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Abstract: 

We propose an optimized method to compute travel times for seismic inversion problems. It is a 

hybrid method combining several approaches to deal with travel time computation accuracy in 

unstructured meshes based on tetrahedral elementary cells. As in the linear travel time interpolation 

method, the proposed approach computes travel times using seismic ray paths. The method operates 

in two sequential steps: At a first stage, travel times are computed for all nodes of the mesh using a 

modified version of the shortest path method. The difference with the standard version is that 

additional secondary nodes (called tertiary nodes) are added temporarily around seismic sources in 

order to improve accuracy with a reasonable increase in computational cost. During the second step, 

the steepest travel time gradient method is used to trace back ray paths for each source-receiver pair. 

Travel times at each receiver are then recomputed using slowness values at the intersection points 

between the ray path and the traversed cells. A number of numerical tests with an array of different 

velocity models, mesh resolutions and mesh topologies have been carried out. These tests showed 

that an average relative error in the order of 0.1% can be achieved at a computational cost that is 

suitable for travel time inversion. 
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Introduction 

Numerical wave modelling based on ray tracing is often considered as a good approximate 

simulation of wave propagation (Grunberg, Genaud and Mongenet 2004; Cerveny 2005).  The 

applications range from migration and seismic tomography in exploration geophysics (Symes et al. 

1994; Yoon et al. 2003; Cerveny 2005; Majdaoski et al. 2006; Göktürkler and Balkaya 2010) to earth 

structure determination and earthquake hypocentre localization in seismology (Zhang and Thurber 

2003; Trampert and van der Hilst 2005; Doser 2006). In addition to tracing ray-paths, computing 

first-arrival travel times is equally important for most applications. The numerical evaluation of 

arrival times can be achieved through different modes of domain discretization and ray tracing 

methods. Considering grid-based methods, the first step consists in defining a 2D or 3D velocity or 

slowness model that is subsequently discretized. Conventionally, a ray-tracing method is then 

applied to propagate the wave front from the seismic source to all domain nodes giving the travel 

time value at each one. In order to calculate seismic travel times as efficiently as possible, many 

approaches have been proposed and improved over time. Despite a plethora of solutions and 

philosophies for solving this problem, a careful study allows to identify some common threads. For 

instance, in order to compute travel times, whatever method is used, two components are required: 

(1) an efficient strategy to visit the domain nodes and (2) an update mechanism to compute travel 

times at the cell scale. Independent from mesh type (regular or unstructured), the first component 

aims to conserve causality during wave front propagation. For instance, the Shortest Path Method 

(SPM) introduced by Nakanishi and Yamaguchi (1986) and the Fast Marching Method (FMM) 

implemented by Sethian (1999 a), both rely on a strategy derived from Dijkstra’s algorithm (Dijkstra 

1959). During wave front propagation, domain nodes are maintained into three complementary and 
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disjoint sets: the upwind set, the downwind set and the narrow band (Moser 1991; Sethian 1999 a). 

The upwind set contains nodes where travel time values are already calculated and assigned while 

the downwind set includes non-visited nodes and the narrow band represents nodes directly 

connected to the upwind node set. At each iteration, causality is ensured by considering only narrow 

band nodes with the smallest travel time (Tmini) as the new upwind nodes to update neighbouring 

vertices. In order to avoid costly searches, narrow band nodes should be sorted according to their 

travel time values and kept in that sorted-order.  

The Group Marching Method (GMM), proposed by Kim (2001), uses a similar strategy but offers an 

improvement by considering many active sources at the same time. In order to ensure causality, the 

updated group of nodes should be selected such that at every iteration, narrow band nodes with 

travel times less than       
      

√ 
⁄   are placed in the upwind set. Note that h is the spatial 

step and smin is the narrow node minimum slowness. Neighbouring nodes are then updated and 

displaced to the narrow band set (Kim 2001).  

The Fast Sweeping Method (FSM), introduced by Zhao (2004), avoids the requirement to maintain a 

sorted list of nodes which can be time consuming and resource intensive. The method relies on 

Gauss-Seidel iterations to propagate the wave front. At each iteration, all the domain nodes are 

visited and convergence is reached for nodes along characteristic curves parallel to sweeping 

directions (Zhao 2004; Qian, Zhang and Zhao 2007). The causality is ensured by using several Gauss-

Seidel iterations with different directions so that all characteristic curves are scanned.  

Jeong and Whitaker (2008) proposed the Fast-Iterative Method (FIM) an easily parallelizable ray-

racing method. In this approach, all the narrow band nodes, named here active list nodes, are 

updated at each iteration. Convergence is assumed to be reached for unchanged travel time nodes. 
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Thereby, they are removed from the active list and their neighbouring nodes are added to active list. 

The task is repeated until the active list is empty (Jeong and Whitaker 2008). To preserve causality, 

all the neighbours of the converged nodes are displaced to active list even those already converged 

at previous iterations (Capozzoli et al. 2014).  

Shifting to travel time update mechanisms at cell scale, three different schemes have been 

described. The first, often associated with the SPM, is based on Huygens’s principle (Leidenfrost et 

al. 1999). It considers a transmitted wave through cell interfaces so that the node update is done by 

taking the neighbour vertex with the smallest travel time and increasing it by the time needed for 

the wave front to propagate between the two nodes (Moser 1991; Leidenfrost et al. 1999; Bai, Li 

and Tang 2011). This mechanism is recognized as the diffraction mode propagation (Podvin and 

Lecomte 1991; Lelièvre, Farquharson and Hurich 2011). For accuracy purposes, secondary nodes can 

be added on cell edges and faces to take into account the transmission of the wave through the cell 

(Gruber and Greenhalgh 1998). The second mechanism, called the Godunov upwind scheme, is 

derived from a finite-differences solution of the Eikonal equation (Sethian 1999 a; Zhao 2004; 

Capozzoli et al. 2014). This scheme is only suitable for regular grids. For unstructured meshes, 

generalized local solvers based on Fermat’s principle have been proposed by several authors (Fomel 

1997; Sethian 1999 b; Qian et al. 2007; Huang, Zhang and Liu 2011; Lelièvre et al. 2011). The update 

mechanism consists of finding face or edge points so that the travel time to the updated node is 

smallest. To find such a point, some authors rely on a geometric solution (Sethian 1999 b; Qian et al. 

2007; Fu, Kirby and Whitaker 2013) while others consider an optimization problem solution based 

on spatial derivatives and linear travel time interpolation (Fomel 1997; Lelièvre et al. 2011; Zhang et 

al. 2011). Asakawa and Kawanaka (1993) used the latter type of solver to trace back ray paths from 

receivers to the corresponding seismic source. This allowed to compute the travel times along the 
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ray. This method, known as the Linear Travel time Interpolation Method (LTIM), can be implemented 

in both regular grid and unstructured meshes (Cardarelli and Cerreto 2002; Huang et al. 2011; Zhang 

et al. 2011).  

In general, the accuracy and performance of all these methods depend on mesh resolution, slowness 

model, cell shape and neighbourhood size (Hysing and Turek 2005; Jeong and Whitaker 2008; Giroux 

2014). The choice of the wave front propagation strategy has the greatest incidence on computing 

cost while the update mechanism has the most influence on the accuracy of the results. As such, 

many hybrid approaches have been proposed to enhance travel time computation efficiency, such 

as the combination of the FMM, the GMM or the SPM with the LTIM (Zhang, Chen and Xu 2004; 

Huang et al. 2011; Zhang et al. 2011).   

