
1Scientific Reports |         (2019) 9:11786  | https://doi.org/10.1038/s41598-019-48044-0

www.nature.com/scientificreports

Predicting seismic-induced 
liquefaction through ensemble 
learning frameworks
Mohammad H. Alobaidi1, Mohamed A. Meguid   1 & Fateh Chebana2

The regional nature of liquefaction records and limited information available for a certain set of 
explanatories motivate the development of complex prediction techniques. Indirect methods are 
commonly applied to incidentally derive a hyperplane to this binary classification problem. Machine 
learning approaches offer evolutionary prediction models which can be used as direct prediction 
methods to liquefaction occurrence. Ensemble learning is a recent advancement in this field. According 
to a predefined ensemble architecture, a number of learners are trained and their inferences are 
integrated to produce stable and improved generalization ability. However, there is a need to 
consider several aspects of the ensemble learning frameworks when exploiting them for a particular 
application; a comprehensive evaluation of an ensemble learner’s generalization ability is required but 
usually overlooked. Also, the literature falls short on work utilizing ensemble learning in liquefaction 
prediction. To this extent, this work examines useful ensemble learning approaches for seismic-induced 
liquefaction prediction. A comprehensive analysis of fifteen ensemble models is performed. The results 
show improved prediction performance and diminishing uncertainty of ensembles, compared with 
single machine learning models.

Seismic-induced liquefaction of soils is one of the major ground failure consequences of earthquakes. In gen-
eral, liquefaction is the transformation of soil from a solid to a liquefied state as a result of increased pore water 
pressure, which commonly occurs during sudden and massive shaking of the ground. This phenomenon leads to 
catastrophic loss of lives and irreversible damage to critical infrastructure. Predicting liquefaction susceptibility 
is, hence, considered a major research frontier in geotechnical earthquake engineering1,2.

Commonly used approaches in liquefaction prediction are sometimes classified into two broad clusters, deter-
ministic (or semi-empirical) approaches and empirical approaches3. In deterministic studies, the researchers 
report various degrees of experimental and in-situ testing setups, where a characterization of susceptibility to 
liquefaction is concluded. Empirical approaches, on the other hand, aim to quantify the potential of liquefaction 
using raw variables obtained from different sites across the globe. These methods put more emphasis on answer-
ing the question of liquefaction/no-liquefaction rather than relating the variables of interest to each other ana-
lytically. Furthermore, we observe that the literature provides little distinction between the two clusters and that 
development in each cluster is carried out unilaterally4–6. Ideally, deterministic techniques can be used to support 
empirical models through identifying appropriate features to liquefaction; however, little cross-examination of 
these approaches has been reported to date7,8.

While this work targets the development of robust and more stable classification models using the available 
data and explanatory variables, we attempt to make a distinction between the two broad approaches to study-
ing liquefaction susceptibility. We use the terms direct and indirect modeling approaches to refer to empirical 
and deterministic studies, respectively. The motivation behind this nomenclature is related to the classification 
objective (Fig. 1). Direct models attempt to explicitly establish a separating hyperplane, also referred to as the 
decision boundary or the limit-state. On the other hand, indirect models derive useful transformations which 
deduce important relationships between variables of interest; a liquefaction-triggering mechanism can then be 
indirectly inferred from the variables of interest. Indirect models incidentally formulate the classification problem 
with the benefit of providing conceptual interpretation of the derived index9,10. Remarkably, such approaches can 
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be considered as unsupervised learning techniques from a machine learning perspective, where the liquefaction 
identity of the considered case study does not take part in the development of the classification approach.

In studies utilizing direct approaches, a supervised learning scheme is developed, where explanatory vari-
ables and predetermined knowledge of the liquefaction events are exploited in the construction of the hyper-
plane. Statistical models are commonly used in producing direct inferences about the likelihood of liquefaction, 
given some soil-related as well as earthquake-related information. Logistic Regression, Probabilistic Regression 
and Naïve Bayes Filters are examples of such models3,11,12. Nevertheless, more advanced prediction methods are 
required to provide better generalization ability over a wide range of liquefaction observations, rather than local 
thresholding of the phenomenon through filtering already limited datasets.

Recently, supervised machine learning techniques have been proposed in the literature and provided supe-
rior performance in learning complex relationships while maintaining a reliable generalization ability. The most 
notable machine learning models used in seismic-induced liquefaction studies are Support Vector Machines 
(SVMs)13, Decision Trees (DTs)14, Artificial Neural Networks (ANNs)1 and Extreme Learning Machines 
(ELMs)15.

