig. 8). In contrast, white cosimulation offers the best reproduction of the large-scale features (Fig. 7), but
ignores the fine-scale structure, which results in noisy realizations that fail to reproduce the target variogram at small lags (Fig. 9). Classical
BSS combines both sources of information and, therefore, reproduces the joint distribution better than SGS (Fig. 8) and the variogram better
than white cosimulation (Fig. 9). However, as it assumes conditional independence of the primary and secondary variable, it tends to reduce
the variance (Figs 7 and 9). Both log-linear pooling weighting schemes (BSS-0.5 and BSS-1) improve the quality of realizations with respect
to the reproduction of the joint distribution (Fig. 8) and the variogram (Fig. 9). In general, realizations of BSS-0.5 result in a slightly better
joint distribution, while BSS-1 provides a slightly better reproduction of the target variogram, primarily at small lag distances. The comparison
between weighting schemes is summarized in terms of OFX and OFZ (Fig. 5). SGS provides the best results with respect to OFZ , but at the
expense of a poor score in terms of OFX . The opposite situation occurs for white cosimulation. This comparison illustrates the improvement
provided by BSS-1 and BSS-0.5 compared to classical BSS with respect to both OFX and OFZ .

Finally, the assessment of the weightings schemes based on OFX and OFZ needs to be discussed. When assessing a variogram, the
aggregation of the errors at each lag distance can create a bias in favour of short (i.e. fine-scale structure) or long lag distances (i.e. variance).
The formulation of OFX in eq. (9) is designed to strike a balance by weighing the errors of each lag according to the value of the variogram
at this lag. A possible alternative would be to normalize the realizations after the simulation and before computing OFX . As illustrated by the
sill of the variogram of classical BSS (Fig. 7), the corresponding OFX value would decrease. However, this correction is difficult to apply
because it would alter the value of hard data as well as affecting the reproduction of OFZ . Similarly, the root-mean-square approach used to
measure the reproduction of the joint pdf in eq. (10) tends to emphasize individual larger errors compared to multiple smaller errors. As a
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Figure 7. Comparison of the secondary variable (first from top) and the true reference field of the primary variable (second from top) to individual realizations
for each of the scenarios described in Table 1. The realization resulting from classical BSS is comparatively smooth. The realization using SGS produces the
correct fine-scale characteristics. The realization using white-cosimulation matches well the secondary variable. The realizations based on BSS-0.5 and BSS-1
strikes a balance between SGS and white cosimulation.

result, while classical BSS accurately reproduces the shape of the joint pdf (Fig. 8), its OFZ value is relatively high due to the large magnitude
of its errors.

4.2 Cst-BSS

In the Cst-BSS approach, the optimal values of the weights wX and wZ are inferred through an exhaustive grid search. To the end, the objective
functions OFX and OFZ are computed for simulations with weights ranging from 0 to 2 with an increment of 0.1. For each test, 96 realizations
are used. Proceeding in this manner then allows to infer the Pareto front identifying the ensemble of weights resulting in the minimum of
any linear combination of both objective functions (Fig. 10). The objective functions are normalized based on the two end-member scenarios
SGS (wX = 1, wZ = 0) and white cosimulation (wX = 0, wZ = 1). The Pareto front is identified by minimizing the linear combinations of
the normalized objective functions scaled by a parameter t varying from 0 to 1:

min
wX ,wZ

t
OFX (wX , wZ ) − OFX (0, 1)

OFX (1, 0) − OFX (0, 1)
+ (1 − t)

OFZ (wX , wZ ) − OFZ (1, 0)

OFZ (0, 1) − OFZ (1, 0)
∀t ∈ [0, 1] . (10)
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Figure 8. Average joint distributions of 480 realizations for each of the scenarios described in Table 1 together with the joint pdf of the true reference field.
The joint pdf of the underlying parametric model is not shown here since it is essentially identical to the true field.

This approach thus allows us to explore various combinations of weights and to make an informed choice based on the importance of
reproducing either the relation with the secondary variable or the spatial structure. The minimization of eq. (10) results in six optimal weights
combinations (Figs and 11). The corresponding Pareto front, the last point of which corresponds to SGS ( wX = 1, wZ = 0), can also be
visualized in its classical form (Fig. 5).