Seismic travel time computations underpin inversion problems and as such authors often tend to 

increase mesh resolution in order to get the highest accuracy possible when computing the forward 

problem (Bai et al. 2018). The task may be expensive for nonlinear problems like velocity inversion 

and hypocentre location since many iterations of a quadratic (O(n2)) to quasilinear (O(n log(n))) 

complexity are required to reach convergence. Repeatedly calculating travel times using high 

resolution meshes incurs long computation times and affects the overall inversion performance (Bai 

et al. 2018). This motivates the development of algorithms that provide efficient travel time 

computation with high accuracy and at reasonable computational cost. Such an approach is the aim 

of the present work. Based on the results of a large number of tests, we found that the proposed 

hybrid approach provides the sought trade-off between accuracy and time cost. Similar to LTIM, the 

presented approach relies on the computation of travel times along ray paths and combines these 

with other methods such as SPM and FMM. Briefly, this approach operates in two stages: (1) travel 

times are calculated for all domain nodes using the SPM or the FMM and (2) the ray paths joining 
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receivers to corresponding seismic source are traced back and travel times are recalculated along 

the seismic rays.  When ray paths are not explicitly needed, the second step can be avoided by 

interpolating travel times stored at grid nodes, at the receiver locations. Furthermore, in the case of 

the SPM, ray paths can be deduced directly at the first step, by storing in memory, for each node, 

the index of the source node yielding the final value of travel time (the so-called “parent” node).  

This procedure, however, results in ray path segments that necessarily pass at nodes, yielding 

somewhat discontinuous ray trajectories.  Figure 1 illustrates this effect for a case in 2D for a 

homogeneous velocity model.  Increasing the number of secondary nodes reduces this effect, at the 

expense of increased computational cost.  There is therefore a balance to find between avoiding the 

second step, which reduces computation time, and increasing the number of secondary nodes. 

In this paper, the two steps, i.e. travel time computation and ray path determination, are analysed 

for unstructured meshes and different options that can be included at each stage are tested to 

enhance travel time computation accuracy and computational cost. Several experiments have been 

realized in order to find the most efficient combination between different approaches available at 

each stage. Smooth velocity models similar to those derived from inversion processes are used. In 

addition to hybrid combinations, the standard LTIM version is implemented for real tetrahedral 

meshes. To our knowledge, this is the first time that the LTIM is tested with that kind of 

unstructured meshes. Its performance is evaluated and compared to hybrid and standard 

approaches. Accuracy and computational cost for the optimal combination are then evaluated with 

different complexity slowness models and compared to two classic methods: the SPM and the LTIM. 
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Conceptual approach 

The main concept behind the proposed strategy consists in calculating travel times along ray paths. 

This technique was introduced by Asakawa and Kawanaka (1993) as a part of LTIM on regular 2D 

grids. Since then, several researchers have looked at ways to enhance the accuracy and the 

performance of the method (Li and Ulrych 1993; Cardarelli and Cerreto 2002; Vanelle and Gajewski 

2002; Zhou, Zhang and Chen 2004; Zhang et al. 2015; Li, Liu and Zhang 2019). The method was 

extended to 3D regular grids by Zhang et al. (2011) and to unstructured mesh by Huang et al. (2011).  

In their work, Huang et al. (2011) relied on a hybrid mesh to discretize the study domain: a cubic 

elementary cell is the initial kernel and the cell shape has been slightly perturbed to fit undulating 

interfaces. Implementing the LTIM on unstructured meshes based on tetrahedral elements is trickier 

compared to a cubic grid due to the triangular shape of cell faces. As a first hurdle, local solvers 

based on linear travel time interpolation are less accurate because only three nodes are available 

instead of four. Thus, while the bilinear interpolation in a quadrilateral face is equivalent to a 4-term 

polynomial with a linear travel time gradient: 

  (   )                 , (1) 

the travel time for a triangular face is represented with only a 3-term polynomial and a constant travel 

time gradient:   

  (   )              (2) 

The second hurdle is that causality is not always respected in the case of obtuse angle triangles (Qian 

et al. 2007; Lelièvre et al. 2011; Fu et al. 2013) and can generate an additional error. The standard 

LTIM therefore appears to be theoretically less accurate and stable when used with tetrahedral 

meshes. Given these limitations, LTIM should be combined with other methods to enhance its 

performance.  

The strategy that is proposed still requires two sequential steps, similar to current LTIM 

implementations. Consider a tetrahedral mesh in which slowness is defined at the vertices of the 

tetrahedra, i.e. at the so-called primary nodes. During the first step that is commonly known as the 
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forward process, travel times are computed for all mesh nodes using either SPM or FMM. The choice 

of method depends on the accuracy that can be reached for the given problem. The second step, 

often called the backward process, consists in tracing the ray paths for all source-receiver pairs. 

Travel times (T) can be then recalculated, during this second step, along the seismic rays (Huang et 

al. 2011).  

where              and (n-1) are respectively the slowness, the coordinates and the number of 

segments constituting the ray joining the source node to the receiver, while x, y and z are the 

receiver coordinates. The segments are defined by the intersection of the ray path with the faces of 

the traversed tetrahedra, and slowness values at intersection points on the interfaces (  ) are 

interpolated from the values stored at the primary nodes (Figure 1). This second stage is referred to 

be the backward process because computation is done going from the receiver back to the source 

(Asakawa and Kawanaka 1993). 

Forward step 

During the forward step, wave fronts are propagated from seismic source to the whole domain so 

that travel times can be computed for all nodes. In theory, this step can be considered as a classic 

travel time computation problem. Any method previously discussed such as the SPM, the GMM or 

the FMM should work for this stage. One should note however that the update mechanism can 

impact the computational accuracy of the solution. To illustrate this effect, we propose to compare 

the accuracy of the SPM update mechanism (Giroux 2014) to the accuracy of the LTI local solver 

(Lelièvre et al. 2011) used in the FMM. Solutions based on Godunov schemes that are hinged on 

finite-differences solution of Eikonal equation were discarded since they are inappropriate for 

unstructured meshes as shown by Fomel (1997) and Sethian (1999b). These tests consist of 

 
 (     )  ∑
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calculating travel times for all primary nodes of the domain using the SPM and the FMM. A model 

with a vertical velocity gradient of v(z)= 1.5 + 4.5 z was considered with four different mesh 

resolutions. The study domain is cubic with an edge of 1 km. The receivers, at a number of 1000, 

were randomly placed within the domain while seismic source was placed at the centre. All the 

meshes that were used during these tests were prepared using Gmsh version 4, an open-source 

software originally proposed by Geuzaine and Remacle (2009). Following the approach of Gruber 

and Greenhalgh (1998), the SPM was used in this example with three secondary nodes on each cell 

edge and three on each cell face. The distribution of these secondary nodes inside cell face is 

illustrated below, in Figure 2. The absolute and relative errors are then calculated for each primary 

node and the travel times computed for each method were compared to the analytic solution given 

by Cerveny (2005) and Fomel, Luo and Zhao (2009). The results obtained, shown in Figure 3, were 

examined to determine the most suitable update mechanism for tetrahedral meshes. These results 

suggest that, in terms of accuracy, SPM outperforms FMM regardless of the number of primary 

nodes and hence can be considered as the most accurate method in this case. On the other hand, 

the SPM computational cost is somewhat higher than for the FMM, even when using few secondary 

nodes like in the present example (3 secondary nodes). We propose below a modification to the 

SPM to reduce its computational cost and preserve accuracy. 

