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Abstract 30 

The Middle East can experience extended wintertime spells of exceptionally hot weather, which 31 

can result in prolonged droughts and have major impacts on the already scarce water resources of 32 

the region. Recent observational studies point at increasing trends in mean and extreme 33 

temperatures in the Middle East, while climate projections seem to indicate that, in a warming 34 

weather scenario, the frequency, intensity and duration of warm spells will increase. The 35 

nonstationary warm spell frequency analysis approach proposed herein allows considering both 36 

climate variability through global climatic oscillations and climate change signals. In this study, 37 

statistical distributions with parameters conditional on covariates representing time, to account for 38 

temporal trend, and climate indices are used to predict the frequency, duration and intensity of 39 

wintertime warm spells in the Middle East. Such models could find a large applicability in various 40 

fields of climate research, and in particular in the seasonal prediction of warm spell severity. Based 41 

on previous studies linking atmospheric circulation patterns in the Atlantic to extreme 42 

temperatures in the Middle East, we use as covariates two classic modes of ‘fast’ and ‘slow’ 43 

climatic variability in the Atlantic Ocean (i.e., the Northern Atlantic Oscillation (NAO) and the 44 

Atlantic Multidecadal Oscillation (AMO) respectively). Results indicate that the use of covariates 45 

improves the goodness-of-fit of models for all warm spell characteristics. 46 

Keywords: Winter warm spell; Nonstationary model; Frequency analysis; Climate index; Climate 47 

change; Natural climate variability; Statistical distribution; Middle East.  48 
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1. Introduction 49 

In the recent years, an important number of heat waves have been observed around the 50 

world resulting in severe adverse societal and economic impacts (Ouarda and Charron, 2018). 51 

Examples include Chicago in 1995 (Karl and Knight, 1997), Europe in 2003 (Garcia-Herrera et 52 

al., 2010), Greece in 2007 (Founda and Giannakopoulos, 2009), Australia in 2009 (Karoly, 2009), 53 

Russia in 2010 (Dole et al., 2012) and Eastern China in 2013 (Sun et al., 2014). While the most 54 

immediate adverse impacts of extreme temperatures are those on human health, adverse impacts 55 

on natural ecosystems are also important: extreme temperatures and prolonged dry spells induce 56 

significant water stress, which brings long-term consequences on vegetation development (Gobron 57 

et al., 2005). A number of studies have reported increases in extreme temperature indices since the 58 

middle of the 20th century (Alexander et al., 2006; Brown et al., 2008; Perkins et al., 2012; Coumou 59 

et al., 2013). It has been argued in several studies that the increase in the reported extreme events 60 

is a consequence of global warming (Coumou and Robinson, 2013) which is about 0.5-0.6°C 61 

globally since 1951-1980 (Hansen et al., 2012). Many studies point out that, in a context of climate 62 

change, the frequency, intensity and duration of extreme heat waves are likely to increase in the 63 

future based on climate change scenarios (IPCC, 2012; Coumou and Rahmstorf, 2012; Coumou et 64 

al., 2013; Russo et al., 2014; Basha et al., 2017). 65 

The Middle East, one of the world most water-stressed regions, is especially sensitive to 66 

global warming. The majority of studies on the evolution of climate extremes in the Middle East 67 

concluded to an increase in temperature extreme indices and a decrease in precipitation extreme 68 

indices during the recent decades (Ouarda et al., 2014). Future climate projections seem also to 69 

support an increasing trend in heat extremes over the Middle East. Lelieveld et al. (2016), for 70 
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example, pointed up a consistent positive trend in warm extremes over the region in the CMIP5 71 

ensemble models, for both the RCP4.5 and RCP8.5 (business as usual) scenarios. 72 

Most of the studies analyzing the extreme temperature regime in the Middle East focus on 73 

summer extreme temperatures, due to their immediate impacts on population health (Masselot et 74 

al., 2018). However, winter warm spells have also important health, hydrological and 75 

environmental impacts. They seriously enhance evapotranspiration and reduce potential 76 

groundwater recharge over the water stressed region of the Middle East. Gonzalez et al. (2016) 77 

showed that low rainfall, economic and population growth and agricultural development resulted 78 

in a dramatic depletion of groundwater resources in the United Arab Emirates (UAE) region during 79 

the period 2003-2012. In the context of rapid growth and scarcity of water resources, the Middle 80 

East is particularly vulnerable to future climate change (Evans, 2010). Given the evidence of an 81 

increasing trend in the observed frequency of occurrence of hot temperature extremes and the 82 

projected climate change in the future (IPCC, 2007), the impacts of extreme temperatures have 83 

become a growing concern for the Middle East especially during the wet winter season. 84 

The study of the physical mechanisms behind heatwaves has been a topic of increased 85 

interest (Horton et al., 2016). Perkins (2015) reviewed the physical mechanisms driving heatwaves 86 

and identified three major mechanisms. The first one is the presence of a high-pressure synoptic 87 

system which results in a stationary system that remains over an area for an abnormally long 88 

period. Another driving mechanism is related to the coupling of atmosphere and land surface. 89 

Indeed, interactions between air temperature and soil moisture result in important summer 90 

temperature variability. The third driving mechanism is associated to climate variability and large-91 

scale teleconnections which influence extreme temperatures at a global scale. 92 
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Large scale oscillation patterns have a preponderant influence on the climate of the Middle 93 