Supervised learning is of empirical nature and requires available information to create functional relationships 
between the explanatories and the target variable. Several drawbacks are usually identified from utilizing machine 
learning techniques, such as overfitting and unstable performance. However, the availability of computational 
resource nowadays further motivates the creation of more complex techniques which provide far better general-
ization ability than their predecessors16,17.

Ensemble learning, a recent advancement in machine learning, is defined as the process of generating multi-
ple prediction models which are trained using subsets of the available data and then fused to make a prediction. 
Ensemble learning not only produces a more stable global model, but also guarantees diminishing uncertainty18. 
Continuous work has been published in the broad literature, discussing the effectiveness of ensemble learning19–21. 
Generally, for a learning framework to be considered an ensemble model, it should have three fundamental stages 
(Fig. 2). The first stage is resampling22, which consists of generating a number of subsets of data resamples from 
the original sample set. The second stage is sub-ensemble model generation and pruning, which is concerned with 
choosing appropriate individual models for the system of interest. The third stage is ensemble integration, which 
merges estimates produced by the sub-ensemble models to determine the ensemble estimate. Ensemble learning 
frameworks are divided into two broad clusters, homogeneous ensembles and non-homogeneous ensembles23–25. 
In homogeneous ensemble frameworks, ensembles adopt the same resampling technique, the same version of 
a certain model, and only one integration technique26,27. Non-homogeneous ensemble frameworks violate the 
definition of homogenous ensembles, but maintain the three fundamental stages of ensemble learning25,27. In this 
work, homogeneous ensembles are considered and, as a result, all the individual models will be of the same type 
and input/output configuration.

One of the major research frontiers in ensemble learning is the modeling of ensemble-based diversity, which is 
theorized to create stable and enhanced generalization ability of ensembles over individual models28–30. Diversity 
in learning is defined as the amount of variation existing between the resulting sub-ensemble models31,32. The 
nature of the resamples is normally described as a first source of ensemble diversity23,33, which typically manifests 
in the training stage. The individual models and the ensemble integration stage are considered secondary sources 

Figure 1.  A summary of the general classification approach utilized in the two types of research methodologies 
for evaluating the liquefaction potential.
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of diversity34,35. Recent investigation of this concept has led to important breakthroughs in the development of 
quantum ensemble learning36.

In liquefaction prediction studies, limited adherence to proper utilization of machine learning has been 
observed, not to mention the deficiency in reporting the uncertainty and performance stability of the used mod-
els over the considered case studies. Also, little attention has been paid to the recent development in supervised 
learning techniques. This work presents different ensemble learning frameworks and examines their capability in 
liquefaction prediction. In addition to Logistic Regression, four different machine learning techniques, namely 
SVM, DT, ELM, and ANN, are used as sub-ensemble models. Three different ensemble learning frameworks are 
applied over the liquefaction database to create fifteen ensemble models. The performance of ensemble models is 
compared with single machine learning models, and the effect of data availability on the models’ generalization 
ability is examined.

Method
Three ensemble learning frameworks are demonstrated over five single models for the problem of binary classifi-
cation, namely seismic-induced liquefaction prediction. Bagging, Stacked Generalization and Boosting ensembles 
are applied. In order to appeal to a wide readership, we use simple notation when referring to the mathematical 
construct of each ensemble.

Bagging, also known as Bootstrap Aggregation, is one of the most common ensemble learning frameworks37. 
Following the three stages in ensemble learning, we first describe the generation process of the sub-samples. In 
this learning process, k sub-samples are created from the original sample set, S, available for training the individ-
ual models. Using Bootstrap resampling, each sub-sample, also called a resample si (i = 1, 2, …, k), is generated 
using random sampling with replacement and has the same size as the original sample. Each observation in 
the original dataset will have a probability 1/n of being chosen, where n is the size of the original sample set, S. 
Consequently, some observations may appear more than once in a given subset. The probability that an individual 
training sample from S will not be part of a Bootstrap resampled set is (1 − 1/n) n and can be shown to approach 
0.37 as the size of S increases38.