4.3 Step-BSS

Instead of using constant weights throughout simulation process, we now consider an alternative weighting strategy, which involves an abrupt
switch from white cosimulation to SGS at some point during the simulation,

wZ (i) =
{

1 if i < T
0 else

wX (i) = 1 − wZ (i), (11)

where 0 ≤ i ≤ 1 denotes the simulation path index, as quantified by the fraction of simulated grid cells, and T the corresponding threshold
index, at which the values of the weights are switched. The motivation for the Step-BSS approach has its origins in the observation that classical
BSS fails to adequately emphasize the information of the secondary variable during the initial stages of the simulation process (Fig. 2b) and
of the primary variable later on (Fig. 2c). Indeed, at the very beginning, the simulated cells are far apart and define the larger-scale structure
of the stochastic realization, such that, at this stage, the information from the secondary variable alone (white cosimulation) is sufficient and
appropriate. However, as the simulation progresses, the smoothness imposed by the secondary variable jeopardizes an adequate representation
of the fine-scale structure and, hence, the initial dominance of the secondary information should be exchanged in favour of the primary
variable (SGS).

The weighting scheme outlined by eq. (11) is tested for different values of the threshold index T ranging from 0 (SGS) to 1 (white
cosimulation) with an increment of 0.01. For each value of T , we compute 400 realizations. The resulting objective functions OFX and OFZ are
shown in light blue in Fig. 5. By changing the value of T , Step-BSS explores different optimal solutions depending on the relative importance
given to OFX (T = 0) and OFZ (T = 1). Increasing T from 0 to 0.05, that is, populating the first 5 per cent of the grid exclusively through
white cosimulation, dramatically improves the reproduction of the joint pdf, as quantified by OFZ (Fig. 5). This result can be explained by
the fact that the first few simulated cells constrain the larger-scale structures and thus enforce a local correspondence between the simulated
primary variable and the smooth secondary variable. In terms of the objective functions, Step-BSS generates slightly better realizations for
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Figure 10. Objective function values as functions of the weights used in the simulations. The colourmap is scaled such that the minima and maxima correspond
to the values of the objective functions of SGS and white cosimulation, respectively.
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Figure 11. Two realizations for each combination of weights identified along the Pareto front in Fig. 10. The fine-scale structure governed by the primary
variable (bottom centre) improves with larger values of wX , while larger values of wZ favour the reproduction of the larger-scale structure guided by secondary
variable (top centre).

all combinations compared to the other weighting schemes explored so far (Fig. 5). In addition to a step value of 1 in eq. (11), we have also
tested other values ranging between 0.9 and 1.3, which was found to provide very similar results.

4.4 Multi-step-BSS

The results of Step-BSS demonstrate that changing the weights during the simulation can be beneficial (Fig. 5). Here, we explore this concept
in more detail by considering weights that vary during the entire course of the simulation process. To this end, we divide the simulation path
into nine intervals, within which the weights are kept constant. The nine intervals are bounded by eight roughly logarithmically spaced steps
located at 1, 2, 3, 5, 8, 10, 20 and 50 per cent of the simulation path. The parameters of this approach thus consist of the nine weights of wZ (i)
used in the corresponding intervals as well as a 10th parameter, which controls the sum of the weights s = wX (i) + wZ (i). The sum of weights
remains constant along the simulation, thus allowing to compute wX (i) for each interval as wX (i) = s − wZ (i). Using a Monte-Carlo-type
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Figure 12. Optimal weights along the simulation path for three weighting schemes: Cst-BSS, Step-BSS and Multi-step-BSS. The log-scale used for the path
index i results in roughly equally spaced steps.

approach (Appendix B), a large number of weight combinations are tested to assess the potential benefits of this Multi-step-BSS approach
and to explore the optimal parametrization of the associated dynamic weighting scheme (Fig. 12).

The corresponding results are illustrated in the form of two realizations for the optimal Multi-Step-BSS together with the optimal weights
used for Step-BSS and the true field (Fig. 13). Multi-step-BSS is capable of reproducing the variogram and the relationship with secondary
variable somewhat better than the other weighting schemes considered in this study (Fig. 5). Arguably, the most interesting and pertinent
result shown in Fig. 12 is that the optimal sequence of weights bears a striking resemblance to Step-BSS with low and high values of wX and
wZ , respectively, at the beginning of the simulation, which, following a brief convergence, are then flipped after approximately 8 per cent of
the grid has been simulated. A major drawback of Multi-step-BSS is that the rather marginal improvements it provides compared to the other
weighting schemes come at a very high computational cost due to the multiple realizations required to optimize the weights.

5 C O N C LU S I O N S

The objective of this study was to improve the BSS-based integration of hydrogeophysical data by accounting for the inherent interdependence
between the primary and secondary variables through log-linear pooling. Different from previous computationally expensive and algorithmi-
cally complex multistep approaches, this method allows us to perform the data integration process through a single BSS-type simulation step.
The method was tested on a synthetic hydrogeophysical data set comprising locally highly resolved, yet spatially sparse, in situ measurements
of the hydraulic conductivity and a poorly resolved, yet spatially extensive, ERT-based estimate of the electrical conductivity structure.