East. Kumar et al. (2017) demonstrated that the Atlantic and Mediterranean SSTs have a 94 

significant influence on winter warm spells over the region. The authors stated that “large and 95 

persistent Atlantic SST anomalies modulate the occurrence of the winter warm spells in the Middle 96 

East at interannual and decadal scales through the mediation of the Mediterranean SSTs, creating 97 

the conditions for the development of extended and persistent anticyclonic structures over the 98 

region”. The link between circulation modes and the Middle East climate has been established in 99 

many studies (Türkeş and Erlat, 2003; Folland et al., 2009; Erlat and Türkeş, 2013; Donat et al., 100 

2014). 101 

The Northern Atlantic Oscillation (NAO) is the most frequent mode reported to have an 102 

influence on the region (Mann, 2002; Marshall et al., 2001; Cullen et al., 2002; Chandran et al., 103 

2016; Naizghi and Ouarda, 2017). The impacts of this pattern are known to be much stronger 104 

during the winter season (Marshall et al., 2001; Cullen et al., 2002). Wetter and cooler conditions 105 

than normal in the Middle East are associated with positive phases of NAO while drier and warmer 106 

than normal conditions are associated with negative phases (Cullen and deMenocal, 2000). 107 

Persistent positive values of NAO observed since 1980 may have masked the influence of 108 

anthropogenic climate change in the region in recent decades (Mann, 2002). Kumar et al. (2017) 109 

also observed that the decadal trends in the occurrence and duration of winter warm spells in the 110 

Middle East are significantly correlated with the Atlantic Multidecadal Oscillation (AMO). 111 

The influence of other atmospheric circulation indices seems to be less important. The El 112 

Niño–Southern Oscillation (ENSO) phenomenon, known to have important impacts on climate 113 

around the world, is reported to have a weak influence on temperatures in the region (Halpert and 114 

Ropelewski, 1992; Karabörk et al., 2005). However, ENSO is reported to have a significant impact 115 
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on the precipitations in the Arabian Peninsula (Ouarda et al., 2014; Niranjan Kumar et al., 2016), 116 

although mainly in terms of moisture advection and precipitable water availability. 117 

Statistical methods based on extreme value theory have been used extensively in the 118 

analysis of hydrological and weather extremes (Katz et al., 2002; El Adlouni et al., 2007; Ouarda 119 

et al., 2019). They have been recently applied to heat waves and warm spells (Furrer et al., 2010; 120 

Khaliq et al., 2011; Keellings and Waylen, 2014, 2015; Katz and Grotjahn, 2014; Photiadou et al., 121 

2014; Abaurrea et al., 2015). Traditionally, stationarity in time series is assumed and static 122 

probability distributions are used. However, in the context of climate warming and under the 123 

influence of large scale oscillation patterns, weather extremes are not stationary. One approach to 124 

deal with nonstationarity in data samples is to introduce covariates into the parameters of the 125 

distribution (e.g. Strupczewski at al., 2001; Khaliq et al., 2006; Ouarda and El Adlouni, 2011). 126 

Such distributions are termed conditional because they depend on time-dependent covariates. Such 127 

covariates could incorporate trends, cycles or physical variables that can represent atmosphere-128 

ocean patterns (Katz et al., 2002; Hundecha et al., 2008). Conditional distributions with a covariate 129 

representing the year were extensively used for trend analysis in climate extremes (Kharin and 130 

Zwiers, 2005; Brown et al., 2008; Laurent and Parey, 2007; Parey et al., 2007; Keellings and 131 

Waylen, 2014). Conditional distributions were also used with climate indices of atmospheric 132 

circulation as covariate to evaluate the statistical significance of the influence of large scale 133 

atmospheric patterns on climate extremes (Sillmann et al., 2011; Photiadou et al., 2014; Keellings 134 

and Waylen, 2015; Grotjahn et al., 2016). 135 

In general, models with parameters that are conditional on climate indices may find 136 

applications in a number of fields where conditional risk management is required. The severity of 137 

warm spells could be predicted for the next season based on actual information about the covariates 138 
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and can help managers with the decision making process. Predictions of warm spell severity could 139 

be of interest for managers in various fields including agriculture (Crane et al., 2011), health care 140 

(Ebi et al., 2006; Patz et al., 2000; Bayentin et al., 2010) and hydrology (Pulwarty and Melis, 141 

2001). It is also possible to predict climate indices in the near future (Sutton et al., 2000; Lee and 142 

Ouarda, 2011). Climate forecasting was proven in Jones et al. (2000) to be beneficial for 143 

agriculture with decisions conditioned on ENSO phases. A climate forecast information system 144 

based on ENSO was developed in the southeastern USA for the management of risk in the field of 145 

agriculture (Fraisse et al., 2006). Lowe et al. (2011) reported that heatwave early warning systems 146 

have been implemented in 12 European countries to reduce the impacts on public health. 147 

In this study, we propose to model the frequency, duration and intensity of wintertime 148 

warm spells in the Middle East using nonstationary statistical models with parameters that are 149 

conditional on diverse climatic covariates. This approach allows us to account for the effects of 150 

global warming and large-scale climate oscillation patterns. The aim of this study is to assess the 151 

statistical significance of recent trends caused by both anthropogenic and internal climate 152 

variability on wintertime warm spells in the Middles East. Two important climate indices in the 153 