Once the resamples are created, k individual machine learning models are generated to carry out the sec-
ond stage. The type of the individual models is predetermined and their selection can be based on the nature 
of the problem. Each model will rely on one of the created resamples in order to train and create a relatively 
unique hypothesis. After all the ensemble members are generated and trained, a unique output for the ensemble 
is derived by averaging the outputs from these individual models. Suppose that the descriptor variables’ observa-
tions of a test instance i have been inputted into the k individual models; each of these models will have a unique 
output, or prediction, and the ensemble output is computed using majority voting, as follows:

= …ˆ ˆ ˆ ˆy mode y y y( , , , ) (1)i ensemble i i i k, ,1 ,2 ,

where ŷensemble is the resulting ensemble output, and ŷi ,1 is the output from the first individual model, describing 
the estimate of the ith test instance. This equation can be used as a combiner for the case of binary classification, as 
in the current work. If the individual models produce an estimate in a given range between the two classes, as in 

Figure 2.  The main divisions (top red rectangle) and learning stages (bottom red rectangle) of ensemble 
learning.
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the case of Logistic Regression, the mean combiner can be used, and the ensemble output is then rounded to 
produce the final estimate:
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Because Bagging is essentially a parallel ensemble learning framework, the described algorithm can be paral-
lelized in the computational environment. Furthermore, the main diversity-in-learning manifests from the resa-
mpling plan adopted in Bagging. Distinct training data is used to enforce a spectrum of solutions to the individual 
models, providing improved prediction. The improved generalization ability of Bagging has been discussed and 
shown over many case studies in the broad literature33,39,40.

Stacked Generalization, or Stacking, is an effective way to derive the final ensemble predictions. The linear 
combination of the outputs of ensemble members is the most popular approach for ensemble combiners41. In 
Stacking, a weighted average that considers the relative performance of each sub-ensemble model is used. Hence, 
Stacking is an ensemble technique that deals with the ensemble integration particularly42. To create the Stacking 
combiner, an additional model is used to learn how to combine the individual members, by tuning its weights 
over the feature space. Suppose we derive k sub-samples using a particular resampling technique, such as 
Bootstrapping, and then k individual models are created and trained using the generated resamples. The ith pat-
tern has an observed value yi and a predicted value, ŷi j, , obtained from the jth sub-ensemble model (j = 1, 2, …, k). 
Under Stacking, we label the individual models as level 0 generalizers. At this point, the set of level 0 outputs, for 
a given pattern, is fed to a level 1 generalizer, which is a separate model that is trained to produce the appropriate 
output. The common Stacking algorithm suggests minimizing the following error function43:
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where yi is the ith observation from the original training dataset. This algorithm produces estimates, ĉj, for the 
combiner coefficients, which are then used to construct the ensemble prediction as follows:
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It is necessary to highlight the need for nonnegative coefficients which lead to an improved generalization 
ability of the bias-variance decomposition of Stacked ensemble models investigated33. Moreover, equation (3) 
minimizes the sum of squared differences between observed and predicted values. When used to determine the 
coefficients, this process may be dominated by those patterns with a large error. A better choice, as adopted in 
this work, is to minimize the (squared) relative difference. The objective function for the relative difference is 
constructed as follows:
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Solutions to the generalized Stacking coefficients are then used in the model. In this work, we further modify 
equation (5) to have a normalized weighted sum constraint ∑ == c 1j

k
j1 , and use the final ensemble combiner. 

Using this constraint in binary classification problems is justified, and it is expected to drive further improvement 
in the overall ensemble performance, as the effect of the normalized coefficients can be observed in the 
bias-variance-covariance decomposition of the ensemble’s error function.

Boosting is an in-series ensemble learning framework for any given set of single machine learning models. 
In every training step, a reweighted version of the original training set is used based on the model performance 
over the feature space. Boosting ensemble learning has undergone intense theoretical studies and empirical test-
ing44,45. There are several Boosting versions in the literature, including AdaBoost, AdaBoost.M1, AdaBoost.M2 
and AdaBoost.R46. Moreover, the AdaBoost ensemble model is for binary classification problems and will be used 
in the current study as one of the investigated ensembles.

The considered Boosting ensemble starts with one weak learner and trains it with equally likely observations. 
In other words, the resample used to train the first weak learner comes from a random sampling with replace-
ment, where all the observation in the original dataset have equal weights (probability of sampling), such as:

= = …w
n
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where wl, i is the first-stage weight of the ith training observation. Once the model is trained, all the available 
observations are estimated. The error function for the jth sub-model, used for the binary classification problem, 
is formulated as follows:
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where I is the identity operator, returning 1 when the enclosed condition is satisfied and 0 otherwise. The error 
function is simply the probability of misclassifying an observation by the individual model. Hence, based on the 
estimation error, the data weights are updated. In a classification setting, the observations which are incorrectly 
classified will have larger weights and vice versa. In addition, this learner will have a collective weight which is 
associated with its overall performance. In other words, the jth learner’s performance measure is formulated as 
follows:
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This process is then repeated for all the sub-models. As a consequence of the weight-updating and 
performance-measuring process, the next sub-model will attempt to fix the errors made by the previous learner. 
The following section provides more details on the utilization of the considered ensemble approaches to construct 
ensemble classification models for liquefaction occurrence over the case study.