Several weighting schemes for the considered log-linear pooling approach were compared by evaluating their ability to reproduce both the
spatial statistics (variogram) and the relationship with the secondary variable (joint distribution). First, we demonstrated that simple log-linear
pooling with a constant weight of 0.5 (BSS-0.5) or including the marginal distribution with a weight of -1 (BSS-1) already significantly
improves the realizations compared to classical BSS. Systematic tests of combinations of two constant weights (Cst-BSS) to explore the
trade-offs between either honouring the joint distribution or the variogram allowed us to define a Pareto front, along which a subjective choice
with regard to the relative importance of the two criteria can be made. Furthermore, we found that abruptly changing the weights during the
simulation (Step-BSS), equivalent to switching from white cosimulation to SGS, in the very early stages of the simulation process provided
even better results than using constant weights. Finally, tests with a Multi-step-BSS, where the weights can change dynamically in the course
of the simulation process, confirmed the key characteristics observed for Step-BSS: the larger-scale structure (secondary variable) should be
accounted for at the very beginning of the simulation process followed by strong emphasis on the smaller-scale fluctuations (primary variable).
This approach allowed for additional minor improvements, albeit at the price of a complex parametrization and a costly Monte-Carlo-type
search procedure for determining the optimal sequence of weights along the simulation path.

The results of this study demonstrate that it is possible to reduce the redundancy of information inherent to classical BSS with a flexible
log-linear-pooling-based weighting scheme. Yet, generalizations of any quantitative aspects are difficult because of the wide variability of
possible scenarios, such as differences in resolution between the primary and the secondary variables, the form of the joint distribution, the
correspondence between the variograms of the primary and the secondary variables, or the location and quantity of hard data. Nevertheless,
it is possible to provide some fundamental recommendations. From a practical point of view, our results clearly indicate that is advisable to
use simple calibrated weighting schemes, such as Step-BSS or Cst-BSS, as they provide arguably the best balance between the quality of the
realizations and the associated computational cost. With regard to non-calibrated weighting schemes, our study demonstrates that classical
BSS should be avoided in preference of basic log-linear pooling schemes, such as BSS-0.5 or BSS-1.
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Figure 13. Comparison of two realizations of the optimal (a,b) Step-BSS and (c,d) Multi-step-BSS weighting schemes together with (e) the true reference
field of hydraulic conductivity.
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A., Springer Netherlands.

Heinz, J., Kleineidam, S., Teutsch, G. & Aigner, T., 2003. Het-
erogeneity patterns of Quaternary glaciofluvial gravel bodies (SW-
Germany): application to hydrogeology, Sediment. Geol., 158(1–2), 1–23,
doi:10.1016/S0037-0738(02)00239-7.

Hoffimann, J., Scheidt, C., Barfod, A. & Caers, J., 2017. Stochastic sim-
ulation by image quilting of process-based geological models, Comput.
Geosci., 106(February), 18–32, doi:10.1016/j.cageo.2017.05.012.

Hu, L.Y., Le Ravalec-Dupin, M. & Blanc, G., 2001. Gradual deformation
and iterative calibration of truncated Gaussian simulations, Pet. Geosci.,
7(S), S25–S30.

Hyndman, D.W. & Gorelick, S.M., 1996. Estimating lithologic
and transport properties in three dimensions using seismic and
tracer data: the Kesterson aquifer, Water Resour. Res., 32(9),
2659–2670.

Journel, A.G., 1974. Geostatistics for conditional simulation of ore bodies,
Econ. Geol., 69(5), 673–687.

Journel, A.G., 1989. Fundamentals of Geostatistics in Five Lessons, Vol.
16, American Geophysical Union.

Journel, A.G., 1999. Markov models for cross-covariances, Math. Geol.,
31(8), 955–964.

Le Ravalec-Dupin, M., Noetinger, B. & Hu, L.Y., 2000. The FFT mov-
ing average (FFT-MA) generator: an efficient numerical method for
generating and conditioning Gaussian simulations, Math. Geol., 32(6),
701–723, doi:10.1023/A:1007542406333.

Mariethoz, G., Renard, P., Cornaton, F. & Jaquet, O., 2009a. Truncated pluri-
gaussian simulations to characterize aquifer heterogeneity, Ground Water,
47(1), 13–24.

Mariethoz, G., Renard, P. & Froidevaux, R., 2009b. Integrating collocated
auxiliary parameters in geostatistical simulations using joint probabil-
ity distributions and probability aggregation, Water Resour. Res., 45(8),
doi:10.1029/2008WR007408.

Nussbaumer, R., Mariethoz, G., Gravey, M., Gloaguen, E. & Holliger, K.,
2018. Accelerating sequential gaussian simulation with a constant path,
Comput. Geosci., 112(2018), 121–132, doi:10.1016/j.cageo.2017.12.006.

Rivoirard, J., 2001. Which models for collocated cokriging? Math. Geol.,
33(2), 117–131.