Atlantic known to have an influence on wintertime weather patterns in the Middle East, the NAO 154 

and the AMO, are used as covariates. The year is used as an additional covariate to represent the 155 

temporal trend. Analyses are performed on the regional averaged maximum temperature over a 156 

homogenous region in the Middle East. Such approach has never been applied to model climate 157 

extremes, including warm spell indices, in the Middle East. While nonstationary models for warm 158 

spells have been applied in other regions, models integrating both climate indices and a temporal 159 

trend have never been applied. 160 

2. Methods 161 
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2.1 Statistical modeling of warm spells 162 

2.1.1 Modelling of the intensity and frequency 163 

In extreme value theory, one approach that has received large popularity consists in 164 

extracting the most extreme value within a season and is termed block maxima (BM). Under a 165 

wide range of conditions, the distribution of BM can be approximated by the generalized extreme 166 

value (GEV) distribution (Coles, 2001). The cumulative distribution function of the GEV is 167 

defined by: 168 

( )
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     (1) 169 

where μ, α > 0 and κ are the location, scale and shape parameters respectively, and 170 

/ x  −    for 0  , x−  +  for 0 =  and /x u  −  −  for 0  . 171 

Another approach, termed peak-over-threshold (POT), consists in extracting exceedances 172 

over a sufficiently high threshold. This approach is more appropriate for the analysis of the warm 173 

spells in this study because they represent events over a high threshold. An advantage of this 174 

approach is that the upper tail of the distribution can be better sampled since more events can be 175 

considered during a given season, instead of limiting the sampling to only one peak as in the case 176 

of the BM approach (Lang et al., 1999). Another advantage is that the two extreme event 177 

components, the rate of occurrence and the intensity of exceedances over the threshold can be 178 

modeled separately. The rate of occurrence of rare events is generally modeled by a Poisson(POI) 179 

distribution as justified by the law of small numbers, while the intensity of exceedances over a 180 
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sufficiently high threshold is generally modeled by a Pareto (GP) distribution as justified by the 181 

theory of extreme values (Ashkar and Ouarda, 1996; Katz and Grotjahn, 2014). This consists in 182 

the POI-GP model where intensity and frequency are modeled separately with POI and GP 183 

respectively (Katz et al., 2002). 184 

The cumulative distribution function of the GP is defined by: 185 

( )
1/
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where u,   > 0 and κ are the threshold, scale and shape parameters respectively, /u x u    −  187 

for 0  , x u  for 0  . The parameter   depends on the threshold and is linked to the 188 

parameters of the corresponding GEV distribution by the relation:  189 

( )u   = + − .          (3) 190 

The probability mass function of the POI distribution is defined by: 191 

( ; ) / !, 1,2,nPoi N n e n n −= = = .       (4) 192 

where λ > 0 is the rate parameter and N is the number of crossings of the threshold u. 193 

2.1.2 Modelling of the duration 194 

It is also common to model the warm spell duration. In a number of studies, the durations 195 

of the warm spells were modeled with a geometric distribution (Furrer et al. 2010; Modal and 196 

Mujumdar, 2015; Keellings and Waylen, 2014; Wang et al., 2015). The probability mass function 197 

of the zero-truncated geometric distribution (GEO) is defined by: 198 
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1( ; ) (1 ) , 1,2,kGeo K k p p p k−= = − =        (5) 199 

where 1/p is the mean duration and K is the length of the warm spell. 200 

2.2 Nonstationary models 201 

In nonstationary models, distribution parameters are made conditional on time-dependent 202 

covariates. The relations between distribution parameters and covariates can take the form of 203 

simple linear combinations (El Adlouni et al., 2007; El Adlouni and Ouarda, 2009) or more 204 

complex models such as B-splines (Nasri et al., 2013; Thiombiano et al., 2017). When the POI-205 

GP model is adopted, usually, the scale parameter ( ) of the GP is made conditional on covariates, 206 

the shape parameter (κ) of the GP is kept constant, and the rate parameter (λ) of the POI is made 207 

conditional on covariates (Kysely et al., 2010; Modal and Mujumdar, 2015; Thiombiano et al., 208 

2018). In this study, the logarithm of the rate parameter   in POI can depend linearly or 209 

quadratically on a given time-dependent covariate tY : 210 

0 1ln( )t tY  = +
 
or 2

0 1 2ln( )t t tY Y   = + +
      

(6) 211 

where β are parameters to be estimated. Logarithmic transformations are used to ensure a positive 212 

value of the distribution parameters. For GP, the logarithm of the scale parameter can depend 213 

linearly or quadratically on the time-dependent covariate tY : 214 

0 1ln( )t tY  = +
 
or 2

0 1 2ln( )t t tY Y   = + + .      (7) 215 

For GEO, the logarithm of the location parameter can depend linearly or quadratically on the time-216 

dependent covariate tY :  217 
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0 1ln( )t tp Y = +
 
or 2

0 1 2ln( )t t tp Y Y  = + + .      (8) 218 

The cases of conditional distributions with 2 and 3 covariates are also considered. Given two 219 

additional covariates tZ  and tW , different combinations of linear and quadratic dependence 220 

relationships between the distribution parameter ( t , t  or tp ) and the covariates tY  and/or tZ  221 

are considered. 222 

Three main covariates are used in the nonstationary case: ‘fast’ (subdecadal) and ‘slow’ 223 