Results and Discussion
The performance of the ensemble models over the case study.  The focus of the current study is to 
demonstrate the application of ensemble learning approaches for liquefaction prediction. Five different single 
models are considered in this study. Hence, for each ensemble architecture, an ensemble model is created using 
one of these single models. More precisely, Ensemble-based Logistic Regression (ELR), Support Vector Machines 
(ESVM), Decision Trees, Extreme Learning Machine (EELM) and Artificial Neural Network (EANN) models are 
considered. Ensemble models of Decision Trees are commonly known in the broad literature as Random Forests 
(RF).

An optimal configuration of the single Artificial Neural Networks and Extreme Learning Machines should be 
decided before the ensemble model is created. For example, a cross-validation study is carried out to determine 
the number of hidden layers and hidden neurons for individual ANNs. In this study, a feedforward multi-layer 
perceptron ANN with one hidden layer and eight hidden neurons is considered. This configuration is optimum 
for the current case study10,47. The log-transform function is used as the hidden neurons’ transfer function18. 
Moreover, Levenberg-Marquardt (LM) algorithm is used to train the individual ANNs. In the case of Extreme 
Learning Machine (ELM) models, the training follows a recently recommended approach in the literature48. Also, 
the utilized kernel for individual SVMs is the Radial Basis Function18. The Bayesian optimization approach is 
used to solve for the SVM’s optimal configuration49. There are different approaches to ensure sufficient regulari-
zation of single models. In the present work, different regularization techniques are applied to meet the individual 
models, simulation cost and available information requirements. For the case of LRs and pruned Decision Trees, 
the cross validation of the individual models, based on the training set within a Monte Carlo simulation instance, 
is used to regularize the sub-ensembles. Regularization of the ANNs is enforced by the early stopping procedure. 
Finally, the regularization of the utilized ELMs and SVMs is enforced through their Bayesian regularization based 
training algorithms.

The database used in this study has been originally compiled in the literature50. Earthquake observations 
from 85 sites are available in the final database, where 42 sites have experienced liquefaction. Eight variables are 
considered as explanatories to liquefaction potential (Table 1). Earthquake magnitude (M), total vertical stress 
(σo), effective vertical stress (σo’), standardized SPT (N1)60, normalized peak horizontal acceleration (a/g), equiv-
alent dynamic shear stress (τav/σo’), fines content (F), and the average grain size (D50), are used in this study. The 
significance of the utilized database have been thoroughly investigated in the relevant literature for liquefaction 
assessment47,51. While this particular database is used in the current study, many other databases exist in the 
literature and can be used. However, a preliminary analysis should be carried out in order to determine the 
optimum explanatory variables from the available database as well as determine a class-balancing procedure in 
case the database has a relatively large difference in the number of observations for each class44. In this work, a 
feature’s relative importance test is carried out for each of the individual models (Supplementary Table S1 as well 
as Supplementary Fig. 1). The test is based on the Kappa statistic, or Cohen’s Kappa coefficient (κ)52, where the 
complement of the drop in the performance of the model due to omitting a feature is defined as that feature’s 
relative importance53. The obtained results shows that each feature’s relative performance, while varying among 
different learners, is above 6.25%, which is the threshold of considering a features addition to the set of explana-
tories. In addition, (N1)60 is shown to have the highest relative importance, which is reported in previous work as 
the most important variable to explaining liquefaction occurrence9,50.

Moreover, training and testing sets are usually designed to represent similar characteristics, the nature of the 
problem incurs constructing a testing set from sites different than the training set in order to test the model’s 
capability in the regional prediction problem. Due to the regional diversity of the sites, testing and training sets 
may have slight differences in some of the features’ characteristics, as seen in σo. In the present study, the selection 
of the testing set as seismic events from completely different sites is important in order to test the model’s capa-
bility in the regional prediction problem. This decision is critical to report reliable testing performance, given the 
nature of the application. The latter explains the variation in the descriptive statistics reported in Table 1.
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The selection and processing of the study features and labeling of events follows similar work in the litera-
ture47. More specifically, the final database consists of 73 sites from Japan and 12 sites from the United States and 
Pan-America. The output (class) is binary-type which takes the value of 1 for sites apparent liquefaction, and a 
value of 0 otherwise. Incomplete records, from the original set, or records with Fines content greater than 35% are 
not considered in the reported final dataset. Observations with relatively high Fines content are omitted because 
of the unreliability of generalizing trends from the unavailability of data in that range. Preprocessing of the field 
data involved normalizing the features such that the minimum and maximum observations, pear feature, is set 
between 0 and 1. The experimental setup and simulations are carried out in MATLAB environment.