The conclusions regarding accuracy of the methods have previously been reached by Bai, Huang and Zhao (2010) and 

Giroux (2014) who showed that SPM provides more accurate solutions than FMM based on the LTI solver.  This emphasizes 

the fact that the LTI local solver appears to be less suitable for 3D unstructured meshes, especially those based on 

tetrahedral elementary cells, because the number and the configuration of nodes make travel time computations less 

accurate in comparison to a regular grid. Recall that a good approximation of the Eikonal equation solution at cell scale 

requires at least two nodes at each quadrant (Gavete, Gavete and Benito 2003). Furthermore, cells of domain presenting 

triangular faces with an obtuse angle could affect the accuracy of LTI solver and cause additional errors as previously 

discussed (Qian et al. 2007; Lelièvre et al. 2011). The generated errors at the vicinities of such cells can propagate to other 
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nodes along characteristic curves and induce more travel time computation errors sometimes further at other cells. This is 

a common occurrence for real unstructured meshes created by most generators such as Gmsh or Tetgen, even with 

optimization option turned on. In contrast, the SPM updater does not show any causality problems or cell geometry 

dependency. This also holds when secondary nodes are used and it is considered to be efficient (Giroux 2014). A common 

parametrization strategy is to associate slowness values at the nodes of the mesh instead of within the cells. A velocity 

model is then interpolated at secondary nodes which allows to take slowness variations into account and thus provide a 

better approximation of the seismic ray shape inside the cell. This strategy that uses secondary nodes is also useful to 

enhance the performance of the inversion algorithm. In order to have a reasonable number of model parameters, the 

mesh for inversion problems are usually coarser in comparison to forward problems. In the forward case, it is important to 

increase the mesh resolution in order to get better travel time accuracy. Commonly, two meshes must be defined and 

stored separately in order to achieve reasonable accuracy and acceptable numerical performance (Serretti and Morelli 

2011; Penz 2012). This is the case for the majority of raytracing methods such as FMM, GMM and FSM. Such a double 

meshing can be avoided, however, when SPM is used. This is because the inversion problem can be cast such that it works 

only with the primary nodes. During the ray tracing step, the mesh is refined by adding secondary nodes to the list of 

primary nodes. Consequently, this makes SPM a suitable choice for inversion algorithms since it saves memory and reduces 

computation cost: less nodes are stored and less slowness interpolations are done (Table 1). 

At cell scale, the LTI local solver assumes homogeneous slowness values which therefore implies a straight ray paths within 

each cell. This assumption induces further error contrary to the SPM solver which insures a better approximation of seismic 

ray shape via the addition of secondary nodes. The LTI local solver also has another important weakness in that it violates 

the planar wave hypothesis near seismic sources. This results in high travel time errors in the vicinity of the sources. The 

common workaround for LTI is to refine the mesh around the source nodes. This is possible on most mesh generators. 

However, in the case of nonlinear inversion problems, source location may change from iteration to another and therefore 

the whole domain should be discretized anew at every iteration to get the refinement at the source positions.  It soon 

becomes apparent that this approach is cumbersome to implement and can be computationally intensive. In comparison, 

SPM allows for an efficient alternative that we propose in this paper. The idea is to create a mesh of homogeneous 

resolution and preserve its topology for all iterations, and perform mesh refining at each iteration using temporary nodes 

placed in the vicinity of the source nodes. These dynamic nodes are added on cell edges and faces with the approach of 

Gruber and  Greenhalgh (1998) and are removed once travel times are computed for the corresponding source. Three 
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node types are thus defined for SPM as illustrated in Figure 2: (1) primary nodes, located at the tetrahedron vertices, that 

define the inversion model parameters, (2) secondary nodes added on the cell edges and faces to increase mesh resolution 

for the whole domain and (3) temporary tertiary nodes placed within a given radius of the seismic sources to refine the 

mesh locally. Inversions are carried out considering only primary nodes, while the ray tracing step operates with all nodes. 

The slowness model is defined at primary nodes and interpolated at both secondary and tertiary node sets. The total 

number of nodes within a given cell is given by:  

           , 

 

(4) 

where Np is equal to 4, the number of primary nodes. NS and NT are respectively the number of 

secondary and tertiary nodes. NS and NT are calculated as follow: 

        (    ), (5) 

        (    )  (    )
 , (6) 

where ns represents the number of secondary nodes added on each cell edge and nt  is the
 
number of 

tertiary nodes added between two successive secondary nodes. While the number of primary and 

secondary nodes is always invariant, the number of tertiary nodes may change during the inversion 

processes. The total number of tertiary nodes NT depends on the local mesh resolution, the source 

position, and the radius around the source where these nodes are added. This makes the whole 

mesh resolution dynamic. For this reason, we call this modified SPM the dynamic shortest-path 

method (DSPM). In further sections, DSPM_s_t refers to the DSPM with s secondary nodes and t 

tertiary nodes (Figure 2).  

-The DSPM vs the SPM: As stated previously, we use accuracy and computational time as metrics to 

compare DSPM and SPM. As such, the relative errors at primary nodes as a function of distance from 

seismic source are illustrated in Figure 4 for three different levels of discretization. Each domain in 

this example contains 11,026 primary nodes. The velocity model was derived using a vertical 

gradient model (v (z) = 1.5 + 4.5 z). The domain under study is still a 1 km3 cube with average cell 

edges length of approximately 57 m. The receivers and seismic source were kept at the same 
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positions as the example shown in Figure 3. Three different schemes are tested, with parameters 

given in Table 2. In the first discretisation, 9 secondary nodes are placed on every edge and 36 inside 

each face (SPM_9). For the second discretization, 7 secondary edge nodes and 21 face nodes were 

added to every edge and face respectively (SPM_7). The last discretization considered has one 

tertiary node between edge nodes (DSPM_7_1), for cells distributed uniformly around the seismic 

source in a sphere with a radius of 150 m. This scheme increased the overall number of nodes by 4% 

in comparison to SPM_7 bringing total number of nodes close to 3.0x106, a reduction of 37% relative 

to the overall number of nodes in SPM_9.  

The modelling results, shown in Figure 4, reveal that the accuracy of SPM is improved when tertiary 

nodes are introduced. These results also show that despite a significant reduction in the number of 

nodes, the results from DSPM_7_1 have lower relative error than the more resource intensive 

SPM_9 discretization. In fact, the maximum recorded relative error decreased from 3.4 % and 3.5% 

respectively when homogeneous mesh resolution models SPM_9 and SPM_7 were considered, to 

1.6% when higher mesh resolution was used around seismic sources (DSPM_7_1). It is interesting to 

note that the improvements are not restricted to the regions proximal to the nodes that are 

coincident with the source points but also at greater distances in the model. This is can be explained 

by the fact that error at nodes close to the source often propagates over all domain nodes: travel 

times calculated at a far location from source depend on the travel time of near nodes. The global 

average error was evaluated to 0.66% and 0.86% for SPM_9 and SPM_7 respectively and to 0.62% 

after applying the mesh-refinement process of DSPM_7_1. The strategy of increasing mesh 

resolution locally represents an interesting alternative to deal with the planar wave approximation 

problem: the DSPM ensures more accuracy with a reasonable mesh resolution. Avoiding mesh 

refinement of the whole domain can enhance the performance of the method by saving memory 
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and reducing computation costs while still maintaining a reasonable relative error. As an example, 

the computation time was decreased by 45 % when SPM_7 was used instead of SPM_9 and by 50% 

when DSPM_7_1 was used instead of SPM_9. It is interesting to note that, although the total 

number of nodes is 7% higher for DSPM_7_1 relative to SPM_7, the computation time for the latter 

is 8% higher.  This is explained by differences in implementation that relates to the information 

stored for each node.  For SPM, the index of the parent node is saved to allow raytracing during the 

forward step. This incurs additional memory access during computations and therefore slows down 

the solution.  For the DSPM, the raytracing is performed at a backward step (as detailed in section 

2.2 below) and thus the forward step is not affected by the same memory access overhead.  

-Tertiary node Subdomain: The extent of the subdomain around sources where tertiary nodes are 

used plays a crucial role for the DSPM accuracy. In this work, the subdomain is assumed to be 

spherical with a radius R and centred on the seismic source. Since many factors influence its choice, 

the criteria to set the radius are examined in this section. These factors are the initial mesh 

resolution and quality, the number of secondary and tertiary nodes and the used velocity model. The 

radius has to be set in order to increase mesh resolution in the source vicinity, where the wave front 

curvature is more pronounced in comparison to the size of the cells. Recall that the SPM is based on 

Huygens’s principle, which states that every point on a wave front is itself the source of a spherical 

wave, and these waves which sum up to propagate the wave front in space. By increasing the 

density of nodes close to the source, the number of potential secondary source is increased and a 

highly curved wave front will be better represented. 