(multidecadal) climate indices (i.e., NAO and AMO respectively), and Time (represented by the 224 

year). The wintertime (NDJFM) averages of NAO and AMO are computed and used as covariates 225 

to model the frequency of the winter warm spells. Time is defined by a series of integers 226 

incremented from 1 to the number of years in the series, to model the frequency. For the duration 227 

and the intensity, each event can be identified precisely in time and thus more precise months can 228 

be used to compute the covariates NAO and AMO. A simple method used here consists in taking 229 

the average for the three-month period centered on the date of the maximum intensity of each 230 

warm spell. Time for the duration and intensity is considered fixed over the warm spell season 231 

within a given year but is allowed to shift from one year to another. 232 

2.3 Parameter estimation 233 

For a given model, the vector of the distribution parameters β is estimated with the 234 

maximum likelihood method (ML). For a given probability distribution f, the likelihood function 235 

for the sample 1{x ,..., x }nx =  is given by: 236 

1

( ; )
n

n t

t

L f x 
=

= .          (9) 237 
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Hence, ̂  is the estimator of   that maximizes the likelihood function nL . 238 

2.4 Model selection and comparison 239 

To select the complexity of a model with given covariates, the deviance statistic can be 240 

used for model selection as proposed by Coles (2001). Suppose two models M1 and M0, where M0 241 

is a subset of M1. The deviance statistic is defined by:  242 

1 1 0 02{ ( ) ( )}D M M= −          (10) 243 

where 1 1( )M  and 0 0( )M  are the maximized values of the log-likelihood for models M1 and M0 244 

respectively. It can be proven that D is distributed according to the 2

l  distribution where l is the 245 

difference between the dimension of M1 and M0. A test of validity of the model M0 relative to M1 246 

is to reject M0 in favor of M1 if D > 2

l  for a given level of significance. 247 

To compare the goodness-of-fit of different models, we use the Akaike information 248 

criterion (AIC), defined as: 249 

AIC 2ln( ) 2nL d= − + ,         (11) 250 

where d is the number of parameters of the model or the length of the vector  . This statistic 251 

accounts for the goodness-of-fit of the model and also for the parsimony through the parameter k 252 

whose value increases with model complexity. 253 

2.5 Definition of warm spells 254 

There is in general very little consensus and consistency in the literature on how to identify 255 

warm spells, and different studies often rely on very different definitions and selection thresholds 256 
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(Perkins and Alexander, 2012; Masselot et al., 2018). The simplest definition is ‘the period of 257 

consecutive days with temperature over a given relative or absolute threshold’, which, however, 258 

risks to marginalize the role of local climatology (Robinson, 2001). In this study we follow a 259 

percentile based criterion similar to the ones proposed by Della-Marta et al. (2007) and Stefanon 260 

et al. (2012), where a heat wave is defined as the period of consecutive days where the daily 261 

maximum temperature exceeds the long-term (climatological) 90th percentile of daily maximum 262 

temperatures. For each day of the year, a 90th percentile is calculated from a sample of 15 days 263 

centered on the considered day using data over the whole base period. This is equivalent to the 264 

POT approach with a relative threshold dependent on the day of the year. Also, we introduce the 265 

additional constraint that both daily maximal and minimal temperatures should exceed the daily 266 

maximum and minimum temperatures 90th percentiles. A minimum number of days above the 267 

threshold may be considered (e.g. Freychet et al., 2018) or not (Furrer et al., 2010). In this study, 268 

a minimum duration is not considered. Declustering is frequently used with the POT approach to 269 

avoid consecutive dependent events. A common rule to separate exceedances in clusters is to 270 

consider clusters separated by r consecutive values below the threshold as independent (Coles, 271 

2001). The choice of r is arbitrary: a larger value ensures the independence but a smaller value 272 

reduces the data size. Following the studies of Keellings and Waylen (2014, 2015) on heat waves, 273 

r is set to 4 days in this study. 274 

Time series for the frequency, duration and intensity of warm spells were computed from 275 

the wintertime warm spell events extracted with the method presented above from Middle East 276 

temperature data (see Section 3, Data). Here, frequency is defined as the number of warm spell 277 

occurrences per winter, the duration is defined in days during a warm spell event and the intensity 278 

is defined as the maximum exceedance of the daily maximum temperature during a warm spell 279 
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event. The winter period is defined here as the period during the months November through March 280 

(NDJFM). Figure 1 presents an example of the daily quantile-threshold approach used to identify 281 

warm spells in the study region for the winter of 2009-2010. The 2009-2010 winter was one of the 282 

warmest winters on record in the Middle East, thus representing a good benchmark for our method. 283 

Figure 1 shows in fact five main significant warm events between November 2009 and March 284 

2010. 285 

3. Data 286 

3.1 Data sources 287 

Atmospheric temperatures used in this study are obtained from the NCEP/NCAR 288 

Reanalysis (Kalnay et al., 1996). Daily maximum and minimum temperatures are available on a 289 

Gaussian grid (The latitudinal grid spacing varies to preserve equal areas and is approximately 290 

equal to 1.9° while the longitudinal spacing is 1.875°).  Data are obtained for the period 1948-2016 291 

for grid points over the Middle East and for the extended winter season (November to March, 292 