Machine learning models are typically instable. Multiple training attempts of machine learning models using 
the same training observation and optimization technique may not produce the same solution; this is due to the 
relatively higher nonlinear formulation of such models, which prompt local optimality in the solution of their 
parameter54,55. Consequently, in assessing the performance of a machine learning model, a Monte Carlo simula-
tion should be carried out and the average performance of the simulation should be reported for a more reliable 
assessment. Each training and testing Monte Carlo simulation is generated by a complete ensemble model crea-
tion, training and testing. Table 2 presents the average training and testing performance of the fifteen developed 
ensemble models as well as the single models. The table also reports the change in the training performance with 
respect to the increase in ensemble size. The ensemble models are run for ensemble sizes from 5 to 50. The same 
experiments are used to generate the corresponding κ–based results (Supplementary Table S2).

From the obtained training performance results, it is clear that ensemble models, even with the smallest 
ensemble size, significantly outperform single models. With the increasing ensemble size, the models’ training 
performance gradually increases to reach perfect classification ability. In fact, except for ESVMs, Boosted ensem-
bles reach 100% classification Accuracy (1.0 κ) starting from ensembles of size 10. Bagging and Stacking ensem-
bles sustain the gradual improvement in classification performance with respect to the increase in the ensemble 
size. Furthermore, the EELM models, over all ensemble architectures, overfit to the training data starting from 
the smallest ensembles. This is due to the adopted learning strategy of the individual EELM models. Such sat-
uration in training performance is misleading and requires an additional set of estimates; hence, the testing set 
is required for a complete reliable performance assessment. From the testing results, it can be observed that no 
model achieves a perfect classification performance, which is expected and should most likely be the case in any 
classification problem.

The testing performance, however, has the same gradual increase with respect to the increase in ensemble size. 
Also, the performance of the ensembles is better compared with single models. Boosted EANNs of ensemble size 
50 have the best average testing results over the two performance evaluation criteria. On the other hand, all types 
of EELM models produce the worst testing performance. This result confirms the necessity of a third dataset (test-
ing set) to evaluate the models, as EELMs have shown perfect classification performance in the training stage. It is 
also interesting to observe that ELR models produce the second-best performance over the testing set. This result 
confirms the ability of ensembles to significantly increase the performance of relatively simpler single models 
and, in return, provide robust combination of classically preferred linear models. However, it should be noted that 
such result is case-dependant and different case studies may show different performance by the simple models.

As mentioned earlier, the stability of the investigated models is an important aspect that should be investi-
gated in the comprehensive analysis of machine learning models. Hence, Fig. 3 depicts the boxplots of the Monte 
Carlo simulations in the training stage of the single and ensemble models in terms of Accuracy. In addition, the 
κ–based results are presented in Supplementary Fig. 2. In addition, rows (a), (b), and (c) group models with the 

Variable Unit Minimum Mean Median Max Stand. Dev.

Training dataset

M Richter 5.50 7.33 7.50 8.30 0.58

σo kPa 50.00 110.62 93.20 686.70 83.88

σo′ kPa 28.40 63.26 63.80 105.90 20.03

(N1)60 — 1.00 10.77 9.00 31.00 6.86

a/g — 0.10 0.22 0.19 0.60 0.12

τav/σo′ — 0.08 0.21 0.17 0.45 0.11

F (%) 0.00 9.05 5.00 35.00 9.61

D50 mm 0.09 0.39 0.30 1.60 0.30

Testing dataset

M Richter 6.10 7.30 7.40 7.40 0.35

σo kPa 59.80 99.94 100.05 247.20 37.84

σo′ kPa 34.30 64.44 66.70 105.90 18.04

(N1)60 — 4.00 11.27 10.00 23.00 5.60

a/g — 0.10 0.24 0.24 0.32 0.05

τav/σo′ — 0.09 0.21 0.21 0.35 0.06

F (%) 0.00 8.85 8.50 27.00 7.33

D50 mm 0.12 0.42 0.35 1.60 0.33

Table 1.  Descriptive statistics of the study variables.
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same ensemble framework; row (a) shows the performance of Bagged ensembles, while rows (b) and (c) show the 
Stacked and Boosted ensembles, respectively.