To illustrate the influence of the choice of the radius R, we consider the previous example with a 

mesh of about 11 thousand nodes. The mesh has a relatively narrow cell size distribution, with mean 

cell edge length ⟨el⟩ of 57±14 m. Tests are performed for five increasing values of radius R normalized 
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by ⟨el⟩, for six discretization schemes: DSPM_1_1, DSPM_1_2, DSPM_2_1, DSPM_2_2, DSPM_3_1, 

and DSPM_3_2. The results are presented in Figure 5, which shows the median of the relative error 

computed for bins of increasing distance to the source, as well as computational cost. For 

comparison, the results for SPM_5 are also presented. We can observe that the effect of radius R on 

accuracy remains proportionally constant as the number of secondary nodes ns increases. On the 

other hand, the effect of R is more pronounced if the number of tertiary nodes is increased. In most 

cases, the benefit of using a radius larger that 3⟨el⟩ appears marginal, especially considering that the 

computation cost increases substantially for R > 3⟨el⟩.  A second series of tests were performed with a 

finer mesh (results not shown), and the same trends were observed. 

Backward process 
After calculating the travel times for all domain nodes, a backward step is started. The objective of 

this step is to get the ray paths connecting each receiver to the corresponding source (Asakawa and 

Kawanaka 1993; Zhou et al. 2004; Huang et al. 2011; Zhang et al. 2011). The ray is approximated by 

using a finite number of line segments that are defined by points of intersection between the 

maximum travel time gradient and mesh cells. The methods used to trace back seismic rays fall into 

one of two camps: the first relies on the LTI local solver to trace the ray from the receiver back the 

seismic source (Asakawa and Kawanaka 1993; Huang et al. 2011; Zhang et al. 2011) while the second 

is based on a local calculation of the steepest travel time gradients (Zhang et al. 2013; Ding et al. 

2016). Accuracy and performance are compared for both approaches after the brief introduction 

that follows below.  

The LTI local solver 

LTI updaters were already introduced for solving the forward step problem. At any given receiver (R), 

the solver provides the point on the cell face (P) that minimizes travel time. The line joining R to P is 

considered as a segment of the ray path and P is then assumed to be a new receiver. The task is 
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repeated until the source node is reached. To calculate the coordinates of P, we follow the approach 

presented by Lelièvre et al. (2011). For this, we suppose that a point receiver R is located inside a 

tetrahedron cell (ABCD). We then assume that P1, P2, P3 and P4 are respectively the points that 

minimize travel times on face ABC, ABD, BCD and ACD (Figure 6). According to Lelièvre et al. (2011), 

the position of P1 is given by its relative coordinates ( ,   ) in the base (A, b, c): 

              (7) 

where   and   are calculated as following:  

 
   

 
 
|  (     )  (     )  

    |

   
    

(8 a) 

 
   

 
 
|  (     )  (     )  

   |

   
      

(8 b) 

Here  
 

and  
 

 are the relative coordinates of R’ the orthogonal projection of R onto face ABC and    

is the distance from the point R to R’ (Figure 6). The norm of cross product between vectors b and c 

is given by   (  = || b   c ||). The transpose operator is t while TA, TB and TC are respectively the 

travel times at nodes A, B and C computed during the forward step. The 3 nodes are labelled such 

that the travel time at node A is the smallest (TA < TB and TA <TC). 

The difference between cell slowness (s) and travel time gradient is denoted as w (Lelièvre et al. 

2011), i.e.  

         (     )
    (     )

     (     )(     )  
   . (9) 

Note that the slowness value is assumed to be constant inside the cell. Obviously, w2 should be 

positive to calculate   and   . Moreover, the point P1 has to be inside the face ABC. The condition is 

fulfilled by testing the following expressions: 

      , (10 a) 

       , (10 b) 

        . (10 c) 
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In addition to the transmitted waves inside cells, head waves travelling along the edges should be 

considered (Sethian 1999 a; Qian et al. 2007; Lelièvre et al. 2011). For this task we need to 

determine points that minimize travel time onto edges AB, AC and BC. The pseudo-code that meets 

this requirement is shown in Algorithm 1 below. To investigate how this algorithm works, we start by 

considering the case for the edge AB where the position of the point sought is given by the 

normalized distance   from node A such that:  

    
     . (11) 

The value of   that minimize travel time along this edge is calculated as shown below:  

 
   

 
 
(     )  

 ̃ 
  

(12) 

The task is similar for the 3D case, where    is defined as the distance to R from its orthogonal 

projection R’’ onto line AB (Figure 6).  
 

 is the normalized distance between A et R’’ while  ̃ is 

computed as: 

  ̃       (     )
   (13) 

When  ̃  is negative or P falls outside the line segment AB (  > 1 or   < 0), the solution is given by 

the node that minimizes the head wave travel time along the edges AR and BR (min (TA+s AR, TB+s 

BR)).  

For each face around the receiver, 7 points have to be computed such that travel time values are 

minimized for transmitted and head waves. These points fall onto edges and faces of the cells 

surrounding receiver R (Lelièvre et al. 2011; Algorithm 1; Algorithm 2). Considering face ABC for 

example, the first point, if it exists, is due to the transmitted wave traveling inside the volume RABC 

computed using equation 8a and 8b. The second corresponds to head waves travelling inside faces 

RAB, RAC and RBC and along edges RA, RB and RC. The only point that minimizes travel times to the 
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receiver is preserved while the others are discarded. The task is repeated for all faces around the 

receiver (faces ABD, BCD and ACD in Figure 6).  

Finally, for the n faces around the receiver, point P is chosen such that it has the smallest travel time 

to the receiver (Algorithm 2):  

    |    (          )  (14) 

Depending on the receiver position, the number of faces n can take different values. Thus, for a 

receiver falling inside a cell, the four faces that belong to the cell have to be considered. The number 

of faces to consider increases to 6 when the receiver is located on a face, between two cells. It is also 

possible to get yet a greater number of faces when the receiver is located on a cell vertex or an 

edge. Faces belonging to cells sharing the vertex or the edge have to be tested. The overall number 

for each receiver position will therefore depend strongly on the local mesh topology.  

The Steepest travel time gradient methods 

According to Fermat’s principle, the steepest travel time gradient is always normal to the wave front 

and tangent to the seismic ray at a local scale (Zhang et al. 2013; Wang et al. 2014; Ding et al. 2016). 

Thus, ray paths can be traced following the travel time gradient. The negative direction of the 

gradient should be taken since the ray is traced back from receivers to the source. Similar to the LTI 

solver approach, the method operates iteratively to find the intersections between ray paths and 

mesh cells. The ray is traced by connecting the segments defined by travel time gradient 

intersections with the cell faces. 

Many methods have been proposed to approximate travel time gradient on unstructured meshes. 

Some approaches rely on a first order linear gradient reconstruction such as the Averaging-Based 

method (ABM), the Regression-Based method (RBM), the Green-Gauss method and the Raycasting 
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(ter Braak and Juggins 1993; Ledergerber et al. 2008; Correa, Hero and Ma 2011). For such methods, 

travel times are approximated at each point x0 (x0
1, x0

2, x0
3) t using a first order Taylor expansion: 

  (    )   (  )   
    (  )  (15) 

where   (  ) is the travel time gradient and h is the discretization step. Some approaches can be 

extended to higher order gradient reconstruction, such as the Regression-Based method (RBM). A 

second order approximation of the travel times is used in this case: 

 
 (    )   (  )   

    (  )  
 

 
    (  )     (16) 

where H(x0) is the travel time Hessian matrix.  