NDJFM). 293 

AMO is defined as the anomaly of the area weighted average of the SST over the North 294 

Atlantic (between 0-70°N, (Trenberth and Shea, 2006; Peings and Magnusdottir, 2014; Enfield et 295 

al., 2001)). It can be obtained from the NOAA Physical Science Division at 296 

https://www.esrl.noaa.gov/psd/data/timeseries/AMO/. NAO is based on the surface sea-level 297 

pressure difference between the Subtropical (Azores) High and the Subpolar Low. NAO is 298 

obtained from the Climate Prediction Center (CPC) at the National Centers for Environmental 299 

Prediction (NCEP) at the address: http://www.cpc.ncep.noaa.gov/data/teledoc/nao.shtml. NAO is 300 

available from 1950 and AMO from 1948, and both indices are updated monthly. 301 
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3.2 Spatial extent 302 

To compute the regional warm spell variables, the daily local maximum and minimum 303 

temperatures were averaged over a homogenous region. The definition of the homogenous region 304 

for this study is based on the EOF analysis of the winter mean temperature (Abatzoglou et al., 305 

2009; Conroy and Overpeck, 2011). The EOF of the mean temperature during the wet season 306 

(NDJFM) for the grid points between 10-45°N and 20-65°E were extracted and the orthogonal 307 

varimax rotation was applied to the significant EOFs. Rotation of the eigenvectors is usually 308 

performed on a subset of the original EOFs in studies using EOF for the identification of the 309 

regional patterns of climate variability (White et al., 1991; Fovell and Fovell, 1993; Comrie and 310 

Glenn, 1998; Simpson et al., 2005; Abatzoglou et al., 2009; Conroy and Overpeck, 2011). Rotation 311 

allows to enhance physical interpretation. The first four principal components were tested for 312 

significance on the basis of the scree test (Cattell, 1966). The scree test is a simple method 313 

consisting in plotting the eigenvalues versus the rank and identifying changes in slope.  314 

There are several methods to identify statistically homogeneous regions using EOFs. They 315 

can be defined, for example, by using contours (Comrie and Glenn, 1998), the maximum loading 316 

rule (Conroy and Overpeck, 2011) or cluster analysis (Guttman, 1993). Figure 2 presents the region 317 

of interest obtained with each one of these methods. They all lead to similar results, highlighting 318 

a homogenous region embracing most of the Arabian Peninsula, Levant countries, Turkey, Iraq 319 

and Iran. The region delineated using the contour defines the homogenous region used in this 320 

study. 321 

4. Results 322 

4.1 Trend and change point analysis 323 
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The presence of potential trends and abrupt changes in warm spell characteristics is 324 

investigated in this subsection. Specifically, abrupt changes were investigated with a Bayesian 325 

multiple change point detection procedure (Seidou et al., 2007; Seidou and Ouarda, 2007). This 326 

procedure allows to automatically detect multiple shifts or changes in the trend. The change point 327 

detection procedure was applied to the frequency of warm spells and to the following other annual 328 

variables computed from the warm spell variables: total duration, mean duration, longest duration, 329 

mean intensity and maximum intensity. Annual time series and linear trends for the various 330 

delineated segments are presented in Figure 3. A change point is detected in all cases during the 331 

late 1960s except for the mean intensity. Such a shift is coherent with the shift observed during the 332 

same period in the characteristics of global atmospheric circulation by Baines and Folland (2007). 333 

These authors highlighted how, in particular, such shift was evident in Greenland annual mean 334 

temperature patterns, eventually leading to similar changes in SST in the higher latitudes of the 335 

North Atlantic. The main cause of the late 1960s climate shift could also be found in the North 336 

Atlantic, and derives from a reduction in the northward oceanic heat flux from the North Atlantic 337 

thermohaline circulation in the 1950s to 1970s. For all variables with a change point during the 338 

late 1960s, trends have since increased. 339 

Trends in the model parameters t , tp  and t  are analyzed here as these parameters allow 340 

to infer on trends in the frequency, duration and intensity of warm spells. In Figure 4, trends in the 341 

model parameters t , tp  and t  before and after the year 1967 are also superimposed on the 342 

graphs of the time series of warm spell frequency, duration and intensity respectively. The year 343 

1967 is selected to represent the shift observed in the heat spell features during the late 1960s and 344 

corresponds to the shift obtained for the warm spell frequency with the change point detection 345 

procedure (see Figure 3a). To compute trends in the model parameters, the nonstationary POI, 346 
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GEO and GP models with Time used as a covariate are fitted to the time series before and after 347 

the shift. Increasing trends are observed in the time series, since the shifts are observed, for every 348 

warm spell variable, and these trends are found to be statistically significant based on the deviance 349 

statistic. It is also worth noting that the longest warm spell happened during the winter season of 350 