As expected from the results on the training stages, the boxplots return little information on the reliability of 
the investigated models, especially those for EELM models. It is interesting to observe that Accuracy and κ–based 
Monte Carlo simulations for both ELR and ESVM models show slight decrease in the training performance with 
increasing ensemble size, but with tighter confidence. This is attributed to the curse of dimensionality which 
linear learners (with linear combiners) may suffer from as the number of sub-ensemble estimates increase. In 
general, the uncertainty in the learners matches the expected behaviour of diminishing with the increase in the 
ensemble size. Moreover, Fig. 4 and Supplementary Fig. 3 depict the boxplots of the Monte Carlo simulations in 
the testing stage of the single and ensemble models in terms of the Accuracy and κ, respectively. The testing box-
plots of the five different single models used in this study show a variable behaviour from different aspects, which 
demonstrate the importance of this comprehensive study. κ–based results are proportionate in testing, for each 
ensemble model. For example, when looking at the performance of EELMs, we can see that they have very little 
improvement with increase in ensemble size and are poor in generalization description (if only training perfor-
mance is reported). When examining EANNs, the typical increase in the model performance as the ensemble size 
grows is observed. Also, the stability in the model performance substantially increases, similar to what has been 
reported in the general literature. The inspection of the five single models shows that ELRs, ESVMs and EANNs 
are the most stable models with diminishing uncertainties.

Boosting and Bagging strategies produce the best, and second-best, performance over all the models, respec-
tively. Stacked Generalization performance falls behind. The authors attribute this issue to the effect of increased 
ensemble size on the reliability of the second-level learner that trains the linear combination parameters in 
Stacking. As discussed earlier, the curse of dimensionality arises from the increased size of the ensemble model. 
The reader may attempt to attribute this effect on Boosted models as they also produce linear combining param-
eters. However, the nature of the Boosting-based parameters is related to the model performance and data sam-
pling rather than regression-based fitting of the models’ outputs. The parameters in the Boosting framework allow 

Model\Size 1 5 10 15 20 25 30 40 50

Accuracy (Training)

ELR - Bagging

0.9142

0.9576 0.9614 0.9664 0.9693 0.9714 0.9700 0.9719 0.9739

ELR - Stacking 0.9631 0.9761 0.9810 0.9842 0.9841 0.9861 0.9873 0.9880

ELR - Boosting 0.9995 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

ESVM- Bagging

0.8171

0.8664 0.8695 0.8720 0.8747 0.8747 0.8768 0.8759 0.8741

ESVM - Stacking 0.8859 0.9024 0.9141 0.9202 0.9220 0.9197 0.9271 0.9300

ESVM - Boosting 0.8973 0.9412 0.9700 0.9793 0.9883 0.9929 0.9968 0.9988

RF - Bagging

0.8771

0.9439 0.9549 0.9608 0.9651 0.9676 0.9680 0.9719 0.9702

RF - Stacking 0.9541 0.9758 0.9792 0.9864 0.9895 0.9927 0.9949 0.9958

RF - Boosting 0.9978 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

EELM - Bagging

1.0000

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

EELM - Stacking 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

EELM - Boosting 0.9980 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

EANN - Bagging

0.8690

0.9508 0.9631 0.9758 0.9792 0.9822 0.9831 0.9817 0.9793

EANN - Stacking 0.9625 0.9849 0.9920 0.9954 0.9966 0.9973 0.9988 0.9997

EANN - Boosting 0.9927 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Accuracy (Testing)