Three methods were tested in this study. The first is the ABM. The second is the RBM with a first 

order approximation of travel time gradient and the last one is the second order version of the RBM.  

-The Averaging-Based method: For this method, the travel time gradient is calculated at a given cell 

vertex as a weighted linear combination of gradients computed at each neighbouring cell (Correa et 

al. 2011). The gradient at point x0 is given by 

 
  (  )  ∑    ( )

  

   

  (17) 

where   ( ), fi and nc are respectively the travel time gradient, the cell weighting factor and the 

number of neighbouring cells. The travel time gradient   ( ) inside each cell i is assumed constant 

and is computed by solving (Correa et al. 2011). 

 

[

(     )
 

(     )
 

(     )
 

]      [

 (  )   (  )

 (  )   (  )

 (  )   (  )
], (18) 

where x1, x2 and x3 are the other three vertices of the cell i. The left-hand side is a 3 3 matrix with 

full rank in the case of non-degenerated tetrahedron. Thereby, the system can be solved exactly 

using direct methods.  
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Different representations were proposed to express weighting factors appearing in equation 17.  

1- A uniform function: in this case, all cells have the same weights. The method is 

recommended for meshes showing homogeneous cell size. 

2- A volumetric function: each cell is weighted using its relative volume. The method is 

equivalent to the Green-Gauss Method (Correa et al. 2011).  

3- An inverse centroid distance function: the travel time gradient at each cell is weighted using 

inverse distance from vertex x0 to correspondent cell centroid. 

Correa et al. (2011) compared different weighting functions and proved that the inverse centroid 

distance gives the highest accuracy compared to the other methods. Thus, the ABM with inverse 

centroid distance weighting was chosen for this work. This approach is only valid to calculate travel 

time gradient at cell vertices and thus if the receiver falls on an edge, on a face, or inside a cell, travel 

time gradients must be computed at each neighbouring vertex. The gradient components are then 

approximated at the receiver position using respectively 1D, 2D or 3D linear interpolation.  

-The Regression-Based method: The method is also known as the Least-squares gradient 

reconstruction (Dahoe and Cant 2004) or the method of Moving Least-Squares (Gavete et al. 2003; 

Ledergerber et al. 2008). The travel time gradient computed makes use of multidimensional 

regressions. For M nodes surrounding the point x0, equation 15 can be written M times and gives the 

following linear system of equations which is written in matrix notation as:     (  )   , where: 
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(19 a) 
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 (  )   (  )
 

 (  )   (  )]
 
 
 
 
 

. 

 

(19 b) 

An M  M diagonal matrix W can be inserted in the system to give different weights to nodes. The 

system can be written as: 

       (  )       (20) 

The weight coefficients can follow a uniform or an inverse distance function. Tests conducted by 

Mavriplis (2003) and Correa et al. (2011) have shown that better accuracy is achieved with inverse 

distance weighting and thus this weighting scheme was retained for this study. The linear system of 

equations described by equation 20 is usually overdetermined and can therefore be solved using the 

least-squares method.  

One should note that RBM is easily extended to second order gradient reconstruction by adopting 

the second order Taylor expansion (the equation 16).  The system of equations to be solved then 

becomes: 
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, (21) 

where vect ( ) is an operator transforming a matrix to a vector by vertically appending its columns in 

order (Erem and Brooks 2011). The system is solved the same way as for equation 19, using least-

squares. The travel time gradient components are stored in the first 3 elements of the solution 

vector.  
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Accuracy and performance 

Backward process 

The averaging and regression-based methods as well as the LTI local solver ray-tracing were 

evaluated in terms of their accuracy and computing time requirements. All of the results presented 

were obtained using a 3 GHz 8-Core Intel Xeon machine running macOS Mojave 10.14.1 with 64 Go 

1866 MHz DDR3 RAM. All algorithms have been implemented in C++ and compiled with the clang 

compiler version 10.0 with level 3 optimization turned on.  The source code is available on github 

(Giroux and Nasr 2018). Although these implementations have been parallelized following a task-

based approach (Giroux and Larouche 2013), parallel performance is not assessed in this paper. 

The accuracy of the methods was the first metric to be investigated by using the same mesh 

resolution, slowness model and forward step solution (the DSPM). The only modification was the 

method used for the backward process. The analysed approaches include the LTI solver, the steepest 

gradient reconstruction using the ABM, the first order regression-based method (FO-RBM) and the 

second order regression base method (SO-RBM). Travel times obtained after interpolation of the 

forward-step travel times at receiver locations are also presented to help quantify the benefits of the 

different processes used for computing the backward step. For all tests in this section, the domain 

dimensions, the velocity model as well as the receivers and the seismic source remain the ones 

described in section 2.1. Thus, a vertical gradient velocity model, a point seismic source placed at the 

centre of the cubic domain and one thousand randomly distributed receivers were used. In this first 

test, the number of primary nodes is still 11,026 and one secondary node per edge was added for all 

domain cells. The total number of nodes was increased to 3 edge nodes and 3 face nodes 

(DSPM_1_1 according to the nomenclature presented in Figure 2) within a radius of 0.1 km around 

the source. This brings the total number of nodes to 82,172. Since the smoothness of this model is 
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comparable to velocity models that are typically obtained from inversion, this seems an appropriate 

choice. For this numerical experiment, the seismic source was placed at the centre of the domain. 

The absolute and relative travel time errors were computed for each receiver and are shown in 

Figure 7 and Table 3.  

Errors computed for different methods show that the LTI solver is less accurate than the steepest 

gradient methods (the ABM, the FO-RBM and the SO-RBM) by one to two orders of magnitude. To 

explain the low accuracy of the LTI solver, three hypotheses can be postulated. The first is that the 

method operates at the scale of one cell and uses only 4 nodes to determine ray path intersection 

with mesh cells, whereas the steepest gradient methods relies on a cloud of nodes 5 to 8 times 

greater for this mesh resolution. The number of nodes used is therefore a crucial factor to better 

approximate the ray path. Indeed, tests that used the FO-RBM with travel time gradient computed at 

the scale of one cell (only the 4 cell nodes are used) showed accuracy that, albeit slightly less, is of 

the same order of magnitude as was obtained with the LTI solver. This is to say that the LTI solver 

approach is somewhat equivalent to the steepest gradient methods operating at the scale of one cell 

but it gets left behind when more nodes are available.  

The second hypothesis is that the LTI solver depends more on the geometry of the cells because 

faces with obtuse angles have a significant deleterious effect on the accuracy of the LTI solver. 

Unfortunately, unlike for the forward process, there are no ingenious modifications that can brought 

to bear this issue.  Consequently, w2 can have a negative value and thus it is impossible to calculate a 

point that minimizes the travel time at this position (equation 9; Lelièvre et al. 2011). It is also 

conceivable to have a positive value of w2 that leads to a point that falls outside face borders. Under 

both scenarios, the ray path is forced to pass through cell vertices. This deviation increases 

considerably the travel time error along the ray especially with low mesh resolution. As a 

consequence, this means that the LTI solver accuracy depends more on cell density than the 
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steepest gradient methods. The final hypothesis to explain the poor performance of LTI is that the 

solver operates poorly near source nodes. The violation of the plane wave approximation at source 

vicinities is likely the main culprit. 

For the steepest gradient methods, the tests showed that SO-RBM gives the highest travel time 

accuracy, as can be seen in Figure 7 and Figure 8. The second order approximation of travel times 

based on the computation of the Hessian Matrix H(x0) ensures higher accuracy for the travel time 

gradient calculation. However, the RBM based on first order approximation (FO-RBM) seems to be 

less accurate by one order of magnitude compared to other methods. Indeed, with increasing 

neighbouring node number, matrix A of equation (19 a), an overdetermined system, becomes more 

ill-conditioned, which implies more travel time gradient error. On the other hand, the ABM shows an 

absolute and a relative error with the same order of magnitude as the SO-RBM despite the fact that 

it calculates travel time gradient using a first order approximation. Contrary to the FO-RBM that uses 

the same approximation order, the ABM provides an exact solution to a series of 3 by 3 well-posed 

systems (equation 18) for non-degenerated neighbouring tetrahedron and does not suffer 

consequently from conditioning problems as does the FO-RBM.  