2015-2016, which is the last year of record, and the most intense warm spell occurred during the 351 

winter season of 2007-2008, to coincide with one of the most extended and intense mega-droughts 352 

on record over the region (Barlow et al., 2016; Gleick, 2014). 353 

4.2 Validation of the probability functions  354 

In this subsection, the choices of the different probability functions used to model warm 355 

spell variables are validated. Figure 5 compares the theoretical probability distributions inferred 356 

from data with the corresponding observed relative frequencies for the frequency, duration and 357 

intensity of winter warm spells. These graphs suggest that the selected theoretical probability 358 

distributions are suitable to model the warm spell variables. To confirm the suitability of the 359 

selected theoretical distributions, Figure 6 presents the L-moment ratio diagram with the location 360 

of the sample L-moments of the variables’ duration and intensity. The sample L-moments of the 361 

duration and intensity are located respectively near the theoretical curve of the GP and the 362 

theoretical point of the exponential distribution (the continuous probability distribution analogous 363 

to the GEO). The sample L-moments of the frequency are not shown in the diagram because the 364 

POI theoretical distribution is not usually represented in moment ratio diagrams, and therefore 365 

there is missing information in the literature about the location of this distribution. 366 

4.3 Relationship of warm spell variables with climate indices 367 
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Relationships of climate indices with the warm spell variables are evaluated in this 368 

subsection. Table 1 presents the correlations between the warm spell variables and the covariates 369 

Time, NAO and AMO. The majority of the variables are significantly correlated with NAO and 370 

AMO. Correlations with Time are weak in general except for the intensity and the mean and annual 371 

maximum intensity. However, the extended period of high values observed in the series prior to 372 

the shift during the late 1960s masks the positive significant trends observed after the shift. 373 

Figure 7 reports on the same graph the frequency of warm spells, the inverse of the 374 

standardized wintertime NAO and the standardized wintertime AMO. Correlations between the 375 

climate indices and the frequency are clearly visible. For instance, the prolonged period of high 376 

frequency of 1950-1966 corresponds to a prolonged period of higher than normal AMO and the 377 

prolonged period of low frequency of 1967-1977 corresponds to a prolonged period of lower than 378 

normal AMO, pointing out a clear multidecadal signature in the time evolution of Middle Eastern 379 

winter warm spells. The correlation between the two climate indices for wintertime is rather weak 380 

with a value of -0.16 during the record period. This low value implies that these two covariates 381 

can be included together in a nonstationary model and improve the goodness-of-fit compared to 382 

models using the climate indices separately. 383 

4.4 Nonstationary modelling 384 

The nonstationary models presented in Section 2.2 were applied to the regionally averaged 385 

time series of warm spell characteristics including each one of the selected covariates, all the 386 

combinations of two covariates and the three selected covariates together. The analyses were 387 

applied to the period 1950-2016 for which both climate indices are available. Table 2 presents the 388 

optimal models obtained according to the test of the deviance for each warm spell variable and 389 
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each possible configuration of the covariates. The values of the AIC statistic obtained for each 390 

optimal model are also presented and are used to compare goodness-of-fits. Here, we can observe 391 

that the goodness-of-fit obtained for models with one or more covariates is systematically higher 392 

than the one for the stationary model for a given variable. For models including one covariate, best 393 

fits are obtained with AMO for the frequency, NAO for the duration and Time for the intensity. 394 

This suggests that the climate indices have more impact on the frequency and the duration than the 395 

temporal trend, while the temporal trend has more impact on the intensity than the climate indices. 396 

From a climate dynamics point of view, this is like saying that large-scale climate oscillations 397 

basically pose the conditions to trigger the onset of winter warm spells, while the intensity of the 398 

different events may be determined by more local processes like land-atmosphere interactions and 399 

feedbacks. 400 

For models including two covariates, the overall best goodness-of-fit statistic is obtained 401 

with NAO+AMO for the frequency, and NAO+Time for the duration and the intensity. Adding 402 

Time to either NAO or AMO (NAO+Time or AMO+Time) does not improve the corresponding 403 

model which includes only NAO or AMO for the frequency. For the duration, adding Time to 404 

NAO improves the goodness-of-fit while it is not the case for AMO+Time. For the intensity, a 405 

larger impact on the goodness-of-fit with NAO+Time than with AMO+Time is observed, where 406 

the AIC value passes from 266.58 to 248.27 for NAO+Time compared to NAO only. For the 407 

intensity, models that include Time (NAO+Time or AMO+Time) outperform models that include 408 

only one climate index (NAO and AMO) and the model including both climate indices 409 

(NAO+AMO). This result indicates that there is a strong temporal trend in the intensity which is 410 

not explained by the climate indices.  Including both NAO and AMO (NAO+AMO) in a model 411 

generally improves the goodness-of-fit compared to models using each climate index separately. 412 
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This implies that both indices are somehow complementary and that it is of interest to use both 413 

indices together. Using the three covariates together (NAO+AMO+Time) leads to models with 414 

some of the best goodness-of-fit statistics for each variable: the third, the first and the second 415 

overall best ranks are obtained respectively for the frequency, duration and intensity. 416 

It can be concluded from these results that the variability in the warm spell variables is 417 

partly explained by climate indices. The temporal trend associated with the global warming has 418 

also a great impact on the variability of the variables and this is particularly true for the intensity. 419 

The fact that the inclusion of Time with AMO has a weaker influence on the goodness-of-fit than 420 

the inclusion of Time with NAO is probably caused by the positive trend observed in AMO since 421 

the 1970s, and is coherent with global warming (see Figure 7). Indeed, it is known that AMO is a 422 

combination of a forced global warming trend with a distinct local multidecadal oscillation that 423 

arose from internal variability (Ting et al., 2009). 424 

Figure 8 illustrates the quantiles corresponding to nonexceedance probabilities p = 0.5 and 425 