ELR - Bagging

0.8204

0.8673 0.8754 0.8831 0.8827 0.8842 0.8804 0.8842 0.8850

ELR - Stacking 0.8619 0.8673 0.8788 0.8746 0.8746 0.8688 0.8777 0.8800

ELR - Boosting 0.8469 0.8635 0.8688 0.8796 0.8785 0.8781 0.8850 0.8804

ESVM- Bagging

0.8050

0.8569 0.8662 0.8804 0.8715 0.8785 0.8738 0.8781 0.8785

ESVM - Stacking 0.8531 0.8523 0.8596 0.8554 0.8662 0.8688 0.8581 0.8662

ESVM - Boosting 0.8465 0.8596 0.8477 0.8542 0.8673 0.8673 0.8696 0.8704

RF - Bagging

0.6458

0.6846 0.7108 0.6908 0.7192 0.7069 0.7146 0.7200 0.7212

RF - Stacking 0.6808 0.6992 0.6788 0.7131 0.7158 0.7219 0.7196 0.7181

RF - Boosting 0.7162 0.7396 0.7515 0.7538 0.7692 0.7627 0.7685 0.7712

EELM - Bagging

0.6846

0.6992 0.7108 0.7031 0.7065 0.7065 0.7058 0.7019 0.7042

EELM - Stacking 0.6992 0.7015 0.7031 0.7031 0.7065 0.7023 0.6996 0.7035

EELM - Boosting 0.6646 0.6692 0.6662 0.6631 0.6612 0.6665 0.6654 0.6662

EANN - Bagging

0.7415

0.8231 0.8423 0.8669 0.8577 0.8750 0.8719 0.8654 0.8688

EANN - Stacking 0.8219 0.8446 0.8488 0.8535 0.8392 0.8600 0.8569 0.8565

EANN - Boosting 0.8273 0.8662 0.8762 0.8800 0.8796 0.8854 0.8904 0.8965

Table 2.  Average training (top) and testing (bottom) results of the ensemble models with varying ensemble size.
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Figure 3.  Monte Carlo simulation of the investigated ensemble models’ training Accuracy results with respect 
to ensemble size; (a) Bagging models, (b) Stacking models, and (c) Boosting models.

Figure 4.  Monte Carlo simulation of the investigated ensemble models’ testing Accuracy results with respect to 
ensemble size; (a) Bagging models, (b) Stacking models, and (c) Boosting models.
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for value explosion in a binary classification setting (i.e., the ensemble estimates can exceed the −1/1 boundaries 
by a very large difference). This parameter nature requires a release from the curse of dimensionality in higher 
ensemble sizes for Boosted models. The Bagged ensembles are then placed second-best as they do not attempt a 
targeted preference among the ensemble member estimates.

Performance with respect to data availability.  A final evaluation should be carried out over the ensem-
bles’ performances with respect to limited availability of training data. This analysis facilitates a decision on the 
adequacy and sufficiency of the total available dataset. Table 3 and Supplementary Table S3 show the training and 
testing performance of the investigated ensemble models when a portion of the training data is randomly selected 
and used for the training of the ensemble members and the ensemble integration techniques (for Stacking and 
Boosting). In this analysis, the ensemble size is fixed to 50 which is the highest in the previous analysis. Figures 5 
and 6 present the Monte Carlo training and testing simulations for this analysis, respectively. The corresponding 
κ–based results are presented in Supplementary Figs 4 and 5. The selected proportions vary from 20% to 90% 
throughout all the ensembles. All other factors are fixed in this analysis to observe the effect of data availability on 
performance. The Monte Carlo simulation is carried out for each proportion case such that in each simulation the 
partitioned training data is resampled again but with the same ratio with respect to the available dataset.

It is interesting to observe contradicting performance behavior between the training and the testing datasets, 
which is also expected in the proportional data case. For example, the training results of the Bagged, Stacked and 
Boosted ESVM models decrease with the increase of training data availability. This behavior is also captured in 
the remaining ensemble models, except for EELM due to the reasons mentioned before. In addition, the results of 
Boosted models do not properly show this behavior as the two other ensemble approaches. On the other hand, the 
testing results clearly show the increasing Accuracy with the increase of training data availability. As it is generally 
accepted that more information produces more generalized learners, the stability (diminishing uncertainty) and 
increased generalization ability are shown.

Model 20% 30% 40% 50% 60% 70% 80% 90%

Accuracy (Training)

ELR - Bagging 0.9991 1.0000 0.9987 0.9959 0.9880 0.9829 0.9796 0.9755

ELR - Stacking 1.0000 1.0000 1.0000 0.9983 0.9969 0.9907 0.9913 0.9887

ELR - Boosting 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

ESVM- Bagging 0.9882 0.9647 0.9396 0.9228 0.9066 0.8920 0.8851 0.8808

ESVM - Stacking 1.0000 0.9959 0.9822 0.9703 0.9663 0.9502 0.9411 0.9383

ESVM - Boosting 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 1.0000 0.9970

RF - Bagging 0.9373 0.9535 0.9661 0.9679 0.9657 0.9678 0.9681 0.9700

RF - Stacking 0.9764 0.9935 0.9965 0.9952 0.9963 0.9963 0.9962 0.9943

RF - Boosting 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

EELM - Bagging 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

EELM - Stacking 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

EELM - Boosting 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

EANN - Bagging 0.9718 0.9653 0.9622 0.9724 0.9697 0.9773 0.9762 0.9777

EANN - Stacking 1.0000 0.9994 0.9987 0.9997 0.9994 0.9995 0.9996 0.9992

EANN - Boosting 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Accuracy (Testing)