The second evaluation metric evaluated for these backward step processes is computation time. For 

assessing this metric, numerical experiments with different mesh resolutions were performed. The 

results reveal that CPU time for all methods are closely matched as shown in Figure 8. FO-RBM 

remains the fastest and the SO-RBM remains the slowest for all the tests. The relative difference 

between the fastest and slowest method tends to decrease as mesh resolution increases.  It is 

possible to see that the ABM has a slight advantage over the SO-RBM in terms of computation 

speed, but the increase in accuracy for the latter is significant.  For this reason, and because 

computation time difference is rather small, we opt to favour the SO-RBM. 
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Looking at the spatial distribution of errors, there is no clear correlation with distance to the source 

for the backward process which is at odds with the results of the forward step performed in section 

2.1. Figure 9 shows the absolute and relative errors for LTI and SO-RBM as examples. Results for the 

ABM and FO-RBM are comparable. There is no evidence that absolute errors are higher further away 

from the source or that relative errors are higher closer to the source. After close inspection it seems 

that higher errors are aggregated in some portions of the model.  We have examined the source of 

this aggregation to see if there is a correlation with mesh quality or error at primary nodes, but there 

is no obvious cause at this stage. Nonetheless, this aggregation is likely caused by a combination of 

factors such as: mesh quality, accuracy of gradient computation or LTI solver, and propagation of 

error at primary nodes. 

In another series of tests, the steepest gradient method has been compared to the standard SPM. 

Figure 10 shows the errors and CPU time for the DSPM_1_1 with SO-RBM presented above with 

errors and CPU time for standard SPM. Two different tests were done with SPM, the first with travel 

times calculated at the forward step (SPM fw, top figures) and the second with travel times 

calculated with the SO-RBM (SPM bw, bottom figures).   

The first observation that can be made is that computing travel times during the backward step has a 

tremendous impact on accuracy. It effectively reduces the errors by more than one order of 

magnitude. This effect is most pronounced at finer mesh resolution. Comparing results for the SPM 

alone, this improvement in accuracy is obtained at the cost of an increase in computation time 

ranging between 5% and 45% (27% on average).  The second observation that can be made is that 

the level of error with DSPM is in the same order of magnitude as the SPM with SO-RBM, albeit 

slightly higher.  On the other hand, using the DSPM is always faster by a significant proportion.   
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In the final series of tests for the backward step process, we examined the influence of the number 

of secondary and tertiary nodes on the performance of DSPM.  Three configurations were compared 

to the DSPM_1_1 (i.e. DSPM_1_2, DSPM_2_1 and DSPM_1_3). All of these tests used the SO-RBM.  

Moreover, we also used the same domain, velocity model, seismic source and receiver positions 

described in section 2.1. Errors and CPU times are shown in Figure 11.  As expected, increasing the 

number of nodes improves accuracy.  It is interesting to note, however, the difference between 

DSPM_1_1 and DSPM_1_2, where we can see that an increase in the number of tertiary nodes 

improves accuracy at the cost of a very slight increase in computation time (Figure 11).  The use of 

tertiary nodes thus appears to be an efficient way to improve accuracy. 

To sum up, it seems clear that the DSPM at the forward step and the SO_RBM at the backward 

process both ensures better accuracy compared to similar methods. The hybrid approach proposed 

in this work is the combination of these two methods.  

Accuracy for complex media 

Many alternative approaches were examined in the previous sections for forward and the backward 

processes. Based on the tests, the proposed solution to achieve the best accuracy while limiting 

computing cost is to combine the following two elements: (1) use DSPM to propagate the wave front 

during the forward process and (2) use SO-RBM to trace back the ray path from each receiver to the 

corresponding source. This approach ensures the best compromise between accuracy and 

computational cost. This solution can be considered as a hybrid combination between a modified 

version of the SPM and the steepest gradient raytracing method based on the SO-RBM.  

In order to further investigate its accuracy, the proposed approach was used to calculate travel times 

for other velocity models. Tests were done to see if the performance metrics observed in the initial 
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phase of this work could withstand more complex slowness models. The new tests used the same 

basic model that consists of a 1 km3 volume that contains 11,026 primary nodes. The seismic source 

and receiver positions also remained unaltered. For these tests, the only change was the inclusion of 

more complex slowness models. In all, a total of 4 slowness models were created, as shown in Figure 

12. The first one (Model A) is a vertical constant gradient of slowness squared: s2(z)=0.83+0.16z or 

 ( )  
 

√          
 .The second is a 3 D linear velocity gradient model. Velocity values are expressed 

at each point as a first order polynomial of position coordinates: V (x, y, z) = 2.04+0.15 x+0.35 y+0.95 

z. Model C is a radial model in which velocity values decrease linearly as a function of distance d 

form the seismic source: V=3.52-1.25 d. The last model (Model D) was built using random slowness 

values taken from a uniform distribution of velocity values in the interval 2000-3400 m/s. To get a 

smooth velocity aspect similar to those obtained with inversion process, a low-pass moving-average 

filter was applied to this last model. The filter window contains for each node their first and second 

neighbours. 

In order to test the accuracy for each model, true travel time values have been determined for each 

receiver using one of two strategies. For models for which an analytical solution exists, which is the 

case for the first three models, the true values were computed using the travel time analytic 

expression. The analytical solution is given by Fomel et al. (2009) for Model A and Model B and by 

Cerveny (2005) for Model C. When no analytical solution can be considered, as for Model D, an 

approximate solution is determined by computing travel times to receivers using the standard SPM 

and a high mesh resolution. Refinement was ensured here by adding about 1920 secondary nodes at 

each cell (SPM_30). A domain of nearly 52 million nodes was thus built. The travel times were 

calculated at the backward step with the SO-RBM scheme and are considered as the true values to 

be compared to those obtained using the proposed solution.  
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Results are presented in Figure 13. Note that only relative errors were considered to evaluate each 

model accuracy. The absolute errors were excluded here since it depends on the slowness 

distributions along ray paths which are not the same for all models. 

Model A shows a median relative error of 0.03%, a relative RMSE of 0.05% and maximum relative 

error of 0.22%. The same values were recorded for Model B. Error for Model C is slightly higher: 

recorded values reach 0.22% for the median relative error, 0.3% for the RMSE error and 0.9% for the 

infinity norm. Note that this high error is more strongly influenced by the slowness interpolation 

process at points constituting ray path rather than to the raytracing step. Comparison of 

interpolated and true slowness values for this model shows a significant deviation specially near the 

seismic source, with a difference reaching 1.11%. Furthermore, travel times calculated along ray 

paths using the true slowness values show error closer to the previous two models: a median 

relative error of 0.03%, a relative RMSE of 0.05% and a maximum relative error of 0.52% were 

calculated.  

The random slowness model (Model D) leads to some negative differences with the reference 

model: the travel times computed using the proposed method are smaller than those derived from 

the standard SPM. Since the reference travel time values were calculated based on the SPM with a 

high density of nodes, the process can be seen as a comparison between the two methods more 

than an accuracy test. Qualitatively travel times computed using the proposed method can be 

considered as acceptable: they are slightly different than those given by the SPM. For Model D, the 

median relative difference is about 0.02% while the relative RMSE and the maximum difference are 

estimated respectively to 0.04% and 0.2%.  
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The different tests showed that the combination of the SPM method with dynamic nodes and the 

SO-RBM for raytracing can work efficiently for a number of different slowness models. Although the 

accuracy varies from one model to another, the proposed method is still able to calculate seismic 

travel times with negligible errors even when a relatively coarse mesh is used. For example, with 

Model D, the proposed solution, using only 84,014 nodes (primary, secondary, and tertiary), ensures 

accuracy within the same order of magnitude as the standard SPM operating with more than 618 

times the number of nodes. The proposed solution is therefore less time consuming since only 4.3 s 

are required to calculate travel times for all receivers while the same task is just below 875 times 

longer with the classic SPM at the required mesh resolution.   