0.9 for warm spell variables obtained with the nonstationary models including one covariate. 426 

Quantiles of each variable are presented on separate graphs as a function of the covariates NAO, 427 

AMO and Time. The quantiles corresponding to frequency and duration are represented with step 428 

functions because of the discrete nature of the probability distributions POI and GEO. It is clear 429 

from Figures 8a-8f that the relationships of the quantiles with Time are rather unrealistic for the 430 

frequency and duration. The quadratic model was selected in both cases, resulting in decreasing 431 

trends during the period 1950-1970 and increasing trends during the period 1990-2015. These 432 

trends are strongly influenced by climate oscillation patterns for which no index is included in the 433 

model in this case. For the duration, there is an outlier for an event happening during the winter 434 

2015-2016 where for the longest duration observed, the value of NAO is in the middle range. 435 
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Figures 9-11 present the quantiles corresponding to the nonexceedance probability p = 0.9 436 

obtained with the nonstationary models including two covariates for the frequency, duration and 437 

intensity respectively. For each variable, the optimal models obtained with the three possible 438 

combinations of two covariates are graphically represented. Quantiles are illustrated in two 439 

different ways: with 2-dimensional graphs where the quantiles are represented using colors (a, c, 440 

e), and with 3-dimensional graphs (b, d, f) where the frequency is shown as a function of the two 441 

covariates. Quantiles corresponding to the frequency and duration are also represented here with 442 

step functions for the same reasons. The figures corresponding to models with both NAO and 443 

AMO illustrate well the combined effect of both climate indices: when both covariates have 444 

extreme values of opposite signs, the quantiles are extreme (either very strong or very weak). For 445 

the frequency and duration, strong relationships with climate indices and slight temporal trends 446 

are noticed in Figures 9-10. In the case of models with covariates NAO+Time, increasing temporal 447 

trends are observed, and in the case of models with covariates AMO+Time, decreasing temporal 448 

trends are observed. These decreasing temporal trends for AMO+Time are counterintuitive in a 449 

context a global warming. However, the temporal trends in models with AMO+Time are not 450 

significant for the frequency and duration as the goodness-of-fit of models with only AMO is more 451 

optimal in both cases (see Table 2). In the case of the intensity, strong relationships with climate 452 

indices in conjunction with strong positive temporal trends are noticed, in agreement with what 453 

was observed previously. 454 

5. Conclusions 455 

In this study, temperatures during the winter season (NDJFM) were aggregated over a 456 

homogenous region over the Middle East to obtain regional daily average minimum and maximum 457 

temperatures. Warm spell events were identified from these regionally averaged time series and 458 



22 

 

the warm spell frequency, duration and intensity were obtained. To account for the 459 

nonstationarities associated with global warming and climate oscillation patterns, statistical 460 

distributions with parameters conditional on time-dependent covariates were used to model the 461 

wintertime warm spell characteristics in the region. The covariates of the model include two 462 

important climate indices, the NAO and the AMO, explaining temperature variability in the Middle 463 

East, and Time as a covariate representing the temporal trend related to global warming. 464 

Results show that the inclusion of any one of the covariates improves the goodness-of-fit 465 

of the stationary model. For models with only one covariate, the best fit is obtained with AMO for 466 

the frequency, NAO for the duration and Time for the intensity. This may indicate that the 467 

influence of climate oscillation patterns is more important than the influence of the temporal trend 468 

for the frequency and the duration. On the other hand, the temporal trend influences the intensity 469 

more than do climate indices. Including both climate indices generally improved the goodness-of-470 

fit as compared to the models which include only one climate index. These results advocate for 471 

the use of both climate indices at the same time. The overall best goodness-of-fits are obtained 472 

with NAO and AMO for the frequency, NAO, AMO and Time for the duration, and NAO and 473 

Time for the intensity. These results show the importance of considering the combined effect of 474 

the temporal trend caused by global warming and climate oscillation patterns in statistical models 475 

used for the prediction of extreme climatic variables. 476 

The nonstationary statistical models used in this study can find application in a number of 477 

different fields where conditional risk management is required, such as agriculture, public health 478 

management and hydrology. For example, seasonal predictions of the diverse climate indices can 479 

be used to model warm spell quantiles. More optimal management decisions can then be made 480 

before the start of the next season based on that information. 481 
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Table 1. Correlations between warm spell variables and covariates. 785 

Variable 
Covariate 

Time NAO AMO 

Frequency (Events) -0.07 -0.27 0.42 

Duration (Days) 0.00 -0.38* 0.21* 

Intensity (°C) 0.24 -0.24* 0.17* 

    

Total annual duration (Days) -0.01 -0.34 0.40 

Mean annual duration (Days) 0.02 -0.28 0.40 

Longest annual duration (Days) 0.02 -0.24 0.41 

Mean annual intensity (°C) 0.20 -0.22 0.32 

Annual maximum intensity (°C) 0.20 -0.21 0.33 
Significant correlations at p < 5% are in bold characters. 786 
*NAO and AMO for the duration and intensity are averaged over a 3 month period centered on the month of the warm 787 
spell event. Otherwise indices are averaged over the whole winter season. 788 
  789 
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Table 2. AIC statistic for the optimal model of each configuration of covariates. Optimal models 790 

are determined based on the test of deviance. 791 

Variable Covariate 
Number of 

covariates 
AIC Model 

Frequency 

(Events) 