Rivoirard, J., 2004. On some simplifications of cokriging neighborhood,
Math. Geol., 36(8), 899–915.

Rubin, Y. & Hubbard, S. 2005. Stochastic forward and inverse model-
ing: the “hydrogeophysical” challenge, in Hydrogeophysics, pp. 487–511,
Springer Netherlands, doi:10.1007/1-4020-3102-5 17.

Ruggeri, P., Irving, J., Gloaguen, E. & Holliger, K., 2013. Regional-scale
integration of multiresolution hydrological and geophysical data using
a two-step Bayesian sequential simulation approach, Geophys. J. Int.,
194(1), 289–303.

Ruggeri, P., Gloaguen, E., Lefebvre, R., Irving, J. & Holliger, K., 2014.
Integration of hydrological and geophysical data beyond the local
scale: application of Bayesian sequential simulation to field data from
the Saint-Lambert-de-Lauzon site, Québec, Canada, J. Hydrol., 514,
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A P P E N D I X A

In the following, we show that, because of its sequential nature, BSS inherently relies on the assumption of conditional independence between
the secondary variable and the previously simulated values of the primary variable.

Let us consider the conditional probability of an unknown eventA based on several known events {D1, . . . , Dn}

P (A|D1, . . . , Dn) = P (A, D1, . . . , Dn )

P (D1, . . . , Dn )
. (A1)

Substituting the numerator of eq. (A1) by the chain rule of probability

P (A1, . . . An) =
n∏

k=1

P (Ak |A1, . . . Ak−1) , (A2)

leads to

P (A|D1, . . . , Dn) = P (A )

∏n
j=1 P

(
D j |A, D1, . . . , D j−1

)
P (D1, . . . , Dn )

. (A3)
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In the context of sequential simulation,A represents the simulated variable Xi and the conditional data D is composed of the previously
simulated cells X<i = {X1, . . . , Xi−1}

P (Xi |X<i ) = P (Xi )
∏i−1

j=1 P
(
X j |Xi , X< j

)
P (X<i )

. (A4)

Yet, in BSS, D also includes the collocated secondary variable Zi , which leads to

P (Xi |X<i , Zi ) = P (Xi )
∏i−1

j=1 P
(
X j |Xi , X< j

)
P (X<i , Zi )

P (Zi | Xi , X<i ) . (A5)

Combining eqs (A4) and (A5) yields

P (Xi |X<i , Zi ) = P (Xi |X<i ) P (X<i )

P (X<i , Zi )
P (Zi | Xi , X<i ) . (A6)

As P(X<i ) and P(X<i , Zi ) are constant, eq. (A6) can be reduced to the proportionality

P (Xi |X<i , Zi ) ∝ P (Xi |X<i ) P (Zi |Xi , X<i ) . (A7)

A P P E N D I X B

Here, we describe the algorithmic details of the Metropolis–Hastings search we performed to determine the optimal sequence of weights
along the simulation path for our analysis of the Multi-step-BSS approach.

1. Initialization. Of a total of ten parameters, the first nine define the value of wZ (i) for the corresponding nine intervals along the
simulation path, while the last parameter controls to the sum of the weights s = wX (i) + wZ (i) which is constant for all intervals and, hence,
wX (i) = s − wZ (i). The initial parameters are selected to reproduce the optimal Step-BSS, that is, m0 = [ 1 1 1 1 1 0 0 0 0 1 ].

2. For each iteration i

(i) Generate a new set of model parameters mi . The proposal distribution is a Gaussian function with a variance of 0.05, that is,
mi = mi−1 + N (0, 0.05). The sum of the weights m(10) is not constrained and can evolve freely. The other nine parameters can vary between
0 and the sum of the weights. If a parameter is proposed outside these bounds, it is reflected on the bound, that is, the value of the parameter
mi becomes b − (mi − b), with b being the corresponding bound value.

(ii) Calculate the acceptance ratio. The likelihood function is

P (mi ) = exp
{−O F (mi )

/
σ
}
, (B1)

where O F(m) is the normalized sum of objective functions defined in eq. (10) with t = 0.5 such that equal importance is given to each
objective function and σ = 0.02 corresponds to the errors in determining the objective function. The value of σ is manually calibrated
such that the acceptance ratio of the Metropolis–Hastings algorithm, which is described in the next step, is around 40 per cent for faster
convergence. The acceptance ratio is therefore α = P(mi )/P(mi−1).

(iii) Acceptance. The acceptance is defined based on a uniform random number u ∼ U(0, 1). If u < α, the proposed set of parameters mi

is accepted, and otherwise rejected so that mi= mi−1.

The Metropolis–Hastings search was stopped after 6000 iterations with an acceptance rate of 51 per cent. As the initial parameter set
corresponds to the optimized parameters of step-BSS, no burn-in was considered.
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