Accuracy for a steep topography model  

Unstructured meshes are usually used to better approximate geological domains that present steep 

topography or internal discontinuity like faults, cavities or stratigraphic unconformities. These 

meshes generally outperform regular meshes when fitting irregular borders or lithologic contacts. 

For that reason, we present in this section performance tests for such particular domains. We 

considered for this purpose the case of an irregular topography model, representative of a cliff. The 

horizontal dimensions are 450 m by 530 m and the relative elevation of the cliff ranges from 50 m to 

330 m (Figure 14). To mimic a hypocentre relocation problem, we used in this test one receiver and 

1000 seismic sources randomly placed in the model. The receiver is placed in the centre of the 

model at the surface. The domain was discretized using about 12,000 primary nodes and 56,000 

cells. A variable mesh density is adopted in this test, with cells 10 times finer at the top of the model 

to better approximate the topology. The choice is also justified by our intention to test the proposed 

approach on mesh with variable density, another advantage of tetrahedral meshes widely exploited. 

A total of 16 secondary nodes are used to refine the mesh everywhere in the whole domain while 
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144 tertiary nodes are added in each cell locally around seismic sources at a radius of 100 m (scheme 

DSPM_2_2). This raises the number of primary and secondary nodes close to 277,000, and the 

number of tertiary nodes is about 180,000 on average. 

We performed this test with a homogeneous velocity having a value of 3.5 km/s (Figure 14). Using a 

constant velocity model allows observing the effect of topography on the seismic rays. For instance, 

most rays outgoing from seismic sources on the surface of the model are forced to follow 

topographic irregularities to reach the receiver. 

As for the random velocity model, there is no analytic solution to calculate the true travel times for 

this model. To evaluate the efficiency of the proposed approach, approximative travel time values 

calculated via the classical SPM after update at the backward step are taken as a reference solution.  

To further improve accuracy, the mesh used with the DSPM method was refined by splitting the 

cells, which allows preserving the topographic surface. The number of nodes used to get this 

solution is over 289 million nodes, of which over 85,000 are primary (SPM_25). The error generated 

by this high-resolution mesh is expected to be negligible, and the obtained travel times are 

considered as the true solution.  

The errors are calculated for each seismic source and shown in Figure 15. For the absolute error, the 

average value is about 0.05 ms, the maximum does not exceed 0.32 ms and the RMSE is of 0.07 ms. 

These values correspond to an average relative error in the order of 0.08%, a relative RMSE of 0.12% 

and a maximum of 0.76%. Thus, deviations between travel times calculated via SPM and the 

proposed method remain negligible for this model also. This indicates that the approach operates 

well in the case of steep topography and concave domains. Furthermore, these results are similar to 
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errors obtained in the case of models without topography and show that the topography has 

generally little effect on the performance of our approach.  

Discussion 

Through this paper, various tests and comparisons have been made to find an efficient approach to 

compute seismic travel times. In this section, we discuss the innovative sides of the work as well as 

the interconnections that may exist with previous studies. Firstly, we presented in this work a new 

SPM version called the DSPM. The concept behind this solution is simple to set up, proved to 

increase accuracy and reduce significantly the computation cost. Instead of adding many secondary 

nodes homogeneously over the study domain as suggested by Gruber and Greenhalgh 1998, the 

DSPM operates by increasing the density of nodes in the vicinity of the source using tertiary nodes. It 

was shown that this approach permits enhancing travel time accuracy not only in the vicinity of 

sources but further for the entire domain. Using the DSPM implies specifying the subdomain radius 

where the tertiary nodes are added. A series of simple tests on a mesh with a narrow cell size 

distribution indicates that the benefits of using a radius larger than three times the average cell edge 

length are marginal, even at low mesh resolution and node density. These observations should, 

however, be reassessed for meshes with wide cell size distribution. 

The second point to discuss is the accuracy of the first order LTI solver on tetrahedral meshes. For 

the forward step, our results match those obtained by Lelièvre et al. (2011): the first order LTI solver 

suffers from some accuracy problems to ensure an efficient travel time computation at low and 

moderate mesh resolutions. Moreover, we tested this LTI solver to trace back seismic ray paths in 

the case of tetrahedral meshes. We proved that this mechanism is still not enough even when 

calculating travel times at a backward step along ray paths. Thus, we join to Lelièvre et al. (2011) to 
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emphasize the importance of creating a second order LTI solver in order to enhance the solver 

accuracy. Until conceived that solver, the hybrid approach presented in this work is still among the 

most efficient ways to calculate seismic travel time on tetrahedral meshes. Despite its high accuracy 

and lower computation cost, this approach finds its application limits when it remains mainly 

recommended for smooth velocity models. The stationarity of velocity models is needed here since 

the gradient is calculating locally using many cells. With models showing sharp variations, the travel 

time gradients calculating at these vicinities will have different directions and cannot be correctly 

summed to get a representative average. Approximating the ray path using the average gradient is 

no longer valid in this case. This issue is more common to low-resolution meshes and can be solved 

by refining local domain regions where sharp variations are expected. However, this solution 

supposes that the positions of the sharp velocity variations are well known which is not always the 

case. Finally, we have presented an application of the proposed approach on a steep topography 

model. Results showed that projection the seismic rays upon the irregular domain borders can be an 

efficient solution to calculate travel times in such cases. This avoids to make any transformation into 

curvilinear coordinates or other systems as made in some previous approaches aiming to calculate 

travel time in irregular topography domains (Lan and Zhang 2013).    

Conclusion 

In this work, an efficient method to compute seismic travel times for unstructured tetrahedral meshes 

is presented. The method uses a combination of approaches carefully chosen to reach maximum 

precision and efficiency. The proposed solution adopts the strategy of calculating travel times along 

the ray paths as was introduced in the LTIM. The method is justified since seismic rays represent a 

good approximation of the paths along which the seismic waves traveled. This allows for better 



 

Seismic travel times in tetrahedral meshes 

 

 

This article is protected by copyright. All rights reserved. 

Nasr et al. 

32 

accuracy without the necessity of increasing mesh resolution and thus reduces memory and 

computational requirements. 

Similar to the LTIM, the proposed solution operates in two separate steps: (1) a forward process to 

propagate the wave front from the seismic sources to the whole domain and (2) a backward process 

to back-trace ray paths for all source-receiver pairs and compute final travel times. Many alternatives 

were tested for each step. Results from our tests for the forward process showed some advantages of 

the SPM update mechanism compared to the LTI local solver. Indeed, the LTI solver, widely stable 

when a regular grid is used, suffers from accuracy issues when used on unstructured meshes that are 

based on tetrahedral elementary cells. With such cell shape, neither the node number nor their 

arrangement are suitable for linear interpolation of the travel times which leads to a rapid degradation 

of the accuracy of results. Achieved tests confirmed that the precision of the LTI solver depends 

significantly on the mesh topology. The results from the tests involving the SPM updater 

demonstrated that this mechanism works really well with tetrahedral cells and that it can be an 

alternative solution for the cases where there is a violation of the planar wave approximation proximal 

to the source nodes or when the causality conditions are no longer valid near cell faces with obtuse 

angles. The results also showed that adding secondary nodes dynamically around sources can 

enhance travel time computation accuracy everywhere in the domain and especially near source 

nodes. The DSPM approach was thus adopted for the forward process.  