Stationary 0 230.60 ( )Poi    

Time 1 
220.64 

2

0 1 2( exp( Time Time ))tPoi    = + +  

NAO 1 226.53 0 1( exp( NAO))tPoi   = +  

AMO 1 217.55 0 1( exp( AMO))tPoi   = +  

NAO+Time 2 228.29 0 1 2( exp( NAO Time))tPoi    = + +  

AMO+Time 2 218.90 0 1 2( exp( AMO Time))tPoi    = + +  

NAO+AMO 2 215.99 0 1 2( exp( NAO AMO))tPoi    = + +  

NAO+AMO+Time 3 217.98 0 1 2 3( exp( NAO AMO Time))tPoi     = + + +  

     

Duration 

(Days) 

Stationary 0 515.53 ( )Geo p  

Time 1 
511.49 

2

0 1 2( exp( Time Time ))tGeo p   = + +  

NAO 1 503.92 0 1( exp( NAO))tGeo p  = +  

AMO 1 511.70 0 1( exp( AMO))tGeo p  = +  

NAO+Time 2 502.73 0 1 2( exp( NAO Time))tGeo p   = + +  

AMO+Time 2 513.70 0 1 2( exp( AMO Time))tGeo p   = + +  

NAO+AMO 2 501.31 0 1 2( exp( NAO AMO))tGeo p   = + +  

NAO+AMO+Time 3 500.64 0 1 2 3( exp( NAO AMO Time))tGeo p    = + + +  

     

Intensity 

(°C) 

Stationary 0 267.93 ( , , )GP u    

Time 1 256.43 0 1( , exp( Time), )tGP u    = +  

NAO 1 266.58 0 1( , exp( NAO), )tGP u    = +  

AMO 1 264.94 0 1( , exp( AMO, ))tGP u    = +  

NAO+Time 2 248.27 0 1 2( , exp( NAO Time), )tGP u     = + +  

AMO+Time 2 256.16 0 1 2( , exp( AMO Time), )tGP u     = + +  

NAO+AMO 2 265.03 0 1 2( , exp( NAO AMO), )tGP u     = + +  

NAO+AMO+Time 3 248.70 0 1 2 3( , exp( NAO AMO Time), )tGP u      = + + +  

Overall best AIC values are in bold characters. 792 
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 794 

Figure 1. Warm spell occurrence (shaded area) during winter 2009-2010: Daily maximum (TMAX) and 795 

minimum temperatures (TMIN) for the winter 2009-2010 are shown in gray (light line); the black bold 796 

line represents the 90th percentiles of TMAX and TMIN  797 
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a)

 
b)

 
c)

 

Figure 2. First rotated EOF of the mean winter temperature from the NCEP/NCAR reanalysis over the 799 

Middle East. Crosses represent the spatial distribution of grid points inside the region of interest based on 800 

contour (a), maximum loading (b) and cluster analysis (c) respectively. The black dashed line in panel 1a 801 

represents the contour line delineating the homogenous region. 802 
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f)

 

Figure 3. Trend changes in the warm spells annual time series: frequency (a), total duration (b), mean 803 

duration (c), longest duration (d), mean intensity (e) and maximum intensity (f). 804 

 805 
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a)

 
b)

 
c)

  

Figure 4. Frequency (a), duration (b) and intensity (c) of the regional warm spells. Trends in the 806 

theoretical distribution parameters t , tp  and t  are reported in red. 807 
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a) 
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c) 

 

Figure 5. Observed relative frequencies and theoretical fitted models for the frequency (a), duration (b) 809 

and intensity (c) of Middle Eastern winter warm spells. 810 
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  812 

Figure 6. L-Moment ratio diagram with sample L-moments of frequency, duration and intensity. Extreme 813 

Value type I (EV1), Exponential (EXP), Generalized Pareto (GP), Gamma (G), Pearson type III (P3), 814 

Weibull (W), Generalized Extreme Value (GEV), Lognormal (LN) and Generalized Logistic (GLO). 815 
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  817 

Figure 7. Frequency of warm spells (blue line and markers) and covariates NAO (red) and AMO (green) 818 

time series.819 



43 

 

a)

 

b)

 

c)

 

d)

 

e)

 

f)

 
g)

 

h)

 

i)

 

Figure 8. Quantiles corresponding to the nonexceedance probabilities p = 0.5 (red line) and 0.9 (blue line) for the frequency (a, b, c), duration (d, e, 

f) and intensity (g, h, i) of warm spells as a function of NAO, AMO and Time. 
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Figure 9. Quantiles corresponding to the nonexceedance probability p = 0.9 for the frequency as a 

function of NAO and Time (a,b), AMO and Time (c,d), and NAO and AMO (e,f). 
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Figure 10. Quantiles corresponding to the nonexceedance probability p = 0.9 for the duration as a 

function of NAO and Time (a,b), AMO and Time (c,d), and NAO and AMO (e,f). 
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Figure 11. Quantiles corresponding to the nonexceedance probability p = 0.9 for the intensity as a 

function of NAO and Time (a,b), AMO and Time (c,d), and NAO and AMO (e,f). 