ELR - Bagging 0.5800 0.7435 0.7915 0.8335 0.8465 0.8631 0.8765 0.8808

ELR - Stacking 0.6254 0.7169 0.7715 0.8019 0.8242 0.8504 0.8665 0.8727

ELR - Boosting 0.5850 0.7173 0.7735 0.8146 0.8338 0.8565 0.8646 0.8746

ESVM- Bagging 0.6750 0.7292 0.7896 0.8012 0.8388 0.8385 0.8735 0.8627

ESVM - Stacking 0.6708 0.7369 0.7627 0.7981 0.8242 0.8438 0.8492 0.8573

ESVM - Boosting 0.6654 0.7492 0.7727 0.8146 0.8400 0.8500 0.8635 0.8669

RF - Bagging 0.5904 0.6123 0.6377 0.6719 0.6612 0.7104 0.7119 0.7119

RF - Stacking 0.5650 0.6165 0.6508 0.6750 0.6638 0.6958 0.7100 0.7050

RF - Boosting 0.6046 0.6581 0.6865 0.7092 0.7381 0.7596 0.7650 0.7769

EELM - Bagging 0.5150 0.5362 0.5631 0.5735 0.6042 0.6542 0.6681 0.6846

EELM - Stacking 0.5119 0.5331 0.5623 0.5731 0.6035 0.6531 0.6665 0.6800

EELM - Boosting 0.5404 0.5381 0.5827 0.5938 0.6135 0.6338 0.6473 0.6577

EANN - Bagging 0.6342 0.6935 0.7281 0.7550 0.7985 0.8346 0.8550 0.8635

EANN - Stacking 0.6596 0.7062 0.7242 0.7669 0.8004 0.8150 0.8385 0.8396

EANN - Boosting 0.6573 0.7335 0.7638 0.7942 0.8277 0.8542 0.8627 0.8715

Table 3.  Average training (top) and testing (bottom) results of the ensemble models with varying data 
availability.
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Figure 5.  Monte Carlo simulation of the investigated ensemble models’ training Accuracy results with respect 
to data availability; (a) Bagging models, (b) Stacking models, and (c) Boosting models.

Figure 6.  Monte Carlo simulation of the investigated ensemble models’ testing Accuracy results with respect to 
data availability; (a) Bagging models, (b) Stacking models, and (c) Boosting models.
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It is also important to note that close inspection of the testing results reveals marginal improvement in the 
model generalization ability before data saturation. For example, Bagging-type RF models show the best testing 
results at 70% data proportion. Although this result is only the best among RF models and is only shown in lim-
ited number of models, they have a conceptual meaning. The diversity manifesting from the ensemble learning 
itself, which is the main contributor to the improved performance, is partly driven by the unique information fed 
to the sub-ensembles. The reason behind the absence of abundant observations (Bagged RF at 70% data availa-
bility) in the simulation results among all ensembles is strongly related to the nature of the ensemble model itself. 
In fact, this result is the motivation for state-of-the-art ensemble frameworks that utilize the diversity concept 
more explicitly in their architecture30,33. The explicit utilization of diversity concept is expected to provide further 
improvement to capture the patterns usually weaker than the ones on which hyperplanes are based.

Conclusion
Ensemble learning offers much needed solutions for direct classification of seismic-induced liquefaction, which 
are not usually obtained by single machine learning models, due to instability, nor by deep learning models, 
due to data\feature limitation. The cross-sectional investigation of the various ensemble learning frameworks 
is needed in such problem, but is usually overlooked. Hence, this work aims at motivating the development of 
state-of-the-art ensemble approaches for regional liquefaction prediction. Three ensemble learning frameworks 
are utilized with five different machine learning models. The added benefit of ensemble learning is demonstrated 
through the various targeted testing schemes. A Monte Carlo simulation is carried out for each ensemble model 
in order to further investigate the improved generalization ability of ensemble learning. In terms of experimental 
setup, the work provides recommendations to evaluate the data availability challenge when developing ensemble 
models to the problem of interest, which is a major challenge in this field. On the specific ensemble learning level, 
this paper presents the application of Stacking based ensembles, which has not been studied for liquefaction 
prediction in the literature. On the sub-ensemble level, this paper presents the results of Boosted and Bagged 
models based on previously unexamined individual learners’ pairing (within the ensemble learning application). 
More research is required to adequately address ensemble learning in this field. The explicit utilization of diversity 
concept in developing ensemble learning models is expected to provide further improvement to the prediction. 
Such approach is expected to capture the patterns usually hidden or weaker than the ones on which hyperplanes 
are simulated by the previous models.
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