For the backward process, two categories of methods were tested: (1) the method based on the LTI 

solver and (2) those using the steepest travel time gradient to approximate the ray paths from 

receiver to corresponding seismic source. The LTI solver mechanism proved less accurate for the 

same reasons as enumerated in the discussion of the forward process. The steepest gradient 

approach using the second-order regression-based method (SO-RBM) was therefore chosen in order 

to compute the travel time gradient. This approach provides the best compromise between accuracy 

and computation time and works well with relatively coarse meshes, which is a big advantage for 



 

Seismic travel times in tetrahedral meshes 

 

 

This article is protected by copyright. All rights reserved. 

Nasr et al. 

33 

inversion problems. The method has been parallelized, another advantage for inversion problems. 

Note that the presented approach emphasizes the major role of the hybridization between different 

raytracing methods to enhance accuracy and computational cost when calculating seismic travel 

times. A hybrid approach such as the proposed one can operate more efficiently than the standard 

versions of SPM and of LTIM.  

The method was tested on various models that include relatively sharp velocity gradients and 

irregular topography, and results have shown an acceptable error and computation time. The results 

of the tests also emphasize the crucial role of the slowness interpolation method and the error that 

can be introduced at this step. Future work includes testing more accurate local solvers such as 

those based on cubic spline interpolation (Zhang et al. 2013) and using the proposed solution as part 

of inversion codes. More accurate slowness interpolation approaches for the backward step will also 

be tested.  
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List of the figure legends 

Figure 1: Illustration of SPM raytracing in a 2D homogeneous velocity model with paths imposed to secondary 

nodes.  Black pentagons are primary nodes, grey circles are secondary nodes.  The solid black line is the 

discrete path crossing secondary nodes.  The path should be linear from the source to the receiver (dashed 

line).   
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Figure 2: Cell face showing different node categories and the nomenclature used to specify discretization.  The 

first number indicates the number of secondary nodes on an edge, and the second number indicates the 

number of tertiary nodes between secondary nodes, on an edge. 
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Figure 3: Absolute (left) and relative (right) error, as well as CPU time (right) for the FMM and SPM with 

different mesh resolution. For the SPM, 3 secondary nodes were added in each cell face and edge. The target 

and the box limits correspond respectively to error median, first and third quartiles, and the whisker refers to 

the 5% and 95% percentiles (McGill, Tukey and Larsen1978). 

 

Figure 4: Relative error versus distance from source for three discretization schemes.  Dashed lines are the 

average errors. The bottom left figure is the relative error histogram for the tested schemes, and the bottom 

right is the CPU time for the three runs. 
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Figure 5: Relative travel time error as function of distance from the source for different DSPM schemes and 

subdomain radii R. Radii are normalized by the mean cell edge length (⟨el⟩).  Upper right legend refers to the 

error plots. 
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Figure 6: Geometric scheme for raytracing LTI solver at tetrahedron cell scale (left) and at triangle face (right) 

(Lelièvre et al. 2011). 

 

Figure 7: Box and whisker plots showing accuracy comparison between 4 backward process methods as well as 

travel times computed at the forward step by interpolation.  
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Figure 8: Performance comparison as a function of mesh resolution between 4 backward process methods 

with the DSPM_1_1: average of absolute error (left), average of relative error (centre), and CPU time (right).  

Velocity model, domain dimensions, seismic source and receiver positions remain those described in section 

2.1.  

 

Figure 9: Spatial distribution of absolute and relative error for the LTI (top) and SO-RBM (bottom) backward 

process methods. Source position is indicated by the green sphere. 
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Figure 10: Performance comparison between the DSPM with backward travel time calculation (SO-

RBM) and the travel times computed with the standard SPM at the forward step (labelled fw in top 

figures) and at the backward step (marked by bw in the bottom figures). Velocity model, domain 

dimensions, seismic source and receiver positions remain those described in section 2.1. 

 

Figure 11: Influence of the number of secondary and tertiary nodes on the performance of the 

DSPM, as function of mesh resolution.  
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Figure12: Velocity models used to test the proposed approach. Model A: constant gradient of slowness 

squared, Model B: 3D constant gradient of velocity, Model C: radial velocity model, Model D: random velocity 

model. 
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Figure 13: Histograms of travel time relative error for the models in Figure 12. 
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Figure 14: The cliff model used to test the approach on an irregular-topography model. Green dot is the 

receiver while the red dots are the visible seismic sources that appear on the surface.   

 

Figure 15: Histograms of relative and absolute errors for the model in Figure14 
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Table 1: Number of the variables to store and interpolation calls for a double and a simple meshing. The example 

assumes a model of almost 5,000 nodes for the inversion problem and 35,000 for the ray-tracing step.  SPM is used with 

one secondary node. 

 Double meshing Simple meshing (with SPM) 

Nodes for the inversion process  4,920 4,920 

Nodes at ray-tracing step 35,132 34,961 

Total stored nodes  40,052 34,961 

Cells for the inversion process 22,744 22,744 

Cells at ray-tracing step 175,708 22,744 

Total stored cells 198,452 22,744 

Slowness interpolation operations 40,052 30,041 

 

Table 2: comparison of the SPM_9, SPM_7 and DSPM_7_1 scheme 

 SPM_9 SPM_7 DSPM_7_1 

Secondary nodes per edge 9 7 7 

Secondary nodes per face 36 21 21 

Secondary nodes per cell 198 126 126 

Tertiary nodes per edge 0 0 8 

Tertiary nodes per face 0 0 84 

Tertiary nodes per cell 0 0 384 

Total nodes (x 10
6
) ~4.7 ~2.8 ~3.0 
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Table 3: Absolute and relative errors travel time computed at the forward step (FW) and for 4 backward process 

methods (LTI solver, ABM, FO-RBM, SO-RBM) 

 Forward LTI solver ABM FO-RBM SO-RBM 

Average of absolute error (ms) 5.8 3.8 0.13 1.37 0.11 

Absolute RMSE
*
 (ms) 6.3 4.4 0.15 1.61 0.13 

Average of relative error (%) 4.5 2.9 0.10 1.07 0.08 

Relative RMSE (%) 4.8 3.3 0.11 1.25 0.09 

Maximum absolute error (ms) 16.1 15.6 0.51 8.42 0.42 

Maximum relative Error (%) 30.0 14.4 0.31 5.59 0.31 

* Root-mean-square error 

 

Algorithm 1: 2D LTI solver for cell scale raytracing 

inputs: Receiver R, face F, Slowness s 

1t ← ∞ 

2 for all edges that belong to face F 

3         calculate  ̃
2
 

4         if  ̃
2 

> 0 

5              calculate   

6              Pi ← A+  c // A is the edge node with smallest travel time 

7              if T (Pi) + s RPi < t 

8                     P← Pi 

9                     t ←T(Pi) + s RPi 

10            end if 

11end for 

12 for all vertices V that belong to face F 

13        if T(V) + s RV < t 

14           P← V 

15           t← T(V) + s RV 

16        end if 

17 end for 

18 return P 
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Algorithm 2: 3D LTI solver for cell scale raytracing 

Inputs: Receiver R, the n faces surrounding R, Slowness s 

1t ← ∞   

2 for i= 1 to n 

3     calculate w
2
 

4     if w
2 

> 0 

5         calculate   and    

6         Pi ← A+  c+   b // A is the face node with smallest travel time 

7         if T(Pi)+ s RPi < t // T(Pi) is the interpolated travel time at Pi 

8              P← Pi 

9              t← T(Pi) + s RPi 

10       end if 

11   end if 

12   Pi← 2D-LTI solver (R, faces(i), s)  

13   if T(Pi)+ s RPi < t  

14        P← Pi 

15        t← T(Pi) + s RPi 

16   end if 

17end for  

18 return P 

 

 

 

 

 


